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Abstract. Current object detectors are limited in vocabulary size due to
the small scale of detection datasets. Image classifiers, on the other hand,
reason about much larger vocabularies, as their datasets are larger and
easier to collect. We propose Detic, which simply trains the classifiers of a
detector on image classification data and thus expands the vocabulary of
detectors to tens of thousands of concepts. Unlike prior work, Detic does
not need complex assignment schemes to assign image labels to boxes
based on model predictions, making it much easier to implement and
compatible with a range of detection architectures and backbones. Our
results show that Detic yields excellent detectors even for classes without
box annotations. It outperforms prior work on both open-vocabulary and
long-tail detection benchmarks. Detic provides a gain of 2.4 mAP for
all classes and 8.3 mAP for novel classes on the open-vocabulary LVIS
benchmark. On the standard LVIS benchmark, Detic obtains 41.7 mAP
when evaluated on all classes, or only rare classes, hence closing the gap in
performance for object categories with few samples. For the first time, we
train a detector with all the twenty-one-thousand classes of the ImageNet
dataset and show that it generalizes to new datasets without finetuning.
Code is available at https://github.com/facebookresearch/Detic.

1 Introduction

Object detection consists of two sub-problems - finding the object (localization)
and naming it (classification). Traditional methods tightly couple these two sub-
problems and thus rely on box labels for all classes. Despite many data collection
efforts, detection datasets [18, 28, 34, 49] are much smaller in overall size and
vocabularies than classification datasets [10]. For example, the recent LVIS
detection dataset [18] has 1000+ classes with 120K images; Openlmages [28] has
500 classes in 1.8M images. Moreover, not all classes contain sufficient annotations
to train a robust detector (see Figure 1 Top). In classification, even the ten-year-
old ImageNet [10] has 21K classes and 14M images (Figure 1 Bottom).

In this paper, we propose Detector with image classes (Detic) that uses
image-level supervision in addition to detection supervision. We observe that the
localization and classification sub-problems can be decoupled. Modern region
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https://github.com/facebookresearch/Detic

2 X. Zhou et al.

otter, brown bear

LVIS ® ImageNet ® Conceptual Captions

2500

Only image-level labels

N
o
o
o

1500 N
1000 ‘\
500 A

0

Number of images

X s & & & 3

F I ¢ e ¢ F S
Fig. 1: Top: Typical detection results from a strong open-vocabulary LVIS detector.
The detector misses objects of “common” classes. Bottom: Number of images in LVIS,
ImageNet, and Conceptual Captions per class (smoothed by averaging 100 neighboring

classes). Classification datasets have a much larger vocabulary than detection datasets.

proposal networks already localize many ‘new’ objects using existing detection
supervision. Thus, we focus on the classification sub-problem and use image-level
labels to train the classifier and broaden the vocabulary of the detector. We
propose a simple classification loss that applies the image-level supervision to
the proposal with the largest size, and do not supervise other outputs for image-
labeled data. This is easy to implement and massively expands the vocabulary.

Most existing weakly-supervised detection techniques [13, 22, 36, 59, 67] use
the weakly labeled data to supervise both the localization and classification
sub-problems of detection. Since image-classification data has no box labels,
these methods develop various label-to-box assignment techniques based on model
predictions to obtain supervision. For example, YOLO9000[45] and DLWL[44]
assign the image label to proposals that have high prediction scores on the
labeled class. Unfortunately, this prediction-based assignment requires good initial
detections which leads to a chicken-and-egg problem—we need a good detector
for good label assignment, but we need many boxes to train a good detector. Our
method completely side-steps the prediction-based label assignment process by
supervising the classification sub-problem alone when using classification data.
This also enables our method to learn detectors for new classes which would have
been impossible to predict and assign.

Experiments on the open-vocabulary LVIS [17, 18] and the open-vocabulary
COCO [2] benchmarks show that our method can significantly improve over
a strong box-supervised baseline, on both novel and base classes. With image-
level supervision from ImageNet-21K [10], our model trained without novel
class detection annotations improves the baseline by 8.3 point and matches the
performance of using full class annotations in training. With the standard LVIS
annotations, our model reaches 41.7 mAP and 41.7 mAP,,.., closing the gap
between rare classes and all classes. On open-vocabulary COCO, our method
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Fig. 2: Left: Standard detection requires ground-truth labeled boxes and cannot lever-
age image-level labels. Center: Existing prediction-based weakly supervised detection
methods [3, 44, 45] use image-level labels by assigning them to the detector’s predicted
boxes (proposals). Unfortunately, this assignment is error-prone, especially for large
vocabulary detection. Right: Detic simply assigns the image-labels to the mazx-size
proposal. We show that this loss is both simpler and performs better than prior work.

outperforms the previous state-of-the-art OVR-CNN [72] by 5 point with the
same detector and data. Finally, we train a detector using the full ImageNet-
21K with more than twenty-thousand classes. Our detector generalizes much
better to new datasets [28, 49] with disjoint label spaces, reaching 21.5 mAP on
Objects365 and 55.2 mAP50 on Openlmages, without seeing any images from
the corresponding training sets. Our contributions are summarized below:

We identify issues and propose a simpler alternative to existing weakly-
supervised detection techniques in the open-vocabulary setting.

— Our proposed family of losses significantly improves detection performance
on novel classes, closely matching the supervised performance upper bound.
Our detector transfers to new datasets and vocabularies without finetuning.
— We release our code (in supplement). It is ready-to-use for open-vocabulary
detection in the real world. See examples in supplement.

2 Related Work

Weakly-supervised object detection (WSOD) trains object detector using
image-level labels. Many works use only image-level labels without any box
supervision [30, 51, 52, 63, 70]. WSDDN [3] and OIRC [60] use a subnetwork to
predict per-proposal weighting and sum up proposal scores into a single image
scores. PCL [59] first clusters proposals and then assign image labels at the cluster
level. CASD [22] further introduces feature-level attention and self-distillation. As
no bounding box supervision is used in training, these methods rely on low-level
region proposal techniques [1, 62], which leads to reduced localization quality.
Another line of WSOD work uses bounding box supervision together with
image labels, known as semi-supervised WSOD [12, 13, 31, 35, 61, 68, 75].
YOLO9000 [45] mixes detection data and classification data in the same mini-
batch, and assigns classification labels to anchors with the highest predicted scores.
DLWL [44] combines self-training and clustering-based WSOD [59], and again
assigns image labels to max-scored proposals. MosaicOS [73] handles domain
differences between detection and image datasets by mosaic augmentation [4]
and proposed a three-stage self-training and finetuning framework. In segmenta-
tion, Pinheiro et al. [41] use a log-sum-exponential function to aggregate pixels
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scores into a global classification. Our work belongs to semi-supervised WSOD.
Unlike prior work, we use a simple image-supervised loss. Besides image la-
bels, researchers have also studied complementary methods for weak localization
supervision like points [7] or scribles [47].

Open-vocabulary object detection, or also named zero-shot object de-
tection, aims to detect objects outside of the training vocabulary. The basic
solution [2] is to replace the last classification layer with language embeddings
(e.g., GloVe [40]) of the class names. Rahman et al. [43] and Li et al. [33] improve
the classifier embedding using external text information. OVR-CNN [72] pretrains
the detector on image-text pairs. ViLD [17], OpenSeg [16] and langSeg [29] up-
grade the language embedding to CLIP [42]. ViLD further distills region features
from CLIP image features. We use CLIP [42] classifier as well, but do not use
distillation. Instead, we use additional image-labeled data for co-training.
Large-vocabulary object detection [18, 45, 53, 69] requires detecting 1000+
classes. Many existing works focus on handling the long-tail problem [6, 14,
32, 39, 65, 74]. Equalization losses [55, 56] and SeeSaw loss [64] reweights the
per-class loss by balancing the gradients [55] or number of samples [64]. Federated
Loss [76] subsamples classes per-iteration to mimic the federated annotation [18].
Yang et al. [69] detects 11K classes with a label hierarchy. Our method builds
on these advances, and we tackle the problem from a different aspect: using
additional image-labeled data.

Proposal Network Generalization. ViLD [17] reports that region proposal
networks have certain generalization abilities for new classes by default. Dave
et al. [9] shows segmentation and localization generalizes across classes. Kim
et al. [25] further improves proposal generalization with a localization quality
estimator. In our experiments, we found proposals to generalize well enough
(see Appendix A), as also observed in ViLD [17]. Further improvements to
RPNs [17, 25, 27, 38] can hopefully lead to better results.

3 Preliminaries

We train object detectors using both object detection and image classification
datasets. We propose a simple way to leverage image supervision to learn object
detectors, including for classes without box labels. We first describe the object
detection problem and then detail our approach.

Problem setup. Given an image I € R3*"X™  object detection solves the two
subproblems of (1) localization: find all objects with their location, represented
as a box b; € R* and (2) classification: assign a class label ¢; € C*** to the j-th
object. Here C'***! is the class vocabulary provided by the user at test time. During
training, we use a detection dataset Dt = {(I, {(b, c) k})i}giet‘ with vocabulary
Cdet that has both class and box labels. We also use an image classification
dataset D = {(I, {ck})i}g?b‘ with vocabulary C' that only has image-level
class labels. The vocabularies C*t, €9t C°!* may or may not overlap.
Traditional Object detection considers C**s* = €9t and D = (). Predom-
inant object detectors [20, 46] follow a two-stage framework. The first stage,
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Fig.3: Approach Overview. We mix train on detection data and image-labeled
data. When using detection data, our model uses the standard detection losses to
train the classifier (W) and the box prediction branch (B) of a detector. When using
image-labeled data, we only train the classifier using our modified classification loss.
Our loss trains the features extracted from the largest-sized proposal.

called the region proposal network (RPN), takes the image I and produces a set
of object proposals {(b, f,0),}, where f; € R? is a D-dimensional region feature
and o € R is the objectness score. The second stage takes the object feature and
outputs a classification score and a refined box location for each object, s; = W{},

b; = Bf; + b;, where W ¢ RIC* XD and B € R4*P are the learned weights of
the classification layer and the regression layer, respectively.! Our work focuses
on improving classification in the second stage. In our experiments, the proposal
network and the bounding box regressors are not the current performance bottle-
neck, as modern detectors use an over-sufficient number of proposals in testing
(1K proposals for < 20 objects per image. see Appendix A for more details).

Open-vocabulary object detection allows C**st £ Cd°t. Simply replacing the
classification weights W with fixed language embeddings of class names converts
a traditional detector to an open-vocabulary detector [2]. The region features
are trained to match the fixed language embeddings. We follow Gu et al. [17]
to use the CLIP embeddings [42] as the classification weights. In theory, this
open-vocabulary detector can detect any object class. However, in practice, it
yields unsatisfying results as shown in Figure 1. Our method uses image-level
supervision to improve object detection including in the open-vocabulary setting.

4 Detic: Detector with Image Classes

As shown in Figure 3, our method leverages the box labels from detection datasets
D9et and image-level labels from classification datasets D°. During training,
we compose a mini-batch using images from both types of datasets. For images
with box labels, we follow the standard two-stage detector training [46]. For
image-level labeled images, we only train the features from a fixed region proposal
for classification. Thus, we only compute the localization losses (RPN loss and
bounding box regression loss) on images with ground truth box labels. Below we
describe our modified classification loss for image-level labels.

A sample from the weakly labeled dataset D' contains an image I and a set of
K labels {ck}le. We use the region proposal network to extract IV object features
{(b,£,0), }évzl Prediction-based methods try to assign image labels to regions,

! We omit the two linear layers and the bias in the second stage for notation simplicity.
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and aim to train both localization and classification abilities. Instead, we propose
simple ways to use the image labels {c; }2_ | and only improve classification. Our
key idea is to use a fixed way to assign image labels to regions, and side-step a
complex prediction-based assignment. We allow the fixed assignment schemes
miss certain objects, as long as they miss fewer objects than the prediction-based
counterparts, thus leading to better performance.

Non-prediction-based losses. We now describe a variety of simple ways to
use image labels and evaluate them empirically in Table 1. Our first idea is to
use the whole image as a new “proposal” box. We call this loss image-box. We
ignore all proposals from the RPN, and instead use an injected box of the whole
image b’ = (0,0, w, h). We then apply the classification loss to its Rol features f’
for all classes ¢ € {cp }5_;:

Limage—box = BOE(Wf/7 C)

where BCE(s, ¢) = —logo(sc) — >_;.log(l — o(sk)) is the binary cross-entropy
loss, and o is the sigmoid activation. Thus, our loss uses the features from the
same ‘proposal’ for solving the classification problem for all the classes {c}.

In practice, the image-box can be replaced by smaller boxes. We introduce
two alternatives: the proposal with the max object score or the proposal with
the max size:

Lmax—object—score = BCE(Wf]a C),j = argmax,;oj;
Liaxsize = BOCE(WHj, ¢), j = argmax;(size(b;))

We show that all these three losses can effectively leverage the image-level
supervision, while the max-size loss performs the best. We thus use the max-size
loss by default for image-supervised data. We also note that the classification
parameters W are shared across both detection and classification data, which
greatly improves detection performance. The overall training objective is

L(I) _ Lrpn + Lreg + LCIS7 lf Ie DdCt
)\Lmax—sizea if T € DCIS

where Lypn, Lyeg, Leis are standard losses in a two-stage detector, and A = 0.1 is
the weight of our loss.

Relation to prediction-based assignments. In traditional weakly-supervised
detection [3, 44, 45], a popular idea is to assign the image to the proposals
based on model prediction. Let F = (fi,...,fy) be the stacked feature of all
object proposals and S = WF be their classification scores. For each ¢ € {ck}le,
L =BCE(S;j,c),j = F(8S,c), where F is the label-to-box assignment process. In
most methods, F is a function of the prediction S. For example, F selects the
proposal with max score on c. Our key insight is that F should not depend on
the prediction S. In large-vocabulary detection, the initial recognition ability of
rare or novel classes is low, making the label assignment process inaccurate. Our
method side-steps this prediction-and-assignment process entirely and relies on a
fixed supervision criteria.
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5 Experiments

We evaluate Detic on the large-vocabulary object detection dataset LVIS [18].
We mainly use the open-vocabulary setting proposed by Gu et al. [17], and also
report results on the standard LVIS setting. We describe our experiment setup
below.

LVIS. The LVIS [18] dataset has object detection and instance segmentation
labels for 1203 classes with 100K images. The classes are divided into three
groups - frequent, common, rare based on the number of training images. We
refer to this standard LVIS training set as LVIS-all. Following ViLD [17], we
remove the labels of 337 rare-class from training and consider them as novel
classes in testing. We refer to this partial training set with only frequent and
common classes as LVIS-base. We report mask mAP which is the official metric
for LVIS. While our model is developed for box detection, we use a standard
class-agnostic mask head [20] to produce segmentation masks for boxes. We train
the mask head only on detection data.

Image-supervised data. We use two sources of image-supervised data: ImageNet-
21K [10] and Conceptual Captions [50]. ImageNet-21K (IN-21K) contains 14M
images for 21K classes. For ease of training and evaluation, most of our experi-
ments use the 997 classes that overlap with the LVIS vocabulary and denote this
subset as IN-L. Conceptual Captions [50] (CC) is an image captioning dataset
containing 3M images. We extract image labels from the captions using exact
text-matching and keep images whose captions mention at least one LVIS class.
See Appendix B for results of directly using captions. The resulting dataset
contains 1.5M images with 992 LVIS classes. We summarize the datasets used
helaw

Notation Definition #Images #Classes
LVIS-all The original LVIS dataset [18§] 100K 1203
LVIS-base LVIS without rare-class annotations 100K 866
IN-21K The original ImageNet-21K dataset [10] 14M 21k
IN-L 997 overlapping IN-21K classes with LVIS 1.2M 997
CccC Conceptual Captions [50] with LVIS classes 1.5M 992

5.1 Implementation details

Box-Supervised: a strong LVIS baseline. We first establish a strong baseline
on LVIS to demonstrate that our improvements are orthogonal to recent advances
in object detection. The baseline only uses the supervised bounding box labels. We
use the CenterNet2 [76] detector with ResNet50 [21] backbone. We use Federated
Loss [76] and repeat factor sampling [18]. We use large scale jittering [15] with
input resolution 640 x 640 and train for a 4x (~48 LVIS epochs) schedule. To
show our method is compatible with better pretraining, we use ImageNet-21k
pretrained backbone weights [48]. As described in § 3, we use the CLIP [42]
embedding as the classifier. Our baseline is 9.1 mAP higher than the detectron2
baseline [66] (31.5 vs. 22.4 mAP™k) and trains in a similar time (17 vs. 12
hours on 8 V100 GPUs). See Appendix C for more details.
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Resolution change for image-labeled images. ImageNet images are inher-
ently smaller and more object-focused than LVIS images [73]. In practice, we
observe it is important to use smaller image resolution for ImageNet images.
Using smaller resolution in addition allows us to increase the batch-size with the
same computation. In our implementation, we use 320x320 for ImageNet and
CC and ablate this in Appendix D.

Multi-dataset training. We sample detection and classification mini-batches
in a 1:1 ratio, regardless of the original dataset size. We group images from the
same dataset on the same GPU to improve training efficiency [77].

Training schedules. To shorten the experimental cycle and have a good ini-
tialization for prediction-based WSOD losses [44, 45], we always first train a
converged base-class-only model (4x schedule) and finetune on it with additional
image-labeled data for another 4x schedule. We confirm finetuning the model
using only box supervision does not improve the performance. The 4x schedule
for our joint training consists of ~24 LVIS epochs plus ~4.8 ImageNet epochs
or ~3.8 CC epochs. Training our ResNet50 model takes ~22 hours on 8 V100
GPUs. The large 21K Swin-B model trains in ~24 hours on 32 GPUs.

5.2 Prediction-based vs non-prediction-based methods

Table 1 shows the results of the box-supervised baseline, existing prediction-
based methods, and our proposed non-prediction-based methods. The baseline
(Box-Supervised) is trained without access to novel class bounding box labels.
It uses the CLIP classifier [17] and has open-vocabulary capabilities with 16.3
mAP vl In order to leverage additional image-labeled data like ImageNet or
CC, we use prior prediction-based methods or our non-prediction-based method.
We compare a few prediction-based methods that assign image labels to
proposals based on predictions. Self-training assigns predictions of Box-Supervised
as pseudo-labels offline with a fixed score threshold (0.5). The other prediction-
based methods use different losses to assign predictions to image labels online.
See Appendix E for implementation details. For DLWL [44], we implement a
simplified version that does not include bootstrapping and refer to it as DLWL*.
Table 1 (third block) shows the results of our non-prediction-based methods
in § 4. All variants of our proposed simpler method outperform the complex
prediction-based counterparts, with both image-supervised datasets. On the novel
classes, Detic provides a significant gain of ~ 4.2 points with ImageNet over the
best prediction-based methods.
Using non-object centric images from Conceptual Captions. ImageNet
images typically have a single large object [18]. Thus, our non-prediction-based
methods, for example image-box which considers the entire image as a bounding
box, are well suited for ImageNet. To test whether our losses work with different
image distributions with multiple objects, we test it with the Conceptual Captions
(CC) dataset. Even on this challenging dataset with multiple objects/labels per
image, Detic provides a gain of ~ 2.6 points on novel class detection over the
best prediction-based methods. This suggests that our simpler Detic method can
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IN-L (object-centric) CC (non object-centric)

mAPmask A pmask mAPmask g Apmask
Box-Supervised (baseline)  30.0z0.4  16.3x0. 30.0+0.4 16.3x0.7
Prediction-based methods
Self-training [54] 30.3200  15.6+0.1 30.140.2 15.9+0.s
WSDDN (3] 29.8+02  15.6+0.3 30.00.1 16.5+0.5
DLWL* [44] 30.6+0.1  18.240.2 29.7+0.3 16.9+0.6
YOLO9000 [45] 312403  20.4x0.0 294401 15.9+0.6
Non-prediction-based methods
Detic (Max-object-score) 322401 24440 29.8+0.1 18.2+0.6
Detic (Image—box) 32.4+0.1 23.8+0.5 30.9+0.1 19.5105
Detic (Max—size) 32.4+0.1 24.6+0.3 30.9+0.2 19.5+03
Fully-supervised (all classes) 31.140.4  25.510.7 31.1+0.4 25.5+0.7

Table 1: Prediction-based vs non-prediction-based methods. We show overall
and novel-class mAP on open-vocabulary LVIS [17] (with 866 base classes and 337 novel
classes) with different image-labeled datasets (IN-L or CC). The models are trained
using our strong baseline § 5.1 (top row). This baseline is trained on boxes from the base
classes and has non-zero novel-class mAP as it uses the CLIP classifier. All models in the
following rows are finetuned from the baseline model and leverage image-labeled data.
We repeat experiments for 3 runs and report mean/ std. All variants of our proposed
non-prediction-based losses outperform existing prediction-based counterparts.

generalize to different types of image-labeled data. Overall, the results from Ta-
ble 1 suggest that complex prediction-based methods that overly rely on model
prediction scores do not perform well for open-vocabulary detection. Amongst
our non-prediction-based variants, the max-size loss consistently performs the
best, and is the default for Detic in our following experiments.

Why does max-size work? Intuitively, our simpler non-prediction methods
outperform the complex prediction-based method by side-stepping a hard as-
signment problem. Prediction-based methods rely on strong initial detections to
assign image-level labels to predicted boxes. When the initial predictions are reli-
able, prediction-based methods are ideal. However, in open-vocabulary scenarios,
such strong initial predictions are absent, which explains the limited performance
of prediction-based methods. Detic’s simpler assignment does not rely on strong
predictions and is more robust under the challenges of open-vocabulary setting.

We now study two additional advantages of the Detic max-size variant over
prediction-based methods that may contribute to improved performance: 1) the
selected max-size proposal can safely cover the target object; 2) the selected
max-size proposal is consistent during different training iterations.

Figure 4 provides typical qualitative examples of the assigned region for the
prediction-based method and our max-size variant. On an annotated subset of IN-
L, Detic max-size covers 92.8% target objects, vs. 69.0% for the prediction-based
method. Overall, unlike prediction-based methods, Detic’s simpler assignment
yields boxes that are more likely to contain the object. Indeed, Detic may miss
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Fig. 4: Visualization of the assigned boxes during training. We show all boxes
with score > 0.5 in blue and the assigned (selected) box in red. Top: The prediction-
based method selects different boxes across training, and the selected box may not
cover the objects in the image. Bottom: Our simpler max-size variant selects a box
that covers the objects and is more consistent across training.

certain objects (especially small objects) or supervise to a loose region. However,
in order for Detic to yield a good detector, the selected box need not be perfect,
it just needs to 1) provide meaningful training signal (cover the objects and be
consistent during training); 2) be ‘more correct’ than the box selected by the
prediction-based method. We provide details about our metrics, more quantitative
evaluation, and more discussions in Appendix F.

5.3 Comparison with a fully-supervised detector

In Table 1, compared with the strong baseline Box-Supervised, Detic improves
the detection performance by 2.4 mAP and 8.3 mAPove- Thus, Detic with
image-level labels leads to strong open-vocabulary detection performance and can
provide orthogonal gains to existing open-vocabulary detectors [2]. To further
understand the open-vocabulary capabilities of Detic, we also report the top-line
results trained with box labels for all classes (Table 1 last row). Despite not
using box labels for the novel classes, Detic with ImageNet performs favorably
compared to the fully-supervised detector. This result also suggests that bounding
box annotations may not be required for new classes. Detic combined with large
image classification datasets is a simple and effective alternative for increasing
detector vocabulary.

mAPmask g Apmask g Apmask ) A pask
ViLD-text [17] 24.9 10.1 23.9 32.5
ViLD [17] 22.5 16.1 20.0 28.3
ViLD-ensemble [17] 25.5 16.6 24.6 30.3
Detic 26.8 17.8 26.3 31.6

Table 2: Open-vocabulary LVIS compared to ViLD [17]. We train our model
using their training settings and architecture (MaskRCNN-ResNet50, training from
scratch). We report mask mAP and its breakdown to novel (rare), common, and frequent
classes. Variants of ViLD use distillation (ViLD) or ensembling (ViLD-ensemble.). Detic
(with IN-L) uses a single model and improves both mAP and mAPover.
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mAP50Pgx mAP50Px mAP50P
Base-onlyt 39.9 0 49.9
Base-only (CLIP) 39.3 1.3 48.7
WSDDN [3]t 24.6 20.5 23.4
Cap2Det [71]F 20.1 20.3 20.1
SB [2]1 24.9 0.31 29.2
DELO [78]} 13.0 3.41 13.8
PL [43]} 27.9 412 35.9
OVR-CNN [72]} 39.9 22.8 46.0
Detic 45.0 27.8 47.1

Table 3: Open-vocabulary COCO [2]. We compare Detic using the same training
data and architecture from OVR-CNN [72]. We report box mAP at IoU threshold 0.5
using Faster R-CNN with ResNet50-C4 backbone. Detic builds upon the CLIP baseline
(second row) and shows significant improvements over prior work. {: results quoted
from OVR-CNN [72] paper or code. I: results quoted from the original publications.

5.4 Comparison with the state-of-the-art

We compare Detic’s open-vocabulary object detectors with state-of-the-art meth-
ods on the open-vocabulary LVIS and the open-vocabulary COCO benchmarks.
In each case, we strictly follow the architecture and setup from prior work to
ensure fair comparisons.
Open-vocabulary LVIS. We compare to VILD [17], which first uses CLIP
embeddings [42] for open-vocabulary detection. We strictly follow their training
setup and model architecture (Appendix G) and report results in Table 2. Here
ViLD-text is exactly our Box-Supervised baseline. Detic provides a gain of 7.7
points on mAP ove1. Compared to ViLD-text, ViLD, which uses knowledge distil-
lation from the CLIP visual backbone, improves mAP ove at the cost of hurting
overall mAP. Ensembling the two models, ViLD-ens provides improvements for
both metrics. On the other hand, Detic uses a single model which improves both
novel and overall mAP, and outperforms the ViLD ensemble.
Open-vocabulary COCO. Next, we compare with prior works on the popular
open-vocabulary COCO benchmark [2] (see benchmark and implementation
details in Appendix H). We strictly follow OVR-CNN [72] to use Faster R-
CNN with ResNet50-C4 backbone and do not use any improvements from § 5.1.
Following [72], we use COCO captions as the image-supervised data. We extract
nouns from the captions and use both the image labels and captions as supervision.
Table 3 summarizes our results. As the training set contains only 48 base
classes, the base-class only model (second row) yields low mAP on novel classes.
Detic improves the baseline and outperforms OVR-CNN [72] by a large margin,
using exactly the same model, training recipe, and data.

Additionally, similar to Table 1, we compare to prior prediction-based methods
on the open-vocabulary COCO benchmark in Appendix H. In this setting too,
Detic improves over prior work providing significant gains on novel class detection
and overall detection performance.
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Objects365 [49] Openlmages [28]

mAPP*  mAPPOX  mAP50P*  mAP502%%
Box-Supervised 19.1 14.0 46.2 61.7
Detic w. IN-L 21.2 17.8 53.0 67.1
Detic w. IN-21k 21.5 20.0 55.2 68.8
Dataset-specific oracles 31.2 22.5 69.9 81.8

Table 4: Detecting 21K classes across datasets. We use Detic to train a detector
and evaluate it on multiple datasets without retraining. We report the bounding box mAP
on Objects365 and Openlmages. Compared to the Box-Supervised baseline (trained
on LVIS-all), Detic leverages image-level supervision to train robust detectors. The
performance of Detic is 70%-80% of dataset-specific models (bottom row) that use
dataset specific box labels.

5.5 Detecting 21K classes across datasets without finetuning

Next, we train a detector with the full 21K classes of ImageNet. We use our
strong recipe with Swin-B [37] backbone. In practice, training a classification
layer of 21K classes is computationally involved.? We adopt a modified Federated
Loss [76] that uniformly samples 50 classes from the vocabulary at every iteration.
We only compute classification scores and back-propagate on the sampled classes.

As there are no direct benchmark to evaluate detectors with such large
vocabulary, we evaluate our detectors on new datasets without finetuning. We
evaluate on two large-scale object detection datasets: Objects365v2 [49] and
Openlmages [28], both with around 1.8M training images. We follow LVIS to
split % of classes with the fewest training images as rare classes. Table 4 shows the
results. On both datasets, Detic improves the Box-Supervised baseline by a large
margin, especially on classes with fewer annotations. Using all the 21k classes

2 This is more pronounced in detection than classification, as the “batch-size” for the
classification layer is 512x image-batch-size, where 512 is #Rols per image.
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Fig. 5: Qualitative results of our 21k-class detector. We show random samples
from images containing novel classes in Openlmages (top) and Objects365 (bottom)
validation sets. We use the CLIP embedding of the corresponding vocabularies. We
show LVIS classes in purple and novel classes in green. We use a score threshold of 0.5
and show the most confident class for each box. Best viewed on screen.
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Box-Supervised Detic
Classifier mAPmask mAPgﬁfelj mAPmask mAP;“O?gj
*CLIP [42] 30.2 16.4 32.4 24.9
Trained 27.4 0 31.7 17.4
FastText [24] 27.5 9.0 30.9 19.2
OpenCLIP [23] 27.1 8.9 30.7 19.4

Table 5: Detic with different classifiers. We vary the classifier used with Detic
and observe that it works well with different choices. While CLIP embeddings give the
best performance (* indicates our default), all classifiers benefit from our Detic.

further improves performance owing to the large vocabulary. Our single model
significantly reduces the gap towards the dataset-specific oracles and reaches
70%-80% of their performance without using the corresponding 1.8M detection
annotations. See Figure 5 for qualitative results.

5.6 Ablation studies

We now ablate our key components under the open-vocabulary LVIS setting
with IN-L as the image-classification data. We use our strong training recipe as
described in § 5.1 for all these experiments.

Classifier weights. We study the effect of different classifier weights W. While
our main open-vocabulary experiments use CLIP [42], we show the gain of
Detic is independent of CLIP. We train Box-Supervised and Detic with different
classifiers, including a standard random initialized and trained classifier, and
other fized language models [23, 24] The results are shown in Table 5. By default,
a trained classifier cannot recognize novel classes. However, Detic enables novel
class recognition ability even in this setting (17.4 mAP e for classes without
detection labels). Using language models such as FastText [24] or an open-source
version of CLIP [23] leads to better novel class performance. CLIP [42] performs
the best among them.

Effect of Pretraining. Many existing methods use additional data only for
pretraining [11, 72, 73], while we use image-labeled data for co-training. We
present results of Detic with different types of pretraining in Table 6. Detic
provides similar gains across different types of pretraining, suggesting that our

Pretrain data mAPmask mAPﬁfvsckl
Box-Supervised IN-1K 26.1 13.6
Detic IN-1K 28.8 (+2.7) 21.7 (+8.1)
Box-Supervised IN-21K 30.2 16.4
Detic IN-21K 32.4 (42.2) 24.9 (+8.5)

Table 6: Detic with different pretraining data. Top: our method using ImageNet-
1K as pretraining and ImageNet-21K as co-training; Bottom: using ImageNet-21K for
both pretraining and co-training. Co-training helps pretraining in both cases.
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Backbone mAPpmask A pmask g Apmask ) A ppask

MosaicOSt [73] ResNeXt-101 28.3 21.7 27.3 32.4
CenterNet2 [76] ResNeXt-101 34.9 24.6 34.7 42.5
AsyncSLLT [19] ResNeSt-269 36.0 27.8 36.7 39.6
SeesawLoss [64] ResNeSt-200 37.3 26.4 36.3 43.1
Copy-paste [15] EfficientNet-B7  38.1 32.1 37.1 41.9
Tan et al. [57]  ResNeSt-269 38.8 28.5 39.5 42.7
Baseline Swin-B 40.7 35.9 40.5 43.1
Detict Swin-B 41.7 41.7 40.8 42.6

Table 7: Standard LVIS. We evaluate our baseline (Box-Supervised) and Detic using
different backbones on the LVIS dataset. We report the mask mAP. We also report
prior work on LVIS using large backbone networks (single-scale testing) for references
(not for apple-to-apple comparison). {: detectors using additional data. Detic improves
over the baseline with increased gains for the rare classes.

gains are orthogonal to advances in pretraining. We believe that this is because
pretraining improves the overall features, while Detic uses co-training which
improves both the features and the classifier.

5.7 The standard LVIS benchmark

Finally, we evaluate Detic on the standard LVIS benchmark [18]. In this setting,
the baseline (Box-Supervised) is trained with box and mask labels for all classes
while Detic uses additional image-level labels from IN-L. We train Detic with
the same recipe in § 5.1 and use a strong Swin-B [37] backbone and 896 x 896
input size. We report the mask mAP across all classes and also split into rare,
common, and frequent classes. Notably, Detic achieves 41.7 mAP and 41.7 mAP,,
closing the gap between the overall mAP and the rare mAP. This suggests Detic
effectively uses image-level labels to improve the performance of classes with very
few boxes labels. Appendix I provides more comparisons to prior work [73] on
LVIS. Appendix J shows Detic generalizes to DETR-based [79] detectors.

6 Limitations and Conclusions

We present Detic which is a simple way to use image supervision in large-
vocabulary object detection. While Detic is simpler than prior assignment-based
weakly-supervised detection methods, it supervises all image labels to the same
region and does not consider overall dataset statistics. We leave incorporating
such information for future work. Moreover, open vocabulary generalization
has no guarantees on extreme domains. Our experiments show Detic improves
large-vocabulary detection with various weak data sources, classifiers, detector
architectures, and training recipes.
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AR, 50@100 AR,50@300 AR,50@1k AR50@1k

LVIS-all 63.3 76.3 79.7 80.9
LVIS-base  62.2 76.2 78.5 81.0

(a) Proposal networks trained with (top) and without (bottom) rare classes. We report
recalls on rare classes and all classes at IoU threshold 0.5 with different number of proposals. Proposal
networks trained without rare classes can generalize to rare classes in testing.

ARnaif15t90@1k  ARpaiz2na50@1k

LVIS-half-1st 80.8 69.6
LVIS-half-2nd 62.9 82.2

(b) Proposal networks trained on half of the LVIS classes. We report recalls at IoU threshold
0.5 on the other half classes. Proposal networks produce non-trivial recalls on novel classes.

Table 8: Proposal network generalization ability evaluation. (a): Generalize
from 866 LVIS base classes to the 337 rare classes; (b): Generalize from uniformly
sampled half LVIS classes (601/ 602 classes) to the other half.

A Region proposal quality

In this section, we show the region proposal network trained on LVIS [18] is
satisfactory and generalizes well to new classes by default. We experiment under
our strong baseline in § 5.1. Table 8a shows the proposal recalls with or without
rare classes in training. First, we observe the recall gaps between the two models
on rare classes are small (79.7 vs. 78.5); second, the gaps between rare classes and
all classes are small (79.7 vs. 80.9); third, the absolute recall is relatively high
(~80%, note recall at IoU threshold 0.5 can be translated into oracle mAP-pool [8]
given perfect classifier and regressor). All observations indicate the proposals have
good generalization abilities to new classes even though they are supervised to
background during training. We consider the proposal generalization is currently
not the performance bottleneck in open-vocabulary detection. This especially the
case as modern detectors use an over-sufficient number of proposals in testing
(1K proposals for < 20 objects per image). Our observations are consistent with
ViLD [17].

We in addition evaluate a more strict setting, where we uniformly split LVIS
classes into two halves. L.e., we use classes ID 1, 3,5, --- as the first half, and the
rest as the second half. These two subsets have completely different definitions
of “objects”. We then train a proposal network on each of them, and evaluate
on both subsets. As shown in Table 8b, the proposal networks give non-trivial
recalls at the complementary other half (69.6% over 82.2% percent of the full
generalizability). This again supports proposal networks trained on a diverse
vocabulary learned a general concept of objects.

B Direct captions supervision

As we are using a language model CLIP [42] as the classifier, our framework can
seamlessly incorporate the free-form caption text as image-supervision. Using
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] mask mask
Supervision mAP mAPS

Box-Supervised - 30.2 16.4
Detic w. CC Image label  31.0 19.8
Detic w. CC Caption 30.4 17.4
Detic w. CC Both 31.0 21.3
mAP502*mAP500%% |
Box-Supervised - 39.3 1.3
Detic w. COCO-cap. Image label — 44.7 24.1
Detic w. COCO-cap. Caption 43.8 21.0
Detic w. COCO-cap. Both 45.0 27.8

Table 9: Direct caption supervision. Top: Open-vocabulary LVIS with Conceptual
Caption as weakly-labeled data; Bottom block: Open-vocabulary COCO with COCO-
caption as weakly-labeled data. Directly using caption embeddings as a classifier is
helpful on both benchmarks; the improvements are complementary to Detic.

the notations in § 4, here D = {(I,t);} where t is a free-form text. In our
open-vocabulary detection formulation, text ¢ can natrually be converted to an
embedding by the CLIP [42] language encoder £: w = L(t). Given a minibatch
of B samples {(I,t);}2 ,, we compose a dynamic classification layer by stacking
all caption features within the batch W = L({t;}B ). For the i-th image in the
minibatch, its “classification” label is the i-th text, and other texts are negative
samples. We use the injected whole image box to extract Rol feature f/ for image
i. We use the same binary cross entropy loss as classifying image labels:

B
Leap = Y BCE(WH],i)
=1

We do not back-propagate into the language encoder.

We evaluate the effectiveness of the caption loss in Table 9 on both open-
vocabulary LVIS and COCO (see dataset details in Appendix H). We compare
individually applying the max-size loss for image labels and the caption loss,
and applying both of them. Both image labels and captions can improve both
overall mAP and novel class mAP. Combining both losses gives a more significant
improvement. Our open-vocabulary COCO results in Table 3 uses both the
max-size loss and the caption loss.

C LVIS baseline details

We first describe the standard LVIS baseline from the detectron2 model zoo®.
This baseline uses ResNet-50 FPN backbone and a 2x training schedule (180k

3 https://github.com/facebookresearch/detectron2/blob/main/configs/
LVISvl-InstanceSegmentation/mask rcnn R 50 FPN 1x.yaml


https://github.com/facebookresearch/detectron2/blob/main/configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
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mAP P mAPP*mAP™ = mAPIek T

D2 baseline [66] 22.9 11.3 22.4 11.6  12h
+Class-agnostic box&mask 22.3 10.1 21.2 10.1 12h
+Federated loss [76] 270  20.2 24.6 18.2 12h
+CenterNet2 [76] 30.7 229 26.8 19.4 13h
+LSJ 640 % 640, 4% sched. [15] 31.0 21.6 27.2 20.1 17h
+CLIP classifier [42] 315 24.2 28 22,5 17h
+Adam optimizer, Ir2e-4 [26] 304  23.6 26.9 21.4 17h
+IN-21k pretrain [48]* 35.3 28.2 31.5 25.6 17h
+Input size 896 x 896 37.1 29.5 33.2 26.9 25h
+Swin-B backbone [37] 45.4 39.9 40.7 35.9 43h

*Remove rare class ann.[17]  33.8  17.6 30.2 16.4 17h

Table 10: LVIS baseline evolution. First row: the configuration from the detectron2
model zoo. The following rows change components one by one. Last row: removing rare
classes from the “4+IN-21k pretrain®” row. The two gray-filled rows are the baselines in
our main paper, for full LVIS and open-vocabulary LVIS, respectively. We show rough
wall-clock training times (7) on our machine with 8 V100 GPUs in the last column.

iterations with batch-size 16)*. Data augmentation includes horizontal flip and
random resize short side [640, 800], long side < 1333. The baseline uses SGD
optimizer with a learning rate 0.02 (dropped by 10x at 120k and 160k iteration).
The bounding box regression head and the mask head are class-specific.

Table 10 shows the roadmap from the detectron2 baseline to our baseline
(§ 5.1). First, we prepare the model for new classes by making the box and mask
heads class-agnostic. This slightly hurts performance. We then use Federated
loss [76] and upgrade the detector to CenterNet2 [76] (i.e., replacing RPN
with CenterNet and multiplying proposal score to classification score). Both
modifications improve mAP and mAP;significantly, and CenterNet2 slightly
increases the training time.

Next, we use the EfficientDet [15, 58] style large-scale jittering and train a
longer schedule (4x). To balance the training time, we also reduce the training
image size to 640 x 640 (the testing size is unchanged at 800 x 1333) and
increase batch-size to 64 (with the learning rate scaled up to 0.08). The resulting
augmentation and schedule is slightly better than the default multi-scale training,
with 30% more training time. A longer schedule is beneficial when using more
data, and can be improved by larger resolution.

Next, we switch in the CLIP classifier [42]. We follow ViLD [17] to L2
normalize the embedding and Rol feature before dot-product. Note CenterNet2
uses a cascade classifier [5]. We use CLIP for all of them. Using CLIP classifier
improves rare class mAP.

Finally, we use an ImageNet-21k pretrained ResNet-50 model from Ridnik
et al. [48]. We remark the ImageNet-21k pretrained model requires using Adam
optimizer (with learning rate 2e-4). Combing all the improvements results in

4 We are aware different projects use different notations of a 1x schedule. In this paper
we always refer 1x schedule to 16 x 90k images
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Ratio Size mAPmask A pmask

novel

Bos-Supervised 1: 0 - 30.2 16.4
Detic w. IN-L 1: 1 640 30.9 23.3
Detic w. IN-L 1: 1 320 32.0 24.0
Detic w. IN-L 1: 4 640 31.1 23.5
Detic w. IN-L 1: 4 320 32.4 24.9
Detic w. CC 1: 1 640 30.8 21.6
Detic w. CC 1:1 320 30.8 21.5
Detic w. CC 1: 4 640 30.7 21.0
Detic w. CC 1: 4 320 31.1 21.8

Table 11: Ablations of the resolution change. We report mask mAP on the open-
vocabulary LVIS following the setting of Table 1. Top: ImageNet as the image-labeled
data. Bottom: CC as the image-labeled data.

35.3 mAP"°* and 31.5 mAP™2  and trains in a favorable time (17h on 8 V100
GPUs). We use this model as our baseline in the main paper.

Increasing the training resolution or using a larger backbone [37] can further
increase performance significantly, at a cost of longer training time. We use the
large models only when compared to the state-of-the-art models.

D Resolution change for classification data

Table 11 ablates the resolution change in § 5.1. Using a smaller input resolution
improves ~ 1 point for both mAP and mAP, 4y with ImageNet, but does not
impact much with CC. Using more batches for the weak datasets is slightly better
than a 1: 1 ratio.

E Prediction-based losses implementation details

Following the notations in § 4, we implement the prediction-based weakly-
supervised detection losses as below:

WSDDN |[3] learns a soft weight on the proposals to weight-sum the proposal
classification scores into a single image classification score:

LwsppN = BCE(Z(softmaX(W’F)j *8S;),¢)

J

where W' is a learnable network parameter.
Predicted [45] selects the proposal with the max predicted score on class e

Lpredicted = BCE(SJ> C)’ ] = argmax; Sjc

DLWL* [44] first runs a clustering algorithm with IoU threshold 0.5. Let J be
the set of peaks of each cluster (i.e., the proposal within the cluster and has the
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max predicted score on class ¢), We then select the top N, = 3 peaks with the
highest prediction scores on class c.

N,
1 c
Lppwis = N. ZBCE(SJ-“C)’
(& t=1
Jt = ArgMaX;c 7 iz g, 1} Sie

The original DLWL [44] in addition upgrades S using an IoU-based assignment
matrix from self-training and bootstrapping (See their Section 3.2). In our
implementation, we did not include this part, as our goal is to only compare the
training losses.

F More comparison between prediction-based and
non-prediction-based methods

Our non-prediction-based losses perform significantly better than prediction-
based losses as is shown in Table 1. In this section, we take the max-size loss and
the predicted-loss as the representitives and conduct more detailed comparisons
between them. A straightforward reason is that the predicted loss requires a
good initial prediction to guide the pseudo-label-based training. However in the
open-vocabulary detection setting the initial predictions are inherently flawed. To
verify this, in Table 12a, we show both improving the backbone and including
rare classes in training can narrow the gap. However in the current performance
regime, our max-size loss performs better.

We highlight two additional advantages of the max-size loss that may con-
tribute to the good performance: (1) the max-size loss is a safe approximation
of object regions; (2) the max-size loss is consistent during training. Figure 4
provides qualitative examples of the assigned region for the predicted loss and
the max-size loss. First, we observe that while being coarse at the boundary, the
max-size loss can cover the target object in most cases. Second, the assigned
regions of the predicted loss are usually different across training iterations, es-
pecially in the early phase where the model predictions are unstable. On the
contrary, max-size loss supervises consistent regions across training iterations.

Table 12b quantitatively evaluates these two properties. We use the ground
truth box annotation in the full COCO detection dataset and a subset of ImageNet
with bounding box annotation ° to evaluate the cover rate. We define cover rate
as the ratio of image labels whose ground-truth box has > 0.5 intersection-over-
area with the assigned region. We define the consistency metric as the average
assigned-region IoU of the same image between the 1/2 schedule and the final
schedule. Table 12b shows max-size loss is more favorable than predicted loss
on these two metrics. However we highlight that these two metrics alone do not
always correlate to the final performance, as the image-box loss is perfect on
both metrics but underperforms max-size loss.

5 https://image-net.org/download- bboxes.php. 213K of the 1.2M IN-L images have
bounding box annotations.
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Dataset Backbone mAP™ask A pmask

novel

Box-Supervised 30.2 16.4
Predicted LVIS-base Res50 31.2 20.4
Max-size 32.4 (+1.2) 24.6 (+4.2)
Box-Supervised 38.4 21.9
Predicted LVIS-base SwinB 40.0 31.7
Max-size 40.7 (+0.7) 33.8 (+2.1)
Box-Supervised 31.5 25.6
Predicted LVIS-all  Resb0 32.5 28.4
Max-size 33.2 (+0.7) 29.7 (+1.3)
Box-Supervised 40.7 35.9
Predicted LVIS-all SwinB 40.6 39.8
Max-size 41.3 (+0.7) 40.9 (+1.1)

(a) Predicted loss and max-size loss with different prediction qualities. We show the mask
mAP of the box-supervised baseline, Predicted loss [45], and our max-size loss. We show the delta
between max-size loss and predicted loss in green. Improving the backbone and including rare classes
in training can both narrow the gap. Max-size consistently performs better.

Cover rate Consistency
IN-. COCO IN-L. CC COCO

Predicted  69.0 73.8 71.5  30.0 57.7
Max-size 92.8 80.0 879 73.0 62.8

(b) Assigned proposal cover rate and consistency. Left: ratio of assigned proposal covering the
ground truth both. We evaluate on an ImageNet subset that has box ground truth and the annotated
COCO training set; Right: average assigned bounding box IoU of between the final model and the
half-schedule model.

Table 12: Comparison between predicted loss and and max-size loss. (a):
comparison under different baselines. (b): comparison in customized metrics.

G VIiLD baseline details

The baseline in ViLD [17] is very different from detectron2. They use MaskRCNN
detector [20] with Res50-FPN backbone, but trains the network from scratch
without ImageNet pretraining. They use large-scale jittering [15] with input
resolution 1024 x 1024 and train a 32x schedule. The optimizer is SGD with
batch size 256 and learning rate 0.32. We first reproduce their baselines (both the
oracle detector and ViLD-text) under the same setting. We observe half of their
schedule (16x) is sufficient to closely match their numbers. The half training
schedule takes 4 days on 4 nodes (each with 8 V100 GPUs). We then finetune
another 16x schedule using ImageNet data with our max-size loss.

H Open-vocabulary COCO benchmark details

Open-vocabulary COCO is proposed by Bansal et al. [2]. They manually select 48
classes from the 80 COCO classes as base classes, and 17 classes as novel classes.
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mAP50%0%  mAP502

novel
Box-Supervised (base cls) 39.3 1.3
Self-training [54] 39.5 1.8
WSDDN |[3] 39.9 5.9
DLWL* [44] 42.9 19.6
Predicted [45] 41.9 18.7
Detic (Max-object-score) 43.3 20.4
Detic (Image-box) 43.4 21.0
Detic (Max-size) 44.7 24.1

Box-Supervised (all cls) 54.9 60.0
Table 13: Different ways to use image supervision on open-vocabulary
COCO. The models are trained using the OVR-CNN [72] recipe with ResNet50-

C4 [2] backbone. We follow setups in Table 1. The observations are consistent with
LVIS.

The training set is the same as the full COCO, but only images containing at least
one base class are used. During testing, we report results under the “generalized
zero-shot detection” setting [2], where all COCO validation images are used.

We strictly follow the literatures [2, 43, 72] to use FasterRCNN [46] with
ResNet50-C4 backbone and the 1x training schedule (90k iterations). We use
horizontal flip as the only data augmentation in training and keep the input
resolution fixed to 800 x 1333 in both training and testing. We use SGD optimizer
with a learning rate 0.02 (dropped by 10x at 60k and 80k iteration) and batch
size 16. The evaluation metric on open-vocabulary COCO is box mAP at IoU
threshold 0.5. Our reproduced baseline matches OVR-CNN [72]. Our model is
finetuned on the baseline model with another 1x schedule. We sample detection
data and image-supervised data in a 1 : 1 ratio.

Table 13 repeats the experiments in Table 1 on open-vocabulary COCO.
The observations are consistent: our proposed non-prediction-based methods
outperform existing prediction-based counterparts, and the max-size loss performs
the best among our variants.

I Compare to MosaicOS [73]

MosaicOS [73] first uses image-level annotations to improve LVIS detectors. We
compare to MosaicOS [73] by strictly following their baseline setup (without any
improvements in § 5.1). The detailed hyper-parameters follow the detectron2
baseline as described in Appendix C. We finetune on the Box-supervised model
with an additional 2x schedule with Adam optimizer. Table 14 shows our
re-trained baseline exactly matches their reported results from the paper. Our
method is developed based on the CLIP classifier, and we also report our baseline
with CLIP. The baseline has slightly lower mAP and higher mAP,. MosaicOS
uses IN-L and additional web-search images as image-supervised data. Detic
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mAPmaSk mAP;nask

Box-Supervised [73] 22.6 12.3
MosaicOS [73] 24.5 (+1.9)  18.3 (+6.0)
Box-Supervised (Reproduced) 22.6 12.3
Detic (default classifier) 25.1 (+2.5)  18.6 (+6.3)
Box-Supervised (CLIP classifier) 223 14.1
Detic (CLIP classifier) 24.9 (+2.6) 20.7 (+6.5)

Table 14: Standard LVIS compared to MosiacOS [73]. Top block: results quoted
from MosiacOS paper; Middle block: Detic with the default random intialized and
trained classifier; Bottom block: Detic with CLIP classifier.

mAPPoX mAPPOx mAPPox m APpox

Box-Supervised 31.7 214 30.7 37.5
Detic 32.5 26.2 31.3 36.6

Table 15: Detic applied to Deformable-DETR [79]. We report Box mAP on full
LVIS. Our method improves Deformable-DETR.

outperforms MosaicOS [73] in mAP and mAP,, without using their multi-stage
training and mosaic augmentation. Our relative improvements over the baseline
are slightly higher than MosiacOS [73]. We highlight our training framework is
simpler and we use less additional training data (Google-searched images).

J Generalization to Deformable-DETR.

We apply Detic to the recent Transformer based Deformable-DETR [79] to study
its generalization. We use their default training recipe, Federated Loss [76] and
train for a 4x schedule (~48 LVIS epochs). We apply the image supervision to
the query from the encoder with the max predicted size. Table 15 shows that
Detic improves over the baseline (+0.8 mAP and +4.8 mAP,) and generalizes to
Transformer based detectors.

mAPmask mAP}TI‘\?_%‘ mAanoans_I}N_L
Box-Supervised 30.2 30.6 27.6
Max-size 324 33.5 28.1

mAPpmask mAPEask mAPmask,
Box-Supervised 30.2 30.1 29.5
Max-size 30.9 31.7 28.6

Table 16: mAP breakdown into classes with and without image labels. Top:
Detic trained on ImageNet. Bottom: Detic trained on CC. Most of the improvements are
from classes with image-level labels. On ImageNet Detic also improves classes without
image labels thanks to the CLIP classifier.
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Datasets mAPPox mAPE;’;‘el mAPFixed mAPEé’f,‘Z?
Box-Supervised ~ 30.2 16.4 31.2 18.2
Detic 32.4 (+2.2) 24.9 (+8.5) 33.4 (+2.3) 26.7 (+8.5)

Table 17: mAP¥™>°? evaluation. Middle: the original box mAP metric used in the
main paper. Right: the new box mAPF™ metric. Our improvements are consistent under
the new metric.

K Improvements breakdown to classes

Table 16 shows mAP breakdown into classes with and without image labels for
both the Box-Supervised baseline and Detic. As expected, most of the improve-
ments are from classes with image-level labels. On ImageNet, Detic also improves
classes without image labels thanks to the CLIP classifier which leverages inter-
class relations.

L mAPFixed gyaluation

Table 17 compares our improvements under the new mAP®* proposed in Dave et
al. [8]. Our improvements are consistent under the new metric.

M Image Attributions

License for the images from Openlmages in Figure 5:

— “Oyster”: Photo by The Local People Photo Archive (CC BY 2.0)
— “Cheetah”: Photo by Michael Gil (CC BY 2.0)

— “Harbor seal”: Photo by Alden Chadwick (CC BY 2.0)

— “Dinosaur”: Photo by Paxson Woelber (CC BY 2.0)



