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a b s t r a c t 

Robustness and vulnerability analysis of networked systems is often performed using the concept of ver- 

tex blockers. In particular, in the minimum cost vertex blocker clique problem, we seek a subset of ver- 

tices with the minimum total blocking cost such that the weight of any remaining clique in the inter- 

dicted graph (after the vertices are blocked) is upper bounded by some pre-defined parameter. Loosely 

speaking, we aim at disrupting the network with the minimum possible cost in order to guarantee that 

the network does not contain cohesive (e.g., closely related) groups of its structural elements with large 

weights; such groups are modeled as weighted cliques. In this paper, our focus is on designing networks 

that are resilient to clique blockers. Specifically, we construct additional connections (edges) in the net- 

work and our goal is to ensure (at the minimum possible cost of newly added edges) that the adversarial 

decision-maker (or the worst-case realization of random failures) cannot disrupt the network (namely, the 

weight of its cohesive groups) at some sufficiently low cost. The proposed approach is useful for modeling 

effective formation and preservation of influential clusters in networked systems. We first explore struc- 

tural properties of our problem. Then, we develop several exact solution schemes based on integer pro- 

gramming and combinatorial branch-and-bound techniques. Finally, the performance of our approaches 

is explored in a computational study with randomly-generated and real-life network instances. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The problem of designing systems that are resilient to ad- 

ersarial attacks and random failures appears in a variety of re- 

earch domains; see, e.g., Chen, Zheng, Veremyev, Pasiliao, & Bo- 

inski (2021) ; Haimes (2009) ; Holling (1996) ; Yodo & Wang (2016) .

oosely speaking, the primary goal of this problem is to ensure 

hat a system of interest is capable of maintaining all (or some of) 

ts functionality after sustaining a certain degree of damage (dis- 

uption). Naturally, this problem is also studied in the network 

nalysis literature, in particular, when the considered system is 

odeled as a graph ( Sharkey, Nurre Pinkley, Eisenberg, & Alderson, 

021 ). 

.1. Blockers and the minimum cost vertex blocker clique problem 

In the graph-theoretical models, disruptions are represented by 

emovals of vertices and/or edges from a given graph. For exam- 
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E-mail addresses: 20210086@kust.edu.cn (H. Zhong), fmahdav1@stevens.edu (F. 

ahdavi Pajouh), droleg@pitt.edu (O. A. Prokopyev) . 

p

c

v

ttps://doi.org/10.1016/j.ejor.2022.09.013 

377-2217/© 2022 Elsevier B.V. All rights reserved. 
le, in a telecommunication system, a failed (or jammed) connec- 

ion between two nodes corresponds to an edge removal; similarly, 

 failed structural element (e.g., a router, a sensor) in the consid- 

red system corresponds to a vertex removal. In the related net- 

ork analysis and combinatorial optimization literature, the main 

esearch focus is on: 

(i) detecting a subset of vertices (or edges) of the smallest total 

cost whose removal (the other terms commonly used are in- 

terdiction and blocking ) ensures that some graph property of 

interest (e.g., the maximum weight of a clique in a graph) is 

restricted by some upper (or lower) bounds given by a pre- 

defined parameter; or 

(ii) identifying a subset of vertices (or edges) with their total 

cost upper bounded by some pre-defined parameter, whose 

deletion results in the largest change (either increase or de- 

crease depending on the application context) of the consid- 

ered graph property . 

We note that these two problem types are naturally linked. In 

articular, the objectives in the problems of type (i) appear in the 

onstraints of the corresponding problems of type (ii), and vice 

ersa. The considered combinatorial optimization problems are 

https://doi.org/10.1016/j.ejor.2022.09.013
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nown as the minimum vertex/edge blocker problem ( Mahdavi Pa- 

ouh, 2019; Mahdavi Pajouh, Walteros, Boginski, & Pasiliao, 2015; 

ies et al., 2010; Wei, Walteros, & Pajouh, 2021 ) and the most 

ital (critical) vertices/edges problem ( Furini, Ljubi, Martin, & San 

egundo, 2019; Veremyev, Boginski, & Pasiliao, 2014a; Veremyev, 

rokopyev, & Pasiliao, 2014b; 2015; 2019 ), respectively. 

A number of important network characterizations are ex- 

lored in the context of vertex/edge blockers, such as the clique 

 Mahdavi Pajouh, 2019; Mahdavi Pajouh, Boginski, & Pasiliao, 2014; 

ang, Richard, & Smith, 2016 ), independent set ( Bazgan, Touba- 

ine, & Tuza, 2011 ), dominating set ( Mahdavi Pajouh et al., 2015 ),

ertex cover ( Bazgan et al., 2011 ), spanning tree ( Bazgan, Touba- 

ine, & Vanderpooten, 2013; Frederickson & Solis-Oba, 1999; Lin & 

hern, 1993 ), pair-wise connectivity ( Arulselvan, Commander, Elef- 

eriadou, & Pardalos, 2009; Di Summa, Grosso, & Locatelli, 2011; 

012; Shen, Nguyen, Xuan, & Thai, 2012; Veremyev et al., 2014a; 

eremyev et al., 2014b ), shortest path ( Israeli & Wood, 2002; 

hachiyan et al., 2008; Schieber, Bar-Noy, & Khuller, 1995 ), match- 

ng ( Zenklusen, 2010a ), and maximum flow ( Afshari Rad & Kakhki, 

017; Altner, Ergun, & Uhan, 2010; Ghare, Montgomery, & Turner, 

971; Wollmer, 1964; Wong et al., 2017; Wood, 1993; Zenklusen, 

010b ) network properties. In this paper, we focus on the concept 

f a weighted clique . 

Formally, let G = (V, E) be a simple undirected graph, where 

 = { 1 , . . . , n } and E ⊆ { (i, j) : i ∈ V, j ∈ V } are its sets of ver-

ices and edges, respectively. For any subset of vertices S ⊆ V , let 

 [ S] = (S, ̃  E ) denote the subgraph induced by S in G , where ˜ E =
 (i, j) ∈ E : i, j ∈ S} . 

A clique C is a subset of V such that G [ C] is a complete graph;

he problem of finding a clique of maximum cardinality (weight) in 

 given graph is referred to as the maximum (weight) clique prob- 

em . This problem is one of the classical NP -hard combinatorial op- 

imization problems ( Pardalos & Xue, 1994 ). There is a variety of 

mportant applications, where the concept of a clique is used to 

epresent a cohesive (closely related) group of structural elements 

f a system modeled as a graph ( Wu & Hao, 2015 ). 

Assume that the graph is vertex-weighted, that is, we are given 

 vector of vertex weights w = (w 1 , . . . , w n ) 
T , where w i > 0 for all

 ∈ V . We denote by W (Q ) the weight of a set Q ⊆ V , which is

imply the sum of the weights of all vertices in Q , i.e., W (Q ) =
 

i ∈ Q w i . 

Then, the minimum cost vertex blocker clique (MCVBC) problem 

s defined as follows ( Mahdavi Pajouh et al., 2014; Nasirian, Mah- 

avi Pajouh, & Namayanja, 2019 ). Suppose that the decision-maker 

s allowed to block (remove) vertices from the graph and the cor- 

esponding blocking costs are given by b = (b 1 , . . . , b n ) 
T , where

 i > 0 for all i ∈ V . The decision-maker’s goal is to find a subset

f vertices D ⊆ V with the minimum total blocking cost such that 

or any remaining clique, Q , in the interdicted graph G [ V \ D ] , its

eight, W (Q ) , is at most η, which is some given positive parame-

er. That is, the decision-maker solves the following problem: 

 MCVBC ] : B(G, η) = min 
D ⊆V 

{ B (D ) : ω 
w ( G [ V \ D ] ) ≤ η} , 

here B (D ) := 

∑ 

i ∈ D b i is the total blocking cost and ω 
w (G [ V \ D ])

enotes the maximum weight of a clique in the interdicted net- 

ork. 

As a side note, we should mention about the maximum clique 

nterdiction problem considered by Furini et al. (2019) , which is 

losely related to the MCVBC problem. In particular, in the model 

y Furini et al. (2019) , the objective is to minimize the size of a

aximum clique in a graph subject to a budgetary restriction on 

he number of nodes blocked (interdicted); recall our earlier dis- 

ussion on the two possible problem types and the links between 

hem. 
21 
To summarize, when solving the MCVBC problem, we assume 

hat G models an adversarial network. Then by solving the con- 

idered clique blocker problem our goal is to disrupt this network 

t the minimum possible vertex blocking cost to guarantee that 

he network does not contain cohesive (i.e., organized, pairwise 

onnected, closely related) groups of structural elements that have 

heir total vertex weight above some pre-defined parameter 

.2. Designing networks resilient to clique blockers 

In this paper, our focus is on designing networks that are re- 

ilient to clique blockers. Specifically, assume that we are allowed 

o construct additional pairwise connections (i.e., edges) in the net- 

ork at some cost given by c = (c i j : (i, j) ∈ Ě ) T , where Ě denotes

 candidate set of non-adjacent vertex pairs. That is, Ě is a subset 

f Ē = { (i, j) : i, j ∈ V, (i, j) �∈ E} , i.e., Ě ⊆ Ē ; set Ē is known to as

he complement of E. 

Denote by C( ̂  E ) := 

∑ 

(i, j) ∈ ̂ E c i j the total cost of additional edges 

onstructed in the designed network ˆ G = (V, E ∪ ˆ E ) . Then the 

lique-blocker-resilient network design (CBRND) problem is given as 

ollows: 

 CBRND ] : min 
ˆ E ⊆Ě 

{
C( ̂  E ) : B( ̂  G , η) ≥ β, where ˆ G = (V, E ∪ 

ˆ E ) } , 
nd β is an additional pre-defined positive parameter. 

In other words, in the considered network design setting, we 

ssume that there exists an adversarial decision-maker, who solves 

he minimum cost vertex blocker clique problem. Naturally, this 

ecision-maker may also correspond to the worst-case realization 

f random failures in a given networked system modeled as G . We 

onstruct additional connections in the network, and our goal is to 

uarantee (at the minimum possible cost of newly added edges) 

hat this adversarial decision-maker needs to have at least β units 

n its budget whenever he/she needs to ensure that the maximum 

eight of a clique in the interdicted network is at most η. 
Loosely speaking, by adding edges to the network we provide 

 certain level of protection, which is given by some pre-defined 

arameters η and β in the considered problem setting. That is, 

he adversarial decision-maker needs to have sufficiently large in- 

erdiction (blocking) budget in order to disrupt the cohesive sub- 

roups in the network. 

Fig. 1 (a) illustrates an instance of the MCVBC prob- 

em, where V = { 1 , 2 , 3 , 4 , 5 } , E = { (1 , 2) , (1 , 3) , (2 , 3) , (2 , 4) } , w =
1 , 1 , 1 , 1 , 2) T , b = (2 , 1 , 2 , 2 , 2) T , and η = 2 . For this MCVBC prob-

em instance, we have B(G, η) = 1 . Fig. 1 (b) shows an in-

tance of the CBRND problem with the same graph, where Ě = 

 (1 , 4) , (3 , 4) , (2 , 5) , (4 , 5) } , c 14 = 1 , c 34 = 1 , c 25 = 1 , c 45 = 1 , and

= β = 2 . An optimal solution for this CBRND problem is to con- 

truct edge (4,5); that is, ˆ E = { (4 , 5) } , which results in B( ̂  G , η) = 3 .

.3. Our contribution and the paper structure 

To the best of our knowledge, our work is the first study on de- 

igning networks that are resilient to blockers, specifically, clique 

lockers. We address some basic structural properties of the prob- 

em (including a brief discussion on its computational complexity) 

n Section 2 . Next, we contribute to the literature by providing an 

nteger programming (IP) model, which can be used with a lazy- 

ashioned branch-and-cut (LBC) algorithm; see Section 3 . As an al- 

ernative (and somewhat more advanced) solution scheme, we de- 

elop a combinatorial branch-and-bound (CBB) algorithm for our 

roblem; see Section 4 . The proposed solution approaches are then 

ompared in an extensive computational study with randomly- 

enerated and real-life network instances; see Section 5 . Finally, 

e provide some concluding remarks and outline directions for fu- 

ure research in Section 6 . 
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Fig. 1. (a) An instance of the minimum cost vertex blocker clique (MCVBC) problem with η = 2 . (b) An instance of the clique-blocker-resilient network design (CBRND) 

problem on the same graph with η = β = 2 . 
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. Structural properties and computational complexity 

We first outline some additional notations and assumptions 

ade throughout the paper; see Section 2.1 . Furthermore, as 

riefly outlined in the previous section, we describe some ba- 

ic characterization of feasible solutions of the CBRND problem in 

ection 2.2 and address its theoretical computational complexity in 

ection 2.3 . Note that the results from Section 2.2 provide the basis 

or establishing the correctness of the proposed IP model and our 

ombinatorial based algorithms in Sections 3 and 4 , respectively. 

.1. Additional notations, and assumptions 

For simplicity, we use P = (G, ̌E , w , b , c , η, β) to denote an in-

tance of the CBRND problem. We assume that all components of 

 are strictly positive, while η and β are nonnegative. Also, we as- 

ume that all instances of the CBRND problem considered in this 

aper are feasible. It implies that ˆ E = Ě forms a feasible solution to 

he CBRND problem. That is, for each D ⊆ V with B (D ) < β , there

xists a set Q ⊆ V \ D such that Q is a clique in ˆ G = (V, E ∪ Ě ) and

 (Q ) > η; consequently, we have β ≤ B (V ) . 

Finally, we assume w i ≤ η for all i ∈ V . Otherwise, a vertex with

eight larger than η needs to be always blocked in every feasible 

olution to the CBRND problem. 

.2. Basic characterization of a feasible solution 

We first introduce two concepts, i.e., β-maximal-blockers and η- 
inimal-clique-candidates , which are used to characterize the set of 

easible solutions of our problem. These two concepts are defined 

s follows. 

efinition 1. Given P = (G, ̌E , w , b , c , η, β) , a β-maximal-blocker is

 subset of vertices D ⊆ V such that B (D ) < β and D is not strictly

ontained in another subset of vertices satisfying this condition. 

he set containing all β-maximal-blockers is denoted by �V 
b ,β

. 

efinition 2. Given P = (G, ̌E , w , b , c , η, β) , an η-minimal-clique-

andidate is a subset of vertices Q ⊆ V such that { (i, j) : i, j ∈
} ⊆ (E ∪ Ě ) , W (Q ) > η, and Q does not strictly contain another

ubset of vertices satisfying these conditions. The set containing 

ll η-minimal-clique-candidates is denoted by �V 
w ,η . 

Feasibility of a solution can be verified using the concepts of β- 

aximal-blockers and η-minimal-clique-candidates as we formally 

stablish next. 
22 
roposition 1. Given an instance P = (G, ̌E , w , b , c , η, β) , set ˆ E ⊆ Ě 

s a feasible solution of P if and only if for each D ∈ �V 
b ,β

, there exists

 ∈ �V 
w ,η such that Q ∩ D = ∅ and Q is a clique in ˆ G = (V, E ∪ ˆ E ) . 

roof. �⇒ Let ˆ E be a feasible solution. Therefore, the cost of block- 

ng cliques in ˆ G is at least β , i.e., B( ̂  G , η) ≥ β . That is, regardless of

ow vertices in graph ˆ G are removed, if the total blocking cost is 

trictly less than β , then we can always find a clique of weight 

trictly greater that η in the remaining graph. 

By Definition 1 , the blocking costs of all β-maximal-blockers in 
V 
b ,β

are strictly less than β . Thus, after removing a set D ∈ �V 
b ,β

rom ˆ G , there should exist Q 
′ ⊆ V \ D such that W (Q 

′ ) > η and Q 
′ 

s a clique in ˆ G . By Definition 2 , Q 
′ is either an η-minimal-clique-

andidate or contains an η-minimal-clique-candidate. Thus, there 

xists Q ∈ �V 
w ,η such that Q ∩ D = ∅ and Q is a clique in ˆ G . 

⇐� Consider an arbitrary set D 
′ ⊆ V with its blocking cost 

trictly less than β . By Definition 1 , D 
′ is either a β-maximal- 

locker or is contained in a β-maximal-blocker. Therefore, there 

xists D ∈ �V 
b ,β

such that D 
′ ⊆ D . By our assumption, we know 

hat there exists Q ∈ �V 
w ,η such that Q ∩ D = ∅ and Q is a clique

n ˆ G = (V, E ∪ ˆ E ) . Also, W (Q ) > η by Definition 2 . Then it is easy to

erify that Q also exists after removing D 
′ . Note that D 

′ is selected 
rbitrarily. Thus, there exists a clique of weight strictly greater than 

in the remaining graph when any vertex set with its blocking 

ost strictly less than β is removed from ˆ G . Therefore, B( ̂  G , η) ≥ β
nd ˆ E is a feasible solution to P . �

Next, we derive some upper bounds on the running times re- 

uired to compute all β-maximal-blockers and η-minimal-clique- 

andidates. Our proofs are constructive and we outline the corre- 

ponding algorithms. 

emma 1. Given an instance P = (G, ̌E , w , b , c , η, β) , sets �V 
b ,β

and

V 
w ,η can be constructed in O (n β ) and O (ηn η+1 ) , respectively. 

roof. Let η, β , and all elements of w and b be ratio- 

al numbers. Then they can be multiplied by a sufficiently 

arge constant to make them all integers. Hence, without loss 

f generality, in the remainder of the proof we assume that 

, β , and all elements of w and b are strictly positive integers, 

hich is a common assumption in the integer programming liter- 

ture. 

In view of the assumption above, it is relatively easy to ver- 

fy that the cardinality of any β-maximal-blocker is at most 

− 1 . Next, we show that the cardinality of any η-minimal- 

lique-candidate is also bounded above by η + 1 . Assume that it 

s not the case, i.e., there exists an η-minimal-clique-candidate 
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Fig. 2. (a) An optimal solution for the randomly-generated instance 20-10-10-4. 

(b) An optimal solution for the real-life network football-20-10-40. Vertices with 

higher weights are shown using darker colors, and vertices with higher blocking 

costs are larger in size. 
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 = { i 1 , . . . , i q } such that | Q| ≥ η + 2 . By its definition, we know

hat W (Q ) = w i 1 
+ w i 2 

+ . . . + w i q > η. Also, from our earlier as-

umption, we have | Q \ { i 1 }| ≥ η + 1 > η. Recall that we assume

hat the elements of w are strictly positive integers. Then, W (Q \ 
 i 1 } ) > η, which implies that Q is not minimal and we have a con-

radiction; recall that Q is assumed to be minimal. 

To construct set �V 
b ,β

, one can employ a bounded depth-first- 

earch enumeration, where each parent node is branched on to 

reate as many children as there are vertices that are not already 

ncluded into the parent’s partially constructed β-maximal-blocker 

which is initially empty at the root node). Naturally, the branch- 

ng on each node is continued as long as the blocking cost of par-

ially constructed β-maximal-blocker is less than β . If none of the 

hildren nodes of a parent node can be branched on, then the path 

onnecting the root node to the parent node in the search tree cor- 

esponds to a β-maximal-blocker. Given the aforementioned up- 

er bound on the cardinality of a β-maximal-blocker, the depth of 

he search tree is bounded by β (a depth of at most β − 1 for the

-maximal-blocker itself and one more layer containing children 

odes that cannot be further branched on). Moreover, the number 

f tree nodes in each level is O (n ) . Therefore, the outlined proce-

ure can construct �V 
b ,β

in O (n β ) . 

For �V 
w ,η , a similar approach can be used. Here, after including 

 vertex i into a partially constructed η-minimal-clique-candidate 

t a given search tree node, we need to make sure that all pairs of

ertices in this partially constructed solution, that include vertex 

 belong to set E ∪ Ě . Given the above mentioned upper bound on

he size of a η-minimal-clique-candidate, this verification step can 

e done in O (η) at each node of the search tree. The branching

n each node is continued as long as the weight of the partially 

onstructed η-minimal-clique-candidate is less than η. Whenever 

he weight of the partially constructed solution becomes at least 

, the branching on the present tree node is terminated, and 

he constructed solution is examined to verify whether it satis- 

es the minimality condition in Definition 2 . Again, using the up- 

er bound on the size of a η-minimal-clique-candidate, this can be 

one in O (η + 1) by finding and dropping the vertex with mini- 
23
um weight from the obtained solution and verifying whether the 

eight of the remaining set is less than η. Given that the depth of 
he search tree in bounded by η + 1 , and the number of tree nodes

n each level is O (n ) , we conclude that the running time needed to

onstruct �V 
w ,η is bounded by O (ηn η+1 ) . �

.3. On computational complexity 

Define the decision version of the CBRND problem as follows. 

iven an instance P = (G, ̌E , w , b , c , η, β) and α ≥ 0 , the question is

hether there exists a set ˆ E ⊆ Ě such that B( ̂  G , η) ≥ β and C( ̂  E ) ≤
, where ˆ G = (V, E ∪ ˆ E ) . 

The decision version of the classical maximum clique problem 

sed in our reduction below, is given as follows. Given G = (V, E) 

nd an integer k > 0 , we need to verify whether there exists a

lique D ⊆ V in G such that | D | ≥ k . This problem is known to be

P -complete ( Garey & Johnson, 1979 ) 

roposition 2. The decision version of the CBRND problem is NP - 

ard. 

roof. Given an instance of the maximum clique problem, con- 

ider the same graph G and let the candidate set Ě be equal to the 

omplement edge set Ē . Furthermore, assume that the weight and 

he blocking cost of each vertex is equal to one, i.e., w i = b i = 1 for

ll i ∈ V . Similarly, the cost of adding an edge between any non-

djacent pair of vertices is also equal to one, i.e., c i j = 1 for all

i, j) ∈ Ě . 

Let η = k − 1 . That is, the decision-maker in MCVBC aims at re- 

ucing the size of the maximum clique in G to at most k − 1 . Next,

bserve that B(G, k − 1) ≥ 1 if only if G contains a clique of size

t least k . Therefore, by setting β = 1 and α = 0 , we reduce the

roblem of verifying whether there exists a clique of size at least 

 in G to a special case of the aforementioned decision version of 

he CBRND problem. Namely, G contains a clique of size at least k 

f only if we obtain a feasible solution to the CBRND problem by 

etting ˆ E = ∅ with C( ̂  E ) = 0 . �

The above proof is relatively straightforward and we provide it 

o illustrate the fact that the considered CBRND problem is difficult 

rom the theoretical perspective. However, one could argue that a 

omewhat stronger result could be established. We note that the 

ecision version of the maximum clique interdiction problem is 

nown to be �p 
2 
-complete; we refer to the discussion by Furini 

t al. (2019) and the earlier work by Rutenburg (1994) . Recall that 

n the decision version of the maximum clique interdiction prob- 

em, we verify whether it is possible to remove a subset of at most 

nodes from a given graph to ensure that the graph does not 

ontain a clique of size η. From the proof of Proposition 2 , we

bserve that by setting α = 0 , we reduce the CBRND problem to 

erifying whether B(G, η) ≥ β . The latter (assuming that the ver- 

ices blocking costs and weights are all ones) is equivalent to ver- 

fying whether the graph contains a clique of size η + 1 for any 

emoval of at most β − 1 nodes. Therefore, one should expect that 

he CBRND problem should be 	p 
2 
-hard; see, e.g., Garey & Johnson 

1979) for the definitions and other related complexity classes. Fi- 

ally, we leave the question of pinpointing precise complexity of 

he CBRND problem as a direction for future research. 

. Integer programming (IP) techniques 

Next, we describe an IP model for the CBRND problem. In par- 

icular, the results of Proposition 1 form the basis for this formu- 

ation. Consequently, we outline a lazy-fashioned branch-and-cut 

pproach to solve the proposed IP model. 
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.1. Base IP model 

We first re-define the CBRND problem by employing the con- 

epts of β-maximal-blockers and η-minimal-clique-candidates; re- 

all Definitions 1 and 2 , respectively. Specifically, given S ⊆ �V 
w ,η , 

e denote the unique set containing all elements of Ě whose con- 

truction is necessary to transform all η-minimal-clique-candidates 

n S into cliques as E(S) . Furthermore, let ̂ �(S) ⊆ �V 
b ,β

to be 

he collection of all β-maximal-blockers whose removal from ˆ G = 

V, E ∪ E(S)) results in a graph in which the maximum weight of a 

lique is not greater than η. 
In view of the above definitions, by Proposition 1 , the CBRND 

roblem is equivalent to 

min 
⊆�V 

w ,η

{
C(E(S)) : ̂ �(S) = ∅} , 

hich we next reformulate as an IP model. 

We define two sets of binary variables, denoted by x i j for all 

i, j) ∈ Ě and y Q for all Q ∈ �V 
w ,η . Let x i j = 1 if and only if an edge

s constructed between vertices i and j , where (i, j ) ∈ Ě . Also, let

 Q = 1 if and only if Q ∈ �V 
w ,η is contained in a feasible solution

f our model. Then, the CBRND problem can be formulated as fol- 

ows: 

in 
∑ 

(i, j) ∈ ̌E 
c i j x i j , (1a) 

. t. 
∑ 

Q ∈ �V 
w ,η : Q ∩ D = ∅ 

y Q ≥ 1 , ∀ D ∈ �V 
b ,β , (1b) 

{ (i, j) ∈ Ě : i, j ∈ Q}| y Q ≤
∑ 

(i, j ) ∈ ̌E ,i, j ∈ Q 
x i j , ∀ Q ∈ �V 

w ,η, (1c) 

 i j ∈ { 0 , 1 } , ∀ (i, j) ∈ Ě , (1d) 

 Q ∈ { 0 , 1 } , ∀ Q ∈ �V 
w ,η, (1e) 

where the objective function in (1a) minimizes the total edge 

onstruction cost. Constraint (1b) ensures that for each possible 

locking of cost less than β , there exists a clique of weight larger 

han η in the remaining network. Constraint (1c) ensures that the 

ertices in Q (that correspond to y Q = 1 ) form a clique in the de-

igned network, i.e., there is a newly constructed edge between all 

isconnected node pairs in the original graph. 

Finally, we note that the IP model given by (1a) –(1e) requires 

dentification of all elements of sets �V 
b ,β

and �V 
w ,η . This step could 

ake exponential time (with respect to β and η) as outlined in the 
roof of Lemma 1 . 

.2. Lazy-fashioned branch-and-cut (LBC) algorithm 

Here, we describe a lazy-fashioned branch-and-cut (LBC) algo- 

ithm for solving the IP model (1a) –(1e) . As outlined earlier, this 

P model requires enumeration of all β-maximal-blockers and η- 
inimal-clique-candidates. As shown by Lemma 1 , constructing 

hese sets is computationally expensive; recall that it might take 

xponential time with respect to β and η. Therefore, it might be 

eneficial to incorporate one or both of the corresponding con- 

traint sets, see (1b) and (1c) , as lazy cuts. However, we observe 

hat enumerating all η-minimal-clique-candidates is somewhat in- 

vitable as it is required for the definition of variables y Q . Hence, 

e implement only constraints (1b) as lazy cuts. 

We start the algorithm with a relaxed master problem (RMP), 

hich is simply the IP model (1a) –(1e) without constraints (1b) . 
24 
e solve the RMP by using a standard branch-and-cut algorithm 

e.g., via an off-the-shelf IP solver). Then, whenever a feasible so- 

ution to the RMP is returned at a search tree node, we solve 

 sub-problem (see below) to verify whether there exists a β- 

aximal-blocker that is “intersecting” all constructed η-minimal- 

lique-candidates. 

That is, the blocker contains at least one node in common with 

very η-minimal-clique-candidate and (1b) is violated. If such β- 

aximal-blocker does not exist, then we can fathom the tree node 

s we have a feasible solution, and update the incumbent solution 

f necessary. Otherwise, we add constraint (1b) associated with the 

dentified β-maximal-blocker to the RMP in order to cut off the 

urrent solution. 

Specifically, denote a feasible solution to the RMP by ( ̂  x , ̂  y ) . Re- 

all that in the proof of Lemma 1 , we assume that all parameters

re integers. If this assumption does not hold, then there exists a 

trictly positive constant k such that η, β , and all elements of w 

nd b become integers if they are multiplied by k . 

Define a set of binary variables z i , i ∈ V , where z i = 1 if and only

f i belongs to a β-maximal-blocker. Then, we consider the follow- 

ng feasibility problem: 
 

i ∈ V 
kb i z i ≤ kβ − 1 , (2a) 

 

i ∈ Q 
z i ≥ 1 , ∀ Q ∈ �V 

w ,η s.t. ̂ y Q = 1 , (2b) 

 i ∈ { 0 , 1 } , ∀ i ∈ V, (2c) 

where constraint (2a) ensures that the blocking cost of set 

 = { i ∈ V : z i = 1 } is strictly less than β , i.e., D defines an ap-

ropriate blocker. Constraint (2b) ensures that set D intersects all 

onstructed η-minimal-clique-candidates. 

Clearly, if (2a) –(2c) is infeasible, then ( ̂  x , ̂  y ) is a feasible solu- 

ion of the CBRND problem. Otherwise, ( ̂  x , ̂  y ) is not a feasible so- 

ution of the CBRND problem as set D defines a blocker of cost 

maller than β , that intersects all constructed η-minimal-clique- 

andidates. Note that D is not guaranteed to be a β-maximal- 

locker. To find a β-maximal-blocker containing D , we recursively 

dd vertices i ∈ V \ D into D in the increasing order of b i un-

il adding one more vertex results in B (D ) being larger than or 

qual to β . Finally, constraint (1b) associated with the obtained β- 

aximal-blocker D , which is violated by ( ̂  x , ̂  y ) , needs to be added

nto the RMP, and the algorithm continues. 

. Combinatorial branch-and-bound (CBB) algorithm 

The focus of this section is on the combinatorial branch-and- 

ound (CBB) algorithm. Similar to the IP model in (1a) –(1e) , the 

onsidered CBB algorithm is based on the characterization of fea- 

ible solutions given by Proposition 1 . The structure of the search 

ree as well as the details of the upper and lower bounding ap- 

roaches are described in Sections 4.1 –4.3 , respectively. 

.1. Search tree structure 

We refer to a clique constructed by adding appropriate edges 

rom Ě to some η-minimal-clique-candidate, as an η-minimal- 

lique. Based on Proposition 1 , the CBB algorithm constructs a 

ollection of η-minimal-cliques with minimum construction costs 

uch that for each β-maximal blocker, there exists an η-minimal- 

lique that does not have any vertex in common with the blocker. 

o enumerate all combinations of cliques constructed using η- 
inimal-clique-candidates, we apply a binary search tree, and 

plit each tree node into two branches, namely, one associated 
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Algorithm 1: A combinatorial branch-and-bound (CBB) algo- 

rithm. 

Input: P = (G, ̌E , W , b , c , η, β) 

Output: A set E ∗ ⊆ Ě that is an optimal solution for the 

CBRND problem, i.e., C(E ∗) is minimum possible given that 

for graph G 
∗ = (V, E ∪ E ∗) , we have B(G 

∗, η) ≥ β

Node_Counter← 0 ; 

S 0 ← ∅ ; T 0 ← 
̂ �(S 0 ) ; t 

0 ← (S 0 , T 0 ) ; // Create root 
node t 0 

Tree ← ∅ ; // Initialize the search tree 
E ∗ ← UB ( c , �V 

b ,β
, �V 

W ,η ) ; // See Section~4.2 
Branch ( c , �V 

b ,β
, �V 

W ,η, t 0 , Tree , Node_Counter); 

while T ree � = ∅ do 
Select a node t q ∈ Tree using DFS strategy; // See 

Section~4.1 
Tree ← Tree \{ t q } ; 
if t q is associated with constructing an η-minimal-clique 

then 

if E(S q ) is feasible (i.e., ̂ �(S q ) = ∅ ) then // See 
Section~4.1 

if C(E ∗) > C(E(S q )) then 

E ∗ ← E(S q ) ; // Update the incumbent 
solution 

end 

end 

else 

if C(E ∗) > LB ( c , �V 
b ,β

, �V 
W ,η, t q ) then // Otherwise, 

fathom~t q 
Branch ( c , �V 

b ,β
, �V 

W ,η, t q , Tree , Node_Counter); 

end 

end 

end 

else // t q is associated with not adding any 
additional edge 

if E(S q ) ∪ E(T q ) is feasible (i.e., ̂ �(S q ∪ T q ) = ∅ ) then 

// Otherwise, fathom t q by infeasibility 
if C(E ∗) > LB ( c , �V 

b ,β
, �V 

W ,η, t q ) then // Otherwise, 
fathom t q 

Branch ( c , �V 
b ,β

, �V 
W ,η, t q , Tree , Node_Counter); 

end 

end 

end 

end 

return E ∗; 
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ith constructing a clique using some chosen η-minimal-clique- 

andidate Q by adding all missing edges (to obtain a clique), and 

he other one related to not adding any additional edge between 

ertices in Q . The pseudo-code is given by Algorithm 1. Next, we 

rovide its detailed discussion. 

Denote by t q , q ≥ 0 , the nodes of the search tree (or simply the

ree in the discussion below), where q serves as an index of each 

ode and t 0 corresponds to the root node of the tree. Each node t q 

ontains a solution set (denoted by S q ) and a candidate set (denoted 

y T q ). Specifically, set S q is the collection of η-minimal-cliques 

onstructed throughout the unique path connecting the root node 

 
0 and the current tree node t q . Set T q contains η-minimal-clique- 

andidates that have not been processed yet, and constructing a 

lique using them may result in a feasible solution to the CBRND 

roblem. 

To be more precise, given a tree node t q , the set of η-minimal-

lique-candidates that may result in a feasible solution to the 

BRND problem is defined as 

̂ (S q ) = 

{
Q ∈ �V 

w ,η : Q ∩ D = ∅ for some D ∈ 
̂ �(S q ) 

}
, (3) 

here we need to recall our discussion at the beginning of 

ection 3.1 for the definition of set ̂ �(S q ) . Thus, set T q contains

lements of ̂ �(S q ) that belong to the candidate set of the parent 

ode of node t q and have not been chosen for branching yet. At 

he root node (i.e., q = 0 ), we have S 0 = ∅ and T 0 = 
̂ �(S 0 ) . 

When branching on a parent node t q , we first select an element 

of T q as the branching variable, and then create two child nodes. 

amely, the first one is based on constructing a clique using Q by 

dding the missing edges, and the other is based on not adding 

ny additional edge between vertices in Q . 

We note that S q is a feasible solution if and only if ̂ �(S q ) is

mpty. Hence, the effectiveness of constructing a clique using a set 

 ∈ T q can be measured by the decrease in the cardinality of ̂ �(S q )

fter adding Q to S q , i.e., 

̂ �q (Q ) = | ̂  �(S q ) | − | ̂  �( S q ∪ { Q} ) | . 
Note that, when adding Q to S q , some edges in E({ Q} ) may

ave already been constructed as part of E(S q ) ; recall the defini- 

ion of E(·) at the beginning of Section 3.1 . Thus, the additional 
ost of constructing a clique on Q is given by 

C q (Q ) = C ( E({ Q} ) \ E(S q ) ) . (4) 

onsequently, the branching variable selection rule used here is to 

hoose an element Q ∈ T q that has the highest effect per unit in-

rease in its construction cost, i.e., the maximum ratio of 
̂ �q (Q ) 

nd 
C q (Q ) . This branching variable selection rule has a good po- 

ential to find low-cost feasible solutions within a reasonably small 

umber of iterations, which, in turn, decreases the depth of the 

earch tree. 

We create the child node associated with constructing a clique 

sing η-minimal-clique-candidate Q prior to the child node cor- 

esponding to not adding any additional edge to set Q . For the 

rst child node (denoted by t p ), the solution set is formed by 

dding set Q to set S q , i.e., S p = S q ∪ { Q} . The candidate set of this
hild node is composed of η-minimal-clique-candidates in T q \ { Q} , 
hich have the potential to make E(S p ) feasible, i.e., T p = (T q \
 Q} ) ∩ ̂

 �(S p ) . The second child (denoted by t r ) has the same solu-

ion set as its parent node, i.e. S r = S q . Furthermore, for the candi-

ate set, we simply need to set T r = T q \ { Q} . The detailed pseudo-
ode of outlined branching algorithm is given in Algorithm 2 . 

The search strategy used is a depth-first-search (DFS) strategy 

n which we choose an unprocessed node from the deepest layer 

f the tree for further processing. In case there are two nodes 

n the deepest layer, the node associated with constructing an η- 
inimal-clique is selected. This search strategy is consistent with 

ur branching variable selection rule discussed above (selecting Q
25 
ith maximum 
̂ �q (Q ) / 
C q (Q ) ), which encourages the detec- 

ion of good quality feasible solutions (upper bounds) at the early 

tages of the algorithm. 

Furthermore, it should be noted that if a tree node t q associ- 

ted with a clique construction is selected for further processing, 

hen we first need to verify whether E(S q ) is a feasible solution. 

f ̂ �(S q ) is empty, then E(S q ) is a feasible solution according to 

roposition 1 . We then fathom node t q by feasibility, and update 

he incumbent objective if necessary. If E(S q ) is not a feasible so- 

ution, then we verify whether the lower bound at node t q (dis- 

ussed in Section 4.3 ) is smaller than the incumbent objective. If 

he answer is no, then we fathom node t q by bound. Otherwise, 

he branching function is called (see Algorithm 2 ) and the children 

odes of node t q are created and added to the search tree. 
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Algorithm 2: The branching function. 

Function Branch( c , �V 
b ,β

, �V 
W ,η, t q ,Tree,Node_Counter) 

Select Q ∈ T q with the max value of 
̂ �q (Q ) / 
C q (Q ) ; 

T q ← T q \ { Q} ; 
Node_Counter← Node_Counter+1 ; 

p ← Node_Counter; 

// Create t p associated with adding Q 

S p ← S q ∪ { Q} ; 
T p ← 

̂ �(S p ) ∩ T q ; // See Section~4.1 
t p ← (S p , T p ) ; 

T ree ← T ree ∪ { t p } ; 
Node_Counter← Node_Counter+1 ; 

r ← Node_Counter; 

// Create t r associated with NOT adding Q 

S r ← S q ; 

T r ← T q ; 

t r ← (S r , T r ) ; 

T ree ← T ree ∪ { t r } ; 
end 
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Finally, node t q , which corresponds to a clique construction, 

ay never be fathomed by infeasibility; recall that the parent of 

ode t q is not fathomed by infeasibility. On the other hand, if 

 
q is associated with not adding any additional edge to some η- 
inimal-clique-candidate, then we need to verify whether E(S q ) ∪ 

(T q ) is a feasible solution, which is done by checking whether ̂ (S q ∪ T q ) is empty. If ̂ �(S q ∪ T q ) is not empty, then we fathom

 
q by infeasibility. Otherwise, we continue to verify whether t q can 

e fathomed by bound; if not, then the algorithm continues with 

ranching. 

.2. Upper-bounding approach 

We use a heuristic approach to find a feasible solution, and 

nitialize the upper bound. The heuristic recursively constructs η- 
inimal-cliques in a greedy routine until the construction is feasi- 

le; see the pseudo-code in Algorithm 3 . 

Algorithm 3: An algorithm for finding a valid upper bound. 

Function UB ( c , �V 
b ,β

, �V 
W ,η ) 

S ∗ ← ∅ ; 
T ∗ ← 

̂ �(S ∗) ; 
while E(S ∗) is not feasible (i.e., ̂ �(S ∗) � = ∅ ) do 

Pick Q ∈ T ∗ with the maximum value of 

| �V 
b ,β

\ ̂  �({ Q} ) | / C(E({ Q} )) ; 
S ∗ ← S ∗ ∪ { Q} ; 
T ∗ ← 

̂ �(S ∗) ; // See Section~4.2 
end 

return E(S ∗) ; 
end 

Specifically, we start with an empty solution set S ∗ and 

 candidate set T ∗, which is initialized with T ∗ = 
̂ �(S ∗) ; re-

all Eq. (3) in Section 4.1 . In each iteration, we find the η-
inimal-clique-candidate Q ∈ T ∗ with maximum value of | �V 

b ,β
\ 

̂ ({ Q} ) | / C(E({ Q} )) in T ∗. Notice that we do not use | ̂  �(S ∗) \̂ (S ∗ ∪ { Q} ) | / C(E({ Q} ) \ E(S ∗)) in order not to update the ratio
henever an element is added to S ∗. Then, we add Q to S ∗ and

pdate T ∗ with η-minimal-clique-candidates in T ∗ \ { Q} that have 
otential to make E(S ∗) feasible. We repeat this cycle until set 

(S ∗) becomes a feasible solution. 
26
The running time of the proposed upper bounding heuristic is 

xponential in the worst case as discussed in Appendix A . 

.3. Lower-bounding approach 

Next, we discuss the approach for computing a valid lower 

ound at each node t q of the search tree. Proposition 3 below 

resents one such bound using (4) . 

roposition 3. Given a tree node t q , if ˆ E ⊆ Ě is a feasible solution to 

he CBRND problem that is within the subtree rooted at t q , then 

( ̂  E ) ≥ C(E(S q )) + max 
{
δ(D ) : D ∈ 

̂ �(S q ) 
}
, 

here 

(D ) = min { 
C q (Q ) : Q ∈ T q , Q ∩ D = ∅ } . 
roof. The proof of Proposition 3 is provided in Appendix B . �

To use the lower bound from Proposition 3 at a node t q , 

e need to compute the maximum value of δ(D ) across all β- 

aximal-blockers D ∈ 
̂ �(S q ) , and then add this maximum value to 

he cost of E(S q ) , i.e., C(E(S q )) . To find δ(D ) for a given D ∈ 
̂ �(S q ) ,

e need to compute the minimum value of 
C q (Q ) across all 

 ∈ T q that satisfy Q ∩ D = ∅ . The details of our algorithm are in

lgorithm 4 . 

Algorithm 4: An algorithm for finding a valid lower bound at 

each search tree node. 

Function LB ( c , �V 
b ,β

, �V 
W ,η, t q ) 

C max ← 0 ; 

foreach D ∈ 
̂ �(S q ) do 

C min ← ∞ ; 

foreach Q ∈ T q such that Q ∩ D = ∅ do 
C min ← min {C min , 
C q (Q ) } ; // See Section~4.3 

end 

C max ← max {C max , C min } ; 
end 

return C(E(S q )) + C max ; 

end 

Finally, the running time for the proposed lower bounding pro- 

edure is also worst-case exponential. Set ̂ �(S q ) at t q can be 

ound by updating the corresponding set in the parent node of 

 
q . As discussed in Appendix A , this updating can be completed in

 (ηβn kβ−1 ) . For a given D ∈ 
̂ �(S q ) and Q ∈ T q , verifying whether

 ∩ D = ∅ and computing 
C q (Q ) both can be done in O (ηβ +
2 n 2 ) . Hence, both for loops in Algorithm 4 can be computed in

 (n kβ−1 n kη+1 (ηβ + η2 n 2 )) . 

. Computational study 

Next, we study the computational performance of our ap- 

roaches outlined in Sections 3 and 4 . Specifically, we compare 

 standard branch-and-cut (BC) algorithm solving the IP formu- 

ation presented in Section 3.1 , the LBC algorithm proposed in 

ection 3.2 , and the CBB algorithm developed in Section 4 . The 

rst two approaches are implemented using Gurobi Optimizer 9.1.1. 

lso, it is important to point out that all three algorithms rely on 

he approaches outlined in the proof of Lemma 1 for computing 

ets �V 
b ,β

and/or �V 
w ,η; see additional discussion on this issue in 

ection 5.2 . 

All algorithms are coded in C++ and the numerical experiments 

re conducted on a 64-bit Windows system with Intel(R) Core(TM) 

7-10750H processors and 16GB RAM. However, only one core is 
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Table 1 

Results for the randomly-generated network instances (denoted as 20 − x − y − z). The running times are in seconds (Time). The optimality gaps (Gap), and the costs of the 

best solutions found (Solution) are also reported for each solution approach. The smallest run time (or the optimality gap) for each instance is highlighted and underlined. 

Instance 

BC LBC CBB 

Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution 

20-10-10-0 0.237 0.000 0.078 0.369 0.000 0.078 0.179 0.000 0.078 

20-10-10-1 0.097 0.000 0.555 0.210 0.000 0.555 0.095 0.000 0.555 

20-10-10-2 0.114 0.000 0.430 0.225 0.000 0.430 0.134 0.000 0.430 

20-10-10-3 0.172 0.000 0.454 0.277 0.000 0.454 0.205 0.000 0.454 

20-10-10-4 0.211 0.000 0.539 0.144 0.000 0.539 0.189 0.000 0.539 

20-10-40-0 307.864 0.000 18.590 16.506 0.000 18.590 TL 0.776 19.562 

20-10-40-1 14.340 0.000 40.385 3.156 0.000 40.385 TL 0.808 45.851 

20-10-40-2 34.476 0.000 38.355 3.412 0.000 38.355 TL 0.786 42.540 

20-10-40-3 14.093 0.000 18.974 0.806 0.000 18.974 TL 0.823 20.199 

20-10-40-4 95.025 0.000 24.187 9.454 0.000 24.187 TL 0.782 25.643 

20-10-50-0 3209.020 0.000 101.761 145.267 0.000 101.761 TL 0.841 114.620 

20-10-50-1 437.851 0.000 76.963 29.491 0.000 76.963 TL 0.822 95.659 

20-10-50-2 58.785 0.000 45.341 11.494 0.000 45.341 TL 0.891 49.212 

20-10-50-3 132.758 0.000 38.237 3.784 0.000 38.237 TL 0.862 45.060 

20-10-50-4 11.291 0.000 41.809 1.366 0.000 41.809 TL 0.835 52.778 

20-10-75-0 71.019 0.000 380.640 828.603 0.000 380.640 TL 0.895 445.530 

20-10-75-1 7.258 0.000 429.103 2.860 0.000 429.103 TL 0.948 481.670 

20-10-75-2 292.250 0.000 394.853 1617.640 0.000 394.853 TL 0.948 437.417 

20-10-75-3 287.860 0.000 537.070 711.875 0.000 537.070 TL 0.879 600.757 

20-10-75-4 85.752 0.000 267.099 410.252 0.000 267.099 TL 0.943 326.197 

20-40-10-0 TL 0.937 158.745 TL 0.898 158.745 TL 0.466 190.729 

20-40-10-1 TL 0.364 140.028 TL 0.979 140.028 TL 0.524 172.612 

20-40-10-2 TL 0.138 89.249 TL 0.500 89.249 TL 0.534 125.496 

20-40-10-3 TL 0.553 127.303 TL 0.635 127.303 TL 0.547 127.303 

20-40-10-4 83.142 0.000 86.286 240.061 0.000 86.286 TL 0.383 88.085 

20-40-40-0 PTL – – TL 0.368 882.746 PTL – –

20-40-40-1 MTL – – TL 0.594 951.690 TL 0.789 951.690 

20-40-40-2 TL 0.810 997.458 TL 0.666 997.458 TL 0.689 898.587 

20-40-40-3 TL 0.600 912.800 TL 0.626 983.726 TL 0.817 983.726 

20-40-40-4 TL 0.598 807.051 TL 0.564 908.662 TL 0.686 961.118 

20-50-10-0 TL 0.759 229.738 TL 0.666 229.738 TL 0.455 251.065 

20-50-10-1 TL 0.955 352.274 TL 0.988 814.072 TL 0.404 412.213 

20-50-10-2 TL 0.953 288.528 TL 0.978 411.824 TL 0.524 337.079 

20-50-10-3 TL 0.965 277.450 TL 0.999 352.735 TL 0.424 295.317 

20-50-10-4 TL 0.449 237.971 TL 1.000 606.736 TL 0.552 296.807 

20-75-10-0 4.321 0.000 770.561 57.497 0.000 770.561 TL 0.275 772.175 

20-75-10-1 28.377 0.000 612.303 499.071 0.000 612.303 TL 0.223 612.303 

20-75-10-2 28.958 0.000 667.458 301.406 0.000 667.458 TL 0.297 673.206 

20-75-10-3 49.761 0.000 638.295 1076.020 0.000 638.295 TL 0.353 646.119 

20-75-10-4 3.240 0.000 826.781 8.424 0.000 826.781 TL 0.372 847.161 
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pplied in all our experiments in order to have a fair comparison 

etween the CBB algorithm and the other two integer program- 

ing based methods by not allowing parallelization. The run time 

imit is set to 3600 seconds for each problem instance. 

.1. Test instances 

In our preliminary experiments, we observe that (as expected) 

ncreasing | V | makes the problem more challenging for all algo- 

ithms, and does not affect their relative performance. Similarly 

and also not surprisingly), as edge set E becomes larger and/or 

he nominee set Ě becomes smaller, the instances become easier 

or all algorithms. 

In view of the above observations, we fix the size of all in- 

tances to some value (namely, 20) for which at least one of our 

lgorithms can find a feasible solution. For the randomly-generated 

nstances, we set E = ∅ . For the real-life instances, we consider 

ve real-life networks chosen from different categories of Network 

epository ( Ryan & Nesreen, 2015 ), and pick 20 vertices with the 

mallest degrees in these networks. Thus, we ensure that the edge 

ensity among these 20 vertices is relatively low, and the problem 

f adding edges between these vertices to increase the network re- 

iliency becomes more challenging and also more interesting from 

he practical perspective. Finally, we let Ě = Ē in all our instances. 
27 
The name of each randomly-generated instance is in the form 

0 − x − y − z, see Tables 1 and 2 ; the name of each real-life in-

tance is in the form name − 20 − x − y , see Tables 3 and 4 ; re-

all that for all instances | V | = 20 . The blocking costs, weights, and

onnecting costs in all instances are positive rational numbers that 

re randomly generated between 0 and 10 using a uniform distri- 

ution. Parameters η and β are selected as x % and y % of the total

um of weights and blocking costs of all vertices, respectively. By 

djusting x and y , we generate instances with different cardinal- 

ties of �V 
w ,η and �V 

b ,β
. The problem difficulty is closely related 

o the cardinalities of these two sets as we further highlight in 

ection 5.2 . 

For randomly-generated instances, combinations of x and y are 

hosen from set { 10 , 40 , 50 , 75 } , and for each combination of these

wo parameters, we generate five random instances denoted by 

 ∈ { 0 , . . . , 4 } . Note that we can not generate random instances for

ll combinations of x and y in this set, as it is unlikely to find a

easible instance with large values of x and y simultaneously. Af- 

er creating a randomly-generated instance for a given combination 

f x and y , if the instance is either infeasible or trivial (the latter

ase arises when not adding any edge is a feasible solution), then 

e discard it, and regenerate a new one. We repeat this procedure 

or each combination at most 10,0 0 0 times. If we can not generate 

ve meaningful random instances for a given combination within 
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Table 2 

Results for the randomly-generated network instances (denoted as 20 − x − y − z). The numbers of η-minimal-clique-candidates ( | �V 
w ,η| ) and β-maximal-blockers ( | �V 

b ,β
| ) for 

each instance are reported. The preprocessing times are in seconds (P_T). We also report the number of the search tree nodes (# node) for each algorithm, the number of 

lazy cuts (# cut) applied by the LBC algorithm, and the initial gap (Gap 0 (%) ) of the CBB algorithm. 

Instance | �V 
w ,η| | �V 

b ,β
| 

BC LBC CBB 

P_T (seconds) # node P_T (seconds) # node # cut P_T (seconds) # node Gap 0 (%) 

20-10-10-0 257 142 0.109 0 0.014 0 6 0.124 3 0.000 

20-10-10-1 219 60 0.052 0 0.013 1 7 0.059 9 0.421 

20-10-10-2 222 65 0.055 1 0.010 1 9 0.063 11 0.236 

20-10-10-3 196 97 0.058 1 0.009 1 12 0.064 15 0.423 

20-10-10-4 182 164 0.078 0 0.009 1 8 0.085 7 0.216 

20-10-40-0 403 17,497 14.552 280 0.011 1902 395 14.982 95,013 0.949 

20-10-40-1 179 11,470 4.984 1 0.009 642 287 5.923 897,669 0.959 

20-10-40-2 241 10,299 6.242 117 0.009 764 221 6.462 469,653 0.984 

20-10-40-3 209 14,142 6.895 1 0.010 178 127 7.740 187,435 0.925 

20-10-40-4 325 14,427 10.457 126 0.012 1243 290 10.963 114,869 0.934 

20-10-50-0 314 27,223 20.023 6303 0.014 18,256 366 21.245 893,107 0.980 

20-10-50-1 259 21,701 13.931 2070 0.011 5711 454 14.939 1,541,803 0.978 

20-10-50-2 225 21,479 12.063 171 0.010 2457 508 13.520 426,333 0.961 

20-10-50-3 231 28,360 15.290 1 0.011 666 277 16.629 378,729 0.958 

20-10-50-4 196 9981 6.445 1 0.009 347 216 7.145 1,233,929 0.968 

20-10-75-0 384 5966 9.177 3064 0.013 239,377 895 9.793 3,765,677 0.947 

20-10-75-1 240 3066 6.672 1 0.009 597 273 7.383 7,576,069 0.965 

20-10-75-2 336 7618 9.764 9130 0.011 408,795 541 10.393 5,933,067 0.977 

20-10-75-3 373 8743 11.033 13,344 0.015 280,421 1184 11.445 7,425,801 0.928 

20-10-75-4 291 5277 8.274 2215 0.009 75,972 1013 8.678 3,163,763 0.979 

20-40-10-0 36,487 75 12.251 527 2.311 799 26 15.232 19,623 0.580 

20-40-10-1 21,697 158 13.912 10,261 1.568 879 31 15.978 30,033 0.671 

20-40-10-2 12,359 76 4.659 4895 1.121 2763 17 9.072 46,495 0.698 

20-40-10-3 18,183 102 7.428 104,425 1.302 1949 31 9.627 4529 0.752 

20-40-10-4 25,021 93 8.521 313 1.536 2262 18 11.554 40,399 0.744 

20-40-40-0 39,586 – – – 2.307 2941 2673 – – –

20-40-40-1 27,015 34,399 1928.840 – 1.872 641 209 1983.550 5 0.789 

20-40-40-2 18,461 40,994 1534.870 0 1.797 573 225 1577.580 5 0.689 

20-40-40-3 32,448 22,128 1463.770 1 2.005 566 118 1516.940 5 0.817 

20-40-40-4 42,468 28,534 2377.61 0 2.486 543 163 2405.67 5 0.686 

20-50-10-0 24,397 85 8.521 11,089 1.785 53,468 23 12.460 20,445 0.804 

20-50-10-1 63,418 95 21.912 510 4.102 2552 49 33.994 7599 0.745 

20-50-10-2 26,101 112 14.055 522 2.294 970 40 18.146 25,023 0.714 

20-50-10-3 60,694 95 20.428 510 4.087 2196 37 30.201 14,609 0.673 

20-50-10-4 31,702 101 13.493 5101 2.466 2358 32 18.781 9609 0.798 

20-75-10-0 3647 81 1.748 1 0.496 156 41 2.900 164,741 0.425 

20-75-10-1 6105 64 2.508 1 0.724 1076 50 4.559 162,411 0.443 

20-75-10-2 3475 119 2.179 1 0.500 562 60 3.187 582,389 0.457 

20-75-10-3 4323 66 1.810 240 0.471 377,653 46 3.127 397,163 0.534 

20-75-10-4 3900 80 1.548 1 0.597 278 52 2.799 1,195,069 0.457 
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0,0 0 0 attempts, then we exclude that combination from our ex- 

eriment. Out of 16 possible combinations for x and y , we could 

enerate feasible random instances for eight combinations shown 

n Tables 1 and 2 resulting in a total of 40 problem instances. For

implicity, we use the same combinations for x and y for our real- 

ife networks to obtain 40 real-life instances (and here, we allow 

rivial instances). 

.2. Results and observations 

The computational times, optimality gaps, and costs of the best 

olutions found for the randomly-generated and real-life network 

nstances are presented in Tables 1 and 3 , respectively. The to- 

al preprocessing times and the number of processed nodes for 

ll algorithms as well as the number of lazy cuts applied in the 

BC algorithm along with the values of | �V 
w ,η| and | �V 

b ,β
| for 

ach randomly-generated and real-life instance are all listed in 

ables 2 and 4 , respectively. 

All algorithms have some preprocessing step, which is included 

nto their total runtime. The preprocessing step of the BC ap- 

roach requires generating �V 
w ,η and �V 

b ,β
. Generating �V 

w ,η is the 

nly step required in the preprocessing for LBC. Besides gener- 
28 
ting sets �V 
w ,η and �V 

b ,β
, the CBB algorithm needs to calculate 

 ̂
 �({ Q} ) | / C(Q ) (used in upper bounds) for all Q ∈ �V 

w ,η . 

Given the one hour time limit for all algorithms, if an experi- 

ent exceeds the time limit during its preprocessing step, its run- 

ime is shown as “PTL”, i.e., “Preprocessing Time Limit”. Then, if 

he BC algorithm exceeds the time limit while building the full IP 

odel, its runtime is shown as “MTL”, i.e., “Modeling Time Limit”. 

inally, if an algorithm exceeds the time limit during the actual so- 

ution process, its runtime is simply shown as “TL”, which stands 

or “Time Limit”. 

Next, we summarize our observations for the randomly- 

enerated instances; see Tables 1 and 2 . In particular, we note that 

s seen in Table 1 , all three algorithms show to be useful depend-

ng on the combinations of x and y values. 

Consider the first four combinations of instances in Table 1 , 

amely, 20-10-10- z, 20-10-40- z, 20-10-50- z and 20-10-75- z, i.e., x 

s fixed at 10, while the value of y increases. According to Table 1 ,

he problem instances are easy when both x and y are small; all 

lgorithms can solve instances with x = y = 10 within one second. 

easonably small values of x and y imply small cardinalities for 

ets �V 
w ,η and �V 

b ,β
; see Table 2 . Therefore, the resulting IP formu- 

ations have relatively small number of variables and constraints, 

nd the LBC algorithm also employs a small number of lazy cuts. 
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Table 3 

Results for the real-life network instances (denoted as name − x − y − z). The running times are in seconds (Time). The optimality gaps (Gap), and the costs of the best 

solutions found (Solution) are also reported for each solution approach. The smallest run time (or the optimality gap) for each instance is highlighted and underlined. 

Instance 

BC LBC CBB 

Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution Time (seconds) Gap (%) Solution 

karate-20-10-10 0.141 0.000 0.161 0.328 0.000 0.161 0.126 0.000 0.161 

football-20-10-10 0.208 0.000 0.000 0.629 0.000 0.000 0.150 0.000 0.000 

chesapeake-20-10-10 0.122 0.000 0.460 0.158 0.000 0.460 0.130 0.000 0.460 

dolphins-20-10-10 0.515 0.000 0.196 0.186 0.000 0.196 0.156 0.000 0.196 

lesmis-20-10-10 0.186 0.000 0.594 0.581 0.000 0.594 0.187 0.000 0.594 

karate-20-10-40 19.715 0.000 54.188 2.522 0.000 54.188 TL 0.707 59.897 

football-20-10-40 12.108 0.000 11.146 0.584 0.000 11.146 TL 0.783 11.162 

chesapeake-20-10-40 10.638 0.000 31.819 1.259 0.000 31.819 TL 0.729 32.699 

dolphins-20-10-40 22.520 0.000 14.814 1.354 0.000 14.814 TL 0.718 14.902 

lesmis-20-10-40 37.817 0.000 7.381 1.409 0.000 7.381 TL 0.826 7.569 

karate-20-10-50 451.886 0.000 40.998 19.376 0.000 40.998 TL 0.806 45.209 

football-20-10-50 17.356 0.000 61.963 2.796 0.000 61.963 TL 0.882 70.770 

chesapeake-20-10-50 206.996 0.000 103.317 51.021 0.000 103.317 TL 0.717 108.599 

dolphins-20-10-50 607.392 0.000 40.081 41.126 0.000 40.081 TL 0.863 47.049 

lesmis-20-10-50 619.729 0.000 55.288 52.518 0.000 55.288 TL 0.816 64.448 

karate-20-10-75 18.032 0.000 263.120 26.248 0.000 263.120 TL 0.882 308.340 

football-20-10-75 15.588 0.000 227.468 21.198 0.000 227.468 TL 0.945 271.613 

chesapeake-20-10-75 8.510 0.000 276.955 3.480 0.000 276.955 TL 0.898 329.880 

dolphins-20-10-75 278.350 0.000 439.314 TL 0.016 439.314 TL 0.876 483.881 

lesmis-20-10-75 8.291 0.000 484.059 3.323 0.000 484.059 TL 0.906 528.032 

karate-20-40-10 390.964 0.000 97.158 2419.990 0.000 97.158 TL 0.365 99.833 

football-20-40-10 TL 0.577 126.478 TL 0.765 126.478 TL 0.576 151.936 

chesapeake-20-40-10 805.997 0.000 83.917 692.903 0.000 83.917 TL 0.348 95.967 

dolphins-20-40-10 1149.570 0.000 100.483 145.066 0.000 100.483 TL 0.477 127.196 

lesmis-20-40-10 TL 0.280 121.566 TL 0.984 121.566 TL 0.426 121.566 

karate-20-40-40 1229.470 0.000 627.145 1448.570 0.000 627.145 TL 0.815 899.999 

football-20-40-40 TL 0.434 701.788 TL 0.588 899.373 TL 0.753 899.373 

chesapeake-20-40-40 TL 0.853 901.258 TL 0.697 901.258 TL 0.827 901.258 

dolphins-20-40-40 TL 0.257 791.308 TL 0.572 917.453 TL 0.760 917.453 

lesmis-20-40-40 TL 0.246 906.370 TL 0.221 927.728 TL 0.758 927.728 

karate-20-50-10 TL 0.924 295.292 TL 0.950 410.849 TL 0.571 326.787 

football-20-50-10 TL 0.896 189.496 TL 0.964 189.496 TL 0.686 535.444 

chesapeake-20-50-10 TL 0.972 337.353 TL 0.968 355.213 TL 0.508 294.376 

dolphins-20-50-10 TL 0.820 179.735 TL 1.000 927.888 TL 0.407 714.307 

lesmis-20-50-10 TL 0.546 235.287 TL 0.981 462.734 TL 0.483 235.287 

karate-20-75-10 8.855 0.000 681.074 22.749 0.000 681.074 TL 0.343 686.118 

football-20-75-10 10.679 0.000 575.241 264.111 0.000 575.241 TL 0.395 642.356 

chesapeake-20-75-10 4.760 0.000 806.429 26.645 0.000 806.429 TL 0.190 806.429 

dolphins-20-75-10 8.552 0.000 835.018 24.679 0.000 835.018 TL 0.335 845.634 

lesmis-20-75-10 7.160 0.000 495.269 127.649 0.000 495.269 TL 0.240 495.269 
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or the CBB algorithm, a smaller size �V 
w ,η implies a smaller search 

pace, and if the size of �V 
b ,β

is also small, then the search tree is

elatively shallow. Therefore, the CBB algorithm’s performance is 

omparable with the other methods on instances with x = y = 10 . 

When we increase the value of y to 40 and 50, the value of β
s about half of the total blocking costs of all vertices. Then, | �V 

w ,η|
emains relatively small but the size of �V 

b ,β
is considerably large 

s shown in Table 2 . The LBC algorithm significantly outperforms 

he other two methods for these instances (i.e., 20-10-40- z and 

0-10-50- z). Here, the IP formulations have relatively small num- 

er of variables, but very large number of constraints; the latter 

egatively affects the performance of the BC algorithm. As for the 

BB algorithm, the search tree becomes deeper, and the feasibility 

hecks take more time. Unlike the other two algorithms, these in- 

tances form a favorable scenario for the LBC algorithm as it deals 

ith smaller IP models; see the number of lazy cuts in Table 2 .

onsequently, for these instances, the LBC algorithm is much faster 

han the other two algorithms. 

If we further increase the value of y , the size of �V 
b ,β

decreases. 

e report instances with y = 75 , since 75 is the maximum value of

 for which we can randomly generate sufficient number of feasi- 

le instances. For instances 20-10-75- z, both sets �V 
w ,η and �V 

b ,β

re relatively small, but set �V 
b ,β

is not as small as the case of 

 = 10 as shown in Table 2 . These instances are still hard to solve
29
or the CBB algorithm, but easy to solve for the BC and the LBC 

lgorithms. 

Next, we discuss instances, where we fix y at 10, but in- 

rease x , i.e., 20-10-10- z, 20-40-10- z, 20-50-10- z and 20-75-10- 

. Instances are hard to solve when | �V 
b ,β

| is small but | �V 
w ,η|

emains large, i.e., 20-40-10- z and 20-50-10- z instances. For the 

ajority of these instances, the search spaces are large, and the 

ptimal solutions cannot be found within the time limit. How- 

ver, the gaps returned by the CBB algorithm are consistently 

round 50% for both 20-40-10- z and 20-50-10- z instances. On the 

ther hand, the gaps returned by the BC and LBC algorithms are 

ot as consistent. This observation implies that for these instance 

lasses, our combinatorial scheme provides better quality bounds 

han the linear programming relaxations in the BC and the LBC 

lgorithms. 

As we increase the value of x to 75 (i.e., 20-75-10- z instances), 

he size of �V 
w ,η drops as shown in Table 2 . Similar to the 20-10-

5- z instances, the BC algorithm performs better than the other 

wo algorithms. It specifically performs better than the LBC algo- 

ithm because finding constraints in a lazy fashion takes more time 

han finding all the blockers and solving a complete IP formulation. 

The last combination to discuss is 20-40-40- z. For these in- 

tances both sets �V 
w ,η and �V 

b ,β
are very large; see Table 2 . Al- 

hough none of the methods returns an optimal solution, the LBC 

lgorithm always returns a nontrivial gap. 
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Table 4 

Results for the real-life network instances (denoted as name − x − y − z). The numbers of η-minimal-clique-candidates ( | �V 
w ,η| ) and β-maximal-blockers ( | �V 

b ,β
| ) for each 

instance are reported. The preprocessing times are in seconds (P_T). We also report the number of the search tree nodes (# node) for each algorithm, the number of lazy 

cuts (# cut) applied by the LBC algorithm, and the initial gap (Gap 0 (%) ) of the CBB algorithm. 

Instance | �V 
w ,η| | �V 

b ,β
| 

BC LBC CBB 

P_T (seconds) # node P_T (seconds) # node # cut P_T (seconds) # node Gap 0 (%) 

karate-20-10-10 256 82 0.063 1 0.012 1 8 0.073 3 0.000 

football-20-10-10 294 128 0.106 0 0.012 0 6 0.113 3 0.000 

chesapeake-20-10-10 222 76 0.053 1 0.010 1 9 0.062 15 0.213 

dolphins-20-10-10 279 97 0.081 1 0.012 1 8 0.093 3 0.000 

lesmis-20-10-10 252 88 0.072 1 0.011 1 9 0.075 15 0.492 

karate-20-10-40 184 23,009 9.369 22 0.010 559 98 9.416 969,385 0.967 

football-20-10-40 210 14,901 7.299 1 0.008 73 107 8.047 119,997 0.930 

chesapeake-20-10-40 181 12,999 5.988 51 0.008 774 102 6.829 475,881 0.968 

dolphins-20-10-40 200 28,859 12.930 1 0.010 79 110 13.917 159,945 0.932 

lesmis-20-10-40 250 32,219 17.056 1 0.011 289 228 17.437 34,717 0.890 

karate-20-10-50 287 74,890 45.634 625 0.012 1676 475 45.942 297,341 0.983 

football-20-10-50 209 19,343 10.356 55 0.009 668 178 11.000 1,424,957 0.981 

chesapeake-20-10-50 483 33,616 34.629 1731 0.023 2240 212 35.489 193,219 0.941 

dolphins-20-10-50 328 29,675 21.037 1313 0.012 5172 500 22.236 426,257 0.987 

lesmis-20-10-50 425 21,210 19.074 1757 0.019 6009 347 19.558 484,491 0.980 

karate-20-10-75 305 3471 7.203 1569 0.012 6064 451 7.962 3,047,705 0.949 

football-20-10-75 230 6394 7.849 367 0.008 4060 487 8.667 2,060,613 0.983 

chesapeake-20-10-75 249 4213 7.215 1 0.010 864 292 7.909 4,420,719 0.951 

dolphins-20-10-75 321 4723 7.908 17,633 0.012 1,299,980 994 8.638 6,374,293 0.939 

lesmis-20-10-75 217 4454 7.153 1 0.009 598 333 7.813 4,797,091 0.946 

karate-20-40-10 15,416 193 13.470 17,271 1.196 18,802 15 14.075 38,575 0.660 

football-20-40-10 12,325 169 8.670 61,952 0.922 1545 30 9.765 13,063 0.814 

chesapeake-20-40-10 24,128 104 10.094 1319 1.649 1544 27 12.512 2575 0.625 

dolphins-20-40-10 18,962 100 7.599 9270 1.385 42,412 16 9.343 45,917 0.746 

lesmis-20-40-10 47,033 84 12.539 576,413 2.618 1879 28 17.774 25,371 0.845 

karate-20-40-40 40,871 11,331 932.309 1 2.453 13,122 1831 1006.449 9 0.815 

football-20-40-40 39,141 23,688 2036.320 1 2.234 2587 542 2105.410 5 0.753 

chesapeake-20-40-40 28,654 37,749 2390.050 0 1.844 575 150 2402.590 3 0.827 

dolphins-20-40-40 23,727 27,315 1363.070 1 1.773 716 269 1426.040 5 0.760 

lesmis-20-40-40 36,314 28,273 2229.720 1 2.133 7631 1737 2361.730 3 0.758 

karate-20-50-10 35,887 158 22.026 512 2.703 972 66 25.062 5703 0.754 

football-20-50-10 26,620 138 14.582 10,865 2.904 2561 31 23.251 202,175 0.796 

chesapeake-20-50-10 30,055 166 18.454 512 2.72 1272 75 27.436 8801 0.704 

dolphins-20-50-10 46,063 107 22.187 2728 3.466 2552 29 25.863 2,555,371 0.544 

lesmis-20-50-10 24,832 147 15.663 3925 2.304 1306 50 18.688 31,655 0.768 

karate-20-75-10 3939 108 2.437 1 0.573 383 64 3.523 94,087 0.474 

football-20-75-10 2490 101 1.677 1 0.470 606 87 2.348 98,665 0.579 

chesapeake-20-75-10 6171 70 1.803 1 0.618 309 42 3.514 1,964,167 0.267 

dolphins-20-75-10 4530 83 2.594 1 0.733 62 62 3.679 3,545,533 0.361 

lesmis-20-75-10 2027 107 1.188 1 0.329 547 44 1.647 118,311 0.527 
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As we observe in Tables 3 and 4 , the performances of all three

lgorithms with real-life networks are similar to those with the 

andomly-generated instances. This observation validates our anal- 

sis of their performances with the randomly-generated graphs, 

nd further demonstrates the effects of the cardinalities of sets 
V 
b ,β

and �V 
w ,η on the running times and optimality gaps returned 

y the algorithms. It is important to note that for the real-life in- 

tances, none of the algorithms encounters either a preprocessing 

ime limit or a modeling time limit. This might be due to the fact 

hat the edge sets E in real-life instances are not empty, result- 

ng in smaller sets Ě and smaller search spaces. Finally, in Fig. 2 (a) 

nd (b), we illustrate optimal solutions for the CBRND problem in a 

andomly-generated instance and a real-life network, respectively; 

or the former recall that we use instances with E = ∅ . 

. Conclusion 

In this study, we consider the problem of constructing net- 

orks that are resilient to clique blockers. That is, we introduce 

he clique-blocker-resilient network design (CBRND) problem. We 

ddress the computational complexity of this problem, and explore 

ts structural properties, which are then exploited to develop ex- 

ct solution approaches including an integer programming (IP) for- 
30 
ulation, a lazy-fashioned branch-and-cut (LBC) algorithm, and a 

ombinatorial branch-and-bound (CBB) algorithm. 

We report the results of our numerical experiments with 

andomly-generated and real-life networks to compare the perfor- 

ance of the proposed methods. Each method has its own ad- 

antages when solving instances with specific structures; this ob- 

ervation may provide a point of reference when selecting a spe- 

ific solution method in various application settings. The IP model 

ith an off-the-shelf solver may be a good choice when the size 

f the problem is relatively small. The CBB approach can provide 

he best optimality gaps when we have a very large collection of 

-minimal-clique-candidates but a reasonably small collection of 

-maximal-blockers. When we have an instance with the opposite 

ituation, then the LBC algorithm becomes the best choice. The LBC 

lgorithm is also the best approach to return nontrivial optimality 

aps in challenging network instances. 

Naturally, the proposed methods have some limitations; how- 

ver, our results provide a number of interesting directions for 

uture research. For example, improving bounding approaches in 

he combinatorial branch-and-bound algorithm could result in sub- 

tantial running time improvements. Finally, it could be of interest 

o explore the problem of designing resilient networks to preserve 

ther functional structures, e.g., the decision-maker could be inter- 
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sted in preserving large quasi-cliques (instead of cliques), or other 

lique relaxations. 
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ppendix A. Discussion on the complexity of Algorithm 3 

To find ̂ �(∅ ) at the start of Algorithm 3 , one needs to find̂ (∅ ) . That is, we need to verify for every D ∈ �V 
b ,β

whether

here exists a Q ∈ �V 
w ,η such that Q ∩ D = ∅ and Q is a clique in

 . Verifying these two conditions for a given D and Q can be 

one in O (ηβ + η2 ) , and the whole procedure runs in O ((ηβ +
2 ) n kβ−1 n kη+1 ) = O (η(β + η) n k (η+ β) ) ; recall the definition of k in

ection 3.2 in the discussion of formulation (2a) - (2c) . In particular, 

f all problem parameters are integers, then k = 1 . 

After finding ̂ �(∅ ) , to form 
̂ �(∅ ) , we need to verify for each

 ∈ �V 
w ,η , whether there exists a D ∈ 

̂ �(∅ ) such that Q ∩ D = ∅ .
his process runs in O ((ηβ) n kβ−1 n kη+1 ) = O ((ηβ) n k (η+ β) ) . Hence,

omputing ̂ �(∅ ) can be done in O (η(β + η) n k (η+ β) ) . 

The values of | �V 
b ,β

\ ̂  �({ Q} ) | / C(E({ Q} )) for all Q ∈ �V 
w ,η are

lso computed and sorted at the start of Algorithm 3 before the 

hile loop. To compute ̂ �({ Q} ) for a given Q ∈ �V 
w ,η , we need to

elect every D ∈ 
̂ �(∅ ) (note that ̂ �(∅ ) is computed when forminĝ (∅ ) above) and check whether Q ∩ D = ∅ . Hence, ̂ �({ Q} ) for a

iven Q can be found in O (ηβn kβ−1 ) . Given that finding C(E({ Q} ))
akes O (η2 ) , then the ratio | �V 

b ,β
\ ̂  �({ Q } ) | / C(E({ Q } )) is computed

n O (ηβn kβ−1 + η2 ) for each Q , and in 

 

(
ηβn k (η+ β) + η2 n kη+1 

)
= O 

(
η(β + η) n k (η+ β) 

)
or all Q . Sorting these values also takes time bounded 

y O (n kη+1 log (n kη+1 )) . To summarize, the time taken be- 

ore the while loop in Algorithm 3 is O (η(β + η) n k (η+ β) + 

 
kη+1 log (n kη+1 )) . 

For each iteration of the while loop, sets ̂ �(S ∗) and ̂ �(S ∗) are
ormed by updating the corresponding sets found in the previ- 

us iteration. Updating set ̂ �(S ∗) implies verifying whether each 

lement of this set overlaps with a chosen η-minimal-clique- 

andidate, which runs in O (ηβn kβ−1 ) . Updating set ̂ �(S ∗) can be
one by examining each element of this set and verifying whether 

t does not have an overlap with some element of the updated set ̂ (S ∗) . This procedure runs in O (ηβn k (η+ β) ) . Thus, each iteration of

he while loop runs in O (ηβn kβ−1 + ηβn k (η+ β) ) = O (ηβn k (η+ β) ) .

he number of iterations of the while loop is O (n kη+1 ) . Therefore,

he while loop runs in O (ηβn k (η+ β)+ kη+1 ) . 

ppendix B. Proof of Proposition 3 

Proposition 3 . Given a tree node t q , if ˆ E ⊆ Ě is a feasible solution

o the CBRND problem that is within the subtree rooted at t q , then 

( ̂  E ) ≥ C(E(S q )) + max 
{
δ(D ) : D ∈ 

̂ �(S q ) 
}
, 

here 

(D ) = min { 
C q (Q ) : Q ∈ T q , Q ∩ D = ∅ } . 
roof. Since ˆ E is located within the subtree rooted at node t q , then 

(S q ) is part of ˆ E and 

( ̂  E ) = C(E(S q )) + C 
(
ˆ E \ E(S q ) 

)
. (B.1) 

Consider an arbitrary β-maximal-blocker D 
′ ∈ 

̂ �(S q ) . Since ˆ E 

s a feasible solution to the CBRND problem located within 
31 
he subtree rooted at node t q , by Proposition 1 , there exists 

n η-minimal-clique-candidate Q 
′ ∈ T q such that Q 

′ ∩ D 
′ = ∅ and 

E({ Q 
′ } ) \ E(S q )) ⊆ ( ̂  E \ E(S q )) . Then, 

 

(
ˆ E \ E(S q ) 

)
≥ C 

(
E 
({ Q 

′ } ) \ E(S q ) 
)

= 
C q (Q 
′ ) ≥ δ(D 

′ ) . (B.2) 

Using (B.1) and (B.2) , we have 

( ̂  E ) ≥ C(E(S q )) + δ(D 
′ ) . 

ote that D 
′ is an arbitrarily selected β-maximal-blocker in ̂ �(S q ) . 

ence, C( ̂  E ) ≥ C(E(S q )) + max { δ(D ) : D ∈ 
̂ �(S q ) } . �
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