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Abstract.

Complex network theory has focused on properties of networks with real-valued
edge weights. However, in signal transfer networks, such as those representing the
transfer of light across an interferometer, complex-valued edge weights are needed
to represent the manipulation of the signal in both magnitude and phase. These
complex-valued edge weights introduce interference into the signal transfer, but it is
unknown how such interference affects network properties such as small-worldness. To
address this gap, we have introduced a small-world interferometer network model with
complex-valued edge weights and generalized existing network measures to define the
interferometric clustering coeficient, the apparent path length, and the interferometric
small-world coeficient. Using high-performance computing resources, we generated a
large set of small-world interferometers over a wide range of parameters in system size,
nearest-neighbor count, and edge-weight phase and computed their interferometric
network measures. We found that the interferometric small-world coeficient depends
significantly on the amount of phase on complex-valued edge weights: for small edge-
weight phases, constructive interference led to a higher interferometric small-world
coeficient; while larger edge-weight phases induced destructive interference which
led to a lower interferometric small-world coeficient. Thus, for the small-world
interferometer model, interferometric measures are necessary to capture the effect of
interference on signal transfer. This model is an example of the type of problem that
necessitates interferometric measures, and applies to any wave-based network including
guantum networks.
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1. Introduction

Complex network theory has been used to describe large interacting systems in diverse
contexts including sociology [1, 2], the analysis of technological networks like electrical
grids [3], the internet [4, 5], and the brain [6, 7]. However, complex network theory
currently lacks the tools to account for systems with interfering signals. This is
especially relevant in problems like quantum networks, where complex-valued edge
weights naturally occur. Previous work [8, 9, 10] handled networks with complex-valued
edge weights by taking norms to produce real-valued edge weights, then applying real-
valued complex network measures. This allowed conclusions to be drawn about the
magnitude of signals, but this treatment neglected the information stored in the phase of
those edge weights. Generalizations of network measures to complex-valued edge weights
have been recently introduced [11], but these measures are not tailored to problems with
interfering signals. In particular, the local measures (strength and clustering) take the
form of averages of complex values, which do not involve interference between multiple
paths. The discussion on matrix powers and walks does involve interference, but that
discussion does not culminate in the introduction of interferometric network measures
like the apparent path length measure introduced in this article. A complete treatment
of interfering problems requires new network measures that incorporate the phase of
complex-valued edge weights on multiple paths as those paths interfere.

In this article, we take a first step to address this gap in the field of complex networks
by extending the concept of small-worldness to a network with complex-valued edge
weights that produce interference. We start by modifying the Watts-Strogatz small-
world network model [12], assighing the edges in the network a variable phase ¢. The
traditional analysis of the small-world model uses two principal network measures: the
mean local clustering coeficient and the mean shortest path length between two vertices.
The small-world effect occurs when networks simultaneously have short path lengths,
on the order of the logarithm of the total network size, while still having a clustering
coeficient near one [12, 13]. These two measures can be combined to form a small-
world coeficient [14]. These measures, as traditionally defined, do not incorporate
phase. Thus, as phase ¢ is introduced to edge weights, they will report no change.
However, the actual signals at vertices in an interfering small-world network will change
with the addition of phase because these signals will undergo constructive or destructive
interference. Our extended measures address this discrepancy.

We extend clustering and path length by starting with a description of signal
transfer. As a test bed for understanding how signals behave in networks with
complex-valued edge weights, we introduce interferometer networks. Interferometers
are measuring devices that work by splitting waves such as beams of light, allowing
those waves to undergo differing phase shifts, and then recombining the waves, causing
them to interfere. The intensity of the recombined wave is measured, allowing the
user to calculate the difference between the phase shifts associated with distinct paths
across the network. We imagined creating a large interferometer with arbitrarily many
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waves of light, beam splitters, phase shifters, attenuators, and measuring devices (i.e.,
observers). Such an interferometer is a network over which a light signal is transferred.
Based on such an experimental design, which is realizable in the lab (e.g., on an optics
table with classical light or in a quantum network experiment), we define the formalism
for signal transfer in interferometer networks as a linear algebra problem involving a
complex-valued adjacency matrix. The form of the linear algebra of interferometer
networks is quite general; interferometer networks serve as an archetype for all network
problems involving signal transfer with interference. Thus, interferometer networks
can be adapted to other complex-valued signal transfer problems, such as the time
evolution of state vectors in quantum walks [15, 16, 17]; inputs, states, and observables
in complex-valued observability and controlability problems [18, 19]; and the matrix
analysis of node voltages in alternating-current circuits with complex impedance [20, 21].
We emphasize that at this stage of the analysis of such networks only single-particle or
wave-based quantum mechanics is being considered; entangled many-body quantum
networks present a future research direction.

Next, we generalize the traditional network measures of the clustering coeficient
and path length to the interferometric clustering coeficient and the apparent path
length, respectively. Both of these measures incorporate phase by measuring how
complex-valued signals add together constructively and destructively in the network
context. Using these extended measures, we further define an interferometric small-
world coeficient to apply to the small-world interferometer model.

Lastly, we report the results of applying these generalized measures to the small-
world interferometer network model in a suite of computational tests. The results
demonstrate a rich, phase-dependent behavior in small-worldness that the traditional
measures do not capture.

2. Small-World Interferometer Model

To analyze phase-dependence in the small-world effect, we modified the Watts-Strogatz
small-world model [12] with complex-valued edge weights. As in the original small-world
model, the complex-valued small-world model begins with edges connecting verticesin
a ring, and then edges are reshufled according to a probability B. Unlike the
original small-world model, our model is directed and complex-weighted. First a directed
network is constructed by drawing edges out from each vertex, and then the edges are
weighted based on an attenuation parameter s, out degree k, and phase ¢. When an
edge is reshufled, the source vertex stays the same, but its destination is randomized.
The model is depicted in Figure 1, with N = 6 the number of vertices in the network.
The total output strength of vertices is s, which must be set such that s < 1 to control
feedback, per Corollary A.2, see Appendix. The out-degree of each vertex is k; variable
edge weight phase is ¢; and B is the probability that an edge’s destination is randomly
reshufled, in accord with the usual Watts-Strogatz model.

At B = 0, the model produces a ring, and at B = 1, the model produces a random
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network. For 0 < B < 1, the model produces networks that are neither rings nor random,
and some networks in this region exhibit the small-world effect; the dominant ring-like
structure induces a high clustering coeficient, while the small number of random, long-
distance connections greatly reduce the average shortest path length between vertices
[12].

Ring Small-World Random
8=0 0< i<l 5=1

w = sk lei®

Q

e

. — 9

(a) The ring case (b) The intermediate region (c) The random case

Figure 1: Representative small-world interferometer model with N = 6 vertices, and
k = 2 connections. At B = 0 (Figure 1a), a ring is formed with N = 6 vertices connected
to their two nearest neighbors. An example of nearest neighbor connections is shown
in green to elucidate the meaning of k, while the arrowheads indicate the direction of
the edges. The edges are weighted with w = sk™1ei®, highlighted on a particular vertex
in blue. For nonzero B values (Figure 1b), edges are randomly rewired with probability
B. Rewired edges are drawn in red. At B = 1 (Figure 1c), the model yields a kind
of random network, where each vertex has out degree 2, but the destinations of those
edges are randomized.

3. Interferometer Networks

To analyze the small-world interferometer model, and other problems of its type, we
must define this class of problems and the notation for them. We use the case of
classical light-based interferometry to inform our decisions. In this case, the signals are
the electric field strength at each vertex. We will use this example for context and
convenience throughout the rest of the work, but all results are generalizable to arbitrary
waves with amplitude and phase, including the Schrédinger wavefunction, as found for
example in the continuous wave atom laser [22].

We define interferometer networks to be directed networks with edges weighted by
a complex number. The weighted adjacency matrix W contains these complex edge
weights. Each vertex has an associated value, corresponding to a signal (the electric
field strength). The vertex indexed at i has a signal value E;. The signal vector
contains the signals at each vertex, where the vector here refers not to the three spatial
components of the electric field but to the number of vertices, i @ {1,..., N}. The signal
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E; is the sum of two inputs: signals traveling over edges to vertex i and a constant source
term. The incoming edges carry a signal equal to the edge weight W;; multiplied by the
incident vertex’s signal E;. The constant source terms, S; for each vertex i, are
contained in a source vector §. In total, this produces Eq. (1).

X

Ei = S] + VVijEj. (1)

i
The entire system is then described by the vertex signal equation, a matrix equation
given by Eq. (2), :

B=w@g+ 8. (2)

Source Observer

Figure 2: The Sagnac interferometer expressed as an interferometer network. On the
network diagram, the source is indicated with red text and lines, the blue vertices are
intermediary vertices, and the green vertex is the observer vertex. The parameters in
the model are the wavenumber k, the speed of light ¢, the radius of the interferometer
loop r, and the interferometer’s angular velocity w.

As a simple example, we have expressed the Sagnac interferometer, a well-known

case used in gyroscopy and many other applications [23], as an interferometer network
in Figure 2. The vertex signal equation for this example is

[ [ Bl 2l
SR 0 0"  "os”
g = 0 0 . 0BE+ dose (3)
idkcrr idkcrr
exp cHrw EXp c-rw 0 0

with solution

)
=

0.5
B = h Q5 h i (4)
0.5 exp Cir + exp o

Taking the magnitude of the final entry of Eq. (4) yields the expected result for a
signal transfer across the Sagnac Interferometer [24] and demonstrates the equivalence
between the interferometer network formalism and the established analysis of the Sagnac
Interferometer.
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4. Generalized Network Measures

The original analysis of the small-world property of the Watts-Strogatz network model
[12] is based on the network measures of path length and clustering. The small-world
coeficient [14] captures the interplay of these two measures to quantify the small-
world effect. To analyze the complex-valued small-world interferometer model, we
extended these measures to describe similar features in complex-weighted networks while
capturing the interference behavior of interferometer networks.

4.1. Measuring Interferometer Paths

When generalizing path length to weighted networks involving real or complex-valued
weights, one must decide if and how an edge’s weight contributes to the length of its
path. One example of a generalization of path length to weighted networks is Eq. (5)
[25], where a is a parameter that describes how much edge weight contributes to signal
transfer or detracts from it.

| = X (Wij)a . (5)

path

However, we argue that paths in interferometers are better characterized by a
multiplicative path strength, which is the product in Eq. (6), because the edge weight
in an interferometer network amplifies/attenuates and phase-shifts the signal it carries.

Put simply, multiplied exponentials add in their arguments.

Y
p= Wi;. (6)

path
An additive path length measure can be recovered by taking a logarithm of base w,
where w is some characteristic edge weight, (e.g., a maximum or mean edge weight
magnitude) as shown in Eq. (7):

lp = logy(p). (7)

However, the path strength of a single path cannot capture interference, which must
involve multiple paths. The total signal sent from vertex j to vertex i is the sum of
the signals sent over each path. In practice, for all but the simplest networks, this is
computationally challenging to calculate directly. However, the vertex-signal equation

(Eq. (2)) can be algebraically manipulated into Eq. (8) if the inverse (1 - W)™* exists:
B=(1-w)'8 (8)

The entries [(I - W)‘l]ij quantify the total signal transfer from j to i. Thus, we call
them the apparent path strength, Pi;. We define the related apparent path length to be

(Ip)ij = logw(Py). (9)

Apparent path length reduces to traditional path length when only one path exists
between i and j, along which each edge has weight w.
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We can guarantee that P = (I - W )~! exists by requiring that the £, norm of W,
BWER,, is strictly less than 1. Furthermore, this stipulation bounds the entries of P as
shown in Eq. (10).

1- BWE,
The proofs for the existence and bounding of P are included in the Appendix. Here

(10)

we can conceptually explain this bound by noting that the condition that BWE; < 1is
equivalent to requiring that the total signal strength out of any vertex is less than the
total signal strength entering the vertex. Thus, W[, < 1 means that signals decay when
passing through a vertex instead of growing or passing undisturbed. Without an
amplifier, this is generally the case in real-world interferometer networks.

To analyze the paths on an interferometer network, we prove that the matrix
P = (I - W) exists, then we compute the apparent path strength. This measure
qguantifies both the strength of connections between vertices and the way those paths
interact with one another. Since previous network analysis uses path length measures
instead of path strength measures, we convert from strength to length using Eq. (7).

4.2. Measuring Interference at one Vertex

We extend the clustering coeficient to interferometer networks by defining an
interferometric clustering coeficient that measures local interference occurring on
triangles in a network. Interferometer networks are directed, weighted, and complex-
valued, unlike the networks clustering is typically applied to [13]. Each of these features
introduces a challenge to extending clustering.

Interferometer networks are directed, but the clustering coeficient was originally
defined for undirected networks [13]. For directed networks, several types of triangles can
form, and those triangles serve different functions. Fagiolo [26] divides these triangles
into four classes: cycle, middleman, in, and out. A clustering measure can be defined
with any of these triangle types (or combinations thereof), but middleman triangles lend
themselves particularly well to an interferometric interpretation. As depicted in Figure
3, a middleman triangle forms two paths between a pair of vertices j and k: one direct,
which we call the shortcut, and one indirect, passing through vertex i, which we call the
through-path. The interferometric clustering at vertex i compares these two paths.

Clustering was also originally defined only for unweighted networks. For weighted
networks, there are a plethora of generalizations for the clustering coeficient [27]. We
have chosen to generalize the interferometric clustering coeficient from the weighted
clustering coeficient presented in Zhang & Horvath [28], which acts on real-valued edge
weights wjj and takes the form
i irkii=k Wi Wij Wj

Ci= (11)

Lk, j=k WkiWijj
This version lends itself to interpretation as a weighted average of the shortcut edge
weight, where weight is given by the path strength of the through-path. This approach
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is justified in the context of interferometer networks, since interference is most important
for signal transfer when it takes place between the strongest paths.

Wi €
o

Through-Path Wi;  Shortcut

Wi

Figure 3: Schematic for the computation of the interferometric clustering at vertex i.
The path through i is called the through-path, and is shown in blue. The path from
j to k without i is called the shortcut, and is shown in red. Along each edge, the
corresponding entry in the complex-valued adjacency matrix is written out in the form
W;j;, to highlight its role in Eq. (12).

The definition of the interferometric clustering, C;, is given in Eq. (12):
P

Co o _ikik Wi Wi | (|Wig + WiiWis | = [WiiW; [) (12)
L i ki=k | WiiWi
The simple Wy; in Eq. (11) is replaced by (|Wy; + WiWj;| = |WWj;|), which measures

how much the magnitude of the the total signal from j to k increases when the shortcut is
included. This term is conceptually similar to the reverse triangle inequality in the way
that it handles phase differences; if the two paths share the same phase, it reduces to
|Wii|, but if the two paths have differing phases, the result will be less than |W,|. Note
that Eq. (12) is symmetric under exchange of vertices j, k. Further, we note that
interferometric clustering can take on negative values when the shortcut interferes
destructively with the through-path, meaning that the signal from j to k is actually
less than if there had been no shortcut at all. The interferometric clustering coeficient
reduces to Eq. (11) when the two paths have no phase, and further reduces to the
unweighted clustering coeficient when all edge weights equal 1.

4.3. Measuring the Small-World Coeficient in Interferometer Networks

A network is considered small-world if it has a high clustering coeficients and low vertex-
to-vertex path lengths. Humphries & Gurney [14] defined the small world coeficient,

denoted S,.5| to quantify this property, using random networks of the same size and
edge count as a baseline. That measure takes the form

Sreal = ;/? (13)
where
y = # A= #
Crandom lrandom
C, Crandom is the mean clustering, and |, |,;,qom i the mean shortest path length

between two vertices in the network of interest and a random network of the same size,
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respectively. Thus, large values of S| correspond to networks with short path lengths,
like those in a random network, but also a large clustering coeficient, unlike the random
network baseline.

To extend the small-world coeficient to interferometer networks with complex-
valued edge weights , we defined a version of the small-world coeficient that accounts for
the possibility of negative interferometric clustering coeficients (arising from destructive
interference between shortcuts and through-paths) and negative apparent path lengths
(arising from constructive interference that causes net amplification). We define the
interferometric small-world coeficient to be

Sint = %, (14)
where

C + ICandom! = Crandom

7

v =
|Crandom |

~ lp + mP)randoml - (rP)random
|(|P)randomI .

The adapted y and A definitions were constructed to have the following key properties.
For y, (1) it reduces to the original definition of y when all inputs are nonnegative
numbers; (2) the result is always nonnegative; (3) if C = Crandom, then y = 1; (4) if
C > Crandom, then y > 1; (5) and if C < Crandom, then y < 1. Analogous properties
hold for A.

5. Phase Dependence of the Interferometric Small-World Coeficient

In this section, we report the results of applying the interferometric clustering, apparent
path length, and interferometric small-world coeficient measures to the small-world
interferometer model. As a baseline, we also applied the original real-valued measures
by taking norms of all edge weights. For real-valued clustering, we use Eq. (11). For real-
valued path length, we use the path length recovered from the strongest path strength
(Eq. (7)). For the real-valued small-world coeficient, we used Eqg. (13). We describe
numerical results for the way S+ varies with respect to reconnection probability B for
a few configurations of phase ¢, how ¢ changes the peak small-world coeficient over all
B, testing resiliency of this effect to non-uniformity in ¢, and demonstrating that the
observed effect holds over a wide range of number of vertices N and out-degree k.
Overall, we find that the interferometric small-world coeficient depends significantly on
the phase of edge weights.

First, we examine networks with N = 500, k = 12, s = 0.9, and uniform phase
¢ on all edges in the network. We chose N = 500 because it was the largest network
size our computing cluster could test in large batches in a few hours. Nearest-neighbor
count k = 12 was chosen to ensure that k << N, where the effect of rewiring is most
visible [12], but also so that k was large enough to give a clustering coeficient near
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1. Attenuation parameter s = 0.9 was chosen because it is close enough to 1 that
constructive interference on paths can cause strong long-range signal transfer, while it is
small enough that the apparent path length does not diverge to extremely large values. For
each selected configuration of B and ¢, we ran at least 100 tests (more for sensitive values
of B at ¢ = 0), computed their complex network measures, and averaged them

for each set of model parameters. We plot Sj,+ over B for a few values of ¢ ranging
from 0 to m in Figure 4.

¢ ¢/m=0.00 ...ﬁ.
17.5 + I ¢/m = 0.24 .-.O Oo.
} ¢/r[ = 0.48 .o.. ..
15.0 4 * ¢/ = 0.72 ..o o
.. ®
= [°]
12.5 4 * ¢/IT 0.96 o T
.,
|
£10.0 - -
) LS
..
7.5 4 ()
H
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]
[ ]
2.5 4 °
[ ]
%e
-12 -10 -8 —6 -4 -2 0

log B

Figure 4: Uniform-phase small-world interferometer. The interferometric small-world
coeficient (Eq. (14)) is relatively small at the extremes of B, but peaks in an intermediate
region, where the interferometric clustering coeficient is high while the apparent path
length is low, recreating the original small-world effect. However, we see that the scale of
this curve changes as ¢ is varied: @ near 0 or 2m is dominated by constructive
interference, which makes the peak higher, while ¢ near m introduces more destructive
interference, which diminishes the height of the peak of the Sj,t+ curve. Here there are
N = 500 vertices and k = 12 nearest-neighbor connections, and the error bars represent
the spread due to = 100 random instances of small-world model networks. Error bars
are included, but they are not visible because they are smaller than the circular point
markers.

The first key observation from Figure 4 is that the interferometric small-world
coeficient quantifies the original small-world effect. At very small values of B, path
lengths are long, but the clustering coeficient is high. At B near 1, the clustering
coeficient is lower, but the path lengths are short. At both of these extremes of B,
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the interferometric small-world coeficient is relatively small. However, there is an
intermediate region of B where, simultaneously, clustering is high and path lengths
are short. This is where the small-world coeficient peaks.

The second key observation from Figure 4 is that although similar behavior of
Sint With respect to logB is observed for each value of ¢, Sj,t+ also changes with .
The Sint vs. logB curve attains its maximum at @ = 0, when constructive interference
simultaneously strengthens the interferometric clustering coeficient and shortens the
apparent path length. As ¢ increases, destructive interference is introduced, and the
small-world effect is weakened. The overall scale of the curve is reduced as ¢ increases.

To get a clearer picture of this new effect, we measured the peak of the curve in
Figure 4 for each value of ¢ and plotted it in Figure 5. We plotted this new curve
against the peak value of the real-valued small-world coeficient, which does not change
with respect to ¢, for reference. We see that, at least for the N = 500, k = 12, s = 0.9
case, the small-world effect is strengthened by 22% at ¢ = 0. However, as ¢ increases,
the small-world effect is weakened by destructive interference by as much as 5%. This
pattern repeats in reverse as @ approaches 2n, due to the 2m-periodicity of phase.
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Figure 5: Maximum interferometric small-world coeficient values for each configuration
in phase . Near ¢ = 0, the small-world effect is strengthened by constructive
interference. Further from ¢ = 0, destructive interference is introduced, and the small-
world effect is weakened. The small-world coeficient increases again at ¢ = 2m, since
phase is 2rt-periodic. The original small world coeficient S..5| (per Eq. (13)) is plotted
for reference; it is approximately constant because it does not depend on phase. This
plot shows results for the small-world interferometer model with size N = 500 and
k = 12 nearest neighbor connections.

We tested a version of the N = 500, k = 12, s = 0.9 case with ¢ non-uniform, to see
if the phase-dependence of the interferometric small-world coeficient was sensitive to
small variation in @. We suspected that the effect might not be resilient to ¢ variability,
especially near ¢ = 0, because it would introduce destructive interference to the case
otherwise dominated by strict constructive interference over long paths. This is relevant
because an experimental interferometer network will likely have such variability. This
test added a normally-distributed £0.2m error to all phases in the network. The results
in Figure 6 show that phase variability does diminish the phase-dependence of the
interferometric small-world coeficient, but the effect remains significant.
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Figure 6: Small-world interferometer with phase variability. The interferometric small-
world coeficient S, is plotted against log(pB) for small-world interferometer networks
with N = 500 nodes, k = 12 nearest-neighbor connections from each node, and phases
on all edges distributed normally with a mean value of ¢ and a standard deviation of
10% of 2. We compare mean phases of @ = 0 and ¢ = 1. We find that the effect of ¢ on
the scale of Sin¢(see Figure 4) is diminished, but it remains significant.

While N = 500, k = 12 serves to demonstrate that the small-world effect can
change as @ varies, it is only a particular case. To demonstrate that this effect holds
more generally, we ran tests on a wide range of parameters. For each set of parameters, we
ran 100 tests. The parameters were selected with ranges 100 £ N < 1500 and4 < k

< 10. For each configuration of N and ¢, we ran 50 trials and averaged
their measures. In particular, we examined the interferometric small-world coeficient
at ¢ = 0 and ¢ = m. We selected these values of ¢ because @ = 0 is the case

for which total constructive interference dominates, while ¢ = m is the center of the
region where destructive interference exists. Then, we computed the ratio of these
two measurements. Figure 7 depicts a histogram of the base-10 logarithm of these
ratios. Notice that, for all configurations, the logarithm is greater than zero, which
implies that Sint(@ = 0) > Sint(@ = m) for all trials. This means that, like in Figure
5, the small-world coeficient is higher when all interference is constructive than when
destructive interference exists at ¢ = m. This holds for all tested configurations of N
and k at s = 0.9. Examining the modal value in Figure 7, 10%! @ 1.25 indicates that
constructive phase interference typically increases the small-world effect by about 25%
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over the destructive case.
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Figure 7: This histogram confirms that the interferometric small-world coeficient, Sjn¢,
is higher at edge-weight phase ¢ = 0 than it is at ¢ = m for all tested configurations
of network size N and nearest-neighbor-connection number k with uniform phase. This is
shown by binning and counting the logarithms of the ratio Sint(@ = 0)/Sint(@ = m).
Notice that the logarithms are always greater than zero, implying Sint(¢ = 0) > Sint(@ = 1)
for all tests.

In all of our tests, constructive interference at phases near ¢ = 0 strengthens the
small-world effect, while destructive interference at phases further from ¢ = 0 weakens
the small-world effect. This behavior is captured by the interferometric measures
— apparent path length, interferometric clustering, and interferometric small-world
coeficient — but it is not detected by the real-valued measures taken by eliminating
phase information with an absolute value.

6. Discussion and Conclusion

Our computational tests revealed that the small-world effect is made stronger by
constructive interference and weaker by destructive interference. We measured this
behavior by applying our newly defined interferometric measures: apparent path length
(Eq. (9)), interferometric clustering (Eq. (12)), and the interferometric small-world
coeficient (Eq. (14)) to a small-world interferometer model (Figure 1). In contrast, the
original real-valued measures of path length, clustering, and the small-world coeficient,
found by taking absolute values of all complex-valued edge weights, are blind to the
effects of interference.
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This result serves as an example of the type of problem that requires interferometric
measures. Such problems are ubiquitous in physical science; they include quantum
walks [15, 16, 17], complex-valued observability and controlability problems [18, 19],
and the matrix analysis of node voltages in alternating-current circuits with complex
impedance [20, 21]. The interferometer network scheme can be adapted to these
contexts by modifying the vertex signal equation (Eq. (2)) to relate the relevant signals at
vertices to whatever quantity is considered the edge weight. For example, time-
dependent AC networks based on fixed carrier frequency can effectively be represented
by an edge with amplitude (signal strength) and phase (signal phase), providing a new
method to study certain simpler classes of network synchronization problems. Once
these problems are expressed as interferometer networks, interferometric clustering and
apparent path strength, or something similar, will be necessary for accounting for the
effect of interference on signal transfer.

Beyond recasting other network problems as interferometer networks, this work
presents several other opportunities for further research. The most immediate problem
is to analytically describe the behavior of the small-world interferometer model with
respect to the model parameters. This would give a much more thorough understanding of
both the effect described in this article and any others that arise due to the inclusion of
phase. The next direction of further study is quantum mechanics. Although
this work was performed in the context of interferometry, this was intended to be a
first step in applying complex-valued network measures to quantum problems. In
particular, interferometric measures lend themselves to quantum walks and condensed
matter models [10]. A related topic of interest is applying interferometric measures to
neural networks for quantum systems undergoing a phase transition; it is possible that
the interferometric measures can detect the phase transition. Lastly, the analysis of
small-world interferometer networks ought to be modeled with further real-world
considerations, especially different edge weight distributions, and the interferometric
measures ought to be applied to real-world data sets.
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Appendix: Existence and Bounding of Apparent Path Strength

In Section 4, we noted that the apparent path strength P is only defined if the matrix
(I =W )~1 exists. We posited that requiring BW[E; < 1 would be suficient to guarantee
existence, and we gave a conceptual explanation for this requirement. Here, we present
the proofs for the existence and bounding of P.

Theorem A.1 (Existence of P). Consider an interferometer network with weighted
adjacency matrix W such that BWE; < 1. Then the matrix | = W is invertible, and the
apparent path strength matrix P = (I - W)™ exists.

Proof. If it exists, P is the inverse of (I -W ). By the fundamental theorem of invertible
matrices [29, 172], it will sufice to show that, for all ® = B,

(- W)R=8. (A.1)
Equivalently, this will be true if

B(l - W)EZ; > 0, (A.2)
for all ® = 8. By the triangle inequality,

B(l - W)RR, + BWRE,; > BExE;. (A.3)

= Bl - W)RE; > BxE; - AWRE,. (A.4)
By the consistency of the €; matrix norm [30],

AWRE, < BWB,ExE;. (A.5)
Introducing the matrix norm into our inequality, we have

B(l - W)RB; > (1- BWE,)BxE;. (A.6)

Therefore, (I — W) is invertible and P exists whenever 1 - EWE,; > 0. O

Corollary A.2 (Bounding the entries of P). Furthermore, the entries of the P matrix
in Theorem A.1 are bounded. In particular, let Pmax = max;; |P;|. Then,

1
P < —
ma T 1 - EBWE,
Proof. The norm BWE; is calculated as
XN
BEWE; = max [ Wi |. (A.7)

I<jsN 4

By examining Eq. (A.7), we observe that the €; norm of P is an upper bound for P, ay.
The €1 norm is defined [30] as

EIP §iEl,
BPEL = sup

. (A.8)
g=0 [yl
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Let ® = P§. ThenBPR; can be equivalently expressed as

X]_

BPE; = sup (A.9)

B(l - W RE,

Now, as before, we use the triangle inequality and the consistency of the £; matrix norm
[30] to show that

B(l - W)RR; = (1 - BWE,)BxE;. (A.10)
Therefore,
1
P < @PRl £ ——n—. A.11
max 1 1- Wl ( )
O
References

[1] Anatol Rapoport; William J. Horvath. A study of a large sociogram. Banks in Insurance Report,
6, Jan 2007.

[2] John F. Padgett and Christopher K. Ansell. Robust action and the rise of the medici, 1400-1434.
The American journal of sociology, 98(6):1259-1319, 1993.

[3] Duncan J. Watts. Small Worlds: The Dynamics of Networks between Order and Randomness
(Princeton Studies in Complexity). Princeton University Press, 2003.

[4] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the
internet topology. In ACM SIGCOMM’99 conference: applications, technologies, architectures,
and protocols for computer communication, volume 29 of SIGCOMM ’99, pages 251-262, New
York, NY, 1999. ACM.

[5] Andre Broido and K.C. Claffy. Internet topology: connectivity of IP graphs. In Scalability and
Trafic Control in IP Networks, volume 4526, pages 172 — 187. International Society for Optics
and Photonics, SPIE, 2001.

[6] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature reviews. Neuroscience, 10(3):186—198, 2009.

[7] Andrea Avena-Koenigsberger, Bratislav Misic, and Olaf Sporns. Communication dynamics in
complex brain networks. Nature reviews. Neuroscience, 19(1):17-33, 2018.

[8] Bhuvanesh Sundar, Marc Andrew Valdez, Lincoln D. Carr, and Kaden R. A. Hazzard. Complex-
network description of thermal quantum states in the Ising spin chain. Physical review. A, 97(5),
2018.

[9] Shehtab Zaman and Wei-Cheng Lee. Real-space visualization of quantum phase transitions by
network topology. Phys. Rev. E, 100:012304, Jul 2019.

[10] A.A. Bagrov, M. Danilov, S. Brener, M. Harland, A. I. Lichtenstein, and M.l. Katsnelson.
Detecting quantum critical points in the t-t" fermi-hubbard model via complex network theory.
Scientific reports, 10(1):1-9, 2020.

[11] Lucas Bottcher and Mason Porter. Complex networks with complex weights. arXiv,
https://arxiv.org/abs/2212.06257, December 2022.

[12] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440-442, June 1998.

[13] M.E.J. Newman. The structure and function of complex networks. SIAM Review, 45:167-256,
May 2003.

[14] Mark D. Humphries and Kevin Gurney. Network ‘small-world-ness’: A quantitative method for
determining canonical network equivalence. PLoS ONE, 3, April 2008.



The Small-World Effect for Interferometer Networks 18

[15] Mauro Faccin, Tomi Johnson, Jacob Biamonte, Sabre Kais, and Piotr Migdal. Degree distribution
in quantum walks on complex networks. Phys. Rev. X, 3:041007, Oct 2013.

[16] Dawei Lu, Jacob D. Biamonte, Jun Li, Hang Li, Tomi H. Johnson, Ville Bergholm, Mauro Faccin,
Zoltan Zimboras, Raymond Laflamme, Jonathan Baugh, and Seth Lloyd. Chiral quantum walks.
Physical review. A, 93(4), 2016.

[17] Mark Goldsmith, Harto Saarinen, Guillermo Garda-Pérez, Joonas Malmi, Matteo AC Rossi,
and Sabrina Maniscalco. Link prediction with continuous-time classical and quantum walks.
Entropy, 25(5):730, 2023.

[18] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-Laszl6 Barabasi. Observability of complex systems.
Proceedings of the National Academy of Sciences - PNAS, 110(7):2460-2465, 2013.

[19] Arthur N. Montanari, Chao Duan, Luis A. Aguirre, and Adilson E. Motter. Functional
observability and target state estimation in large-scale networks. Proceedings of the National
Academy of Sciences - PNAS, 119(1):1-, 2022.

[20] Paul Scherz and Dr. Simon Monk. Theory, chapter 2, pages 2-268. Practical Electronics for
Inventors, Third Edition. McGraw-Hill Education, New York, 3rd edition, 2013.

[21] N.N. Hancock. Chapter 3 - application of matrix algebra to static electrical networks. In Matrix
Analysis of Electrical Machinery (Second Edition), pages 21-36. Pergamon, second edition, 1974.

[22] Chun-Chia Chen, Rodrigo Gonzilez Escudero, Jiti Min&, Benjamin Pasquiou, Shayne Bennetts,
and Florian Schreck. Continuous bose—einstein condensation. Nature, 606(7915):683-687, 2022.

[23] Brian Culshaw. The optical fibre sagnac interferometer: an overview of its principles and
applications. Measurement Science and Technology, 17(1):R1, 2005.

[24] Gianni Pascoli. The sagnac effect and its interpretation by Paul Langevin. Comptes Rendus
Physique, 18(9):563-569, 2017. Science in the making: The Comptes rendus de I’Académie des
sciences throughout history.

[25] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in weighted networks:
Generalizing degree and shortest paths. Social Networks, 32(3):245-251, 2010.

[26] Giorgio Fagiolo. Clustering in complex directed networks. Physical Review E, 76:026107, August
2007.

[27] Jari Saramaki, Mikko Kivela, Jukka-Pekka Onnela, Kimmo Kaski, and Janos Kertesz.
Generalizations of the clustering coeficient to weighted complex networks. Physical Review E,
75:1-4, February 2007.

[28] Bin Zhang and Steve Horvath. A general framework for weighted gene co-expression network
analysis. Statistical Applications in Genetics and Molecular Biology, 4, 2005.

[29] David Poole. Linear Algebra: A Modern Introduction. Cengage, Mason, OH, 2014.

[30] Larisa Beilina, Evgenii Karchevskii, and Mikhail Karchevskii. Chapter 6: Vector and Matrix
Norms, pages 209-229. Springer International Publishing, Cham, 2017.



