European Journal of Operational Research 307 (2023) 20-32

=
UROPEAN OURNAL OF

Contents lists available at ScienceDirect PERRNONAC ESARER

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

On designing networks resilient to clique blockers N

Check for
updates

Haonan Zhong?, Foad Mahdavi Pajouh®*, Oleg A.Prokopyev®

2 Mechanical Engineering Department, City College, Kunming University of Science and Technology, Xishan, Kunming 650032, China
bSchool of Business, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
¢ Department of Industrial Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15261, USA

ARTICLE INFO ABSTRACT

Article history:

Received 19 January 2022

Accepted 13 September 2022
Available online 19 September 2022

Robustness and vulnerability analysis of networked systems is often performed using the concept of ver-
tex blockers. In particular, in the minimum cost vertex blocker clique problem, we seek a subset of ver-
tices with the minimum total blocking cost such that the weight of any remaining clique in the inter-
dicted graph (after the vertices are blocked) is upper bounded by some pre-defined parameter. Loosely
speaking, we aim at disrupting the network with the minimum possible cost in order to guarantee that
the network does not contain cohesive (e.g., closely related) groups of its structural elements with large
weights; such groups are modeled as weighted cliques. In this paper, our focus is on designing networks
that are resilient to clique blockers. Specifically, we construct additional connections (edges) in the net-
work and our goal is to ensure (at the minimum possible cost of newly added edges) that the adversarial
decision-maker (or the worst-case realization of random failures) cannot disrupt the network (namely, the
weight of its cohesive groups) at some sufficiently low cost. The proposed approach is useful for modeling
effective formation and preservation of influential clusters in networked systems. We first explore struc-
tural properties of our problem. Then, we develop several exact solution schemes based on integer pro-
gramming and combinatorial branch-and-bound techniques. Finally, the performance of our approaches
is explored in a computational study with randomly-generated and real-life network instances.

© 2022 Elsevier B.V. All rights reserved.

Keywords:

Networks

Integer programming
Network design
Network resiliency
Vertex clique blockers

1. Introduction

The problem of designing systems that are resilient to ad-
versarial attacks and random failures appears in a variety of re-
search domains; see, e.g., Chen, Zheng, Veremyev, Pasiliao, & Bo-
ginski (2021); Haimes (2009); Holling (1996); Yodo & Wang (2016).
Loosely speaking, the primary goal of this problem is to ensure
that a system of interest is capable of maintaining all (or some of)
its functionality after sustaining a certain degree of damage (dis-
ruption). Naturally, this problem is also studied in the network
analysis literature, in particular, when the considered system is
modeled as a graph (Sharkey, Nurre Pinkley, Eisenberg, & Alderson,
2021).

1.1. Blockers and the minimum cost vertex blocker clique problem

In the graph-theoretical models, disruptions are represented by
removals of vertices and/or edges from a given graph. For exam-

* Corresponding author.
E-mail addresses: 20210086@kust.edu.cn (H. Zhong), fmahdavl@stevens.edu (F.
Mahdavi Pajouh), droleg@pitt.edu (O. A.Prokopyev).

https://doi.org/10.1016/j.ejor.2022.09.013
0377-2217/© 2022 Elsevier B.V. All rights reserved.

ple, in a telecommunication system, a failed (or jammed) connec-
tion between two nodes corresponds to an edge removal; similarly,
a failed structural element (e.g., a router, a sensor) in the consid-
ered system corresponds to a vertex removal. In the related net-
work analysis and combinatorial optimization literature, the main
research focus is on:

(i) detecting a subset of vertices (or edges) of the smallest total
cost whose removal (the other terms commonly used are in-
terdiction and blocking) ensures that some graph property of
interest (e.g., the maximum weight of a clique in a graph) is
restricted by some upper (or lower) bounds given by a pre-
defined parameter; or

identifying a subset of vertices (or edges) with their total
cost upper bounded by some pre-defined parameter, whose
deletion results in the largest change (either increase or de-
crease depending on the application context) of the consid-
ered graph property.

(ii

—

We note that these two problem types are naturally linked. In
particular, the objectives in the problems of type (i) appear in the
constraints of the corresponding problems of type (ii), and vice
versa. The considered combinatorial optimization problems are

https://doi.org/10.1016/j.ejor.2022.09.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.09.013&domain=pdf
mailto:20210086@kust.edu.cn
mailto:fmahdav1@stevens.edu
mailto:droleg@pitt.edu
https://doi.org/10.1016/j.ejor.2022.09.013

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

known as the minimum vertex/edge blocker problem (Mahdavi Pa-
jouh, 2019; Mahdavi Pajouh, Walteros, Boginski, & Pasiliao, 2015;
Ries et al., 2010; Wei, Walteros, & Pajouh, 2021) and the most
vital (critical) vertices/edges problem (Furini, Ljubi, Martin, & San
Segundo, 2019; Veremyev, Boginski, & Pasiliao, 2014a; Veremyev,
Prokopyev, & Pasiliao, 2014b; 2015; 2019), respectively.

A number of important network characterizations are ex-
plored in the context of vertex/edge blockers, such as the clique
(Mahdavi Pajouh, 2019; Mahdavi Pajouh, Boginski, & Pasiliao, 2014;
Tang, Richard, & Smith, 2016), independent set (Bazgan, Touba-
line, & Tuza, 2011), dominating set (Mahdavi Pajouh et al., 2015),
vertex cover (Bazgan et al., 2011), spanning tree (Bazgan, Touba-
line, & Vanderpooten, 2013; Frederickson & Solis-Oba, 1999; Lin &
Chern, 1993), pair-wise connectivity (Arulselvan, Commander, Elef-
teriadou, & Pardalos, 2009; Di Summa, Grosso, & Locatelli, 2011;
2012; Shen, Nguyen, Xuan, & Thai, 2012; Veremyev et al., 2014a;
Veremyev et al., 2014b), shortest path (Israeli & Wood, 2002;
Khachiyan et al., 2008; Schieber, Bar-Noy, & Khuller, 1995), match-
ing (Zenklusen, 2010a), and maximum flow (Afshari Rad & Kakhki,
2017; Altner, Ergun, & Uhan, 2010; Ghare, Montgomery, & Turner,
1971; Wollmer, 1964; Wong et al., 2017; Wood, 1993; Zenklusen,
2010b) network properties. In this paper, we focus on the concept
of a weighted clique.

Formally, let G= (V,E) be a simple undirected graph, where
V=A{1,...,n} and EC{(i,j): ieV, jeV} are its sets of ver-
tices and edges, respectively. For any subset of vertices S C V, let
G[S] = (5,E) denote the subgraph induced by S in G, where E =
{G,j)eE : i,jeS}.

A clique C is a subset of V such that G[C] is a complete graph;
the problem of finding a clique of maximum cardinality (weight) in
a given graph is referred to as the maximum (weight) clique prob-
lem. This problem is one of the classical NP-hard combinatorial op-
timization problems (Pardalos & Xue, 1994). There is a variety of
important applications, where the concept of a clique is used to
represent a cohesive (closely related) group of structural elements
of a system modeled as a graph (Wu & Hao, 2015).

Assume that the graph is vertex-weighted, that is, we are given
a vector of vertex weights w = (wyq, ..., wn)T, where w; > 0 for all
ieV. We denote by W(Q) the weight of a set Q €V, which is
simply the sum of the weights of all vertices in Q, i.e, W(Q) =
ZieQ w;.

Then, the minimum cost vertex blocker clique (MCVBC) problem
is defined as follows (Mahdavi Pajouh et al., 2014; Nasirian, Mah-
davi Pajouh, & Namayanja, 2019). Suppose that the decision-maker
is allowed to block (remove) vertices from the graph and the cor-
responding blocking costs are given by b= (bq,...,by)T, where
b; > 0 for all i e V. The decision-maker’s goal is to find a subset
of vertices D € V with the minimum total blocking cost such that
for any remaining clique, Q, in the interdicted graph G[V \ D], its
weight, W(Q), is at most 7, which is some given positive parame-
ter. That is, the decision-maker solves the following problem:

[MCVEC]: B(G.n) = min{B(D) : w™(CG[V\D]) <n}.

where B(D) := Y ;.pb; is the total blocking cost and w™(G[V \ D])
denotes the maximum weight of a clique in the interdicted net-
work.

As a side note, we should mention about the maximum clique
interdiction problem considered by Furini et al. (2019), which is
closely related to the MCVBC problem. In particular, in the model
by Furini et al. (2019), the objective is to minimize the size of a
maximum clique in a graph subject to a budgetary restriction on
the number of nodes blocked (interdicted); recall our earlier dis-
cussion on the two possible problem types and the links between
them.

21

European Journal of Operational Research 307 (2023) 20-32

To summarize, when solving the MCVBC problem, we assume
that G models an adversarial network. Then by solving the con-
sidered clique blocker problem our goal is to disrupt this network
at the minimum possible vertex blocking cost to guarantee that
the network does not contain cohesive (i.e., organized, pairwise
connected, closely related) groups of structural elements that have
their total vertex weight above some pre-defined parameter

1.2. Designing networks resilient to clique blockers

In this paper, our focus is on designing networks that are re-
silient to clique blockers. Specifically, assume that we are allowed
to construct additional pairwise connections (i.e., edges) in the net-
work at some cost given by ¢ = (¢;; : (i, j) € E)T, where E denotes
a candidate set of non-adjacent vertex pairs. That is, E is a subset
of E={(i,j) : i,jeV, (i,j) ¢E}, ie, E CE; set E is known to as
the complement of E.

Denote by C(E) := Z(i’j)ef ¢jj the total cost of additional edges

constructed in the designed network G = (V,EUE). Then the
clique-blocker-resilient network design (CBRND) problem is given as
follows:

[CBRND]: min {C(E) : B(G.n) = B, where G= (V,EUE)},
EcE

and B is an additional pre-defined positive parameter.

In other words, in the considered network design setting, we
assume that there exists an adversarial decision-maker, who solves
the minimum cost vertex blocker clique problem. Naturally, this
decision-maker may also correspond to the worst-case realization
of random failures in a given networked system modeled as G. We
construct additional connections in the network, and our goal is to
guarantee (at the minimum possible cost of newly added edges)
that this adversarial decision-maker needs to have at least 8 units
in its budget whenever he/she needs to ensure that the maximum
weight of a clique in the interdicted network is at most 7.

Loosely speaking, by adding edges to the network we provide
a certain level of protection, which is given by some pre-defined
parameters 1 and B in the considered problem setting. That is,
the adversarial decision-maker needs to have sufficiently large in-
terdiction (blocking) budget in order to disrupt the cohesive sub-
groups in the network.

Fig. 1 (a) illustrates an instance of the MCVBC prob-
lem, where V ={1,2,3,4,5}, E={(1,2),(1,3),(2,3), (2,4}, w=
(1,1,1,1,2)T, b= (2,1,2,2,2)7, and n = 2. For this MCVBC prob-
lem instance, we have B(G,n)=1. Fig. 1(b) shows an in-
stance of the CBRND problem with the same graph, where E =
{(1,4), (3,4), (2, 5), (4, 5)}, C1g = 1, C34 = 1, Cy5 = 1, Cq5 = 1, and
1n = B = 2. An optimal solution for this CBRND problem is to con-
struct edge (4,5); that is, E = {(4, 5)}, which results in B(G, n) = 3.

1.3. Our contribution and the paper structure

To the best of our knowledge, our work is the first study on de-
signing networks that are resilient to blockers, specifically, clique
blockers. We address some basic structural properties of the prob-
lem (including a brief discussion on its computational complexity)
in Section 2. Next, we contribute to the literature by providing an
integer programming (IP) model, which can be used with a lazy-
fashioned branch-and-cut (LBC) algorithm; see Section 3. As an al-
ternative (and somewhat more advanced) solution scheme, we de-
velop a combinatorial branch-and-bound (CBB) algorithm for our
problem; see Section 4. The proposed solution approaches are then
compared in an extensive computational study with randomly-
generated and real-life network instances; see Section 5. Finally,
we provide some concluding remarks and outline directions for fu-
ture research in Section 6.

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

wp = 1 wy = :
by =2 b, =1 '
’—\\ W5 = 2 :
2) !
x b5 =2 I
1
®
i
w3 = 1 Wy = n= 2 i
by =2 by =2 |
1
Zias 1
\) Optimal blocker E
=~ of MCVBC !
!
(@)

European Journal of Operational Research 307 (2023) 20-32

Existing edge

Optimal solution
N
Nominee edge |)

~-

(b)

Optimal blocker
of MCVBC

Fig. 1. (a) An instance of the minimum cost vertex blocker clique (MCVBC) problem with n = 2. (b) An instance of the clique-blocker-resilient network design (CBRND)

problem on the same graph with n =8 = 2.

2. Structural properties and computational complexity

We first outline some additional notations and assumptions
made throughout the paper; see Section 2.1. Furthermore, as
briefly outlined in the previous section, we describe some ba-
sic characterization of feasible solutions of the CBRND problem in
Section 2.2 and address its theoretical computational complexity in
Section 2.3. Note that the results from Section 2.2 provide the basis
for establishing the correctness of the proposed IP model and our
combinatorial based algorithms in Sections 3 and 4, respectively.

2.1. Additional notations, and assumptions

For simplicity, we use P = (G,E,w,b,c, 1, 8) to denote an in-
stance of the CBRND problem. We assume that all components of
c are strictly positive, while n and B are nonnegative. Also, we as-
sume that all instances of the CBRND problem considered in this
paper are feasible. It implies that E = E forms a feasible solution to
the CBRND problem. That is, for each D €V with B(D) < B, there
exists a set Q €V \ D such that Q is a clique in G=(V,EUE) and
W(Q) > n; consequently, we have 8 < B(V).

Finally, we assume w; < n for all i € V. Otherwise, a vertex with
weight larger than n needs to be always blocked in every feasible
solution to the CBRND problem.

2.2. Basic characterization of a feasible solution

We first introduce two concepts, i.e., f-maximal-blockers and n-
minimal-clique-candidates, which are used to characterize the set of
feasible solutions of our problem. These two concepts are defined
as follows.

Definition 1. Given P = (G, E,w, b, ¢, 5, 8), a B-maximal-blocker is
a subset of vertices D € V such that B(D) < 8 and D is not strictly
contained in another subset of vertices satisfying this condition.
The set containing all S-maximal-blockers is denoted by dJK B

Definition 2. Given P = (G, E,w,b,c, n, B), an n-minimal-clique-
candidate is a subset of vertices Q €V such that {(i, j) i,je
Q} < (EUE), W(Q) > 1, and Q does not strictly contain another
subset of vertices satisfying these conditions. The set containing
all n-minimal-clique-candidates is denoted by \I/‘,‘{,,,].

Feasibility of a solution can be verified using the concepts of g-
maximal-blockers and n-minimal-clique-candidates as we formally
establish next.

22

Proposition 1. Given an instance P = (G,E,w, b, c,n, B), set E CE

is a feasible solution of P if and only if for each D € (bgﬂ, there exists

Qe Wy, such that QD = ¢ and Q is a clique in G = (V.EUE).

Proof. — Let E be a feasible solution. Therefore, the cost of block-
ing cliques in G is at least 8, i.e., B(G,) > B. That is, regardless of
how vertices in graph G are removed, if the total blocking cost is
strictly less than f, then we can always find a clique of weight
strictly greater that n in the remaining graph.

By Definition 1, the blocking costs of all 8-maximal-blockers in
@K’ﬂ are strictly less than B. Thus, after removing a set D € (Dg.ﬁ

from G, there should exist Q' < V \ D such that W(Q’) > n and Q'
is a clique in G. By Definition 2, Q’ is either an n-minimal-clique-
candidate or contains an n-minimal-clique-candidate. Thus, there
exists Q € '~I/“,",.,7 such that QD = ¢ and Q is a clique in G.

<= Consider an arbitrary set D’ €V with its blocking cost
strictly less than B. By Definition 1, D’ is either a B-maximal-
blocker or is contained in a B-maximal-blocker. Therefore, there

exists D e CD‘; P such that D’ € D. By our assumption, we know

that there exists Q ¢ \IJ“,/\,Y,7 such that QND =¢ and Q is a clique
in G = (V,EUE). Also, W(Q) > n by Definition 2. Then it is easy to
verify that Q also exists after removing D’. Note that D’ is selected
arbitrarily. Thus, there exists a clique of weight strictly greater than
n in the remaining graph when any vertex set with its blocking
cost strictly less than 8 is removed from G. Therefore, B(G, 1) > B
and £ is a feasible solution to P. O

Next, we derive some upper bounds on the running times re-
quired to compute all B-maximal-blockers and n-minimal-clique-
candidates. Our proofs are constructive and we outline the corre-
sponding algorithms.

Lemma 1. Given an instance P = (G,E,w, b, c, 7, B), sets d)KB and
\JJ“,/,,Y,, can be constructed in O(nf) and O(nn"*1), respectively.

Proof. Let 1, B, and all elements of w and b be ratio-
nal numbers. Then they can be multiplied by a sufficiently
large constant to make them all integers. Hence, without loss
of generality, in the remainder of the proof we assume that
n, B, and all elements of w and b are strictly positive integers,
which is a common assumption in the integer programming liter-
ature.

In view of the assumption above, it is relatively easy to ver-
ify that the cardinality of any B-maximal-blocker is at most
B —1. Next, we show that the cardinality of any n-minimal-
clique-candidate is also bounded above by 7 + 1. Assume that it
is not the case, i.e. there exists an n-minimal-clique-candidate

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

O
@® M o a8
())
. P O
/7 e (3 .
L) N
N -
. ® o , -
-
o @

---- Constructed edge
Existing edge

(b)

Fig. 2. (a) An optimal solution for the randomly-generated instance 20-10-10-4.
(b) An optimal solution for the real-life network football-20-10-40. Vertices with
higher weights are shown using darker colors, and vertices with higher blocking
costs are larger in size.

Q ={iy....,ig} such that |Q| > n+ 2. By its definition, we know
that W(Q) = w;, +w;, +... +w;, > n. Also, from our earlier as-
sumption, we have |Q \ {i;}| > n+1 > n. Recall that we assume
that the elements of w are strictly positive integers. Then, W(Q \
{i1}) > n, which implies that Q is not minimal and we have a con-
tradiction; recall that Q is assumed to be minimal.

To construct set CID‘;Y p» one can employ a bounded depth-first-
search enumeration, where each parent node is branched on to
create as many children as there are vertices that are not already
included into the parent’s partially constructed S-maximal-blocker
(which is initially empty at the root node). Naturally, the branch-
ing on each node is continued as long as the blocking cost of par-
tially constructed B-maximal-blocker is less than . If none of the
children nodes of a parent node can be branched on, then the path
connecting the root node to the parent node in the search tree cor-
responds to a B-maximal-blocker. Given the aforementioned up-
per bound on the cardinality of a f-maximal-blocker, the depth of
the search tree is bounded by B (a depth of at most 8 — 1 for the
B-maximal-blocker itself and one more layer containing children
nodes that cannot be further branched on). Moreover, the number
of tree nodes in each level is O(n). Therefore, the outlined proce-

dure can construct @Kﬁ in 0(nf).

For \D,‘,{,‘,], a similar approach can be used. Here, after including
a vertex i into a partially constructed n-minimal-clique-candidate
at a given search tree node, we need to make sure that all pairs of
vertices in this partially constructed solution, that include vertex
i belong to set EUE. Given the above mentioned upper bound on
the size of a n-minimal-clique-candidate, this verification step can
be done in O(n) at each node of the search tree. The branching
on each node is continued as long as the weight of the partially
constructed n-minimal-clique-candidate is less than 7. Whenever
the weight of the partially constructed solution becomes at least
n, the branching on the present tree node is terminated, and
the constructed solution is examined to verify whether it satis-
fies the minimality condition in Definition 2. Again, using the up-
per bound on the size of a n-minimal-clique-candidate, this can be
done in O(n + 1) by finding and dropping the vertex with mini-

23

European Journal of Operational Research 307 (2023) 20-32

mum weight from the obtained solution and verifying whether the
weight of the remaining set is less than 7. Given that the depth of
the search tree in bounded by 1 + 1, and the number of tree nodes
in each level is O(n), we conclude that the running time needed to
construct Wy, , is bounded by O(yn*1). O

2.3. On computational complexity

Define the decision version of the CBRND problem as follows.
Given an instance P = (G,E,w, b, ¢, 77, 8) and « > 0, the question is
whether there exists a set E < E such that B(G, n) > B and c() <
o, where G = (V,EUE).

The decision version of the classical maximum clique problem
used in our reduction below, is given as follows. Given G = (V,E)
and an integer k > 0, we need to verify whether there exists a
clique D €V in G such that |D| > k. This problem is known to be
NP-complete (Garey & Johnson, 1979)

Proposition 2. The decision version of the CBRND problem is NP-
hard.

Proof. Given an instance of the maximum clique problem, con-
sider the same graph G and let the candidate set E be equal to the
complement edge set E. Furthermore, assume that the weight and
the blocking cost of each vertex is equal to one, i.e., w; = b; = 1 for
all i e V. Similarly, the cost of adding an edge between any non-
adjacent pair of vertices is also equal to one, ie., ¢;=1 for all
(i,j) € E.

Let n = k — 1. That is, the decision-maker in MCVBC aims at re-
ducing the size of the maximum clique in G to at most k — 1. Next,
observe that B(G,k—1) > 1 if only if G contains a clique of size
at least k. Therefore, by setting 8 =1 and « =0, we reduce the
problem of verifying whether there exists a clique of size at least
k in G to a special case of the aforementioned decision version of
the CBRND problem. Namely, G contains a clique of size at least k
if only if we obtain a feasible solution to the CBRND problem by
setting £ = ¢ with ¢(£) =0. O

The above proof is relatively straightforward and we provide it
to illustrate the fact that the considered CBRND problem is difficult
from the theoretical perspective. However, one could argue that a
somewhat stronger result could be established. We note that the
decision version of the maximum clique interdiction problem is
known to be Eé’-complete; we refer to the discussion by Furini
et al. (2019) and the earlier work by Rutenburg (1994). Recall that
in the decision version of the maximum clique interdiction prob-
lem, we verify whether it is possible to remove a subset of at most
B nodes from a given graph to ensure that the graph does not
contain a clique of size n. From the proof of Proposition 2, we
observe that by setting o = 0, we reduce the CBRND problem to
verifying whether B(G, n) > B. The latter (assuming that the ver-
tices blocking costs and weights are all ones) is equivalent to ver-
ifying whether the graph contains a clique of size n+1 for any
removal of at most 8 — 1 nodes. Therefore, one should expect that
the CBRND problem should be l'[g—hard; see, e.g., Garey & Johnson
(1979) for the definitions and other related complexity classes. Fi-
nally, we leave the question of pinpointing precise complexity of
the CBRND problem as a direction for future research.

3. Integer programming (IP) techniques

Next, we describe an IP model for the CBRND problem. In par-
ticular, the results of Proposition 1 form the basis for this formu-
lation. Consequently, we outline a lazy-fashioned branch-and-cut
approach to solve the proposed IP model.

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev
3.1. Base IP model

We first re-define the CBRND problem by employing the con-
cepts of B-maximal-blockers and n-minimal-clique-candidates; re-
call Definitions 1 and 2, respectively. Specifically, given S C \IJV‘{,,]
we denote the unique set containing all elements of E whose con-
struction is necessary to transform all n-minimal-clique-candidates

in S into cliques as E(S). Furthermore, let 5(5) c <I>Kﬂ to be

the collection of all 8-maximal-blockers whose removal from G =
(V,EUE(S)) results in a graph in which the maximum weight of a
clique is not greater than 7.

In view of the above definitions, by Proposition 1, the CBRND
problem is equivalent to

min {C(E(S)) : D(S) =n}.
ScWw,

which we next reformulate as an IP model.

We define two sets of binary variables, denoted by x;; for all
@i, j) € E and Yo forall Q e lll,‘,/‘,’n. Let x;; = 1 if and only if an edge
is constructed between vertices i and j, where (i, j) € E. Also, let
Yo =1 if and only if Q € \IJ“,",’” is contained in a feasible solution
of our model. Then, the CBRND problem can be formulated as fol-

lows:

min > cixg, (1a)
(i.j)eE

s. t. > Yo=1, VDe®y,, (1b)
QeWy, : QND=p

HG.j)eE :ijeQllyos > x5 VQeWy,. (10)

(i.j)eE.i.jeQ
x;€{0,1}, V(i j) €k, (1d)
Yo €{0.1}, VQeWy,. (1e)

where the objective function in (1a) minimizes the total edge
construction cost. Constraint (1b) ensures that for each possible
blocking of cost less than S, there exists a clique of weight larger
than 7 in the remaining network. Constraint (1c) ensures that the
vertices in Q (that correspond to yo = 1) form a clique in the de-
signed network, i.e., there is a newly constructed edge between all
disconnected node pairs in the original graph.

Finally, we note that the IP model given by (1a)-(1e) requires
identification of all elements of sets Qgﬂ and ‘-Il“,’v.,]. This step could
take exponential time (with respect to 8 and n) as outlined in the
proof of Lemma 1.

3.2. Lazy-fashioned branch-and-cut (LBC) algorithm

Here, we describe a lazy-fashioned branch-and-cut (LBC) algo-
rithm for solving the IP model (1a)-(1e). As outlined earlier, this
IP model requires enumeration of all S-maximal-blockers and -
minimal-clique-candidates. As shown by Lemma 1, constructing
these sets is computationally expensive; recall that it might take
exponential time with respect to 8 and 7. Therefore, it might be
beneficial to incorporate one or both of the corresponding con-
straint sets, see (1b) and (1c), as lazy cuts. However, we observe
that enumerating all n-minimal-clique-candidates is somewhat in-
evitable as it is required for the definition of variables yq. Hence,
we implement only constraints (1b) as lazy cuts.

We start the algorithm with a relaxed master problem (RMP),
which is simply the IP model (1a)-(1e) without constraints (1b).

24

European Journal of Operational Research 307 (2023) 20-32

We solve the RMP by using a standard branch-and-cut algorithm
(e.g., via an off-the-shelf IP solver). Then, whenever a feasible so-
lution to the RMP is returned at a search tree node, we solve
a sub-problem (see below) to verify whether there exists a -
maximal-blocker that is “intersecting” all constructed n-minimal-
clique-candidates.

That is, the blocker contains at least one node in common with
every n-minimal-clique-candidate and (1b) is violated. If such 8-
maximal-blocker does not exist, then we can fathom the tree node
as we have a feasible solution, and update the incumbent solution
if necessary. Otherwise, we add constraint (1b) associated with the
identified B-maximal-blocker to the RMP in order to cut off the
current solution.

Specifically, denote a feasible solution to the RMP by (X,y). Re-
call that in the proof of Lemma 1, we assume that all parameters
are integers. If this assumption does not hold, then there exists a
strictly positive constant k such that n, 8, and all elements of w
and b become integers if they are multiplied by k.

Define a set of binary variables z;, i € V, where z; = 1 if and only
if i belongs to a f-maximal-blocker. Then, we consider the follow-
ing feasibility problem:

> kbizi < kB —1, (2a)
ieV
Y zi=1, YQeWy,sty=1, (2b)
ieQ
z; € {0, 1}, VieV, (20)

where constraint (2a) ensures that the blocking cost of set
D={ieV : z =1} is strictly less than g, i.e, D defines an ap-
propriate blocker. Constraint (2b) ensures that set D intersects all
constructed n-minimal-clique-candidates.

Clearly, if (2a)-(2c) is infeasible, then (X,y) is a feasible solu-
tion of the CBRND problem. Otherwise, (X,y) is not a feasible so-
lution of the CBRND problem as set D defines a blocker of cost
smaller than §, that intersects all constructed n-minimal-clique-
candidates. Note that D is not guaranteed to be a B-maximal-
blocker. To find a B-maximal-blocker containing D, we recursively
add vertices i e V\ D into D in the increasing order of b; un-
til adding one more vertex results in B(D) being larger than or
equal to B. Finally, constraint (1b) associated with the obtained -
maximal-blocker D, which is violated by (X,y), needs to be added
into the RMP, and the algorithm continues.

4. Combinatorial branch-and-bound (CBB) algorithm

The focus of this section is on the combinatorial branch-and-
bound (CBB) algorithm. Similar to the IP model in (1a)-(1e), the
considered CBB algorithm is based on the characterization of fea-
sible solutions given by Proposition 1. The structure of the search
tree as well as the details of the upper and lower bounding ap-
proaches are described in Sections 4.1-4.3, respectively.

4.1. Search tree structure

We refer to a clique constructed by adding appropriate edges
from E to some n-minimal-clique-candidate, as an #-minimal-
clique. Based on Proposition 1, the CBB algorithm constructs a
collection of n-minimal-cliques with minimum construction costs
such that for each S-maximal blocker, there exists an np-minimal-
clique that does not have any vertex in common with the blocker.
To enumerate all combinations of cliques constructed using n-
minimal-clique-candidates, we apply a binary search tree, and
split each tree node into two branches, namely, one associated

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

with constructing a clique using some chosen n-minimal-clique-
candidate Q by adding all missing edges (to obtain a clique), and
the other one related to not adding any additional edge between
vertices in Q. The pseudo-code is given by Algorithm 1. Next, we
provide its detailed discussion.

Denote by t9, q > 0, the nodes of the search tree (or simply the
tree in the discussion below), where q serves as an index of each
node and t0 corresponds to the root node of the tree. Each node t9
contains a solution set (denoted by Sq) and a candidate set (denoted
by Ty). Specifically, set Sq is the collection of n-minimal-cliques
constructed throughout the unique path connecting the root node
t0 and the current tree node t9. Set T, contains n-minimal-clique-
candidates that have not been processed yet, and constructing a
clique using them may result in a feasible solution to the CBRND
problem.

To be more precise, given a tree node t9, the set of n-minimal-
clique-candidates that may result in a feasible solution to the
CBRND problem is defined as

\’I\J(Sq)z{Qe\IJ“,’v,,] : QnD =g for someDe&D(Sq)}, (3)

where we need to recall our discussion at the beginning of
Section 3.1 for the definition of set ®(Sq). Thus, set T, contains
elements of \IJ(Sq) that belong to the candidate set of the parent
node of node t9 and have not been chosen for branching yet. At
the root node (i.e., ¢ = 0), we have Sy =@ and Ty = ¥ (Sp).

When branching on a parent node t4, we first select an element
Q of Ty as the branching variable, and then create two child nodes.
Namely, the first one is based on constructing a clique using Q by
adding the missing edges, and the other is based on not adding
any additional edge between vertices in Q.

We note that Sg is a feasible solution if and only if 5(5,,) is
empty. Hence, the effectiveness of constructing a clique using a set
Q € T; can be measured by the decrease in the cardinality of a)(Sq)
after adding Q to Sg, i.e.,

ADG(Q) = |D(S)| — [P (Sgu{Q}).

Note that, when adding Q to Sy, some edges in E({Q}) may
have already been constructed as part of E(Sq); recall the defini-
tion of E(-) at the beginning of Section 3.1. Thus, the additional
cost of constructing a clique on Q is given by

ACe(Q) = C(E({Q}) \ E(Sy)). (4)

Consequently, the branching variable selection rule used here is to
choose an element Q e Ty that has the highest effect per unit in-
crease in its construction cost, i.e., the maximum ratio of Ad>q(Q)
and ACq(Q). This branching variable selection rule has a good po-
tential to find low-cost feasible solutions within a reasonably small
number of iterations, which, in turn, decreases the depth of the
search tree.

We create the child node associated with constructing a clique
using n-minimal-clique-candidate Q prior to the child node cor-
responding to not adding any additional edge to set Q. For the
first child node (denoted by tP), the solution set is formed by
adding set Q to set Sg, i.e., Sp = Sq U {Q}. The candidate set of this
child node is composed of n-minimal-clique-candidates in Ty \ {Q},
which have the potential to make E(Sp) feasible, ie., Tp= (Tg\
{Qhn \IJ(Sp) The second child (denoted by t") has the same solu-
tion set as its parent node, i.e. S; = Sq. Furthermore, for the candi-
date set, we simply need to set T, = Ty \ {Q}. The detailed pseudo-
code of outlined branching algorithm is given in Algorithm 2.

The search strategy used is a depth-first-search (DFS) strategy
in which we choose an unprocessed node from the deepest layer
of the tree for further processing. In case there are two nodes
in the deepest layer, the node associated with constructing an n-
minimal-clique is selected. This search strategy is consistent with
our branching variable selection rule discussed above (selecting Q

25

European Journal of Operational Research 307 (2023) 20-32

Algorithm 1: A combinatorial branch-and-bound (CBB) algo-
rithm.

Input: P = (G,E,w,b, ¢, 1, 8)

Output: A set E* C E that is an optimal solution for the
CBRND problem, i.e., C(E*) is minimum possible given that
for graph G* = (V,E UE*), we have B(G*,n) > B

Node_Counter < 0;

Sp < #:Ty < U(Sp);t < (So. To): // Create root
node t°
Tree< @; // Initialize the search tree
E* < UB(c, (Dbﬁ \IIK, ,7); // See Section~4.2
BRANCH(c, ':I>b L Wy . t0.Tree,Node_Counter);
while Tree # ¢ do
Select a node t9 € Tree using DFS strategy; // See
Section~4.1
Tree<Tree\ {t%};
if t9 is associated with constructing an n-minimal-clique
then
if E(Sq) is feasible (i.e., 5(Sq) =¢) then // See
Section~4.1
if C(E*) > C(E(Sq)) then
E* < E(Sq); // Update the incumbent
solution
end
end
else
if C(E*) >LB(c, (bbﬂ’ n,tq) then //therwise,
fathom-~t4
‘ BRANCH(c, qD‘l:,ﬁ’ w,n» t9,Tree,Node_Counter);
end
end
end

else // t9 is associated with not adding any
additional edge
if E(S;) UE(Ty) is feasible (i.e, ®(S;UT,) = #) then
// Otherwise, fathom t? by infeasibility
if C(E*) >LB(c, ®Y ,, WY ~ t9) then //Otherwise,

b.g> W
fathom t4
‘ BRANCH(c, @bﬁ, 4 n» t9,Tree,Node_Counter);
end
end
end
end
return E*,

with maximum A@q(Q)/Acq(Q)), which encourages the detec-
tion of good quality feasible solutions (upper bounds) at the early
stages of the algorithm.

Furthermore, it should be noted that if a tree node t9 associ-
ated with a clique construction is selected for further processing,
then we first need to verify whether E(Sq) is a feasible solution.
If @(Sq) is empty, then E(Sq) is a feasible solution according to
Proposition 1. We then fathom node t9 by feasibility, and update
the incumbent objective if necessary. If E(Sq) is not a feasible so-
lution, then we verify whether the lower bound at node t9 (dis-
cussed in Section 4.3) is smaller than the incumbent objective. If
the answer is no, then we fathom node t? by bound. Otherwise,
the branching function is called (see Algorithm 2) and the children
nodes of node t7 are created and added to the search tree.

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

Algorithm 2: The branching function.

Function BRANCH(c, <1>K_ 5 \I/“,(,Y”, t9,Tree,Node_Counter)
Select Q e Ty with the max value of A®4(Q)/ACq(Q);
Ty < T\ {Q};

Node_Counter<« Node_Counter+1;

p < Node_Counter;

// Create tP associated with adding Q

Sp < Squi{Q};

Ty < W(Sp) N Ty;
tP « (Sp. Ty);
Tree < Tree U {tP};
Node_Counter< Node_Counter+1;

r < Node_Counter;

// Create t" associated with NOT adding Q
Sr < Sq;

T < Tg;

th < (5r, T);

Tree < Tree U {t'};

end

// See Section~4.1

Finally, node t9, which corresponds to a clique construction,
may never be fathomed by infeasibility; recall that the parent of
node t9 is not fathomed by infeasibility. On the other hand, if
t? is associated with not adding any additional edge to some n-
minimal-clique-candidate, then we need to verify whether E(Sq) U
E(Ty) is a feasible solution, which is done by checking whether
d(SquUTy) is empty. If ®(SqUTy) is not empty, then we fathom
t? by infeasibility. Otherwise, we continue to verify whether t9 can
be fathomed by bound; if not, then the algorithm continues with
branching.

4.2. Upper-bounding approach

We use a heuristic approach to find a feasible solution, and
initialize the upper bound. The heuristic recursively constructs n-
minimal-cliques in a greedy routine until the construction is feasi-
ble; see the pseudo-code in Algorithm 3.

Algorithm 3: An algorithm for finding a valid upper bound.

: % %
Function UB(c, <I>b1 g "pw,n)
S* <~ @;
T* < U(S);

while E(S%) is not feasible (i.e., 5(5*) £ () do
Pick Q € T* with the maximum value of
%, \ dQhI/CEQ):;
S* <~ S*u{Q};
T* « W(S*);
end
return E(S*);
end

// See Section~4.2

Specifically, we start with an empty solution set S$* and
a candidate set T* which is initialized with T* = W (5*); re-
call Eq. (3) in Section 4.1. In each iteration, we find the n-
minimal-clique-candidate Q € T* with maximum value of |<I>g_ﬁ\

<T>({Q})|/C(E({Q})) in T*. Notice that we do not use |€>(S*)\
6(S*U{Q})|/C(E({Q})\E(S*)) in order not to update the ratio
whenever an element is added to S*. Then, we add Q to S* and
update T* with n-minimal-clique-candidates in T* \ {Q} that have
potential to make E(S*) feasible. We repeat this cycle until set
E(S*) becomes a feasible solution.

26

European Journal of Operational Research 307 (2023) 20-32

The running time of the proposed upper bounding heuristic is
exponential in the worst case as discussed in Appendix A.

4.3. Lower-bounding approach

Next, we discuss the approach for computing a valid lower
bound at each node t? of the search tree. Proposition 3 below
presents one such bound using (4).

Proposition 3. Given a tree node t9, if E € E is a feasible solution to
the CBRND problem that is within the subtree rooted at t9, then

C(E) = C(E(Sy)) +max {8(D) : De ®(Sy)}.
where

8(D) =min{AC;(Q) : QeT;, QND =9}

Proof. The proof of Proposition 3 is provided in Appendix B. O

To use the lower bound from Proposition 3 at a node t9,
we need to compute the maximum value of §(D) across all 8-
maximal-blockers D e dA>(Sq), and then add this maximum value to
the cost of E(Sq), i.e., C(E(S¢)). To find 8(D) for a given D € ®(Sy),
we need to compute the minimum value of ACy(Q) across all
Q € Ty that satisfy Q N D =@. The details of our algorithm are in
Algorithm 4.

Algorithm 4: An algorithm for finding a valid lower bound at
each search tree node.
Function LB(c, QDXV P Wy, 1)
Cmax < 0;
foreach D ¢ <T>(Sq) do
Cmm <~ 00,
foreach Q € T; such that QN D = ¢ do
‘ Cimin < Min{Cpin, ACq(Q)}; // See Section~4.3
end
Cmax < Max{Cmax, Cmin};
end
return C(E(Sq)) + Cmax;
end

Finally, the running time for the proposed lower bounding pro-
cedure is also worst-case exponential. Set ®(S;) at t? can be
found by updating the corresponding set in the parent node of
td. As discussed in Appendix A, this updating can be completed in
O(nBn*B-1). For a given D e ®(Sq) and Q e T, verifying whether
QND=¢ and computing ACq(Q) both can be done in O(nB +
n?n?). Hence, both for loops in Algorithm 4 can be computed in
O(nkﬁ—lnknﬂ nB + nZnZ)).

5. Computational study

Next, we study the computational performance of our ap-
proaches outlined in Sections 3 and 4. Specifically, we compare
a standard branch-and-cut (BC) algorithm solving the IP formu-
lation presented in Section 3.1, the LBC algorithm proposed in
Section 3.2, and the CBB algorithm developed in Section 4. The
first two approaches are implemented using Gurobi Optimizer 9.1.1.
Also, it is important to point out that all three algorithms rely on
the approaches outlined in the proof of Lemma 1 for computing
sets CDgﬁ and/or ‘JJ“,{,V,,; see additional discussion on this issue in
Section 5.2.

All algorithms are coded in C++ and the numerical experiments
are conducted on a 64-bit Windows system with Intel(R) Core(TM)
i7-10750H processors and 16GB RAM. However, only one core is

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

Table 1

European Journal of Operational Research 307 (2023) 20-32

Results for the randomly-generated network instances (denoted as 20 — x — y — z). The running times are in seconds (Time). The optimality gaps (Gap), and the costs of the
best solutions found (Solution) are also reported for each solution approach. The smallest run time (or the optimality gap) for each instance is highlighted and underlined.

BC LBC CBB
Instance - N N X X X

Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution
20-10-10-0 0.237 0.000 0.078 0.369 0.000 0.078 0.179 0.000 0.078
20-10-10-1 0.097 0.000 0.555 0.210 0.000 0.555 0.095 0.000 0.555
20-10-10-2 0.114 0.000 0.430 0.225 0.000 0.430 0.134 0.000 0.430
20-10-10-3 0.172 0.000 0.454 0.277 0.000 0.454 0.205 0.000 0.454
20-10-10-4 0.211 0.000 0.539 0.144 0.000 0.539 0.189 0.000 0.539
20-10-40-0 307.864 0.000 18.590 16.506 0.000 18.590 TL 0.776 19.562
20-10-40-1 14.340 0.000 40.385 3.156 0.000 40.385 TL 0.808 45.851
20-10-40-2 34.476 0.000 38.355 3412 0.000 38.355 TL 0.786 42.540
20-10-40-3 14.093 0.000 18.974 0.806 0.000 18.974 TL 0.823 20.199
20-10-40-4 95.025 0.000 24187 9.454 0.000 24187 TL 0.782 25.643
20-10-50-0 3209.020 0.000 101.761 145.267 0.000 101.761 TL 0.841 114.620
20-10-50-1 437.851 0.000 76.963 29.491 0.000 76.963 TL 0.822 95.659
20-10-50-2 58.785 0.000 45341 11.494 0.000 45.341 TL 0.891 49.212
20-10-50-3 132.758 0.000 38.237 3.784 0.000 38.237 TL 0.862 45.060
20-10-50-4 11.291 0.000 41.809 1.366 0.000 41.809 TL 0.835 52.778
20-10-75-0 71.019 0.000 380.640 828.603 0.000 380.640 TL 0.895 445.530
20-10-75-1 7.258 0.000 429.103 2.860 0.000 429.103 TL 0.948 481.670
20-10-75-2 292.250 0.000 394.853 1617.640 0.000 394.853 TL 0.948 437.417
20-10-75-3 287.860 0.000 537.070 711.875 0.000 537.070 TL 0.879 600.757
20-10-75-4 85.752 0.000 267.099 410.252 0.000 267.099 TL 0.943 326.197
20-40-10-0 TL 0.937 158.745 TL 0.898 158.745 TL 0.466 190.729
20-40-10-1 TL 0.364 140.028 TL 0.979 140.028 TL 0.524 172.612
20-40-10-2 TL 0.138 89.249 TL 0.500 89.249 TL 0.534 125.496
20-40-10-3 TL 0.553 127.303 TL 0.635 127.303 TL 0.547 127.303
20-40-10-4 83.142 0.000 86.286 240.061 0.000 86.286 TL 0.383 88.085
20-40-40-0 PTL - - TL 0.368 882.746 PTL - -
20-40-40-1 MTL - - TL 0.594 951.690 TL 0.789 951.690
20-40-40-2 TL 0.810 997.458 TL 0.666 997.458 TL 0.689 898.587
20-40-40-3 TL 0.600 912.800 TL 0.626 983.726 TL 0.817 983.726
20-40-40-4 TL 0.598 807.051 TL 0.564 908.662 TL 0.686 961.118
20-50-10-0 TL 0.759 229.738 TL 0.666 229.738 TL 0.455 251.065
20-50-10-1 TL 0.955 352.274 TL 0.988 814.072 TL 0.404 412.213
20-50-10-2 TL 0.953 288.528 TL 0.978 411.824 TL 0.524 337.079
20-50-10-3 TL 0.965 277.450 TL 0.999 352.735 TL 0424 295.317
20-50-10-4 TL 0.449 237.971 TL 1.000 606.736 TL 0.552 296.807
20-75-10-0 4.321 0.000 770.561 57.497 0.000 770.561 TL 0.275 772175
20-75-10-1 28.377 0.000 612.303 499.071 0.000 612.303 TL 0.223 612.303
20-75-10-2 28.958 0.000 667.458 301.406 0.000 667.458 TL 0.297 673.206
20-75-10-3 49.761 0.000 638.295 1076.020 0.000 638.295 TL 0.353 646.119
20-75-10-4 3.240 0.000 826.781 8.424 0.000 826.781 TL 0.372 847.161

applied in all our experiments in order to have a fair comparison
between the CBB algorithm and the other two integer program-
ming based methods by not allowing parallelization. The run time
limit is set to 3600 seconds for each problem instance.

5.1. Test instances

In our preliminary experiments, we observe that (as expected)
increasing |V| makes the problem more challenging for all algo-
rithms, and does not affect their relative performance. Similarly
(and also not surprisingly), as edge set E becomes larger and/or
the nominee set E becomes smaller, the instances become easier
for all algorithms.

In view of the above observations, we fix the size of all in-
stances to some value (namely, 20) for which at least one of our
algorithms can find a feasible solution. For the randomly-generated
instances, we set E =¢. For the real-life instances, we consider
five real-life networks chosen from different categories of Network
Repository (Ryan & Nesreen, 2015), and pick 20 vertices with the
smallest degrees in these networks. Thus, we ensure that the edge
density among these 20 vertices is relatively low, and the problem
of adding edges between these vertices to increase the network re-
siliency becomes more challenging and also more interesting from
the practical perspective. Finally, we let £ = E in all our instances.

27

The name of each randomly-generated instance is in the form
20 —x—y —z, see Tables 1 and 2; the name of each real-life in-
stance is in the form name — 20 — x — y, see Tables 3 and 4; re-
call that for all instances |V| = 20. The blocking costs, weights, and
connecting costs in all instances are positive rational numbers that
are randomly generated between 0 and 10 using a uniform distri-
bution. Parameters n and S are selected as x% and y% of the total
sum of weights and blocking costs of all vertices, respectively. By
adjusting x and y, we generate instances with different cardinal-
ities of Wy, , and dDKﬂ. The problem difficulty is closely related
to the cardinalities of these two sets as we further highlight in
Section 5.2.

For randomly-generated instances, combinations of x and y are
chosen from set {10, 40, 50, 75}, and for each combination of these
two parameters, we generate five random instances denoted by
ze{0,...,4}. Note that we can not generate random instances for
all combinations of x and y in this set, as it is unlikely to find a
feasible instance with large values of x and y simultaneously. Af-
ter creating a randomly-generated instance for a given combination
of x and y, if the instance is either infeasible or trivial (the latter
case arises when not adding any edge is a feasible solution), then
we discard it, and regenerate a new one. We repeat this procedure
for each combination at most 10,000 times. If we can not generate
five meaningful random instances for a given combination within

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

Table 2

European Journal of Operational Research 307 (2023) 20-32

Results for the randomly-generated network instances (denoted as 20 — x — y — z). The numbers of n-minimal-clique-candidates (\‘I"Yv,qU and fB-maximal-blockers (|<I>l‘:ﬁ |) for
each instance are reported. The preprocessing times are in seconds (P_T). We also report the number of the search tree nodes (# node) for each algorithm, the number of
lazy cuts (# cut) applied by the LBC algorithm, and the initial gap (Gap® (%)) of the CBB algorithm.

BC LBC CBB
Instance [y, [y 41 5
P_T (seconds) # node P_T (seconds) # node # cut P_T (seconds) # node Gap? (%)

20-10-10-0 257 142 0.109 0 0.014 0 6 0.124 3 0.000
20-10-10-1 219 60 0.052 0 0.013 1 7 0.059 9 0.421
20-10-10-2 222 65 0.055 1 0.010 1 9 0.063 11 0.236
20-10-10-3 196 97 0.058 1 0.009 1 12 0.064 15 0.423
20-10-10-4 182 164 0.078 0 0.009 1 8 0.085 7 0.216
20-10-40-0 403 17,497 14.552 280 0.011 1902 395 14.982 95,013 0.949
20-10-40-1 179 11,470 4.984 1 0.009 642 287 5.923 897,669 0.959
20-10-40-2 241 10,299 6.242 117 0.009 764 221 6.462 469,653 0.984
20-10-40-3 209 14,142 6.895 1 0.010 178 127 7.740 187,435 0.925
20-10-40-4 325 14,427 10.457 126 0.012 1243 290 10.963 114,869 0.934
20-10-50-0 314 27,223 20.023 6303 0.014 18,256 366 21.245 893,107 0.980
20-10-50-1 259 21,701 13.931 2070 0.011 5711 454 14.939 1,541,803 0.978
20-10-50-2 225 21,479 12.063 171 0.010 2457 508 13.520 426,333 0.961
20-10-50-3 231 28,360 15.290 1 0.011 666 277 16.629 378,729 0.958
20-10-50-4 196 9981 6.445 1 0.009 347 216 7.145 1,233,929 0.968
20-10-75-0 384 5966 9.177 3064 0.013 239,377 895 9.793 3,765,677 0.947
20-10-75-1 240 3066 6.672 1 0.009 597 273 7.383 7,576,069 0.965
20-10-75-2 336 7618 9.764 9130 0.011 408,795 541 10.393 5,933,067 0.977
20-10-75-3 373 8743 11.033 13,344 0.015 280,421 1184 11.445 7,425,801 0.928
20-10-75-4 291 5277 8.274 2215 0.009 75,972 1013 8.678 3,163,763 0.979
20-40-10-0 36,487 75 12.251 527 2311 799 26 15.232 19,623 0.580
20-40-10-1 21,697 158 13.912 10,261 1.568 879 31 15.978 30,033 0.671
20-40-10-2 12,359 76 4.659 4895 1.121 2763 17 9.072 46,495 0.698
20-40-10-3 18,183 102 7.428 104,425 1.302 1949 31 9.627 4529 0.752
20-40-10-4 25,021 93 8.521 313 1.536 2262 18 11.554 40,399 0.744
20-40-40-0 39,586 - - - 2.307 2941 2673 - - -

20-40-40-1 27,015 34,399 1928.840 - 1.872 641 209 1983.550 5 0.789
20-40-40-2 18,461 40,994 1534.870 0 1.797 573 225 1577.580 5 0.689
20-40-40-3 32,448 22,128 1463.770 1 2.005 566 118 1516.940 5 0.817
20-40-40-4 42,468 28,534 2377.61 0 2.486 543 163 2405.67 5 0.686
20-50-10-0 24,397 85 8.521 11,089 1.785 53,468 23 12.460 20,445 0.804
20-50-10-1 63,418 95 21.912 510 4,102 2552 49 33.994 7599 0.745
20-50-10-2 26,101 112 14.055 522 2.294 970 40 18.146 25,023 0.714
20-50-10-3 60,694 95 20.428 510 4.087 2196 37 30.201 14,609 0.673
20-50-10-4 31,702 101 13.493 5101 2.466 2358 32 18.781 9609 0.798
20-75-10-0 3647 81 1.748 1 0.496 156 41 2.900 164,741 0.425
20-75-10-1 6105 64 2.508 1 0.724 1076 50 4.559 162,411 0.443
20-75-10-2 3475 119 2.179 1 0.500 562 60 3.187 582,389 0.457
20-75-10-3 4323 66 1.810 240 0.471 377,653 46 3.127 397,163 0.534
20-75-10-4 3900 80 1.548 1 0.597 278 52 2.799 1,195,069 0.457

10,000 attempts, then we exclude that combination from our ex-
periment. Out of 16 possible combinations for x and y, we could
generate feasible random instances for eight combinations shown
in Tables 1 and 2 resulting in a total of 40 problem instances. For
simplicity, we use the same combinations for x and y for our real-
life networks to obtain 40 real-life instances (and here, we allow
trivial instances).

5.2. Results and observations

The computational times, optimality gaps, and costs of the best
solutions found for the randomly-generated and real-life network
instances are presented in Tables 1 and 3, respectively. The to-
tal preprocessing times and the number of processed nodes for
all algorithms as well as the number of lazy cuts applied in the
LBC algorithm along with the values of Wy ,| and |¢Kﬁ| for
each randomly-generated and real-life instance are all listed in
Tables 2 and 4, respectively.

All algorithms have some preprocessing step, which is included
into their total runtime. The preprocessing step of the BC ap-
proach requires generating \IJ“,{,,,? and @V .. Generating \Il“,/\,_n is the

b8’
only step required in the preprocessing for LBC. Besides gener-

28

ating sets Wy, and ®p g the CBB algorithm needs to calculate

|<T>({Q})|/C(Q) (used in upper bounds) for all Q \Il“,’,,'n.

Given the one hour time limit for all algorithms, if an experi-
ment exceeds the time limit during its preprocessing step, its run-
time is shown as “PTL”, i.e., “Preprocessing Time Limit”. Then, if
the BC algorithm exceeds the time limit while building the full IP
model, its runtime is shown as “MTL”, i.e., “Modeling Time Limit”.
Finally, if an algorithm exceeds the time limit during the actual so-
lution process, its runtime is simply shown as “TL”, which stands
for “Time Limit”.

Next, we summarize our observations for the randomly-
generated instances; see Tables 1 and 2. In particular, we note that
as seen in Table 1, all three algorithms show to be useful depend-
ing on the combinations of x and y values.

Consider the first four combinations of instances in Table 1,
namely, 20-10-10-z, 20-10-40-z, 20-10-50-z and 20-10-75-z, i.e., x
is fixed at 10, while the value of y increases. According to Table 1,
the problem instances are easy when both x and y are small; all
algorithms can solve instances with x = y = 10 within one second.
Reasonably small values of x and y imply small cardinalities for
sets Wy, ,, and <I>g1 g see Table 2. Therefore, the resulting IP formu-
lations have relatively small number of variables and constraints,
and the LBC algorithm also employs a small number of lazy cuts.

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev European Journal of Operational Research 307 (2023) 20-32

Table 3
Results for the real-life network instances (denoted as name —x —y — z). The running times are in seconds (Time). The optimality gaps (Gap), and the costs of the best
solutions found (Solution) are also reported for each solution approach. The smallest run time (or the optimality gap) for each instance is highlighted and underlined.

BC LBC CBB
Instance - N N X X X

Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution
karate-20-10-10 0.141 0.000 0.161 0.328 0.000 0.161 0.126 0.000 0.161
football-20-10-10 0.208 0.000 0.000 0.629 0.000 0.000 0.150 0.000 0.000
chesapeake-20-10-10 0.122 0.000 0.460 0.158 0.000 0.460 0.130 0.000 0.460
dolphins-20-10-10 0.515 0.000 0.196 0.186 0.000 0.196 0.156 0.000 0.196
lesmis-20-10-10 0.186 0.000 0.594 0.581 0.000 0.594 0.187 0.000 0.594
karate-20-10-40 19.715 0.000 54.188 2.522 0.000 54.188 TL 0.707 59.897
football-20-10-40 12.108 0.000 11.146 0.584 0.000 11.146 TL 0.783 11.162
chesapeake-20-10-40 10.638 0.000 31.819 1.259 0.000 31.819 TL 0.729 32.699
dolphins-20-10-40 22.520 0.000 14.814 1.354 0.000 14.814 TL 0.718 14.902
lesmis-20-10-40 37.817 0.000 7.381 1.409 0.000 7.381 TL 0.826 7.569
karate-20-10-50 451.886 0.000 40.998 19.376 0.000 40.998 TL 0.806 45.209
football-20-10-50 17.356 0.000 61.963 2.796 0.000 61.963 TL 0.882 70.770
chesapeake-20-10-50 206.996 0.000 103.317 51.021 0.000 103.317 TL 0.717 108.599
dolphins-20-10-50 607.392 0.000 40.081 41.126 0.000 40.081 TL 0.863 47.049
lesmis-20-10-50 619.729 0.000 55.288 52.518 0.000 55.288 TL 0.816 64.448
karate-20-10-75 18.032 0.000 263.120 26.248 0.000 263.120 TL 0.882 308.340
football-20-10-75 15.588 0.000 227.468 21.198 0.000 227.468 TL 0.945 271.613
chesapeake-20-10-75 8.510 0.000 276.955 3.480 0.000 276.955 TL 0.898 329.880
dolphins-20-10-75 278.350 0.000 439.314 TL 0.016 439.314 TL 0.876 483.881
lesmis-20-10-75 8.291 0.000 484.059 3.323 0.000 484.059 TL 0.906 528.032
karate-20-40-10 390.964 0.000 97.158 2419.990 0.000 97.158 TL 0.365 99.833
football-20-40-10 TL 0.577 126.478 TL 0.765 126.478 TL 0.576 151.936
chesapeake-20-40-10 805.997 0.000 83.917 692.903 0.000 83.917 TL 0.348 95.967
dolphins-20-40-10 1149.570 0.000 100.483 145.066 0.000 100.483 TL 0.477 127.196
lesmis-20-40-10 TL 0.280 121.566 TL 0.984 121.566 TL 0.426 121.566
karate-20-40-40 1229.470 0.000 627.145 1448.570 0.000 627.145 TL 0.815 899.999
football-20-40-40 TL 0.434 701.788 TL 0.588 899.373 TL 0.753 899.373
chesapeake-20-40-40 TL 0.853 901.258 TL 0.697 901.258 TL 0.827 901.258
dolphins-20-40-40 TL 0.257 791.308 TL 0.572 917.453 TL 0.760 917.453
lesmis-20-40-40 TL 0.246 906.370 TL 0.221 927.728 TL 0.758 927.728
karate-20-50-10 TL 0.924 295.292 TL 0.950 410.849 TL 0.571 326.787
football-20-50-10 TL 0.896 189.496 TL 0.964 189.496 TL 0.686 535.444
chesapeake-20-50-10 TL 0.972 337.353 TL 0.968 355.213 TL 0.508 294.376
dolphins-20-50-10 TL 0.820 179.735 TL 1.000 927.888 TL 0.407 714.307
lesmis-20-50-10 TL 0.546 235.287 TL 0.981 462.734 TL 0.483 235.287
karate-20-75-10 8.855 0.000 681.074 22.749 0.000 681.074 TL 0.343 686.118
football-20-75-10 10.679 0.000 575.241 264.111 0.000 575.241 TL 0.395 642.356
chesapeake-20-75-10 4.760 0.000 806.429 26.645 0.000 806.429 TL 0.190 806.429
dolphins-20-75-10 8.552 0.000 835.018 24.679 0.000 835.018 TL 0.335 845.634
lesmis-20-75-10 7.160 0.000 495.269 127.649 0.000 495.269 TL 0.240 495.269

For the CBB algorithm, a smaller size \IJ“,/V,,] implies a smaller search for the CBB algorithm, but easy to solve for the BC and the LBC
space, and if the size of @} ; is also small, then the search tree is algorithms. _ _
relatively shallow. Therefore, the CBB algorithm’s performance is Next, we discuss instances, where we fix y at 10, but in-
comparable with the other methods on instances with x =y = 10. crease x, ie., 20-10-10-z, 20-40-10-z, 20-50-10-z and 20-75-10-
When we increase the value of y to 40 and 50, the value of 3 % Instances are hard to solve when |¢g.ﬁ| is small but [Wy, |
is about half of the total blocking costs of all vertices. Then, |y, ,| ~ remains large, ie., 20-40-10-z and 20-50-10-z instances. For the
remains relatively small but the size of ®} ; is considerably large majority of these instances, the search spaces are large, and the

as shown in Table 2. The LBC algorithm significantly outperforms ce)\llermiLeSOhajtlsonrsetiarlll:gt I;D € tfl?:ngB];V lgllngrittll:;tlgrl: Ll;?]lstisg ﬁ‘t/\l]_
the other two methods for these instances (i.e., 20-10-40-z and ’ gap y & y

20-10-50-z). Here, the IP formulations have relatively small num- Ziﬁlel?iasr?(f i(;re boaths zr(i_t‘tl](r)r_lle?i_zbantieztlgg Oa_r}g_ifggsing:iihr?g tal;g
ber of variables, but very large number of constraints; the latter ’ &ap y 8

negatively affects the performance of the BC algorithm. As for the not as consistent. .Thls gbservatlon 1mpl.1es that for thes.e Instance

. e classes, our combinatorial scheme provides better quality bounds
CBB algorithm, the search tree becomes deeper, and the feasibility

. . . . than the linear programming relaxations in the BC and the LBC
checks take more time. Unlike the other two algorithms, these in- .
. . . algorithms.

stances form a favorable scenario for the LBC algorithm as it deals As we increase the value of x to 75 (i.e., 20-75-10-z instances),
with smaller IP models; see the number of lazy cuts in Table 2.

v -
Consequently, for these instances, the LBC algorithm is much faster the size of Wy, , drops as shown in Table 2. Similar to the 20-10
- 75-z instances, the BC algorithm performs better than the other

than the other two algorithms.

If we further increase the value of y, the size of d>V decreases. tyvo algorithms. It .spec1ﬁcally. per.forms better.than the LBC al.go—

b.p rithm because finding constraints in a lazy fashion takes more time

We report instances with y = 75, since 75 is the maximum value of than finding all the blockers and solving a complete IP formulation.
y for which we can randomly generate sufficient number of feasi-

. ; v The last combination to discuss is 20-40-40-z. For these in-
ble instances. For instances 20-10-75-z, both sets Wy, , and d:’bﬂ stances both sets ‘I"Yv and q)gﬁ are very large; see Table 2. Al-

are relatively small, but set q:'vﬁ is not as small as the case of hough none of the methods returns an optimal solution, the LBC
¥y =10 as shown in Table 2. These instances are still hard to solve algorithm always returns a nontrivial gap.

29

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

Table 4

European Journal of Operational Research 307 (2023) 20-32

Results for the real-life network instances (denoted as name —x —y — z). The numbers of n-minimal-clique-candidates (\\I’,‘{v‘ﬂ\) and B-maximal-blockers (|d>gy |) for each
instance are reported. The preprocessing times are in seconds (P_T). We also report the number of the search tree nodes (# node) for each algorithm, the number of lazy
cuts (# cut) applied by the LBC algorithm, and the initial gap (Gap® (%)) of the CBB algorithm.

BC LBC CBB
Instance Wy, | 41 0
P_T (seconds) # node P_T (seconds) # node # cut P_T (seconds) # node Gap? (%)
karate-20-10-10 256 82 0.063 1 0.012 1 8 0.073 3 0.000
football-20-10-10 294 128 0.106 0 0.012 0 6 0.113 3 0.000
chesapeake-20-10-10 222 76 0.053 1 0.010 1 9 0.062 15 0.213
dolphins-20-10-10 279 97 0.081 1 0.012 1 8 0.093 3 0.000
lesmis-20-10-10 252 88 0.072 1 0.011 1 9 0.075 15 0.492
karate-20-10-40 184 23,009 9.369 22 0.010 559 98 9.416 969,385 0.967
football-20-10-40 210 14,901 7.299 1 0.008 73 107 8.047 119,997 0.930
chesapeake-20-10-40 181 12,999 5.988 51 0.008 774 102 6.829 475,881 0.968
dolphins-20-10-40 200 28,859 12.930 1 0.010 79 110 13.917 159,945 0.932
lesmis-20-10-40 250 32,219 17.056 1 0.011 289 228 17.437 34,717 0.890
karate-20-10-50 287 74,890 45.634 625 0.012 1676 475 45.942 297,341 0.983
football-20-10-50 209 19,343 10.356 55 0.009 668 178 11.000 1,424,957 0.981
chesapeake-20-10-50 483 33,616 34.629 1731 0.023 2240 212 35.489 193,219 0.941
dolphins-20-10-50 328 29,675 21.037 1313 0.012 5172 500 22.236 426,257 0.987
lesmis-20-10-50 425 21,210 19.074 1757 0.019 6009 347 19.558 484,491 0.980
karate-20-10-75 305 3471 7.203 1569 0.012 6064 451 7.962 3,047,705 0.949
football-20-10-75 230 6394 7.849 367 0.008 4060 487 8.667 2,060,613 0.983
chesapeake-20-10-75 249 4213 7.215 1 0.010 864 292 7.909 4,420,719 0.951
dolphins-20-10-75 321 4723 7.908 17,633 0.012 1,299,980 994 8.638 6,374,293 0.939
lesmis-20-10-75 217 4454 7.153 1 0.009 598 333 7.813 4,797,091 0.946
karate-20-40-10 15,416 193 13.470 17,271 1.196 18,802 15 14.075 38,575 0.660
football-20-40-10 12,325 169 8.670 61,952 0.922 1545 30 9.765 13,063 0.814
chesapeake-20-40-10 24,128 104 10.094 1319 1.649 1544 27 12.512 2575 0.625
dolphins-20-40-10 18,962 100 7.599 9270 1.385 42,412 16 9.343 45917 0.746
lesmis-20-40-10 47,033 84 12.539 576,413 2.618 1879 28 17.774 25,371 0.845
karate-20-40-40 40,871 11,331 932.309 1 2.453 13,122 1831 1006.449 9 0.815
football-20-40-40 39,141 23,688 2036.320 1 2.234 2587 542 2105.410 5 0.753
chesapeake-20-40-40 28,654 37,749 2390.050 0 1.844 575 150 2402.590 3 0.827
dolphins-20-40-40 23,727 27,315 1363.070 1 1.773 716 269 1426.040 5 0.760
lesmis-20-40-40 36,314 28,273 2229.720 1 2.133 7631 1737 2361.730 3 0.758
karate-20-50-10 35,887 158 22.026 512 2.703 972 66 25.062 5703 0.754
football-20-50-10 26,620 138 14.582 10,865 2.904 2561 31 23.251 202,175 0.796
chesapeake-20-50-10 30,055 166 18.454 512 2.72 1272 75 27.436 8801 0.704
dolphins-20-50-10 46,063 107 22.187 2728 3.466 2552 29 25.863 2,555,371 0.544
lesmis-20-50-10 24,832 147 15.663 3925 2.304 1306 50 18.688 31,655 0.768
karate-20-75-10 3939 108 2.437 1 0.573 383 64 3.523 94,087 0.474
football-20-75-10 2490 101 1.677 1 0.470 606 87 2.348 98,665 0.579
chesapeake-20-75-10 6171 70 1.803 1 0.618 309 42 3.514 1,964,167 0.267
dolphins-20-75-10 4530 83 2.594 1 0.733 62 62 3.679 3,545,533 0.361
lesmis-20-75-10 2027 107 1.188 1 0.329 547 44 1.647 118,311 0.527

As we observe in Tables 3 and 4, the performances of all three
algorithms with real-life networks are similar to those with the
randomly-generated instances. This observation validates our anal-
ysis of their performances with the randomly-generated graphs,
and further demonstrates the effects of the cardinalities of sets
d>; P and \I/V‘{,,,] on the running times and optimality gaps returned
by the algorithms. It is important to note that for the real-life in-
stances, none of the algorithms encounters either a preprocessing
time limit or a modeling time limit. This might be due to the fact
that the edge sets E in real-life instances are not empty, result-
ing in smaller sets E and smaller search spaces. Finally, in Fig. 2(a)
and (b), we illustrate optimal solutions for the CBRND problem in a
randomly-generated instance and a real-life network, respectively;
for the former recall that we use instances with E = @.

6. Conclusion

In this study, we consider the problem of constructing net-
works that are resilient to clique blockers. That is, we introduce
the clique-blocker-resilient network design (CBRND) problem. We
address the computational complexity of this problem, and explore
its structural properties, which are then exploited to develop ex-
act solution approaches including an integer programming (IP) for-

30

mulation, a lazy-fashioned branch-and-cut (LBC) algorithm, and a
combinatorial branch-and-bound (CBB) algorithm.

We report the results of our numerical experiments with
randomly-generated and real-life networks to compare the perfor-
mance of the proposed methods. Each method has its own ad-
vantages when solving instances with specific structures; this ob-
servation may provide a point of reference when selecting a spe-
cific solution method in various application settings. The IP model
with an off-the-shelf solver may be a good choice when the size
of the problem is relatively small. The CBB approach can provide
the best optimality gaps when we have a very large collection of
n-minimal-clique-candidates but a reasonably small collection of
B-maximal-blockers. When we have an instance with the opposite
situation, then the LBC algorithm becomes the best choice. The LBC
algorithm is also the best approach to return nontrivial optimality
gaps in challenging network instances.

Naturally, the proposed methods have some limitations; how-
ever, our results provide a number of interesting directions for
future research. For example, improving bounding approaches in
the combinatorial branch-and-bound algorithm could result in sub-
stantial running time improvements. Finally, it could be of interest
to explore the problem of designing resilient networks to preserve
other functional structures, e.g., the decision-maker could be inter-

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

ested in preserving large quasi-cliques (instead of cliques), or other
clique relaxations.

Acknowledgments

Oleg Prokopyev was partially supported by National Science
Foundation grant CBET-1803527. The authors would like to thank
the anonymous referees for their constructive and helpful com-
ments.

Appendix A. Discussion on the complexity of Algorithm 3

To find U(#) at the start of Algorithm 3, one needs to find
dD((a) That is, we need to verify for every D e <I> b8 whether

there exists a Q e \IJWY,] such that QD =¢ and Q is a clique in
G. Verifying these two conditions for a given D and Q can be
done in O(nB +n?), and the whole procedure runs in O((nfB +
n2)nkB-1nkn+1y = 0(n(B + n)nk@+A)); recall the definition of k in
Section 3.2 in the discussion of formulation (2a)-(2¢). In particular,
if all problem parameters are integers, then k = 1.

After finding 6(@), to form \Tl(@), we need to verify for each
Q € Wy, ,, whether there exists a D e ®(#) such that QND =¢.
This process runs in O((nB)n*#~1nk1+1) = 0((nB)n*1+A)). Hence,
computing W (#) can be done in 0(5(B + n)nk+A)).

The values of |<I> \ {Q})I/C(E{Q))) for all Q e Wy, ar
also computed and sorted at the start of Algorithm 3 before the
while loop. To compute ®({Q)) for a given Q € WY, . We need to
select every D e <I>(®) (note that <I>(®) is computed when forming
\D(@) above) and check whether Q N D = ¢. Hence, d>({Q}) for a
given Q can be found in O(nBn*#~1). Given that finding C(E({Q}))
takes O(n2), then the ratio |<I> b.g \ <I>({Q})|/C(E({Q})) is computed

in O(nBn¥f-1 1+ »?) for each Q, and in
O(nlgnk(mﬁ) + nznkn+1) _ 0(77(,3 + n)nk('“'ﬁ))

for all Q. Sorting these values also takes time bounded
by O(nkn+1log(nk"*+1)). To summarize, the time taken be-
fore the while loop in Algorithm 3 is O(n(8 + n)nk@+A) 4
nkn+1 log(nk”“)). R R

For each iteration of the while loop, sets ®(5*) and W (S5*) are
formed by updating the corresponding sets found in the previ-
ous iteration. Updating set ®(S*) implies verifying whether each
element of this set overlaps with a chosen n-minimal-clique-
candidate, which runs in 0(nBn*#-1). Updating set W (S*) can be
done by examining each element of this set and verifying whether
it does not have an overlap with some element of the updated set
®(S*). This procedure runs in 0(nBnk+£)), Thus, each iteration of
the while loop runs in O(nBnkf-1 4+ nBnk1tA)y = 0(nBnk(1+A)),
The number of iterations of the while loop is O(nk"*1). Therefore,
the while loop runs in O(nBnkM+A)+kn+1y,

Appendix B. Proof of Proposition 3

Proposition 3 . Given a tree node t9, if £ c E is a feasible solution
to the CBRND problem that is within the subtree rooted at t9, then
C(E) = C(E(Sy)) +max {8(D) : De ®(Sy)}.
where
8(D) =min{AC;(Q) : Qe Ty, QND =g}

Proof. Since £ is located within the subtree rooted at node t9, then
E(Sq) is part of E and

C(E) = C(E(Sq)) +C(E\ E(Sg)).

Consider an arbitrary S-maximal-blocker D’ e ZIS(Sq). Since E
is a feasible solution to the CBRND problem located within

(B.1)

31

European Journal of Operational Research 307 (2023) 20-32

the subtree rooted at node t9, by Proposition 1, there exists

an n—minimal—clique:candidate Q' € Ty such that Q’nD' =9 and
(E({Q'}) \ E(Sq)) < (E\ E(Sq)). Then,
C(E\E(Sy) = C(E({Q'}) \E(S) = ACq(Q) = 8(D). (B2)

Using (B.1) and (B.2), we have
C(E) = C(E(Sy)) +8(D).

Note that D’ is an arbitrarily selected S-maximal-blocker in <I>(Sq)
Hence, C(E) > C(E(Sq)) + max{s(D) : De d)(Sq)} O

References

Afshari Rad, M., & Kakhki, H. T. (2017). Two extended formulations for cardinality
maximum flow network interdiction problem. Networks, 69(4), 367-377.

Altner, D. S., Ergun, 0., & Uhan, N. A. (2010). The maximum flow network inter-
diction problem: Valid inequalities, integrality gaps, and approximability. Oper-
ations Research Letters, 38(1), 33-38.

Arulselvan, A., Commander, C. W., Elefteriadou, L., & Pardalos, P. M. (2009). Detect-
ing critical nodes in sparse graphs. Computers and Operations Research, 36(7),
2193-2200.

Bazgan, C., Toubaline, S., & Tuza, Z. (2011). The most vital nodes with respect
to independent set and vertex cover. Discrete Applied Mathematics, 159(17),
1933-1946.

Bazgan, C., Toubaline, S., & Vanderpooten, D. (2013). Critical edges/nodes for the
minimum spanning tree problem: Complexity and approximation. Journal of
Combinatorial Optimization, 26(1), 178-189.

Chen, C.-L., Zheng, Q. P, Veremyev, A., Pasiliao, E. L., & Boginski, V. (2021). Failure
mitigation and restoration in interdependent networks via mixed-integer opti-
mization. IEEE Transactions on Network Science and Engineering, 8(2), 1293-1304.
https://doi.org/10.1109/TNSE.2020.3005193.

Di Summa, M., Grosso, A., & Locatelli, M. (2011). Complexity of the critical node
problem over trees. Computers and Operations Research, 38(12), 1766-1774.

Di Summa, M., Grosso, A., & Locatelli, M. (2012). Branch and cut algorithms for de-
tecting critical nodes in undirected graphs. Computational Optimization and Ap-
plications, 53(3), 649-680.

Frederickson, G. N., & Solis-Oba, R. (1999). Increasing the weight of minimum span-
ning trees. Journal of Algorithms, 33(2), 244-266.

Furini, F, Ljubi, I, Martin, S., & San Segundo, P. (2019). The maximum clique in-
terdiction problem. European Journal of Operational Research, 277(1), 112-127.
https://doi.org/10.1016/j.ejor.2019.02.028.

Garey, M., & Johnson, D. (1979). Computers and intractability: A guide to the theory of
NP-completeness. Freeman and Co., New York.

Ghare, P., Montgomery, D. C., & Turner, W. (1971). Optimal interdiction policy for a
flow network. Naval Research Logistics Quarterly, 18(1), 37-45.

Haimes, Y. Y. (2009). On the definition of resilience in systems. Risk Analysis: An
International Journal, 29(4), 498-501.

Holling, C. S. (1996). Engineering resilience versus ecological resilience. Engineering
within ecological constraints, 31(1996), 32.

Israeli, E., & Wood, R. K. (2002). Shortest-path network interdiction. Networks: An
International Journal, 40(2), 97-111.

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., et al., (2008).
On short paths interdiction problems: Total and node-wise limited interdiction.
Theory of Computing Systems, 43(2), 204-233.

Lin, K-C.,, & Chern, M.-S. (1993). The most vital edges in the minimum spanning
tree problem. Information Processing Letters, 45(1), 25-31.

Mahdavi Pajouh, F. (2019). Minimum cost edge blocker clique problem. Annals of
Operations Research, 1-32.

Mahdavi Pajouh, F, Boginski, V., & Pasiliao, E. L. (2014). Minimum vertex blocker
clique problem. Networks, 64(1), 48-64.

Mahdavi Pajouh, F, Walteros,]. L., Boginski, V., & Pasiliao, E. L. (2015). Minimum
edge blocker dominating set problem. European Journal of Operational Research,
247(1), 16-26.

Nasirian, F, Mahdavi Pajouh, F, & Namayanja, J. (2019). Exact algorithms for the
minimum cost vertex blocker clique problem. Computers and Operations Re-
search, 103, 296-309.

Pardalos, P. M., & Xue,]J. (1994). The maximum clique problem. Journal of Global
Optimization, 4(3), 301-328. https://doi.org/10.1007/BF01098364.

Ries, B., Bentz, C., Picouleau, C., de Werra, D., Costa, M.-C., & Zenklusen, R. (2010).
Blockers and transversals in some subclasses of bipartite graphs: When cater-
pillars are dancing on a grid. Discrete Mathematics, 310(1), 132-146.

Rutenburg, V. (1994). Propositional truth maintenance systems: Classification and
complexity analysis. Annals of Mathematics and Artificial Intelligence, 10(3),
207-231.

Ryan, A. R, & Nesreen, K. A. (2015). The network data repository with interactive
graph analytics and visualization. In Proceedings of the twenty-ninth AAAI confer-
ence on artificial intelligence. http://networkrepository.com

Schieber, B., Bar-Noy, A., & Khuller, S. (1995). The complexity of finding most vital
arcs and nodes.

Sharkey, T. C., Nurre Pinkley, S. G., Eisenberg, D. A., & Alderson, D. L. (2021).
In search of network resilience: An optimization-based view. Networks, 77(2),
225-254.

https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0005
https://doi.org/10.1109/TNSE.2020.3005193
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0009
https://doi.org/10.1016/j.ejor.2019.02.028
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0021
https://doi.org/10.1007/BF01098364
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0024
http://networkrepository.com
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0027

H. Zhong, F. Mahdavi Pajouh and O. A. Prokopyev

Shen, Y., Nguyen, N. P, Xuan, Y., & Thai, M. T. (2012). On the discovery of critical
links and nodes for assessing network vulnerability. IEEE/ACM Transactions on
Networking, 21(3), 963-973.

Tang, Y., Richard, J.-P. P, & Smith,]. C. (2016). A class of algorithms for mixed-in-
teger bilevel min-max optimization. Journal of Global Optimization, 66(2),
225-262.

Veremyev, A., Boginski, V., & Pasiliao, E. L. (2014a). Exact identification of critical
nodes in sparse networks via new compact formulations. Optimization Letters,
8(4), 1245-1259.

Veremyev, A., Prokopyev, O. A., & Pasiliao, E. L. (2014b). An integer programming
framework for critical elements detection in graphs. Journal of Combinatorial Op-
timization, 28(1), 233-273.

Veremyev, A. Prokopyev, O. A., & Pasiliao, E. L. (2015). Critical nodes for dis-
tance-based connectivity and related problems in graphs. Networks, 66(3),
170-195.

Veremyev, A., Prokopyev, O. A. & Pasiliao, E. L. (2019). Finding critical
links for closeness centrality. INFORMS Journal on Computing, 31(2), 367-
389.

32

European Journal of Operational Research 307 (2023) 20-32

Wei, N. Walteros, J. L, & Pajouh, F. M. (2021). Integer programming formula-
tions for minimum spanning tree interdiction. INFORMS Journal on Comput-
ing, 33(4), 1461-1480. https://doi.org/10.1287/ijoc.2020.1018. https://pubsonline.
informs.org/doi/abs/10.1287/ijoc.2020.1018

Wollmer, R. (1964). Removing arcs from a network. Operations Research, 12(6),
934-940.

Wong, P, Sun, C, Lo, E., Yiu, M. L, Wu, X, Zhao, Z., et al.,, (2017). Finding k most
influential edges on flow graphs. Information Systems, 65, 93-105.

Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer
Modelling, 17(2), 1-18.

Wuy, Q., & Hao, J.-K. (2015). A review on algorithms for maximum clique problems.
European Journal of Operational Research, 242(3), 693-709.

Yodo, N., & Wang, P. (2016). Engineering resilience quantification and system design
implications: A literature survey. Journal of Mechanical Design, 138(11).

Zenklusen, R. (2010a). Matching interdiction. Discrete Applied Mathematics, 158(15),
1676-1690.

Zenklusen, R. (2010b). Network flow interdiction on planar graphs. Discrete Applied
Mathematics, 158(13), 1441-1455.

http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0033
https://doi.org/10.1287/ijoc.2020.1018
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2020.1018
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00725-1/sbref0041

	On designing networks resilient to clique blockers
	1 Introduction
	1.1 Blockers and the minimum cost vertex blocker clique problem
	1.2 Designing networks resilient to clique blockers
	1.3 Our contribution and the paper structure

	2 Structural properties and computational complexity
	2.1 Additional notations, and assumptions
	2.2 Basic characterization of a feasible solution
	2.3 On computational complexity

	3 Integer programming (IP) techniques
	3.1 Base IP model
	3.2 Lazy-fashioned branch-and-cut (LBC) algorithm

	4 Combinatorial branch-and-bound (CBB) algorithm
	4.1 Search tree structure
	4.2 Upper-bounding approach
	4.3 Lower-bounding approach

	5 Computational study
	5.1 Test instances
	5.2 Results and observations

	6 Conclusion
	Acknowledgments
	Appendix A Discussion on the complexity of Algorithm 3
	Appendix B Proof of Proposition 3
	References

