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Abstract— The work studies cooperative decentralized con-
strained POMDPs with asymmetric information. Using an
extension of Sion’s Minimax theorem for functions with positive
infinity and results on weak-convergence of measures, strong
duality and existence of a saddle point are established for the
setting of infinite-horizon expected total discounted costs when
the observations lie in a countable space, the actions are chosen
from a finite space, the immediate constraint costs are bounded,
and the immediate objective cost is bounded from below.

I. INTRODUCTION

Single-Agent Markov Decision Processes (SA-MDPs) [1]
and Single-Agent Partially Observable Markov Decision
Processes (SA-POMDPs) [2] have long served as the basic
building-blocks in the study of sequential decision-making.
An SA-MDP is an abstraction in which an agent sequentially
interacts with a fully-observable Markovian environment to
solve a multi-period optimization problem; in contrast, in
SA-POMDP, the agent only gets to observe a noisy or incom-
plete version of the environment. In 1957, Bellman proposed
dynamic-programming as an approach to solve SA-MDPs
[1], [3]. This combined with the characterization of SA-
POMDP into an equivalent SA-MDP [4]-[6] (in which the
agent maintains a belief about the environment’s true state)
made it possible to extend dynamic-programming results
to SA-POMDPs. Reinforcement learning [7] based algo-
rithmic frameworks use data-driven dynamic-programming
approaches to solve such single-agent sequential decision-
making problems when the environment is unknown.

In many engineering systems, there are multiple decision-
makers that collectively solve a sequential decision-making
problem but with safety constraints: e.g., a team of robots
performing a joint task, a fleet of automated cars navigating a
city, multiple traffic-light controllers in a city, etc. Bandwidth
constrained communications and communication delays in
such systems lead to a decentralized team problem with
information asymmetry. In this work, we study a fairly
general abstraction of such systems, namely that of a co-
operative decentralized constrained POMDP, hereon referred
to as Dec-C-POMDP. The special cases of Dec-C-POMDP
when there are no constraints, when there is only one agent,
or when the environment is fully observable to each agent,
are referred to as Dec-POMDP!, SA-C-POMDP, and Dec-
C-MDP, respectively. The relationships among such models
are shown in Figure 1.
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IFor a good introduction to Dec-POMDPs, see [8].

A. Related Work

1) Single-Agent Settings: Prior work on planning and
learning under constraints has primarily focused on single-
agent constrained MDP (SA-C-MDP) where unlike in SA-
MDPs, the agent solves a constrained optimization problem.
For this setup, a number of fundamental results from the
planning perspective have been derived — for instance, [9]-
[15]; see [16] for details of the convex-analytic approach for
SA-C-MDPs. These aforementioned results have led to the
development of many algorithms in the learning setting: see
[17]-[23]. Unlike SA-C-MDPs, rigorous results for SA-C-
POMDPs are limited; few works include [24]-[27].

2) Multi-Agent Settings: Challenges arising from the
combination of partial observability of the environment and
information-asymmetry?> have led to difficulties in devel-
oping general solutions to Dec-POMDPs: e.g., solving a
finite-horizon Dec-POMDP with more than two agents is
known to be NEXP-complete [28]. Nevertheless, concep-
tual approaches exist to establish solution methodologies
and structural properties in (finite-horizon) Dec-POMDPs
namely: i) the person-by-person approach [29]; ii) the de-
signer’s approach [30]; and iii) the common-information
(CI) approach [31], [32]. Using a fictitious coordinator that
only uses the common information to take actions, the CI
approach allows for the transformation of the problem to
a SA-POMDP which can be used to solve for an optimal
control. The CI approach has also led to the development
of a multi-agent reinforcement learning (MARL) framework
[33] where agents learn good compressions of common
and private information that can suffice for approximate
optimality. On the empirical front, worth-mentioning works
include [34], [35]. Finally, as far as we know, work on Dec-
C-POMDPs is non-existent.

B. Contribution

For Dec-C-POMDPs, the technical challenges increase
even more from those of Dec-POMDPs because restriction of
the search space to deterministic policy-profiles is no longer
an option®. Therefore, the coordinator in the equivalent SA-
C-POMDP has an uncountable prescription space, which
leads to an uncountable state-space in its equivalent SA-
C-MDP. This is an issue because most fundamental results
in the theory of SA-C-MDPs (largely based on occupation-
measures) rely heavily on the state-space being countably-

2Mismatch in the information of the agents.
3Restricting to deterministic policies can be sub-optimal in SA-C-MDPs
and SA-C-POMDPs: see [16] and [24].
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infinite; see [16]. Due to these reasons, the study of Dec-C-
POMDPs calls for a new methodology—one which avoids
this transformation and directly studies the decentralized
problem. Our work takes the first steps in this direction and
presents a rigorous approach for Dec-C-POMDPs which is
based on structural characterization of the set of behavioral
policies and their performance measures, and using measure
theoretic results. The main result in this paper, namely The-
orem 1, establishes strong duality and existence of a saddle-
point for Dec-C-POMDPs, thus providing a firm theoretical
basis for (future) development of primal-dual type planning
and learning algorithms.

C. Organization

The rest of the paper is organized as follows. Mathematical
model of (cooperative) Dec-C-POMDP is introduced in
Section II. The optimization problem is formulated in Section
III. Results on strong duality and existence of a saddle point
are then derived in Section IV. Finally, concluding remarks
are given in Section V.

D. Notation

Before we present the model, we highlight the key nota-
tions in this paper.
« The sets of integers and positive integers are respectively
denoted by Z and N. For integers a and b, [a, b]z represents
the set {a,a + 1,...,b} if a < b and ) otherwise. The
notations [a] and [a, 00]z are used as shorthand for [1,alz
and {a,a + 1,...}, respectively.
o For integers a < b and ¢ < d, and a quantity of interest
g, ¢'**) is a shorthand for the vector (¢(®,gl1), ... ¢(®)
while g..q is a shorthand for the vector (gc, qet1,---,4d)-
The combined notation q((lf:;)d) is a shorthand for the vec-
tor (qz(j) : i € [a,blz,j € [c,d]z). The infinite tuples
(¢, ¢tV .. .)) and (¢c, ges1, . .-, ) are respectively de-
noted by ¢ and ge.n0.
o For two real-valued vectors v; and wve, the inequalities
v1 < wy and v; < vy are meant to be element-wise
inequalities.
« Probability and expectation operators are denoted by P
and [, respectively. Random variables are denoted by upper-
case letters and their realizations by the corresponding lower-
case letters. At times, we also use the shorthand E [-|z] =
E[|X = 2] and P (y|z) 2 P (Y = y|X = z) for conditional
quantities.
« Topological spaces are denoted by upper-case calligraphic
letters. For a topological-space W, B (W) denotes the
Borel o-algebra, measurability is determined with respect
to B(W), and M; (W) denotes the set of all probability
measures on B () endowed with the topology of weak
convergence. Also, unless stated otherwise, “measure” means
a non-negative measure.
« Unless otherwise stated, if a set JV is countable, as a topo-
logical space it will be assumed to have the discrete topology.
Therefore, the corresponding Borel o-algebra 5 (W) will be
the power-set 2"V.

Dec-C-POMDP

Dec-C-MDP

SA-C-POMDP

Fig. 1: Relationships between Models of Cooperative
Sequential Decision-Making under Constraints.

o Unless stated otherwise, the product of a collection of
topological spaces will be assumed to have the product

topology.

II. MODEL

Let (N,S,0, A, Py, (¢,d), P1,U,a) denote a (coopera-
tive) Dec-C-POMDP with IV agents, state space S, joint-
observation space O, joint-action space .A, transition-law
P4, immediate-cost functions ¢ and d, (fixed) initial dis-
tribution P, space of decentralized policy-profiles ¢/, and
discount factor @ € (0,1). The decision problem (to be
detailed later on) has the following attributes and notation.
« State Process: The state-space S is some topological
space with a Borel o-algebra B (S). The state-process is
denoted by {S;},,.
« Joint-Observation Process: The joint-observation space
O is a countable discrete space of the form O = HTJLO om,
where O(©) denotes the common observation space of all
agents and O™ denotes the private observation space of
agent n € [N]. The joint-observation process is denoted by
{0:};2, where O, = OgO:N) and is such that at time ¢, agent
n € [N] observes O and O™ only.
« Joint-Action Process: The joint-action space A is a finite
discrete space of the form A = ngl A where A™
denotes the action space of agent n € [IN]. The joint-action
process is denoted by {4,}°°, where A, = A" and A™
denotes the action of agent n at time ¢. Since all A™)’s and
A are finite, they are all compact metric spaces.*
o Transition-law: At time ¢ € N, given the current state
S; and current joint-action Ag, the next state S;;; and
the next joint-observation O are determined in a time-
homogeneous manner, independent of all previous states,
all previous and current joint-observations, and all previous
joint-actions. The transition-law is given by

P 2 {Pupo:s€S,ac A, BeB(S),0e0}, (1)
where for all ¢t € N,
P (Si41 € B, 041 = 0[S1:4—1 = S1:4-1,
O1.4 = 01:4, Atip—1 = G141, 5t = 5, Ay = a)

=P (Si41 € B,Oyy1 = 0[Sy = 5,A; = a) )
A

saBo-

4Hence, also complete and separable.
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o Immediate-costs: The immediate cost c: S x A — R is
a real-valued function whose expected discounted aggregate
(to be defined later) we would like to minimize. On the other
hand, the immediate cost d : S x A — RX is R¥-valued
function whose expected discounted aggregate we would like
to keep within a specified threshold. For these reasons, we
call ¢ and d as the immediate objective and constraint costs
respectively. We shall make use of the following assumption
on immediate-costs in Theorem 1.

Assumption 1. The immediate objective cost is bounded
Jfrom below and the immediate constraint costs are bounded,
i.e., there exist c € R and d,d € RY such that

c<c(,)and d < d(-,-) < d. 3)

Let d = ||d]oc V [[dlos s0 that d(-,-)]oc < d < .
« Initial Distribution: P; is a (fixed) probability measure
for the initial state and initial joint-observation, i.e., P, €

M (8 x O) and

Pl(B 0) (Sl€BOl—0) €]

o Space of Policy-Profiles: At time ¢t € N, the common
history of all agents is defined as all the common obser-
vations received thus far, i.e., Ht(o) = (Oﬂ
the private history of agent n € [N] at time ¢ is defined
as all observations received and all the actions taken by the
agent thus far (except for those that are part of the common
information), i.e.,

(") A O(n) \Ol ’
n) A n n n
m>:(mA¢QLopno@)w6@mM

). Similarly,

(&)

Finally, the joint history at time ¢ is defined as the tuple of
the common history and all the private histories at time ¢,
i, H, 2 H"™.

For t € N and n € [0, N LZ, let ’HE") denote the set of all
possible realizations of H, t(" . We define a (decentralized) be-
havioral policy-profile v as a tuple u(*V) € ¢/ £ T, u™
where u(™) denotes some behavioral policy used by agent
n, i.e., u(”) itself is a tuple of the form ug o)o where u( n)
maps ’Ht X Hy ™ to M,y (.A ) and where agent n uses
the distribution ugn)(Ht(O),Ht(n)) at time ¢ to choose its
action Agn). We pause to emphasize that in a (decentralized)
behavioral policy, at any time ¢, each agent randomizes over
its action-set independently of all other agents (no common
randomness is used). Thus, given a joint-history h; € H; at
time ¢, the probability that joint-action a; € A is taken is
given by

N
wi (arlhe) & T ™ (0, n") (af")

Ep, [d(St, A¢) | He = hy, Ay = a4 exist, are unique, and
are bounded from below. Furthermore, the latter are
element-wise finite.

o Decision Process: Let ]P’g;? be the probability measure
corresponding to policy-profile v € U and initial-distribution
P, and let 11«:5;? denote the corresponding expectation oper-
ator.> We define infinite-horizon expected total discounted
costs C: U — RU {oo} andD:Z/{—HRK

C(u) = C(Pr.e) (u) 2 EEDul) Za c (St Ap) |,
_ “_ (7
and D (u) = D) () 2 B i o'l (S, Ay)
- - (8)

Remark 2. Assumption 1 ensures that C (u) € RU{co}, and
D (u) € RX with (absolute) element-wise bound d/(1 — ).
The decision process proceeds as follows: i) At time ¢ € N,
the current state S; and observations O, are generated; if)
each agent n € [N] chooses an action a(™ € A" based
on Ht(o), Ht(”); iif) the immediate-costs ¢ (S, A;) , d (S, At)
are incurred; iv) The system moves to the next state and
observations according to the transition-law Py,.

III. OPTIMIZATION PROBLEM

To formulate the Dec-C-POMDP optimization problem,
we first need to give a suitable topology to the space of
behavioral policy-profiles, in particular, one in which it is
compact and convex.® To this end, we use the finiteness
of the action space .A(™ and the countability of the joint-
observation space (O to associate U with a product of
compact sets that are parameterized by (countable number of)
all possible histories. Tychonoff’s theorem (see [37][Propo-
sition 4]) then helps achieve compactness under the product
topology. (Convexity comes trivially). Thus, the sets

N
A n
He = [T 1™,
n=0

o0
HO 2 H x H™, and ©)

HéGm,
t=1

are countable. Here, H; is the set of all possible joint-
histories at time ¢, H(™ is the set of all possible histories
of agent n, and H is the set of all possible joint-histories.
With this in mind, one observes that {/ is in one-to-one
correspondence with the set Ay, 2 H,J,Yzl Xyyny, where

Xy 2 H M,y (A(");h), (10

n=1 heH ()
N
n n 0 n
= H Ug ) (ag )|h§ ), hE )> . (6) 5The existence and uniqueness of ng can be ensured by an adaptation
n=1 of the Ionesca-Tulcea theorem [36].

. . .. 5Convexity is a set property rather than a topological property. In the rest
Remark 1. With  Assumption 1, the  conditional of the paper, by a “convex topological space”, we mean convexity of the

expectations Ep, [C (St, At) | H; =hy, Ay = at} and  set on which the topology is defined.
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and M, (A("); h)7 is a copy of M; (A(”)) dedicated for
agent-n’s history h. For example, a given policy u would
correspond to a point x € Ay such that T (h“’) h(")) =

u,E") <,| hiO), hﬁ")) and similarly, vice versa.

Since A(™) is a complete separable (compact) metric
space, by Prokhorov’s Theorem (see [37][Proposition 6]),
each M; (A™; ) is a compact (and convex®) metric space
(with the topology of weak-convergence). Therefore, en-
dowing Ay, and Ay with the product topology makes
each a compact (and convex) metric space via Tychonoff’s
theorem (see [37][Proposition 4]), which is also metrizable
(via [37][Proposition 5]). Given the one-to-one correspon-
dence, from now onward, we assume that /(") and { have
the same topology as that of A},., and A, respectively.
Henceforth, we will consider C' and D}’s as functions on
topological spaces. Furthermore, since ¢/ has been shown
to be a compact metric space (hence, also complete and
separable), we can also define B (i) = ®)_, B (U™)°, and
My (U), where M (U) is compact (and convex) metrizable
space by Prokhorov’s theorem (see [37][Proposition 6]).

It will be helpful to work with mixtures of behavioral
policy-profiles — wherein the team first uses a measure y €
M (U) to choose its policy-profile u € U and then proceeds
with it from time 1 onward. Under this setup, the policy-
profile chosen collectively by the agents becomes a random
object, and we extend the definitions of C' and D to C :
My (U) - RU{co} and D : My (U) — RE as follows:

C () = P () 2 EC~M [C(U)],and

N N (11)
D(p) = D) () 2 EU~» [D(U)].

The goal of the agents is to work cooperatively to solve the
following constrained optimization problem.

minimize C (1)

subject to p1 € My (U) and D (p) < D.
(Dec-C-POMDP)

Here, D is a fixed K-dimensional real-valued vector. We
refer to the solution of (Dec-C-POMDP) as its optimal value
and denote it by C' = Q(P 1) n particular, if the set of
feasible mixtures is empty, we set C' to oo, and, with slight
abuse of terminology, consider any mixture in M; (i) to be
optimal.

The following assumption about feasibility of
(Dec-C-POMDP) will be used in one of the parts of
Theorem 1.

Assumption 2 (Slater’s Condition). There exists a mixture
e My (U) and ¢ > 0 for which

D(p) <D — (1. (12)

7M1 (+) denotes the set of all probability measures on -.

8Convexity of M1 (A<”)) is trivial.

9For separable metric spaces Wi, Wa, ...,
BW1)®@B (W2)®-.... See [38][Lemma 1.2].

B(WlXWQX...) =

IV. CHARACTERIZATION OF STRONG DUALITY
To solve (Dec-C-POMDP), we define the Lagrangian
function L : My (U) x Y — RU {0} as follows.
~ o~ a A -~ -~ v
L(p, A) = L2 (1, 0) = C(p) + (A, D(n) = D)

= EU~w) [O(U) +(\,D(U) - Dﬂ NG E))

SL(PL) (UN)=L(U,\)

Here, Y 2 {A € RE : X > 0} is the set of tuples of
K non-negative real-numbers, each commonly known as
a Lagrange-multiplier. Our main result shows that the the
solution C satisfies

C= inf supL(u\), (14)
HEM 1 (U) Aeg)i (1. 2)
and that the inf and sup can be interchanged, i.e.,
C=sup inf L(u\). (15)
Aeg)i HEM1(U) (1, %)

Theorem 1 (Strong Duality and Existence of Saddle Point).
Under Assumption 1, the following statements hold.

(a) The optimal value satisfies

C= inf supL(uN\).

(16)
BEML(U) \eY

(b) A mixture y* € My (U) is optimal if and only if C =
Sup)e)) L (,LL*, )‘)
(c) Strong duality holds for (Dec-C-POMDP), i.e.,

~

C= inf supl (u,A) =sup inf L(p,A). (17)

HEML(U) A€y AeY HEM(U)
Moreover, there exists a p* € My (U) such that C =
supyey L (u*, \) and p* is optimal for (Dec-C-POMDP).
(d) If Assumption 2 holds, then there also exists \* € )
such that the following saddle-point condition holds for all
(1, A) e My (U) x Y,

L A\ <L \)=C<L(\). (18)

i.e., p* minimizes L (-, \*) and \* maximizes L (u*,-). In
addition to this, the primal dual pair (u*, \*) satisfies the
complementary-slackness condition:

(\*, D (u*) = D) = 0. (19)

Proof: (@) If p € M, (U) is feasible (i.e., it satisfies
D (u) < D), then the sup is obtained by choosing A = 0,
)

sup L (1, ) = C () . (20)
A€Y
If 4 € My (U) is not feasible, then
supf(u,)\) = 0. (21)

A€y

Indeed, suppose WLOG that the kth constraint is violated,
i.e., Dy () > Dy, then oo can be obtained by choosing Ay
arbitrarily large and setting other A’s to 0.
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From (20), (21), and our convention that C = oo whenever
the feasible-set is empty, it follows that

C= inf supl JA) .
B uGMl(U)Aeg (1. 2)

(22)
(b) By our convention on the value of C (whell there is no
feasible mixture), p* is optimal if and only if C' (u*) = C,
ie., supycy L (p*,\) =C.

(c) To establish strong duality, we use [37][Proposition 11]
which requires M; (i) and ) to be convex topological
spaces, with M (/) being compact as well. It is clear that
Y is convex and we can endow it with the usual subspace
topology of RX. Convexity of M (i) is trivial and its
compactness has been ensured in Section IIl. By definition,
L is affine and Lhus trivially concave in . [37][Propositio§
8] implies that L is convex in p and Lemma 2 shows that L
is lower semi-continuous!® in w. From [37][Proposition 11],
it then follows that

inf supL(,uJ\) =sup inf L (s A)

REML(U) AeY AcY HEM(U)

and that there exists pu* € My (i) such that
sup L A inf  sup L (1, \).
Aelj)f WA = neMy(U) /\eg (b 3)
The optimality of p* is implied by parts (b) and (a).
(d) This follows from Lagrange-multiplier theory.
This concludes the proof. O

Lemma 2 (Lower Semi-Continuity of Lon My (U)). Under
Assumption 1, L is lower semi-continuous on My (U).

Proof. Fix A € Y and p € My (U). Let {p;},o, be a
sequence of measures in M, (U) that converges to p. We
want to show
lim inf EY~#) [L (U, \)] > BV~ [L (U, \)].
1— 00

By Lemma 3, L is point-wise lower semi-continuous on .
Therefore, [37][Proposition 9] applies on M (/) and the
above inequality follows. O

Lemma 3 (Lower Semi-Continuity of L on U). Under
Assumption 1, the functions C and Dy’s are lower semi-
continuous on U. Hence, L is lower semi-continuous on U.

Proof. We will prove the statement for C'. The proof of lower
semi-continuity of Dy ’s is similar. For brevity, let

p (U, tv ht7 a't)
W (u,

=pPp (ua tv ht7 at)

t7ht7at) = WPl (uatvhtvat)
2 p(u,t, he,ar) Ep, [ (Se, Ar) |Hy = he, Ay = ay]

where we use the convention 0 - oo = 0. Then,

[Z a’ St> At

]ES;? lZa St,At) —C

—|—Za

t=1

10For definition of lower semi-continuity, see [37][Definition 1].

(a) o0 o0
—Zat LEY (St A)) = + ) al™!

t=1
(b) X

= 3" 0B [Ep, [e(Si. A0 Hr, A
t=1

:Z Z Z W (u,t, ey ay)

t=1 h eHs ar€A

1o

Here, (a) follows from applying the Monotone-Convergence
Theorem to the (increasing non-negative) sequence
{30 a7 (e (S, Ar) — ©) 352, (see [37][Proposition 1]);
and (b) uses the tower property of conditional expectation.'!

Let {’u}zl be a sequence in U/ that converges to u. By
Fatou’s Lemma (see [37][Proposition 3]),

Z Z Zozt 1hm1an(utht,at)

t=1 hi€H; a€A
(23)

lim inf C

1—00

Following Lemma 4, p (‘u,t,hy,a;) > 0 converges to
p (u,t, hy, ar). Therefore,

liminf W (“u,t, he,a) > W (u,t, he,ar) . (24)
1—> 00
Then, (23) and (24) result in liminf; .., C (lu) > C(u),
which establishes the lower semi-continuity of C' (u). O

Lemma 4. [Limit Probabilities for a converging sequence
of policy-profiles] Let {‘u}zl be a sequence in U that
converges to u. Then, for any t € N, hy € H;, and a; € A,

hmp( t7ht7at) :p(u7ta htaat)a

1—00
where p (-, t,he,ar) = IP’S;Z (Hy = hey Ay = ay). In other
words, for every t € N, the sequence of measures

{p ("u, t,-, ) }21 converges weakly 1o p (u,t,-,-).

Proof. Given that ‘u converges to wu, by the definition
of convergence in product topology, for every n € [N],
(™ (B h{™Y) converges weakly to u{™ (h{” h{™). Since
A" is finite, this means that for each a(™ € A™),

iuﬁ”’( \h(o (") converges to u(n (a™ |h(0) h(n))
which further implies that for all @ € A, “u;(alh;) converges
to ut(alht). Now, we use forward induction to prove the
statement.

1) Base Case: For time t = 1, let 0 € H1 = O and a; € A.

é ngul) (Ht = hta At = at) s We have

p(‘u,1,01,a1) = Py (S,01) “uy (a1]or) = p(u,1,01,a1).

> 2) Induction Step: Assuming that the statement is true for

time ¢, we show that it is true for time ¢ 4+ 1. Let hyy; =
(01:t+1aa1:t) = (ht,at,otﬂ) S Ht+1 and ai41 € A. We
have
p(ut+ 1, hgr, ap1) = p (‘u,t, by ay)
X “u 1 (ap1|her1) Pp (0r41]hes ar) -

'The conditional expectations Ep, [c(St, A¢)|He, A¢] exist and are
unique because c(+, -) is bounded from below.
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hypothesis,  p (*u,t,h¢,a;)  con-
P (u, t, ht, at), and iut (at+1 ‘ht+1)
converges to  u; (apy1|her1) by  assumption. We
conclude that p (iu, t+1,hes, aH_l) converges to
p(u,t+ 1, hyyr, ag1).
This completes the proof. O

By inductive
verges to

V. CONCLUSION

In this work, we studied a (cooperative) decentralized con-
strained POMDP in the setting of infinite-horizon expected
total discounted costs. We established strong duality and
existence of a saddle point using an extension of Sion’s
Minimax Theorem which required giving a suitable topology
to the space of all possible policy-profiles and then estab-
lishing lower semi-continuity of the Lagrangian function.
The strong duality result provides a firm theoretical footing
for future development of primal-dual type planning and
learning algorithms for Dec-C-POMDPs—see [39] for one
such algorithm.
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