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Abstract

Product measures of dimension n are known to be “concentrated” under Hamming distance. More

precisely, for any set S in the product space of probability Pr[S] ≥ ε, a random point in the space, with

probability 1 − δ, has a neighbor in S that is different from the original point in only O(
√
n · ln(1/εδ))

coordinates (and this is optimal). In this work, we obtain the tight computational (algorithmic) version of

this result, showing how given a random point and access to an S-membership query oracle, we can find

such a close point of Hamming distance O(
√

n · ln(1/εδ)) in time poly(n, 1/ε, 1/δ). This resolves an

open question of [MM19] who proved a weaker result (that works only for ε ≫ 1/
√
n). As corollaries,

we obtain polynomial-time poisoning and (in certain settings) evasion attacks against learning algorithms

when the original vulnerabilities have any cryptographically non-negligible probability.

We call our algorithm MUCIO (short for “MUltiplicative Conditional Influence Optimizer”) since

proceeding through the coordinates of the product space, it decides to change each coordinate of the given

point based on a multiplicative version of the influence of a variable, where the influence is computed

conditioned on the value of all previously updated coordinates. MUCIO is an online algorithm in that it

decides on the i’th coordinate of the output given only the first i coordinates of the input. It also does

not make any convexity assumption about the set S.

Motivated by obtaining algorithmic variants of measure concentration in other metric probability

spaces, we define a new notion of algorithmic reduction between computational concentration of measure

in different probability metric spaces. This notion, whose definition has some subtlety, requires two

(inverse) algorithmic mappings one of which is an algorithmic Lipschitz mapping and the other one is

an algorithmic coupling connecting the two distributions. As an application, we apply this notion of

reduction to obtain computational concentration of measure for high-dimensional Gaussian distributions

under the ℓ1 distance.

We further prove several extensions to the results above as follows. (1) Generalizing in another di-

mension, our computational concentration result is also true when the Hamming distance is weighted.

(2) As measure concentration is usually proved for concentration around mean, we show how to use our

results above to obtain algorithmic concentration for that setting as well. In particular, we prove a compu-

tational variant of McDiarmid’s inequality, when properly defined. (3) Our result generalizes to discrete

random processes (instead of just product distributions), and this generalization leads to new tampering

algorithms for collective coin tossing protocols. (4) Finally, we prove exponential lower bounds on the

average running time of non-adaptive query algorithms for proving computational concentration for the

case of product spaces. Perhaps surprisingly, such lower bound shows any efficient algorithm must query

about S-membership of points that are not close to the original point even though we are only interested

in finding a close point in S.
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1 Introduction

Let (X , d,µ) be a metric probability space in which d is a metric over X , and µ is a probability measure over

X . The concentration of measure phenomenon [Led01, MS86] states that many natural metric probability

spaces of high dimension are concentrated in the following sense. Any set S ⊆ X of “not too small”

probability µ(S) ≥ ε is “close” (according to d) to “almost all” points ( 1− δ measure according to µ).

A well-studied class of concentrated spaces is the set of product spaces in which the measure µ =
µ1 × . . .µn is a product measure of dimension n, and the metric d is Hamming distance of dimension n;

namely, HD(u, v) = | {i : ui 6= vi} | for vectors u = (u1, . . . , un), v = (v1, . . . , vn). More specifically, it

is known, e.g., by results implicit in [AM80, MS86] and explicit in [McD89, Tal95], and weaker versions

known as blowing-up lemma proved in [AGK76,Mar74,Mar86], that any such metric probability space is a

so-called Normal Lévy family [Lév51, AM85]. Namely, for any S of probability µ(S) ≥ ε, at least 1 − δ
fraction of the points (under the product measure µ) are O(

√
n · ln(1/εδ))-close in Hamming distance to S .

Previous proofs of measure concentration, and in particular those proofs for product spaces are information

theoretic, and only show the existence of a “close” such point y ∈ S to most of x ← µ sampled according

to µ. Naive sampling of points around x will likely not fall into S (see Section 6).

Motivated by finding polynomial-time attacks on the “robustness” of machine learning algorithms, re-

cently Mahloujifar and Mahmoody [MM19] studied a computational variant of the measure concentration

in which the mapping from a given point x← µ to its close neighbor y ∈ S is supposed to be computed by

an efficient polynomial-time algorithm AS,µ(x) = y that has oracle access to test membership in S and a

sampling oracle from the measure µ.1 It was shown in [MM19] that if S is large enough, then the measure

computationally concentrates around S . In particular, it was shown that if Pr[S] ≥ 1/polylog(n), then

AS,µ(x) finds y with Hamming distance Õ(
√
n) from x, and instead if S is at least Pr[S] ≥ ω(1/

√
n), then

A finds y with Hamming distance o(n). Consequently, it was left open to prove computational concentration

of measure around any smaller sets of “non-negligible” 1/poly(n) probability, e.g., of measure 1/n.

1.1 Our Results

In this work, we resolve the open question about the computational concentration of measure in product

spaces under Hamming distance and prove (tight up to constant) computational concentration for all range

of initial probabilities Pr[S] for the target set S . Namely, we prove the following result matching what

information theoretic concentration of product spaces guarantees up to a constant factor, while the map-

ping is done algorithmically. As we deal with algorithms, without loss of generality, we focus on discrete

distributions.2

Theorem 1.1 (Main result). There is an algorithm AS,µε,δ (·) called MUCIO (short for “MUltiplicative Condi-

tional Influence Optimizer”) that given access to a membership oracle for any set S and a sampling oracle

from any product measure µ of dimension n, it achieves the following. If Pr[S] ≥ ε, given ε and δ, the

algorithm AS,µε,δ (·) runs in time poly(n/εδ), and with probability ≥ 1 − δ given a random point x ← µ, it

maps x to a point y ∈ S of bounded Hamming distance HD(x, y) ≤ O(
√

n · ln(1/εδ)).
See Theorem 3.2 for a more general version of Theorem 1.1.

For the special case that ε, δ = 1/poly(n) (implying S has a non-negligible measure) the algorithm

MUCIO of Theorem 1.1 achieves its goal in poly(n) time, while it changes only Õ(
√
n) of the coordinates.

1In case of product measure, oracle access to a sampler from µ = µ1 × . . .µn is equivalent to having such samplers for all µi.
2Note that even seemingly non-discrete distributions like Gaussian, when used as input to efficient algorithms, are necessarily

rounded to limited precision and thus end up being discrete.
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Our work can be seen as another example of works in computer science that make previously existen-

tial proofs algorithmic. A good example of a similar successful effort is the active line of work started

from [Mos09, MT10] that presented algorithmic proofs of Lovász’s local lemma, leading to algorithms that

efficiently find objects that previously where only shown to exist using Lovász’s local lemma. The work

of [IK10] also approaches measure concentration from an algorithmic perspective, but their goal is to algo-

rithmically find witness for lack of concentration.

1.1.1 Extensions

In this work we also prove several extensions to our main result in different directions expanding a direct

study of computational concentration as an independent direction.

Extension to random processes and coin-tossing attacks. We prove a more general result than Theo-

rem 1.1 in which the perturbed object is a random process. Namely, suppose w ≡ (w1, . . . ,wn) is a dis-

crete (non-product) random process in which, given the history of blocks w1, . . . , wi−1, the ith block wi is

sampled from its corresponding random variable (wi | w1, . . . , wi−1). Suppose Prw←w[w ∈ S] ≥ ε for an

arbitrary set S . A natural question is: how much can an adversary increase the probability of falling into S , if

it is allowed to partially tamper with the online process of sampling w1, . . . , wn up to K < n times? In other

words, the adversary has a limited budget of K , and in the ith step, it can use one of its budget, and in ex-

change it gets to override the originally (honestly) sampled value wi ← (wi | w1, . . . , wi−1) by a new value.

Note that if the adversary does a tampering, the changed value will substitute wi and will affect the way the

future blocks of the random process are sampled, e.g., in the next sampling of wi+1 ← (wi+1 | w1, . . . , wi).
Our generalized version of Theorem 1.1 (stated in Theorem 3.2) shows that in the above setting of

tampering with random processes, an adversary with budget O(
√

n · ln(1/εδ)) can indeed change the dis-

tribution of the random process and make the resulting tampered sequence end up in S with probability at

least 1 − δ, while the adversary also runs in time poly(n/εδ). Previously, [MM19] also showed a similar

less tight result for random processes, but their result was limited to the setting that S is sufficiently large

Pr[S] ≥ ω(1/
√
n).

The variant of Theorem 1.1 for random processes allows us to attack cryptographic coin-tossing pro-

tocols [BOL89, CI93, MPS10, BHT14, HO14, KKR18] in which n parties P1, . . . , Pn each send a single

message during a total of n rounds, and the full transcript M = (m1, . . . ,mn) determines a bit b. The goal

of an attacker is to corrupt up to K of the parties and bias the bit b towards its favor. Our results show that

even if the original bit b had a small probability of being 1, Prno-attack [b = 1] ≥ ε = 1/poly(n), then a

poly(n)-time attacker who can corrupt up to Õ(
√
n) parties and change their messages can bias the output

bit b all the way up to make it Prattack[b = 1] ≥ 1 − 1/poly(n). The corruption model here was first

introduced by Goldwasser, Kalai and Park [GKP15] and is called strong adaptive corruption, because the

adversary has the option to first see the message mi before deciding to corrupt (or not corrupt) Pi to change

its message mi (or not). 3

Weighted Hamming distance. In another extension to our Theorem 1.1 (see Theorem 3.2) we allow

the Hamming distance to have different costs αi when changing the ith coordinate for any vector α =
(α1, . . . , αn) of ℓ2 norm

∑
i α

2
i = n. In Talagrand’s inequality [Tal95], it is proved that even if αx can

completely depend on the original point x, we still can conclude that most points are “close” to any suf-

ficiently large set S , when the distance from x to S is measured by the αx-weighted Hamming distance.

An algorithmic version of Talagrand’s inequality, then, shall find a close point y ∈ S to x measured by

3If each message mi is a bit, it turns out that our attack can be modified to an attack that is not strong.
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αx-weighed Hamming distance. Interestingly, our proof allows the coordinate αi to completely depend on

(x1, . . . , xi−1), but falls short of proving an algorithmic version of Talagrand’s inequality, if possible at all.

Reductions and other metric probability spaces. Motivated by proving computational concentration of

measure in other metric probability spaces, as well as designing a machinery for this goal, we define a new

model of algorithmic reductions between computational concentration of measure in different metric prob-

ability spaces. This notion, whose definition has some subtle algorithmic aspects, requires two (inverse)

polynomial-time mappings one of which is an algorithmic Lipschitz mapping and the other one is an al-

gorithmic coupling connecting the two distributions. As an application, we apply this notion of reduction

to obtain computational concentration of measure for high-dimensional Gaussian distributions under the ℓ1
distance. We prove this exemplary case by revisiting the proof of [B+97] who proved the information the-

oretic reduction from the concentration of Gaussian distributions under the ℓ1 distance to that of Hamming

cube. We show how the core ideas of [B+97] could be extended to obtain all the algorithmic components

that are needed for a computational variant. Although there are known results on concentration of Gaussian

distribution ℓ1 in information theoretic regime, this is the first time (to the best of our knowledge) that a

computational variant of concentration is proved for Gaussian spaces. We envision the same machinery can

be applied to more information theoretic results for obtaining new computational variants; we leave doing

so for future work. See Theorem 4.2 for the formal statement.

Computational concentration around mean. As measure concentration is usually proved for concentra-

tion around mean of a function f(·) when the inputs come from certain distributions, we show how to use

our main result of Theorem 3.2 to obtain algorithmic concentration results for that setting as well. Namely,

at a high level, we show that in certain settings (where concentration is known to follow from those settings)

one can algorithmically find the right minimal perturbations to sampled points x so that the new perturbed

point x′ gives us the average of the concentrated function: f(x′) ≈ Ex←µ[f(x)]. Sometimes doing so is

trivial (e.g., in case of Chernoff bound, when f is simply the addition of i.i.d. sampled Boolean values,

as one can greedily change Boolean variables to decrease their summation) but sometimes doing so is not

straightforward. In particular, we prove a computational variant of McDiarmid’s inequality. Namely, we

show how to modify
√
n coordinates of a vector x← µ sampled from a product distribution µ of dimension

n, such that f(x′) gets arbitrary (i.e., 1/poly(n)) close to the average µ = Ex←µ[f(x)] for a function f
that is Lipschitz under Hamming distance. (Note that the Lipschitz property is needed for the McDiarmid

inequality as well). See Theorem 5.1 for the formal statement.

Lower bounds for simple methods. We also prove exponential lower bounds on the query complexity of

natural, yet restricted, classes of algorithms. Two such classes stand out: One is non-adaptive algorithms

where the queries made do not depend on the answer of previous queries. Another, natural class of algo-

rithms are algorithms where all the queried points are at the distance where an acceptable final output may

be at that distance. These lower bounds shed light on why perhaps some of the ideas behind our algorithm

MUCIO are necessary, and that some simpler more straightforward algorithms are not as efficient.

Polynomial-time biasing attacks against extractors. At a high level, our biasing attacks on random pro-

cesses are also related to impossibility results on extracting randomness from blockwise Santha-Vazirani

sources [SV86, CG88, BEG17, RVW04, DOPS04] and specifically the p-tampering and p-resetting attacks

of [BGZ16,MM17,MDM18]. In those attacks, an attacker might get to tamper each incoming block with an

independent probability p, and they can achieve a bias of magnitude O(p) (in polynomial time). However,

our attackers can choose which blocks are the target of their tampering substitutions, but then achieve much

stronger bias and almost fixing the output with much smaller o(n) number of tamperings.
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1.1.2 Polynomial-time Attacks on Robust Learning

Our results also have implications on (limits) of robust learning, which is also the focus of the work of

[MM19] where computational concentration of measure was also studied. We refer the reader to [MM19]

for a more in-depth treatment of the literature and settings for (attacks on) robust learning. For sake of

completeness, below we describe the basic setting of such attacks and briefly discuss the implication of our

computational concentration results to robust learning attacks.

Suppose L is a (deterministic) learning algorithm, taking as input a training set T consisting of m iid

sampled and labeled examples T = {xi, c(xi)}i∈[m] where xi ← µ for i ∈ [m], and that c(·) is a concept

function to be learned. Let h = L(T ) be the hypothesis that the learner produces based on the training set

T . Main attacks against robustness of learners are studied during the training phase or the testing phase of a

learning process. We describe the settings and previous work before explaining the implication of our new

computational concentration results to those settings.

Poisoning attacks. In a so-called data poisoning attack [BNS+06, BNL12], which is tightly related to

Valiant’s malicious noise model [Val85, KL93, BEK02], the adversary only tampers with the training phase

and substitutes a small p < 1 fraction of the examples in T with other arbitrary examples, leading to

a poisoned data set T̃ . The goal of the adversary, in general, is to make L(T̃ ) produce a “bad” hypothesis

h ∈ H̃ (e.g., bad might mean having large risk or making a mistake on a particular test x during the test time)

where H̃ ⊆ H includes the set of all undesired hypothesis. It was shown by [MDM19] that the concentration

of measure in product spaces (under Hamming distance) implies that in any such learning process, so long

as PrT [L(T ) ∈ H̃] ≥ ε, then an adversary A who changes O(
√

m · ln(1/εδ)) of the training examples (and

substitute them with still correctly labeled data) can increase the probability of producing a bad hypothesis in

H̃ to PrT̃←A(T )[L(T̃ ) ∈ H̃] ≥ δ. It was left open whether such attack can be made polynomial time, or that

perhaps computational intractability can be leveraged to prevent such attacks. The work of [MM19] showed

how to make such attacks polynomial time, only for the setting where the probability of falling into H̃ was

already not too small, and in particular at least ω(1/
√
n), and also with looser bounds. Our Theorem 1.1

shows how to get such polynomial time evasion attacks for any non-negligible probability ε ≥ 1/poly(n).
In fact, as stated in Theorem 1.1, our attack’s complexity can gracefully adapt to ε.

The previous attacks of [MDM19, MM19] and our newer attacks of this work do not contradict recent

exciting works in defending against poisoning attacks [DKK+16, LRV16, DKK+18, PSBR18], as those

defenses either focus on learning parameters of distributions or, even in the classification setting, they aim

to bound the risk of the hypothesis, while we increase the probability of a bad Boolean property.4

Evasion attacks. In another active line of work, other types of attacks on learners are studied in which the

adversary enters the game during the test time. In such so-called evasion attacks [BFR14, CW17, SZS+14,

GMP18] that find “adversarial examples”, the goal of the adversary is to perturb the test input x into a

“close” input x̃ under some metric d (perhaps because this small perturbation is imperceptible to humans)

in such a way that this tampering makes the hypothesis h make a mistake. In [MDM19], it was also shown

that the concentration of measure can potentially lead to inherent evasion attacks, as long as the input metric

probability space (X , d,µ) is concentrated. This holds e.g., if the space is a Normal Lévy family [Lév51,

AM85]. The work of [MM19] showed the existence of polynomial time evasion attacks with sublinear

perturbations for classification tasks in which the input distribution is a n-dimensional product space (e.g.,

4In fact, the challenge in those works is to obtain polynomial-time learners in settings where inefficient robust methods were

perhaps known in the robust statistics literature. The focus here, however, is to obtain polynomial-time attacks.
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the uniform distribution over the hypercube) under Hamming distance. But their attacks could be applied

only when the original risk ε of the hypothesis h is at least ε = ω(1/
√
n). However, standard PAC learners

(e.g., based on empirical risk minimization) can indeed achieve polynomially small risk ε = 1/poly(m)
where m is the sample complexity. Our Theorem 1.1 shows how to obtain polynomial-time attacks even in

the low-risk regime ε = 1/poly(n)5 and perturb given samples x← µ in Õ(
√
n) coordinates and make the

perturbed adversarial instance x̃ misclassified with high probability.

Our results of Section 4 show that one can also obtain polynomial time evasion attacks for classifiers

whose inputs come from metric probability spaces that use metrics other than Hamming distance (e.g.,

Gaussian under ℓ1). Using the reductionist approach of Section 4 one can perhaps obtain more such results.

Our attacks, however, do not rule out the possibility of robust classifiers for specific input distributions such

as images or voice that is the subject of recent intense research [SZS+14, CW17, MFF16], but they shed

light on barriers for robustness in theoretically natural settings. See [BPR18, DV19] for more discussion on

other possible barriers for robust learning.

1.2 Technical Overview

In this subsection, we describe the challenges and key ideas behind the proof of Theorem 1.1 and some of its

extensions. The extension for the concentration around mean (see Section 5) follows directly from the main

result about concentration around noticeably large sets. Thus, we only focus on explaining ideas behind

some other extensions to our result; namely how to obtain new results through carefully defined algorithmic

reductions, and proving limits for the power of simple methods for proving computational concentration.

Setting. (The reader might find the explanations for our notation at the beginning of Section 2 useful.)

Suppose w ≡ (w1 × · · · × wn) is a random variable with a product distribution of dimension n.6 Also,

suppose the set S ⊆ Supp(w) is denoted by its characteristic function f , where f(w) = 1 iff w ∈ S .

The goal of the tampering algorithm Tam is to change as few as possible of the sampled blocks w =
(w1, . . . , wn)← w making the new vector v = (v1, . . . , vn) such that f(v) = 1 with high probability (over

the both steps of sampling w and obtaining v from it).

Our starting point is the previous attack of [MM19] that only proved computational concentration around

large sets of measure Pr[S] ≥ ω(1/
√
n). The result of [MM19], in turn, was built upon techniques de-

veloped in the work of Komargodski, Raz, and Kalai [KKR18] that presented an alternative simpler proof

for a previously known result of Lichtenstein et al. [LLS89]. Below, we first describe the high level ideas

behind the approach of [MM19, KKR18], and then we describe why that approach breaks down when S
gets smaller than 1/

√
n, and thus fails to obtain the optimal information theoretic bounds for concentration.

We then describe our new techniques to bypass this challenge and obtain computational concentration with

optimal bounds.

The high-level approach of [MM19]. As it turns out, the tampering algorithm of [MM19], as well as

ours, do not need to know wi+1, . . . , wn when deciding to change wi (into a different vi 6= wi) or leaving

it as is (i.e., wi = vi). So, a useful notation to use is the partial expected values, capturing the chance of

5Note that in the “high dimensional” setting where input dimension n is huge, we can see the sample complexity m bounded,

which implies ε ≥ 1/ poly(m) if ε = 1/ poly(n).
6As discussed above, our results extend to random processes as well, when formalized carefully, but for simplicity we focus on

the interesting special case of product distributions.
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falling into S (i.e., f(w) = 1) over the randomness of the remaining blocks.

f̂(w1, . . . , wi) = E
(wi+1,...,wn)←(wi+1,...,wn)

[f(w1, . . . , wn)].

One obvious reason for working with f̂(·) quantities is that they can be approximated with arbitrary

small ±1/poly(n) additive error. This can be done using the sampling oracle of the distribution of w ≡
w1 × · · · ×wn and the oracle f(·) determining membership in S .

At a high level, the idea behind the attack of [MM19] is to change wi only if this change allows us to

increase f̂(·) additively by +λ for a parameter λ ≈ 1/
√
n. We first describe this attack, and then explain its

challenges against obtaining optimal bounds and how we resolve them.

At a high level, the attack of [MM19] tampers with the ith block (i.e., wi), if just before or just after

looking at wi, we conclude that we can increase f̂(·) by λ.

Construction 1.2 (Attack of [MM19] oracle f̂(·)). Suppose that we are given a prefix v≤i−1 that is finalized,

and we are also given a candidate value wi for the i’th block (supposedly sampled from wi) and we want to

decide to keep it vi = wi or change it vi 6= wi. Let λ > 0 be a parameter of the attack to be chosen later,

v∗i = argmaxyi f̂(v≤i−1, yi) be the choice for i’th block that maximizes f̂(v≤i), and let f∗ = f̂(v≤i−1, v∗i ).

1. (Case 1) If f∗ ≥ f̂(v≤i−1)+λ, then output vi = v∗i (regardless of wi).

2. (Case 2) Otherwise, if (by looking at wi) f̂(v≤i−1, wi) ≤ f̂(v≤i−1)−λ, then again output vi = v∗i .

3. (Case 3) Otherwise, keep the value wi and output vi = wi.

Why this attack biases f(·) towards 1? For simplicity, support Pr[S] = 1/2. Suppose we “color” different

i ∈ [n] depending on whether the tampering algorithm changes the ith block wi or not. If vi 6= wi (tampering

happened), color i green, denoted by i ∈ G, and otherwise color i red, denoted as i ∈ R = [n] \ G. A

simple yet extremely useful observation is that we can write f(v) as the sum of the changes in f̂(v≤i)
between consecutive i. Namely, if we let ĝ(v≤i) = f̂(v≤i)− f̂(v≤i−1), then

f̂(v≤n)− f̂(∅) = f(v)− 1/2 =
∑

i∈[n]
ĝ(v≤i).

This means that we have to study the affect of the green and red coordinates i on how ĝ(v≤i) behaves,

because that will tell us how the final output bit is determined and distributed.

Construction 1.2 is designed so that, whenever i is green, the partial expectation oracle f̂(v≤i) jumps

up at least by λ (i.e., ĝ(v≤i) ≥ λ). So, the only damage (leading to falling outside S) could come from the

red coordinates and how they change f̂(v≤i) downwards. Let us now focus on the red coordinates i ∈ R.

A simple inspection of Construction 1.2 shows that, the change in f̂(·) captured by ĝ(v≤i) is bounded in

absolute value by λ, and that is the result of no-tampering for a block. Therefore, the summation of ĝ(v≤i)
for red coordinates i would cancel out each other and, by the Azuma inequality, the probability that this

summation is more than 1 is at most exp(−1/(n · λ2). So, by choosing λ ≪ 1/
√
n, the red coordinates

cannot control the final bit, as with high probability this summation is less than one. This means that the

outcome (whenever the red coordinates do not fix the function) should be 1, because the green coordinates

only increase the f̂(·) function.

Why the attack is efficient? The efficiency of the attack follows form its effectiveness and the same argument

described above. Namely, whenever the green coordinates are determining the output, it means that their

total sum of of ĝ(v≤i) is going from a specific number in [0,+1] to 1, and each time they jump up by at least

λ, so they cannot be more than n/λ green steps. Since we chose λ = 1/
√
n, the efficiency follows as well.
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The challenge when Pr[S] = E[w] = ε is too small. The issue with the above approach is that whenever

ε is too small (not around 1/2) we need to pick λ much smaller, so that the summation (i.e., the effect of the

red coordinates does not make the function reach zero). Simple calculation shows that after the threshold

ε ≈ 1/
√
n, the number of tampered (green) blocks would grow too much and eventually become more than

n. However, note that when we reach n tamperings, it means the attack’s efficiency is meaningless.

1.2.1 Our Approach (MUCIO: MUltiplicative Conditional Influence Optimizer)

Main step 1: tampering with multiplicatively influential blocks. Our first key idea is to judge whether

a block is influential (and thus tamper it) based how much it can change the partial expectations in a mul-

tiplicative way. (This is related to the notion of a log-likelihood ratio in statistics and information theory.)

Construction 1.3 below describes this simple change. However, as we will see, doing this simple change

will have big advantages as well as new challenges to be resolved. We will describe both the advantages and

thew new challenges after the construction.

Construction 1.3 (Multiplicative online tampering using oracle f̂(·)). The key difference between this

attack and that of Construction 1.2 is that here, in order to judge whether tampering with the current ith

block is worth it or not, we make the decision based on the multiplicative gain (in how f̂(·) changes) that

this would give us. Namely, for the same setting of Construction 1.2, we do as follows.

1. (Case 1) If f∗ ≥ eλ·f̂(v≤i−1), then output vi = v∗i (regardless of wi).

2. (Case 2) Otherwise, if f̂(v≤i−1, wi) ≤ e−λ·f̂(v≤i−1), then output vi = v∗i .

3. (Case 3) Otherwise, keep the value wi and output vi = wi.

Main advantage: the output is fully biased. We first describe what advantages the above change gives us,

and then will discuss the remaining challenges. The key insight into why this is a better approach is that

the tampering algorithm of Construction 1.3 will always lead to obtaining f(v) = 1 at the end (i.e., we

always end up in S). In order to see why this is a big difference, notice that if f̂(w≤0) = ε is very small

at the beginning and we tamper only based on additive differences (as is done in Construction 1.2), there is

a possibility that we do not tamper with the first block and end up at f̂(w≤1) = 0. Such a problem does

not happen when we decide on tampering based on multiplicative improvement, and every tiny chance of

falling into S is taken advantage of.

Only few tamperings happen. To analyze the number of tamperings that occur in the “idealized” attack of

Construction 1.3 we keep track of ln
(
f̂(v≤i)/f̂(v≤i−1)

)
as we go. We know that the output of function

under the attack is always 1 which means:

n∑

i=1

ln

(
f̂(v≤i)

f̂(v≤i−1)

)
= ln

(
f̂(v≤n)

f̂(∅)

)
= ln

(
1

f̂(∅)

)
.

We again categorize the indices i to red and green. Green set indicates the locations that the algorithm

tampers with wi and red is the set of locations that tampering has not happened and vi = wi. For the

red locations, we prove the following inequality that plays a key role in our analysis of the attack. One

interpretation of this inequality is that we will now use ln(1/f̂(v≤i−1)) as a potential function that allows

us keep track of, and control, the number of tamperings.

ln(1/f̂(v≤i−1))− E
vi←v[v≤i−1]

[ln(1/f̂ (v≤i))] ≥ −
λ2

2
.
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This inequality follows from a Jensen Gap inequality on the natural logarithm function. For green locations,

we increase ln(f̂(v≤i)) whenever we tamper by at least λ. Therefore, the overall effect of green locations

on
∑n

i=1 ln(f̂(v≤i)/f̂(v≤i−1)) will be

λ · E[# of tampering].

Combining these together we get the following:

λ · E[# of tampering]− n · λ2

2
≤ ln(1/ε).

Now we can optimize λ to get the best inequality on the expected number of tampering.

New challenge: obtaining good multiplicative approximations when f̂(·) gets too small. Construction 1.3

increases the average to 1 (i.e., we always end up in S) with small number of tampering. However we

cannot implement that construction in polynomial time. The problem is that it is hard to instantiate the

oracle f̂(v≤i) polynomial time when the partial average gets close to 0. To solve this issue, we add a step to

the construction that makes the algorithm abort if the partial average goes below some threshold.

Construction 1.4 (Online tampering with abort TamAb using partial-expectations oracle). This construc-

tion is identical to Construction 1.3, except that whenever the fixed prefix has a too small partial expectation

f̂(v≤i−1, wi) (based on a new parameter τ ) we will abort. Also, in that case the tampering algorithm does

not tamper with any future vi block either. Namely, we add the following “Case 0” to the previous steps:

• (Case 0) If f̂(v≤i−1, wi) ≤ e−τ · ε abort. If had aborted before, do nothing.

Main step 2: showing that reaching low expectations is unlikely under the attack. To argue that the

new construction does not hurt the performance of our algorithm by much, we show that the probability of

getting a low f̂(v≤i) is small because of the way our algorithm works. The idea is that, our algorithm always

guarantees that

−λ ≤ ln (f̂(v≤i)/f̂(v≤i−1)) ≤ λ.

We also show that

E[ln(f̂(v≤i)/f̂(v≤i−1))] ≥ −
λ2

2
.

This means that the sequence of ln

(
f̂(v≤i)

f̂(v≤i−1)

)
forms an “approximate” sub-martingale difference sequence.

We can use Azuma inequality to show that sum of this sequence will remain bigger than some small thresh-

old, with high probability. After all, we can bound the probability of getting into Case 0 to be very small.

1.2.2 More Computational Concentration Results through Algorithmic Reductions

Here we explain a technical overview of our generic reduction technique. Let S1 = (X1, d1,µ1) and

S2 = (X2, d2,µ2) be two metric probability spaces. In addition, assume we already know some level

of computational concentration proved for S2, and that we want to prove (some level of) computational

concentration for S1 through a reduction. In Section 4, we formalize a generic framework to prove such

reductions. The main ingredients of such algorithmic reduction are two polynomial time mappings f : X1 →
X2 and g : X2 → X1 with 3 properties. The first property (roughly speaking) requires that f(µ1) ≈ µ2 and

g(µ2) ≈ µ1. This property guarantees that if we sample a point from one space and use the mapping and
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go to the other space, we get a distribution close to the probability measure of the second space. (This can

be interpreted as an algorithmic coupling.) The second property requires that the mapping g is Lipschitz.

The third property requires that g(f(x)) is close to x. The idea behind why such reduction (as a collection

of these mappings) work is as follows. We are given a point x1 in S1 and we want to find a close x2 such

that x2 falls inside a subset S . To do that we first map x1 to a point x′1 in S2 using f . We know that S2 is

computationally concentrated and we can efficiently find a close x′2 such that x′2 falls into an specific subset

S ′. Then we use g to go back to a point x2 in S1. The second and third properties together guarantee that x1
and x2 are close, because x′1 and x′2 are close. At the same time, the first condition guarantees that x2 will

hit S if we select S ′ in a careful way. See Theorem 4.2 for more details.

We use this general framework to prove computational concentration bounds for Gaussian spaces under

ℓ1 norm. We reduce the computational concentration of Gaussian distribution under ℓ1 to the computational

concentration of the Boolean Hamming cube. For this goal, we show how to build two mappings f and g

from an n-dimensional Gaussian space to a n2-dimensional Hamming cube and vice versa, following the

footsteps of a reduction by [B+97] who proved an information theoretic variant of this result. Here we

show that the algorithmic ingredients that are necessary, in addition to the ideas already in [B+97], could

indeed be obtained. The main idea behind this mappings is the fact that the number of 1’s in a sample from

n-dimensional hamming cube approximately forms a Gaussian distribution centered around n
2 . Therefore,

we can map each dimension of the Gauss space to a n-dimensional hamming cube and vice versa. Here we

observe that we can use the same idea and build the mappings in a way that achieves the three properties

mentioned above. See Section 4 for more details.

1.2.3 Lower Bounds for Simple Methods

To prove exponential lower bounds on the query complexity of too-simple algorithms, we consider the

half-space S in the Hamming cube consisting of those points with below-average Hamming weight.

A uniformly random point x in the cube, with high probability has Hamming distance Ω(
√
n) from

the set S . Now, if for such a point x, we hope to find a close point in S simply by sampling uniformly

at random among points close to x, we fail except with exponentially small probability. For only random

points with distance n1−o(1) have a significant chance of changing the weight of point x by Ω(
√
n), whereas

the information-theoretic bound says there exists a point of distance O(
√
n) that changes the weight by

Ω(
√
n).

To achieve lower bounds for more general classes of algorithms, we use a random half-space instead of

a fixed half-space. This gives us exponential lower bounds for non-adaptive attacks as well as attacks that

query about S-membership of points outside a ball of size d = O(
√

n · ln(1/εδ)) even when we are inter-

ested in finding a point in the intersection of S and this ball. Notice that MUCIO avoids this last restriction

by surveying the influence of the first coordinate on the totality of points, while it ends up changing only a

small fraction of the coordinates.

2 Preliminaries

General notation. We use calligraphic letters (e.g., X ) for sets. By default, all distributions and random

variables in this work are discrete. We use bold letters (e.g., w) to denote random variables that return a

sample from a corresponding discrete distribution. By w ← w we denote sampling w from the random

variable w. By Supp(w) we denote the support set of u. For an event S ⊆ Supp(w), the probability

function of w for S is denoted as Pr[w ∈ S] = Prw←w[w ∈ S]. For a randomized algorithm R(·), by
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y ← R(x) we denote the randomized execution of R on input x outputting y. By u ≡ v we denote that the

random variables u and v have the same marginal distributions. Unless stated otherwise, we denote vectors

by using a bar over a variable. By w ≡ (w1,w2, . . . ,wn) we refer to a sequence of n jointly sampled

random variables. For a vector w = (w1 . . . wn), we use w≤i to denote the prefix (w1, . . . , wi), and we use

the same notation w≤i for jointly distributed random variables. For a jointly distributed random variables

(u,v), by (u | v) we denote the conditional distribution (u | v = v). For a random variable u, by Tu(·)
we denote an oracle-aided algorithm T (·)(·) that can query fresh sample from u. By u × v we refer to the

product distribution in which u and v are sampled independently. For a real-valued random variable x, by

E[x] we refer to the expected value of x, and by V[x] we denote its variance.

Notation on random processes and online samplers. Let w ≡ (w1, . . . ,wn) be a sequence of jointly

distributed random variables. We can interpret the distribution of w as a random process in which the

ith block wi is sampled from the marginal distribution (wi | w≤i−1). For simplicity, we use notation

w[w≤i−1] ≡ (wi | w≤i−1) to refer to this marginal conditional distribution. (Note that i is dropped from

the distribution’s name, relying on the input w≤i−1 that uniquely determines i.) We can interpret w≤i−1 as a

“node” in a tree of depth i, and the sampling wi ← w[w≤i−1] can be seen as the process of sampling the next

child according to the distribution of w[w≤i−1]. Alternatively, describing the distributions of the random

variables w[w≤i−1] defines the distribution of w. For random variable w ≡ (w1, . . . ,wn) we sometimes

refer to the random variable w[w≤i−1] as the online sampler for w, because it returns fresh samples form

the next block, given the previously fixed prefix w≤i−1.

Definition 2.1 (Online tampering). Let w ≡ (w1, . . . ,wn) be a sequence of jointly distributed random

variables, and let w[w≤i−1] be the online sampler for w for all i ∈ [n] and all w≤i−1 ∈ Supp(w≤i−1).
Online tampering algorithms for w and their properties are defined as follows.

• Online tampering. We call a (potentially randomized and computationally unbounded) algorithm

Tam an online tampering algorithm for w, if for all i ∈ [n] and w≤i ∈ Supp(w≤i), it holds that

Pr[Tam(w≤i) ∈ Supp(w[w≤i−1])] = 1 .

Namely, Tam(w≤i) always outputs a candidate ith block that still falls into Supp(w[w≤i−1]).

• Resulting tampered distribution. For an online tampering algorithm Tam for w, by (u,v) ≡
〈w ‖Tam〉 we refer to the jointly distributed sequence of random varaibles defined as follows. For

i = 1, 2, . . . , n, we first sample ui ← w[v≤i−1], and then we obtain vi ← Tam(v≤i−1, ui) as the (pos-

sibly different than ui) choice of the tampering algorithm Tam for the ith block (that will override

ui). At the end, we output the pair of sequences (u = u≤n, v = v≤n) as the sample from (u,v).

Notation. For simplicity, we use v[v≤i−1] to denote (vi | v≤i−1) and use (w,v)[v≤i−1] to denote the

jointly distributed random variables from which (ui, vi) are sampled conditioned on the prefix v≤i−1.

The notation allows us to use v[v≤i−1], (w,v)[v≤i−1] similarly to how we use online samplers.7

• Budget of tampering attacks. Let d be a metric defined over Supp(u) as vectors of dimension n.

We say a tampering algorithm Tam has budget (at most) b, if

Pr
(u,v)←〈w ‖Tam〉

[d(u, v) ≤ b] = 1.

7Note that are not defining a similar notation of the form u[v≤i−1] for u. Firstly, this is not needed as w[v≤i−1] already provides

a sampler for ui. Moreover, such notation would be inconsistent with our notation for online samplers for random processes based

on joint distributions, because the notation would implicitly interpret v≤i−1 as previous samples from u≤i−1.
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We say that Tam has average budget (at most) b, if the following weaker condition holds

E
(u,v)←〈w ‖Tam〉

[d(u, v)] ≤ b.

• Algorithmic efficiency of attacks. If w = wn is a member from a family defined for all n ∈ N, we

call an online or offline tampering algorithm efficient, if its running time is poly(N) where N is the

total bit-length representation of any w ∈ Supp(wn).

Definition 2.2 (Partial expectations). Suppose f : Supp(w) 7→ R for w ≡ (w1, . . . ,wn), i ∈ [n], and

w≤i ∈ Supp(w≤i). Then (using a small hat) we define the notation f̂(w≤i) = Ew←(w|w≤i)[f(w)] to define

the expected value of f for a sample from w given the prefix w≤i. In particular, for w = w≤n, we have

f̂(w) = f(w), and also f̂(∅) = E[f(w)].

Lemma 2.3 (Hoeffding’s lemma). Let x be a random variable such that Pr[a ≤ x ≤ b] = 1 and E [x] = 0.

Then, it holds that E[ex] ≤ e(b−a)
2/8.

Lemma 2.4. Let x be a random variable where Pr
[
e−λ ≤ x

]
= 1 and Pr

[
x ≤ eλ

]
≥ 1 − δ and

Pr [x ≤ c] = 1. Then, E [ln(x)] ≥ ln(E [x]− δ · c)− λ2/2.

Proof. Let E [min(ln(x), λ)] = s. Consider a random variable y ≡ min(ln(x), λ) − s. We have E[y] = 0
and −λ− s ≤ y ≤ λ− s. Therefore, by Lemma 2.3 we have

E [ey] ≤ eλ
2/2.

On the other hand, we have E [ey] = E
[
emin(ln(x),λ)−s] = E

[
min

(
x, eλ

)]
·e−s. Thus, we have E

[
min

(
x, eλ

)]
·

e−s ≤ eλ
2/2 which implies e−s ≤ eλ

2/2−ln(E[min(x,eλ)]), and so s ≥ ln
(
E
[
min

(
x, eλ

)])
− λ2/2. There-

fore we have, s ≥ ln (E [x]− δ · c)− λ2/2.

Lemma 2.5. Let x be a random variable where Pr[e−λ ≤ x] = 1 and Pr[x ≤ eλ] ≥ 1 − δ and Pr[x ≤
c] = 1. Then, E[1/x] ≤ eλ

2

E[x]−δ·c .

Proof. Let E[min(ln(x), λ)] = s. Consider a random variable y = min(ln(x), λ) − s. Similar to proof of

Lemma 2.4 we have s ≥ ln(E[x]− δ · c) − λ2/2. Now consider another random variable y′ ≡ −y. Again

by using Hoeffding Lemma we have E[ey
′
] ≤ eλ

2/2 which means

E[e−min(ln(x),λ)] · es ≤ eλ
2/2

which implies

E[max(1/x, e−λ)] ≤ eλ
2/2 · e−s ≤ eλ

2

E[x]− δ · c .

The following lemma is implied by Theorem 3.13 from [MHRAR98].

Lemma 2.6 (Azuma’s inequality for sub-martingales). Let t ≡ (t1, . . . , tn) be a sequence of n jointly

distributed random variables such that for all i ∈ [n], Pr[|ti| ≤ ci] ≥ 1 − ξ, for all t≤i−1 ← t≤i−1, and

that E[ti | t≤i−1] ≥ −γi. If γ =
∑n

i=1 γi, then we have

Pr

[
n∑

i=1

ti ≤ −s
]
≤ e

−(s−γ)2

2
∑n

i=1
c2
i + n · ξ.
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3 Optimal Computational Concentration for Hamming Distance

In this section, we formally state and prove our main result, which is the computational concentration of

measure in any product space under Hamming distance.

Definition 3.1 (Weighted Hamming Distance). For α = (α1, . . . , αn) ∈ R
n
+, the α-weighted Hamming

distance between vectors of dimension n is denoted by HDα(·, ·) and is defined as

HDα(u, v) =
∑

i∈[n],ui 6=vi

αi.

Theorem 3.2. Let (α1, . . . , αn) ∈ R
n be such that

∑n
i=1 α

2
i = n. Then, there is a (uniform) oracle-aided

randomized algorithm Tam such that the following holds. Suppose f : Supp(w) 7→ {0, 1} is a Boolean

function for random variable w ≡ (w1, . . . ,wn), and that Pr[f(w) = 1] = ε. Then, the oracle-aided

algorithm Tamw[·],f(·)(ε, δ, ·) (also denoted by Tam for simplicity) with access to the online sampler w[·]
for w and f(·) as oracles is an online tampering algorithm for w and has the following features:

1. Pr[f(v) = 1] ≥ 1− δ where v is the tampered sequence, i.e., Pr(u,v)←〈w ‖Tam〉[f(v) = 1] ≥ 1− δ.

2. Tam’s tampering budget in α-weighed Hamming distance HDα is O(
√

n · ln(1/εδ)).

3. Tam runs in time poly(N/εδ) where N is the total bit representation of any w← w.

Remark 3.3 (Corollary for product distributions). If the original random variable w = (w1, . . . ,wn) in

Theorem 3.2 is a product, w = (w1 × · · · ×wn), then the distribution of the samples u obtained through

(u, v) ← 〈w ‖Tam〉 would be identical to that of w. Namely, we can simply think of the samples u as the

original untampered vector sampled from w, and v would be the perturbed vector.

In the rest of this section, we prove Theorem 3.2.

3.1 Proof Using Promised Approximate Partial Expectation Oracles

The following result works in the model where the approximate partial-expectations oracle f̃(·) is available

to the online tampering algorithm AppTam.

Consider three oracles f̃(v≤i) , m(v≤i) and f̃∗(v≤i) = f̃(v≤i,m(v≤i)) with the guarantee that for all

v≤i ∈ Supp(w≤i) we have 5 conditions:

1.

∣∣∣ln f̃(v≤i)− ln f̂(v≤i)
∣∣∣ ≤ γ,

2. f̃∗(v≤i) = f̃(v≤i,m(v≤i)) ≥ f̃(v≤i),

3. Pr
[
f̃(v≤i,w[v≤i]) ≥ f̃∗(v≤i)

]
≤ γ · f̃(v≤i),

4. 0 ≤ f̃(v≤i) ≤ 1,

5. f̃(v≤n) = f(v≤n).

The first condition states that the approximate partial expectation oracle has a small multiplicative error.

The second and third conditions state that m(v≤i−1) is a good approximation of some v∗ that maximized

f̃(v≤i−1, v∗). Now we construct an algorithm using these oracles.
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Construction 3.4 (Online tampering using promised approximate partial-expectations oracle). Recall that

we are given a prefix v≤i−1 that is finalized, and we are also given a candidate value ui for the i’th block

(supposedly sampled from w[v≤i−1]) and we want to decide to keep vi = ui or change it. Let λ > 0 be a

parameter of the attack to be chosen later, v∗i = f̃∗(v≤i−1) and let f̃∗ = f̃∗(v≤i−1) be that maximum.

1. (Case 1) If f̃∗ ≥ eλαi · f̃(v≤i−1), then output vi = v∗i (regardless of ui).

2. (Case 2) Otherwise, if f̃(v≤i−1, ui) ≤ e−λαi · f̃(v≤i−1) , then output vi = v∗i .

3. (Case 3) Otherwise keep the value ui and output vi = ui.

Claim 3.5 (Average case analysis of Construction 3.4). Let ki be the Boolean random variable that ki = 1
iff the tampering over the i’th block happens, and let Kα =

∑
i∈[n] αi ·ki capture the resulting HDα distance

between the jointly sampled u and v. Also let ε̃ = f̃(∅). Then, it holds that

ln(1/ε̃) ≥ E[Kα] · λ− λ2n/2 + n · ln(1− 3γ).

Corollary of Claim 3.5. By choosing λ =
√

2 ln(1/ε)/n, we obtain E[Kα] ≤
√

2n ln(1/ε).

We prove the following stronger statement that implies Claim 3.5.

Claim 3.6. Let v≤i−1 be fixed. Then,

ln(1/f̃ (v≤i−1))− E
vi←v[v≤i−1]

[
ln
(
1/f̃ (v≤i)

)]
≥ Pr[ki] · (αiλ)−

α2
i λ

2

2
+ ln(1− 3γ).

Proof of Claim 3.5 using Claim 3.6. A key property of Construction 3.4 is that, because the tampering al-

gorithm does not allow the function reach 0, the final sequence v always makes the function 1, namely

Pr[f(v≤n) = 1] = 1. (1)

Using the above equation, Claim 3.5 follows from Claim 3.6 and linearity of expectation as follows.

ln(1/ε̃) = ln(1/f̃ (∅))− E[ln(1)]

(by Equation 1) = ln(1/f̃ (∅))− E[ln(1/f̃ (v≤n))]

(by linearity of expectation) =
∑

i∈[n]

[
E[ln(1/f̃ (v≤i−1))− E[ln(1/f̃(v≤i))]

]

(by Claim 3.6) ≥
∑

i∈[n]

[
E[αi · ki] · λ−

α2
i · λ2

2
+ ln(1− 3γ)

]

(by linearity of expectation) = E[Kα] · λ−
n · λ2

2
+ ln(1− 3γ) · n.

Now we prove Claim 3.6.

Proof of Claim 3.6. There are two cases:
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• If tampering of Case 1 happens, then we have Pr[ki = 1] = 1, and

ln(1/f̃(v≤i−1))− E
vi←(v[v≤i−1]

[ln(1/f̃(v≤i))] ≥ ln(1/f̃(v≤i−1))− ln(1/f̃∗) ≥ λαi

Thus, in this case Claim 3.6 follows trivially.

• If tampering of Case 1 does not happen, it means that f̃∗ is bounded from above. In the following, we

focus on this case and all the probabilities and expectations are conditioned on Case 1 not happening;

namely, we have f̃∗ ≤ f̃(v≤i−1) · eλ .

Let I(v≤i) be the indicator function for the set
{
v≤i : f̃(v≤i) ≤ e−λαi · f̃(v≤i−1)

}
. We have

Pr
(ui,vi)←(w,v)[v≤i−1]

[
f̃(v≤i) ≥ max

(
e−λαi · f̃(v≤i−1), f̃(v≤i−1, ui)

)
· eλαi·I(v≤i−1,ui)

]
= 1.

This is correct because we are either in Case 2, which means I(v≤i) = 1 and

f̃(v≤i) = f̃∗ ≥ f̃(v≤i−1) ≥ f̃(v≤i−1, ui) · eλ·αi

or we are in Case 3 which means I(v≤i) = 0 and

f̃(v≤i) = f̃(v≤i−1, ui).

Note that the two terms on each side of the inequality inside the probability above depend only on either of

ui or vi (not both). Therefore, by linearity of expectation we have

E
vi←v[v≤i−1]

[ln(f̃(v≤i))]

≥ E
ui←w[v≤i−1]

[
ln
(
max

(
e−λαi · f̃(v≤i−1), f̃(v≤i−1, ui)

)
· eλ·αi·I(v≤i−1,ui)

)]

= E
ui←w[v≤i−1]

[
ln
(
max

(
e−λαi · f̃(v≤i−1), f̃(v≤i−1, ui)

))]
+ λ · αi · E

ui←w[v≤i−1]
[I(v≤i−1, ui)]

= E
ui←w[v≤i−1]

[
ln
(
max

(
e−λαi · f̃(v≤i−1), f̃(v≤i−1, ui)

))]
+ λ · αi · E[ki]. (2)

Now consider the random variable t for a fixed v≤i−1 as follows

t ≡
max

(
e−λ · f̃(v≤i−1), f̃(v≤i−1,w[v≤i−1])

)

f̃(v≤i−1)
.

It holds that

Pr
[
e−λαi ≤ t

]
= 1. (3)

We also know by condition 3 of the f̃∗(·) oracle that

Pr[f̃∗(v≤i−1) ≥ f̃(v≤i−1,w[v≤i−1])] ≥ 1− γ · f̃(v≤i−1)
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which together with f̃∗(v≤i−1) ≤ f̃(v≤i−1) · eλαi implies

Pr[t ≤ eλ·αi ] ≤ 1− γ · f̃(v≤i−1). (4)

We also know that

Pr

[
t ≤ 1

f̃(v≤i−1)

]
= 1. (5)

We also have

E

[
t · f̃(v≤i−1)

]
= E

[
max

(
e−λ · f̃(v≤i−1), f̃(v≤i−1,w[v≤i−1])

)]

≥ E

[
f̃(v≤i−1,w[v≤i−1])

]

≥ E

[
f̂(v≤i−1,w[v≤i−1])

]
· e−γ

= f̂(v≤i−1) · e−γ

≥ f̃(v≤i−1) · e−2γ .

which implies

E[t] ≥ e−2γ ≥ 1− 2γ. (6)

Therefore using 3, 4, 5 and 6 and applying Lemma 2.4 we get,

E[ln(t)] ≥ ln

(
E[t]− γ · f̃(v≤i−1) ·

1

f̃(v≤i−1)

)
− α2

i · λ2

2
≥ ln(1− 3γ)− α2

i · λ2

2
. (7)

Combining Equations (2) and (7), we get

E
vi←v[v≤i−1]

[
ln(f̃(v≤i))

]
≥ ln(f̃(v≤i−1)) + λ · αi · E[ki]−

λ2 · α2
i

2
+ ln(1− 3γ)

which finishes the proof.

Claim 3.7 (Worst case analysis of Construction 3.4). Let ki be the Boolean random variable that ki = 1 iff

the tampering over the i’th block happens, and let Kα =
∑

i∈[n] αi · ki capture the resulting HDα distance

between the jointly sampled u and v. Also let ε̃ = f̃(∅). Then, it holds that

Pr[K ≥ k] ≤ e(
∑n

i=1 α
2
i )λ

2−kλ

ε̃ · (1− 2γ)n
.

Proof. We prove this claim by induction on n. Let A(n, k, ε̃) be a function that indicates the maximum

probability of using more than k budget, over all random processes with boolean outcome of length n, and

average ε̃. We want to inductively show that

A(n, k, ε̃) ≤ e(
∑n

i=1 α
2
i )·λ2−kλ

ε̃ · (1− 2γ)n
.

Consider different cases that might happen during the tampering of first block. If we tamper on first block

through Case I, we have

Pr[K ≥ k] ≤ A(n− 1, k − α1, f̃∗(∅))
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And by induction hypothesis we have

A(n − 1, k − α1, f̃∗(∅)) ≤ e(
∑n

i=2 α
2
i )λ

2−kλ+λ·αi

f̃∗(∅) · (1− 2γ)n
≤ e(

∑n
i=2 α

2
i )λ

2−kλ+λ·αi

eλα1 · ε̃ · (1− 2γ)n
≤ e(

∑n
i=1 α

2
i )·λ2−kλ

ε̃ · (1− 2γ)n
.

So the induction goes through for Case 1. If we are not in Case 1, then we have,

Pr [K ≥ k] = Pr [K ≥ k | Case 3] · Pr [Case 3] + Pr [K ≥ k | Case 2] · Pr [Case 2]

≤ E

[
A
(
n− 1, k, f̃(u≤1)

)
| Case 3

]
· Pr [Case 3]

+ E

[
A
(
n− 1, k − α1, f̃∗(∅)

)
| Case 2

]
· Pr [Case 2]

≤ E

[
e(

∑n
i=2 α

2
i )·λ2−kλ

f̃(u≤1)− 2(n − 1)γ
| Case 3

]
· Pr [Case 3]

+ E

[
e(

∑n
i=2 α

2
i )·λ2−kλ+λ·α1

f̃∗(∅) · (1− 2γ)n−1
| Case 2

]
· Pr [Case 2]

≤ E

[
e(

∑n
i=2 α

2
i )·λ2−kλ

f̃(u≤1) · (1− 2γ)n−1
| Case 3

]
· Pr [Case 3]

+ E


 e(

∑n
i=2 α

2
i )·λ2−kλ+λ·α1

max
(
e−λ·αi · ε̃, f̃(u≤1)

)
· eλ·αi · (1− 2γ)n−1

| Case 2


 · Pr [Case 2]

≤ e(
∑n

i=2 α
2
i )·λ2−kλ · E

[
1

max(e−λ·αi · ε̃, f̃(u≤1)) · (1− 2γ)n−1

]
(8)

We know that E[max(e−λ·αi · ε̃, f̃(u≤1)))] ≥ E[f̃(u≤1)] ≥ ε̃ · e−γ . Now we can use Lemma 2.5 and get

E[
1

max(e−λ·α1 · ε̃, f̃(u≤1)))
] ≤ eα

2
1·λ2

ε̃ · (e−γ − γ)
≤ eα

2
1·λ2

ε̃ · (1− 2γ)
(9)

Combining Equations 8 and 9 we get,

Pr[K ≥ k] ≤ e(
∑n

i=1 α
2
i )λ

2−kλ

ε̃(1− 2γ)n

which finishes the proof.

3.1.1 Tampering with Abort

The Construction 3.4 achieves average close to 1 with small number of tampering. However we cannot

implement that construction it in polynomial time. The problem is that it is hard to instantiate the oracle

f̃(·) and f̃∗(·) in polynomial time when the partial average gets close to 0. Following we add a step to our

construction to address this issue. Then we will show that this additional step will not hurt the performance

of the algorithm by much.
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Construction 3.8 (Online tampering with abort AppTamAb using promised approximate partial-expecta-

tions oracle). This construction is identical to Construction 3.4, except that whenever the fixed prefix has a

too small approximate partial expectation f̃(v≤i−1, ui) (based on a parameter τ ) we will abort. Also, in that

case the tampering algorithm does not tamper with any future vi block either. Namely, we add the following

“Case 0” to the previous steps:

• (Case 0) If f̃(v≤i−1, ui) ≤ e−τ · ε̃ abort (ε̃ = f̃(∅)). If had aborted before, do nothing.

Average and worst case analysis of Construction 3.8. The average number of tampering of Construc-

tion 3.8 is trivially less than average number of tampering of Construction 3.4. Therefore, the same bound

of Claim 3.5 still applies to Construction 3.8 as well. Also, the probability of number of tampering going

beyond some threshold does not increase compared to Construction 3.4 which means the same bound of

Claim 3.7 hold here.

Claim 3.9. The probability of ever aborting during sampling (u, v) ← 〈w ‖TamAb〉 is at most n ·
e−

(τ−n·λ2/2)2

2·n·λ2 . As a result, we also have

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− n · e−
(τ−n·λ2/2)2

2·n·λ2 − n2γ.

Proof. Define Boolean indicator functions I0, I1, I2 and I3, as well as a real-valued vector y as follows.

The first function I0 indicates that we have not aborted yet, and the others define a condition for their

corresponding cases in Construction 3.4.

I0(v≤i−1) =

{
0 if ∀j ≤ i; f̃(v≤j) ≥ ε̃ · e−τ ,

1 otherwise.

I1(v≤i−1) =

{
1 if f̃∗(v≤i−1) ≥ eλ·αi · f̃(v≤i−1) and ¬I0(v≤i−1),
0 otherwise;

I2(v≤i) =

{
1 if f̃(v≤i) ≤ e−λ·αi · f̃(v≤i−1) and ¬I1(v≤i−1) and ¬I0(v≤i−1),
0 otherwise;

The last function indicates that the above conditions are not happening.

I3(v≤i) =

{
1 if ¬I0(v≤i) and ¬I1(v≤i−1) and ¬I2(v≤i),
0 otherwise.

Finally, we define a real-valued function y as follows that captures the change in the potential function

for the cases where none of I0, I1, I2 are happening.

y(v≤i) =
(
ln(f̃(v≤i))− ln(f̃(v≤i−1))

)
· I3(v≤i).

Now consider a sequence of random variables y = (y1, . . . ,yn) sampled as follows. We first sample

(u, v) ← (u,v) then set yi = y(v≤i−1, ui) = y(v≤i) for i ∈ [n]. Note that y(v≤i−1, ui) = y(v≤i) because

if I3(v≤i−1, ui) = 1 it means that ui = vi.

Claim 3.10. We have E[eyi | y≤i−1] ≥ e−2γ .
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Notation. Since Ij(·)’s are Boolean, we can use the notation (Ii ∨ Ij)(v≤i) or (1− (Ii ∨ Ij))(v≤i) based

on logical operators to construct more Boolean indicators.

Proof of Claim 3.10. The high level idea is that eyi is approximately equal to f̂(v≤i−1, ui)/f̂ (v≤i) when we

are in Case 3. The average of f̂(v≤i−1, ui)/f̂(v≤i) conditioned on Case 2 and Case 3 is exactly 1. We know

that in Case 2 the average is less than one, therefore the average in Case 3 should be at least 1. Following,

we formalize this idea.

E[eyi | y≤i−1] = E
v≤i−1←(v≤i−1|y≤i−1)

[
E

ui←w[v≤i−1]

[
e(ln(f̃(v≤i−1,ui))−ln(f̃(v≤i−1)))·I3(v≤i−1,ui)

]]

≥ E
v≤i−1←(v≤i−1|y≤i−1)

[
E

ui←w[v≤i−1]

[
e(ln(f̃(v≤i−1,ui))−ln(f̃(v≤i−1)))·((I3∨I2)(v≤i−1,ui))

]]

= E
v≤i−1←(v≤i−1|y≤i−1)

[
E

ui←w[v≤i−1]

[
e(ln(f̃(v≤i−1,ui))−ln(f̃(v≤i−1)))·(1−(I1∨I0)(v≤i−1))

]]

≥ E
v≤i−1←(v≤i−1|y≤i−1)

[
min

(
E

ui←w[v≤i−1]

[
e(ln(f̃(v≤i−1,ui))−ln(f̃(v≤i−1)))

]
, 1

)]

= E
v≤i−1←(v≤i−1|y≤i−1)

[
min

(
E

ui←w[v≤i−1]

[
f̃(v≤i−1, ui)/f̃(v≤i−1)

]
, 1

)]

≥ E
v≤i−1←(v≤i−1|y≤i−1)

[
min

(
e−2γ · E

ui←w[v≤i−1]

[
f̂(v≤i−1, ui)/f̂(v≤i−1)

]
, 1

)]

= e−2γ .

Claim 3.11. We have Pr[yi ≥ −λ · αi] = 1 and Pr[yi ≤ λ · αi] ≥ 1− γ · f̃(v≤i−1).

Proof. If I3(v≤i) = 0 then y(v≤i) = 0 and both inequalities hold. On the other hand, If I3(v≤i) = 1 it

means that e−λ·αi · f̃(v≤i−1) ≤ f̃(v≤i). Also Pr[yi ≤ eλ·αi · f̃(v≤i−1)] ≥ 1− γ · f̃(v≤i−1) holds because

of gaurantee of the oracle ˜f∗(·).

Claim 3.12. We have E[yi | y≤i−1] ≥ ln(1− 3γ)− λ2·α2
i

2 .

Proof. The proof follows by using Lemma 2.4 and Claims 3.10 and 3.11.

Claim 3.13. The probability of aborting is at most n · e
(τ−λn·λ2/2)2

2·n·λ2 .

Proof. By Claims 3.12 and 3.11, the sequence y = (y1, . . . ,yn) forms an (approximate) submartingale and

by Azuma inequality of Lemma 2.6 we have,

Pr

[
n∑

i=1

yi ≤ −τ
]
≤ e−

(τ−n·λ2/2)
2

2·n·λ2 + n · γ .
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On the other hand, for every v≤i ∈ Supp(v≤i) we have I2(v≤i) = 0. Therefore, for every v≤j ∈ Supp(v≤j),

ln(f̃(v≤j)) = ln(ε̃) +

j∑

i=1

(ln(f̃(v≤i))− ln(f̃(v≤i−1)))

= ln(ε̃) +

j∑

i=1

(
ln(f̃(v≤i))− ln(f̃(v≤i−1))

)
· ((I0 ∨ I1)(v≤i−1) + I3(v≤i))

≥ ln(ε̃) +

j∑

i=1

(
ln(f̃(v≤i))− ln(f̃(v≤i−1))

)
· (I0(v≤i−1) + I3(v≤i))

= ln(ε̃) +

j∑

i=1

y(v≤i) +
j∑

i=1

(
ln(f̃(v≤i))− ln(f̃(v≤i−1))

)
· I0(v≤i−1).

We now calculate probability of the event Aj that the partial average goes bellow e−τ · ε̃ (i.e., abort happens)

at the jth block for the first time.

Pr
v≤j←v≤j

[Aj ]

= Pr
v≤j←v≤j

[
f̃(v≤j) ≤ e−τ · ε̃ ∧ ¬I0(v≤j−1)

]

= Pr
v≤j←v≤j

[ln(f̃(v≤j)) ≤ −τ + ln(ε̃) ∧ ¬I0(v≤j−1)]

≤ Pr
v≤j←v≤j

[
j∑

i=1

y(v≤i) +
j∑

i=1

(
ln(f̃(v≤i))− ln(f̃(v≤i−1))

)
· I0(v≤i−1) ≤ −τ ∧ ¬I0(v≤j−1)

]

≤ Pr
v≤j←v≤j

[
j∑

i=1

y(v≤i) ≤ −τ
]

≤ e−
(τ−n·λ2/2)2

2·n·λ2 + n · γ.

The above means that the probability that the tampering algorithm of Construction 3.8 enters the abort state

is less than n · e−
(τ−n·λ2/2)2

2·n·λ2 + n2 · γ.

We already know that if abort does not happen then the output will always be 1. Therefore, we have

E
v←v

[f(v)] ≥ 1− n · e−
(τ−n·λ2/2)2

2·n·λ2 − n2γ.

E
v←v

[f(v)] ≥ 1− δ.

3.2 Putting Things Together

In this subsection we show how to instantiate parameters of Construction 3.8 so that we can get polynomial

time attack. We first show how to instantiate the oracles. To compute oracle f̃(v≤i), we sample 8
γ3·e−τ ·ε̃
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random continuation and take the average over all of them. By Hoeffding inequality, if f̂(v≤i) ≥ e−τ · ε̃ we

get the following:

Pr[| ln(f̃(v≤i))− ln(f̂(v≤i))| ≥ γ] ≤ γ.

For m(v≤i) and f̃∗(v≤i) oracle, sample 1
γ2·e−τ ·ε̃ number of vi+1 and take the maximum over f̃(v≤i+1).

This way, we can easily bound the probability of Conditions 2 or 3 not happening by γ for all v≤i that

f̃(v≤i) ≥ e−τ · ε̃. Note that in both of these oracle, we are ignoring the case where f̃(v≤i) is smaller

than the threshold that causes the construction to abort. This enables us to achieve high confidence on our

oracles. Using these oracles, we can bound the average of function, average budget and worst case budget

of construction 3.8 as follows. Based on Claim 3.9 we have

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− n · e−
(τ−n·λ2/2)2

2·n·λ2 − n2γ − 2n · γ.

The last −2n · γ is added to the right hand side to capture the probability of any of the algorithm’s oracle

calls failing. For the average budget, following Claim 3.5 we have,

E[Kα] ≤
ln(1/ε̃) + λ2n/2 − n · ln(1 − 3γ)

λ
+ 2 · n · γ.

And for the worst case budget, following Claim 3.7 we have

Pr[K ≥ k] ≤ enλ
2−kλ

ε̃− 2γ
+ 2n · γ.

Instantiating the Average Case Algorithm: Now if we set λ =
√
−2 ln(ε)/n, τ = ln(1/ε̃)+

√
4 ln(δ/2n) · ln(ε̃)

and γ = δ
24n2 then we can provide the oracles in time poly(n/ε·δ) and we get:

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− δ

and

E[Kα] ≤
√
−2n ln(ε) + δ.

Instantiating the Worst Case Algorithm: Also, for the worst case attacks. If we select the tampering

budget k =
√

2n · ln(δ/8) · ln(ε/2) and then let λ = k/2n. For τ = ln(1/ε̃) +
√

4 ln(δ/2n) · ln(ε̃) and

γ = min(δ/24n2, ε/4n) we get an algorithm that runs in time poly(n/ε·δ), uses at most k tamperings and

increases the average as follows

E
(u,v)←〈w ‖TamAb〉

[f(v)] ≥ 1− δ.

4 Algorithmic Reductions for Computational Concentration

In this section, we show a generic framework to prove computational concentration for a metric probability

space by reducing its computational concentration to that of another metric probability space. We first define

an embedding with some properties.
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Definition 4.1. Let S1 = (X1, d1,µ1) and S2 = (X2, d2,µ2) be two metric probability spaces. We call a

pair of mappings (f ,g) (where f and g are potentially randomized) an (α, b, w) computational concentration

(CC) reduction from S1 to S2 if the following hold:

• Probability embedding. The distribution f(µ1) is α-close (in statistical distance) to µ2 and g(µ2) is

α-close to µ1.

• Almost Lipschitz property of g. With probability 1 over all x, x′ ← µ2, d1(g(x),g(x
′)) ≤ w ·

d2(x, x
′) + b.

• Almost inverse mappings. For every x1 ∈ X1, and all x2 ← f(x1), it holds that d1(x1,g(x2)) ≤ b.

Now we have the following lemma which how to reduce computational concentration on a metric prob-

ability space by reducing it to computational concentration on another metric probability space using the

embedding between them.

Theorem 4.2. Let S2 = (X2, d2,µ2) be a metric probability space and let A
S(·)
2 : X2 → X2 be an oracle

algorithm such that for any subset S ⊆ X2 we have d2(A
S(·)
2 (x), x) ≤ k and

Pr
x←µ2

[A
S(·)
2 (x) ∈ S] ≥ c(µ2(S))

for a function c : [0, 1] → [0, 1]. If (f ,g) is an (α, b, w) CC reduction from S1 = (X1, d1,µ1) to S2 =

(X2, d2,µ2), then there is an oracle algorithm A
S(·)
1 : X1 → X1 such that for any subset S ⊆ X1 we have

d1(A
S(·)
1 (x), x) ≤ w · k + 2b and

Pr
x←µ1

[A
S(·)
1 (x) ∈ S] ≥ c(µ1(S)/2− α)− α− negl(n).

Furthermore, if A2, f and g run in time poly(nε ), then A1 also runs in time poly(nε ).

Proof. We define algorithm A
S(·)
1 on input x as follows: A1 first computes f(x1) to get x′1. Then it creates

a set S ′ = {x ∈ X2 : Pr[g(x) ∈ S] ≥ 1/2} and runs A
S′(·)
2 on x′1 to get x′2. Then, it computes g(x′2) for at

most n times until it gets some x2 ∈ S and outputs x2, otherwise it outputs a fresh g(x′2). We have

Pr
x1←µ1

[A
S(·)
1 (x1) ∈ S] ≥ Pr

x1←µ1

[A
S′(·)
2 (f(x1)) ∈ S ′]− 2−n

≥ Pr
x′
1←µ2

[A
S′(·)
2 (x′1) ∈ S ′]− α− 2−n

≥ c(µ2(S ′))− 2−n − α

≥ c(µ1(S)/2− α)− 2−n − α.

Note that the oracle S ′(·) cannot be implemented in polynomial time, but it could be approximated with

negligible error in polynomial time. On the other hand, we have

d1(A1(x1), x1) = d(x2, x1)

≤ d1(x2, g(x
′
1)) + d1(g(x

′
1), x1)

≤ d1(x2, g(x
′
1)) + b

≤ w · d2(x′2, x′1)) + 2b

≤ w · k + 2b.
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The following construction shows an embedding from Gaussian distribution to hamming cube. Using

this embedding and Lemma 4.2 we get computational concentration for the Gaussian distribution. The

following embedding uses ideas similar to [B+97].

Construction 4.3 (CC reduction from (Gaussian, ℓ1) to Hamming cube). We construct f and g as follows.

f : Let n be an even number. Given a point x = (x1, . . . , xn) sampled from Gaussian space of dimen-

sion n, do the following:

1. If ∃i; |xi| ≥
√
n/2, output 0n

2
.

2. Otherwise, for each i ∈ n compute ai = [ xi√
n
+ n

2 ] then uniformly sample some yi ∈ {0, 1}n

such that yi has exactly ai number of 1s. Then append yi s to get y = (y1| . . . |yn).

g : Let y = (y1| . . . |yn) be a Boolean vector of size n2 (each yi has size n). Let ai be the number of 1s

in yi. Then sample x = (x1, . . . , xn) from Gaussian space conditioned on 2ai−n
2
√
n
≤ xi <

2ai−n+1
2
√
n

Claim 4.4. The embedding of Construction 4.3 is an (negl(n), 1/
√
n, 1/

√
n) CC reduction from Gaussian

space under ℓ1 to Hamming cube (i.e., Boolean hypercube under Hamming distance).

Proof. The embedding property of these mappings is proved in [B+97]. The mappings f and g are clearly

polynomial time in n and the Almost Lipschitz and Inverse Mappings properties are straightforward.

The following Corollary follows from Lemma 4.2, Claim 4.4 and Theorem 3.2.

Corollary 4.5 (Computational concentration of Gaussian under ℓ1). There is an algorithm AS,µε,δ (·) that given

access to a membership oracle for any set S and a sampling oracle from an isotropic Gaussian measure

µ of dimension n, it achieves the following. If Pr[S] ≥ ε, given ε and δ, the algorithm AS,µε,δ (·) runs in

time poly(n/εδ), and with probability ≥ 1 − δ given a random point x ← µ, it maps x to a point y ∈ S of

bounded ℓ1 distance ℓ1(x, y) ≤ O(
√

n · ln(1/εδ)).

4.1 Case of Gaussian or Sphere under ℓ2

A reduction may also be used to obtain a (non-optimal) computational concentration of measure for the

multi-dimensional Gaussian distribution under the ℓ2 metric.

Theorem 4.6. There is an algorithm AS,µε,δ (·) that given access to a membership oracle for any set S and a

sampling oracle from an isotropic Gaussian measure µ of dimension n, where each coordinate has variance

1, it achieves the following. If Pr[S] ≥ ε, given ε, δ ≥ 1/nO(1), the algorithm AS,µε,δ (·) runs in time poly(n),
and with probability ≥ 1 − δ given a random point x ← µ, it maps x to a point y ∈ S of bounded ℓ2
distance ℓ2(x, y) ≤ O(n1/4 logO(1) n).

Proof. Since ǫ ≥ 1/nO(1), at most ǫ/2 and δ/2 fraction of the points have a coordinate of size≥ O(
√
log n).

So ignoring points having such large coordinates, we may assume Pr[S] ≥ ǫ/2 while every point of S has

coordinates as small as O(
√
log n), and we may assume the point we are mapping also has small coordinates

(except our algorithm should now work for 1− δ/2 fraction of the points instead of for 1− δ fraction.)

Now, when each coordinate is O(
√
log n), the l2 distance between two points is at most O(

√
dH log n),

where dH is the Hamming distance of the two points. Now, the theorem follows from our main theorem for

Hamming distance.
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We should note that the above computational bound is not information-theoretically tight, since for the

Gaussian ℓ2 metric probability space, where each coordinate has variance 1, the right bound is O(
√

ln(1/(ǫδ))).
(This follows e.g. from the Gaussian isoperimetric inequality proved in [ST78,Bor75], which shows the half-

space is isopermetrically optimal for the Gaussian distribution.)

Finally, the following shows that our results are not limited to product spaces, and may for example be

applied to computational concentration of measure for the high-dimensional sphere.

Theorem 4.7. There is an algorithm AS,µε,δ (·) that given access to a membership oracle for any set S and a

sampling oracle from the uniform measure µ on the unit sphere of dimension n, it achieves the following.

If Pr[S] ≥ ε, given ε, δ ≥ 1/nO(1), the algorithm AS,µε,δ (·) runs in time poly(n), and with probability

≥ 1 − δ given a random point x ← µ, it maps x to a point y ∈ S of bounded ℓ2 distance ℓ2(x, y) ≤
O(n−1/4 logO(1) n).

Proof. First, we note that a random Gaussian vector, where each coordinate has variance 1, has ℓ2 norm√
n+O(n1/4) except for arbitrary inverse polynomial probability.

So given x, we can map it to a new vector x′ with the same direction as x but with a random length of

distribution square root of chi square, so that the new vector has the Gaussian distribution. We also map the

set S to the set S ′ = {r · s : r ∈ n1/2 + O(n1/4), s ∈ S}, where the new set still has probability ≥ ǫ/2
under the Gaussian distribution. By the computational concentration of measure for the Gaussian, we know

that we can map, with probability 1− δ/2, x′ to a point y′ ∈ S ′ of distance n1/4 logO(1) n from x′ in ℓ2. Let

y be the projection of y′ onto the unit sphere. Therefore

dℓ2(x, y) ≤ dℓ2(x, x
′/
√
n) + dℓ2(x

′/
√
n, y′
√
n) + dℓ2(y

′/
√
n, y) = O(n1/4 logO(1) n).

These types of relations between concentration of measure of Gaussian and uniform sphere measures

has been well-known information-theoretically, e.g. see [Led01, page 2] where concentration for Gaussian

is derived from concentration for sphere. In the above we showed a similar relation for computational

concentration of measure, this time deriving for the sphere from the Gaussian.

5 Computational Concentration around Mean

Let (X , d,µ) be a metric probability space and f : X 7→ R a measurable function (with respect to µ). For

any Borel set T ⊆ R, an parameters k, δ ∈ R+, one can define a computational problem as follows. Given

oracle access to a sampler from µ, d and function f(·), map a given input x ∈ X algorithmically to y ∈ Y ,

such that: (1) d(x, y) ≤ k, and (2) f(y) ∈ T for 1− δ fraction of x ∈ X according to µ. If we already know

that (X , d,µ) is (ε, δ, k) (computationally) concentrates, and if Prx←µ[f(x) ∈ T ] ≥ ε, then it implies that

by changing x by at most distance k into a new point y, we can (algorithmically) get f(y) ∈ T , by defining

S = f−1(T ) and noting that Prµ[S] ≥ ε. This algorithm needs oracle access to S

Computational concentration around mean. Again, let (X , d,µ) be a metric probability space and let

f : X 7→ R be measurable. Now suppose η = Ex←µ[f(x)]. If we already know, by information theoretic

concentration bounds, that Prx←µ[|f(x)− η| ≤ T ] ≥ 1− δ, then it means that a trivial algorithm that does

not even change given x← µ, finds a point where f(x) is T -close to the average η. However, this becomes

nontrivial, if the goal of the algorithm is to find y that is close to x, and that f(y) is much closer to the

mean η than what x achieves. In particular, suppose we somehow know that Prx←µ[|f(x) − η| ≤ t] ≥ ε
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for t ≪ T, ε ≪ 1 − δ. (Such results usually follow from the same concentration inequalities proving

Prx←µ[|f(x)− η| ≤ T ] ≈ 1.) The smaller t is, the “higher quality” the point x has in terms of f(x) being

closer to the mean. This means the set S = {x : |f(x)− η| ≤ t} has µ measure at least ε. Therefore, if

the space (X , d,µ) is (ε, δ, k) computationally concentrated, then we can conclude that there is an efficient

algorithm (whose running time can polynomially depend on 1/εδ and) that maps 1 − δ fraction of x ← µ

to a point y ∈ S . Different, but similar, statements about one-sided concentration can be made as well, if

we start from weaker conditions of the form Prx←µ[f(x) > η + t] ≤ ε (or Prx←µ[f(x) < η − t] ≤ 1− ε)

leading to a weaker conclusion: we can map x to a point y satisfies f(x) ≥ η − t (or f(x) ≤ η + t).
Finally, we note that even if the mean η is not known to the mapping algorithm A, good approximations

of it can be obtained by repeated sampling and taking their average. So for simplicity, and without loss of

generality, the reader can assume that η is known to the mapping algorithm A.

Special case of Lipschitz functions: algorithmic proofs of concentration. When f : X 7→ R is Lips-

chitz, i.e., |f(x)− f(y)| ≤ d(x, y), computational concentration around a set like S = {x : |f(x)− η| ≤ t}
(or similar one-sided variants) means something stronger than before. We now have an algorithm that indi-

rectly proves the concentration around η by efficiently finding points that are almost at the border defined

by η. Namely, the Lipschitz now implies that |f(x) − f(y)| ≤ k, whenever |x − y| ≤ k. Therefore, the

algorithm A mapping x to y is also proving that 1 − δ measure of the space (X ,µ) is mapped under f to a

point that is k + t close to average η.

All the above arguments are general and apply to any metric probability space. Below, we discuss an

special case of a “McDiarmid type” inequality in more detail to demonstrate the power of this argument.

Theorem 5.1 (An algorithmic variant of McDiarmid inequality). Suppose µ ≡ µ1 × · · · × µn is a product

measure on a product space X = X1×· · ·×Xn, and let f : X 7→ R be such that |f(x)−f(x′)| ≤ αi when-

ever x and x′ only differ in the ith coordinate. Let a = ‖α‖2 for α = (α1, . . . , αn). Let η = Ex←µ[f(x)]

and S = {x : f(x) ≤ η + ε · a}. Then there is an algorithm A
µ,f(x)
ε,δ (·) running in time poly(n/εδ) that uses

oracle access to f and a sampler from µ, and it holds that

Pr
x←µ,y←Aµ,f

ε,δ (x)

[
y ∈ S and |f(x)− f(y)| ≤ O

(√
m · log(1/εδ)

)]
≥ 1− δ.

Corollaries for special cases. Theorem 5.1 implies a similar result when the quality of the destination

region is base on the ℓ1 norm; namely, S = {x : f(x) ≤ η + ε · ‖α‖1}, but this follows from the same

statement since ‖α‖2 ≤ ‖α‖1. In addition, for the special case where αi = 1 for all i,8 and let γ, δ =
1/poly(n) be arbitrarily small inverse polynomials. In that case, Theorem 5.1, shows that for 1− δ fraction

of x ← µ, we can map x to y in poly(n) time in such a way that f(y) ≤ E[f(µ)] + γ and |f(x) −
f(y)| ≤ Õ(

√
n). If we choose γ < 1/2, due to the Lipschitz condition, we can also find some y for

which f(y) ∈ E[f(µ)] ± 1. This is possible by first finding some y where f(y) ≤ E[f(µ)] + γ, and

then go back over the coordinates in which x and y differ and only changing some of them to get y′ where

f(y′) ∈ E[f(µ)] ± 1, and output y′ instead. We note that, however, that whenever we want to choose

γ < 1/2, we need to also choose ε < 1/(2n). For this range of small ε, we cannot use the computational

concentration results of [MM19], but we can indeed use the stronger computational concentration results of

this work that prove computational concentration around any non-negligible event.

8For example, this could be the setting of Hoeffding’s inequality in which each coordinate µi is arbitrarily distributed over [0, 1],
and f(x) =

∑
i∈[n] xi, where x = (x1, . . . , xn)
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Proof of Theorem 5.1. For starters, suppose η is given. In that case, we first observe that Prµ[S] ≥ 1 −
e−2ε

2
= Θ(ε2) by McDiarmid’s inequality itself. We can then apply Theorem 3.2.

When η is not given, we can find a sufficiently good approximation of it, such that η′ ∈ η±‖α‖2 · ε/10
(in time poly(n/εδ) and error probability δ/10) and use it instead of η. Obtaining such η′ can be done

because any x, x′ satisfy |f(x) − f(x′)| ≤ ‖α‖1. Therefore, we can obtain η′ ∈ η ± λ · ‖α‖1 in time by

sampling ℓ = poly(n/λδ) (for sufficiently large ℓ) many points x1, . . . , xℓ ← µ and letting η′ = Ei←ℓ f(xi).
The only catch is that we want η′ ∈ η ± ε · ‖α‖2. However, since it holds that ‖α‖2 ≤ ‖α‖1 ·

√
n, we can

choose λ = ε/
√
n, and use the same procedure to obtain η′ ∈ η ± λ · ‖α‖1 with probability 1 − δ/10 in

time poly(n/εδ).

6 Limits of Nonadaptive Methods for Proving Computational Concentra-

tion

In this section, we consider three restricted types of attacks and prove exponential lower bounds on their

running time. The attacks are

• I.i.d. queries: An attack where given x, we query i.i.d. points whose distribution may depend on x,

until one of these points lies in S . The analysis of this attack boils down to analysis of a single-query

attack where we want to maximize the probability of S-membership of the queried point.

• Non-adaptive queries: An attack where given x, we output a list of points, and query all the points

in this list. Since the points in the list are determined before the querying, this attack is non-adaptive.

It is easy to see (and we give a proof below) how lower bounding this type of attack reduces to the

previous type of attack.

• Querying only points close enough to have a chance to be output: If we are interested in finding a

point at distance ≤ d from x, one may be tempted to limit the queried points to points at distance ≤ d
from x. We show how lower bounding this type of attack reduces to the previous type of attack.

Theorem 6.1 (Lower bound for non-adaptive algorithms). Let µ be the uniform probability distribution on

{1,−1}n, and let ε = 1/2 and δ < 1/2 be constants. There does not exist any non-adaptive algorithm

A that given x ← µ, the algorithm outputs m = nO(1) (random) points y1, . . . , ym, all within Hamming

distance n1−Ω(1) of x, such that given any set S with Pr[S] ≥ ε, one of these m points lies in S with

probability 1− δ over the randomness of x and randomness of y1, . . . , ym.

Proof. Assume for the sake of contradiction that such an algorithm A exists. Consider the following modi-

fied algorithm: given x, run A to produce y1, . . . , ym, and then let z1 be one of those m vectors uniformly

at random. To produce z2, run A independently afresh, and let z2 be one of the m freshly produced vectors.

We can continue in this way, and produce the vectors z1, . . . , zm
′

as the output of the modified algorithm.

By the assumption, for any constant δ′ ∈ (δ, 1/2), with probability 1 − δ′ over the randomness of x, algo-

rithm A has success probability at least 1/n, hence each zi lies in S with probability ≥ 1/mn. Hence for

these x, if we choose m′ = mn2, with probability 1 − (1 − 1/mn)m
′
= 1 − o(1), the modified algorithm

succeeds. Therefore, the average success probability of the algorithm is ≥ 1− δ′ − o(1) ≥ 1/2 + Ω(1).
The above argument shows that we only need to look at algorithms where y1, . . . , ym are independent

given x. Thus, it is enough to show that there does not exist a random mapping from x to a vector y in such a

way that with probability 1− δ over the randomness of x, the probability Pr[y ∈ S] is non-negligible (since

m is polynomial in n).
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For the sake of contradiction, assume such a mapping from x to y exists. Let S be a random half-space,

i.e. S = {z :
∑n

i=1 aizi ≤ 0} for a uniformly random vector a = (a1, . . . , an) ∈ {−1, 1}n. We will

show that for every x, with probability δ over the randomness of a, the probability Pr[y ∈ S] is negligible.

By an averaging argument, this shows that there exists a half-space S such that with probability δ over the

randomness of x, Pr[y ∈ S] is negligible, completing the proof.

As mentioned above, we want to show that for every x, a random half-space is troublesome for the algo-

rithm. By symmetry, without loss of generality, we may assume x = (1, 1, . . . , 1). Let η = (η1, . . . , ηn) =
(x − y)/2 be the characteristic vector for the coordinates for which y is different from x. We note that

y ∈ S iff
∑

i ai − 2
∑

i aiηi ≤ 0. We know that with probability δ + Ω(1) over the randomness of a,

we have
∑

i ai ≥ Ω(
√
n). (This easily follows from the central limit theorem.) Now, conditioned on η,

the sum
∑

i ηiai is actually a sum of n1−Ω(1)-many ±1 independent random variables of mean zero, so

Pr[
∑

i ηiai ≥ Ω(
√
n)] is a negligible, actually exponentially small, probability. This implies over the ran-

domness of a and η, Pr[
∑

i ηiai ≥ Ω(
√
n)] is negligible. Thus, except for an o(1) fraction of random

half-spaces, Pr[
∑

i ηiai ≥ Ω(
√
n)] is negligible over the randomness of y. Thus, with probability at least

δ +Ω(1)− o(1) ≥ δ over the randomness of a, we have both

•
∑

i ai ≥ Ω(
√
n), and

• Pr[
∑

i aiηi = Ω(
√
n)] is negligible over the randomness of y.

In this case, y does not lie in S except with non-negligible.

Remark 6.2. It can be seen that the above theorem holds whenever ε and δ are positive constants such that

ε + δ < 1. It can be seen that the above theorem does not hold when ε + δ > 1 since when we set y = x,

our failure probability δ is exactly 1− ε.

Lemma 6.3. Given a radius r, assume an adaptive algorithm A, given x, wants to find a vector y ∈ S in

the ball of radius r around x. Furthermore, assume that the algorithm does not make any S-membership

oracle queries regarding points outside the ball. Then, we can transform the algorithm into a non-adaptive

algorithm with the same performance.

Proof. When the algorithm ever queries about a point y (and by assumption y is in the ball), if the oracle

says that y ∈ S, then we are done (since we have found our desired point.) So the algorithm may always

pretend that the result of each membership query about each queried point is that the point is not in S . This

equivalent algorithm is non-adaptive.

Corollary 6.4. In the {0, 1}n uniform product space, when we want to find a point y ∈ S at distance n1/2+ε

from a random x (for some ε ∈ (0, 1/2)), to be query-efficient, we need to query about S-membership of

points having distance more than n1/2+ε.

The above corollary says that even though we are interested in points in a ball of certain radius around

x, we have to query about points outside that ball. When we notice that we are not assuming any structure

on the set S other than it should have some minimum mass, the above corollary becomes all the more

surprising!
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