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ABSTRACT

Edge computing is proposed to be a promising paradigm to bridge

the gap between the stringent computation requirement of real-

time mobile augmented reality (MAR) and the constrained com-

putation capacity on our mobile devices. However, prior work on

edge-assisted MAR may fail to achieve expected performance in

multiple practical cases, e.g., irreparable network disruptions caused

by wireless link instability and user-mobility which is a critical char-

acteristic of popular MAR applications. In this paper, we design a

new edge-based MAR system named Explorer that enables mobile

users to acquire guaranteed MAR offloading performance even un-

der network instability and frequent user-mobility. Additionally,

analytical models are developed to provide timely estimation of the

sources of object detection staleness. Furthermore, we implement

the proposed Explorer in an end-to-end testbed.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting systems and tools; • Networks→ Network mobility.
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1 INTRODUCTION

Existing mobile augmented reality (MAR) applications show two

critical characteristics, real-time and frequent-user-mobility. How-

ever, since the computation complexity of object detection algo-

rithms are usually too high to run on our resource-constrained

mobile devices, how to perform object detection fast, stably, and ac-

curately on mobile devices is a critical challenge. Although, recently,

several low-complexity object detection algorithms are proposed

to be applied on mobile devices, e.g., Google MobileNet [2] and

DeepMon [3], their performance in terms of the detection accuracy
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Figure 1: Object detection staleness.
and computation latency are significantly worse than that of the

state-of-the-art object detection algorithms.

To overcome above challenges, edge computing is considered as

a promising alternative. First, edge servers are provisioned with suf-

ficient computation capacity to perform advanced object detection

algorithms, which can significantly improve the detection accu-

racy and decrease the inference latency, compared with performing

on mobile devices. Furthermore, due to the network proximity,

edge computing is able to provide a wireless connection with low

network latency between the server and the MAR user.

Motivations: However, in frequent-user-mobility MAR scenar-

ios (i.e., in the context of continuous object detection), offloading

must be applied with care due to the object detection staleness.

We define staleness as a critical performance metric that captures

whether detected objects are at the reported positions. An example

is shown in Fig. 1, assume at time 𝑡 = 0, an image frame is offloaded
to an edge server for processing. When the object detection result is

returned to the MAR device at 𝑡 = 600ms, which is over 20 frames
old, the scene captured by the user’s camera may already change

due to the user-mobility, and the located object is no longer at the

reported position, as shown in Fig.1(b).

Object detection staleness might be caused by several reasons.

First, the wireless link between MAR devices and edge servers is

unstable and may incur a long end-to-end (E2E) latency during

continuous image frame offloading and virtual content delivery due

to (1) the time-varying and capacity-constrained wireless channels

and (2) user-mobility-incurred throughput decline. Second, MAR

applications that require users to move frequently, such as MAR

cognitive assistance [1], may cause wireless connection disruptions,

i.e., radio handoffs. Besides, compared to the cloud server, edge

server’s compute resource is finite. So that the edge server may

be easily overloaded by numerous MAR service requests, which

increases the inference latency. All of the aforementioned issues

may result in object detection staleness.

Existing MAR offloading work mainly focused on decreasing the

offloaded data size to reduce the E2E latency, e.g., decreasing the

video frame resolution [6]. However, none of these work consider a

highly possible case:what if the current network connection no longer
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Table 1: Notation

Variable Description

𝑘2𝑚 Frame resolution of the𝑚th video frame (pixels2)
𝛾 The number of bits carried by one pixel (bits)

𝐿𝐴𝑚 E2E latency of the𝑚th video frame (s)
𝐿𝐴𝑡𝑟

𝑚 Wireless network latency of the𝑚th video frame (s)
𝐿𝐴

𝑐𝑝
𝑚 Computation latency of the𝑚th video frame (s)

𝑐𝑚 Computation complexity of the𝑚th video frame (TFLOPS)
𝐻 Channel gain
𝐼 Interference power (watt)

𝜎2 Background noise power (watt)
𝑃 Transmission power (watt)
𝐵 Network bandwidth (Hz)
𝑓 Available computational resources on the server (TFLOPS)

can provide satisfactory offloading performance even though the video

frames are compressed? This case may frequently happen when an

MAR user moves due to the wireless link quality fluctuation and

irreparable network disruptions.

Contributions: In this paper, we propose an edge-based MAR

system, Explorer, to enable fast, stable, and accurate object detection

for MAR users with frequent-user-mobility. The contributions of

this paper are summarized as follows,

(1) Proposing Explorer to mitigate the object detection staleness

caused by the wireless link quality decline.

(2) Designing analytical models for estimating different sources

of the object detection staleness in edge-based MAR systems.

(3) Implementing Explorer on an E2E system and conduct per-

formance evaluations.

2 EXPLORER: COMPONENTS AND
ALGORITHMS

At the heart of the proposed Explorer is that MAR clients offload

object detection through WiFi at a higher priority and switch to

cellular networks when their connected WiFi access point (AP)-

attached edge servers fail to offer satisfactory MAR services. Thus,

we consider all the AP-attached edge servers as Dominating Edges

(DEs) and the cellular base station (BS)-attached edge server as

the Assistant Edges (AEs). Switching the service between DEs and

AEs requires sophisticated estimation of the performance decline

sources and trigger mechanism.

We consider an edge-enabled network environment with one

AE and 𝑁 densely deployed DEs. DenoteN as the set of DEs and 𝑎
as the AE. We focus on a representative MAR user moving in the

above mentioned network environment. DenoteM as the set of

generated video frames. Let 𝐿𝑚 denote the location where video
frame𝑚 ∈ M is generated. Due to the dense deployment of APs,

multiple DEs can provide service to the MAR user for each video

frame𝑚 at location 𝐿𝑚 . And these DEs are denoted asD(𝐿𝑚) ⊆ N .
Meanwhile, the MAR user can obtain the service from AE 𝑎 at
any location 𝐿𝑚 . Object detection of a particular video frame 𝑚
is performed at either the user associated DE 𝑛 ∈ D(𝐿𝑚) or the
AE 𝑎 without being further offloaded to other DEs or a remote
cloud. Denote (𝑎𝑤𝑚,𝑛, 𝑎

𝑐
𝑚,𝑎) ∈ {(1, 0), (0, 1)} as the edge associa-

tion indicator which indicates the MAR user is served by DE 𝑛 if
(𝑎𝑤𝑚,𝑛, 𝑎

𝑐
𝑚,𝑎) = (1, 0) and is served by AE 𝑎 if (𝑎𝑤𝑚,𝑛, 𝑎

𝑐
𝑚,𝑎) = (0, 1).

As shown in Fig. 2, Explorer consists of four components: the of-

floading engine, edge computing resource tracker, tracking window

controller, and data collector.
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Figure 2: Overview of the Explorer.

2.1 Offloading Engine

The core component of our proposed Explorer is the offloading

engine which determines when an MAR device should switch its

video frame object detection from its associated DE to the AE.

And based on the different sources of the link quality decline, the

offloading engine provides the corresponding offloading scheme.

Besides determining the timing of switching, the offloading engine

can also quantify the number of frames that need to be offloaded

to the AE based on the constraints of the LTE monetary cost and

the battery drain. Therefore, our proposed offloading engine can

not only dynamically mitigate the wireless link quality decline, but

also guarantee a low energy consumption and monetary cost for

the mobile device.

The offloading engine is executed when 𝐿𝐴𝑚 is not less than
a threshold 𝐿𝐴𝑡𝑔 . We use three types of trigger to determine the

major source of the wireless quality decline.

Case 1: user-mobility-incurred case. (Channel gain trigger

𝐻𝑡𝑔) In wireless networks, channel gain is a critical metric to esti-

mate the wireless link quality between two communication nodes.

It may vary with time, due to fading and node mobility. The value

of channel gain is an applicable metric to estimate the level of

user-mobility-incurred latency. In our designed offloading engine,

when 𝐻𝑚,𝑛 ≤ 𝐻𝑡𝑔 , the MAR device is triggered to switch its object

detection tasks to the AE to maintain a small staleness. Meanwhile,

the MAR user will re-associate with a nearby DE 𝑖 ∈ D(𝐿𝑚) for a
better DE service, where we define this process as a DE handoff.

Case 2: temporary link quality decline case. (Radio interfer-

ence trigger 𝐼𝑡𝑔) Radio interference is another important metric to
estimate the wireless link quality. We classify radio interference

into two categories: inter-DE and non-802.11 interference. (i) Any

traffic of the nearby DEs on the same channel or adjacent channels

is defined as the inter-DE interference, where it may vary with time

due to the user mobility. (ii) DEs are operated in the 2.4 or 5 GHz
shared ISM band. The 2.4 GHz band is shared with other non-802.11
devices, which could lead to a significant amount of interference.

Therefore, the increase of the DE’s radio interference may be perma-

nent (inter-DE interference) or temporary (non-802.11 interference).

In our designed offloading engine, when 𝐼𝑚,𝑛 ≥ 𝐼𝑡𝑔 , the MAR user
is triggered for a switching but no DE handoffs.

Case 3: temporary server resources exhausted case. (Avail-

able DE computational resource trigger 𝑓𝑡𝑔) The inference latency
may be significantly impacted by the computation latency because

the available computational resources 𝑓𝑚,𝑛 at the associated DE 𝑛
is limited. Similar to the non-802.11 interference, we design that

when 𝑓𝑚,𝑛 ≤ 𝑓𝑡𝑔 , the MAR user will be triggered for a switching
but no DE handoffs.
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After determining the timing of switching, we next quantify the
number of frames that need to be offloaded to the AE, which is
denoted as 𝜆. As stated above, there are two different switching
scenarios: (i) switching with DE handoffs and (ii) switching without
DE handoffs. For scenario (i), the MAR user keeps offloading video
frames to the AE during a DE handoff. Since the latency of a DE
handoff is long, around 3s [7], the MAR user suffers a long period
without DE services during the DE handoff process. For scenario (ii),
we build a model to calculate the number of frames that need to be
offloaded to the AE, based on the constraints of the LTE monetary
cost and the battery drain. The lower and upper bound of 𝜆, (i.e.,
𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 ) are calculated by,

𝑃𝑐
𝜆𝑚𝑖𝑛𝑘2𝛾

𝑅 (𝐻𝑧,𝑎, 𝐼𝑧,𝑎)
+ 2𝑒𝑠𝑤 ≤ 𝑃𝑤

𝜆𝑚𝑖𝑛𝑘2𝛾

𝑅 (𝐻𝑚,𝑛, 𝐼𝑚,𝑛)
, (𝑧,𝑚 ∈ M) (1)

𝑞𝜆𝑚𝑎𝑥𝑘2𝛾 ≤ 𝑄, (2)

where (1) says that the battery drain of offloading after switching
to the AE cannot exceed that of maintaining the link with the
DE, and (2) says that the LTE monetary cost cannot exceed the
maximum target 𝑄 ($); 𝑃𝑤 and 𝑃𝑐 are the transmit power of the

WiFi and cellular interface of MAR devices, respectively; 𝑘2𝛾 is
the average data size of the video frames that have already been

offloaded;𝐻𝑧,𝑎, 𝐼𝑧,𝑎 and𝐻𝑚,𝑛, 𝐼𝑚,𝑛 are the latest recorded estimation
results of AE 𝑎 and DE 𝑛, respectively, extracted from the edge
computing resource tracker (describe in Section 2.2); 𝑒𝑠𝑤 is the
energy consumption of conducting a switching; and 𝑞 is the LTE

monetary cost ($/bit). If the calculated 𝜆𝑚𝑖𝑛 > 0, 𝐻𝑚,𝑛, 𝐼𝑚,𝑛 are
the current estimated wireless link quality of the associated DE 𝑛,
and they are less accurate for representing the future link quality
if the MAR user moves fast and frequently. In order to make the
calculated 𝜆 more accurate, we choose 𝜆 based on the value of
the tracking window size 𝑔 which is extracted from the tracking
window controller (described in Section 2.3),

𝜆 = 𝜆 (𝑔), 𝜆 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥 ] . (3)

For example, when 𝑔 is small indicating that the MAR user is mov-

ing fast and frequently and 𝑅(𝐻𝑚,𝑛, 𝐼𝑚,𝑛) might change fast, we

choose a relatively small value of 𝜆; and vice versa. If the calcu-
lated 𝜆𝑚𝑖𝑛 ≤ 0, the offloading engine reduces the transmit latency

via decreasing the resolution of the next offloaded frame or execut-

ing existing computation-based solutions [5, 6]. The details of our

designed offloading engine are given in Algorithm 1.

2.2 Edge Computing Resource Tracker

The functions of the edge computing resource tracker are estimating

the wireless link quality, 𝐻𝑚,𝑛 , 𝐼𝑚,𝑛 and 𝐻𝑧,𝑎 , 𝐼𝑧,𝑎 , and the available

computational resource, 𝑓𝑚,𝑛 , using the information provided by

the data collector. There are two components in it, link quality

tracker and server resource tracker.

2.2.1 link Quality Tracker. This component is responsible for esti-
mating the wireless link quality leveraging RSS, user-side data, and
network-side data recorded by the data collector. Two metrics are
used to represent the wireless link quality: (i) channel gain 𝐻𝜏

𝑚 and

(ii) interference 𝐼𝜏𝑚 . 𝐻𝑚 and 𝐼𝑚 are defined as the average channel
gain and interference of the𝑚th video frame, respectively, where

𝐻𝑚 = 10

∑𝑛
𝑖=1

ˆ
𝑅𝑆𝑆𝑖𝑚
10·𝑛 −3 · (𝑎𝑤𝑚,𝑛𝑃𝑤 + 𝑎𝑐𝑚,𝑎𝑃𝑐 )

−1 . (4)

Algorithm 1: Offloading engine

Input: 𝐿𝐴𝑚 , 𝐻𝑚,𝑛 , 𝐼𝑚,𝑛 , 𝑓𝑚,𝑛 , 𝐻𝑧,𝑎 , 𝐼𝑧,𝑎 , 𝐿𝐴𝑡𝑔 , 𝐻𝑡𝑔 , 𝐼𝑡𝑔 , 𝑓𝑡𝑔
Output: 𝑔 and 𝜆.

1 if Tracking Window Controller triggered = true then
2 if 𝐿𝐴𝑚 ≥ 𝐿𝐴𝑡𝑔 then
3 𝑗 ← 0; /* Case 1. */

4 if 𝐻𝑚,𝑛 ≤ 𝐻𝑡𝑔 then
5 DE handoffs start← 𝑡𝑟𝑢𝑒 ; (𝑎𝑤𝑚,𝑛, 𝑎

𝑐
𝑚,𝑎) ← (0, 1) ;

6 while True do
7 𝑗 ← 𝑗 + 1; 𝜆 ← 𝑗 ; /* Offload frames to AE 𝑎 */

8 if DE handoffs complete = true then
/* Switch to DE 𝑖 */

9 (𝑎𝑤
𝑚+𝜆,𝑖

, 𝑎𝑐𝑚+𝜆,𝑎) ← (1, 0) , 𝑖 ∈ D(𝐿𝑚) ;

10 break;

/* Case 2 and 3. */

11 else if 𝐻𝑚,𝑛 > 𝐻𝑡𝑔&&(𝐼𝑚,𝑛 ≥ 𝐼𝑡𝑔 | |𝑓𝑚,𝑛 ≤ 𝑓𝑡𝑔) then
12 Calculate 𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥 , 𝜆 via (1), (2), (3);
13 if 𝜆𝑚𝑖𝑛 > 0 then
14 (𝑎𝑤𝑚,𝑛, 𝑎

𝑐
𝑚,𝑎) ← (0, 1) ; /* Switch to AE 𝑎 */

15 while True do
16 𝑗 ← 𝑗 + 1; /* Offload frames to AE 𝑎 */

17 if 𝑗 = 𝜆 then
18 (𝑎𝑤

𝑚+𝜆,𝑛
, 𝑎𝑐𝑚+𝜆,𝑎) ← (1, 0) ; /* Back to DE

*/
19 break;

20 else if 𝜆𝑚𝑖𝑛 ≤ 0 then
21 𝑘2𝑚+1 ← 𝑘𝑚𝑖𝑛 × 𝑘𝑚𝑖𝑛 ; /* Decrease the frame

resolution or other existing solutions. */

22 𝑔 ← 1; /* Reset the tracking window size. */

23 return 𝑔, 𝜆

Based on Shannon’s Theorem we have,

𝐼𝑚 =
(𝑎𝑤𝑚,𝑛𝑃𝑤+𝑎

𝑐
𝑚,𝑎𝑃𝑐 ) ·𝐻𝑚

2

𝑘2𝛾

𝐿𝐴𝑡𝑟
𝑚 · (𝑎𝑤𝑚,𝑛𝐵𝑤+𝑎𝑐𝑚,𝑎𝐵𝑐 ) −1

− (𝑎𝑤𝑚,𝑛𝜎
2
𝑤 + 𝑎𝑐𝑚,𝑎𝜎

2
𝑐 ), (5)

where 𝑘2𝑚 and 𝛾 are extracted from the data collector; and 𝐿𝐴
𝑡𝑟
𝑚 =

𝐿𝐴𝑚 − 𝐿𝐴
𝑐𝑝
𝑚 . In addition, we assume that the background noise of

DE, 𝜎2𝑤 , and AE, 𝜎
2
𝑐 , are constant.

2.2.2 Server Resource Tracker. This component is responsible for

estimating the available computational resources of the edge server.

𝑓𝑚 is calculated as: 𝑓𝑚 = 𝑐𝑚
𝐿𝐴

𝑐𝑝
𝑚
, where 𝐿𝐴

𝑐𝑝
𝑚 is extracted from the

data collector and 𝑐𝑚 is calculated via the computation latency
model (described in Section 3.2).

2.3 Tracking Window Controller

Since sometimes an MAR user may stay at a location for a while

and the wireless link quality may not change much, executing

the resource tracker and offloading engine frequently will drain

the battery and consume lots of computational resources on the

MAR device. To address this issue, we design a tracking window

controller to dynamically adjust the frequency of executing the

edge computing resource tracker (i.e., tracking window size) and

the offloading engine.

We use the variation of the wireless link quality to dynamically

determine the tracking window size, since the variation of the avail-

able computational resources of the edge server is unpredictable

(e.g., the number of MAR users who will connect to the server
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is unpredictable) and does not have a direct correlation with the

user-mobility. In addition, we only execute the tracking window

controller when the MAR user is offloading its video frames to

the DE. We define
−−−→
Φ𝑚,𝑛 = (𝐻𝑚,𝑛, 𝐼𝑚,𝑛) and

−−−→
Φ𝑗,𝑛 = (𝐻 𝑗,𝑛, 𝐼 𝑗,𝑛) as

the wireless link state vector of the MAR user connected with

DE 𝑛 at location 𝐿𝑚 and 𝐿𝑗 , respectively. Φ
′

𝑚,𝑛 =
‖
−−−→
Φ𝑚,𝑛−

−−−→
Φ𝑗,𝑛 ‖

𝑔 and

Φ
′′

𝑚,𝑛 = Φ
′

𝑚,𝑛 − Φ
′

𝑗,𝑛 are defined for describing the wireless link

quality variation rate and the variation trend, respectively, where

𝑚 − 𝑗 = 𝑔 and 𝑔 is the tracking window size with an initial value 1.
The details of dynamically adjusting the tracking window size

𝑔 is described as follows. First, the tracking window controller
checks if (i) the𝑚th video frame is offloaded to DE 𝑛; (ii)𝑚 − 𝑗 is
equal to the current window size 𝑔. The tracking window controller
then extracts the channel gain 𝐻𝑚,𝑛 and the interference 𝐼𝑚,𝑛 from

the data collector if the𝑚th video frame satisfies the above two
requirements. The tracking window size 𝑔 is increased by 1 if the

calculated wireless link quality variation rate Φ
′

𝑚,𝑛 is not larger

than a preset rate threshold 𝛿 , which indicates that the current
wireless link quality does not vary much. Increasing the window

size will decrease the tracking frequency and thus, save the MAR

device’s battery and computational resource. Otherwise, we keep

the window size if the current link variation trendΦ
′′

𝑚,𝑛 ≤ 0 (i.e., the

current link variation rate is decreasing) or we reduce 𝑔 according

to a preset regression function 𝜃 (𝑔) if Φ
′′

𝑚,𝑛 > 0 (i.e., the current
link variation rate is increasing).

2.4 Data Collector

The Data Collector is responsible for recording the MAR user-side,

network-side, and server-side data, to facilitate the other three

components. The user-side data includes 𝑘2𝑚 and 𝛾 . The network-
side data includes (i) the continuous RSS of the wireless link within

each video frame transmitting period 𝑅𝑆𝑆𝜏𝑚, 𝜏 ∈ [0, 𝐿𝐴𝑡𝑟
𝑚 ] (e.g.,

from the moment that the MAR user starts transmitting the𝑚th
video frame to the moment of finishing the transmission); (ii) the

inference latency 𝐿𝐴𝑚 . Server-side data includes 𝐿𝐴
𝑐𝑝
𝑚 and 𝑐𝑚 .

3 EXPLORER: ANALYTICAL MODELS

In this section, to implement four components of Explorer and

evaluate the object detection staleness, we design analytical models

for analyzing the edge-based MAR system. The inference latency

of the𝑚th video frame can be defined as 𝐿𝐴𝑚 = 𝐿𝐴𝑡𝑟
𝑚 +𝐿𝐴

𝑐𝑝
𝑚 . Since

the data size of the detection results is usually small, we do not

include the latency caused by returning object detection results.

3.1 Image Offloading Latency Model
The image offloading latency is determined by the user’s video
frame resolutions and wireless channel quality. We assume that
the AR video generated by the MAR user is preprocessed into
video frames with the resolution of 𝑘𝑚 × 𝑘𝑚 pixels. Thus, the data
size of the𝑚th video frame is calculated as 𝑘2𝑚𝛾 bits. In addition,
Shannon’s Theorem is used to model the wireless uplink channel
quality. Denote 𝐻𝜏

𝑚,𝑛 and 𝐻
𝜏
𝑚,𝑎 as the channel gain when the MAR

user transmits the𝑚th video frame to DE 𝑛 ∈ D(𝐿𝑚) and AE 𝑎 at
time 𝜏 ∈ [0, 𝐿𝐴𝑡𝑟

𝑚 ], respectively. The maximum achievable uplink
transmission rate for transmitting the𝑚th video frame at 𝜏 is given

by 𝑟𝜏𝑚 = (𝑎𝑤𝑚,𝑛𝐵𝑤 + 𝑎𝑐𝑚,𝑎𝐵𝑐 ) log2

(
1 + 𝑎𝑤𝑚,𝑛

𝑃𝑤𝐻
𝜏
𝑚,𝑛

𝜎2𝑤+𝐼
𝜏
𝑚,𝑛

+ 𝑎𝑐𝑚,𝑎
𝑃𝑐𝐻

𝜏
𝑚,𝑎

𝜎2𝑐+𝐼
𝜏
𝑚,𝑎

)

where 𝐵𝑤 and 𝐵𝑐 are the channel bandwidth of WiFi and cellular
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Figure 3: E2E latency vs IOU.

networks, respectively; 𝜎2𝑤 and 𝜎
2
𝑐 are the background noise power,

and 𝐼𝜏𝑚,𝑛 and 𝐼
𝜏
𝑚,𝑎 are the interference power at DE 𝑛 and AE 𝑎 while

transmitting the𝑚th video frame at 𝜏 , respectively. Therefore, the
wireless network latency experienced by the𝑚th video frame is
modeled as

𝐿𝐴𝑡𝑟
𝑚 =

𝑘2𝑚𝛾

𝑅𝑚
, (6)

where 𝑅𝑚 =

∫ 𝐿𝐴𝑡𝑟
𝑚

0
𝑟𝑚𝑑𝜏

𝐿𝐴𝑡𝑟
𝑚

, which is the average wireless uplink data

rate for transmitting the𝑚th video frame. Moreover, the energy
consumption for transmitting the𝑚th video frame can be modeled
as 𝐸𝑡𝑟𝑚 = (𝑎𝑤𝑚,𝑛𝑃𝑤 + 𝑎𝑐𝑚,𝑎𝑃𝑐 )𝐿𝐴

𝑡𝑟
𝑚 .

3.2 Computation Latency Model
The computation latency is closely related to the computation com-
plexity of a user’s task and available computational resources at the
user associated edge server. Let 𝑓𝑚,𝑛 ∈ (0, 𝐹𝑛] and 𝑓𝑚,𝑎 ∈ (0, 𝐹𝑎]
be the available computational resources at DE 𝑛 and AE 𝑎, respec-
tively, where 𝐹𝑛 and 𝐹𝑎 are the computation capacity of DE 𝑛 and
AE 𝑎, respectively. We assume that 𝑓𝑚,𝑛 and 𝑓𝑚,𝑎 do not change
during the whole computation processing of the𝑚th video frame.
Therefore, the computation latency for the𝑚th video frame is

𝐿𝐴
𝑐𝑝
𝑚 =

𝑐𝑚
𝑎𝑤𝑚,𝑛 𝑓𝑚,𝑛 + 𝑎𝑐𝑚,𝑎 𝑓𝑚,𝑎

. (7)

In addition, computation complexity 𝑐𝑚 is closely related to the
video frame resolution 𝑘2𝑚 . Since we focus on the wireless link level
performance rather than the edge server system level performance

in this paper, we consider an existing computation complexity

model [6] described as 𝑐𝑚 = 𝜓 (𝑘2𝑚) = 7 × 10
−10𝑘3𝑚 + 0.083, where

𝜓 (𝑘2𝑚) is convex with respect to the𝑚th video frame resolution
𝑘2𝑚 . Although this model is built by implementing a special object
recognition framework, YOLOv3 [4], our work is applicable to any

other computation complexity model.

3.3 Object Detection Staleness Model
To evaluate the staleness, we use the Intersection over Union (IOU)
metric, which is defined as,

𝐼𝑂𝑈 =
𝑎𝑟𝑒𝑎 |𝑂 ∩𝐺 |

𝑎𝑟𝑒𝑎 |𝑂 ∪𝐺 |
, (8)

where 𝑂 and 𝐺 are the bounding boxes of the detected object and
the ground truth, respectively. The value of IOU highly depends on
the E2E latency. A larger E2E latency usually results in a lower IOU,
which denotes a higher staleness. Therefore, we model the IOU as a
function of the E2E latency 𝐿𝐴𝑚 . To do so, we implement an object
recognition framework, YOLOv3, on a Nvidia Jetson TX2. Fig. 3
shows that the IOU decreases when the E2E latency becomes larger.
Such a relationship between the IOU and 𝐿𝐴𝑚 can be characterized
by a convex function, e.g., the measurement data can be fitted by a
convex function,

𝐼𝑂𝑈𝑚 (𝐿𝐴𝑚) = 0.1323×𝐿𝐴
3
𝑚−0.02898×𝐿𝐴2𝑚−0.9623×𝐿𝐴𝑚+1.091, (9)

with the root mean square error (RMSE) of 0.05.
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Figure 4: The edge-based MAR testbed.

4 IMPLEMENTATION AND EVALUATION

In this section, we implement the edge-based MAR system on a

testbed, shown in Fig. 4, which consists of three components: the

MAR client with Explorer, edge servers, and emulated network. We

conduct experiments based on the implementation to validate the

performance of Explorer.

4.1 Edge-based MAR System Implementation

MAR client with Explorer: The MAR client is developed in a HP

Z820 workstation. It sends real-world captured video frames to

an edge server and overlays the received information on its corre-

sponding objects. The frame resolution of the video is 640 × 480.

Four functional modules are implemented in the MAR client. The

first one is a data collector that records the information, includ-

ing the frame resolution, E2E latency, and transmission latency

of each offloaded frame. The second one is an edge computing re-

source tracker that estimates the wireless channel quality using the

recorded E2E latency and transmission latency. The third module

contains a tracking window controller and an offloading engine,

which responsible for determining handoff strategies based on Al-

gorithm 1. The fourth module is a data communication module

which streams the video frames to an assigned server selected by

the offloading engine and receiving the object detection results.

Edge servers: There are three edge servers in our testbed, one

AE and two DEs. These three edge servers are implemented on

three NVIDIA Jetson TX development kits. They are developed to

process the offloaded video frames and send the detection results

back to the MAR user. Two major modules are implemented on

each server. The first one is the service connection module which

establishes a socket connection with the MAR client and returns

detection results to the MAR client. The second one is the object

detection module, YOLOv3 [4], performs the object detection.

Emulated network: The wireless network connecting the edge

servers and the MAR client are emulated using NS-3. The MAR

client and three edge servers are connected to their corresponding

tap nodes in the emulated network via the tap-bridge model of

NS-3. To emulate the variations of the wireless link quality when

the MAR user is moving, we record 10 real-world wireless network

traces in our campus building. The measured data includes the E2E

latency and throughput variations while a user is moving. NS-3

takes the traces as input and dynamically varies the quality of the

emulated wireless network while transmitting video frames.

4.2 Performance Evaluation

Fig. 5 illustrates the IOU comparison between our proposed Ex-

plorer and three baselines, where (i) LTE-only solution: frames are

only offloaded to the BS-attached server (LTE-E); (ii)WiFi-only solu-

tion: frames are only offloaded to AP-attached servers (WiFi-E); (iii)
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Figure 5: Sampled measurement IOU.

Table 2: Experimental results

Average IOU 𝐼𝑂𝑈 ≤ 0.5 𝐼𝑂𝑈 ≤ 0.2

LTE-E 0.58 7.6% 0%
WiFi-E 0.62 17.5% 6.8%
Explorer 0.71 0% 0%

Groundtruth 0.94 0% 0%

groundtruth: all frames are directly computed on edge server (i.e., no

data transmission). The sampling period is every 6 frames. Handoff

trigger in IEEE 802.11 commercial WiFi products is to count the

number of continuously missed beacons, or when the RSSI is below

a certain threshold [7]. However, as shown in Fig. 5, this triggering

mechanism is not sensitive to the performance of MAR and makes

the IOU significant low during the handoff triggering, whereas the

triggering mechanism in Explorer maintains a higher IOU. Table

2 shows the experimental results of the average IOU summarized

from the experiments. Explorer achieves significant improvement

on IOU as compared to LTE-E and WiFi-E. Furthermore, Explorer

guarantees IOU > 0.5 when the MAR user is moving.

5 CONCLUSION

In this paper, we proposed Explorer to mitigate the object detection

staleness caused by the wireless link quality variation, especially

the user-mobility-incurred wireless network quality decline. To

the best of our knowledge, this is the first study of reducing the

MAR E2E latency from the communication perspective. In addition,

Explorer is complementary to all existing computation-based MAR

offloading solutions to further reduce the MAR E2E latency. The

performance of Explorer is validated by experimental evaluations.
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