
Learning and Certification under Instance-targeted Poisoning

Ji Gao1 Amin Karbasi2 Mohammad Mahmoody3

1University of Virginia
2Yale University

3University of Virginia

Abstract

In this paper, we study PAC learnability and certi-
fication under instance-targeted poisoning attacks,
where the adversary may change a fraction of the
training set with the goal of fooling the learner
at a specific target instance. Our first contribu-
tion is to formalize the problem in various set-
tings, and explicitly discussing subtle aspects such
as learner’s randomness and whether (or not) ad-
versary’s attack can depend on it. We show that
when the budget of the adversary scales sublinearly
with the sample complexity, PAC learnability and
certification are achievable. In contrast, when the
adversary’s budget grows linearly with the sam-
ple complexity, the adversary can potentially drive
up the expected 0-1 loss to one. We also study
distribution-specific PAC learning in the same at-
tack model and show that proper learning with cer-
tification is possible for learning half spaces under
natural distributions. Finally, we empirically study
the robustness of K nearest neighbour, logistic re-
gression, multi-layer perceptron, and convolutional
neural network on real data sets against targeted-
poisoning attacks. Our experimental results show
that many models, especially state-of-the-art neural
networks, are indeed vulnerable to these strong at-
tacks. Interestingly, we observe that methods with
high standard accuracy might be more vulnerable
to instance-targeted poisoning attacks.

1 INTRODUCTION

Learning to predict from empirical examples is a fundamen-
tal problem in machine learning. In its classic form, the
problem involves a benign setting where the empirical and
test examples are sampled from the same distribution D.
More formally, a learner, denoted by Lrn, is given a training

set S, consists of i.i.d. samples (x, y) from distribution D,
where x is a data point and y is its label. Then, the learner
returns a model/hypothesis h where it will be ultimately
tested on a fresh sample from the same distribution D.

More recently, the above-mentioned classic setting has been
revisited by allowing adversarial manipulations that tamper
with the process, while still aiming to make correct predic-
tions. In general, adversarial tampering can take place in
both training or testing of models. Our interest in this work
is on a form of training-time attacks, known as poisoning or
causative attacks [Barreno et al., 2006, Papernot et al., 2016,
Diakonikolas and Kane, 2019, Goldblum et al., 2020]. In
particular, poisoning adversaries may partially change the
training set S into another training set S ′ in such a way that
the “quality" of the returned hypothesis h′ by the learning
algorithm Lrn, that is trained on S ′ instead of S, degrades
significantly. Depending on the context, the way we measure
the quality of the poisoning attack may change. For instance,
the quality of h′ may refer to the expected error of h′ when
test data points are sampled from the distributionD. It could
also refer to the error on a particular test point x, known to
the adversary but unknown to the learning algorithm Lrn.
The latter scenario, which is the main focus of this work,
is known as (instance) targeted poisoning [Barreno et al.,
2006]. In this setting, as the name suggests, an adversary
could craft its strategy based on the knowledge of a target
instance x. Given a training set of S of size m, we assume
that an adversary can change up to b(m) data points, and we
refer to b(m) as adversary’s “budget”. Other examples of
natural (weaker) attacks may include flipping binary labels,
or adding/removing data points (see Section 2).

Given a poisoning attack, the predictions of a learning algo-
rithm may or may not change. To this end, Steinhardt et al.
[2017] initiated the study of certification against poison-
ing attacks, studying the conditions under which a learning
algorithm can certifiably obtain an expected low risk. To ex-
tend these results to the instance-targeted positing scenario,
Rosenfeld et al. [2020] recently addressed the instance tar-
geted (a.k.a., pointwise) certification with the goal of provid-
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ing certification guarantees about the prediction of specific
instances when the adversary can poison the training data.
While the instance-targeted certification has sparked a new
line of research [Levine and Feizi, 2021, Chen et al., 2020,
Weber et al., 2020, Jia et al., 2020] with interesting insights,
the existing works do not address the fundamental question
of when, and under what conditions, learnability and certifi-
cation are achievable under the instance-targeted poisoning
attack. In this work, we take an initial step along this line
and layout the precise conditions for such guarantees.

Problem setup. Let H consists of a hypothesis class of
classifiers h : X → Y where X denotes the instances
domain and Y the labels domain. We would like to study the
learnability ofH under instance-targeted poisoning attacks.
But before discussing the problem in that setting, we recall
the notion of PAC learning without attacks.

Informally speaking, H is “Probably Approximately Cor-
rect” learnable (PAC learnable for short) if there is a learning
algorithm Lrn such that for every distributionD over X ×Y ,
if D can be learned withH (i.e., the so-called realizability
assumption holds) then with high probability over sampling
any sufficiently large set S ∼ Dm, Lrn maps S to a hypothe-
sis h ∈ H with “arbitrarily small” risk under the distribution
D. Lrn is called improper if it is allowed to output functions
outside H, and it is a distribution-specific learner, if it is
only required to work when the marginal distributionDX on
the instance domain X is fixed e.g., to be isotropic Gaussian.
(See Section 2 and Definition 2.4 for formal definitions.)

Suppose that before the example (x, y) ∼ D is tested, an
adversary who is aware of (x, y) (and hence, is targeting the
instance x) can craft a poisoned set S ′ from S by arbitrarily
changing up to b of the training examples in S. Now, the
learning algorithm encounters S ′ as the training set and the
hypothesis it returns is, say, h′ ∈ H in the proper learning
setting. Now, the predicted label of x, i.e., y′ = h′(x), may
no longer be equal to the correct label y.

Main questions. In this paper, we would like to study under
what conditions on the class complexity H, budget b, and
different (weak/strong) forms of instance-targeted poisoning
attacks, one can achieve (proper/improper) PAC learning. In
particular, the learner’s goal is to still be correct, with high
probability, on most test instances, despite the existence of
the attack. A stronger goal than robustness is to also certify
the predictions h(x) = y with a lower bound k on how
much an instance-targeted poisoning adversary needs to
change the training set S to eventually flip the decision on
x into y′ 6= y. In this work, we also keep an eye on when
robust learners can be enhanced to provide such guarantees,
leading to certifiably robust learners.

We should highlight that all the aforementioned methods
[Rosenfeld et al., 2020, Levine and Feizi, 2021, Chen et al.,
2020, Weber et al., 2020, Jia et al., 2020] mainly consid-
ered practical methods that allow predictions for individual

instances under specific conditional assumptions about the
model’s performance at the decision time that can be only
verified empirically, but it is not clear (provably) if such con-
ditions would actually happen during the prediction moment.
In this work, we avoid such assumptions and address the
question of under what conditions on the problem’s setting,
the learnability is possible provably.

Our contributions are as follows.

Formalism. We provide a precise and general formalism
for the notions of certification and PAC learnability under
instance-targeted attacks. These formalisms are based on
a careful treatment of the notions of risk and robustness
defined particularly for learners under instance-targeted poi-
soning attacks. The definitions carefully consider various
attack settings, e.g., based on whether the adversary’s per-
turbation can depend on learner’s randomness or not, and
also distinguish between various forms of certification (to
hold for all training sets, or just most training sets.)

Distribution-independent setting. We then study the problem
of robust learning and certification under instance-targeted
poisoning attacks in the distribution-independent setting.
Here, the learner shall produce “good” models for any distri-
bution over the examples, as long as the distribution can be
learned by at least one hypothesis h ∈ H (i.e., the realizable
setting). We separate our studies here based on the subtle
distinction between two cases: Adversaries who can base
their perturbation also for a fixed randomness of the learner
(the default attack setting), and those whose perturbation
would be retrained using fresh randomness (called weak
adversaries). In the first setting, We show that as long as the
hypothesis classH is (properly or improperly) PAC learn-
able under the 0-1 loss and the strong adversary’s budget is
b = o(m), wherem is the number of samples in the training
set, then the hypothesis classH is always improperly PAC
learnable under the instance-targeted attack with certifica-
tion (Theorem 3.3). This result is inspired by the recent work
of Levine and Feizi [2021] and comes with certification. We
then show that the limitation on b(m) = o(m) is inherent in
general, as whenH is the set of homogeneous hyperplanes,
if b(m) = Ω(m), then robust PAC learning against instance-
targeted poisoning is impossible in a strong sense (Theorem
3.5). m. We then show that if the adversary is “weak” and
is not aware of learner’s randomness, if the hypothesis class
H is properly PAC learnable and the weak adversary’s bud-
get is b = o(m), then H is also properly PAC learnable
under instance-targeted attacks (Theorem 3.2). This result,
however, does not come with certification guarantees.

Distribution-specific learning. We then study robust learning
under instance-targeted poisoning when the instance distri-
bution is fixed. We show that when the projection of the
marginal distribution DX is the uniform distribution over
the unit sphere (e.g., d-dimensional isotropic Gaussian), the
hypothesis class consists of homogeneous half-spaces, and
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the strong adversary’s budget is b = c/
√
d, then proper

PAC learnability under instant-targeted attack is possible iff
c = o(m) (see Theorems 3.7 and 3.8). Note that if we allow
d to grow with m to capture the “high dimension” setting,
then the mentioned result becomes incomparable to our
above-mentioned results for the distribution-independent
setting). To prove this result we use tools from measure
concentration over the unit sphere in high dimension.

Experiments. We empirically study the robustness of K
nearest neighbour, logistic regression, multi-layer percep-
tron, and convolutional neural network on real data sets. We
observe that methods with high standard accuracy (such
as convolutional neural network) are indeed more vulnera-
ble to instance-targeted poisoning attacks. This observation
might be explained by the fact that more complex mod-
els fit the training data better and thus the adversary can
more easily confuse them at a specific test instance. A pos-
sible interpretation is that models that somehow “memorize”
their data could be more vulnerable to targeted poisoning.
In addition, we study whether dropout on the inputs and
also L2-regularization on the output can help the model
to defend against instance-targeted poisoning attacks. We
observe that adding these regularization to the learner does
not help in defending against such attacks.

1.1 RELATED WORK

The concurrent work of Blum et al. [2021] also studies
instance-targeted PAC learning. In particular, they formalize
and prove positive and negative results about PAC learnabil-
ity under instance-targeted poisoning attacks, in which the
adversary can add an unbounded number of clean-label ex-
amples to the training set. In comparison, we formalize the
problem for any prediction task, and we study both robust
learning and certification. Our main positive and negative
results are, however, proved for classification tasks and for
adversaries who can change a limited number of examples
in the training set. Other theoretical works have also studied
instance-targeted poisoning attacks (rather than learnability
under such attacks) using clean labels [Mahloujifar and Mah-
moody, 2017, Mahloujifar et al., 2018, 2019b, Mahloujifar
and Mahmoody, 2019, Mahloujifar et al., 2019a, Diochnos
et al., 2019, Etesami et al., 2020]. The work of Shafahi et al.
[2018] studied such (targeted clean-label) attacks empiri-
cally, and showed that neural nets can be very vulnerable
to them. Finally, Koh and Liang [2017] also studied clean
label attacks empirically, but for non-targeted setting.

More broadly, some classical works in machine learning can
also be interpreted as (non-targeted) data poisoning [Valiant,
1985, Kearns and Li, 1993, Sloan, 1995, Bshouty et al.,
2002]. In fact, the work of Bshouty et al. [2002] studies the
same question as in this paper, but for the non-targeted set-
ting. However, making learners robust against such attacks
can easily lead to intractable learning methods that do not

run in polynomial time. Recently, starting with the seminal
results of Diakonikolas et al. [2016], Lai et al. [2016] (and
many follow up works, e.g., Diakonikolas et al. [2019a,b],
see [Diakonikolas and Kane, 2019]), it was shown that in
some natural settings one can go beyond the intractability
barriers and obtain polynomial-time methods to resist non-
targeted poisoning. In contrast, our work focuses on targeted
poisoning. We shall also comment that, while our focus in
this work is on instance-targeted attacks for prediction tasks,
it is not clear how to even define such (targeted) attacks for
robust parameter estimation (e.g., learning Gaussians).

Regarding certification, Steinhardt et al. [2017] were the
first who studied certification of the overall risk under the
poisoning attack. However, the more relevant to our paper
is the work by Rosenfeld et al. [2020] who introduced the
instance-targeted poisoning attack and applied randomized
smoothing for certification in this setting. Empirically, they
showed how smoothing can provide robustness against label-
flipping adversaries. Subsequently, Levine and Feizi [2021]
introduced Deep Partition Aggregation (DPA), a novel tech-
nique that uses deterministic bagging in order to develop ro-
bust predictions against general (arbitrary addition/removal)
instance-targeted poisoning. In the same spirit, Chen et al.
[2020], Weber et al. [2020], Jia et al. [2020] developed ran-
domized bagging/sub-sampling and empirically studied the
intrinsic robustness of their methods. predictions.

Finally, we note that while our focus is on training-time-only
attacks, poisoning attacks can be performed in conjunction
with test time attacks, leading to backdoor attacks [Gu et al.,
2017, Ji et al., 2017, Chen et al., 2018, Wang et al., 2019,
Turner et al., 2019, Diochnos et al., 2019].

2 DEFINITIONS

Basic definitions and notation. We let N = {0, 1, . . .} de-
note the set of integers, X the input/instance space, and Y
the space of labels. By YX we denote the set of all functions
from X to Y . ByH ⊂ YX we denote the set of hypotheses.
We use D to denote a distribution over X × Y . By e ∼ D
we state that e is distributed/sampled according to distri-
bution D. For a set S, the notation e ∼ S means that e is
uniformly sampled from S. By Dm we denote a product
distribution over m i.i.d. samples from D. By DX we de-
note the projection of D over its first coordinate (i.e., the
marginal distribution over X ). For a function h ∈ YX and
an example e = (x, y) ∈ X×Y , we use `(h, e) to denote the
loss of predicting h(x) ∈ Y while the correct label for x is
y. Loss will always be non-negative, and when it is in [0, 1],
we call it bounded. For classification problems, unless stated
differently, we use the 0-1 loss, i.e., `(h, e) = 1[h(x) = y].
We use S ∈ (X × Y)∗ to denote a training “set”, even
though more formally it is in fact a sequence. We use Lrn to
denote a learning algorithm that (perhaps randomly) maps
a training set S ∼ Dm of any size m to some h ∈ YX . We
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call a leaner Lrn proper (with respect to hypothesis class
H) if it always outputs some h ∈ H. Lrn(S)(x) denotes the
prediction on x by the hypothesis returned by Lrn(S). When
Lrn is randomized, by y ∼ Lrn(S)(x) we state that y is the
prediction when the randomness of Lrn is chosen uniformly.
For a randomized Lrn and the random seed r (of the appro-
priate length), Lrnr denotes the deterministic learner with
the hardwired randomness r. For a hypothesis h ∈ H, a loss
function `, and a distribution D over X ×Y , the population
(a.k.a. true) risk of h over D (with respect to the loss `) is
defined as Risk(h,D) = Ee∼D[`(h, e)], and the empirical
risk of h over S is defined as Risk(h,S) = Ee∼S [`(h, e)].
For a hypothesis class H, we say that the realizability as-
sumption holds for a distribution D if there exists an h ∈ H
such that Risk(h,D) = 0. To add clarity to the text, We use
a diamond “♦” to denote the end of a technical definition.
For a hypothesis class H, we call a data set S ∼ Dm ε-
representative if ∀h ∈ H, |Risk(h,D)− Risk(h,S)| ≤ ε.
A hypothesis class has the uniform convergence property,
if there is a function m = mHUC(ε, δ) such that for any dis-
tribution D, with probability 1− δ over S ∼ Dm, it holds
that S is ε-representative.

Notation for the poisoning setting. For simplicity, we work
with deterministic strategies, even though our results could
be extended directly to randomized adversarial strategies
as well. We use A to denote an adversary who changes the
training set S into S ′ = A(S). This mapping can depend
on (the knowledge of) the learning algorithm Lrn or any
other information such as a targeted example e as well as
the randomness of Lrn. By A we refer to a set (or class)
of adversarial mappings and by A ∈ A we denote that the
adversary A belongs to this class. (See below for examples
of such classes.) Our adversaries always will have a budget
b ∈ N that controls how much they can change the training
set S into S ′ under some (perhaps asymmetric) distance
metric. To explicitly show the budget, we denote the adver-
sary as Ab and their corresponding classes as Ab. Finally,
we let Ab(S) = {S ′ | Ab ∈ Ab(S)} be the set of all “ad-
versarial perturbations” of S when we go over all possible
attacks of budget b from the adversary class A.

Adversary classes. Here we define the main adversary
classes that we use in this work. For more noise models
see the work of Sloan [1995].

• Repb (b-replacing). The adversary can replace up to b
of the examples in S (with arbitrary examples) and then
put the whole sequence S ′ in an arbitrary order. More
formally, the adversary is limited to (1) |S| = |S ′|, and
(2) by changing the order of the elements in S , one can
make the Hamming distance between S ′,S at most b.
This is essentially the targeted version of the “nasty
noise” model introduced by Bshouty et al. [2002].

• F lipb (b-label flipping). The adversary can change the
label of up to b examples in S and reorder the final set.

• Addb (b-adding). The adversary adds up to b examples
to S and put them in arbitrary order. Namely, the multi-
set S ′ has size at most |S|+ b and it holds that S ⊆ S ′.

• Remb (b-removing). The adversary removes up to b
examples from S and puts the rest in an arbitrary order.
Namely, as multi-sets |S ′| ≥ |S| − b and S ′ ⊆ S.1

We now define the notions of risk, robustness, certification,
and learnability under targeted poisoning attacks for predic-
tion tasks with a focus on classification. We emphasize that
in the definitions below, the notions of targeted-poisoning
risk and robustness are defined with respect to a learner
rather than a hypothesis. The reason is that, very often (and
in many natural settings) when the data set is changed by
the adversary, the learner needs to return a new hypothesis,
reflecting the change in the training data,

Definition 2.1 (Instance-targeted poisoning risk). Let Lrn
be a possibly randomized learner,Ab be a class of attacks of
budget b. For a training set S ∈ (X ×Y)m, an example e =
(x, y) ∈ X × Y , and randomness r, the targeted poisoning
loss (under attacks Ab) is defined as2

`Ab
(S, r, e) = sup

S′∈Ab(S)

`(Lrnr(S ′), e). (1)

For a distribution D over X × Y , the targeted poisoning
risk is defined as

RiskAb
(S, r,D) = E

e∼D
[`Ab

(S, r, e)].

For a bounded loss function with values in [0, 1] (e.g., the
0-1 loss), we define the correctness of the learner for the
distribution D under targeted poisoning attacks of Ab as

CorAb
(S, D) = 1− RiskAb

(S, D).

The above formulation implicitly allows the adversary to
depend (and hence “know”) on the randomness r of the
learning algorithm. We also define weak targeted-poisoning
loss and risk by using fresh learning randomness r unknown
to the adversary, when doing the retraining:

`wk
Ab

(S, e) = sup
S′∈Ab(S)

E
r
[`(Lrnr(S ′), e)],

Riskwk
Ab

(S, D) = E
e∼D

[`wk
Ab

(S, e)].

In particular, having a small weak targeted-poisoning risk
under the 0-1 loss means that for most of the points e ∼ D
the decisions are correct, and the prediction on e would not
change under any e-targeted poisoning attacks with high
probability over a randomized retraining. ♦

1Note that b-replacing attacks are essentially as powerful as
any adversary who can add or remove up to b examples arbitrarily,
with the only limitation that they preserve the training set size. Our
results extend to attacks with up to b additions or removals, how-
ever we focus on b-replacing attacks for simplicity of presentation.

2Note that Equation 1 is equivalent to `Ab(S, r, e) =
supA∈Ab

`(Lrnr(A(S, r, e)), e), because we are choosing the at-
tack over S after fixing r, e.
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We now define robustness of predictions, which is more
natural for classification tasks, but we state it more generally.

Definition 2.2 (Robustness under instance-targeted poison-
ing). Consider the same setting as that of Definition 2.1,
and let τ > 0 be a threshold to model when the loss is “large
enough”. For a data set3 S and learner’s randomness r, we
call an example e = (x, y) to be τ -vulnerable to a targeted
poisoning (of attacks in Ab), if the e-targeted adversarial
loss is at least τ , namely, `Ab

(S, r, e) ≥ τ . For the same
(S, r, e, τ) we define the targeted poisoning robustness (un-
der attacks in A) as the smallest budget b such that e is
τ -vulnerable to a targeted poisoning, i.e.,

RobτA(S, r, e) = inf {b | `Ab
(S, r, e) ≥ τ} .

If no such b exists, we let Robτ (S, r, e) =∞.4 When work-
ing with the 0-1 loss (e.g., for classification), we will use
τ = 1 and simply write RobA(·) instead. Also note that
in this case, `(Lrnr(S ′), e) ≥ 1 is simply equivalent to
Lrnr(S ′)(x) 6= y. In particular, if e = (x, y) is an example
and Lrnr(S) is already wrong in its prediction of the label
for x, then the robustness will be RobA(S, r, e) = 0, as no
poisoning will be needed to make the prediction wrong. For
a distribution D we define the expected targeted-poisoning
robustness as RobτA(S, r,D) = Ee∼D[RobτA(S, r, e)]. ♦

We now formalize when a learner provides certifying guar-
antees for the produced predictions. For simplicity, we state
the definition for the case of 0-1 loss, but it can be gen-
eralized to other loss functions by employing a threshold
parameter τ as it was done in Definition 2.2.

Definition 2.3 (Certifying predictors and learners). A certi-
fying predictor (as a generalization of a hypothesis function)
is a function h : X → Y × N, where the second output is
interpreted as a claim about the robustness of the predic-
tion. When h(x) = (y, b), we define hpred(x) = y and
hcert(x) = b. If hcert(x) = b, the interpretation is that the
prediction y shall not change when the adversary performs
a b-budget poisoning perturbation (defined by the attack
model) over the training set used to train h.5 Now, suppose
Ab is an adversary class with budget b = b(m) (where m is
the sample complexity) and A = ∪iAi. Also suppose Lrn
is a learning algorithm such that Lrnr(S) always outputs
a certifying predictor for any data set S ∈ (X × Y)?. We
call Lrn a certifying learner (under the attacks in A) for a

3Even though, in natural attack scenarios the set S is sampled
from Dm, Definitions 2.1 and 2.2 are more general in the sense
that S is an arbitrary set.

4If the adversary’s budget allows it to flip all the labels, in
natural settings (e.g., when the hypothesis class contains the com-
plement functions and the learner is a PAC learner), no robustness
will be infinite for such attacks.

5When using a general loss function, b would be interpreted
as the attack budget that is needed to increase the loss over the
example e(x, y) (where y is the prediction) to τ .

specific data set S ∈ (X × Y)? and randomness r, if the
following holds. For all x ∼ D, if Lrnr(S)(x) = (y, b)
and if we let e = (x, y),6 then RobA(S, r, e) ≥ b. In other
words, to change the prediction y on x (regardless of y being
a correct prediction or not), any adversary needs a budget
at least b. We call Lrn a universal certifying learner if it is
a certifying learning for all data sets S. For an adversary
class A = ∪b∈NAb, and a certifying learner Lrn for (S, r),
we define the b-certified correctness of Lrn over (S, r,D)
as the probability of outputting correct predictions while
certifying them with robustness at least b. Namely,

CCorAb
(S, r,D) = Pr

(x,y)∼D
[(y′ = y) ∧ (b′ ≥ b)

where (y′, b′) = Lrnr(S)(x)] .♦

The following definition extends the standard PAC learning
framework of Valiant [1984] by allowing targeted-poisoning
attacks and asking the leaner now to have small targeted-
poisoning risk. This definition is strictly more general than
PAC learning, as the trivial attack that does not change the
training set, Definition 2.4 below reduces to the standard
definition of PAC learning.

Definition 2.4 (Learnability under instance-targeted poison-
ing). Let the function b : N→ N model adversary’s budget
as a function of sample complexity m. A hypothesis class
H is PAC learnable under targeted poisoning attacks in
Ab, if there is a proper learning algorithm Lrn such that for
every ε, δ ∈ (0, 1) there is an integerm where the following
holds. For every distribution D over X ×Y , if the realizabil-
ity condition holds7 (i.e., ∃h ∈ H,Risk(h,D) = 0), then
with probability 1 − δ over the sampling of S ∼ Dm and
Lrn’s randomness r, it holds that RiskAb

(S, r,D) ≤ ε.

• Improper learning. We say thatH is improperly PAC
learnable under targeted Ab-poisoning attacks, if the
same conditions as above hold but using an improper
learner that might output functions outsideH.8

• Distribution-specific learning. SupposeD is the set of
all distributions D over X × Y such that the marginal
distribution of D over its first coordinate (in X ) is a
fixed distribution DX (e.g., isotropic Gaussian in di-
mension d). If all the conditions above (resp. for the
improper cases) are only required to hold for distribu-
tionsD ∈ D, then we say that the hypothesis classH is
PAC learnable (resp. improperly PAC learnable) under
instance distribution DX and targeted Ab-poisoning.

A hypothesis class is weakly (improperly and/or distribution-
specific) PAC learnable under targetedAb-poisoning, if with
probability 1−δ over the sampling of S ∼ Dm, it holds that

6Note that y might not be the right label
7Note that realizability holds while no attack is launched.
8We note, however, that whenever the proper or improper

condition is not stated, the default is to be proper.
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Riskwk
Ab

(S, D) ≤ ε. A hypothesis class is certifiably (im-
properly and/or distribution-specific) PAC learnable under
targeted Ab-poisoning, if we modify the (ε, δ) learnability
condition as follows. With probability 1− δ over S ∼ Dm

and randomness r, it holds that (1) Lrn is a certifying learner
for (S, r), and (2) CCorAb

(S, r,D) ≥ 1− ε. A hypothesis
class is universally certifiably PAC learnable, if it is cer-
tifiably PAC learnable using a universal certifying learner
Lrn. We call the sample complexity of any learner of the
forms above polynomial, if the sample complexity m is at
most poly(1/ε, 1/δ) = (1/(εδ))O(1). We call the learner
polynomial time, if it runs in time poly(1/ε, 1/δ), which
implies the sample complexity is polynomial as well. ♦

Remark 2.5 (On defining agnostic learning under instance–
targeted poisoning). Definition 2.4 focuses on the realizable
setting. However, one can generalize this to the agnostic
(non-realizable) case by requiring the following to hold with
probability 1− δ over S ∼ Dm and randomness r

RiskAb
(S, r,D) ≤ ε+ inf

h∈H
Risk(h, r,D).

Note that in this definition the learner wants to achieve ad-
versarial risk that is ε-close to the risk under no attack. One
might wonder if there is an alternative definition in which
the learner aims to “ε-compete” with the best adversarial
risk. However, recall that targeted-poisoning adversarial risk
is not a property of the hypothesis, and it is rather a property
of the learner. This leads to the following arguably unnat-
ural criteria that needs to hold with probability 1− δ over
S ∼ Dm and r. (For clarity the learner is explicitly denoted
as super-index for RiskAb

.)

RiskLrn
Ab

(S, r,D) ≤ ε+ inf
L

RiskLAb
(S, r,D)

The reason that the above does not trivially hold is that Lrn
needs to satisfy this for all distributions D (and most S)
simultaneously, while the learner L in the right hand side
can depend on D and S.

3 OUR RESULTS

We now study the question of learnability under instance-
targeted poisoning. We first discuss our positive and negative
results in the context of distribution-independent learning.
We then turn to the setting of distribution-dependent setting.
At the end, we prove some generic relations between risk
and robustness, showing how to derive one from the other.

Due to space limitations, all proofs are moved the full ver-
sion of this paper [Gao et al., 2021].

3.1 DISTRIBUTION-INDEPENDENT LEARNING

We start by showing results on distribution-independent
learning. We first show that in the realizable setting, for any

hypothesis class H that is PAC-learnable, H is also PAC
learnable under instance-targeted poisoning attacks that can
replace up to b(m) = o(m) (e.g., b(m) =

√
m) number of

examples arbitrarily. To state the bound of sample complex-
ity of robust learners, we first define the λ(·) function based
an adversary’s budget b(m).

Definition 3.1 (The λ(·) function). Suppose b(m) = o(m).
Then for any real number x, λ(x) returns the minimum m
where m′/b(m′) ≥ x for any m′ > m. Formally,

λ(x) = inf
m∈N

{
∀m′ ≥ m, m′

b(m′)
≥ x

}
.

Note that because b(m) = o(m), we have m/b(m) =
ωm(1), so λ(x) is well-defined. ♦

Theorem 3.2 (Proper learning under weak instance-tar-
geted poisoning). Let H be the PAC learnable class of
hypotheses. Then, for adversary budget b(m) = o(m),
the same classH is also PAC learnable using randomized
learners under weak b-replacing targeted-poisoning attacks.
The proper/improper nature of learning remains the same.
Specifically, let mLrn(ε, δ) be the sample complexity of a
PAC learner Lrn for H. Then, there is a learner WR that
PAC learnsH under weak b-replacing attacks with sample
complexity at most

mWR(ε, δ) = λ

(
max

{
m2

Lrn

(
ε,
δ

2

)
,

4

δ2

})
.

Moreover, if b(m) ≤ O(m1−Ω(1)), then whenever H is
learnable with a polynomial sample complexity and/or a
polynomial-time learner Lrn, the robust variant WR will
have the same features as well.

The above theorem shows that targeted-poisoning-robust
proper learning is possible for PAC learnable classes using
private randomness for the learner if b(m) = o(m). Thus, it
is natural to ask the following question: can we achieve the
stronger (default) notion of robustness as in Definition 2.4
in which the adversarial perturbation can also depend on
the (fixed) randomness r of the learner? Also, can this be
a learning with certifications? Our next theorem answers
these questions positively, yet that comes at the cost of
improper learning. Interestingly, the improper nature of the
learner used in Theorem (3.3) could be reminiscent of the
same phenomenon in test-time attacks (a.k.a., adversarial
example) where, as it was shown by Montasser et al. [2019],
improper learning came to rescue as well.

Theorem 3.3 (Improper learning and certification under
targeted poisoning). Let H be (perhaps improperly) PAC
learnable. If b-replacing attacks have their budget limited to
b(m) = o(m), thenH is improperly certifiably PAC learn-
able under b-replacing targeted poisoning attacks. Specif-
ically, let mLrn(ε, δ) be the sample complexity of a PAC
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learner for H. Then there is a learner Rob that universally
certifiably PAC learns H under b-replacing attacks with
sample complexity at most

mRob(ε, δ) = 576λ

(
max

{
m2

Lrn

( ε

12
,
ε

12

)
,

1

4ε2
,

log
(
δ
2

)2
(

2
√
3ε
3

)4 ,
log2

(
2
δ

)
576

⎫⎪⎬
⎪⎭

⎞
⎟⎠ .

Moreover, if b(m) ≤ O(m1−Ω(1)) and H is learnable using
a learner with a polynomial sample complexity and/or time,
the robust variant Rob will have the same features as well.

We then show that limiting adversary’s budget to b(m) =
o(m) is essentially necessary for obtaining positive results

in the distribution-independent PAC learning setting, as

some hypothesis classes with finite-VC dimension are not

learnable under targeted poisoning attacks when b(m) =
Ω(m) in a very strong sense: any PAC learner (without at-

tack) would end up having essentially a risk arbitrary close

to 1 under attack for any b(m) = Ω(m) budget given to a

b-replacing adversary.

We use homogeneous halfspace classifiers, defined in Def-

inition 3.4 below, as an example of hypothesis classes

with finite VC dimension. Then in Theorem 3.5, we show

that the hypothesis class of halfspaces are not distribution-

independently robust learnable against Ω(m)-label flipping

instance-targeted attacks.

Definition 3.4 (Homogeneous halfspace classifiers). A (ho-

mogeneous) halfspace classifier hω : Rd → {0, 1} is de-

fined as hω(x) = Sign(ω · x), where ω is a d-dimensional

vector. We then call Hhalf the class of halfspace classifiers

Hhalf = {hω(x) : ω ∈ R
d}. For simplicity, we may use ω

to refer to both the model parameter and the classifier. ♦

Theorem 3.5 (Limits of distribution-independent learnabil-

ity of halfspaces). Consider the halfspaces hypothesis set
H = Hhalf and we aim to learn any distribution over the
unit sphere using H. Let the adversary class be b-replacing
with b(m) = β ·m for any (even very small) constant β. For
any (even improper) learner Lrn one of the following two
conditions holds. Either Lrn is not a PAC learner for the hy-
pothesis class of half spaces (even without attacks) or there
exists a distribution D such that RiskFlipb

(S, D) ≥ 1−√
σ

with probability 1−√
σ over the selection of S of sufficiently

large m ≥ mLrn(β · σ/6, σ/2), where mLrn is the sample
complexity of PAC learner Lrn.

The idea behind the example of Theorem 3.5 can be found

in Figure 1. In particular, consider the uniform distribution

over the two circles. In the original (clean) distribution, the

points in the top circle are labeled red, and the points in the

bottom circle are labeled blue. The adversary can fool the

Figure 1: Example for proving Theorem 3.5. The red circle

has label 1, and the blue circle has label −1. ω is the ground-

truth halfspace with 0 risk, and ω′ is the halfspace that has

0 risk after adversary make replacements.

learner on every targeted instance, by changing the labels on

the targeted point and the opposite points on the other circle

(as shown in the picture, where the two arcs from each circle

are flipped). Any learner who tries to learn this distribution

would be forced to make a mistake on the targeted point.

The actual proof is more subtle and requires randomizing

the arcs around the target point.

Note that it was already proved by Bshouty et al. [2002]

that, if the adversary can corrupt b = Ω(m) of the examples,

even with non-targeted adversary, robust PAC learning is

impossible. However, in that case, there is a learning algo-

rithm with error O(b/m). So if, e.g., b = m/1000, then

non-targeted learning is possible for practical purposes. On

the other hand, Theorem 3.5 shows that any PAC learning

algorithm in the no attack setting, would have essentially

risk 1 under targeted poisoning.

Remark 3.6 (Other loss functions). Most of our initial re-

sults in this work are proved for the 0-1 loss as the default

for classification. Yet, the written proof of Theorem 3.2

holds for any loss function. Theorem 3.3 can also likely be

extended to other “natural” losses, but using a more compli-

cated “decision combiner” than the majority. In particular,

the learner can now output a label for which “most” sub-

models will have “small" risk (parameters most/small shall

be chosen carefully). The existence of such a label can prob-

ably be proved by a similar argument to the written proof of

the 0-1 loss. However, this operation is not poly time.

3.2 DISTRIBUTION-SPECIFIC LEARNING

Our previous results are for distribution-independent learn-

ing. This still leaves open to study distribution-specific learn-

ing. That is, when the input distribution is fixed, one might

able to prove stronger results.

We then study the learnability of halfspaces under instance-

targeted poisoning on the uniform distribution over the unit
sphere. Note that one can map all the examples in the d-

dimensional space to the surface of the unit sphere, and
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their relative position to a homogeneous halfspace remains
the same. Hence, one can limit both ω and instance x ∈
Rd \ 0d to be unit vectors in Sd−1. Therefore, distributions
DX on the unit sphere surface can represent any distribution
in the d-dimensional space. For example, a d-dimensional
isotropic Gaussian distribution can be equivalently mapped
to the uniform distribution over the unit sphere as far as
classification with homogeneous halfspaces is concerned.
We note that when the attack is non-targeted, it was already
shown by Bshouty et al. [2002] that whenever b(m) =
o(m), then robust PAC learning is possible (if it is possible
in the no-attack setting). Therefore, our results below can
be seen as extending the results of [Bshouty et al., 2002] to
the instance-targeted poisoning attacks.

Theorem 3.7 (Learnability of halfspaces under the uniform
distribution). In the realizable setting, let D be uniform
on the d dimensional unit sphere Sd−1 and let adversary’s
budget forRepb(m) be b(m) = cm/

√
d. Then for the halfs-

pace hypothesis setHhalf , there exists a deterministic proper
certifying learner CLrn such that the following

Pr
S←Dm

[
CCorRepb(m)

(S, D) ≥ 1− 2
√

2π · c−
√

2πd · ε
]

is at least 1 − δ for sufficiently large sample complexity
m ≥ mHUC(ε, δ), where mHUC is the sample complexity of
uniform convergence on Hhalf . So the problem is properly
and certifiably PAC learnable under b-replacing instance-
targeted poisoning attacks.

For example, when c = 1/502, ε = c/(100
√
d) and δ =

0.01, Theorem 3.7 implies that

Pr
S←Dm

[
CCorRepb(m)

(S, D) ≥ 99%
]
≥ 99%.

We also show that the above theorem is essentially optimal,
as long as we use proper learning. Namely, for any fixed
dimension d, with budget b = O(m/

√
d), a b-replacing

adversary can guarantee success of fooling the majority of
examples. Note that for constant d, when m → ∞, this
is just a constant fraction of data being poisoned, yet this
constant fraction can be made arbitrary small when d→∞.

Theorem 3.8 (Limits of robustness of PAC learners un-
der the uniform distribution). In the realizable setting, let
D be uniform over the d dimensional unit sphere Sd−1.
For the halfspace hypothesis set Hhalf , if b(m) ≥ cm/

√
d

for b-label flipping attacks F lipb, for any proper learner
Lrn one of the following two conditions holds. Either
Lrn is not a PAC learner for the hypothesis class of half
spaces (even without attacks), or for sufficiently large m ≥
mLrn(3c/(10

√
d), δ), with probability 1 −

√
δ + 2e−c2/18

over the selection of S we have

RiskRepb(S, D) ≥ 1−
√
δ + 2e−c2/18,

where mLrn is the sample complexity of the learner Lrn.

For example, when c = 20 and δ = 0.00009, we have
RiskFlipb(S, D) ≥ 99%.

4 EXPERIMENTS

In this section, we study the power of instance-targeted
poisoning on the MNIST dataset [LeCun et al., 1998]. We
first analyze the robustness of K-Nearest Neighbor model,
where the robustness can be efficiently calculated empiri-
cally. We then empirically study the accuracy under targeted
poisoning for multiple other different learners. Previous em-
pirical analysis on instance-targeted poisoning (e.g., Shafahi
et al. [2018]) mostly focus on clean-label attacks. In this
work, we use attacks of any labels, which lead to stronger
attacks compared to clean-label attacks. We also study mul-
tiple models in our experiment, while previous work mostly
focus on neural networks, and we then compare the perfor-
mance of different models under the same attack.

K-Nearest Neighbor (K-NN) is non-parameterized model
that memorizes every training example in the dataset. This
special structure of K-NN allows us to empirically evaluate
the robustness to poisoning attacks. The K-NN model in
this section uses the majority vote defined below.

Definition 4.1 (K-NN learner). For training dataset S and
example e = (x, y), let N (x) denote the set of K closest
examples from S e. Then the prediction of the K-NN is

hKNN(x) = argmax
j∈Y

∑
(xi,yi)∈N (x)

1[yi = j]. ♦

From our definition of poisoning attack and robustness, we
can measure the robustness empirically by the following
lemma. Similar ideas can also be found in [Jia et al., 2020].

Lemma 4.2 (Instance-targeted Poisoning Robustness of
the K-NN learner). Let margin(hKNN, e) be defined as 0 if
hKNN(x) 6= y and be defined as∑

(xi,yi)∈N (x)

1[yi = y]− max
j∈Y,j 6=y

∑
(xi,yi)∈N (x)

1[yi = j]

otherwise. We then have

RobRepb(LrnKNN,S, e) =

⌈
margin(LrnKNN(S), e)

2

⌉
.

Using Lemma 4.2, one can compute the robustness of the
K-NN model empirically by calculating the margin for
every e in the distribution. We then use the popular digit
classification dataset MNIST to measure the robustness.

In the experiment, we use the whole training dataset to train
(60, 000 examples), and evaluate the robustness on the test-
ing dataset (10, 000 examples). We calculate the robustness
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Figure 2: Experiment of K-Nearest Neighbors on the MNIST dataset. (a) The trend of Robustness Rob(Lrnknn,SMNIST,D)
on attacksRep, Add, andRem, with the increase of number of neighbors K. (b) Accuracy of K-NN model underRepb
with different poisoning budget b.

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

A
cc

u
ra

cy
 u

n
d

er
 p

o
is

o
n

in
g

Poisoning budget b

Logistic Regression 2-Layer MLP

2-Layer CNN Alexnet

KNN(K=200) KNN(K=500)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

A
cc

u
ra

cy
 u

n
d

er
 p

o
is

o
n

in
g

Poisoning budget b

2-Layer MLP
2-Layer MLP (Dropout p=0.5)
2-Layer MLP (Dropout p=0.2)
2-Layer MLP (L2 regularized, w=5e-4)

(a) (b)

Figure 3: Accuracy of different learners under Addb instance-targeted poisoning on the MNIST dataset. (a) Compare
different learners. (b) Compare dropout and regularization mechanics on Neural Networks.

underRepb,Remb, and Addb attacks. We measure the re-
sult with different number of neighbors K present the result
in Figure 2a. We also measure the accuracy under poisoning
ofRepb and report it in Figure 2b. The results in Figure 2
indicates the following message. (1) From Figure 2a, when
the number of neighbors K increases, the robustness also
increases as expected. The robustness of K-NN toRep and
Add increases almost linearly with K. (2) The robustness
to Rem is much larger than to Rep and Add. Rem is a
more difficult attack in this scenario. (3) From Figure 2b,
when the number of neighbors K increases, the models’
accuracy without poisoning slightly decreases. (4) From
Figure 2b, K-NN keeps around 80% accuracy to b = 100
instance-targeted poisoning when K becomes large.

For general learners, measuring their robustness provably
under attacks is harder because there is no clear efficient
attack that is provably optimal. In this case, we perform a
heuristic attack to study the power of Addb. The general
idea is that for an example e = (x, y), we poison the dataset
by adding b copies of (x, y′) into the dataset with the sec-
ond best label y′ in h(x), where b is the Adversary’s budget.
We then report the accuracy under poisoning with different
budget b on classifiers including Logistic regression, 2-layer
Multi-layer Perceptron (MLP), 2-layer Convolutional Neu-
ral Network (CNN), AlexNet and also K-NN in Figure 3a.

We get the following conclusion: (1) Models that have low
risk without poisoning, such as MLP, CNN and AlexNet,
typically have low empirical error, which makes it less ro-
bust under poisoning. (2) K-NN with large K have high
accuracy under poisoning compared to other models by
sacrificing its clean-label prediction accuracy.

Finally, in Figure 3b we report on our findins about two reg-
ularization mechanics, dropout and L2-regularization, on
the Neural Network learner and whether adding them can
provide better robustness against instance-targeted poison-
ing Addb. We use a 2-layer Multi-layer Perceptron (MLP)
as the base learner and adds dropout/regularization to the
learner. From the figure, we get the following messages: (1)
Dropout and regularization help to improve the accuracy
without the attacks (when b = 0). (2) These mechanics
don’t help the accuracy with theAddb attacks. The accuracy
under attack is worse than the vanilla Neural Network. We
conclude that these simple mechanics cannot help the neural
net to defend against instance-targeted poisoning.
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