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The exponential suppression of macroscopic quantum tunneling (MQT) in the number of elements
to be reconfigured is an essential element of broken symmetry phases. Slow MQT is also a core
bottleneck in quantum algorithms, such as traversing an energy landscape in optimization, and
adiabatic state preparation more generally. In this work, we demonstrate the possibility to accelerate
MQT through Floquet engineering with the application of a uniform, high frequency transverse drive
field. Using the ferromagnetic phase of the transverse field Ising model in one and two dimensions
as a prototypical example, we identify three qualitatively distinct regimes as a function of drive
strength: (i) for weak drive, the system exhibits exponentially slow MQT alongside robust magnetic
order, as expected; (ii) at intermediate drive strength, we find polynomial decay of rates alongside
vanishing magnetic order consistent with critical or paramagnetic state; (iii) at very strong drive
strengths both the tunnelling rate and time-averaged magnetic order are approximately constant
with increasing system size. We support these claims with extensive full wavefunction and matrix-
product state numerical simulations, and theoretical analysis. An experimental test of these results
presents a technologically important and novel scientific question accessible on NISQ-era quantum

computers.

The idea of single-particle quantum tunneling through
a barrier is well-known since the 1920s [1, 2] and is found
in practical technologies such as the tunneling diode [3].
Common examples of macroscopic quantum tunneling
(MQT) have typically built on this concept [4], includ-
ing the Josephson junction, a building block of quan-
tum information systems, and can be modeled by e.g.
the Lipkin-Meshkov-Glick model [5]. A long-time goal of
such models is to move beyond the Josephson regime, in
which N bosons or Cooper pairs move fluidly between
two dominant single-particle states a particle at a time,
into the Fock regime, in which all particles can collec-
tively tunnel from one extreme to the other — the | N, 0)
and |0, N) NOON state. This is also called the Fock
regime, and is produced by raising the effective barrier
between these two extremes. This kind of tunneling is
hard to observe because the tunneling time is exponen-
tially long in the number of particles. One way to un-
derstand this exponentially long time is to calculate the
energy splitting between symmetric and anti-symmetric
states |V, 0) + |0, N}, which is exponentially small in the
Fock regime. The tunneling time can be estimated as
hbar over this energy splitting. Such concepts are the
basis of symmetry breaking and are famously cited in
Anderson’s paper, “More is Different” [6], where he uses
the example of left and right handed sugar as the two ex-

tremes. In this case, the tunneling time is longer than the
lifetime of the universe. However, the current quantum
computing paradigm and NISQ device availability offer
a new opportunity to rexamine such foundational ques-
tions, due to their high level of many-body control in
both time and space. Utilizing many-body control in the
form of symphonic tunneling [7] on the transverse field
Ising model (TFIM), in this Letter we establish a com-
plexity transition in MQT from exponential suppression
to a polynomial scaling in the number of particles.

Prior to the wide availability of NISQ quantum com-
puting devices and the spread of the quantum circuit
paradigm, many researchers looked for ways to observe
MQT, such as scattering solitons or “lumps” of bosons on
a barrier [8], physically manipulating complicated traps
in quantum simulator experiments [9, 10], hybridizing
modes to access new avenues for quantum control [11, 12],
or driving non- or weakly-interacting systems [13, 14].
A particularly famous example is the beam splitter ex-
periment of Markus Arndt [15], in which fullerenes take
two simultaneous paths. Although these experiments are
in a certain sense macroscopic [16], ultimately they are
mean-field like superpositions of center of mass degrees
of freedom [4], just like Josephson tunneling.

However, no one to date has determined a realistic way
to achieve MQT of large numbers of strongly-interacting
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quantum elements in a Fock-like regime, and even con-
trolling small numbers of weakly interacting fermions has
been a grand challenge only recently accomplished in mi-
crotraps [17]. This is a desirable goal in order to tra-
verse energy landscapes, for instance, to find a ground
state of a spin glass [18, 19]. MQT physics forms a key
source of potential quantum advantage, and bottleneck
process for quantum optimization [20, 21]. While we
have previously explored multi-tone drives to accelerate
MQT scaling[7, 22, 23], in this work we focus on a single
frequency Floquet engineering approach [24], which we
implement via Trotterization[25] in discrete space-time,
i.e. on a quantum circuit model in one and two dimen-
sional lattices of qubits. In addition to the expected fer-
romagnetic and crossover (critical or paramagnetic) be-
haviors observed at weak and intermediate drives, we dis-
cover an unusual revival of ferromagnetic order at very
strong drives accompanied by comparatively fast MQT.
The Floquet TFIM we study is

H——JZZZ —KZX +asmthYH (1)
(i5)

here J denotes spin-spin interaction that favors a dou-
ble degenerate ferromagnetic (FM) ground state (GS),
is the transverse field, the last term is a uniform field
with amplitude and frequency chosen appropriately (see
below). The phase transition to a paramagnetic state oc-
curs (for a = 0) at k. = k/J =1 (= 3) in 1d (2d) [26].
For x < k¢, the ground state manifold is a doublet of
symmetric and antisymmetric superpositions of macro-
scopic polarization states with energy splitting Qg (N),
often referred to as a Rabi frequency given the simplic-
ity of the two-level dynamics that ensues. This splitting
Qo (N)—the inverse of which sets the MQT time to mix
the two ferromagnetic states—decays exponentially in N.
In particular, in 1d, (see Supp. Materials (SM))

% (V) ox (;)N gy (2)

The analogous expression in 2d is expected to be much
more complicated, but still scales exponentially in N, i.e.
area-like.

To measure the tunneling rate we initialize the system
(Fig. 1, left) in one of the FM groundstates of the TFIM
for kK = a = 0, and smoothly ramp up off-diagonal terms
x and a. This creates a coherent magnetization reversal
(Rabi) oscillation which we measure by varying the dura-
tion of the plateau and fitting the probability of magne-
tization reversal after ramping down to a simple cosine
profile (Fig. 1, right). Magnetic order is inferred from
the time average of the two-point correlation (Z;Z;) over
the entire plateau region evaluated at large spatial sepa-
rations. Our Trotterized simulations closely model how
a gate-based quantum computer would approximate the
continuum time evolution of the problem (Fig. 1, center),
i.e. with a sufficiently small time step (see SM).

The presence of sufficiently strong AC drive in Eq. 1
is expected to induce several new multispin terms in the
effective Floquet Hamiltonian of the problem (see SM) —
steering coherent and/or correlated many-body behavior
using such dynamically generated Hamiltonians is com-
monly referred to as Floquet engineering. Specifically,
this work demonstrates the apparent dramatic renormal-
ization of Rabi frequency and magnetic order upon in-
creasing «. However, we must first address the issue of
heating, as it is expected to be present in any driven
many-body problem.To mitigate it we implement a scal-
ing limit in which the drive frequency and amplitude both
increase logarithmically with N. This choice is moti-
vated by the expectation that heating rates from high-
frequency drives decay exponentially in w [27-33], but in-
crease only quadratically with drive amplitude [28]. We
thus redefine the Floquet controls as «, f with

a=aglogN, w=_2rf=2rf;logN (3)

such that the state evolves as [|¢(t+dt)) =
exp (—2midtH (t)) [¢ (1)). The corrections to the
Floquet Hamiltonian are generated as a power series in
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FIG. 2: Evolution of order and MQT in the quantum Ising chain from weak to strong driving, simulated with TEBD, with
transverse field k = 0.9. Left: antipodal magnetic order parameter — note the saturation of order at large separation for
weak and strong driving regime, with apparent decay inbetween. Drive parameters for which simulations predict magnetic
order is asymptotically zero (constant) are plotted with hollow diamonds (solid circles). Right: exponential decay of the Rabi
freq. associated with MQT for weak drives gives way to non-exponential, nearly flat behavior vs. N as «/f increases. Drive
parameters for which the best fit is exponential decay are plotted with solid circles; hollow diamonds indicate polynomial decay

or constant Qg.

a/f = as/fs, and therefore remain constant in N. This
log-over-log limit hits an empirical sweet spot where
the driving frequency increases very gradually, but the
system can evolve for polynomially long times before
meaningfully heating. For additional recent insights into
different scaling limits, mostly focusing on steady states,
see Ref. [34]. We similarly choose smooth ramp profiles
to minimize heating. We note finally that we cannot
measure heating during evolution as we do not compute
the eigenstates of the AC-dressed system, and thus can
only measure it after the transverse terms are ramped
down. Since the system is closed, a final measurement
is sufficient to detect if the system left the ground state
manifold (Fig. 1, right). Throughout this work heating
was monitored vigilantly and eliminated through a
combination of measures described in this paragraph.

The key results of our simulations are shown in Figs. 2-
4. We first observe that one and two dimensions (and,
presumably, higher dimensions) are phenomenologically
identical. In all cases, we identify three distinct regimes
as seen in the figures:
(i) The weak driving regime (o/f < 0.2): in this limit
Qr o« N Cexp(—TN). The scaling exponent Y is re-
duced by the AC drive but the splitting still scales expo-
nentially. At long distances (Z;Z;) approaches a non-zero
constant, see Fig. 2. This is the same qualitative behav-
ior as the DC (undriven) problem, and also provides a
test case for quality control of our two main simulation
methods.
(ii) The crossover regime (0.2 < o/f < 0.3): as off
increases, the decay exponent Y smoothly vanishes and
the tunneling time crosses over to polynomial. The value
of ag where T — 0 depends on the transverse field x and

system geometry. In this regime (Z;Z;) decays slowly
with distance; in 1d (Fig. 2) it appears to asymptotically
approach zero, suggesting the melting of the ferromag-
netic order at a phase transition. In 2d the large-distance
behavior of the order parameter is less clear, limited by
the comparatively small system sizes accessible in simu-
lation, a question NISQ computing can resolve.

(iii) The strong driving regime (a/f 2 0.3): (Z;Z;) be-
gins to increase and becomes constant as a function of
distance. Qg likewise becomes approximately constant
with system size, though the total time required to tun-
nel between states is polynomial because a polynomially
long ramp time is required to avoid heating.

The strong driving regime here is particularly surpris-
ing. As « increases, we observe this behavior regime
begins close to a/f ~ 0.3 in both studied dimensions
and, importantly, for a variety of xk values, in contrast
to regimes (i) and (ii) which are much more sensitive
to k/J. Our approximate analytic calculation is able to
capture the variation of Rabi frequency in the weak drive
regime (i) and also the onset of (ii) in a modified version
of Eq. (2) (see SM), this derivation does not capture the
restoration of order at strong driving, even with accu-
rately extracted (numerically) Floquet Hamiltonian (see
SM), thus presenting an open problem which likely re-
quires a more nuanced treatment of non-equilibrium and
non-perturbative effects.

We can further explore the non-equilibrium nature of
the strong driving regime by examining the temporal evo-
lution of the same antipodal correlator we used to define
long range order in 1d. The existence of paramagnetic
intermediate « regime is probed during the ramp, as the
magnetic order appears to nearly collapse but then revive



briskly in time for the plateau, see Fig. 4. As mentioned
above, the Rabi oscillation rate 2z measured from vary-
ing the plateau time is approximately constant with sys-
tem size. Qg in this limit is a continuous function of x,
«a and f and not a simple multiple of any of them. This
is in stark contrast to simply using a large DC transverse
field (e.g. k > k), where no such order restoration is seen
and magnetic order decays exponentially with N in the
plateau region. However, the ramping time to reach the
plateau without heating the system does increase with
N, empirically as O (N?) in 1d, which combined with
the decreasing minimum ferromagnetic order parameter
(during the ramp) suggests to us that we cross at least
one, possibly two, phase transitions en route to the fer-
romagnetic state at strong drive. Taken together with
the vastly more complicated temporal dynamics of this
correlator on the plateau, which shows strong high fre-
quency components averaged over and not shown in the
Fig. 4, and the inability of the quasi-equilibrium average
Hamiltonian approach (see SM) to capture the restora-
tion of order parameter, our numerical results suggest the
importance of non-equilibrium effects, such as prether-
malization.

A natural and obvious extension of the results of this
Letter is accelerated quantum optimization, though we
caution that the spin glass case is much more complex
(for example, no longer being a simple ferromagnet, the
pair-flip terms generated will no longer be sign-definite
and can interfere destructively with the DC transverse
field). Applying a simple uniform AC field everywhere

* T-(2y)
0.004 « T-Bw ¥ * *
* T—(4y) **
*
¥
5 —0.021 * *
] * *
g x % 05
(5 —0.04+ * 0.4 '\\
*ox N N
%} * NI TN
g . ;.0"5 NS
— g * = _
A —0.06 o* 0.2l (z,9) = (3.7) (z,y) = (4.6)
""" (x.y) = (3,8) (x.y) = (2,11)
* -
—————— (t.y) = 45) | 1 (z,9) = (2,12)
. 01 T,y 5 T,y |
—0.081 & 01 02 03 04 05 06
* alf
0.1 0.2 0.4 0.5 0.6

0.3
af

FIG. 3: Collapse of exponential slowdowns with strong drives
in 2d, for various geometries with 12 < N < 28, with the
time-averaged magnetic order parameter plotted in the inset
for four relatively large system sizes. As the decay exponent
T — 0, the polynomial prefactor in Qr reduces to nearly
constant scaling in the very strong drive limit. We used a
transverse field k = 2.5 for 3 X y and 4 x y geometries, and
1.75 for 2 x y.
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FIG. 4: Time-averaged magnetic order as probed with antipo-
dal correlator in 1d chains of length 8 to 20 (dark blue, gold,
green, red, purple, brown, light blue) at strong AC drive. Red
dashed lines demarcate waiting time in-between the on-/off-
ramp whereby both DC and AC transverse fields are simul-
taneously turned on. Contrary to conventional behavior the
order parameter achieves its minimal value during the ramp
and then recovers rather dramatically on the plateaus.

is not expected to produce significant benefits for such
problems, necessitating a more sophisticated approach.
That said, it may be helpful in mitigating some of the
slowdowns associated with minor embedding [7] in ana-
log quantum optimization, by inducing fast MQT in the
chains that embed logical qubits in 2d systems.

Another natural next step would be to test these pre-
dictions on real quantum hardware. The feasibility of
such an experiment is bolstered by the recent Quantum
Utility experiment of the IBM team [35], which demon-
strated accurate simulation of time evolution in a TFIM
with up to 127 qubits, by combining multiple error mit-
igation techniques. Our discoveries here present a con-
crete, physically relevant, test: Floquet engineering of
fast MQT coexisting with broken symmetry. The ap-
parent universality of our results strongly suggests that
this phenomenon is real at large scales in higher dimen-
sions, but one of course needs to do an experiment on
quantum computing hardware to be certain. The os-
cillation periods in the strong drive regimes in Figs. 2
and 3 are empirically quite short, in the range of 10-20
Trotter steps. We estimate that with a bit more effort
put into fine tuning the ramping profile, system param-
eters, and circuit, perhaps using novel methods such as
[36], present or near-term quantum hardware could si-
multaneously extract the scaling of the oscillation period
and ferromagnetic order parameter for a hundred or more
qubits. This would be one of the first uses of a quantum
computer to answer a question of genuine scientific inter-
est at beyond-classical scales, a significant milestone in
the progress of quantum information science.

In conclusion, using a mix of theoretical arguments
and large scale numerical simulations, with the trans-



verse field Ising ferromagnet as a model system, we have
shown that strong, high frequency AC drives can dra-
matically increase macroscopic quantum tunneling rates,
inducing a crossover from exponential to polynomial or
even constant scaling with system size. We further ob-
served an unusual but consistent increase in the time
averaged magnetic order with very strong driving, coex-
isting with fast MQT. This new dynamical phase is not
explained by our analytical theory and deserves further
analysis. As large MQT events form a key bottleneck in
quantum algorithms, novel methods to accelerate them
based on extensions of this work could have broad im-
pact.
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A. Simulation details

We now present some more precise details of our sim-
ulations. Unless otherwise noted, we used a ramp time
T, = N/8 with a smooth sinusoidal protocol. To avoid
edge effects, we used periodic boundary conditions in all
cases. During evolution we measured the ferromagnetic
order parameter (Z;Z;) between the two most distant
qubits, to characterize the instantaneous state of the sys-
tem.This quantity was time-averaged over the plateau
to eliminate high frequency modulations. To simulate
evolution under a high frequency AC drive, we chose a
decreasing timestep dt = ¢/ f sufficiently small to appro-
priately sample it. dt too large leads to severe Trotter
error and nonsensical output; ¢ between 0.15 and 0.4 was
sufficient for faithful simulations, with smaller values nec-
essary when « is large. Our results thus simulate contin-
uous time and are not due to time discretization. The
Trotter error was eliminated by choosing an appropri-
ate timestep dt = ¢/f with value of ¢ between 0.25 and
0.125. The bond dimension x values in our 1d TEBD
simulations was chosen up to 50.

For a given system size N and «/ f value, the Rabi fre-
quency g is estimated by simulating the Floquet proto-
col for times t1,t2, ..., t, obtaining the tunnelling proba-
bilities p1,pa, ..., Pn, where p; = [(1---1|U(¢;)]0---0)|%.
Qg is then extracted by fitting the data with the func-
tion p(t) = sin?(Qrt + Ginit), as shown in Fig. 1(right
panel). For all simulations, the ramptimes and plateau
times were chosen so that (i) heating observed would in-
troduce only negligible effects in the extracted value of
the Rabi frequency, and (ii) the probed times would al-
low us to follow at least one oscillation of the tunnelling
probability.

When fitting the data, we used a Fast Fourier Trans-
form on the state population data to obtain a warm start
for the frequency. Additionally we fit the Rabi frequency
for both |((T)[1)> and |[(x(T)[0)|* and the reported
value is the mean of these two values. There were in-

stances where we needed to add a phase of 7/2 to @it
in order to help the model to fit the data, this is likely
due to the size dependent simulation times, which caused
inconsistent ”initial” populations/ initial phases. Ad-
ditionally in instances with a heating we used a model
that included a decaying exponent term, namely p(t) =
e~ gin? (Qgt + Ginit) and we found little inconsistency
in the extracted values for Qi in these cases. We then
logarithmically scaled the values of (g, as seen in Sup-
plementary Figure 1 and fit them to log(Qg) = A+ T+ N
in order to extract the difficulty exponent Y seen in 3.In
1d our fits were to log(Q2g) = A+ BlogN + T % N, as
the larger system sizes accessible through TEBD allowed
us to resolve polynomial prefactors more accurately. In
both cases we observe that the Rabi frequency decays
exponentially with the system size at small values of a/ f
and enters a “fast tunnelling” regime at larger values. In
the 1d case small positive values of the difficulty expo-
nent YT (see Fig. 2) are observed in the fast tunnelling
regime while Qp is still slowly decaying with the system
size. We believe these to be an artifact of the fit due
to finite size, and interpret them to be compatible with
T=0.

B. Theory of MQT in the 1d TFIM

We consider the 1d transverse field Ising model, in the
ferromagnetic phase. Our Hamiltonian is

H==Y% (kX;+JZ;Z;1) (1)

J

We assume periodic boundary conditions, for simplic-
ity.  Our goal is to compute the exponentially small
tunneling rate 0y between degenerate ground states in
the ferromagnetic phase, where k < J, through Lth or-
der perturbation theory in x using the Ising Hamiltonian
as the base Hamiltonian. Fundamentally, this is a sum
of L! flip sequences connecting the two classical ground
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FIG. 1: Lograthmically scaled Rabi oscillations in the two-
dimensional transverse-field model, with x = 2.5. Collections
of data such as this one are used to extract the difficulty
scaling exponent and characterize the three drive strength
regimes.
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FIG. 2: Difficulty exponents YT extracted from Fig. 2.Solid
dots indicate datapoints where (g decays exponentially, while
empty circles are compatible with subexponential decay. In-
set: time-averaged values for the two-point correlator from
Fig. 2.Filled diamonds indicate values of a/f where we ob-
serve saturation of (ZoZr, 2) in the range of system sizes ob-
served. Empty diamonds label cases where no such saturation
is observed, which we conservatively interpret a zero magne-
tization.
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Now, with L! terms and strong path dependence in
the denominator, this expression looks hopeless. But it
turns out there are two limits where one can evaluate
sums of this form, to good approximation. One is infinite-
dimensional (e.g. random) graphs or hypergraphs, where
the influence of specific sequences with (comparatively)
low intermediate energies, which have higher weight in

the sum, is swamped by the combinatorical proliferation
of random sequences, an issue we take up in a forth-
coming publication. The other is limit is 1d, e.g. this
problem. It will become clear from the structure of the
derivation why 2d is considerably harder and we do not
attempt it here.

The trick to evaluating this sum is to organize the sets
of terms by the maximum number of domain wall pairs
created at intermediate steps. We'll start with the sim-
plest process, where there is just a single pair of domain
walls at all steps. This process begins by enacting a sin-
gle flip at any of the L sites, which has an energy cost
4J. The next flip is at one of the two sites adjacent to
this, which moves one of the two domain walls further
apart by one step. The intermediate energy is still 4.J,
but there are two choices we can make, which gives us a
combinatorical factor of 2 in the numerator. The same
goes for the third flip, fourth flip, and so on, “unzipping”
down the chain and accumulating a factor of k/2J at
each step. Noting that there were L choices for the first
site to flip,

Wert ()T e

This is the lowest energy path possible, so one would be
tempted to stop here. But doing so underestimates g
by a factor of 2F, which isn’t great. To get the correct
value—or at least, the correct exponent—we need to con-
sider higher order terms.

Let’s now consider the set of all processes where a sec-
ond pair of domain walls is is created at some interme-
diate stage. Assume that & = 1 is the first step and
the first & flips simply create the first pair and separate
them. Then we now have a total of (L — k — 2) choices
for where to nucleate the second pair (the —2 comes from
two sites just moving existing domain walls around), and
the energy cost once this is done is 8.J (compared to 1/2J,
counting the combinatorics, for a flip at this stage that
just moves a domain wall). This is the energy cost that
now shows up in the dominator at each subsequent order
until a pair of domain walls eventually fuses, but we now
have 4 sites we can flip to move a domain wall around, so
we get a factor of k/2.J at each subsequent step just like
if we had a single pair, and once one of the pairs is elim-
inated we’re back to the same result as above. Combin-
ing all these factors, and summing over space and “time”
points where the second pair is created, we get:

L—2
2 L—k—2_a
Qg>:§;74 ol (4)
k=1

Now with three intermediate pairs. The third pair is
nucleated at any step after k, called step I. At this step
there are (L — I — 4) sites to choose from, and the energy
cost is 12J (corresponding to a factor of 1/6 in compari-
son to a flip that just moves a domain wall). Noting the
factor of 1/4 from the previous sequence, and ignoring
the combinatorically subleading cases where the second



pair of domain walls was destroyed before this third pair
was created, we find

gy S |
S :

k=1

L—4

L—-1-4
=k

o

We can generalize this to four intermediate pairs, by in-
spection:

L—2 L—4 L—4
s L—k—2L—-1-43=L-m—6_q
a5~ e . 3 < oV (6)

k=1 =k m=l

If we evaluate these sums in mathematica, a pattern
quickly emerges, and a bit of algebra and inspection
shows that at order p we have

2p—1

() ~ (1)
Qs [2%1 .QH (L — k}ﬂ (7)

The product evaluates to a Pochhammer function. Our
total tunneling rate is given by taking this sum out to
L/2, the maximum number of domain wall pairs possible
in this system:

L)2
Lg (ﬁ)L IZ l22p 1

2p—1

2HL k] (8)

This is a sum Mathematica can do; we get

Qo ~ £l<; (;)L_l TE—1/2) (I\//%Ll'/Q)

Aymptotically, the ratio I'(L —1/2)/L! converges to
L=3/2 50 up to an overall constant prefactor

Qo >~
9)

o (10)
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This matches numerics extremely well, though numeri-
cal data suggests a polynomial prefactor of L~%/7 is a
slightly better fit. That the exponent is such a close
match is a real triumph for high order perturbation the-
ory.

C. Average Hamiltonian

Standard Floquet-Magnus perturbation theory may be
used to compute the average Hamiltonian in the regime
of weak drive a.. Recall Eq. 1with k = 0, for now

H(t) = _JZZZ —|—asmthY — Ho + 0H(t)(11)
(i4)

The leading nontrivial contribution to the average Hamil-
tonian comes from the third order in the Magnus expan-

(ZoZy112)
y—

FIG. 3: Sampling dependence of <ZOZL/2> in the strongly
driven regime. The blue trace samples it at every timestep,
gold at the end of every full period (dt = 1/(5f) here), and
green sampling at every timestep but reporting the aver-
age over each full period. The strong discrepancy between
the gold and green curves suggests that the fast MQT fer-
romagnetic state is not a simple doublet of the two lowest
quasienergy states of the Floquet unitary. See text for de-
tailed simulation parameters. Red dashed lines demarcate
the plateau region.
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which both suppresses magnetic ZZ interactions and pro-
motes domain wall creation and hopping, in pairs (the use
of f rather than w respects our convention of including a
factor of 27 in time evolution). Single domain wall terms
at finite k are expected to renormalize approximately as
k — k(o) = Jo(2a/f). To complement and extend these
analytic results we may compute the average hamiltonian
of small lattices for arbitrary couplings by first comput-
ing the (numerically exact, for a fixed dt) unitary evo-
lution operator, then inferring the average hamiltonian
from its numerical matrix logarithm and then, finally,
decomposing it into Pauli strings. This procedure ap-
pears extremely stable against system size variations as
it results in rather short-ranged average Hamiltonians,
with trace-norm of the operator saturated to better than
fraction of a percent with one- and two-site terms. As ex-
pected, we observe the expected suppression of the static
77 and X interactions and the growth of XX interactions.
We also observe the unexpected nonmonotonic growth
and then decay of single spin Y terms which may be
responsible for the demise of magnetic order at interme-
diate values of o we observe both in 1d and 2d dynamics.
Importantly, direct exact diagonalization of the average
Hamiltonian for its ground state and low lying states over



a range of system sizes corroborates the observed varia-
tion of the Rabi frequency with system size in both weak
and strong driving regimes. This direct approach does
not reproduce the observed restoration of ZZ correlator.

D. Collective tunneling in the AC driven case

In the weak and crossover regimes, the average Hamil-
tonian formulation predicts both the renormalization of
x and J from fast oscillations, and the generation of new
pair-flip terms that constructively interfere to accelerate
tunneling. We can incorporate all these effects into the
derivation of Eq. 10 to predict both the reduction of the
scaling exponent Y in the weak driving regime, and the
approximate location of the crossover to polynomial scal-
ing by identifying where T — 0. The renormalization
of k and J is straightforward—following the arguments
in? , & is reduced by a factor of Jy (2a/f), where Jy is
a Bessel function. Note that the argument is a/f and
not «/w, respecting the convention stated in the main
text of including a factor of 27 in front of H (¢) in time
evolution. Since the ferromagnetic coupling J involves
two-spin terms it is reduced by a factor of Jy (2/ f )2, at
least in the limit of a/f small, and thus the ratio x/J is
increased by a factor of 1/Jy (2a/ f).

To incorporate the pair flip terms, we need to take into
account two sets of processes. The first moving a domain
wall by two steps, with matrix element —J ‘}‘—; (as com-
pared to moving it a single step with matrix —x in the
DC transverse field), and creating a domain wall pair two
sites apart with matrix element —J a—z The energy de-
nominators depend on the Ising Hamiltonian and are thus
unchanged beyond the renormalization of J already dis-
cussed. We can incorporate these terms into the analysis
leading to 10, at least approximately, by making two sub-
stitutions. First, noting that “most” of the spin flips that
contribute to the tunneling amplitude consist of moving
domain walls, we can now replace any single flip (which
contributes £/ (2J) when all combinatorics are consid-

ered) with a pair flip with amplitude 2‘}‘—; (including 1/J
for the energy denominator). This replaces two orders in
the DC calculation, and so the combination of all such

L
processes multiplies the tunneling rate by <1 + 2%) ,

to decent approximation. The second modification is that
every step that nucleates a new domain wall pair can be
replaced by the corresponding process that creates such
a pair two flips apart, which removes a factor of x/ (4J)
from the overall tunneling rate since it flips two spins
instead of one. Combining all these contributions, we

derive an AC-modified tunnel splitting
L—1

X(13)

KR

27 % Jo (2%)

o?2\P 9y 1
azjz)L L/2 p(1+4f2;<,2) 4
142 SR [ S VA y Y

2,2 _ 2
( [k 22r—1 (ph) et

QR(Kaaava):LE

p=1

This expression must be evaluated numerically, but it’s
straightforward to do so. The decay exponent decreases
continuously with «/f, and if this ratio becomes large
enough the decay exponent crosses zero. At this point
perturbation theory has broken down and we expect a
crossover to polynomial decay (as observed in our sim-
ulations), though we cannot predict the degree of that
polynomial with these methods. For k = 0.9, Eq. 13 pre-
dicts T — 0 when «/f =~ 0.15, in excellent agreement
with the simulations shown in Fig. 2.

E. Breakdown of the average Hamiltonian
approach in the strong driving regime

This treatment, while effective for predicting the sys-
tem’s behavior in the weak driving and crossover regimes,
is not sufficient to capture all the interesting physics in
the strong driving regime, where magnetization revives
(see FIG. 4 for a particularly dramatic illustration of this
effect). Beyond the fact that nothing in the strengthen-
ing of transverse terms (and more rapid weakening of J
relative to k) predicts a magnetic order restoration, an
additional clue can be seen in the detailed time dynam-
ics of the magnetic order <Z0ZL/2> in 1d, as shown in
FIG. 3. In that plot, we simulated a 1d ring with N = 10,
t, = N?/64, plateau time N2/64, k = 0.5, f, = 12,
as =5.8, and dt =1/ (5f). AC and DC transverse fields
are ramped up and down with the same profile. There is
nothing special about these specific parameters and the
behavior we now describe is general for strong driving.

As seen in the figure, different choices of how to sam-
ple <ZOZ I /2> produce very different results, particularly
in the comparison of sampling at the end of each Flo-
quet period with reporting the average over each Flo-
quet period. As described earlier, in all low-heating cases
the system displays clean and coherent Rabi oscillation
dynamics when varying the plateau time and measur-
ing the populations of |000...) and |111...) at the end
of the ramp. It is tempting to assume from this that
in the plateau the dynamics is captured by oscillations
within a simple doublet of the two lowest quasienergy
states of the Floquet unitary, in analogy to the DC case
with kK < k.. And while this picture is good for weak
driving, in the strong regime the observed large discrep-
ancy between the magnetic order measured at the end
of each Floquet period (which exhibits very large oscil-
lations) and the same quantity averaged over each full
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FIG. 4: Comparison of the time-averaged magnetic order parameter for large DC transverse field (a) and strong AC drives (b),
measured over the full evolution time, in the 1d chain with L running from 8 to 20 in steps of 2. Red dashed lines demarcate
waiting time in between the ramps. In the DC case on the left, x is ramped up to 2, well past k. = 1, and the residual magnetic
order decays exponentially with L as a result. In the AC case on the right, x is ramped up to 0.9 and the AC field is ramped
into the strong driving regime with as = 7.7 and fs; = 12. Here the long-range magnetic order is constant with system size in
the plateau, but as the fields are ramped up, it does cross a minimum value which is slowly decreasing with L, suggesting a
phase transition is crossed. <ZOZ L /2> begins and ends at 1 (when all transverse fields are turned off) but this region is left off
the plot to better focus on the behavior in the ramping and plateau regions.

cycle (which exhibits small oscillations around an aver- at least partially nonperturbative, analysis could shed
age value) suggests that the dynamics in this regime are light on the detailed properties of this unusual state.
significantly more complex. A more sophisticated, likely

* Electronic address: ekapit@mines.edu



