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Abstract— The problem of synthesizing an optimal sensor
selection policy is pertinent to a wide variety of engineering
applications, ranging from event detection to autonomous
navigation. In this paper, we consider such a synthesis problem
in the context of linear-Gaussian systems. Particularly, we for-
mulate the optimal sensor selection problem in terms of a value
iteration over the continuous space of covariance matrices. To
obtain a computationally tractable solution, we subsequently
formulate an approximate sensor selection problem, which is
solvable through a point-based value iteration over a finite
“mesh” of covariance matrices with a user-defined bounded
trace. In addition, we provide theoretical guarantees bounding
the suboptimality of the sensor selection policies synthesized
through this approximate value iteration. Finally, we analyze
the efficacy of our proposed method through a numerical
example comparing our method to known results.

I. INTRODUCTION

We consider the problem of strategic sensor selection for
linear, time-invariant, Gaussian systems with a discounted
cost over an infinite time horizon. The question of performing
optimal state estimation for linear systems subject to con-
straints on the total allowable number of sensor activations
is well studied, notably beginning with [1] in 1967. The
problem has been shown to be NP-hard for different mean
square error (MSE)-based objective functions in finite [2] and
infinite [3] time horizons. Some popular existing approxima-
tion methods are semidefinite programming techniques and
greedy algorithms exploiting submodularity. Reference [4]
proposes a pruning approach based on algebraic redundancy.

In [5] it was shown that sensor selection for static systems
(or dynamic systems without process noise) over finite time
horizons is a mixed integer semidefinite programming prob-
lem (MISDP). The same classification was made for dynamic
systems with process noise in [6]. As a result, many methods
exist that utilize the SDP nature of the relaxed problem
(corresponding to relaxing the Boolean selection variables to
[0,1]). In [5], the relaxed problem was solved, the continuous
selection variables rounded, and a local optimization scheme
based on ordering and swapping applied to select a sensor
subset satisfy the sensing constraint. In [6] and [7], the
relaxed SDP was solved with an iterative, re-weighted l-1
constraint on the vector containing all scheduling variables
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to induce sparsity. The work in [8] did not solve the relaxed
problem but rather approximated the MISDP via branch and
bound.

The computational requirements for MISDP approaches
have been found to be unrealistic for large-scale selection
problems. Furthermore, rounding and sparsification tech-
niques destroy performance guarantees for these solutions.
These drawbacks motivated use of greedy approaches which
are both more computationally efficient and hold the promise
of proven performance when the objective function is sub-
modular. It has been shown that mean square error is not
in general submodular [9] in finite and infinite settings, so
many works [10], [11], [12] consider surrogate objectives
with proven submodularity. Performance guarantees though
are only valid with respect to the surrogate objective. Other
approaches maintain the original objective but prove per-
formance via characterizing weak submodularity [13], [14]
for certain special cases of linear-Gaussian systems over
finite time horizons. Finally, a few works [9], [15] provide
special cases of linear-Gaussian systems for which MSE is
submodular, and sufficient conditions are given by which
these cases can be established.

In this note, we consider an alternative approach based
on standard point-based value iteration (PBVI) for partially
observable Markov decision processes (POMDPs) [16]. At
a high level, PBVI works by selecting a representative
set of sample belief points (e.g. covariance matrices) and
subsequently applying a value iteration procedure exclusively
to these sample points. By considering only a representative
sample, PBVI is able to avoid the curse of dimensionality
typically associated with planning in POMDPs. Several
works [17], [18], [19] exist which formulate scheduling or
activations as a POMDP and apply some version of point-
based value iteration. This work represents the belief space
as the space of positive semidefinite covariance matrices. We
propose an approximate dynamic programming algorithm
that can be performed exclusively on a finite number of
belief points, and we quantify the upper bound of the
performance loss due to discretization as the size ε of the
mesh grid (Theorem 1). Additionally, this method is shown
to be massively parallelizable, and numerical experiments are
provided that utilize GPUs.

Notation

We denote the set of all real numbers by R and the set
of all integers by Z. Furthermore, we denote the set of all
positive semidefinite matrices of size n×n by Sn+. For a
matrix A∈Rn×n, we denote its trace by Tr(A)=

∑n
i=1 aii.



II. PROBLEM FORMULATION

We consider a discrete-time system with linear dynamics
given by

xt+1 = Axt + wt, wt ∼ N (0,W ), t = 0, 1, 2, · · · , (1)

where xt∈Rn. The initial state distribution x0∼N (0, P0) is
assumed to be known a priori. We assume that the matrix
A∈Rn×n is Schur stable; i.e., each of its eigenvalues λi
satisfies |λi(A)|<1 for i=1, . . . , n. We assume that, at each
time step, a set of m sensors is available to make an
observation about the underlying state of the system. The
linear sensor measurements are made according to

yt = Cxt + vt, vt ∼ N (0, V ), t = 1, 2, . . . , (2)

where the matrix C∈Rn×m. We interpret the i-th block row
of (2) as the output of the i-th sensor. Due to the costs
associated with operating each of the m sensors at each time
step, it may be advantageous to select only a subset of these
available sensors to make observations about the underlying
state. If a subset of sensors St⊆{1, 2, · · · ,m} is used at time
step t+ 1, then measurement equation becomes

yt+1 = CStxt+1 +vt+1, vt+1 ∼ N (0, VSt), t = 0, 1, 2, · · ·
(3)

as opposed to (2), where CSt
and VSt

are submatrices of C
and V , respectively, formed by selecting the rows of C and
the rows and columns of V corresponding to the index set
St. Let {St}t=0,1,... be the sequence of subsets of selected
sensors. By the Kalman filter formula, the estimation error
covariance

Pt = E(xt − x̂t)(xt − x̂t)>, x̂t = E(xt|y1, · · · , yt) (4)

is a function of the set of selected sensors St, and is
recursively computed according to

Pt+1 = f(Pt, St) :=
(
(APtA

> +W )−1 + C>St
V −1
St
CSt

)−1

(5)
for t=0, 1, 2, . . .. Now, let π:Sn+→{0, 1, . . . ,m}, St=π(Pt)
be a time-invariant sensor selection policy, and let Π denote
the space of all such (Borel measurable) policies. We formu-
late our sensor selection problem as

min
π∈Π

∞∑
t=0

βtc(Pt, St), (6)

where c(Pt, St) is a cost function and 0≤β<1 is a discount
factor weighing the relative importance of present and future
costs. Particularly, the parameter β induces an exponential
decay in the importance of measuring states at later time-
steps, or equivalently, induces exponentially larger impor-
tance at earlier time-steps. Furthermore, due to the time-
invariance of the state dynamics (5) and the discounted
time-invariant cost, the assumption that the optimal policy
is time-invariant is made without loss of generality [20]. In
what follows, we assume that the cost function c(Pt, St) is
modeled according to

c(Pt, St) = Tr(Pt) + g(St),

where Tr(Pt) measures the spread of the covariance matrix
Pt and g:2{1,2,··· ,m}→[0,∞) is a set function that maps
subsets of active sensors to an associated cost for using those
sensors. For instance, the set function g(St)=|St| penalizes
the number of sensors used simultaneously, whereas

g(St) =

{
0 if |St| = 1

+∞ otherwise
(7)

stipulates the use of exactly one sensor at each time step.
For computational tractability, we adopt a slight modifi-

cation to the problem (6). To start with, define the set all
positive semidefinite matrices in Rn×n with trace at most
γ as Sn+(γ); i.e., Sn+(γ):={P∈Sn+:Tr(P )≤γ}. Let Π(γ) be
the set of stationary sensor selection policies St=π(Pt) for
which the set Sn+(γ) is invariant; i.e., over repeated sensor
measurement updates, the covariance matrix remains in the
set Sn+(γ).

Assumption 1: The set Π(γ) of policies π under which
Sn+(γ) is invariant is not empty.
In what follows, we study the modified problem:

min
π∈Π(γ)

∞∑
t=0

βtc(Pt, St). (8)

Differing from the original problem in (6), the requirement
that Pt∈Sn+(γ) is included as a hard constraint for the
problem in (8). We adopt problem (8) partly due to the fact
that its bounded state space Pt∈Sn+(γ) is more amenable
for the analysis that follows in Sections III-V. Note that
Assumption 1 is not restrictive, since under the assumption
that A is Schur stable, there always exists a finite γ such
that Assumption 1 holds.

III. EXACT VALUE ITERATION

In this section, we characterize the optimal solution to (8)
using exact value iteration. To start with, define the space
B(Sn+(γ)) of bounded functions on Sn+(γ) by

B(Sn+(γ)) := {J : Sn+(γ)→ R : ‖J‖∞ <∞}

where ‖J‖∞:=supP∈Sn+(γ) |J(P )| is the sup norm. Note that
the space B(Sn+(γ)) equipped with the sup norm is complete
[21]. Define the Bellman operator T by

(TJ)(P ) := min
S
{c(P, S) + βJ(f(P, S))}. (9)

Proposition 1: Under Assumption 1, the following hold:
(i) J∈B(Sn+(γ)) implies that TJ∈B(Sn+(γ)).

(ii) For all J, J ′∈B(Sn+(γ)), ‖TJ − TJ ′‖∞≤β‖J−J ′‖∞.
(iii) ∃ J∗∈B(Sn+(γ)) satisfying Bellman’s equation

J∗(P ) = min
S
{c(P, S) + βJ∗(f(P, S))}. (10)

(iv) For every J∈B(Sn+(γ)), the sequence Jk=T kJ con-
verges uniformly to J∗; i.e., limk→∞ ‖Jk − J∗‖∞=0.
Proof: (i): Since Assumption 1 guarantees the exis-

tence of a sensor selection S such that f(P, S)∈Sn+(γ),
(TJ)(P )=minS{c(P, S)+βJ(f(P, S))} is finite for J
bounded. Thus J∈B(Sn+(γ)) implies TJ∈B(Sn+(γ)).



(ii): Let q:=‖J−J ′‖∞=supP∈Sn+(γ) |J(P )−J ′(P )|. Then,

J(P )− q ≤ J ′(P ) ≤ J(P ) + q (11)

for every P∈Sn+(γ). Applying T to each side of (21), and
noticing that

min
S
{c(P, S) + β (J(f(P, S))± q)}

= min
S
{c(P, S) + β (J(f(P, S)))} ± βq,

we have

(TJ)(P )− βq ≤ (TJ ′)(P ) ≤ (TJ)(P ) + βq,

for every P∈Sn+(γ). Thus, ‖TJ − TJ ′‖∞≤β‖J − J ′‖∞.
(iii) and (iv): Since the space B(Sn+(γ)) equipped with the

sup norm is a complete metric space, and the operator T a
contraction mapping, we can directly apply the Banach fixed
point theorem [22] to obtain the desired results.

By Proposition 1-(iv), one can obtain J∗ through a value
iteration over Sn+(γ). Once J∗ is obtained, the optimal policy
π∗∈Π is then characterized according to

π∗(P ) = arg min
S
{c(P, S) + βJ∗(f(P, S))}.

Unfortunately, the value iteration procedure described in (9)
is not practical to implement as the function J must be
evaluated everywhere in the continuous space Sn+(γ).

IV. APPROXIMATE VALUE ITERATION

Due to the impracticality of continuous state-space value
iteration, we now seek an alternative solution method. This
section presents a computationally tractable procedure to
approximate J∗. Particularly, we will approximate these
value functions through a value iteration procedure over a
prespecified, finite set of sample covariance matrices.

A. Mesh grid on Sn+(γ)

Let ε>0 be a fixed parameter that encodes the resolution
of our gridding of the space Sn+(γ). Smaller values of ε
correspond to a finer resolution and vice versa for larger
values of ε. We define our resulting mesh according to

M := {εP : P ∈ Zn×n, P � 0},
M(γ) := {P ∈M : Tr(P ) ≤ γ}.

Note that the set M(γ)⊂Sn+(γ) has a finite number of
elements and serves as a “mesh grid” on Sn+(γ). Table I
shows the number of elements |M(γ)| contained in this set
depending on the parameters of the system 1. As evident in
Table I, |M(γ)| grows rapidly with n.

1Note that these values were obtained by a brute-force enumeration. The
authors are unaware of an efficient method to construct M(γ).

γ = 10 γ = 20 γ = 30 γ = 40
n = 2 312 2, 261 7, 416 17, 349
n = 3 9, 888 507, 745 5, 487, 604 30, 105, 633
n = 4 217, 905 133, 895, 766 – –

TABLE I
NUMBER OF ELEMENTS IN M(γ) WHEN ε = 1.

B. Modified Bellman operator

We now introduce a modified value iteration which can be
performed exclusively over the finite set M(γ). We will use
this modified value iteration to approximate the exact value
function J in (9). Define the quantizer Θ : Sn+→M by

Θ(P ) := εround
(

1

ε
P

)
+ εnI. (12)

The extra εnI term in (12) ensures that Θ(P ) provides
an upper bound in the sense that Θ(P )�P (note that this
property will be formally proven in Lemma 1). Furthermore,
this inequality is crucial for ensuring that the approximate
value functions discussed in the sequel upper bound their
corresponding exact values.

Remark 1: Alternatively, adopting a quantizer

Θ′(P ) = arg min
Q∈M

{Tr(Q) : Q � P} (13)

provides a tighter bound than (12) in that Θ(P )�Θ′(P )�P .
However, (13) is computationally difficult to implement. In
the numerical studies in Section VI, we adopt

Θ′′(P ) = εround(
1

ε
P + t∗I) (14)

with t∗=min{t∈R : εround( 1
εP + tI) � P} which is easier

to implement than (13) yet still provides a tighter upper
bound than (12). For the ease of analysis, in what follows, we
adopt the quantizer (12) in order to analyze the gap between
the corresponding approximate and exact value iterations.
The results of the analysis remain valid for the cases where
(13) and (14) are alternatively incorporated.

Now, introduce a modified Bellman operator T̄ defined by

(T̄ J)(P ) := min
S
{c(P, S) + βJ(Θ(f(P, S)))}. (15)

C. Modified value iteration and suboptimal sensor selection
policy

For each J∈B(Sn+(γ)), the modified value iteration is
defined by the sequence J̄k=T̄ kJ . In the following section,
we provide a formal proof that the sequence of functions J̄k
converges uniformly to the unique solution J̄∗∈B(Sn+(γ)) of
the Bellman equation

J̄∗(P ) = min
S
{c(P, S) + βJ̄∗(Θ(f(P, S)))}, (16)

under an appropriate assumption (Proposition 2).
Notice that the modified value iteration J̄k=T̄ kJ requires

value updates only on the finite set M(γ). Denote by
J̄k|M(γ):M(γ)→R the restriction of J̄k to the set M(γ). Now,
because each J̄k+1 is a function of J̄k|M(γ) only, the modified



value iteration can be performed exclusively on the finite set
M(γ). Particularly, for each P∈M(γ) in each iteration, one
can compute the value function update by solving

J̄k+1|M(γ)(P ) = min
S
{c(P, S) + βJ̄k|M(γ)(Θ(f(P, S)))}

(17)
Through this procedure, the convergence of the value func-
tions to their optimal values, i.e., limk→∞ J̄k|M(γ)=J̄

∗|M(γ),
follows directly from the uniform convergence of J̄k. Con-
sidering only the finite set M(γ), we additionally note that
the optimal value function vector J̄∗|M(γ) can alternatively
be obtained by solving a finite dimensional Linear Program
(LP) [23]. Regardless, once the vector J̄∗|M(γ) is obtained,
the solution J̄∗ to (16) can be recovered as

J̄∗(P ) = min
S
{c(P, S) + βJ̄∗|M(γ)(Θ(f(P, S)))}.

The suboptimal policy π′:Sn+(γ)→2{1,2,··· ,m} corresponding
to the Bellman equation (16) is likewise obtained by

π′(P ) = arg min
S
{c(P, S) + βJ̄∗(f(P, S))}. (18)

Let Jπ
′
:Sn+(γ)→R be the value function corresponding to

the policy π′ characterized as the unique solution to

Jπ
′
(P ) = c(P, π′(P )) + βJπ

′
(f(P, π′(P ))).

We will establish that ‖J∗−Jπ′‖∞≤‖J∗ − J̄∗‖∞≤ 2εn2

(1−β)2

in the following section under an appropriate assumption
based on the main results (Theorems 1 and 2 below). This
bound implies that the performance gap between the optimal
sensor selection policy and the suboptimal policy obtained
by the approximate value iteration J̄k = T̄ kJ0 can be made
arbitrarily small by controlling the value of ε. Choosing a
small ε is accompanied by the increase of |M(γ)| (Table I).
Therefore, there exists a trade-off between the performance
loss and the computational cost.

V. ANALYSIS OF MODIFIED VALUE ITERATION

Although the value update using the modified Bellman op-
erator (15) is straightforward to implement, its performance
is difficult to analyze. For this purpose, we introduce a third
Bellman operator Ω:Sn+→Sn+ defined by

Ω(P ) := P + 2εnI.

The following are basic properties of Θ(·) and Ω(·):
Lemma 1: For each P�0, we have P≺Θ(P )≺Ω(P ).

Proof: Define R=round
(

1
εP
)
− 1
εP . By construction,

R is symmetric and each entry Rij satisfies |Rij |≤ 1
2 . Con-

sequently, the eigenvalues of R are bounded as

max
i
|λi(R)| ≤

√
Tr(R>R) =

√∑
i,j

R2
ij ≤

√
n2

4
=
n

2
< n.

Therefore,

Θ(P )− P = ε

(
round

(
1

ε
P

)
− 1

ε
P + nI

)
= ε(R+ nI) � 0.

Ω(P )−Θ(P ) = ε

(
1

ε
P − round

(
1

ε
P

)
+ nI

)
= ε(−R+ nI) � 0,

where the positive definiteness of (−R + nI) follows from
our bound on the eigenvalues of R.

Finally, introduce a new Bellman operator T̂ defined by

(T̂ J)(P ) := min
S
{c(P, S) + βJ(Ω(f(P, S)))}. (19)

for which we define Ĵ∗∈B(Sn+(γ)) according to

Ĵ∗(P ) = min
S
{c(P, S) + βĴ∗(Θ(f(P, S)))}, (20)

A. Convergence of value iteration

To proceed further, we make the following assumption.
Assumption 2: There exists S⊆{1, 2, · · · , N} for each

P∈Sn+(γ) such that Ω(f(P, S))∈M(γ).
Remark 2: Assumption 2 is stronger than Assumption 1.

Note that while Assumption 2 is necessary for providing
theoretical guarantees, numerical experiments indicate that
the sensor selection policy synthesis proposed below often
presents a favorable performance even without this assump-
tion.

We have the following results regarding the Bellman
operators T̄ and T̂ as defined by (15) and (19).

Proposition 2: Under Assumption 2, the following hold:
(i) J∈B(Sn+(γ)) implies that T̄ J and T̂ J∈B(Sn+(γ)).

(ii) For all J, J ′∈B(Sn+(γ)), ‖T̄ J − T̄ J ′‖∞≤β‖J − J ′‖∞
and ‖T̂ J − T̂ J ′‖∞≤β‖J − J ′‖∞.

(iii) ∃ J̄∗, Ĵ∗∈B(Sn+(γ)) satisfying Bellman’s equation (16)
and (20), respectively.

(iv) For every J∈B(Sn+(γ)), define the sequences J̄k=T̄ kJ

and Ĵk=T̂ kJ . Then, we have limk→∞ ‖J̄k − J̄∗‖∞=0
and limk→∞ ‖Ĵk − Ĵ∗‖∞=0
Proof: Here we prove the aforementioned properties

only for the operator T̂ , as those for T̄ follow similarly.
(i): Since Assumption 2 guarantees the existence of a

sensor selection S such that Ω(f(P, S))∈M(γ)⊂Sn+(γ),
(T̂ J)(P )=minS{c(P, S)+βJ(Ω(f(P, S)))} is finite for J
bounded. Thus J∈B(Sn+(γ)) implies T̂ J∈B(Sn+(γ)).

(ii): Let q:=‖J−J ′‖∞=supP∈Sn+(γ) |J(P )−J ′(P )|. Then,

J(P )− q ≤ J ′(P ) ≤ J(P ) + q (21)

for every P∈Sn+(γ). Applying T̂ to each side of (21), and
noticing that

min
S
{c(P, S) + β(J(Ω(f(P, S)))± q)}

= min
S
{c(P, S) + βJ(Ω(f(P, S)))} ± βq,

we have

(T̂ J)(P )− βq ≤ (T̂ J ′)(P ) ≤ (T̂ J)(P ) + βq,



for every P∈Sn+(γ). Thus, ‖T̂ J − T̂ J ′‖∞≤β‖J − J ′‖∞.
(iii) and (iv): Since the space B(Sn+(γ)) equipped with the

sup norm is a complete metric space, and the operator T̂ a
contraction mapping, we can again apply the Banach fixed
point theorem to obtain the desired results.

B. Comparison of value iteration sequences

Let J∈B(Sn+(γ)) be an arbitrary constant function. In
what follows, we analyze several basic properties of the three
sequences Jk=T kJ , J̄k=T̄ kJ , and Ĵk=T̂ kJ .

Lemma 2: For each k=0, 1, 2, ... and for every 0�P�Q,
we have Jk(P )≤Jk(Q) and Ĵk(P )≤Ĵk(Q).

Proof: Here we prove only that Ĵk(P )≤Ĵk(Q), as the
remaining inequality follows by a nearly identical argument.
We prove the claim by induction. The claim trivially holds
for k=0 since Ĵ0 is an arbitrary constant function by con-
struction. Suppose that Ĵk(P )≤Ĵk(Q) holds for some k≥0.
Now, for every 0�P ′�Q′ and for every S, we have that
c(P ′, S)≤c(Q′, S) and Ω(f(P ′, S))≤Ω(f(Q′, S)). Thus,

Ĵk+1(P ′) = min
S
{c(P ′, S) + βĴk(Ω(f(P ′, S)))}

≤ min
S
{c(Q′, S) + βĴk(Ω(f(Q′, S)))}

= Ĵk+1(Q′).

Proposition 3: For each k=0, 1, 2, . . . and P�0, we have
Jk(P )≤J̄k(P )≤Ĵk(P ).

Proof: We again prove the claim by induction. The
claim trivially holds for k=0 as each J∈B(Sn+(γ)) is an
arbitrary constant function. Assume that the claim holds for
k≥0. Then, for each P ′�0,

Jk(P ′) ≤ Jk(Θ(P ′)) (22a)
≤ J̄k(Θ(P ′)) (22b)

≤ Ĵk(Θ(P ′)) (22c)

≤ Ĵk(Ω(P ′)), (22d)

where we first obtain the inequality in (22a) by recalling
that P ′�Θ(P ′) by Lemma 1, which then implies that
J(P ′)≤J(Θ(P ′)) by Lemma 2. The two following inequal-
ities in (22b) and (22c) are each obtained as a result of our
induction hypothesis. Finally, we can again invoke the results
of Lemmas 1 and 2 to obtain (22d) from (22c). Now, setting
P ′=f(P, S), we have

Jk(f(P, S)) ≤ J̄k(Θ(f(P, S))) ≤ Ĵk(Ω(f(P, S)))

for each P�0 and S⊆{1, . . . , N}. Thus,

min
S
{c(P, S) + βJk(f(P, S))}

≤ min
S
{c(P, S) + βJ̄k(Θ(f(P, S)))}

≤ min
S
{c(P, S) + βĴk(Ω(f(P, S)))}

which implies that Jk+1(P )≤J̄k+1(P )≤Ĵk+1(P ).

C. Upper bound of Ĵk

In Lemma 2, we have shown that the function Ĵk is mono-
tonically non-decreasing. Next, we show that the “slope” of
Ĵk is bounded. Define a convergent sequence according to

Lk+1 = 1 + βLk, L0 = 0.

where 0≤β<1 is our discount factor. Note that the sequence
L1, L2, . . . , Lk, . . . is nothing but the sequence of partial
sums of a geometric series. Thus, it is straightforward to
bound these terms according to Lk<L:= 1

1−β .
Proposition 4: Ĵk(P+∆P )≤Ĵk(P )+LkTr(∆P ) for ev-

ery k=0, 1, 2, . . . and any P,∆P�0.
Proof: We prove the claim by induction. The claim

trivially holds for k=0. Suppose that the claim holds for
some k≥0. For P ′�0 and ∆P ′�0, by Lemma 4 (provided
in the Appendix), we have that

f(P ′ + ∆P ′, S) � f(P ′, S) + ∆f (23)

for some ∆f�0 chosen such that Tr(∆f)≤Tr(∆P ′). Recall-
ing the monotonicity of Ĵk by Lemma 2, we have

Ĵk(Ω(f(P ′ + ∆P ′, S))) = Ĵk(f(P ′ + ∆P ′, S) + 2εnI)

≤ Ĵk(f(P ′, S) + ∆f + 2εnI)

= Ĵk(Ω(f(P ′, S)) + ∆f),

where the first equality is by the definition of Ω(·), the sub-
sequent inequality is obtained by substituting for the relation
in (23), and the final equality is obtained by repackaging the
first and third term in Ĵk(·) into the definition of Ω(·). Using
this result,

Ĵk+1(P ′ + ∆P ′)

= min
S
{c(P ′, S) + Tr(∆P ′)

+ βĴk(Ω(f(P ′ + ∆P ′, S)))} (24a)
≤ min

S
{c(P ′, S) + Tr(∆P ′)

+ βĴk(Ω(f(P ′, S)) + ∆f)} (24b)
≤ min

S
{c(P ′, S) + Tr(∆P ′)

+ βĴk(Ω(f(P ′, S))) + βLkTr(∆f)} (24c)

≤ min
S
{c(P ′, S) + βĴk(Ω(f(P ′, S)))

+ (1 + βLk)Tr(∆P ′)} (24d)

= min
S
{c(P ′, S) + βĴk(Ω(f(P ′, S)))}

+ Lk+1Tr(∆P ′) (24e)

= Ĵk+1(P ′) + Lk+1Tr(∆P ′), (24f)

where we have obtained the first equality by noting that
Tr(P ′+∆P ′)=Tr(P ′)+Tr(∆P ′) and extracting the latter
term from c(P ′+∆P ′, S). We then obtain (24b) by applying
our previous result. The inequality in (24c) then follows from
the induction hypothesis. Recalling that ∆f is chosen such
that Tr(∆f)≤Tr(∆P ) holds by construction, we substitute
for this relation and group the Tr(∆P ) terms to obtain (24d).



Noting the definition of Lk+1 and that Tr(∆P ) is indepen-
dent of our sensor selection S yields (24e). Substituting for
the definition of Ĵk(·) then yields (24f).

By Proposition 3, we have Jk≤J̄k≤ Ĵk. Next, we derive
an upper bound of the gap between Jk and Ĵk.

Proposition 5: Suppose Ĵk=T̂ kJ0 where J0∈B(Sn+(γ))
is a constant function. For each k=0, 1, 2, . . ., we have

0 ≤ (T̂ Ĵk)(P )− (T Ĵk)(P ) ≤ 2εn2L ∀P ∈ Sn+(γ).
Proof: The first inequality follows from the monotonic-

ity of Ĵk, as proven in Lemmas 1 and 2:

(T Ĵk)(P ) = min
S
{c(P, S) + βĴk−1(f(P, S))}

≤ min
S
{c(P, S) + βĴk−1(Ω(f(P, S)))}

= (T̂ Ĵk)(P ).

To see the second inequality,

(T̂ Ĵk)(P ) = min
S
{c(P, S) + βĴk−1(Ω(f(P, S)))} (25a)

= min
S
{c(P, S) + βĴk−1(f(P, S) + 2εnI)} (25b)

≤ min
S
{c(P, S) + βĴk−1(f(P, S))

+ Lk−1Tr(2εnI)} (25c)

≤ min
S
{c(P, S) + βĴk−1(f(P, S))}+ 2εn2L (25d)

= (T Ĵk)(P ) + 2εn2L, (25e)

where (25b) follows (25a) by the definition of Ω. Then, (25c)
follows from the result of Proposition 4. We subsequently
obtain (25d) by noting that the final term in (25c) is inde-
pendent of our sensor selection S and recalling the fact that,
for all k=0, 1, 2, . . ., Lk≤L. Finally, we obtain (25e) by the
definition of (T Ĵk)(P ).

Proposition 6: Suppose Jk=T kJ0 and Ĵk=T̂ kJ0 where
J0∈B(Sn+(γ)) is a constant function. We have

lim sup
k→∞

‖Jk − Ĵk‖∞ ≤
2εn2

(1− β)2
.

Proof: Notice that

‖Jk+1 − Ĵk+1‖∞ = ‖TJk − T̂ Ĵk‖∞
= ‖TJk − T Ĵk + T Ĵk − T̂ Ĵk‖∞
≤ ‖TJk − T Ĵk‖∞ + ‖T Ĵk − T̂ Ĵk‖∞
≤ β‖Jk − Ĵk‖∞ + 2εn2L, (26)

where the final inequality is obtained using the fact that T is
a contraction mapping, as proven in Proposition 1, to upper
bound the first term, and that we can upper bound the second
term by the result of Proposition 5. Define a sequence `k by

`k+1 = β`k + 2εn2L (27)

with `0=0. We have `k≤ 2εn2L
1−β = 2εn2

(1−β)2 for k=0, 1, 2, . . ..
Comparing (26) and (27), we have ‖Jk − Ĵk‖∞≤`k. Thus,

lim sup
k→∞

‖Jk − Ĵk‖∞ ≤
2εn2

(1− β)2
,

where we have substituted for L= 1
1−β .

D. Main results

We now turn our attention towards the main results of our
paper, which are given in the following two theorems.

Theorem 1: Let J∗ be the optimal value function char-
acterized by (10). Let J̄k=T̄ kJ0 be the sequence gener-
ated by the approximate value iteration with (15) where
J0∈B(Sn+(γ)) is a constant function. We have

lim sup
k→∞

‖J∗ − J̄k‖∞ ≤
2εn2

(1− β)2
.

Proof: Since 0 ≤Jk≤J̄k≤Ĵk, it follows from Proposi-
tion 6 that lim supk→∞ ‖Jk − J̄k‖∞≤ 2εn2

(1−β)2 . Now,

lim sup
k→∞

‖J∗ − J̄k‖∞ ≤ lim sup
k→∞

‖J∗ − Jk + Jk − J̄k‖∞

≤ lim sup
k→∞

‖J∗ − Jk‖︸ ︷︷ ︸
=0 by Proposition 1

+ lim sup
k→∞

‖Jk − J̄k‖∞

= lim sup
k→∞

‖Jk − J̄k‖∞ ≤
2εn2

(1− β)2
.

Theorem 2: For all P�0, J∗(P )≤Jπ′
(P )≤J̄∗(P ).

Proof: As in the proof of Theorem 1, set Jk=T kJ0

and J̄k=T̄ kJ0 where J0∈B(Sn+(γ)) is a constant function.
Define the sequence Jπ

′

k by

Jπ
′

k+1(P ) = c(P, π′(P )) + βJπ
′

k (f(P, π′(P ))).

By construction, we have that

Jk(P ) ≤ Jπ
′

k (P ) ≤ J̄k(P ) ∀P ∈ Sn+(γ) (28)

for k=0. Now, Suppose (28) holds for some k≥0. Then,

Jk+1(P ) = min
S
{c(P, S) + βJk(f(P, S))}

≤ c(P, π′(P )) + βJk(f(P, π′(P )))

≤ c(P, π′(P )) + βJπ
′

k (f(P, π′(P )))

= Jπ
′

k+1(P ),

where the second inequality follows from the induction
hypothesis. Likewise,

Jπ
′

k+1(P ) = c(P, π′(P )) + βJπ
′

k (f(P, π′(P )))

≤ c(P, π′(P )) + βJ̄k(f(P, π′(P )))

= min
S
{c(P, S) + βJ̄k(f(P, S))}

= J̄k+1(P ).

Therefore, (28) holds for every k=0, 1, 2, . . .. Since Jk, Jπ
′

k

and J̄k converge to J∗, Jπ
′

and J̄∗ uniformly, respectively,
we have J∗≤Jπ′≤J̄∗.

Theorems 1 and 2 imply that ‖J∗−Jπ′‖∞≤ 2εn2

(1−β)2 . There-
fore, even though the sensor selection policy π′ is subopti-
mal, the performance loss can be made arbitrarily small by
selecting a sufficiently small ε.
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Fig. 1. Value functions J̄∗(P ) and Jπ′
(P ) obtained under ε =

1, 0.75, 0.6, 0.5 and 0.428(= 3/7).

VI. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments for the
approximate value iteration of the form

J̄k+1(P ) = (T̄ J̄k)(P ) ∀P ∈M(γ), k = 0, 1, 2, . . . (29)

where T̄ is the Bellman operator defined by (15). Notice
that the computation of the right hand side of (29) for
each P∈M(γ) is independent of all other P ′∈M(γ) and
hence is massively parallelizable. We implement (29) on
GPUs via the CUDA-enabled MATLAB interface. Through
this implementation, the value updates computed according
to (29) take under a second per iteration for meshes with
cardinalities |M(γ)| of up to several million.

In this example, we revisit the sensor selection problem of
a 3D process with four available sensors previously studied
in [4]. The system parameters are given by

A=

−0.6 0.8 0.5
−0.1 1.5 −1.1
1.1 0.4 −0.2

 , W =

1 0 0
0 1 0
0 0 1



C=


0.75 −0.2 −0.65
0.35 0.85 0.35
0.2 −0.65 1.25
0.7 0.5 0.5

 , V =


0.53 0 0 0

0 0.8 0 0
0 0 0.2 0
0 0 0 0.5

 .
We adopt the cost function defined in (7), which permits
the selection of exactly one active sensor at each time
step. We additionally use a discount factor of β=0.95
and set the trace limit to γ=15. To study the impact of
the mesh grid size on the resulting value functions, we
perform the value iteration (29) with ε=1, 0.75, 0.6, 0.5 and
0.428(= 3/7). For each value of ε, it was observed that
500 iterations of (29) was sufficient to achieve convergence.
For each case, we obtained J̄∗ and the corresponding policy
π′ through (18). Fig. 1 displays J̄∗(P (λ)) evaluated at
P (λ)=0.01λI3, λ=1, 2, . . . , 250 for each value of ε consid-
ered. Furthermore, we estimate Jπ

′
(P (λ)) by simulating the
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Fig. 2. Sequence of selected sensors when the initial state is P0 = 03×3.
Sensor selection policy is computed with ε = 0.428.

Method Sequence Undiscounted cost
ε = 0.5 {4, 2, 1} 6.4236
ε = 0.428 {4, 2, 1, 2, 1} 6.6941
ε = 0.6, ε = 1 {2, 2, 1} 6.8377
ε = 0.75 {2, 2, 2, 1} 7.3532

[4] {4, 1, 4, 2, 1, 2, 3} 6.9404

TABLE II
REPEATING SEQUENCE AND CORRESPONDING UNDISCOUNTED COST.

trajectories Pt, starting with P0=P (λ). Fig. 1 confirms that
Jπ

′
(P )≤J̄∗(P ) (Theorem 2) for each value of ε considered.

Although the exact value function J∗(P ) is not com-
putable, Fig. 1 indicates that a smaller ε tends to provide
a tighter upper bound J̄∗(P ). This relationship holds even
if the gap 2εn2/(1 − β)2, as obtained in Theorem 1, is too
conservative (note that in the case of ε=0.5, we have that
2εn2/(1−β)2=3600).

We observe that the sequence of selected sensors un-
der the obtained sensor selection policy always even-
tually exhibits a periodic behavior. When ε=0.428, the
sequence of selected sensors eventually becomes a rep-
etition of {4, 2, 1, 2, 1} regardless of the initial covari-
ance P (λ)=0.01λI3, λ=1, 2, ..., 250 (Fig. 2). We also ob-
serve that different choices of ε yield different peri-
odic sequences (Table II). Interestingly, the sequences we
obtained are different from the repeating sequence of
{4, 1, 4, 2, 1, 2, 3} obtained in [4]. Although [4] considered
an undiscounted problem (where the performance is evalu-
ated by limT→∞

1
T

∑T
t=1 Tr(Pt)), it is noteworthy that some

of the sequences we obtain outperform the solution obtained
in [4] even under an undiscounted setting, as shown in
Table II. Our simulation study thus shows that the sensor
selection policy obtained by the proposed method performs
well in practice, even though the suboptimality guarantee
provided by Theorem 1 is conservative.

VII. CONCLUSION AND FUTURE WORK

We considered the problem of synthesizing an optimal
sensor selection policy for linear-Gaussian systems. We
approached this problem by formulating the sensor selection
problem in terms of a value iteration over the continuous
space of covariance matrices. To obtain a computationally
tractable synthesis procedure, we then developed a point-
based value iteration approach over a prespecified, finite set
of covariance matrices, and subsequently derived bounds for
the suboptimality of the obtained sensor selection policy.



There are several natural extensions of this work. Perhaps
the most urgent research direction is to develop methods that
efficiently construct the finite set used in the point-based
value iteration procedure, as naively using a “mesh grid”
yields an impractically large state space for systems with
higher-dimensional state spaces. In a similar vein, further
work should also consider how to obtain tighter bounds on
the suboptimality of the synthesized sensor selection policy.
Although the proposed procedure worked comparatively well
for the example considered, the obtained bound was exceed-
ingly conservative.
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APPENDIX

A. Supplementary results

Lemma 3: For M � 0, N � 0, X � 0 and A ∈ Rn×n,
the following inequality holds:

((M +AXA>)−1 +N)−1

� (M−1 +N)−1

+ (M−1 +N)−1M−1AXA>M−1(M−1 +N)−1.

Moreover, if A is Schur stable, we have

Tr((M−1+N)−1M−1AXA>M−1(M−1+N)−1) ≤ Tr(X).
Proof: First, recall the general matrix inversion lemma:

(A+BCB>)−1 = A−1−A−1B(B>A−1B+C−1)−1B>A−1

(30)
Now, set F := X

1
2A>. Then one can show that

((M +AXA>)−1 +N)−1 (31)

= ((M + F>F )−1 +N)−1 (32)

= (M−1 +N −M−1F>(FM−1F> + I)−1FM−1)−1

(33)

= (M−1 +N)−1

+ (M−1 +N)−1M−1F>

× (I + FM−1(M − (M−1 +N)−1)M−1F>)−1

× FM−1(M−1 +N)−1 (34)

� (M−1 +N)−1

+ (M−1 +N)−1M−1F>FM−1(M−1 +N)−1 (35)

= (M−1 +N)−1

+ (M−1 +N)−1M−1AXA>M−1(M−1 +N)−1 (36)

where (32) follows (31) by simply substituting our relation
for F . We then obtain (33) by applying the general matrix
inversion lemma in (30) to (32) wherein we use A = M ,
B = F , and C = I (where I is the identity matrix). To obtain
(34), we again apply the general form of the matrix inversion
lemma, this time setting A = (M−1 + N), B = FM−1,
and C = −(FM−1F> + I)−1, and subsequently rear-
ranging terms. The following inequality in (35) is obtained
by noting that M − (M−1 + N)−1 � 0, which implies
(I + FM−1(M − (M−1 + N)−1)M−1F>)−1 � I−1 = I .
Substituting I yields the result. Finally, we obtain (36) by
substituting back in our relation for F . To show the second
claim, first notice that all the eigenvalues of the matrix



Z := M
1
2 (I + M

1
2NM

1
2 )−1M−

1
2 satisfy 0 < λi(Z) < 1.

Thus,

0 ≺M−1(M−1 +N)−2M−1

= M−
1
2 (I +M

1
2NM

1
2 )−1M

1
2M

1
2 (I +M

1
2NM

1
2 )−1M−

1
2

= Z>Z ≺ I.

Therefore

Tr((M−1 +N)−1M−1AXA>M−1(M−1 +N)−1)

≤ Tr(M−1(M−1 +N)−2M−1AXA>)

≤ Tr(AXA>)

≤ Tr(X).

Lemma 4: Assume A ∈ Rn×n is Schur stable. For every
P � 0, ∆P � 0 and S, we have f(P+∆P ) � f(P, S)+∆f
where ∆f � 0 and Tr(∆f) ≤ Tr(∆P ).

Proof: This result follows from Lemma 3 by setting
M = APA> + W , N = C>S V

−1
S CS , X = ∆P and ∆f =

(M−1 +N)−1M−1AXA>M−1(M−1 +N)−1.


