2021 ACM/IEEE 6th Symposium on Edge Computing (SEC)

You Can Enjoy Augmented Reality While Running Around: An
Edge-based Mobile AR System

Haoxin Wang
hwang50@uncc.edu
University of North Carolina at Charlotte
Charlotte, NC, USA

ABSTRACT

Edge computing is proposed to be a promising paradigm to bridge
the gap between the stringent computation requirement of real-
time mobile augmented reality (MAR) and the constrained com-
putation capacity on our mobile devices. However, prior work on
edge-assisted MAR may fail to achieve expected performance in
multiple practical cases, e.g., irreparable network disruptions caused
by wireless link instability and user-mobility which is a critical char-
acteristic of popular MAR applications. In this paper, we design a
new edge-based MAR system named Explorer that enables mobile
users to acquire guaranteed MAR offloading performance even un-
der network instability and frequent user-mobility. Additionally,
analytical models are developed to provide timely estimation of the
sources of object detection staleness. Furthermore, we implement
the proposed Explorer in an end-to-end testbed.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; - Networks — Network mobility.

KEYWORDS
Edge Computing, Mobile Augmented Reality, Mobility Management

ACM Reference Format:

Haoxin Wang and Jiang Xie. 2021. You Can Enjoy Augmented Reality While
Running Around: An Edge-based Mobile AR System . In The Sixth ACM/IEEE
Symposium on Edge Computing (SEC °21), December 14-17, 2021, San Jose, CA,
USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3453142.
3491416

1 INTRODUCTION

Existing mobile augmented reality (MAR) applications show two
critical characteristics, real-time and frequent-user-mobility. How-
ever, since the computation complexity of object detection algo-
rithms are usually too high to run on our resource-constrained
mobile devices, how to perform object detection fast, stably, and ac-
curately on mobile devices is a critical challenge. Although, recently,
several low-complexity object detection algorithms are proposed
to be applied on mobile devices, e.g., Google MobileNet [2] and
DeepMon [3], their performance in terms of the detection accuracy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC °21, December 14—17, 2021, San Jose, CA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8390-5/21/12...$15.00
https://doi.org/10.1145/3453142.3491416

381

Jiang Xie
Linda.Xie@uncc.edu
University of North Carolina at Charlotte
Charlotte, NC, USA

(a) Correct object detection results (b) Detection results with staleness

Figure 1: Object detection staleness.
and computation latency are significantly worse than that of the

state-of-the-art object detection algorithms.

To overcome above challenges, edge computing is considered as
a promising alternative. First, edge servers are provisioned with suf-
ficient computation capacity to perform advanced object detection
algorithms, which can significantly improve the detection accu-
racy and decrease the inference latency, compared with performing
on mobile devices. Furthermore, due to the network proximity,
edge computing is able to provide a wireless connection with low
network latency between the server and the MAR user.

Motivations: However, in frequent-user-mobility MAR scenar-
ios (i.e., in the context of continuous object detection), offloading
must be applied with care due to the object detection staleness.
We define staleness as a critical performance metric that captures
whether detected objects are at the reported positions. An example
is shown in Fig. 1, assume at time ¢ = 0, an image frame is offloaded
to an edge server for processing. When the object detection result is
returned to the MAR device at t = 600ms, which is over 20 frames
old, the scene captured by the user’s camera may already change
due to the user-mobility, and the located object is no longer at the
reported position, as shown in Fig.1(b).

Object detection staleness might be caused by several reasons.
First, the wireless link between MAR devices and edge servers is
unstable and may incur a long end-to-end (E2E) latency during
continuous image frame offloading and virtual content delivery due
to (1) the time-varying and capacity-constrained wireless channels
and (2) user-mobility-incurred throughput decline. Second, MAR
applications that require users to move frequently, such as MAR
cognitive assistance [1], may cause wireless connection disruptions,
i.e., radio handoffs. Besides, compared to the cloud server, edge
server’s compute resource is finite. So that the edge server may
be easily overloaded by numerous MAR service requests, which
increases the inference latency. All of the aforementioned issues
may result in object detection staleness.

Existing MAR offloading work mainly focused on decreasing the
offloaded data size to reduce the E2E latency, e.g., decreasing the
video frame resolution [6]. However, none of these work consider a
highly possible case: what if the current network connection no longer

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 29,2024 at 10:44:47 UTC from IEEE Xplore. Restrictions apply.

Table 1: Notation

Variable Description
K2, Frame resolution of the mth video frame (pixels?)
Y The number of bits carried by one pixel (bits)
LA, E2E latency of the mth video frame (s)
LAY Wireless network latency of the mth video frame (s)
LAf,‘E7 Computation latency of the mth video frame (s)
Cm Computation complexity of the mth video frame (TFLOPS)
H Channel gain
1 Interference power (watt)
o? Background noise power (watt)
P Transmission power (watt)
B Network bandwidth (Hz)
f Available computational resources on the server (TFLOPS)

can provide satisfactory offloading performance even though the video
frames are compressed? This case may frequently happen when an
MAR user moves due to the wireless link quality fluctuation and
irreparable network disruptions.

Contributions: In this paper, we propose an edge-based MAR
system, Explorer, to enable fast, stable, and accurate object detection
for MAR users with frequent-user-mobility. The contributions of
this paper are summarized as follows,

(1) Proposing Explorer to mitigate the object detection staleness
caused by the wireless link quality decline.

(2) Designing analytical models for estimating different sources
of the object detection staleness in edge-based MAR systems.

(3) Implementing Explorer on an E2E system and conduct per-
formance evaluations.

2 EXPLORER: COMPONENTS AND
ALGORITHMS

At the heart of the proposed Explorer is that MAR clients offload
object detection through WiFi at a higher priority and switch to
cellular networks when their connected WiFi access point (AP)-
attached edge servers fail to offer satisfactory MAR services. Thus,
we consider all the AP-attached edge servers as Dominating Edges
(DEs) and the cellular base station (BS)-attached edge server as
the Assistant Edges (AEs). Switching the service between DEs and
AFs requires sophisticated estimation of the performance decline
sources and trigger mechanism.

We consider an edge-enabled network environment with one
AE and N densely deployed DEs. Denote N as the set of DEs and a
as the AE. We focus on a representative MAR user moving in the
above mentioned network environment. Denote M as the set of
generated video frames. Let Ly, denote the location where video
frame m € M is generated. Due to the dense deployment of APs,
multiple DEs can provide service to the MAR user for each video
frame m at location Ly,. And these DEs are denoted as D(L,,) C N.
Meanwhile, the MAR user can obtain the service from AE a at
any location Lp,. Object detection of a particular video frame m
is performed at either the user associated DE n € D(Ly,) or the
AE a without being further offloaded to other DEs or a remote
cloud. Denote (ay;; ,, a5,) € {(1,0),(0,1)} as the edge associa-
tion indicator which indicates the MAR user is served by DE n if
(amns@m,q) = (1,0) and is served by AE a if (ay, ;. ap, o) = (0,1).
As shown in Fig. 2, Explorer consists of four components: the of-
floading engine, edge computing resource tracker, tracking window
controller, and data collector.

382

Dominating Edge LA,
- 1 : : =
!I H Offloading 1 Offloading Englne _ 2
= Decisions TH""I"" Jon ;
Y, Edge Server Resource Tracker 2
% Link Quality ||Server Resource "‘::i_
495 Estimator Estimator g
<) % MAR Device) =
(), kiny Cn 5
A 4 A ’ -l 7 Ej
Assistant Edge e RSS;, L4,,L4,; L4y g

Data k2y,RSSE, i ol
\—.—7L T LA o ata Collector

Figure 2: Overview of the Explorer.
2.1 Offloading Engine

The core component of our proposed Explorer is the offloading
engine which determines when an MAR device should switch its
video frame object detection from its associated DE to the AE.
And based on the different sources of the link quality decline, the
offloading engine provides the corresponding offloading scheme.
Besides determining the timing of switching, the offloading engine
can also quantify the number of frames that need to be offloaded
to the AE based on the constraints of the LTE monetary cost and
the battery drain. Therefore, our proposed offloading engine can
not only dynamically mitigate the wireless link quality decline, but
also guarantee a low energy consumption and monetary cost for
the mobile device.

The offloading engine is executed when LA, is not less than
a threshold LA;y. We use three types of trigger to determine the
major source of the wireless quality decline.

Case 1: user-mobility-incurred case. (Channel gain trigger
Hyg) In wireless networks, channel gain is a critical metric to esti-
mate the wireless link quality between two communication nodes.
It may vary with time, due to fading and node mobility. The value
of channel gain is an applicable metric to estimate the level of
user-mobility-incurred latency. In our designed offloading engine,
when Hy, , < Hyg, the MAR device is triggered to switch its object
detection tasks to the AE to maintain a small staleness. Meanwhile,
the MAR user will re-associate with a nearby DE i € D(Ly,) for a
better DE service, where we define this process as a DE handoff.

Case 2: temporary link quality decline case. (Radio interfer-
ence trigger I;4) Radio interference is another important metric to
estimate the wireless link quality. We classify radio interference
into two categories: inter-DE and non-802.11 interference. (i) Any
traffic of the nearby DEs on the same channel or adjacent channels
is defined as the inter-DE interference, where it may vary with time
due to the user mobility. (ii) DEs are operated in the 2.4 or 5 GHz
shared ISM band. The 2.4 GHz band is shared with other non-802.11
devices, which could lead to a significant amount of interference.
Therefore, the increase of the DE’s radio interference may be perma-
nent (inter-DE interference) or temporary (non-802.11 interference).
In our designed offloading engine, when m > Irg, the MAR user
is triggered for a switching but no DE handoffs.

Case 3: temporary server resources exhausted case. (Avail-
able DE computational resource trigger f;4) The inference latency
may be significantly impacted by the computation latency because
the available computational resources f, , at the associated DE n
is limited. Similar to the non-802.11 interference, we design that
when m < fig, the MAR user will be triggered for a switching
but no DE handofts.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 29,2024 at 10:44:47 UTC from IEEE Xplore. Restrictions apply.

After determining the timing of switching, we next quantify the
number of frames that need to be offloaded to the AE, which is
denoted as A. As stated above, there are two different switching
scenarios: (i) switching with DE handoffs and (ii) switching without
DE handoffs. For scenario (i), the MAR user keeps offloading video
frames to the AE during a DE handoff. Since the latency of a DE
handoff is long, around 3s [7], the MAR user suffers a long period
without DE services during the DE handoff process. For scenario (ii),
we build a model to calculate the number of frames that need to be
offloaded to the AE, based on the constraints of the LTE monetary
cost and the battery drain. The lower and upper bound of 4, (i.e.,
Amin and Apmgayx) are calculated by,

AminkT}/
R(Hm,na Im,n)

AminkT)’
[—
R(Hza,Iz.a)
q/lmaxkz)/ <0,

+2e54 < Py ,(zzme M) (1)

@

where (1) says that the battery drain of offloading after switching
to the AE cannot exceed that of maintaining the link with the
DE, and (2) says that the LTE monetary cost cannot exceed the
maximum target Q ($); Py, and P, are the transmit power of the
WiFi and cellular interface of MAR devices, respectively; k%y is
the average data size of the video frames that have already been
offloaded; Hy 4, I,.q and Hpy,p, Im.p, are the latest recorded estimation
results of AE a and DE n, respectively, extracted from the edge
computing resource tracker (describe in Section 2.2); es,, is the
energy consumption of conducting a switching; and q is the LTE
monetary cost ($/bit). If the calculated A, > 0, I-m,m are
the current estimated wireless link quality of the associated DE n,
and they are less accurate for representing the future link quality
if the MAR user moves fast and frequently. In order to make the
calculated A more accurate, we choose A based on the value of
the tracking window size g which is extracted from the tracking
window controller (described in Section 2.3),

A=2(9), A € [Amins Amax]- (3)
For example, when g is small indicating that the MAR user is mov-
ing fast and frequently and R(Hy, n, Im.n) might change fast, we
choose a relatively small value of A; and vice versa. If the calcu-
lated Ain < 0, the offloading engine reduces the transmit latency
via decreasing the resolution of the next offloaded frame or execut-
ing existing computation-based solutions [5, 6]. The details of our
designed offloading engine are given in Algorithm 1.

2.2 Edge Computing Resource Tracker

The functions of the edge computing resource tracker are estimating
the wireless link quality, Hp, n, Im,n and Hy 4, I 4, and the available

computational resource, fr; n, using the information provided by
the data collector. There are two components in it, link quality
tracker and server resource tracker.

2.2.1 link Quality Tracker. This component is responsible for esti-
mating the wireless link quality leveraging RSS, user-side data, and
network-side data recorded by the data collector. Two metrics are
used to represent the wireless link quality: (i) channel gain H}, and
(ii) interference I,. Hp, and I, are defined as the average channel
gain and interference of the mth video frame, respectively, where

n i
XL RSShy,
10-n

H,, =10 3. (amnPw+ afn)aPc)’l.

)

383

Algorithm 1: Offloading engine

Input: LAy, Hon, Imyns fm,na Hza, Iz a. LAtgs Htg> Itg’ ftg
Output: g and A.
1 if Tracking Window Controller triggered = true then
2 | ifLA, > LAy then
3 Jj < 0;/% Case 1. %/
if Hypn < Hyg then
DE handoffs starte true; (ay, ,, @, o) < (0,1);
while True do
je— j+1; A« j;/* Offload frames to AE a */
if DE handoffs complete = true then
/* Switch to DE i %/

® u o G e

) (1,0),i € D(Lm);

w c
(am+/1,i’ am+/l,a

break;

10

/* Case 2 and 3. */
else if Hyp > Hyg&& (Tmn > I,g\lm < ftg) then
Calculate Apmin, Amax, A via (1), (2), (3);
if A;nin > 0 then
(amn>) < (0,1); /% Switch to AE a */
while True do
j e« j+1;/*% 0ffload frames to AE a */
if j = A then

|

else if A, < 0 then
k2,1 — Kmin X kmin: /* Decrease the frame

resolution or other existing solutions. */

(@ s Fonira) < (1,0); /% Back to DE
*/

break;

L 9< L /* Reset the tracking window size. */

| returng, A

Based on Shannon’s Theorem we have,
(ay nPw+asy, oPc)-Hm
kzy
LALL-(a¥) 1 Bw+a$, oBc)

w 2
m,n%w

T 2
I, + a5, 408), ()

—(a

2 -1

where k2, and y are extracted from the data collector; and LAZ,
LA, — LAf,f. In addition, we assume that the background noise of
DE, O'%V, and AE, JCZ, are constant.

2.2.2 Server Resource Tracker. This component is responsible for
estimating the available computational resources of the edge server.
fm is calculated as: f, =

data collector and cy, is calculated via the computation latency
model (described in Section 3.2).

2.3 Tracking Window Controller

Since sometimes an MAR user may stay at a location for a while
and the wireless link quality may not change much, executing
the resource tracker and offloading engine frequently will drain
the battery and consume lots of computational resources on the
MAR device. To address this issue, we design a tracking window
controller to dynamically adjust the frequency of executing the
edge computing resource tracker (i.e., tracking window size) and
the offloading engine.

We use the variation of the wireless link quality to dynamically
determine the tracking window size, since the variation of the avail-
able computational resources of the edge server is unpredictable
(e.g., the number of MAR users who will connect to the server

m

C—Cp, where LAC,,I,7 is extracted from the
LA

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 29,2024 at 10:44:47 UTC from IEEE Xplore. Restrictions apply.

is unpredictable) and does not have a direct correlation with the

user-mobility. In addition, we only execute the tracking window

controller when the MAR user is offloading its video frames to
P— —

the DE. We define @, = (Hmyn, Imn) and @, = (Hjn,Ijn) as

the wireless link state vector of the MAR user connected with

. . Dpyn—P;
DE n at location Ly, and Lj, respectively. CID/m,n = w and

(D,m’n <I>,m’n - <I>'j)n are defined for describing the wireless link
quality variation rate and the variation trend, respectively, where
m — j = g and g is the tracking window size with an initial value 1.

The details of dynamically adjusting the tracking window size
g is described as follows. First, the tracking window controller
checks if (i) the mth video frame is offloaded to DE n; (ii) m — j is
equal to the current window size g. The tracking window controller
then extracts the channel gain Hy, 5 and the interference I, , from
the data collector if the mth video frame satisfies the above two
requirements. The tracking window size g is increased by 1 if the

4

calculated wireless link quality variation rate <I>/m’n is not larger
than a preset rate threshold §, which indicates that the current
wireless link quality does not vary much. Increasing the window
size will decrease the tracking frequency and thus, save the MAR
device’s battery and computational resource. Otherwise, we keep
the window size if the current link variation trend @:n’n < 0(ie., the
current link variation rate is decreasing) or we reduce g according
to a preset regression function 0(g) if CD:,E," > 0 (i.e., the current
link variation rate is increasing).

2.4 Data Collector

The Data Collector is responsible for recording the MAR user-side,
network-side, and server-side data, to facilitate the other three
components. The user-side data includes k2, and y. The network-
side data includes (i) the continuous RSS of the wireless link within
each video frame transmitting period RSS%,,t € [0,LAI'] (e.g.
from the moment that the MAR user starts transmitting the mth
video frame to the moment of finishing the transmission); (ii) the
inference latency LA;;,. Server-side data includes LAf,‘iJ and cp,.

3 EXPLORER: ANALYTICAL MODELS

In this section, to implement four components of Explorer and
evaluate the object detection staleness, we design analytical models
for analyzing the edge-based MAR system. The inference latency
of the mth video frame can be defined as LA, = LAY, + LAY Since
the data size of the detection results is usually small, we do not
include the latency caused by returning object detection results.

3.1 Image Offloading Latency Model

The image offloading latency is determined by the user’s video
frame resolutions and wireless channel quality. We assume that
the AR video generated by the MAR user is preprocessed into
video frames with the resolution of k;, X k;, pixels. Thus, the data
size of the mth video frame is calculated as k2,y bits. In addition,
Shannon’s Theorem is used to model the wireless uplink channel
quality. Denote Hy;, ,, and Hy,, , as the channel gain when the MAR
user transmits the mth video frame to DE n € D(L,,) and AE a at
time 7 € [0, LAZ], respectively. The maximum achievable uplink
transmission rate for transmitting the mth video frame at r is given
by iy = (a3 Bus + ay gBe) logy 1+l 22 + af, , 250)

where B,, and B, are the channel bandwidth of WiFi and cellular

384

nln Q@[p | [[] Measurement Data
TT0.19%09) |---=- Fitted Curve
gg ExctlleMt,
0.6 b %\

205

Shy 0638, 0.5
04 Qualified
0 T
0.2 (1.053,02) " ~
0.1 Extreme ~
0 low-quality m

02 04 0.6 08 1.0 1.2
Latency (s)

Figure 3: E2E latency vs IOU.
networks, respectively; 62, and o are the background noise power,
and I, , and I}, , are the interference power at DE n and AE a while
transmitting the mth video frame at 7, respectively. Therefore, the
wireless network latency experienced by the mth video frame is
modeled as K2y

m
R (6)
m

, which is the average wireless uplink data

LA =
fOLAﬁ'r’ rmdT
LA
rate for transmitting the mth video frame. Moreover, the energy
consumption for transmitting the mth video frame can be modeled

as Ebf = (ap nPw + afy, Pc) LAY,

3.2 Computation Latency Model

The computation latency is closely related to the computation com-
plexity of a user’s task and available computational resources at the
user associated edge server. Let fi,, € (0, F,] and fi4 € (0, Fg]
be the available computational resources at DE n and AE g, respec-
tively, where F,, and F, are the computation capacity of DE n and
AE a, respectively. We assume that fy, , and fr, o do not change
during the whole computation processing of the mth video frame.
Therefore, the computation latency for the mth video frame is

where Ry, =

Cm

arvrvz,nfm,n + asn,afm,a ’
In addition, computation complexity ¢, is closely related to the
video frame resolution k2,. Since we focus on the wireless link level
performance rather than the edge server system level performance
in this paper, we consider an existing computation complexity
model [6] described as ¢, = ¥/(k2,) = 7 x 10713, + 0.083, where
¥(k2,) is convex with respect to the mth video frame resolution
k2,. Although this model is built by implementing a special object
recognition framework, YOLOv3 [4], our work is applicable to any
other computation complexity model.

3.3 Object Detection Staleness Model

To evaluate the staleness, we use the Intersection over Union (IOU)
metric, which is defined as,

LAY = ™)

arealO NG|
arealOU G|’

10U = ®)
where O and G are the bounding boxes of the detected object and
the ground truth, respectively. The value of IOU highly depends on
the E2E latency. A larger E2E latency usually results in a lower IOU,
which denotes a higher staleness. Therefore, we model the IOU as a
function of the E2E latency LA,;,. To do so, we implement an object
recognition framework, YOLOv3, on a Nvidia Jetson TX2. Fig. 3
shows that the IOU decreases when the E2E latency becomes larger.
Such a relationship between the IOU and LA, can be characterized
by a convex function, e.g., the measurement data can be fitted by a
convex function,

IOU,, (LAy,) = 0.1323XLA3, —0.02898X LAZ, —0.9623X LA ,,+1.091, (9)

with the root mean square error (RMSE) of 0.05.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 29,2024 at 10:44:47 UTC from IEEE Xplore. Restrictions apply.

MAR Client NS-3 Emulated Wireless Network

Edge Servers

I
|(HP Z820)1 |
[
| Real-world Wireless Network Traces

Figure 4: The edge-based MAR testbed.

4 IMPLEMENTATION AND EVALUATION

In this section, we implement the edge-based MAR system on a
testbed, shown in Fig. 4, which consists of three components: the
MAR client with Explorer, edge servers, and emulated network. We
conduct experiments based on the implementation to validate the
performance of Explorer.

4.1 Edge-based MAR System Implementation

MAR client with Explorer: The MAR client is developed in a HP
7820 workstation. It sends real-world captured video frames to
an edge server and overlays the received information on its corre-
sponding objects. The frame resolution of the video is 640 X 480.
Four functional modules are implemented in the MAR client. The
first one is a data collector that records the information, includ-
ing the frame resolution, E2E latency, and transmission latency
of each offloaded frame. The second one is an edge computing re-
source tracker that estimates the wireless channel quality using the
recorded E2E latency and transmission latency. The third module
contains a tracking window controller and an offloading engine,
which responsible for determining handoff strategies based on Al-
gorithm 1. The fourth module is a data communication module
which streams the video frames to an assigned server selected by
the offloading engine and receiving the object detection results.
Edge servers: There are three edge servers in our testbed, one
AE and two DEs. These three edge servers are implemented on
three NVIDIA Jetson TX development kits. They are developed to
process the offloaded video frames and send the detection results
back to the MAR user. Two major modules are implemented on
each server. The first one is the service connection module which
establishes a socket connection with the MAR client and returns
detection results to the MAR client. The second one is the object
detection module, YOLOvV3 [4], performs the object detection.
Emulated network: The wireless network connecting the edge
servers and the MAR client are emulated using NS-3. The MAR
client and three edge servers are connected to their corresponding
tap nodes in the emulated network via the tap-bridge model of
NS-3. To emulate the variations of the wireless link quality when
the MAR user is moving, we record 10 real-world wireless network
traces in our campus building. The measured data includes the E2E
latency and throughput variations while a user is moving. NS-3
takes the traces as input and dynamically varies the quality of the
emulated wireless network while transmitting video frames.

4.2 Performance Evaluation

Fig. 5 illustrates the IOU comparison between our proposed Ex-
plorer and three baselines, where (i) LTE-only solution: frames are
only offloaded to the BS-attached server (LTE-E); (ii) WiFi-only solu-
tion: frames are only offloaded to AP-attached servers (WiFi-E); (iii)

385

50
S
0.4 ff -4~ Groundtruth Explorer trigger S |
o -0~ Explorer Switch to the AE No ser\iice
- LTE-E Commercial WiFi trigger 1
-0- WiFi-E RN
0 . M

Time (9
Figure 5: Sampled measurement IOU.

s
5 10 15 25 30 40

Table 2: Experimental results

Average IOU IOU <0.5 IOU <£0.2
LTE-E 0.58 7.6% 0%
WiFi-E 0.62 17.5% 6.8%
Explorer 0.71 0% 0%
Groundtruth 0.94 0% 0%

groundtruth: all frames are directly computed on edge server (i.e., no
data transmission). The sampling period is every 6 frames. Handoff
trigger in IEEE 802.11 commercial WiFi products is to count the
number of continuously missed beacons, or when the RSSI is below
a certain threshold [7]. However, as shown in Fig. 5, this triggering
mechanism is not sensitive to the performance of MAR and makes
the IOU significant low during the handoff triggering, whereas the
triggering mechanism in Explorer maintains a higher IOU. Table
2 shows the experimental results of the average IOU summarized
from the experiments. Explorer achieves significant improvement
on IOU as compared to LTE-E and WiFi-E. Furthermore, Explorer
guarantees IOU > 0.5 when the MAR user is moving.

5 CONCLUSION

In this paper, we proposed Explorer to mitigate the object detection
staleness caused by the wireless link quality variation, especially
the user-mobility-incurred wireless network quality decline. To
the best of our knowledge, this is the first study of reducing the
MAR EZE latency from the communication perspective. In addition,
Explorer is complementary to all existing computation-based MAR
offloading solutions to further reduce the MAR E2E latency. The
performance of Explorer is validated by experimental evaluations.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-
dation (NSF) under Grant No. 1718666, 1731675, 1910667, 1910891,
and 2025284.

REFERENCES

[1] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance. In Proc.
ACM SenSys.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861 (2017).

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon: Mobile
GPU-based deep learning framework for continuous vision applications. In Proc.
ACM Mobisys. 82-95.

Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv (2018).

Haoxin Wang, BaekGyu Kim, Jiang Xie, and Zhu Han. 2020. Energy drain of the
object detection processing pipeline for mobile devices: Analysis and implications.
IEEE Transactions on Green Communications and Networking 5 (2020), 41-60.
Haoxin Wang and Jiang Xie. 2020. User preference based energy-aware mobile
AR system with edge computing. In Proc. IEEE INFOCOM. 1379-1388.

Haoxin Wang, Jiang Xie, and Xingya Liu. 2018. Rethinking Mobile Devices’ Energy
Efficiency in WLAN Management. In Proc. IEEE SECON.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 29,2024 at 10:44:47 UTC from IEEE Xplore. Restrictions apply.

