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Abstract. Extracting evidence pertaining to mobile apps is a key task
in mobile device forensics. Since mobile apps can generate more than
19,000 files on a single device, it is time consuming and error prone to
manually inspect all the files. Fuzzing tools that programmatically pro-
duce interactions with mobile apps are helpful when paired with sand-
box environments to study their runtime forensic behavior and summa-
rize patterns of evidentiary data in forensic investigations. However, the
ability of fuzzing tools to improve the efficiency of mobile app forensic
analyses has not been investigated.
This chapter describes AFuzzShield, an Android app shield that pro-
tects apps from being exercised by fuzzers. By analyzing the runtime
information of mobile app interaction traces, AFuzzShield prevents real-
world apps from being exercised by fuzzers and minimizes the overhead
on human usage. A statistical model is employed to distinguish between
fuzzer and human patterns; this eliminates the need to perform graph-
ical user interface injections and ensures compatibility with apps with
touchable/clickable graphical user interfaces. AFuzzShield verifies mo-
bile app program coverage in situations where apps engage anti-fuzzing
technologies. Specifically, it was applied to apps in AndroTest, a popu-
lar benchmark app dataset for testing fuzzers. The experimental results
demonstrate that applying AFuzzShield significantly impacts mobile app
program coverage in terms of reduced evidentiary data patterns.

Keywords: Android Apps · Evidentiary Data · Forensic Analysis · Anti-
Fuzzing

1 Introduction

As of March 2023, around 2.67 million Android apps were available to the pub-
lic [31]. Whereas a manual examination by a forensic practitioner can cover most
usage scenarios of an individual app to understand the evidentiary data gener-
ated at runtime, the manual approach does not scale to handle the thousands of
files generated by the numerous apps residing on a typical mobile device [5]. Au-
tomated fuzzing tools that programmatically generate interactions with Android
apps provide an alternative. In fact, Android app fuzzers have been applied in
security/privacy leakage analyses [12, 33] as well as in forensic analyses [38].

Android app fuzzers are categorized according to how they generate inter-
action events, namely, random-based [13, 22, 40], model-based [1, 3, 6, 16, 39] and
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systematic [2, 3, 5, 23, 34]. Their common goal is to improve app code coverage
in a limited time frame. However, while these fuzzers provide key insights on
driving and running apps efficiently, they can be leveraged to discover app vul-
nerabilities and launch the corresponding attacks. To combat abuses, researchers
have proposed anti-analysis techniques for Android devices [10, 17, 24, 26, 35].
The general idea is to perform software checks on certain system parameters
to detect the sandbox environments in which fuzzers and dynamic analyzers
are usually deployed. But the anti-analysis techniques can be disabled by auto-
matically removing the conditional statements that check system parameters to
detect sandbox environments [28].

At this time, no study has systematically analyzed how anti-fuzzing tech-
niques impact the mobile app program coverage achieved by fuzzers. As a re-
sult, it is not possible to assess the reliability of using fuzzers to generate mobile
app evidentiary data patterns in sandbox environments. Diao et al. [10] detect
programming patterns in order to block the use of fuzzing tools. However, their
approach, which is implemented and evaluated only for a proof-of-concept app,
may hinder app functions by overlapping with the original graphical user in-
terface (GUI) layouts, reducing its value as a real-world anti-fuzzing solution.
Fuzzification [18], an anti-fuzzing tool, is preferred by developers. It profiles the
frequencies of program paths visited by fuzzers and injects timing delays in less-
frequently-used program paths to slow down the program while minimizing the
impacts to normal use. However, due to Fuzzification’s distinct environment, user
behaviors and Linux command-line interface, it is unable to analyze the impacts
of adopting Android app anti-fuzzing approaches to hinder forensic analyses.

An Android app anti-fuzzing technique must meet two requirements. First,
it should introduce minimal overhead to real-world app users without inducing
app malfunctions. Second, it should hinder fuzzers from exercising apps when
they are triggered. Due to the lack of tools that meet these requirements, this
research has developed AFuzzShield, an app shield that protects apps from be-
ing exercised by fuzzers. AFuzzShield is employed to analyze the reliability of
Android app fuzzers that could be leveraged by forensic practitioners to generate
evidentiary data patterns of mobile apps. AFuzzShield dynamically collects us-
age patterns such as clicks and swipes, and determines if the interaction events
are triggered by human users or fuzzers. By injecting timing delays into app
programs when fuzzer patterns are identified, AFuzzShield hinders fuzzer test-
ing and prevents fuzzers from exercising apps. AFuzzShield also has the ability
to profile fuzzer usage based entirely on runtime information. Since sandbox de-
tection is unreliable and overwriting a GUI may negatively impact the original
app functions, runtime pattern identification is more stable and less likely to
crash the app.

This chapter presents several programming patterns for identifying exist-
ing fuzzers and demonstrates how the patterns are exploited in anti-fuzzing
solutions. Experimental results involving more than 68 real-world apps in An-
droTest [41] demonstrate that evidentiary data extraction from mobile apps
using fuzzers is not reliable because fuzzing can be detected and mitigated.
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2 Android App Fuzzing

Fuzzing is a software testing technique that automatically generates and in-
jects inputs into software, helping detect vulnerabilities in tested programs more
efficiently than human testers. Fuzzing tools that programmatically produce in-
teractions with mobile apps such as tapping and swiping are useful when paired
with sandbox environments to study their runtime forensic behavior and sum-
marize patterns of evidentiary data. Android app fuzzers such as TaintDroid [12]
and others [33, 38] have been used very effectively for dynamic program analysis,
including generating evidentiary data and determining app vulnerabilities.

Android app fuzzers are categorized according to how they generate user
interaction events. Random-based fuzzers [13, 22, 40] cover as many program
branches as possible by randomly generating input events that trigger the app
functions being called. Monkey [13], a fully-automated random-based fuzzer,
randomly generates user interaction events such as swipes and clicks according
to the configured probabilities, pushes them into the event queue and executes
them as required.

Model-based fuzzers, unlike random-based fuzzers, require knowledge of run-
time user interaction events that prevents them from generating redundant in-
put events. During app runtime, a model-based fuzzer constructs GUI models
by parsing the runtime information into a user interaction hierarchy that en-
ables the fuzzer to employ a path finding algorithm to produce maximum code
coverage with minimal inputs.

Systematic fuzzers typically instrument apps under test using program anal-
ysis techniques. By thoroughly analyzing the input events required to cover por-
tions of an app program, a systematic fuzzer gains complete knowledge about
the appropriate events needed for app testing. For example, after instrumenting
an app, when certain activity transitions require a user to click a button twice,
a systematic fuzzer can do so without attempting other useless combinations of
inputs.

3 Methodology

AFuzzShield is a pattern-based anti-fuzzing solution. Unlike other approaches
that extract system characteristics to detect sandbox environments [10, 17, 24,
26, 35] or modify the original GUI layouts of apps [10], AFuzzShield identi-
fies fuzzers using their programming patterns. This section describes the AFuz-
zShield design framework, discusses the pattern differences between fuzzers and
human users, and presents the AFuzzShield anti-fuzzing solution.

3.1 AFuzzShield Overview

Figure 1 presents an overview of AFuzzShield. AFuzzShield is designed as a third-
party library for use in app development, where users instrument AFuzzShield
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Fig. 1. AFuzzShield overview.

APIs in their implemented GUI callback methods. During app execution, AFuz-
zShield monitors the interaction traces and dynamically-adjusted pattern-based
timing delays that correlate with the likelihood of fuzzer usage. This reduces the
app code coverage using the same amount of time as when the app is exercised
by fuzzers.

3.2 App Fuzzer Patterns

This section discusses the patterns of Monkey and other fuzzers.

Monkey Monkey [13] is a popular random-based, open-source fuzzer with fin-
gerprinting features. Investigation of Monkey’s source code revealed that its click
and swipe event implementations are adequate to identify Monkey. Since clicks
and swipes are fundamental GUI object operations, simply excluding them in
Monkey’s options results in significant coverage loss during software testing.
Therefore, AFuzzShield can exploit the click and swipe patterns of Monkey to
detect the use of fuzzers.

Three utility methods enable Monkey to implement randomness on top of
uniform distributions:

– randomPoint: This method returns coordinates (x, y) where x is picked
randomly from zero to the device width and y is picked randomly from zero
to the device height.

– randomVector: This method returns a set of random values in the range
–25 to 25 pixels.

– randomWalk: This method, upon being given a set of coordinates (x, y),
randomly modifies their values in the range –25 to 25, but casts the results
within the boundaries of the device display.

The three utility methods yield the following patterns for click and swipe
events:

– Click: A click event comprises two consecutive touch events. The first touch
event receives coordinates from randomPoint and the second touch event
receives coordinates from randomWalk applied to the first set of coordinates.
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– Swipe: A swipe event is extended from a click event by randomly adding
one to nine movements between the first and second touch events of the click
event. Each movement is the result of calling randomWalk with the previous
set of coordinates, i.e., it moves randomly –25 to 25 pixels along the x and
y axes, respectively.

The stability of the click and swipe events in fuzz testing enables AFuzzShield
to use them as programming patterns that identify Monkey.

Other Fuzzers A stable feature of Android fuzzing tools is the set of coordi-
nates corresponding to their generated click events. Specifically, investigations
revealed that all existing open-source fuzzers [1–3, 6, 7, 11, 14, 16, 20, 22, 32] click
the centers of GUI objects regardless of their exploration strategies.

Consider, for example, A3E [3], which relies on Robotium [29] to interact
with an app being tested. When A3E picks an exploration strategy, it instructs
Robotium to click the target GUI object. Robotium then computes the center
of the target object on the screen and clicks the target. When computing the
centers of odd lengths, some fuzzers like Robotium that do not round values
yield different center coordinates from fuzzers that round values. To address the
different implementations when one side of a GUI object has an even length,
AFuzzShield picks the nearest point with an integer value as the center.

It is surprising that fuzzers have such explicit artificial patterns. The likely
reason is that they click the centers of objects to avoid clicking the wrong targets
when the object sizes are small. One exception is APE [14], which enables users
to choose between Monkey’s strategy or clicking the centers of objects using its
designed strategy. However, this exception does not impact AFuzzShield because
it considers both patterns.

3.3 Real-World Human Patterns

This research employed the Rico [9] dataset to identify the differences between
fuzzer and human patterns in user interactions. The Rico dataset contains more
than 9,300 app GUI layouts and human interaction traces generated by 11 real
users. The human interaction traces include 52,456 effective click event coordi-
nates and 13,377 swipe event traces.

Human patterns were learned by mapping click and swipe event coordinates
to the corresponding topmost GUI object and normalizing the coordinates by
transforming them linearly to a standard 2×2 square. Interestingly, the heatmap
in Figure 2 reveals that the hottest area with the most click events is not near the
center of a button. Clearly, human patterns do not follow common normal or uni-
form distributions. In fact, Figure 3 shows that, even when the two-dimensional
plot is reduced to a one-dimensional plot for each coordinate, the normalized
human clicking data does not have a clear bell shape. This means that very
special human click patterns must be considered to combat fuzzing tools.

The swipe events generated by Monkey contained no more than nine con-
secutive movements and the scale of movement in any direction was bound by
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Fig. 2. Heatmap distributions of normalized human click coordinates on buttons.
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Fig. 3. Normalized click coordinate histograms (left: x-axis, right: y-axis).

25 pixels. However, only 56.67% of the Rico dataset traces were determined to
have less than ten movements. Additionally, among the 373,635 movements in
13,377 real-world swipe events, just 55,187 (14.77%) along the x-axis or y-axis
were determined to have scales larger than 25 pixels. Since the Rico dataset
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contains such large numbers of outliers from Monkey’s model, it is reasonable to
designate outlier swipe events as being produced by human users.

3.4 Differentiating Fuzzer and Human Patterns

All the model-based fuzzers investigated clicked the exact centers of buttons in
the interaction traces, which were explicitly different from human interaction
patterns. In the Rico dataset, only eight out of thousands of human click events
touched the button centers. Even when the ranges were extended to two pixels
from the centers, the amount of human click events was less than 300. In fact,
the probability of a human user touching the center of a GUI object is less than
300/46,694 = 0.6% and the probability of a human user touching the center n
times is ( 0.6

100 )
n, which is extremely small when n ≥ 3. Therefore, if the center

of a button is clicked consecutively more than three times, it is safe to assume
that the events were created by a fuzzer instead of a human user.

Based on the Monkey patterns discussed above, human patterns can be dis-
tinguished from Monkey patterns using the Chi-square test to test the inde-
pendence of click regions from click event data. The Chi-square test is selected
because the Rico data indicates a human preference or bias towards click regions
whereas Monkey views all click regions the same.

After experiments and analysis, it was decided to divide an entire normalized
button GUI into three regions with equivalent rectangle areas and compare the
difference between the expected frequency to the observed frequency in order to
set up a hypothesis for testing. Specifically, the null hypothesis H0 is that the
events are produced by the Monkey fuzzer in that the click data has a uniform
distribution on the two-dimensional plane. The alternative hypothesis H1 is that
the data does not have a uniform distribution.

For all the GUIs in a single app, if there are n touches, the theoretical fre-
quency for a partition is n

3 . Let k1, k2 and k3 be the numbers of touches in the
three regions. Then, under the null hypothesis H0, if the statistic:

V =
3

n

3∑
i=1

(ki −
n

3
)2

is viewed as a random variable v, then v follows a Chi-square distribution with
a degree of freedom of two (i.e., v ∼ χ2

2). The corresponding p-value for this
hypothesis test is computed as:

p = Prob(v ≥ V )

where v has a χ2
2 distribution. It is well known that p-values weight evidence

against the null hypothesis. Therefore, the smaller the p-value, the stronger the
evidence to reject H0.

4 Evaluation

AFuzzShield was evaluated in a virtual machine environment created by An-
droTest [41], a widely-adapted sandbox with 68 open-source real-world apps
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for experimenting with Android app fuzzers [5, 11, 20, 25, 32]. Attempts made
to debug and fix AndroTest’s scripts for PUMA [16], A3E [3], Dynodroid [22],
ACTEve [2] and GUIRipper [1] (PADAG) were successful. However, it was not
possible to fix and run the script for SwiftHand [6].

The deployment of AFuzzShield required the manual identification and in-
strumentation of 632 user interaction callback methods in millions of lines of app
code, after which the output Android Package Kit (APK) file was built. The im-
pacts of real-world human user experiences were evaluated using the public Rico
dataset [9]. Simulations were employed to evaluate AFuzzShield performance
against human users, who received minimal impacts. Monkey and PADAG were
executed on the original apps as well as on the apps with AFuzzShield deployed.
Each fuzzer was executed for an hour and the line coverage results were collected
using EMMA [30] every five minutes. Note that AndroTest employs a one-hour
experiment time and five-minute data collection intervals. The same parameters
were used to consistently reproduce the experimental environment.

4.1 Real-World App Performance

This section discusses the performance of AFuzzShield on real-world apps with
human users and with Monkey and other fuzzers.

Human User Evaluation While it would be best to employ human user click
coordinates on the evaluated apps, difficulty in obtaining institutional review
board approval for human subjects during the research window forced the use
of data from the Rico dataset. Therefore, the statistics discussed above were
applied to random samples from the Rico dataset of sizes 18, 24, 30, 60 and 90
with 100 times random experiments without replacements, following which the
p-values were computed.

Table 1 summarizes the Chi-square test results for the Rico data where, by
convention, the significance level threshold for rejecting H0 is set to p ≤ 0.05.
Note that identification using the p-values of the Chi-square test with more
than 60 click events yields a low false negative rate (FNR), i.e., the error rate
of misclassifying human users as Monkey. However, in practice, many more click
events are required to achieve sufficient power for a significance level of 0.05.
Therefore, to enhance classifier performance in real-world scenarios, especially
those with lower numbers of clicks, a much larger p-value, such as p < 0.1,
would indicate that the events are more likely to have been created by a fuzzing
program.

Although the larger number of click events improves the false negative rate,
it deteriorates fuzzer performance as more program paths are covered. Based on
the evaluation results, in order to balance user experience while protecting apps
from being exercised by fuzzers, a three-stage timing delay was injected into
each app source function similar to the Fuzzification approach [18] of hindering
fuzzers. Specifically, the runtime number of click event thresholds N0, N1, N2

of 24, 30, 60, respectively, and P0, P1, P2 of 0.05, 0.05, 0.1, respectively, were
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Table 1. Performance of the Chi-square test as a classifier of human clicks.

Humans FNR FNR Max p-Value
Clicks (Reject if p < 0.05) (Reject if p < 0.1)

18 58% 40% 0.1573
24 38% 26% 0.1024
30 25% 20% 0.7400
60 2% 0% 0.1572
90 0% 0% 0.0160

applied in the three-stage timing delays. When Ni event data was collected, the
computed p-value was compared against Pi to determine whether the injected
timing delay should be updated. In the evaluation, timing delays of T0 = 0.2 s,
T1 = 1 s and T2 = Tmax = 5 s were employed for the three stages.

Existing Fuzzer Evaluation The experiments for evaluating AFuzzShield per-
formance with existing fuzzers was designed based on their runtime patterns. The
evaluation covered a random-based fuzzer (Monkey) and model-based fuzzers
(PADAG). In addition to PADAG, open-source code of the other fuzzers was
examined to confirm that they shared the same programming patterns observed
in PADAG.

– Monkey Evaluation: A preliminary test was performed for one hour to
obtain background knowledge about how much runtime information AFuz-
zShield obtained when deploying Monkey on an app. Because AFuzzShield
relies only on app runtime information to evade fuzzer performance and the
statistical model requires the number of click events to be higher than 60,
apps that could not satisfy the requirement were filtered from the Monkey
evaluation. For the remaining apps, line coverages upon running Monkey on
them with and without AFuzzShield were compared in the evaluation.
Table 2 shows the aforementioned preliminary results and results with AFuz-
zShield for 20 real-world apps. Note that Inst. denotes the number of instru-
mented user interfaces, Recv. denotes the number of events received per
hour, LC0 denotes the line coverage without AFuzzShield, LCA denotes the
line coverage with AFuzzShield, Delta denotes the absolute change of line
coverage and R. Delta denotes the relative reduced line coverage.
The results reveal that AFuzzShield effectively evades the performance of
Monkey for 14 of the 20 real-world apps (highlighted in the table) and the
best case demonstrates a reduction of line coverage from 59.85% to 43.41%.
Although three apps have zero evasion and three apps have slightly elevated
line coverages, AFuzzShield still protects most of the apps from being exer-
cised by Monkey.
Upon parsing the evaluation results, it was discovered that the more complex
the app design, such as the number of user interface buttons, the more likely
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Table 2. Monkey evaluation results.

App Inst. Recv. LC0 LCA Delta R. Delta

A2DP Volume 17 158 42.44% 39.92% 2.52% 5.94%
AnyMemo 82 133 26.39% 22.56% 3.83% 14.51%
Baterrydog 5 107 62.47% 62.47% 0.00% 0.00%
BookCatalogue 68 147 33.39% 27.69% 5.70% 17.07%
Battery Circle 6 176 72.99% 73.92% –0.93% –1.27%
Alarm Clock 9 140 71.14% 66.97% 4.16% 5.85%
aCal 44 77 21.84% 16.15% 5.69% 26.05%
Yahtzee 8 64 59.97% 52.23% 7.74% 12.91%
CountdownTimer 4 198 71.14% 75.85% –4.71% –6.62%
Dialer2 15 546 37.71% 34.86% 2.86% 7.58%
MunchLife 4 215 72.45% 72.45% 0.00% 0.00%
MyExpenses 19 188 47.96% 40.52% 7.44% 15.51%
LearnMusicNotes 8 537 59.85% 43.41% 16.44% 27.47%
passwordmanager 17 123 9.00% 8.22% 0.78% 8.67%
RandomMusicPlay 6 347 78.19% 77.72% 0.48% 0.61%
SoundBoard 2 82 46.81% 46.81% 0.00% 0.00%
SyncMyPix 15 125 21.57% 21.87% –0.30% –1.39%
TippyTipper 20 64 82.05% 79.01% 3.04% 3.71%
WeightChart 3 127 52.52% 51.11% 1.41% 2.68%
WhoHasMyStuff 8 111 74.13% 69.43% 4.71% 6.35%

that anti-fuzzing techniques reduce app program coverage, contributing to
the reduced reliability of Android app fuzzers in generating evidentiary data.
Since AFuzzShield requires runtime data to determine whether or not oper-
ations are due to fuzzers, if an app is designed in a straightforward manner
and has very few branches or event handlers to be triggered, it is highly
likely that fuzzers would have explored many programs in the app before
being effectively evaded by AFuzzShield. For example, Table 2 shows that
apps receiving non-positive impacts from AFuzzShield have only six instru-
mented GUI objects on average compared with apps effectively protected by
AFuzzShield that have more than 20 instrumented GUI objects on average.

– Other Fuzzer Evaluation: PADAG was deployed on over 68 apps from
AndroTest with and without AFuzzShield during the performance evalua-
tion. Tables 3 and 4 show the PADAG evaluation results – the highlighted
results indicate exercising apps for which fuzzers were detected successfully
by AFuzzShield. Note that no available GUI objects to monitor were dis-
covered in 19 out of 68 apps, 22 apps with clickable GUIs received no click
events and three apps crashed after launching. These app evaluation results
were classified as ineffective because AFuzzShield exhibited limitations in
applying its knowledge to protect the apps from fuzzing.
The results in Tables 3 and 4 reveal that, in the best case, AFuzzShield
reduced 35.33% of app code coverage on average, down from the original
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Table 3. PADAG evaluation results.

App Name Inst. LoS LC0 LCA Delta R. Delta

aCal 44 45,161 9.62% 4.08% 5.55% 57.69%
Manpages 1 385 43.39% 48.85% –5.47% –12.61%
Wordpress 42 10,100 2.30% 1.45% 0.85% 36.96%
Translate 3 799 25.10% 20.35% 4.74% 18.88%
LearnMusicNotes 8 1,114 23.38% 17.60% 5.79% 24.76%
Jamendo 12 4,430 6.13% 6.12% 0.01% 0.16%
TippyTipper 20 2,623 31.33% 10.21% 21.12% 67.41%
SyncMyPix 15 10,431 9.91% 5.58% 4.34% 43.79%
BookCatalogue 68 27,235 3.64% 3.87% –0.22% –6.04%
AnyMemo 82 25,824 5.79% 4.81% 0.98% 16.93%
Dialer2 15 2,057 27.78% 21.74% 6.05% 21.78%
Divide&Conquer 2 814 42.25% 37.46% 4.79% 11.34%
QuickSettings 2 2,934 22.35% 23.65% –1.29% –5.77%
AndroidomaticK 6 1,307 24.89% 18.18% 6.72% 27.00%
K-9Mail 41 22,208 3.92% 3.97% –0.05% –1.28%
Blokish 1 93 29.54% 29.71% –0.17% –0.58%
MyExpenses 19 8,058 21.08% 16.36% 4.72% 22.39%
A2DP Volume 17 7,040 17.17% 10.27% 6.90% 40.19%
AardDictionary 4 2,197 14.67% 9.13% 5.53% 37.70%
RandomMusicPlay 6 1,053 32.88% 21.39% 11.48% 34.91%
Multi SNS 9 828 24.60% 9.68% 14.92% 60.65%
Ringdroid 6 2,928 4.12% 4.04% 0.08% 1.94%
Yahtzee 8 1,349 19.19% 5.95% 13.24% 68.99%
Baterrydog 5 985 20.51% 9.64% 10.87% 53.00%
SoundBoard 2 99 30.75% 26.62% 4.13% 13.43%
Nectroid 5 2,536 24.35% 20.85% 3.49% 14.33%
Alarm Clock 9 5,765 22.59% 19.95% 2.64% 11.69%
HotDeath 8 3,902 11.12% 9.42% 1.70% 15.29%
World Clock 4 1,242 53.03% 17.69% 35.33% 66.62%
AnyCut 3 436 29.50% 29.67% –0.17% –0.58%
MunchLife 4 506 39.80% 30.02% 9.78% 24.57%
aGrep 6 928 2.88% 11.16% –8.28% –287.5%
Mileage 13 4,628 12.88% 11.74% 1.13% 8.77%
LolcatBuilder 5 646 13.74% 11.16% 2.58% 18.78%
ImportContacts 2 1139 19.84% 16.43% 3.41% 17.16%
Battery Circle 6 739 46.51% 44.43% 2.09% 4.49%
WhoHasMyStuff 8 1,555 37.78% 30.29% 7.48% 19.80%
Photostream 4 1,375 10.26% 9.83% 0.43% 4.19%
SpriteMethodTest 1 1,018 15.14% 14.76% 0.38% 2.51%
PasswordMakerPro 4 1,535 25.17% 17.09% 8.09% 53.33%
myLock 3 885 17.21% 17.95% –0.74% –4.30%
aagtl 4 11,724 8.36% 8.01% 0.35% 4.19%
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Table 4. PADAG evaluation results (continued).

App Name Inst. LoS LC0 LCA Delta R. Delta

FileExplorer 1 126 35.59% 37.58% –2.00% –5.62%
LockPatternGen 2 669 37.09% 29.42% 7.66% 20.65%
CountdownTimer 4 1,415 43.90% 19.80% 24.09% 54.87%
HNDroid 1 1,038 5.22% 5.17% 0.05% 0.96%
WeightChart 3 23,67 18.92% 18.05% 0.87% 4.60%
MiniNoteViewer 21 3,673 11.49% 2.29% 9.20% 80.07%
passwordmanager 17 38,104 3.46% 0.70% 2.76% 79.77%

fuzzing result of 53.03%. More than half of the apps were effectively pro-
tected by AFuzzShield from being exercised by PADAG. While AFuzzShield
effectively protects most apps, there are four instances where app fuzzing
results became slightly better when AFuzzShield was deployed. Investiga-
tions of the results revealed the reason for the anomaly. Specifically, Dyn-
odroid and GuiRipper restarted the Android emulator after running each
trace and erased AFuzzShield intermediate data (i.e., logging traces and
accumulated statistics) stored on the SD card. AFuzzShield’s re-monitoring
and re-computing the patterns contributed to the performance deterioration.

4.2 Discussion

While AFuzzShield enables analyses of the reliability of Android app fuzzers in
generating app evidentiary data at runtime, certain technical limitations exist
in the underlying technique. First, AFuzzShield performance depends on the
original GUI layout design. If an app GUI layout is too simple and does not
have enough GUI elements that can help AFuzzShield monitor runtime inter-
action patterns, AFuzzShield cannot effectively reduce fuzzer performance. Sec-
ond, AFuzzShield does not consider situations where the entire device storage is
frequently restored during runtime, resulting in performance deterioration. To
address this issue, future research will attempt to force AFuzzShield to sync with
a network to permanently store runtime data.

Another limitation comes from the best-effort matching of apps and human
data in the evaluations. Without an appropriate dataset containing real-world
apps with source code and corresponding human user interaction traces, it was
possible only to derive the statistic model from Rico’s relative interaction user
interface data and apply the model to the AndroTest apps. This limitation could
be addressed if the apps used to create the Rico dataset were open-source to
support AFuzzShield deployment or data pertaining to human user traces could
be collected for AndroTest apps.
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5 Related Work

Conventional Android app testing is event-driven and GUI-based, which is dif-
ferent from the scope of this research. Therefore, the related work discussion
focuses on Android app fuzzing techniques.

5.1 Android App Fuzzing Techniques

AndroTest [41] compares and summarizes existing Android fuzzing studies prior
to 2016. Fuzzers are categorized into three groups by their exploration strate-
gies, random-based [13, 22, 40], model-based [1, 3, 6, 16, 39] and systematic [2, 3,
5, 23, 34]. Even fuzzers with similar exploration strategies have their own mini-
mization algorithms that reduce running time while maximizing code coverage.
Sapienz [25] stands out from other fuzzers in that it combines the three explo-
ration strategies and proposes to exploit a genetic algorithm to minimize test
sequences. DetReduce [7] incorporates a minimization algorithm that reduces
the Android GUI testing suites generated by existing fuzzers. APE [14] creates
its initial GUI model using runtime information that produces finer granular-
ity models than Stoat [32]. TimeMachine [11], which outperforms Sapienz and
Stoat, records and explores GUI state via virtual machine snapshots instead of
the traditional GUI models. In order to improve fuzzing performance, VET [37]
attempts to detect and drive fuzzer user interaction automation to avoid tarpits
such as looping in login and cancel buttons. In contrast, TOLLER [36] extracts
user interaction information by accessing app runtime memory instead of de-
pending on Android system services.

5.2 Android App Anti-Analysis Techniques

Existing anti-analysis techniques do not specifically protect Android apps from
fuzzers; instead, they generally attempt to evade program analysis tools deployed
on Android apps. Lim et al. [21] divide anti-analysis techniques as static or dy-
namic. Static approaches include obfuscation [15], repacking app code [19] and
verifying the integrity of executable files [4]. While static approaches are designed
to protect apps at the code level, dynamic techniques focus on detecting sandbox
environments (e.g. Android emulators) on which most fuzzers depend. Specifi-
cally, dynamic approaches fingerprint the data patterns of sandbox artifacts and
match them at runtime. Most approaches [10, 17, 24, 26, 35] distinguish sandbox
environments by checking device identifiers. Other characteristics include the
cumulative distribution function of intervals between sensor events [26], system
file content [17], consistent Android versions [24], frames per second [35] and
swiping trajectories [10].

The work of Diao et al. [10] is the closest to AFuzzShield. It leverages several
interesting ideas beyond system profiling, including swiping trajectories, phishing
activity and invisible user interaction traps, to distinguish human users from
fuzzers. However, some of these ideas are difficult to implement with real-world
apps because they require sufficient user data such as swiping trajectories or they
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may introduce malfunctions in the original apps due to invisible user interactions.
A key difference between the work of Diao and colleagues and AFuzzShield is
the targeting and evaluation scales that are unique to AFuzzShield. Additionally,
AFuzzShield is actually implemented on real-world apps and evaluated against
existing Android app fuzzers.

Costamagna et al. [8] determine sandbox environments via usage profiles such
as contact list information and installed apps instead of system profiles. However,
usage profiles in a sandbox environment are usually empty or are constructed
randomly, which are distinct from user device profiles. To address these issues
in dynamic approaches, Harvester [28] automatically replaces every conditional
constraint related to system characteristics with a Boolean value controlled by
the user space and, therefore, covers the protected program statements. AFuz-
zShield stands out from existing approaches in that it fingerprints the patterns
of Android app fuzzers instead of sandbox environments.

6 Conclusions

Android app fuzzers can reduce the manual effort required in mobile device
forensics by improving the efficiency of generating mobile app evidentiary data
in runtime by exercising apps. However, research has not investigated the relia-
bility and app program coverage when anti-fuzzing techniques are employed. The
AFuzzShield anti-fuzzing solution presented in this chapter helps understand the
impacts of anti-fuzzing techniques on app programs. Statistical differences iden-
tified by comparing the programming patterns shared by Android app fuzzers
and the interaction traces collected from human users were leveraged for this
purpose. The evaluation results demonstrate that 70% of the real-world apps in
AndroTest can be hindered successfully by anti-fuzzing techniques. Additionally,
the more complex the app GUI, the lower the program coverage obtained by a
fuzzer.

Future research will focus on extending AFuzzShield to cover more reliability
analysis cases of fuzzers by employing a larger app database than AndroTest that
contains more complex GUI designs that are closer to real-world apps as well
as more real-world human user interaction traces corresponding to the archived
apps.
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