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Abstract

Models of many real-life applications, such as queueing models of communication
networks or computing systems, have a countably infinite state-space. Algorithmic
and learning procedures that have been developed to produce optimal policies
mainly focus on finite state settings, and do not directly apply to these models. To
overcome this lacuna, in this work we study the problem of optimal control of a
family of discrete-time countable state-space Markov Decision Processes (MDPs)
governed by an unknown parameter ✓ 2 ⇥, and defined on a countably-infinite
state-space X = Zd

+, with finite action space A, and an unbounded cost function.
We take a Bayesian perspective with the random unknown parameter ✓⇤ generated
via a given fixed prior distribution on ⇥. To optimally control the unknown MDP,
we propose an algorithm based on Thompson sampling with dynamically-sized
episodes: at the beginning of each episode, the posterior distribution formed via
Bayes’ rule is used to produce a parameter estimate, which then decides the policy
applied during the episode. To ensure the stability of the Markov chain obtained by
following the policy chosen for each parameter, we impose ergodicity assumptions.
From this condition and using the solution of the average cost Bellman equation, we
establish an Õ(dhd

p
|A|T ) upper bound on the Bayesian regret of our algorithm,

where T is the time-horizon. Finally, to elucidate the applicability of our algorithm,
we consider two different queueing models with unknown dynamics, and show that
our algorithm can be applied to develop approximately optimal control algorithms.

1 Introduction

Many real-life applications, such as communication networks, supply chains, and computing systems,
are modeled using queueing models with countably infinite state-space. In the existing analysis of
these systems, the models are assumed to be known, but despite this, developing optimal control
schemes is hard, with only a few examples worked out [35, 9, 54]. However, knowing the model,
algorithmic procedures exist to produce approximately optimal policies [35] (such as value iteration
and linear programming). Given the success of data-driven optimal control design, in particular
Reinforcement Learning (RL), we explore the use of such methods for the countable state-space
controlled Markov processes. However, current RL methods that focus on finite-state settings do
not apply to the mentioned queueing models. With the model unknown, our goal is to develop
a meta-learning scheme that is RL-based but obtains good performance by utilizing algorithms
developed when models are known. Specifically, we study the problem of optimal control of a family
of discrete-time countable state-space MDPs governed by an unknown parameter ✓ from a general
space ⇥ with each MDP evolving on the countable state-space X = Zd

+ and finite action space A.
The cost function is unbounded and polynomially dependent on the state, following the examples of
minimizing waiting times in queueing systems. Taking a Bayesian view, we assume the model is
governed by an unknown parameter ✓⇤

2 ⇥ generated from a fixed and known prior distribution. We
aim to learn a policy ⇡ that minimizes the optimal infinite-horizon average cost over a given class of
policies ⇧ with low Bayesian regret with respect to the (parameter-dependent) optimal policy in ⇧.
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To avoid many technical difficulties in countably infinite state-space settings, it is crucial to establish
certain assumptions regarding the class of models from which the unknown system is drawn; some
examples are: i) the number of deterministic stationary policies is not finite; and ii) in average cost
optimal control problems, without stability/ergodicity assumptions, an optimal policy may not exist
[40], and when it exists, it may not be stationary or deterministic [20]. With these in mind, we
assume that for any state-action pair, the transition kernels in the model class are categorical and
skip-free to the right, i.e., with finite support with a bound depending on the state only in an additive
manner; both are common features of queueing models where an increase in state is due to arrivals.
A second set of assumptions ensure stability by assuming that the Markov chains obtained by using
different policies in ⇧ are geometrically ergodic with uniformity across ⇥. From these assumptions,
moments on hitting times are derived in terms of Lyapunov functions for polynomial ergodicity.
These assumptions also yield a solution to the average cost optimality equation (ACOE) [9].

Contributions: To optimally control the unknown MDP, we propose an algorithm based on Thomp-
son sampling with dynamically-sized episodes; posterior sampling is used based on its broad applica-
bility and computational efficiency [46, 47]. At the beginning of each episode, a posterior distribution
is formed using Bayes’ rule, and an estimate is realized from this distribution which then decides the
policy used throughout the episode. To evaluate the performance of our proposed algorithm, we use
the metric of Bayesian regret, which compares the expected total cost achieved by a learning policy
⇡L until time horizon T with the policy achieving the optimal infinite-horizon average cost in the
policy class ⇧. We consider regret guarantees in three different settings as follows:
1. In Theorem 1, for ⇧ being the set of all policies and assuming that we have oracle access to the
optimal policy for each parameter, we establish an Õ(dhd

p
|A|T ) upper bound on the Bayesian

regret of this algorithm compared to the optimal policy.
2. In Corollary 1, where class ⇧ is a subset of all stationary policies and where we know the best
policy within this subset for each parameter via an oracle, we prove an Õ(dhd

p
|A|T ) upper bound

on the Bayesian regret of our proposed algorithm, relative to the best-in-class policy.
3. In Theorem 2, we explore a scenario where we have access to an approximately optimal policy,
rather than the optimal policy in set ⇧ (which are all assumed to be stationary policies). When the
approximately optimal policies satisfy Assumptions 3-4, we prove an Õ(dhd

p
|A|T ) regret bound,

relative to the optimal policy in set ⇧.

Finally, to provide examples of our framework for developing approximately optimal control algo-
rithms for stochastic systems with unknown dynamics, we study two different queueing models that
meet our technical conditions. The first example is a continuous-time queueing system with two
heterogeneous servers with unknown service rates and a common infinite buffer with the decision
being the use of the slower server. Here, the optimal policy that minimizes the average waiting time is
a threshold policy [38] which yields a queue-length after which the slower server is always used. The
second model is a two-server queueing system, each with separate infinite buffers, to one of which
a dispatcher routes an incoming arrival. Here, the optimal policy minimizing the waiting time is a
switching-curve [26] with the specifics unknown for general parameter values, so we find the best
policy within a commonly used set of switching-curve policies (Max-Weight policies [58, 59]), and
assign the arrival to the queue with minimum weighted queue-length. For both models, we verify our
assumptions for the class of optimal/best-in-class policies corresponding to different service rates
and conclude that our proposed algorithm can be used to learn the optimal/best-in-class policy.

Related Work: Thompson sampling [62], or posterior sampling, has been applied to RL in many
contexts of unknown MDPs [55, 45] and partially observed MDPs [28]; see tutorials [22, 50] for a
comprehensive survey. It has been used in the parametric learning context [6] to minimize either
Bayesian [46, 47, 49, 1, 60, 61] or frequentist [5, 23] regret. The bulk of the literature, including
[5, 23, 49], analyzes finite-state and finite-action models but with different parameterizations such
that a general dependence of the models on the parameters is allowed. The work in [61] studies
general state-space MDPs but with a scalar parameterization with a Lipschitz dependence of the
underlying models. Our problem formulation specifically considers countable state-space models
with the models related via ergodicity, which we believe is a natural choice. Our focus on parametric
learning is also connected to older work in adaptive control [3, 24] which studies asymptotically
optimal learning for general parameter settings but with either a finite or countably infinite number of
policies. Learning-based asymptotically optimal control in queues has a long history [36, 35] but
recently there is increased work that also characterizes finite-time regret performance with respect to
a well-known good policy or the optimal policy; see [63] for a survey. A series of work has studied
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learning with Max-Weight policies to get stability and linear regret [44, 30] or just stability [65]. A
recent related work [18] considers learning optimal paramterized policies in queueing networks when
the MDP is known. In a finite or countable state-space setting of specific queueing models where the
parameters can be estimated, many works [2, 17, 53, 32, 31, 14, 21, 16] have used forced exploration
type schemes to obtain either regret that is constant or scaling logarithmically in the time-horizon.

Another line of work studies the problem of learning the optimal policy in an undiscounted finite-
horizon MDP with a bounded reward function. Reference [66] uses a Thompson sampling-based
learning algorithm with linear value function approximation to study an MDP with a bounded
reward function in a finite-horizon setting. Reference [15] considers an episodic finite-horizon MDP
with known bounded rewards but unknown transition kernels modeled using linearly parameterized
exponential families. A maximum likelihood (ML) based algorithm coupled with exploration done
by constructing high probability confidence sets around the ML estimate is used to learn the unknown
parameters. In another work, [48] extends the problem setting of [15] to an episodic finite-horizon
MDP with unknown rewards and transitions modeled using parametric bilinear exponential families.
To learn the unknown parameters, they use a ML based algorithm with exploration done with explicit
perturbation. We note that all mentioned works consider a finite-horizon problem. In contrast,
our work considers an average cost problem, an infinite-horizon setting, and provides finite-time
performance guarantees. In addition, these works focus on an MDP with a bounded reward function.
Our focus, however, is learning in MDPs with unbounded rewards with the goal of covering practical
queueing examples. We note that the parameterization of transitions used in [48, 15] can be used
within our framework. However, similar to our work, additional stability assumptions are necessary
to guarantee asymptotic learning and sub-linear regret. Another issue with exponential transition
families is that they do not allow for 0 entries, which limits their applicability in queueing models.

In another work, [51] studies discounted MDPs with unknown dynamics, and unbounded state-space,
but with bounded rewards, and learns an online policy that satisfies a specific notion of stability. It
is also assumed that a Lyapunov function ensuring stability for the optimal policy exists. We note
that [51] ignores optimality and focuses on finding a stable policy, which contrasts with our work
that evaluates performance relative to the optimal policy. Secondly, [51] considers a discounted
reward problem, essentially a finite-time horizon problem. Average cost problems, such as ours,
are infinite-time horizon problems, so connections to discounted problems can only be made in the
limit of the discount parameter going to 1. Moreover, [51] considers a bounded reward function,
simplifying their analysis but not practical for many queueing examples. Further, the assumption
of a stable optimal policy with a Lyapunov function (as in [51]) is highly restrictive for bounded
reward settings with discounting. Additionally, average cost problems with bounded costs need strong
state-independent recurrence conditions for the existence of (stationary) optimal solutions, which
many queueing examples don’t satisfy; see [12]. Further complications can also arise with bounded
costs: e.g., [20] shows that a stationary average cost optimal policy may not exist.

2 Problem formulation

We consider a family of discrete-time Markov Decision Processes (MDPs) governed by parameter
✓ 2 ⇥ with the MDP for parameter ✓ described by (X ,A, c, P✓). For exposition purposes, we
assume that all the MDPs are on (a common) countably infinite state-space X = Zd

+. We denote
the finite action space by A, the transition kernel by P✓ : X ⇥A! �(X ), and the cost function by
c : X ⇥A! R+. As mentioned earlier, we will take a Bayesian view of the problem and assume that
the model is generated using an unknown parameter ✓⇤

2 ⇥, which is generated from a given fixed
prior distribution ⌫(·) on ⇥. Our goal is to find a policy ⇡ : X ! A that tries to achieve Bayesian
optimal performance in policy class ⇧, i.e., minimizes the expected regret with ✓⇤ chosen from the
prior distribution ⌫(·). For each value ✓ 2 ⇥, the minimum infinite-horizon average cost is defined as

J(✓) = inf
⇡2⇧

lim sup
T!1

1

T
E
⇥ TX

t=1

c(X(t), A(t))
⇤
, (1)

where we optimize over a given class of policies ⇧ and X(t) = (X1(t), . . . , Xd(t)) 2 X and
A(t) 2 A are the state and action at t 2 N. Typically, we set this class to be all (causal) policies, but
it is also possible to consider ⇧ to be a proper subset of all policies as we will explore in our results.
For a learning policy ⇡L that aims to select the optimal control without model knowledge but with
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knowledge of ⇥ and the prior ⌫, the Bayesian regret until time horizon T � 2 is defined as

R(T,⇡L) = E
⇥ TX

t=1

⇥
c(X(t), A(t))� J(✓⇤)

⇤⇤
, (2)

where the expectation is taken over ✓⇤
⇠ ⌫ and the dynamics induced by ⇡L. Owing to underlying

challenges in countable state-space MDPs, we require the below assumptions on the cost function.
Assumption 1. The cost function c : X ⇥A! R+ is assumed to satisfy the following two conditions:

1. For every number z � 0 and action a 2 A, c(x, a) � z outside a finite subset of X .

2. The cost function is upper-bounded by a multivariate polynomial fc : Zd
+ ! R+ which is

increasing in every component on x 2 Zd
+ and has maximum degree of r (� 1) in any dimension.

We can assume that fc(x) = K
Pd

i=1(xi)r for some K > 0, where x = (x1, . . . , xd).

Thus, the cost function increases without bound (in the state) at a polynomial rate. This assumption
is common in practice—holding costs in queueing models are polynomial in the state components.
To avoid technical issues the infinite state-space setting also necessitates some assumptions on the
class from which the unknown model is drawn. For instance, irreducibility of Markov chains on such
state-spaces does not ensure positive recurrence (and ergodicity). Moreover, for average cost optimal
control problems, without stability even the existence of an optimal policy is not guaranteed, and we
need more conditions. The following assumption ensures a skip-free behaviour for transitions, which
holds in many queueing models, where an increase in state corresponds to (new) arrivals.
Assumption 2. From any state-action pair (x, a), the transition is to a finite number of states. We
also assume that all transition kernels are skip-free to the right: for some h � 1 which is independent
of ✓ 2 ⇥ and (x, a) 2 X ⇥A, we have P✓(x0;x, a) = 0 for all x0

2 {x̃ 2 Zd
+ : kx̃k1 > kxk1+h}.

Learning necessitates some commonalities within the class of models so that using a policy well-suited
to one model provides information on other models too. For us, these are in the form of constraints
on the transition kernels of the models and stability assumptions. As simple union bound arguments
don’t work in the countably infinite state-space setting, we will use the stability assumptions instead.
In our setting, we consider a class of models, each with a policy being well-suited to at least one
model in the class, and use the set of policies to search within. Using a reduced set of policies is
necessary as the number of deterministic stationary policies is infinite. To learn correctly while
restricting attention to this subset policy class, requires some regularity assumptions when a policy
well-suited to one model is tried on a different model. Our ergodicity assumptions are one convenient
choice; see Appendix A.1 for details. These assumptions let us characterize the distributions of the
first passage times of the Markov processes via stability conditions; see Lemmas 10 and 11.
Assumption 3. For any MDP (X ,A, c, P✓) with parameter ✓ 2 ⇥, there exists a unique optimal
policy ⇡

⇤
✓ that minimizes the infinite-horizon average cost within the class of policies ⇧. Further-

more, for any ✓1, ✓2 2 ⇥, the Markov process with transition kernel P
⇡⇤
✓2

✓1
obtained from the MDP

(X ,A, c, P✓1) by following policy ⇡
⇤
✓2

is irreducible, aperiodic, and geometrically ergodic with
geometric ergodicity coefficient �g

✓1,✓2
2 (0, 1) and stationary distribution µ✓1,✓2 . This is equivalent

to the existence of finite set Cg
✓1,✓2

and Lyapunov function V
g
✓1,✓2

: X ! [1,+1) satisfying

�V
g
✓1,✓2

(x)  �
�
1� �

g
✓1,✓2

�
V

g
✓1,✓2

(x), x 2 X \ C
g
✓1,✓2

and P
⇡⇤
✓2

✓1
V

g
✓1,✓2

(x) < +1, x 2 C
g
✓1,✓2

,

where �V
g
✓1,✓2

(x) := P
⇡⇤
✓2

✓1
V

g
✓1,✓2

(x)� V
g
✓1,✓2

(x). Setting b
g
✓1,✓2

:= maxx2Cg
✓1,✓2

P
⇡⇤
✓2

✓1
V

g
✓1,✓2

(x) +

V
g
✓1,✓2

(x) yields

�V
g
✓1,✓2

(x)  �
�
1� �

g
✓1,✓2

�
V

g
✓1,✓2

(x) + b
g
✓1,✓2

ICg
✓1,✓2

(x), x 2 X . (3)

Then, we have the following assumptions relating all the models in ⇥:

1. The geometric ergodicity coefficient is uniformly bounded below 1: �g
⇤ := sup✓1,✓22⇥ �

g
✓1,✓2

< 1.

2. We assume that {0d} ✓ \✓1,✓22⇥C
g
✓1,✓2

and C
g
⇤ = [✓1,✓22⇥C

g
✓1,✓2

is a finite set. We further
assume that bg⇤ := sup✓1,✓2 b

g
✓1,✓2

< +1.

4



Remark 1. The uniqueness of the optimal policy is not essential for the validity of our results,
provided that all optimal policies satisfy our assumptions. When this condition is not met, we need to
select an optimal policy that is geometrically ergodic for all ✓ 2 ⇥. This issue can be avoided by
using a smaller subset of policies for which ergodicity can be shown, such as Max-Weight policies.

Geometric ergodicity implies that all moments of the hitting time of state 0d, say ⌧0d , from any
initial state x 6= 0d are finite as Ex[⌧0d ]  c1V

g(x) (for specific  > 1 and c1), and so, Ex[⌧k0d ] 

c1V
g(x)k!/ logk() < +1 for all k 2 N; see Appendix A.2. Function V

g is typically exponential
in some norm of the state and yields an exponential bound for moments of hitting times, and a poor
regret bound. To improve the regret bound, we need a different drift equation with function V

p with
polynomial dependence on a norm of the state that bounds certain polynomial moments of ⌧0d .
Assumption 4. Given ✓1, ✓2 2 ⇥, Markov process obtained from MDP (X ,A, c, P✓1) by following
policy ⇡⇤

✓2
is polynomially ergodic through the Foster-Lyapunov criteria: there exists a finite set Cp

✓1,✓2
,

constants �p
✓1,✓2

, bp✓1,✓2 > 0, ↵p
✓1,✓2

2 [ r
r+1 , 1), and function V

p
✓1,✓2

: X ! [1,+1) satisfying

�V
p
✓1,✓2

(x)  ��p
✓1,✓2

�
V

p
✓1,✓2

(x)
�↵p

✓1,✓2 + b
p
✓1,✓2

ICp
✓1,✓2

(x), x 2 X . (4)

Then, we have the following assumptions relating all the models in ⇥:

1. V
p
✓1,✓2

is a polynomial with positive coefficients, maximum degree (in any dimension) rp✓1,✓2 , and
sum of coefficients sp✓1,✓2 . We assume r

p
⇤ = sup✓1,✓2 r

p
✓1,✓2

<1 and s
p
⇤ = sup✓1,✓2 s

p
✓1,✓2

<1.

2. We assume that {0d} ✓ \✓1,✓22⇥C
p
✓1,✓2

and C
p
⇤ = [✓1,✓22⇥C

p
✓1,✓2

is a finite set. We further
assume that �p

⇤ := inf✓1,✓2 �
p
✓1,✓2

> 0 and b
p
⇤ := sup✓1,✓2 b

p
✓1,✓2

<1.

3. Let K✓1,✓2(x) :=
P1

n=0 2
�n�2

�
P

⇡⇤
✓2

✓1

�n
(x, 0d), which is positive for any pair ✓1, ✓2 2 ⇥ by

irreducibility. We assume that it is strictly positive in ⇥: K⇤ := inf✓1,✓2 minx2Cp
⇤ K✓1,✓2(x) > 0.

Assumptions 3-4 hold in many models of interest; see Appendix E. As average cost optimality is
our design criterion, we need to ensure the existence of solutions to ACOE when ⇧ is the set of all
policies, or Poisson equation when ⇧ is a subset of all policies. We discuss these two cases separately.
Case 1: ⇧ is the set of all policies. For any parameter ✓ 2 ⇥, the MDP (X ,A, c, P✓) is said to satisfy
the ACOE if there exists a constant J(✓) and a unique function v(·; ✓) : X ! R such that

J(✓) + v(x; ✓) = min
a2A

�
c(x, a) +

X

y2X
P✓(y|x, a)v(y; ✓)

 
with v(0d; ✓) = 0.

From [13] if the following conditions hold, ACOE has a solution, J✓ is the optimal infinite-horizon
average cost, and there is an optimal stationary policy with ACOE becoming (5): (i) for every (x, a)
and z � 0, cost function c(x, a) � z outside a finite subset of X ; (ii) there is a stationary policy
with an irreducible and aperiodic Markov process with finite average cost; and (iii) from every (x, a)
transition to a finite number of states is possible. From Assumptions 1-3, the above conditions hold.
Case 2: ⇧ is a proper subset of all policies. Here, we posit that for every ✓ 2 ⇥ and its best in-class
policy ⇡

⇤
✓ , there exists a constant J(✓), the average cost of ⇡⇤

✓ , and a function v(·; ✓) : X ! R with

J(✓) + v(x; ✓) = c(x,⇡⇤
✓(x)) +

X

y2X
P✓(y|x,⇡

⇤
✓(x))v(y; ✓). (5)

This holds by the solution of the Poisson equation with the appropriate forcing function. For a Markov
process X on the space X with transition kernel P and cost function c̄(·), a solution to the Poisson
equation [41] is a scalar J and function v(·) : X 7! R such that J + v = c̄+Pv, where v(z) = 0 for
some z 2 X . In our setting using [41, Sections 9.6-9.8], for a model governed by ✓ 2 ⇥ following
policy ⇡

⇤
✓ , we show a solution to the Poisson equation exists and is given by v

⇡⇤
✓ (0d) = 0, and

J(✓) = C̄
⇡⇤
✓ (0d)/E⇡⇤

✓

0d [⌧0d ] and v
⇡⇤
✓ (x) = C̄

⇡⇤
✓ (x)� J(✓)E⇡⇤

✓
x [⌧0d ], 8x 2 X , (6)

where C̄
⇡⇤
✓ (x) = E⇡⇤

✓
x

⇥P⌧0d�1
i=0 c(X(i),⇡⇤

✓(X(i)))
⇤
, and expectation is over trajectories of Markov

chain X with transition kernel P⇡⇤
✓

✓ starting in state x. In Appendix A.3, we present related definitions
and show that from Assumptions 3-4, the requirements for the existence and finiteness of the solutions
to Poisson equation are satisfied. Finally, we assume sup✓2⇥ J(✓) is finite, which typically holds as
a result of the boundedness assumptions stated in Asumptions 3 or 4, along with Assumption 1.
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Algorithm 1 Thompson Sampling with Dynamically-sized Episodes (TSDE)
1: Input: ⌫0
2: Initialization: X(1) = 0d, t 1
3: for episodes k = 1, 2, ... do

4: tk  t

5: Generate ✓k ⇠ ⌫tk

6: while t  tk + T̃k�1 and Nt(x, a)  2Ntk(x, a) for all (x, a) 2 X ⇥A do

7: Apply action A(t) = ⇡
⇤
✓k

(X (t))
8: Nt (X (t) , A (t)) Nt (X (t) , A (t)) + 1
9: Observe new state X (t+ 1)

10: Update ⌫t+1 according to (7)
11: t t+ 1
12: end while

13: T̃k  t� tk

14: while X (t) 6= 0d do

15: Apply action A(t) = ⇡
⇤
✓k

(X (t))
16: Observe new state X (t+ 1)
17: end while

18: Tk  t� tk

19: end for

Remark 2. In Assumption 4 we can use any other policy ⇡✓2 such that the Markov process obtained
from MDP (X ,A, c, P✓1) by following policy ⇡✓2 is irreducible and polynomially ergodic via the
Foster-Lyapunov criteria with the uniformity discussed. Irreducibility is important as the policy will
be used at times when the state is not known in advance, specifically at Steps 14-17 in Algorithm 1.
Assumption 5. We assume that J⇤ := sup✓2⇥ J(✓) < +1.

3 Thompson sampling based learning algorithm

We will use the learning algorithm Thompson sampling with dynamically-sized episodes from [49]
to learn the unknown parameter ✓⇤

2 ⇥ and the corresponding policy, ⇡⇤
✓⇤ , but suitably modify it for

our countable state-space setting. Consider the prior distribution ⌫0 = ⌫ defined on ⇥ from which ✓⇤

is sampled. At each time t 2 N, the posterior distribution ⌫t is updated according to Bayes’ rule as

⌫t+1(d✓) =
P✓ (X (t+ 1) |X (t) , A (t)) ⌫t(d✓)R

✓02⇥ P✓0 (X (t+ 1) |X (t) , A (t)) ⌫t(d✓0)
, (7)

and the posterior estimate ✓t+1, if generated, is from the posterior distribution ⌫t+1. The modified
Thompson-sampling with dynamically-sized episodes algorithm (TSDE) is presented in Algorithm 1.
The TSDE algorithm operates in episodes: at the beginning of episode k, parameter ✓k is sampled from
the posterior distribution ⌫tk and during episode k, actions are generated from the stationary policy
according to ✓k, i.e., ⇡⇤

✓k
. Let tk be the time the k-th episode begins. Define t̃k+1 as the first time after

tk that the conditions of Line 6 of Algorithm 1 is triggered and tk+1 as the first time at or after t̃k+1

where state 0d is visited; for the last episode started before or at T , we ensure that tk and t̃k are less
than or equal T + 1. Explicitly, t1 = 1 and for k > 1, tk = min{t � t̃k : X (t) = 0d or t > T}.

Let Tk = tk+1 � tk be the length of the k-th episode and set T̃k = t̃k+1 � tk with the convention
T̃0 = 1. For any state-action pair (x, a), we define N1(x, a) = 0 and for t > 1,

Nt(x, a) =
��{tk  i < t̃k+1  t for some k � 1 : (X(i), A(i)) = (x, a)}

��.

Notice that for all state-action pairs (x, a) and t̃k+1  t  tk+1, we have Nt(x, a) = Nt̃k+1
(x, a).

We denote KT as the number of episodes started by or at time T , or KT = max{k : tk  T}. The
length of episode k < KT is not fixed and is determined according to two stopping criteria: (1)
t > tk + T̃k�1, (2) Nt(x, a) > 2Ntk(x, a) for some state-action pair (x, a). After either criterion is
met, the system will still follow policy ⇡

⇤
✓k

until the first time at which state 0d is visited; see Line 14
and Figure 1. We use this settling period to 0d because the system state can be arbitrary when the
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tk t̃k+1
tk+1

X(tk) = 0d X(tk+1) = 0d

start of episode k end of episode k

⌫t updated

T̃k

⌫t not updated

Tk

Figure 1: MDP evolution in episode k < KT .

first stopping criterion is met. As the countable state-space setting precludes a simple union-bound
argument to overcome this uncertainty (as in the literature for finite state settings), we let the system
reach the special state 0d. Another (essentially equivalent) option is to wait until the state hits the
finite set Cg

⇤ or Cp
⇤ and then use a union bound argument for all states in either set. For analytical

convenience, we only use the state samples observed before arrival t̃k+1 to update the posterior
distribution. The posterior update is halted during the settling period to 0d as we have no control on
the states visited during it, despite it being finite in duration (by our assumptions).

4 Regret analysis of Algorithm 1

The performance of any learning policy ⇡L is evaluated using the metric of expected regret compared
to the optimal expected average cost of true parameter ✓⇤, namely, J(✓⇤). In this section, we evaluate
the performance of Algorithm 1 and derive an upper bound for R(T,⇡TSDE), its expected regret up
to time T . In Section 2, we argued that at time t in episode k (tk  t < tk+1), there exist a constant
J(✓k) and a unique function v(·; ✓k) : X ! R such that v

�
0d; ✓k

�
= 0 and

J(✓k) + v(X(t); ✓k) = c(X(t),⇡⇤
✓k(X(t))) +

X

y2X
P✓k(y|X(t),⇡⇤

✓k(X(t)))v(y; ✓k), (8)

in which ⇡
⇤
✓k

is the optimal or best-in-class policy (depending on the context) according to parameter
✓k and J(✓k) is the average cost for the Markov process obtained from MDP (X ,A, c, P✓k) by
following ⇡

⇤
✓k

. We derive a bound for the expected regret R(T,⇡TSDE) following the proof steps of
[49] while extending it to the countable state-space setting of our problem. Using (8), the regret is
decomposed into three terms and each term is bounded separately:

R(T,⇡TSDE) = E
⇥ KTX

k=1

tk+1�1X

t=tk

c(X(t),⇡⇤
✓k(X(t)))

⇤
� T E [J (✓⇤)] = R0 +R1 +R2, (9)

with R0 =E
⇥ KTX

k=1

TkJ(✓k)
⇤
� T E[J(✓⇤)], (10)

R1 =E
⇥ KTX

k=1

tk+1�1X

t=tk

⇥
v(X(t); ✓k)� v(X(t+ 1); ✓k)

⇤⇤
, (11)

R2 =E
⇥ KTX

k=1

tk+1�1X

t=tk

⇥
v(X(t+ 1); ✓k)�

X

y2X
P✓k(y|X(t),⇡⇤

✓k(X(t)))v(y; ✓k)
⇤⇤
. (12)

Before bounding the above regret terms, we address the complexities arising from the countable
state-space setting. Firstly, we need to study the maximum state (with respect to the `1-norm) visited
up to time T in the MDP (X ,A, c, P✓⇤) following Algorithm 1; we denote this maximum state by
M

T
✓⇤ . In Appendix C, we derive upper bounds on the moments of hitting times of state 0d and utilize

this to bound the moments of random variable M
T
✓⇤ , which then lets us study the number of episodes

KT by time T . Another challenge in analyzing the regret is that the relative value function v(x; ✓) is
unlikely to be bounded in the countable state-space setting. Hence, in (13) and (14), we find bounds
for the relative value function in terms of hitting time ⌧0d from the initial state x. Based on these
results, we provide an upper bound for the regret of Algorithm 1 in Theorem 1.

Maximum state norm under polynomial and geometric ergodicity. Here we state the results that
characterize the maximum l1-norm of the state vector achieved up until and including time T , and
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the resulting bounds on the number of episodes executed until time T . Owing to space constraints the
details (including formal statements) are presented in Appendix B. The results are listed as below:
(i) In Lemma 6, we bound the moments of the maximum length of recurrence times of state 0d, using
the ergodicity assumptions 3 and 4. This, along with the skip-free property, allows us to prove that
the p-th moment of max1iT ⌧

(i)
0d and M

T
✓⇤ are both of order O(logp T ).

(ii) In Lemma 7, we find an upper bound for the number of episodes in which the second stopping
criterion is met or there exists a state-action pair for which Nt(x, a) has increased more than twice.
(iii) In Lemma 8, we bound the total number of episodes KT by time T by bounding the number of
episodes triggered by the first stopping criterion, using the fact that in such episodes, T̃k = T̃k�1 + 1.
Moreover, to account for the settling time of each episode, we use geometric ergodicity and Lemma 6.
It follows that the expected value of the number of episodes KT is of the order Õ(

p
hd|A|T ).

Regret analysis. Next, we bound regret terms R0, R1 and R2 using the approach of [49] along
with additional arguments to extend their result to a countably infinite state-space. We consider the
relative value function v(x; ✓) of policy ⇡

⇤
✓ introduced for the optimal policy in ACOE or for the

best in-class policy in the Poisson equation. In either of these cases, policy ⇡
⇤
✓ satisfies (5), which

is the corresponding Poisson equation with forcing function c(x,⇡⇤
✓(x)) in a Markov chain with

transition matrix P
⇡⇤
✓

✓ . In (6), we presented the solution (J, v) to the Poisson equation, which yields
the following upper bound for the relative value function, as argued in Appendix A.3:

v(x; ✓)  C̄
⇡⇤
✓ (x)  E⇡⇤

✓
x [Kd (kxk1 + h⌧0d)

r
⌧0d ] . (13)

We can similarly lower bound the relative value function using Assumption 5 as

v(x; ✓) � �J(✓)E⇡⇤
✓

x [⌧0d ] � �J
⇤E⇡⇤

✓
x [⌧0d ]. (14)

From Assumption 3, all moments of ⌧0d and thus, the derived bounds are finite. Also, in Lemma 10
we bound the moments of ⌧0d of order i  r + 1 using the polynomial Lyapunov function V

p
✓1,✓2

,
which is then used to bound the expected regret. We next bound the first regret term R0 from the first
stopping criterion in terms of the number of episodes KT and the settling time of each episode k.

Lemma 1. The first regret term R0 satisfies R0  J
⇤ E[KT (max1iT ⌧

(i)
0d + 1)].

Proof of Lemma 1 is given in Appendix B.4. From Lemma 6, all moments of max1iT ⌧
(i)
0d are

bounded by a polylogarithmic function. Futhermore, as a result of Lemma 8, expected value of the
number of episodes KT is of the order Õ(

p
hd|A|T ), which leads to a Õ(

p
hd|A|T ) regret term R0.

Next, an upper bound on R1 defined in (11) is derived. In the proof of Lemma 2 we argue that as the
relative value function is equal to 0 at all time instances tk for k  KT , the only term that contributes
to the regret is the value function at the end of time horizon T . We use the lower bound derived in
(14) to show that the second regret term R1 is Õ(1); the proof is given in Appendix B.5.

Lemma 2. The second regret term R1 satisfies R1  c2 E[(MT
✓⇤)r

p
⇤ ]+c3, where c2 = J

⇤2r
p
⇤s

p
⇤(�

p
⇤)�1

and c3 = J
⇤(�p

⇤)�1
�
s
p
⇤ (2h)

rp⇤ + b
p
⇤(K⇤)�1

�
.

From Lemma 6, E[(MT
✓⇤)r

p
⇤ ] is O(logr

p
⇤ T ); hence, R1 is upper bounded by a polylogarithmic

function of the order rp⇤ . Finally, in Lemma 3, we derive an upper bound for the third regret term
R2 defined in (12) using the bound derived for the relative value function in (13). To bound R2, we
characterize it in terms of the difference between the empirical and true unknown transition kernel
and following the concentration method used in [64, 10, 49, 7, 8], we argue that with high probability
the total variation distance between the two distributions is small; for proof, see Appendix B.6.
Lemma 3. For problem-dependent constant cp3 and polynomial Q(T ) = cp3(Th)

r+rp⇤/48, we have

R2  (log(hT + h) + 1)d + cp3

p
|A|T log2

�
2|A|T

2
Q(T )

�
E
⇥
(MT

✓⇤ + h)d+r+rp⇤
�
max
1iT

⌧
(i)
0d

�⇤
.

The above Lemma results in a Õ(KrdJ
⇤
h
d+2r+rp⇤

p
|A|T ) regret term as a result of Lemma 6,

where h is the skip-free parameter defined in Assumption 2, d is the dimension of the state-space,
K and r are the cost function parameters defined in Assumption 1, J⇤ is the supremum on the
optimal cost, rp⇤ is defined in Assumption 4, and where Õ hides logarithmic factors in problem
parameters one of which is logd+r+rp⇤+2(T ). For simplicity, we have not included the Lyapunov
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functions related parameters in the regret. Finally, from Lemmas 1, 2, 3, along with the Cauchy-
Schwarz inequality, we conclude that the regret of Algorithm 1 R(T,⇡TSDE)(= R0 +R1 +R2) is
Õ(KrdJ

⇤
h
d+2r+rp⇤

p
|A|T ); for brevity, we will state that regret is of the order Õ(dhd

p
|A|T ).

Theorem 1. Under Assumptions 1-5, the regret of Algorithm 1, R(T,⇡TSDE), is Õ(dhd
p

|A|T ).

Theorem 1 can be extended to the problem of finding the best policy within a sub-class of policies in
set ⇧, which may or may not contain the optimal policy. In Section 2, we stated that Assumptions 3
and 4 hold for policies in ⇧ and we used this to argue that the Poisson equation has a solution given
in (6). As a result, repeating the same arguments as in Theorem 1 with the modification that ⇡⇤

✓ is the
best in-class policy of the MDP governed by parameter ✓, yields the following corollary.
Corollary 1. Under Assumptions 1 through 5, the regret of Algorithm 1 when using the best in-class
policy is Õ(dhd

p
|A|T ).

Requirement of an optimal policy oracle. To implement our algorithm, we need to find the optimal
policy for each model sampled by the algorithm—optimal policy for Theorem 1 and optimal policy
within policy class ⇧ for Corollary 1. In the finite state-space setting, [49] provides a schedule of ✏
values and selects ✏-optimal policies to obtain Õ(

p
T ) regret guarantees. The issue with extending

the analysis of [49] to the countable state-space setting is that we need to ensure (uniform) ergodicity
for the chosen ✏-optimal policies. Another issue is that, to the best of our knowledge, there isn’t a
general structural characterization of all ✏-optimal stationary policies for countable state-space MDPs
or even a characterization of the policy within this set that is selected by any computational procedure
in the literature; current results only discuss characterization of the stationary optimal policy. In
the absence of such results, stability assumptions with the same uniformity across models as in our
submission will be needed, which are likely too strong to be useful. However, if we could verify
the stability requirements of Assumptions 3 and 4 for a subset of policies, the optimal oracle is not
needed, and instead, by choosing approximately optimal policies within this subset, we can follow the
same proof steps as [49] to guarantee regret performance similar to Corollary 1 (without knowledge
of model parameters). Thus, in Theorem 2 we extend the previous regret guarantees to the algorithm
employing ✏-optimal policy; proof is given in Appendix B.8.
Theorem 2. Consider a non-negative sequence {✏k}

1
k=1 such that for every k 2 N, ✏k is bounded

above by 1
k+1 and an ✏k-optimal policy satisfying Assumptions 3 and 4 is given. The regret incurred

by Algorithm 1 while using the ✏k-optimal policy during any episode k is Õ(dhd
p

|A|T ).

5 Evaluation and Conclusion: Application of Algorithm 1 to queueing models

Next, we present an evaluation of our algorithm. We study two different queueing models shown
in Figure 2, each with Poisson arrivals at rate �, and two heterogeneous servers with exponentially
distributed services times with unknown service rate vector ✓⇤ = (✓⇤1 , ✓

⇤
2). Vector ✓⇤ is sampled from

the prior distribution ⌫ defined on the space ⇥ given as ⇥ =
�
(✓1, ✓2) 2 R2

+ : �
✓1+✓2


1��
1+� , 1 

✓1
✓2
 R

 
, for fixed R � 1 and � 2 (0, 0.5). The first condition ensures the stability of the queueing

models, while the second guarantees the compactness of the parameter space of the parameterized
policies. In both systems, the goal of the dispatcher is to minimize the expected sojourn time of jobs,
which by Little’s law [52] is equivalent to minimizing the average number of jobs in the system. After
verifying Assumptions 1-5 in Appendix E for the cost function c(x) = kxk1, Theorem 1 yields a
Bayesian regret of order Õ(

p
|A|T ) for Algorithm 1.

Model 1. Two-server queueing system with a common buffer. We consider the continuous-time
queueing system of Figure 2a, where the countable state space is X = {x = (x0, x1, x2) 2
Z+ ⇥ {0, 1}2}, where x0 is the queue length, and xi, i = 1, 2 equal 1 if server i is busy. The action
space is A = {h, b, 1, 2}, where h means no action, b sends a job to both servers, and i = 1, 2 assigns
a job to server i. In [38], it is shown that by uniformization [39] and sampling the continuous-time
Markov process at rate �+ ✓

⇤
1 + ✓

⇤
2 , a discrete-time Markov chain is obtained, which converts the

original continuous-time problem to an equivalent discrete-time problem where we need to minimize
lim supT!1 T

�1
PT�1

t=0 kX(t)k1. Further, [38] shows that the optimal policy is a threshold policy
⇡t(✓⇤) with optimal finite threshold t(✓⇤) 2 N: always assign a job to the faster (first) server when
free, and to the second server if it is free and kxk1 > t(✓⇤), and take no action otherwise. In
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✓
⇤
1

✓
⇤
2

Dispatcher
�

Infinite queue

(a) Queueing system with a common buffer.

✓
⇤
1

✓
⇤
2

Dispatcher
�

Infinite queue

(b) Two parallel queues.

Figure 2: Two-server queueing systems with heterogeneous service rates.

(a) Queueing system of Figure 2a. (b) Queueing system of Figure 2b.

Figure 3: Regret performance for � = 0.3, 0.5, 0.7. Shaded region shows the ±� area of mean regret.

Appendix E.1, we argue that the discrete-time Markov process governed by ✓ 2 ⇥ and following
threshold policy ⇡t for any threshold t belonging to a compact set satisfies Assumptions 1-5.

Model 2. Two heterogeneous parallel queues. We consider the continuous-time queueing system
of Figure 2b with countable state space X = {x = (x1, x2) 2 Z2

+}, where xi is the number of
jobs in the server-queue pair i. The action space is A = {1, 2}, where action i sends the arrival to
queue i. We obtain the discrete-time MDP by sampling the queueing system at the arrivals, and then
aim to find the average cost minimizing policy within the class ⇧ = {⇡!;! 2 [(cRR)�1

, cRR]},
cR � 1. Policy ⇡! : X ! A routes arrivals based on the weighted queue lengths: ⇡!(x) =
argmin (1 + x1,! (1 + x2)) with ties broken for 1. Even with the transition kernel fully specified
(by the values of arrival and service rates), the optimal policy in ⇧ is not known except when ✓1 = ✓2

where the optimal value is ! = 1, and so, to learn it, we will use Proximal Policy Optimization for
countable state-space MDPs [18]. Note that [18] requires full model knowledge, which holds in our
scheme as we use parameters sampled from the posterior for choosing the policy at the beginning
of each episode. In Appendix E.2, we argue that the discrete-time Markov process governed by
parameter ✓ 2 ⇥ and following policy ⇡! for ! 2 [(cRR)�1

, cRR] satisfies Assumptions 1-5.

Next, we report the numerical results of Algorithm 1 in the two queueing models of Figure 2 and
calculate regret using (2). The regret is averaged over 2000 simulation runs and plotted against the
number of transitions in the sampled discrete-time Markov process. Figure 3 shows the behavior
of the regret of the two queuing models for three different arrival rates and service rates distributed
according to a Dirichlet prior over [0.5, 1.9]2. We observe that the regret is sub-linear in time and
grows as the arrival rate increases. For the queueing model of Figure 2a, the minimum average cost
J(✓) and optimal policy ⇡

⇤
✓ are known explicitly [38] for every ✓ 2 ⇥, which are used in Algorithm 1

and for regret calculation. Conversely, for the second queueing model, J(✓) and ⇡
⇤
✓ are not known.

The PPO algorithm [18] is used to empirically find both the optimal weight and the policy’s average
cost. Additional details of the simulations and more plots are presented in Appendix G.

Conclusions and future work. We studied the problem of learning optimal policies in countable
state-space MDPs governed by unknown parameters. We proposed a learning policy based on
Thompson sampling and established finite-time performance guarantees on the Bayesian regret. We
highlighted the practicality of our proposed algorithm by considering two different queuing models
and showing that our algorithm can be applied to develop optimal control policies. For future work
we plan two directions to explore: to generalize our algorithm to consider polices that might not all
be stabilizing, and also to simplify the algorithm using ideas from [61, 57].
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A Proofs related to problem formulation

A.1 Ergodicity definitions

Suppose that Markov process X on X with transition kernel P is irreducible, aperiodic and positive
recurrent with stationary distribution µ and let f : X 7! [1,1) be a measurable function such that
µ(f) := Eµ[f(Y )] < +1 with Y ⇠ µ. We are interested in conditions under which for a sequence
of positive numbers ⇢ := (⇢(n))n�0,

lim
n!1

⇢(n)kPn(x, ·)� µ(·)kf = 0, 8x 2 X , (15)

where for a signed measure µ̃ on X , kµ̃kf := sup|g|f |µ̃(g)|. The sequence ⇢ is interpreted as the
rate function, and three different notions of ergodicity are distinguished based on the following rate
functions: ⇢(n) ⌘ 1, ⇢(n) = ⇣

n for ⇣ > 1, and ⇢(n) = n
⇣�1 for ⇣ � 1. Further, for each rate

function ⇢, we state the Foster-Lyapunov characterization of ergodicity of the Markov process X ,
which provides sufficient conditions for (15) to hold.

1. If ⇢(n) ⌘ 1 for all n � 0, the Markov process X satisfying (15) is said to be f -ergodic.
From [43], for an irreducible and aperiodic chain, f -ergodicity is equivalent to the existence
of a function V : X 7! [0,1), a finite set C, and positive constant b such that

�V  �f + bIC , (16)
where �V := PV � V with PV (x) :=

P
x02X P (x,x0)V (x0). The drift condition

(16) implies positive recurrence of the Markov process, existence of a unique stationary
distribution µ, and µ(f)  b < +1 ([43], Theorem 14.3.7).

2. If ⇢(n) = ⇣
n for some ⇣ > 1, the Markov process X satisfying (15) is said to be f -

geometrically ergodic. From [43], for an irreducible and aperiodic chain, f -geometric
ergodicity is equivalent to the existence of a function V : X 7! [1,1), a finite set C, a
constant � 2 (0, 1) and positive constant b such that

�V  �(1� �)V + bIC . (17)
The drift condition (17) implies positive recurrence of the Markov process, existence of
a unique stationary distribution µ, and µ(V )  b

1�� < +1 ([43], Theorem 14.3.7).
Moreover, if f(·) ⌘ 1 in (15), then the Markov process X is called geometrically ergodic.

3. If ⇢(n) = n
⇣�1 for some ⇣ � 1, the Markov process X satisfying (15) is said to be f -

polynomially ergodic. From [43, 29], for an irreducible and aperiodic chain, the existence
of a function V : X 7! [1,1), a finite set C, a constant ↵ 2 [0, 1), and positive constants c
and b such that

�V  �cV
↵ + bIC (18)

implies V⇣-polynomial ergodicity of X at rate ⇢(n) = n
⇣�1 for all ⇣ 2 [1, 1/(1 � ↵)]

with V⇣ = V
1�⇣(1�↵). The drift condition (18) implies positive recurrence of the Markov

process, existence of a unique stationary distribution µ, and µ(V ↵)  b
c < +1.

A.2 Lemma 4

Lemma 4. For any state x 6= 0d, there exists constants  > 1 and c1 such that the following holds
for the hitting time of state 0d, ⌧0d ,

Ex[
⌧0d ]  c1V

g(x).

Proof. We define Ṽ :=
P1

n=0 0d
P

n
V

g where
0d
P

n is the n-step taboo probability [43] defined as

AP
n
xB = Px (Xn 2 B, ⌧A > n) ,

for A,B ✓ X , and ⌧A is the first hitting time of set A. We also let AP
0
xB = IB(x). We have

0d
PṼ (x) =

X

y 6=0d

PxyṼ (y) =
1X

n=0

X

y,z 6=0d

Pxy 0d
P

n
yzV

g(z)

=
1X

n=0

X

z 6=0d
0d
P

n+1
xz V

g(z) = Ṽ (x)� V
g(x).
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In Appendix D.3, we argue that there exists b̃g > 1 such that Ṽ (y)  b̃
g
V

g(y) for all y 2 X , which
leads to

0d
PṼ = Ṽ � V

g
 Ṽ �

1

b̃g
Ṽ =

✓
1�

1

b̃g

◆
Ṽ . (19)

Define Lyapunov function

Ṽ
g(x) =

(
(1 + 2b̃g)Ṽ (x), if x 6= 0d,

1 +
⇣
2b̃g
⌘�1

, if x = 0d.

From the above equation and (19), we get

PṼ
g(x) =

X

y 6=0d

PxyṼ
g(y) + Px0d Ṽ

g(0d)

=
X

y 6=0d

Pxy(1 + 2b̃g)Ṽ (y) + Px0d

✓
1 +

1

2b̃g

◆



✓
1�

1

b̃g

◆
(1 + 2b̃g)Ṽ (x) + 1 +

1

2b̃g



✓
1�

1

b̃g

◆
(1 + 2b̃g)Ṽ (x) +

✓
1 +

1

2b̃g

◆
Ṽ (x)

=

✓
1�

1

2b̃g

◆
(1 + 2b̃g)Ṽ (x).

Thus,

PṼ
g(x) 

✓
1�

1

2b̃g

◆
Ṽ

g(x) +

✓
1�

1

2b̃g

◆
(1 + 2b̃g)Ṽ (0d)I0d(x), x 2 X .

To find an upper bound for Ex[⌧0d ], we apply [43, Theorem 15.2.5], which is a generalization of
Lemma 12. For any 1   

2b̃g

2b̃g�1
, there exists ✏ > 0 such that

Ex

h ⌧0d�1X

i=0

Ṽ
g(Xi)

i
i
 ✏

�1

�1

Ṽ
g(x).

As Ṽ g(y) � 1 for all y 2 X , we have

Ex[
⌧0d ]  Ex

h ⌧0d�1X

i=0

Ṽ
g(Xi)

i
i
 ✏

�1
Ṽ

g(x)

= ✏
�1
⇣
1 + 2b̃g

⌘
Ṽ (x)  b̃

g
✏
�1
⇣
1 + 2b̃g

⌘
V

g(x),

and the claim holds for any  2 [1, 2b̃g

2b̃g�1
] and c1 = b̃

g
✏
�1
⇣
1 + 2b̃g

⌘
.

A.3 Poisson equation

For an irreducible Markov process on the countably-infinite space X with time-homogeneous transi-
tion kernel P and cost function c̄(·), a solution pair to the Poisson equation [41] is a scalar J and
function v(·) : X 7! R such that J + v = c̄+ Pv, where v(z) = 0 for some z 2 X . If the Markov
process is also positive recurrent and Ex

hP⌧y�1
i=0 |c̄(X(i))|

i
<1, where ⌧y is the first hitting time

of some state y 2 X , then solution pair (J, v) given as

J =
Ey

hP⌧y�1
i=0 |c̄(X(i))|

i

Ey[⌧y]
and v(x) = Ey

h ⌧x�1X

i=0

|c̄(X(i))|
i
� JEx[⌧y], 8x 2 X ,

is a solution to the Poisson equation J + v = c̄+ Pv with v(z) = 0 [41, Theorem 9.5].
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Lemma 5. Consider Markov Decision Processes (X ,A, c, P✓) governed by parameter ✓ 2 ⇥
following the best-in-class policy ⇡

⇤
✓ . Then the pair

�
J (✓) , v⇡

⇤
✓
�

given as

J(✓) :=
C̄

⇡⇤
✓ (0d)

E⇡⇤
✓

0d [⌧0d ]
and v

⇡⇤
✓ (x) = C̄

⇡⇤
✓ (x)� J(✓)E⇡⇤

✓
x [⌧0d ], 8x 2 X ,

is a solution to the Poisson equation v + J = c + P
⇡⇤
✓

✓ v, where v
⇡⇤
✓ (0d) = 0 and C̄

⇡⇤
✓ (x) =

E⇡⇤
✓

x

hP⌧0d�1
i=0 c(X(i),⇡⇤

✓(X(i)))
i
.

Proof. From [41, Theorem 9.5], a solution pair to the Poisson equation exists if E⇡⇤
✓

x [⌧0d ] and C̄
⇡⇤
✓ (x)

are finite for all x 2 X . The former follows from positive recurrence assumed in Assumption 3 and
for the latter, from Assumptions 1 and 2,

C̄
⇡⇤
✓ (x) = E⇡⇤

✓
x

h ⌧0d�1X

i=0

c(X (i) ,⇡⇤
✓(X (i)))

i
 E⇡⇤

✓
x

h ⌧0d�1X

i=0

dX

j=1

K (Xj (i))
r
i

 E⇡⇤
✓

x

h ⌧0d�1X

i=0

Kd (kxk1 + hi)r
i
 E⇡⇤

✓
x [Kd (kxk1 + h⌧0d)

r
⌧0d ] ,

which is finite from geometric ergodicity (Assumption 3) and the discussion following that.

B Proofs of regret analysis

In this section, we state the proofs related to regret analysis of Section 4. We first note a key property
of Thompson sampling from [49], which states that for any episode k, measurable function f , and
Htk�measurable random variable Y , we have

E
h
f(✓k, Y )

i
=E

h
f(✓⇤

, Y )
i
, (20)

where Ht := � (X (1) , . . . ,X (t) , A (1) , . . . , A (t� 1)) for all t 2 N. We start with deriving
upper bounds on the hitting times of state 0d using the ergodicity conditions of Assumptions 3 and
4. Previous works [25, 27, 29] have already established bounds on hitting times in geometrically
and polynomially ergodic chains in terms of their corresponding Lyapunov function. However, our
objective is to provide a precise characterization of all constants included in these bounds in terms
of the constants of the drift equations 3 and 4. This characterization allows us to derive uniform
bounds across the model class. In Appendix C.1, using the polynomial Lyapunov function provided
in Assumption 4, we establish upper bounds on the i-th moment of hitting time of state 0d from any
state x 2 X and for 1  i  r + 1. Importantly, the derived bound is polynomial in terms of any
component of the state xi. Additionally, in Appendix C.2, we characterize the tail probabilities of the
return time to state 0d starting from 0d in terms of the geometric Lyapunov function of Assumption 3.
The derived tail bounds will be used in Lemma 6 to derive upper bounds for all moments of hitting
times in the model class. These bounds, along with the skip-free behavior of the model, allow us to
study the maximum state (with respect to `1-norm) achieved up to time T in MDP (X ,A, c, P✓⇤)
following Algorithm 1 as follows.

Lemma 6. For p 2 N, the p-th moment of max1iT ⌧
(i)
0d and M

T
✓⇤ , that is the maximum `1-norm

of the state vector achieved up until and including time T is O(logp T ).

In the proof of Lemma 6 given in Appendix B.1, we make use of geometric ergodicity of the chain
and the fact that hitting times have geometric tails to find an upper bound for moments of MT

✓⇤ . Using
this, we aim to bound the number of episodes started before or at T , denoted by KT . We first find an
upper bound for the number of episodes in which the second stopping criterion is met or there exists
a state-action pair for which Nt(x, a) has increased more than twice. In the following lemma, we
bound the number of such episodes, which we denote by KM , in terms of random variable M

T
✓⇤ and

other problem-dependent constants. Proof of Lemma 7 is given in Appendix B.2.
Lemma 7. The number of episodes triggered by the second stopping criterion and started before or
at time T , denoted by KM , satisfies KM  2|A|(MT

✓⇤ + 1)d log2 T a.s.
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We next bound the total number of episodes KT by bounding the number of episodes triggered by the
first stopping criterion, using the fact that in such episodes, T̃k = T̃k�1 + 1. Moreover, to address the
settling time of each episode k, shown by Ek = Tk � T̃k, we use the geometric ergodicity property
and Lemma 6. Finally, the proof of Lemma 8 is given in Appendix B.3.

Lemma 8. The number of episodes started by T satisfies KT  2
q

|A|(MT
✓⇤ + 1)dT log2 T a.s.

From Lemma 8, the upper bound given in Lemma 6 for moments of MT
✓⇤ , and Cauchy–Schwarz in-

equality, it follows that the expected value of the number of episodes KT is of the order Õ(
p
hd|A|T ).

This term has a crucial role in determining the overall order of the total regret up to time T . In the rest
of this section, we present a detailed proof of the lemmas and other results used to prove Theorem 1.
Remark 3. The skip-free to the right property in Assumption 2 yields a polynomially-sized subset of
the underlying state-space that can be explored as a function of T . This polynomially-sized subset
can be viewed as the effective finite-size of the system in the worst-case, and then, directly applying
finite-state problem bounds [49] would result in a regret of order Õ(T d+0.5); since d � 1, such a
coarse bound is not helpful even for asserting asymptotic optimality! However, to achieve a regret of
Õ(
p
T ), it is essential to carefully understand and characterize the distribution of MT

✓⇤ and then its
moments, as demonstrated in Lemma 6.
Remark 4. The derived regret bound can be extended to a larger class of MDPs which consist of
transient states in addition to the single irreducible class. Specifically, for any ✓1, ✓2 2 ⇥, the Markov
process with transition kernel P

⇡⇤
✓2

✓1
obtained from the MDP (X ,A, c, P✓1) by following policy ⇡

⇤
✓2

has a single irreducible class I✓1,✓2 and a set of transient states T✓1,✓2 . Furthermore, Assumptions
3 and 4 hold for the single irreducible class. The reasoning behind the proof remains true in this
case using the following argument: each episode k starts at 0d which is in the irreducible set for the
chosen policy ⇡

⇤
✓k

, hence, throughout the episode the algorithm remains in the irreducible set that is
positive recurrent and never visits any transient states. In other words, episodes starting and ending
at 0d with a fixed episode dependent policy implies that reachable set of 0d is all that can be explored,
which is positive recurrent by our assumptions. As a result, we can restrict our proof derivations to
the subset that is reachable from 0d in each episode and follow the same analysis. The Lyapunov
function based bounds apply to the positive recurrent states, and hence, restricting attention to states
reachable from 0d within each episode, we can use these bounds for our assessment of regret using
norms of the state. Thereafter, the coarse bounds on the norms of the state can be applied as carried
out in our proof.
Remark 5. By problem-dependent parameters, we refer to the parameters that characterize the
complexity or size of the model class ⇥. These parameters are not just a function of the size of the state-
space and diameter of the MDP (as mentioned in the literature on finite-size problems[5, 23, 49]),
as stability needs to be accounted for in the countable state-space setting. The dependence is, thus,
more complex and requires the inclusion of stability parameters, such as Lyapunov functions, petite
sets, and ergodicity coefficients that are discussed in Assumptions 1-4.
Remark 6. In the subsequent sections, several equalities and inequalities in the proofs are between
random variables and hold almost surely (a.s.). Throughout the remainder, we will omit the explicit
mention of a.s., but any such statement should be interpreted in this context.

B.1 Proof of Lemma 6

Proof. Let {↵i}i�0 be the sequence of hitting times of state 0d starting from 0d (set ↵0 = 0). Define
⌧
(i)
0d as the length of the i-th recurrence time of state 0d for i 2 N, i.e., ⌧ (i)0d = ↵i � ↵i�1. For

simplicity, we take ⌧0d = ⌧
(1)
0d . Each such recurrence time is generated using policy ⇡

⇤
✓i

that is
determined using the algorithm in operation in an MDP governed by parameter ✓⇤. Furthermore,
{⌧

(i)
0d }i2N are independent with length at least 1, but they need not be identically distributed. The

time T can be in the middle of one of these recurrence times, hence the current recurrence interval
count is N(T ) = inf{n :

Pn
i=1 ⌧

(i)
0d � T}. Note that the lower bound of 1 on every ⌧

(i)
0d says that

N(T )  T a.s. Further, from the skip-free to the right property, the most any component of state can
increase in during recurrence time ⌧ (i)0d is h⌧ (i)0d . Hence, the most any component of the state (and also
the k · k1 norm of the state) can increase is given by hmaxi=1,...,T ⌧

(i)
0d where the random variables
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are independent with geometrically decaying tails with a worst case rate of

sup
✓1,✓22⇥

�̃
g
✓1,✓2

= 1�
⇣

sup
✓1,✓22⇥

b̃
g
✓1,✓2

⌘�1
;

see Lemma 11. From Lemma 10, we have

b̃
g
✓1,✓2

=
3bg✓1,✓2 + 1

1� �
g
✓1,✓2

⇣
|C

g
✓1,✓2

|
2 max

⇣
1, max

u2Cg
✓1,✓2

\{0d}
E⇡⇤

✓2
u [⌧0d ]

⌘⌘


3bg⇤ + 1

1� �
g
⇤

 
|C

g
⇤ |

2 max
⇣
1, sup

u2Cg
⇤\{0

d}
✓1,✓22⇥

�
p
✓1,✓2

(1)
⇣
V

p
✓1,✓2

(u) + b
p
✓1,✓2

↵Cp
✓1,✓2

⌘⌘!


3bg⇤ + 1

1� �
g
⇤

 
|C

g
⇤ |

2 max
⇣
1, sup

u2Cg
⇤\{0

d}
✓1,✓22⇥

1

�
p
✓1,✓2

⇣
s
p
✓1,✓2
kuk

rp✓1,✓21 +
b
p
✓1,✓2

miny2Cp
✓1,✓2

K✓1,✓2(y)

⌘⌘!


3bg⇤ + 1

1� �
g
⇤

 
|C

g
⇤ |

2 max
⇣
1, sup

u2Cg
⇤\{0d}

1

�
p
⇤

⇣
s
p
⇤kuk

rp⇤1 +
b
p
⇤

K⇤

⌘⌘!
(21)

:= b̃
g
⇤,

and we define �̃g
⇤ := 1� (b̃g⇤)�1. From the definition of bg✓1,✓2 in Assumption 3, bg✓1,✓2 is greater than

or equal to 2. Thus, b̃g✓1,✓2 � 7 and we have

sup
✓1,✓22⇥

c
g
✓1,✓2

= sup
✓1,✓22⇥

b
g
✓1,✓2

⇣
b̃
g
✓1,✓2

⌘2

b̃
g
✓1,✓2

� 1


b
g
⇤

⇣
b̃
g
⇤

⌘2

6
:= c

g
⇤,

and as a result of Lemma 11,

P0d(⌧
(i)
0d > n)  c

g
⇤ (�

g
⇤)

n
, 1  i  T. (22)

We upper bound E
⇥
M

T
✓⇤
⇤

using the independence of {⌧ (i)0d }i2N and the above equation,

E
⇥
M

T
✓⇤
⇤
 hE[ max

1iT
⌧
(i)
0d ] = h

1X

n=0

P( max
1iT

⌧
(i)
0d > n)

= h

1X

n=0

✓
1� P( max

1iT
⌧
(i)
0d  n)

◆
= h

1X

n=0

 
1�

TY

i=1

P
⇣
⌧
(i)
0d  n

⌘!

 hn0 + h

1X

n=n0

1�
⇣
1� c

g
⇤ (�

g
⇤)

n0 (�g
⇤)

n�n0

⌘T

 h(n0 + 1) + h

1X

n=n0+1

1�
⇣
1� (�g

⇤)
n�n0

⌘T
,

where n0 is the smallest n � 0 such that cg⇤ (�g
⇤)

n
< 1. By Reimann sum approximation, we get

E
⇥
M

T
✓⇤
⇤
 h(n0 + 1) + h

1X

n=1

1� (1� (�g
⇤)

n)
T

< h(n0 + 1) + h

Z 1

0
1� (1� (�g

⇤)
u)

T
du

= h(n0 + 1) +
h

log �g
⇤

Z 1

0

1� u
T

1� u
du

 h(n0 + 1) +
h

log �g
⇤
(log T + 1) ,
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where the last inequality follows from
PT

n=1 n
�1
 log T + 1 and thus E

⇥
M

T
✓⇤
⇤

is O(h log T ). We
now extend the result to moments of order greater than one. From (22), for 1  i  T ,

P0d(⌧
(i)
0d > n)  c

g
⇤ (�

g
⇤)

n = c
g
⇤ (�

g
⇤)

n0 (�g
⇤)

n�n0
< (�g

⇤)
n�n0

.

For n � n0, let t = n� n0 � 0 and Yi = max(⌧ (i)0d � n0, 0) to get

P0d(Yi > t) = P0d(⌧
(i)
0d � n0 > t) < (�g

⇤)
t
,

which means random variables {Yi}
T
i=1 are stochastically dominated by independent and identically

distributed geometric random variables with parameter 1� �
g
⇤ . Furthermore, [56] argues that the p-th

moment of the maximum of T independent and identically distributed geometric random variables is
O(logp T ). Thus, the p-th moment of max1iT Yi is O(logp T ) and

max
1iT

Yi = max(⌧ (1)0d � n0, . . . , ⌧
(T )
0d � n0, 0) = max(⌧ (1)0d , . . . , ⌧

(T )
0d , n0)� n0

� max(⌧ (1)0d , . . . , ⌧
(T )
0d )� n0 � h

�1
M

T
✓⇤ � n0,

which gives

E
h�
M

T
✓⇤
�pi
 h

p E
h⇣

max
1iT

⌧
(i)
0d

⌘pi
 h

p E
✓

max
1iT

Yi + n0

◆p�
.

Since the right-hand side of the above equation is O(hp logp T ), the claim is proved.

B.2 Proof of Lemma 7

Proof. Let KM (x, a) be the number of episodes k such that 1  k  KT and in which the number
of visits to the state-action pair (x, a) is increased more than twice at episode k, or

KM (x, a) = |{k  KT : Nt̃k+1
(x, a) > 2Ntk(x, a)}|.

As for every episode in the above set the number of visits to (x, a) doubles,

KM (x, a)  log2(NT+1(x, a)) + 1,

and we can upper bound KM as follows

KM =
X

x2X ,a2A
KM (x, a) =

X

kxk1MT
✓⇤

a2A

KM (x, a)



X

kxk1MT
✓⇤

a2A

(1 + log2 NT+1(x, a))  | A |
�
M

T
✓⇤ + 1

�d
(1 + log2 T ).

This completes the proof.

B.3 Proof of Lemma 8

Proof. We define macro episodes with start times tnk , k = 1, 2, . . . ,KM + 1 where tn1 = t1,
tnKM+1 = T + 1 (which is equivalent to nKM+1 = KT + 1), and for 1 < k < KM + 1

tnk+1 = min{tj > tnk : Ntj (x, a) > 2Ntj�1(x, a) for some (x, a)},

which are episodes wherein the second stopping criterion is triggered. Any episode (except for
the last episode) in a macro episode must be triggered by the first stopping criterion; equivalently,
T̃j = T̃j�1 + 1 for all j = nk, nk + 1, . . . , nk+1 � 2. For 1  k  KM , let TM

k =
Pnk+1�1

j=nk
Tj be

the length of the k-th macro episode. We have

T
M
k =

nk+1�1X

j=nk

Tj �

nk+1�1X

j=nk

T̃j � 1 +

nk+1�2X

j=nk

(j � nk + 2) = 0.5(nk+1 � nk)(nk+1 � nk + 1).
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Consequently, nk+1 � nk 

q
2TM

k for all 1  k  KM . From this, we obtain

KT =nKM+1 � 1 =
KMX

k=1

(nk+1 � nk) 
KMX

k=1

q
2TM

k .

Using the above equation and the fact that
PKM

k=1 T
M
k = T we get

KT 

KMX

k=1

q
2TM

k 

vuut
KM

KMX

k=1

2TM
k =

p
2KMT .

Finally, from Lemma 7 we get

KT 
p
2KMT  2

q
| A |

�
MT

✓⇤ + 1
�d

T log2 T .

This completes the proof.

B.4 Proof of Lemma 1

Proof. Let Ek = Tk � T̃k � 0 be the settling time needed to return to state 0d after a stopping
criterion is realized in episode k. We have

R0 = E
h KTX

k=1

TkJ(✓k)
i
� T E

h
J(✓⇤)

i

= E
h KTX

k=1

T̃kJ(✓k)
i
+ E

h KTX

k=1

EkJ(✓k)
i
� T E

h
J(✓⇤)

i
. (23)

We first simplify the first term in the above summation. From the monotone convergence theorem,

E
h KTX

k=1

T̃kJ(✓k)
i
=

1X

k=1

E
h
I{tkT}T̃kJ(✓k)

i
.

Note that the first stopping criterion of Algorithm 1 ensures that T̃k  T̃k�1 +1 at all episodes k � 1.
Hence

E
h
I{tkT}T̃kJ(✓k)

i
E

h
I{tkT}(T̃k�1 + 1)J(✓k)

i
.

Since I{tkT}(T̃k�1 + 1) is measurable with respect to Htk , by (20) we get

E
h
I{tkT}(T̃k�1 + 1)J(✓k)

i
=E

h
I{tkT}(T̃k�1 + 1)J(✓⇤)

i
.

Therefore,

E
h KTX

k=1

T̃kJ(✓k)
i


1X

k=1

E
h
I{tkT}(T̃k�1 + 1)J(✓⇤)

i
= E

h KTX

k=1

(T̃k�1 + 1)J(✓⇤)
i
.

Thus,

E
h KTX

k=1

T̃kJ(✓k)
i
� T E

h
J(✓⇤)

i
 E

h
J(✓⇤)

KTX

k=1

(T̃k�1 + 1)
i
� E

h
J(✓⇤)

KTX

k=1

Tk

i

= E
h
J(✓⇤)

⇣
KT + 1� TKT �

KT�1X

k=1

Ek

⌘i

 E
h
J(✓⇤)KT

i
. (24)
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For the second term in (23), from Assumption 5

E
h KTX

k=1

EkJ(✓k)
i
 J

⇤ E
h KTX

k=1

Ek

i
 J

⇤ E[KT max
1iT

⌧
(i)
0d ]. (25)

Substitutinh (24) and (25) in (23), we get

R0  E [KTJ(✓
⇤)] + J

⇤ E[KT max
1iT

⌧
(i)
0d ]

 J
⇤ E [KT ] + J

⇤ E[KT max
1iT

⌧
(i)
0d ]

= J
⇤ E
h
KT

⇣
max
1iT

⌧
(i)
0d + 1

⌘i
.

B.5 Proof of Lemma 2

Proof. We note that the state of the MDP is equal to 0d at the beginning of all episodes and the
relative value function v(x; ✓) is equal to 0 at x = 0d for all ✓. Thus,

R1 = E
h KTX

k=1

tk+1�1X

t=tk

h
v (X (t) ; ✓k)� v (X (t+ 1) ; ✓k)

ii

= E
h KTX

k=1

h
v (X (tk) ; ✓k)� v (X (tk+1) ; ✓k)

ii

= E
hKT�1X

k=1

h
v
�
0d; ✓k

�
� v

�
0d; ✓k

� i
+ v

�
0d; ✓KT

�
� v (X(T + 1); ✓KT )

i

= �E[v (X(T + 1); ✓KT )].

From the lower bound derived for the relative value function in (14),

�v(x; ✓)  J
⇤E⇡⇤

✓
x [⌧0d ] 

J
⇤

�
p
⇤

⇣
s
p
⇤kxk

rp⇤1 +
b
p
⇤

K⇤

⌘
,

where the second inequality follows from (21) in the proof of Lemma 6. We also note that kX(T +
1)k1 M

T
✓⇤ + h. Thus,

R1 = �E[v (X(T + 1); ✓KT )]  E
h
J
⇤

�
p
⇤

⇣
s
p
⇤(M

T
✓⇤ + h)r

p
⇤ +

b
p
⇤

K⇤

⌘i
.

From the inequality (a+ b)r  2r(ar + b
r), we have

R1 
J
⇤2r

p
⇤s

p
⇤

�
p
⇤

E
h �

M
T
✓⇤
�rp⇤ i+ J

⇤

�
p
⇤

✓
s
p
⇤ (2h)

rp⇤ +
b
p
⇤

K⇤

◆
.

B.6 Proof of Lemma 3

Proof. Let Z (t) =
�
X (t) ,⇡⇤

✓k
(X (t))

�
be the state-action pair at tk  t < tk+1. R2 can be upper

bounded as

R2 = E
h KTX

k=1

tk+1�1X

t=tk

h
v (X (t+ 1) ; ✓k)�

X

y2X
P✓k

⇣
y
���X (t) ,⇡⇤

✓k (X (t))
⌘
v (y; ✓k)

ii

 E
h KTX

k=1

tk+1�1X

t=tk

h X

y2X
|P✓⇤(y|Z (t))� P✓k(y|Z (t))| |v(y; ✓k)|

ii



TX

t=1

E
h⇣

max
1kKT

kxk1MT
✓⇤

|v(x; ✓k)|
⌘
kP✓⇤(·|Z (t))� P✓k(·|Z (t))k1

i
. (26)
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We have
kP✓⇤(·|Z(t))� P✓k(·|Z(t))k1  kP✓⇤(·|Z(t))� P✓̂k

(·|Z(t))k1 + kP✓k(·|Z(t))� P✓̂k
(·|Z(t))k1,

where P✓̂k
(y|Z (t)) is the empirical transition probability defined as

P✓̂k
(y|Z (t)) =

Ntk (Z (t) ,y)

max (1, Ntk (Z (t)))
,

and for any tuple (x, a,y), we define N1(x, a,y) = 0 and for t > 1,
Nt(x, a,y) = |{tk  i < t̃k+1  t for some k � 1 : (X (i) , A (i) ,X (i+ 1)) = (x, a,y)}|.

Thus, from (26) and defining random variable vM = max 1kKT

kxk1MT
✓⇤

|v(x; ✓k)|,

R2 

TX

t=1

E
h
vMkP✓⇤(·|Z (t))� P✓̂k

(·|Z (t))k1
i
+

TX

t=1

E
h
vMkP✓k(·|Z (t))� P✓̂k

(·|Z (t))k1
i
.

(27)
We define set Bk as the set of parameters ✓ for which the transition kernel P✓(·|z) is close to the
empirical transition kernel P✓̂k

(·|z) at episode k for every state-action pair z = (x, a) 2 X ⇥A, or

Bk =
n
✓ : kP✓(·|z)� P✓̂k

(·|z)k1  �k(z), z = (x, a) 2 {0, 1, · · · , hT}d ⇥A

o
,

where �k(z) =

r
14

Qd
i=1(xi+h)

max(1,Ntk
(z)) log

⇣
2|A|T

�̃

⌘
for x = (x1, . . . , xd) and some 0 < �̃ < 1, which will

be determined later. We simplify the `1-difference of the real and empirical transition kernels as
follows

kP✓⇤(·|Z (t))� P✓̂k
(·|Z (t))k1

= I{✓⇤ /2Bk}kP✓⇤(·|Z (t))� P✓̂k
(·|Z (t))k1 + I{✓⇤2Bk}kP✓⇤(·|Z (t))� P✓̂k

(·|Z (t))k1

 2I{✓⇤ /2Bk} + �k (Z (t)) .

Similarly, we have
kP✓k(·|Z (t))� P✓̂k

(·|Z (t))k1  2I{✓k /2Bk} + �k (Z (t)) .

Substituting in (27), we get

R2  E
h KTX

k=1

tk+1�1X

t=tk

2vM
⇥
I{✓⇤ /2Bk} + I{✓k /2Bk}

⇤ i
+ E

h KTX

k=1

tk+1�1X

t=tk

2vM�k (Z (t))
i
. (28)

We first find an upper bound for vM = max 1kKT

kxk1MT
✓⇤

|v(x; ✓k)| using the bounds derived in (13)

and (14). From (13),

v(x; ✓k)  E
⇡⇤
✓k

x [Kd (kxk1 + h⌧0d)
r
⌧0d ]

 E
⇡⇤
✓k

x [2rKd (kxkr1 + h
r(⌧0d)

r) ⌧0d ]

= Kd(2kxk1)rE
⇡⇤
✓k

x [⌧0d ] +Kd(2h)rE
⇡⇤
✓k

x

⇥
(⌧0d)

r+1
⇤

 Kd2r (kxkr1 + h
r)E

⇡⇤
✓k

x

⇥
(⌧0d)

r+1
⇤

 Kd(r + 1)2r (kxkr1 + h
r)�p

✓k
(r + 1)

⇣
V

p
✓k
(x) + b

p
✓k
↵Cp

✓k

⌘

 Kd(r + 1)2r (kxkr1 + h
r)�p

✓k
(r + 1)

⇣
s
p
⇤kxk

rp⇤1 + b
p
⇤(K⇤)

�1
⌘
, (29)

where the second line follows from the inequality (a + b)r  2r(ar + b
r), the fifth line from

Lemma 10, and the last line from Assumption 4 and (21). We further have

�
p
✓1,✓2

(r + 1) =
r+1Y

j=1

1

�
⌘j

✓1,✓2

⇣
2j�1 + (j � 1)↵Cp

✓1,✓2
b
⌘j

✓1,✓2

⌘



r+1Y

j=1

r + 1

min(1,�p
⇤)

⇣
2j�1 + (j � 1) (K⇤)

�1
b
⌘j

✓1,✓2

⌘
,
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where using the definition of b⌘j

✓1,✓2
in (38),

b
⌘j

✓1,✓2
=
⇣
b
p
✓1,✓2

⌘⌘j

+ ⌘j �̃
p
✓1,✓2

max
⇣
1,
⇣
�̃
p
✓1,✓2

⌘(↵p
✓1,✓2

+⌘j�1)/(1�↵p
✓1,✓2

) ⌘
 1 + b

p
⇤ + �

p
⇤ .

We also define

�
p
⇤(r + 1) :=

r+1Y

j=1

r + 1

min(1,�p
⇤)

�
2j�1 + (j � 1) (K⇤)

�1(1 + b
p
⇤ + �

p
⇤)
�
.

We next find a lower bound for v(x; ✓k) using (14) as follows:

v(x; ✓k) � �J
⇤E

⇡⇤
✓k

x [⌧0d ] � �
J
⇤

�
p
⇤

⇣
s
p
⇤kxk

rp⇤1 +
b
p
⇤

K⇤

⌘
.

Combining (29) and the above equation, we get a uniform upper bound for |v(x; ✓k)| over ⇥, which
we use to upper bound vM = max 1kKT

kxk1MT
✓⇤

|v(x; ✓k)| as below

vM  (J⇤ +Kd(r + 1)2r)�p
⇤(r + 1)

⇣�
M

T
✓⇤
�r

+ h
r
⌘⇣

s
p
⇤
�
M

T
✓⇤
�rp⇤ + b

p
⇤(K⇤)

�1
⌘

= cp1

⇣�
M

T
✓⇤
�r

+ h
r
⌘⇣

s
p
⇤
�
M

T
✓⇤
�rp⇤ + b

p
⇤(K⇤)

�1
⌘

 cp2

�
M

T
✓⇤
�r+rp⇤

, (30)

where the constant terms are defined as

cp1 := (J⇤ +Kd(r + 1)2r)�p
⇤(r + 1), cp2 := max

�
1, cp1(h

r + 1)(sp⇤ + b
p
⇤(K⇤)

�1)
�
.

A deterministic upper bound on vM can also be found from the above equation. Noting that from
Assumption 2, until time T only states with each component less than or equal to hT are visited, we
have

vM  cp2

�
M

T
✓⇤
�r+rp⇤

 cp2(Th)
r+rp⇤ := Q(T ),

where Q(T ) is a polynomial defined as above. Using the bounds derived for vM , we bound R2

starting with the first term on the right-hand side of (28). We have

E
h KTX

k=1

tk+1�1X

t=tk

2vM
⇥
I{✓⇤ /2Bk} + I{✓k /2Bk}

⇤ i
 2Q(T )E

h KTX

k=1

tk+1�1X

t=tk

I{✓⇤ /2Bk} + I{✓k /2Bk}

i

 2TQ(T )E
h KTX

k=1

I{✓⇤ /2Bk} + I{✓k /2Bk}

i

 2TQ(T )
TX

k=1

E
h
I{✓⇤ /2Bk} + I{✓k /2Bk}

i

 4TQ(T )
TX

k=1

P{✓⇤
/2 Bk}, (31)

where the last inequality follows from (20) and the fact that set Bk is Htk�measurable. To further
simplify the first term in (28), we find an upper bound for P {✓⇤

/2 Bk} using [64]. For a fixed
z = (x, a) and n independent samples of the distribution P✓⇤(.|z), the L

1-deviation of the true
distribution P✓⇤(.|z) and empirical distribution at the end of episode k, P✓̂k

(.|z), is bounded in [10]
as

P

8
<

:kP✓⇤(·|z)� P✓̂k
(·|z)k1 �

s
14
Qd

i=1(xi + h)

n
log

✓
2|A|T

�̃

◆9=

; 
�̃

20|A|T 7
Qd

i=1(xi + h)
.

Therefore,

P
n
kP✓⇤(·|z)� P✓̂k

(·|z)k1 � �k(z)
���Ntk(z) = n

o


�̃

20|A|T 7
Qd

i=1(xi + h)
,
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and

P
n
kP✓⇤(·|z)� P✓̂k

(·|z)k1 � �k(z)
o

=
TX

n=1

P
n
kP✓⇤(·|z)� P✓̂k

(·|z)k1 � �k(z)
���Ntk(z) = n

o
P {Ntk(z) = n}


�̃

20|A|T 6
Qd

i=1(xi + h)
.

The probability that at episode k  T , the true parameter ✓⇤ does not belong to the confidence set
Bk can be bounded using the above and union bound as

P{✓⇤
/2 Bk} 

X

z2{0,1,··· ,hT}d⇥A

P
n
kP✓⇤(·|z)� P✓̂k

(·|z)k1 � �k(z)
o



X

z2{0,1,··· ,hT}d⇥A

�̃

20|A|T 6
Qd

i=1(xi + h)

=
X

x2{0,1,··· ,hT}d

�̃

20T 6
Qd

i=1(xi + h)


�̃

20T 6
(log (h(T + 1)) + 1)d


�̃

20k6
(log (h(T + 1)) + 1)d .

In the summation in the above equation, we have simplified the expression by summing over xi  hT

instead of considering the more detailed summation over xi  M
T
✓⇤ . However, this simplification

does not affect the final evaluation of regret, as this term is not dominant and only contributes to a
logarithmic term in the regret bound. Substituting in (31),

E
h KTX

k=1

tk+1�1X

t=tk

2vM
⇥
I{✓⇤ /2Bk} + I{✓k /2Bk}

⇤ i
 4TQ(T )

TX

k=1

P{✓⇤
/2 Bk}


�̃ (log (h(T + 1)) + 1)d TQ(T )

5

1X

k=1

1

k6

< �̃ (log (h(T + 1)) + 1)d TQ(T ). (32)

We now upper bound the second term in (28). From (30),

E
h KTX

k=1

tk+1�1X

t=tk

2vM�k (Z (t))
i
 2cp2 E

h �
M

T
✓⇤
�r+rp⇤

KTX

k=1

tk+1�1X

t=tk

�k (Z (t))
i
. (33)

To bound the regret term resulting from the summation of �k (Z (t)), we note that from the second
stopping criterion, Nt (Z (t))  2Ntk (Z (t)) for all tk  t < tk+1 and

KTX

k=1

tk+1�1X

t=tk

�k (Z (t))

=
KTX
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tk+1�1X

t=tk

s
14
Qd
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s

14 log
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2|A|T

�̃
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4
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s
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Qd
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+

KTX

k=1

tk+1�1X

t=t̃k+1

vuut
dY

i=1

(Xi (t) + h)

3

5 .

(34)
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The first summation can be simplified as
KTX

k=1

t̃k+1�1X

t=tk

s
2
Qd

i=1(Xi (t) + h)

max(1, Nt(Z (t)))


q
2(MT

✓⇤ + h)d
KTX

k=1

t̃k+1�1X

t=tk

1p
max(1, Nt(Z (t)))

 3
q
2(MT

✓⇤ + h)d
X

z2{0,1,··· ,MT
✓⇤}d⇥A

p
NT+1(z)

 3
p
2|A|(MT

✓⇤ + h)d
s X

z2{0,1,··· ,MT
✓⇤}d⇥A

NT+1(z)
i

 3
p
2|A|T (MT

✓⇤ + h)d,

where the second inequality is due to the following arguments,
KTX

k=1

t̃k+1�1X

t=tk

1p
max(1, Nt(Z (t)))

=
X

z2{0,1,··· ,MT
✓⇤}d⇥A

0

@I{NT+1(z)>0} +

NT+1(z)�1X

i=1

1
p
i

1

A

 3
X

z2{0,1,··· ,MT
✓⇤}d⇥A

p
NT+1(z).

For the second term in (34), we get
KTX

k=1

tk+1�1X

t=t̃k+1

vuut
dY

i=1

(Xi (t) + h) =
q

(MT
✓⇤ + h)d

KTX

k=1

Ek

 KT

✓
max
1iT

⌧
(i)
0d

◆q
(MT

✓⇤ + h)d

 2
p

|A|T log2 T

✓
max
1iT

⌧
(i)
0d

◆
(MT

✓⇤ + h)d,

where Ek = Tk � T̃k, and KT is bounded from Lemma 8. Thus
PKT

k=1

Ptk+1�1
t=tk

�k (Z (t)) is
bounded as

KTX

k=1

tk+1�1X

t=tk

�k (Z (t))  24

s

|A|T log2 T log

✓
2|A|T

�̃

◆✓
max
1iT

⌧
(i)
0d

◆
(MT

✓⇤ + h)d.

Substituting the above bound in (33),

E
h KTX

k=1

tk+1�1X

t=tk

2vM�k (Z (t))
i

 48cp2

s

|A|T log2 T log

✓
2|A|T

�̃

◆
E
h �

M
T
✓⇤
�r+rp⇤ (MT

✓⇤ + h)d
✓

max
1iT

⌧
(i)
0d

◆i

 cp3

s

|A|T log2 T log

✓
2|A|T

�̃

◆
E
h
(MT

✓⇤ + h)d+r+rp⇤

✓
max
1iT

⌧
(i)
0d

◆i
,

where cp3 := 48cp2 . Finally, from the above equation, (32), and (28),

R2  �̃ (log (h(T + 1)) + 1)d TQ(T )

+ cp3

s

|A|T log2 T log

✓
2|A|T

�̃

◆
E
h
(MT

✓⇤ + h)d+r+rp⇤
⇣

max
1iT

⌧
(i)
0d

⌘i
.

By choosing �̃ = 1
TQ(T ) , we get

R2

 (log(h(T + 1)) + 1)d + cp3

p
|A|T log2 T log(2|A|T 2Q(T ))E

h
(MT

✓⇤ + h)d+r+rp⇤
⇣

max
1iT

⌧
(i)
0d

⌘i
,

 (log(h(T + 1)) + 1)d + cp3

p
|A|T log2

�
2|A|T

2
Q(T )

�
E
h
(MT

✓⇤ + h)d+r+rp⇤
⇣

max
1iT

⌧
(i)
0d

⌘i
,
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where Q(T ) = cp2(Th)
r+rp⇤ .

B.7 Proof of Theorem 1

Proof. Lemmas 1, 2, and 3 along with Cauchy-Schwarz inequality showed that the regret terms
R0 and R2 are of the order Õ(KrdJ

⇤
h
d+2r+rp⇤

p
|A|T ) and the term R1 is Õ(J⇤(h)r

p
⇤ ). There-

fore, from R(T,⇡TSDE) = R0 + R1 + R2, the regret of Algorithm 1, R(T,⇡TSDE), is
Õ(KrdJ

⇤
h
d+2r+rp⇤

p
|A|T ).

B.8 Requirement of an optimal policy oracle.

To implement our algorithm, we need to find the optimal policy for each model sampled by the
algorithm—optimal policy for Theorem 1 and optimal policy within policy class ⇧ for Corollary 1;
this has also been used in past work [23, 24, 36]. In the finite state-space setting, [49] provides a
schedule of ✏ values and selects ✏-optimal policies to obtain Õ(

p
T ) regret guarantees. The issue with

extending the analysis of [49] to the countable state-space setting is that we need to ensure (uniform)
ergodicity for the chosen ✏-optimal policies; the lim sup or lim inf of the time-average expected
reward (used to define the average cost problem) being finite doesn’t imply ergodicity. In other words,
we must formulate (and verify) ergodicity assumptions for a potentially large set of close-to-optimal
algorithms whose structure is undetermined. Another issue is that, to the best of our knowledge, there
isn’t a general structural characterization of all ✏-optimal stationary policies for countable state-space
MDPs or even a characterization of the policy within this set that is selected by any computational
procedure in the literature; current results only discuss existence and characterization of the stationary
optimal policy. In the absence of such results, stability assumptions with the same uniformity across
models as in our submission will be needed, which are likely too strong to be useful.

If we could verify the stability requirements of Assumptions 3 and 4 for a subset of policies, the
optimal oracle is not needed, and instead, by choosing approximately optimal policies within this
subset, we can follow the same proof steps as [49] to guarantee regret performance similar to
Corollary 1 (without knowledge of model parameters). To theoretically analyze the performance of
the algorithm that follows an approximately optimal policy rather than the optimal one, we assume
that for a specific sequence of {✏k}1k=1, an ✏k-optimal policy is given, which is defined below.

Definition 1. Policy ⇡ 2 ⇧ is called an ✏-optimal policy if for every ✓ 2 ⇥,

c(x,⇡(x)) +
X

y2X
P✓(y|x,⇡(x))v(y; ✓)  c(x,⇡⇤

✓(x)) +
X

y2X
P✓(y|x,⇡

⇤
✓(x))v(y; ✓) + ✏,

where ⇡
⇤
✓ is the optimal policy in the policy class ⇧ corresponding to parameter ✓ and v(.; ✓) is the

solution to Poisson equation (5).

Given ✏-optimal policies that satisfy Assumptions 3 and 4, in Theorem 2 we extend the regret
guarantees of Corollary 1 to the algorithm employing ✏-optimal policy, instead of the best-in-class
policy, and show that the same regret upper bounds continue to apply.

Theorem 3. Consider a non-negative sequence {✏k}
1
k=1 such that for every k 2 N, ✏k is bounded

above by 1
k+1 and an ✏k-optimal policy satisfying Assumptions 3 and 4 is given. The regret incurred

by Algorithm 1 while using the ✏k-optimal policy during any episode k is Õ(dhd
p

|A|T ).

Proof. For the ✏k-optimal policy used in episode k, shown by ⇡
✏k , we have

c(x,⇡✏k(x)) +
X

y2X
P✓k(y|x,⇡

✏k(x))v(y; ✓k)  c(x,⇡⇤
✓k(x)) +

X

y2X
P✓k(y|x,⇡

⇤
✓k(x))v(y; ✓k) + ✏k

= J(✓k) + v(x; ✓k) + ✏k.
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Thus,

R(T,⇡TSDE) = E
h KTX

k=1

tk+1�1X

t=tk

c(X(t),⇡✏k(X(t)))
i
� T E [J (✓⇤)] = R0 +R1 +R2 + E

h KTX

k=1

Tk✏k

i

with R0 =E
h KTX

k=1

TkJ(✓k)
i
� T E

h
J(✓⇤)

i
,

R1 =E
h KTX

k=1

tk+1�1X

t=tk

h
v(X(t); ✓k)� v(X(t+ 1); ✓k)

ii
,

R2 =E
h KTX

k=1

tk+1�1X

t=tk

h
v(X(t+ 1); ✓k)�

X

y2X
P✓k(y|X(t),⇡✏k(X(t)))v(y; ✓k)

ii
.

We assumed that given ✏-optimal policies satisfy Assumptions 3 and 4. As a result, we can utilize the
proof of Theorem 1 to deduce that the term R0 +R1 +R2 is of the order Õ(dhd

p
|A|T ). Moreover,

we can simplify the term E
hPKT

k=1 Tk✏k

i
as below:

E
h KTX

k=1

Tk✏k

i
= E

h KTX

k=1

T̃k✏k

i
+ E

h KTX

k=1

Ek✏k

i
. (35)

From the second stopping condition of Algorithm 1, we have T̃k  T̃k�1 + 1  . . .  k + 1 and

E
h KTX

k=1

Tk✏k

i
 E[KT ],

where we have used the assumption that ✏k  1
k+1 . For the second term of (35), from (25)

E
h KTX

k=1

Ek✏k

i
 E

h KTX

k=1

Ek

k + 1

i
 E

h
max
1iT

⌧
(i)
0d

KTX

k=1

1

k + 1

i
 E

h
max
1iT

⌧
(i)
0d log(KT + 1)

i
,

(36)

where in the last inequality we have used
Pn

i=1
1
n  1 + log(n). Finally, as a result of Lemma 6 and

Lemma 8, the result follows.

C Bounds on hitting times under polynomial and geometric ergodicity

C.1 Polynomial upper bounds for the moments of hitting time of state 0d

For any ✓1, ✓2 2 ⇥, consider the Markov process with transition kernel P
⇡⇤
✓2

✓1
obtained from the

MDP (X ,A, c, P✓1) by following policy ⇡
⇤
✓2

. [29, Lemma 3.5] establishes that if the process is
polynomially ergodic, equivalently satisfies (4), then for every 0 < ⌘  1, there exists constants
�
⌘
✓1,✓2

, b⌘✓1,✓2 > 0 such that the following holds:

�
⇣
V

p
✓1,✓2

⌘⌘
(x)  ��⌘

✓1,✓2

⇣
V

p
✓1,✓2

(x)
⌘↵p

✓1,✓2
+⌘�1

+ b
⌘
✓1,✓2

ICp
✓1,✓2

(x), x 2 X , (37)

where for ⌘ 2 (0, 1), �̃p
✓1,✓2

:= min(�p
✓1,✓2

, 1) and

�
⌘
✓1,✓2

= ⌘�̃
p
✓1,✓2

, b
⌘
✓1,✓2

=
⇣
b
p
✓1,✓2

⌘⌘
+ ⌘�̃

p
✓1,✓2

max

✓
1,
⇣
�̃
p
✓1,✓2

⌘(↵p
✓1,✓2

+⌘�1)/(1�↵p
✓1,✓2

)
◆
, (38)

and for ⌘ = 1, �⌘
✓1,✓2

= �
p
✓1,✓2

and b
⌘
✓1,✓2

= b
p
✓1,✓2

. Consequently, the following result is immediate
from the proof of [29, Theorem 3.6]; for completeness, we provide the proof in Appendix D.1.
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Lemma 9. Suppose a finite set Cp
✓1,✓2

, constants �p
✓1,✓2

, b
p
✓1,✓2

> 0, r/(r + 1)  ↵
p
✓1,✓2

< 1, and a
function V

p
✓1,✓2

: X ! [1,+1) exist such that (4) holds. Then, there exist a sequence of non-negative
functions V

i
✓1,✓2

: X ! [1,+1) for i = 0, . . . , r + 1 that satisfy the following system of drift
equations for finite sets Ci

✓1,✓2
, constants bi✓1,✓2 � 0 and �

i
✓1,✓2

> 0:

�V
i�1
✓1,✓2

(x)  ��i
✓1,✓2V

i
✓1,✓2(x) + b

i
✓1,✓2ICi

✓1,✓2
(x), x 2 X , i = 1, . . . , r + 1. (39)

Notice that r is the maximum degree of the cost function c defined in Assumption 1. Following
the proof and approach of [29] and using the set of equations (39), we can find an upper-bound
for Ex[⌧ i0d ] for i = 1, . . . , r + 1 in Lemma 10. In order to establish upper bounds for the first
r + 1 moments of ⌧0d , it is crucial to choose the value of ↵p

✓1,✓2
greater than or equal to r

r+1 , as
demonstrated in the proof of Lemma 10 in Appendix D.2
Lemma 10. For i = 1, . . . , r + 1, and for all x 2 X

E⇡⇤
✓2

x [(⌧0d)
i]  i�

p
✓1,✓2

(i)
⇣
V

p
✓1,✓2

(x) + b
p
✓1,✓2

↵Cp
✓1,✓2

⌘
,

where �
p
✓1,✓2

(i) :=
Qi

j=1
1

�
⌘j
✓1,✓2

⇣
2j�1 + (j � 1)↵Cp

✓1,✓2
b
⌘j

✓1,✓2

⌘
, ⌘i = 1 � (i � 1)(1 � ↵

p
✓1,✓2

) ,

b
⌘i

✓1,✓2
and �

⌘i

✓1,✓2
defined in (38), and ↵Cp

✓1,✓2
=
⇣
miny2Cp

✓1,✓2
K✓1,✓2(y)

⌘�1
.

Based on Lemma 10, we impose the conditions of Assumption 4 to obtain uniform (over model class)
and polynomial (in norm of the state) upper-bounds on the moments of hitting times to 0d. Moreover,
these conditions lead to a uniform characterization of parameters of Lemma 10 over all models in our
class.

C.2 Distribution of return times to state 0d

For any ✓1, ✓2 2 ⇥, consider the Markov process with transition kernel P
⇡⇤
✓2

✓1
obtained from the MDP

(X ,A, c, P✓1) by following policy ⇡
⇤
✓2

. In the following lemma, we show that the tail probabilities of
the return times to the common state 0d, again ⌧0d , converge geometrically fast to 0, and characterize
the convergence parameters in terms of the constants given in Assumption 3. Explicitly, we show

P0d(⌧0d > n)  c
g
✓1,✓2

⇣
�̃
g
✓1,✓2

⌘n
,

for problem and policy dependent constants cg✓1,✓2 and �̃
g
✓1,✓2

. We will follow the method outlined in
[27] with the goal to identify problem dependent parameters that will be relevant to our results. Proof
of the following lemma is given in Appendix D.3 and follows the methodology of [27].
Lemma 11. For every ✓1, ✓2 2 ⇥ in the Markov process obtained from the Markov decision process
(X ,A, c, P✓1) following policy ⇡

⇤
✓2

, the return time to state 0 starting from state 0 satisfies the
following:

P0d(⌧0d > n)  c
g
✓1,✓2

⇣
�̃
g
✓1,✓2

⌘n
,

where

c
g
✓1,✓2

=
b
g
✓1,✓2

⇣
b̃
g
✓1,✓2

⌘2

b̃
g
✓1,✓2

� 1
and �̃

g
✓1,✓2

= 1�
1

b̃
g
✓1,✓2

,

with

b̃
g
✓1,✓2

=
3bg✓1,✓2 + 1

1� �
g
✓1,✓2

 
|C

g
✓1,✓2

|
2 max

 
1, max

u2Cg
✓1,✓2

\{0d}
E⇡⇤

✓2
u [⌧0d ]

!!
.

Based on Lemma 11, it is necessary to impose the conditions in Assumption 3 to obtain uniform
tail probability bounds on ⌧0d for all model parameters and policy choices in ⇥. Moreover, these
conditions lead to a uniform characterization of cg✓1,✓2 and �̃

g
✓1,✓2

over ⇥. Furthermore, as a result of

Lemma 10 and uniformity conditions of Assumption 4, E⇡⇤
✓2

u [⌧0d ] has a uniform bound over ⇥ and
C

g
✓1,✓2

\ {0d}, which can be characterized in terms of the polynomial Lyapunov function.
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D Proofs of hitting time bounds

D.1 Proof of Lemma 9

Proof. In the proof, to avoid cumbersome notation we will drop the indices ✓1, ✓2. Following the
proof of Theorem 3.6 in [29], we choose ⌘i = 1� (i� 1)(1�↵

p) for i = 1, . . . , r+1 and note that
as ↵p

2 [ r
r+1 , 1), we have ⌘i 2 [ 1

r+1 , 1]. As a result, we can apply (37) to each ⌘i to get

� (V p)⌘i (x)  ��⌘i (V p(x))i↵
p�i+1 + b

⌘iICp(x), i = 1, . . . , r + 1.

Thus, the system of drift equations (39) hold for

Vi = (V p)1�i(1�↵p)
, i = 0, . . . , r + 1,

�i = �
⌘i , i = 1, . . . , r + 1,

bi = b
⌘i , i = 1, . . . , r + 1,

Ci = C
p
, i = 1, . . . , r + 1,

where �
⌘i and b

⌘i are defined in (38).

D.2 Proof of Lemma 10

The proof of Lemma 10 uses the following lemma.

Lemma 12 (Proposition 11.3.2, [43]). Suppose for nonnegative functions f , g, and V on the state
space X and every k 2 Z+, the following holds:

E[V (Xk+1)|Fk]  V (Xk)� f(Xk) + g(Xk).

Then, for any initial condition x and stopping time ⌧

Ex

"
⌧�1X

k=0

f(Xk)

#
 V (x) + Ex

"
⌧�1X

k=0

g(Xk)

#
.

Proof of Lemma 10. Following [29], the proof uses an induction argument. We will use the notation
of Lemma 9 for simplicity. Similarly, in this proof we will also denote �p

✓1,✓2
(i) as �(i), K✓1,✓2(·) as

K(·), and V
i
✓1,✓2

, bi✓1,✓2 , �i
✓1,✓2

, Ci
✓1,✓2

as Vi, bi, �i, Ci.

From irreducibility, for all x 2 X , K(x) is positive and finite. Considering the system of drift
equations found in Lemma 9, Ci = C

p is a finite set for all i = 1, . . . , r + 1. Thus, miny2Ci K(y)
is strictly positive. For all x 2 X and i = 1, . . . , r + 1, we have

ICi(x) 

✓
min
y2Ci

K(y)

◆�1

K(x). (40)

We set ↵Cp := (miny2Ci K(y))�1 = (miny2Cp K(y))�1. From Lemma 9, for j = 1 and x 2 X

�V0(x)  ��1V1(x) + b1IC1(x).

By applying Lemma 12, for all x 2 X we get

�1Ex

2

4
⌧0d�1X

k=0

V1 (Xk)

3

5  V0(x) + b1Ex

2

4
⌧0d�1X

k=0

IC1 (Xk)

3

5 . (41)

Using (40) and (41), followed by noting that

K(x) =
1X

n=0

2�n�2
P

n(x, 0d) =
1X

n=0

2�n�2Ex[I0d (Xn)],
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we get

Ex

2

4
⌧0d�1X

k=0

V1 (Xk)

3

5  1

�1
V0(x) +

b1↵Cp

�1
Ex

2

4
1X

n=0

2�n�2

⌧0d�1X

k=0

I0d (Xk+n)

3

5

=
1

�1
V0(x) +

b1↵Cp

�1
Ex

2

4
1X

n=0

2�n�2

⌧0d�1+nX

k=n

I0d (Xk)

3

5


1

�1
V0(x) +

b1↵Cp

�1
Ex

2

4
1X

n=0

2�n�2

⌧0d�1+nX

k=n_⌧0d

I0d (Xk)

3

5


1

�1
V0(x) +

b1↵Cp

�1

1X

n=0

2�n�2(n+ 1)

=
1

�1
V0(x) +

b1↵Cp

�1
.

As V1(x) � 1, this gives us a bound on Ex[⌧0d ] as follows:

Ex[⌧0d ] 
1

�1
V0(x) +

b1↵Cp

�1
.

Assume for i � 1, by the induction assumption we have

Ex

2

4
⌧0d�1X

k=0

(k + 1)i�1
Vi (Xk)

3

5  �(i) (V0(x) + b1↵Cp) . (42)

Set j = i+ 1 in (39), which yields
�Vi(x)  ��i+1Vi+1(x) + bi+1ICp(x).

Define Zk = k
i
Vi(Xk). From the above equation, we have

E[Zk+1|Xk]  (k + 1)i (Vi (Xk)� �i+1Vi+1(Xk) + bi+1ICp(Xk))

 Zk + 2i(k + 1)i�1
Vi (Xk) + (k + 1)ibi+1ICp(Xk)� (k + 1)i�i+1Vi+1(Xk).

By applying Lemma 12 to the above equation, we get

�i+1Ex

2

4
⌧0d�1X

k=0

(k + 1)iVi+1 (Xk)

3

5

 2iEx

2

4
⌧0d�1X

k=0

(k + 1)i�1
Vi (Xk)

3

5+ bi+1Ex

2

4
⌧0d�1X

k=0

(k + 1)iICp (Xk)

3

5

 2i�(i) (V0(x) + b1↵Cp) + ↵Cpbi+1Ex[(⌧0d)
i], (43)

where the second inequality follows from (40) and the induction hypothesis (42). Thereafter, from
(42) (by using integral lower bound after using Vi � 1), we have

1

i
Ex[(⌧0d)

i]  Ex

2

4
⌧0d�1X

k=0

(k + 1)i�1
Vi (Xk)

3

5  �(i) (V0(x) + b1↵Cp) .

Substituting in (43), we get

�i+1Ex

2

4
⌧0d�1X

k=0

(k + 1)iVi+1 (Xk)

3

5  2i�(i) (V0(x) + b1↵Cp) + ibi+1↵Cp�(i) (V0(x) + b1↵Cp)

=
�
2i + ibi+1↵Cp

�
�(i) (V0(x) + b1↵Cp)

= �i+1�(i+ 1) (V0(x) + b1↵Cp) .

This completes the proof.
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D.3 Proof of Lemma 11

Proof. In the proof, to avoid cumbersome notation we will drop the indices ✓1, ✓2. Based on
Assumption 3, there exists a finite set Cg, constants b

g, �g
2 (0, 1), and a function V

g : X !
[1,+1) satisfying

�V
g(x)  � (1� �

g)V g(x) + b
gICg (x), x 2 X . (44)

For n � 1, define the n-step taboo probabilities [43] as

AP
n
xB = Px (Xn 2 B, ⌧A > n) ,

where A,B ✓ X , and ⌧A is the first hitting time of set A. We also let AP
0
xB = IB(x) and

Ṽ
g =

P1
n=0 0d

P
n
V

g . Applying the last exit decomposition on C
g
\ {0d} for all x 2 X , we obtain

Ṽ
g(x)

=
1X

n=0

X

y2X
0d
P

n
xyV

g(y)

= V
g(x) +

1X

n=1

X

y2X
CgP

n
xyV

g(y)

+
1X

n=1

X

y2X

n�1X

m=1

X

z2Cg\{0d}
0d
P

m
xz CgP

n�m
zy V

g(y) +
1X

n=1

X

y2X

X

z2Cg\{0d}
0d
P

n
xz CgP

0
zyV

g(y)

= V
g(x) +

1X

n=1

X

y2X
CgP

n
xyV

g(y) (45)

+
X

y2X

X

z2Cg\{0d}

 1X

m=1
0d
P

m
xz

! 1X

n=1
CgP

n
zyV

g(y)

!

| {z }
Term 1

+
1X

n=1

X

z2Cg\{0d}
0d
P

n
xzV

g(z)

| {z }
Term 2

, (46)

where we break up the trajectories starting at state x and reaching state y while avoiding state 0d

into two: ones that never visit the set Cg , and the others that visit Cg
\ {0d} up until time m but not

afterwards and exit Cg
\ {0d} at time m.

We first bound Term 1 in (46) by finding an upper bound for the probability term
P1

m=1 0d
P

m
xz using

the first entrance decomposition on C
g
\ {0d} while noting that z 2 C

g
\ {0d}:

1X

m=1
0d
P

m
xz =

1X

m=1

mX

l=1

X

u2Cg\{0d}
v/2Cg

CgP
l�1
xv Pvu 0d

P
m�l
uz

=
X

u2Cg\{0d}

 1X

l=0

X

v/2Cg

CgP
l
xvPvu

! 1X

m=0
0d
P

m
uz

!



X

u2Cg\{0d}

1X

m=0
0d
P

m
uz



X

u2Cg\{0d}

1X

m=0

Pu(⌧0d > m)

 |C
g
| max
u2Cg\{0d}

Eu[⌧0d ], (47)

where the third line follows from the fact that
P1

l=0

P
v/2Cg CgP

l
xvPvu is the probability of entrance

to C
g through u 2 C

g
\ {0}, so it is less than 1. Irreducibility and positive recurrence combined

with |C
g
| <1 imply that maxu2Cg\{0d} Eu[⌧0d ] <1, which shows

P1
m=0 0d

P
m
xz is finite. Next,

33



by induction we prove that for n � 1 and z 2 C
g
\ {0d} we have

X

y2X
CgP

n
zyV

g(y)  (�g)n�1
b
g
. (48)

For n = 1, we have using Assumption 3 that
X

y2X
CgPzyV

g(y) 
X

y2X
PzyV

g(y)  b
g
.

Assuming that (48) holds for n, for n+ 1 we have
X

y2X
CgP

n+1
zy V

g(y) 
X

y2X
v/2Cg

CgP
n
zvPvyV

g(y)  �
g
X

v/2Cg

CgP
n
zvV

g(v) (Using (44))

 �

X

v2X
CgP

n
zvV

g(v)  (�g)n bg, (By induction step)

so (48) is shown. We collect these bounds later on for our result on Term 2.

We now simplify the summation in (45). Similar to previous arguments, we will use induction for
n � 1 and show for all x 2 X

X

y2X
CgP

n
xyV

g(y)  (�g)n�1 (�g
V

g(x) + b
g) . (49)

For n = 1, we have
X

y2X
CgPxyV

g(y) 
X

y2X
PxyV

g(y)  �
g
V

g(x) + b
g
.

Assuming that (49) holds for n, for n+ 1 we have
X

y2X
CgP

n+1
xy V

g(y) 
X

z/2Cg

CgP
n
xz

X

y2X
PzyV

g(y)  �
g
X

z/2Cg

CgP
n
xzV

g(z)

 �
g
X

z2X
CgP

n
xzV

g(z)  (�g)n (�g
V

g(x) + b
g) ,

where the first and second inequalities follow from the definition of taboo probabilities and (44).
Thus, (49) is proved. Lastly, for Term 2 in (46), we note

1X

n=1

X

z2Cg\{0d}
0d
P

n
xzV

g(z)  max
y2Cg\{0d}

V
g(y)

X

z2Cg\{0d}

1X

n=1
0d
P

n
xz

 b
g
|C

g
|
2 max
u2Cg\{0d}

Eu[⌧0d ] (From (47)).

From the above equation, (47), (48), and (49), we bound Ṽ
g(x) as follows:

Ṽ
g(x)

 V
g(x) + (�g

V
g(x) + b

g)
1X

n=1

(�g)n�1 + |C
g
|
2
b
g max
u2Cg\{0d}

Eu[⌧0d ]

 
1 +

1X

n=1

(�g)n�1

!


V

g(x)

1� �g
+

3|Cg
|
2
b
g

1� �g
max

✓
1, max

u2Cg\{0d}
Eu[⌧0d ]

◆

 V
g(x)

✓
3bg + 1

1� �g

✓
|C

g
|
2 max

✓
1, max

u2Cg\{0d}
Eu[⌧0d ]

◆◆◆
,

where the last line is due to V
g(x) � 1. Taking

b̃
g :=

3bg + 1

1� �g

✓
|C

g
|
2 max

✓
1, max

u2Cg\{0d}
Eu[⌧0d ]

◆◆
> 1,
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we have shown that
Ṽ

g(x)  b̃
g
V

g(x), x 2 X . (50)
We now upper-bound P0d(⌧0d > n) for all n � 1 in an inductive manner, starting with P0d(⌧0d > 1).
As a part of showing this, for every x 6= 0d we argue that for all n � 1

Px(⌧0d > n)  Ṽ
g(x)

✓
1�

1

b̃g

◆n

. (51)

First note that
Ṽ

g(x) � V
g(x) � 1. (52)

Thus,

Px(⌧0d > 1) =
X

y2X
0d
Pxy 

X

y2X
0d
PxyṼ

g(y)

=
X

y2X
0d
Pxy

1X

n=0

X

z2X
0d
P

n
yzV

g(z) =
X

z2X

1X

n=1
0d
P

n
xzV

g(z). (53)

We now apply the bound in (50) to get

Px(⌧0d > 1) 
X

z2X

1X

n=1
0d
P

n
xzV

g(z) = Ṽ
g(x)� V

g(x)  Ṽ
g(x)

✓
1�

1

b̃g

◆
. (54)

With the base of induction established, we assume the statement in (51) is true for n, and show that it
continues to hold for n+ 1 as follows:

Px(⌧0d > n+ 1) =
X

y 6=0d

PxyPy(⌧0d > n)



✓
1�

1

b̃g

◆n X

y 6=0d

PxyṼ
g(y)

 Ṽ
g(x)

✓
1�

1

b̃g

◆n+1

,

where the final inequality uses the same arguments as in (53) and (54).

Finally, using the tail probabilities of hitting time of state 0d from any state x 6= 0d, we bound the
tail probability of the return time to state 0d (starting from 0d) as follows

P0d(⌧0d > n+ 1) =
X

x 6=0d

P0xPx(⌧0d > n) 

✓
1�

1

b̃g

◆n X

x 6=0d

P0xṼ
g(x)

 b̃
g

✓
1�

1

b̃g

◆n X

x 6=0d

P0xV
g(x)  b

g
b̃
g

✓
1�

1

b̃g

◆n

,

where the final inequality follows from the definition of bg , and we have

�̃
g = 1�

1

b̃g
, and c

g =
b
g
⇣
b̃
g
⌘2

b̃g � 1
,

and the proof is complete.

E Queueing model examples

E.1 Model 1: Two-server queueing system with a common buffer

We consider a continuous-time queueing system with two heterogeneous servers with unknown
service rate vector ✓⇤ = (✓⇤1 , ✓

⇤
2) and a common infinite buffer, shown in Figure 2a. Arrivals to the

system are according to a Poisson process with rate � and service times are exponentially distributed
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with parameter ✓⇤i , depending on the assigned server. The service rate vector ✓⇤ is sampled from the
prior distribution ⌫0 defined on the space ⇥ given as

⇥ =

⇢
(✓1, ✓2) 2 R2

+ :
�

✓1 + ✓2


1� �

1 + �
, 1 

✓1

✓2
 R

�
, (55)

for fixed � 2 (0, 0.5) and R � 1. Note that for any (✓1, ✓2) 2 ⇥, we have ✓1 � ✓2

and the stability requirement � < ✓1 + ✓2 holds. The countable state space X is defined as
X = {x = (x0, x1, x2) : x0 2 N [ {0} , x1, x2 2 {0, 1}}, in which x0 is the length of the queue,
and xi, i = 1, 2 is equal to 1 if server i is busy serving a job. At each time instance r 2 R+, the
dispatcher can assign jobs from the (non-empty) buffer to an available server. Thus, the action space
A is equal to

A = {h, b, 1, 2},
where h indicates no action, b sends a job to both of the servers, and i = 1, 2 assigns a job to server i.
The goal of the dispatcher is to minimize the expected sojourn time of customers, which by Little’s
law [52] is equivalent to minimizing the average number of customers in the system, or

inf
⇡2⇧

lim sup
T!1

1

T

Z T

0
kX(r)k1 dr, (56)

where X(r) is the state of the system at time r 2 R+, immediately after the arrival/departure and
just before the action is taken. In [38], it is argued that from uniformization [39] and sampling the
continuous-time Markov process at a rate of �+ ✓

⇤
1 + ✓

⇤
2 , a discrete-time Markov chain is obtained,

which converts the original continuous-time problem shown in (56) to an equivalent discrete-time
problem as below:

inf
⇡2⇧

lim sup
T!1

1

T

Z T

0
kX(r)k1 dr = inf

⇡2⇧
lim sup
T!1

1

T

T�1X

i=0

kX(i)k1. (57)

To obtain a uniform sampling rate of �+ ✓
⇤
1 + ✓

⇤
2 , the continuous-time system is sampled at arrivals,

real and dummy customer departures. In [38], it is further shown that the optimal policy that achieves
the infimum in (57) is a threshold policy ⇡t with the optimal finite threshold t(✓) 2 N, with the policy
defined as below:

⇡t(x) =

8
<

:

h if {x0 = 0} or {kxk1  t, x1 = 1} or {x1 = x2 = 1}
1 if {x0 � 1, x1 = 0}
2 if {x0 � 1, kxk1 � t+ 1, x1 = 1, x2 = 0};

note that action b is not used. Policy ⇡t assigns a job to the faster (first) server whenever there is
a job waiting in the queue and the first server is available. In contrast, ⇡t dispatches a job to the
second server only if the number of jobs in the system are greater than threshold t and the second
server is available. If neither of these conditions hold, no action or h is taken. Consequently, we can
restrict the set of all policies ⇧ in (57) to the set ⇧t, which is the set of all possible threshold policies
corresponding to some t 2 N.

In the rest of this subsection, our aim is to show that Assumptions 1-5 are satisfied for the discrete-time
Markov process obtained by uniformization of the described queueing system and hence, conclude
that Algorithm 1 can be used to learn the unknown service rate vector ✓⇤ with the expected regret of
order Õ(

p
T ).

Assumption 1. Cost function is given as c(x, a) = kxk1, which satisfies Assumption 1 with
fc(x) = x0 + x1 + x2 and K = r = 1.

Assumption 2. For any state-action pair (x, a) and ✓ 2 ⇥, we have P✓(A(x);x, a) = 0 where
A(x) = {y 2 X : |kyk1 � kxk1| > 1}; thus, Assumption 2 holds with h = 1.

Assumption 3. Consider a queueing system with parameter ✓ following threshold policy ⇡t for some
t 2 N. The uniformized discrete-time Markov chain is irreducible and aperiodic on a subset of state
space given as Xt = X \ ({(i, 0, 0) : i � min(t, 2)} [ {(0, 1, 1)}). In [38], it is proved that for every
t, the chain consists of a single positive recurrent class and the corresponding average number of
customers, depicted by J

t(✓), is calculated. Moreover, it is shown that for every ✓ 2 ⇥ the optimal
threshold t(✓) can be numerically found as the smallest i 2 N for which J

i(✓) < J
i+1(✓). Define

the set T ⇤ as the set of all optimal thresholds corresponding to at least one ✓ 2 ⇥, or
T

⇤ = {t : t = t(✓) for ✓ 2 ⇥}.
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Remark 7. There is a discrepancy between the class of MDPs defined in this section and in Section 2,
as in the former the MDPs are not irreducible in the whole state space X . Specifically, for every
Markov process generated by a queueing system with parameter ✓ following threshold policy ⇡t,
irreducibility holds on Xt ⇢ X . Nevertheless, the results of Section 4 are valid as starting from state
(0, 0), the visited states are positive recurrent; see Remark 4.

In the following proposition, we verify the geometric ergodicity of the discrete-time chain governed
by any parameter ✓ 2 ⇥ and obtained by following any threshold policy ⇡t for t 2 T

⇤; proof is given
in Appendix F.1.

Proposition 1. The discrete-time Markov process obtained from the queueing system governed by
parameter ✓ = (✓1, ✓2) 2 ⇥ and following threshold policy ⇡t for some t 2 T

⇤ is geometrically
ergodic. Equivalently, the following holds

�V
g
✓,t(x)  �

⇣
1� �

g
✓,t

⌘
V

g
✓,t(x) + b

g
✓,tICg

✓,t
(x), x 2 Xt,

for

V
g
✓,t(x) = exp(� log(1� �)kxk1),

C
g
✓,t = {(x0, x1, 0) : x0 < t} [ {(0, 0, 1)}, (58)

b
g
✓,t = max

x2Cg
✓,t

exp (� log(1� �) (kxk1 + 1)) , (59)

�
g
✓,t =

1

2
�

1

2(✓1 + ✓2 + �)

⇣
(✓1 + ✓2)(1� �) + � (1� �)�1

⌘
. (60)

Having described all the terms explicitly, we verify the rest of the conditions of Assumption 3, which
lead to uniform (over model class) upper-bounds on the moments of hitting time to 0d as follows:

1. From (60), sup✓2⇥,t2T⇤ �
g
✓,t  1/2 < 1.

2. From (58), we can see that state (0, 0) belongs to C
g
✓,t for all ✓ 2 ⇥ and t 2 T

⇤. In order for
C

g
⇤ = [✓2⇥,t2T⇤C

g
✓,t to be a finite set, the supremum of the optimal threshold t(✓) over ⇥ should

be finite. In [37] with service rate vector (✓1, ✓2), it is shown that the optimal threshold is bounded
above by

p
2✓1/✓2, which further gives

t(✓) 
p

2
✓1

✓2


p

2R. (61)

Thus, sup✓2⇥ t(✓) 
p
2R, which is finite. To confirm a uniform upper bound for bg✓,t, we note

that from (59),

sup
✓2⇥,t2T⇤

b
g
✓,t =

2� �

1� �
max
x2Cg

⇤
exp(� log(1� �)kxk1),

which is finite as |Cg
⇤ | <1.

Assumption 4. To find an upper bound on the second moment of hitting times, we verify Assumption 4
and show that there exists a finite set Cp

✓,t, constants �p
✓,t, b

p
✓,t > 0, r/(r + 1)  ↵

p
✓,t < 1, and a

function V
p
✓,t : X t ! [1,+1) satisfying

�V
p
✓,t(x)  ��

p
✓,t

⇣
V

p
✓,t(x)

⌘↵p
✓,t

+ b
p
✓,tICp

✓,t
(x), x 2 Xt. (62)

Proposition 2. The discrete-time Markov process obtained from the queueing system governed by
parameter ✓ = (✓1, ✓2) 2 ⇥ and following threshold policy ⇡t for some t 2 T

⇤ is polynomially
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ergodic. This is true because (62) holds for

V
p
✓,t(x) = kxk

2
1, (63)

C
p
✓,t = {(x0, x1, 0) : x0 < t} [

⇢
(x0, x1, x2) : x0 <

2�

✓1 + ✓2 � �
, x1 + x2 � 1

�
, (64)

b
p
✓,t = max

x2Cp
✓,t

(kxk1 + 1)2), (65)

�
p
✓,t = 1�

2�

✓1 + ✓2 + �
, (66)

↵
p
✓,t =

1

2
. (67)

Proof of Proposition 2 is given in Appendix F.2. We define the normalized rates as �̃ = �
�+✓1+✓2

and ✓̃i =
✓i

�+✓1+✓2
, for i = 1, 2. From the choice of parameter space ⇥, we have �̃  0.5 � 0.5�,

✓̃1 + ✓̃2 � 0.5 + 0.5�, and ✓̃1 � 0.25 + 0.25�. We verify the remaining conditions of Assumption 4
as follows:

1. From (63), the first condition holds with r
p
⇤ = 2 and s

p
⇤ = 2.

2. From (64), we can see that state (0, 0) belongs to C
p
✓,t for all ✓ 2 ⇥ and t 2 T

⇤. Furthermore,

sup
✓2⇥,t2T⇤

2�

✓1 + ✓2 � �


1� �

�
,

which follows from the stability condition �̃  0.5 � 0.5�. Thus, from the definition of Cp
✓,t

in (64), and the fact that sup✓2⇥ t(✓) 
p
2R as argued in in (61), Cp

⇤ = [✓2⇥,t2T⇤C
p
✓,t is a

finite set. We also note that sup✓2⇥,t2T⇤ b
p
✓,t is finite as |C

p
⇤ | < 1. It remains to show that

inf✓2⇥,t2T⇤ �
p
✓,t is positive, which is equivalent to verifying that sup✓2⇥,t2T⇤ �̃ < 1/2, which

follows from the stability condition �̃  0.5� 0.5�.
3. We need to show that K✓,t(x) :=

P1
n=0 2

�n�2 (P t
✓)

n
(x, 0d) is strictly bounded away from zero.

We notice that from any non-zero state x, the queueing system hits 0d in kxk1 transitions only if
all transitions are real departures. Hence,

K✓,t(x) � 2�kxk1�2
�
P

t
✓

�kxk1 (x, 0d)

� 2�kxk1�2
⇣
✓̃1

⌘kxk1
⇣
✓̃2

⌘kxk1

� 2�kxk1�2
R

�kxk1

⇣
✓̃1

⌘2kxk1

� 2�kxk1�2
R

�kxk1

✓
1

4
+

�

4

◆2kxk1

,

where the third and fourth inequalities follow from the definition of ⇥ in (55). Thus, the infimum
of K✓,t(x) over the finite set Cp

⇤ and sets ⇥ and T
⇤ is strictly greater than zero.

Assumption 5. We finally verify Assumption 5, which asserts that sup✓2⇥ J(✓) is finite. We have

J(✓) = EX⇠µ✓,t(✓)
[c(X)] = EX⇠µ✓,t(✓)

[kXk1] = EX⇠µ✓,t(✓)

hq
V

p
✓,t(✓) (X)

i
,

where µ✓,t(✓) is the stationary distribution of the discrete-time process governed by parameter ✓ and
following the optimal policy according to ✓. From (62) and [43, Theorem 14.3.7],

µ✓,t(✓)

⇣q
V

p
✓,t(✓) (X)

⌘


b
p
⇤

�
p
⇤
,

which is finite from the the previously verified assumption. Consequently,

sup
✓2⇥

J(✓) 
b
p
⇤

�
p
⇤
<1.
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E.2 Model 2: Two heterogeneous parallel queues

We consider two parallel queues with infinite buffers, each with its own single server, and unknown
service rate vector ✓⇤ = (✓⇤1 , ✓

⇤
2), shown in Figure 2b. The service rate vector ✓⇤ is sampled from the

prior distribution ⌫0 defined on the space ⇥ given as

⇥ =

⇢
(✓1, ✓2) 2 R2

+ :
�

✓1 + ✓2


1� �

1 + �
, 1 

✓1

✓2
 R

�
, (68)

for fixed � 2 (0, 0.5) and R � 1, which ensures the stability of the queueing system. Consider the
discrete-time MDP (X ,A, P✓⇤ , c) obtained by sampling the queueing system at the Poisson arrival
sequence. The countably infinite state space X is defined as below

X = {x = (x1, x2) : xi 2 N [ {0}} ,

where the state of the system is the number of jobs in the server-queue pair i just before an arrival.
Furthermore, the action space A is equal to

A = {1, 2},

where action i 2 A indicates the arrival dispatched to queue i. The unbounded cost function c :
X ⇥A! N[{0} is defined as the total number of jobs in the queueing system, i.e., c(x, a) = kxk1.
For every ! 2 R+, we define policy ⇡! : X ! A, which routes the arrival according to the weighted
queue lengths, as

⇡!(x) = argmin (1 + x1,! (1 + x2)) ,

where the tie is broken in favor of the first server. We also define policy class ⇧̃ as the set of policies
⇡! such that ! belongs to a compact interval; in other words,

⇧̃ =

⇢
⇡!; ! 2


1

cRR
, cRR

��
,

where R is defined in (68) and cR � 1. We aim to minimize the infinite-horizon average cost in the
policy class ⇧̃, that is,

J(✓) = inf
⇡2⇧̃

lim sup
T!1

1

T
E
"

TX

t=1

c (X (t) , A (t))

#
, (69)

where X(t) = (X1(t), X2(t)) is the occupancy vector of the queueing system just before arrival t.
Even with the controlled Markov process transition kernel fully-specified (by the values of the arrival
rate and the two service rates), the optimal policy1 that satisfies (69) in policy class ⇧̃ is not known
except when ✓1 = ✓2 where the optimal value is ! = 1, and so, to learn it, we will use Proximal
Policy Optimization for countable state-space controlled Markov processes as developed in [18].
Note that [18] requires full knowledge of the controlled Markov process, which holds in our learning
scheme since we use the parameters sampled from the posterior for determining the policy at the
beginning of each episode. Furthermore, for each policy in the set of applicable policies ⇧̃, [18] also
requires that the resulting Markov process be geometrically ergodic, which we will establish below.

Proposition 3. The discrete-time Markov process obtained from the queueing system governed by
parameter ✓ = (✓1, ✓2) 2 ⇥ and following policy ⇡! 2 ⇧̃ is geometrically ergodic. Equivalently, the
following holds

�V
g
✓,!(x)  �

⇣
1� �

g
✓,!

⌘
V

g
✓,!(x) + b

g
✓,!ICg

✓,!
(x), x 2 X , (70)

1When ✓1 = ✓2, then the policy with ! = 1 (Join-the-Shortest-Queue) is the optimal policy [19] for the
underling MDP.
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for

V
g
✓,!(x) =

!

! + 1
exp

✓
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✓,!

x1 + 1

!

◆
+

1

! + 1
exp

⇣
a
g
✓,! (x2 + 1)

⌘
,

a
g
✓,! = min

✓
! log(1 + �), log(1 + �),! log

1� 0.5�

1� �
, log

1� 0.5�

1� �
,

�(1� �
2)

4cRR(1� 0.5�)

◆
, (71)

C
g
✓,! =

n
(x1, x2) 2 X : xi  max

⇣
x
gj
i,✓,!, 0

⌘
, i, j = 1, 2

o
, (72)

b
g
✓,! = max

x2Cg
✓,!

✓
2!

! + 1
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✓
a
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✓,!

x1 + 2

!

◆
+

2

! + 1
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⇣
a
g
✓,! (x2 + 2)
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, (73)

�
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2
max

 
⇣1,✓,!, ⇣2,✓,!,

⇣1,✓,!!

1 + !
exp
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,
⇣1,✓,!!
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g
✓,!
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,

(74)

and problem-dependent constants xgj
i,✓,! and ⇣i,✓,! for i, j = 1, 2.

Proof of Proposition 3 is given in Appendix F.3. In the rest of this subsection, our aim is to show that
Assumptions 1-5 are satisfied for the discrete-time MDP and conclude that Algorithm 1 can be used
to learn the unknown service rate vector ✓⇤ with expected regret of order Õ(

p
T ).

Assumption 1. Cost function is given as c(x, a) = kxk1, which satisfies Assumption 1 with
fc(x) = x0 + x1 + x2 and K = r = 1.

Assumption 2. For any state-action pair (x, a) and ✓ 2 ⇥, we have P✓(A(x);x, a) = 0 where
A(x) = {y 2 X : kyk1 � kxk1 > 1}; thus, the MDP is skip-free to the right with h = 1. Moreover,
from any (x, a), the finite set {y 2 X : kyk1  kxk1 + 1} is only accessible in one step; thus,
Assumption 2 holds.

Assumption 3. In Proposition 3, we verified the geometric ergodicity of the discrete-time chain
governed by parameter ✓ = (✓1, ✓2) 2 ⇥ and following policy ⇡! 2 ⇧̃ and thus, it only remains
to verify the uniform model conditions. We define the normalized rates as �̃ = �

�+✓1+✓2
and

✓̃i = ✓i
�+✓1+✓2

, for i = 1, 2. From the choice of parameter space ⇥, we have �̃  0.5 � 0.5�,
✓̃1 + ✓̃2 � 0.5 + 0.5�, and ✓̃1 � 0.25 + 0.25�.

1. We first argue that ⇣1,✓,! is bounded away from 1 as follows

1� ⇣1,✓,! = 1�
�
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1� exp
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✓,(cRR)�1
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,

where the first line follows from the definition of ⇣1,✓,! in Appendix F.3, the second line from (71)
and the definition of policy class ⇧̃. As ag✓,! does not depend on ✓, sup✓2⇥,!2[ 1

cRR ,cRR] ⇣1,✓,! < 1.
Furthermore, by similar arguments it can be shown that ⇣2,✓,! is bounded away from 1. We next

argue that ⇣1,✓,!!
1+! exp

⇣
ag
✓,!

!

⌘
+ ⇣2,✓,!

1+! is bounded away from 1 using an upper bound found in

40



Appendix F.3 as below,
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, (75)

where ⇣3 = (1 + �)�1, ⇣4 = 1�0.5�
1�� , and we have used the arguments of Appendix F.3 and

the definition of ⇥. Using a similar argument, we can show that ⇣1,✓,!!
1+! + ⇣2,✓,!

1+! exp
⇣
a
g
✓,!

⌘
is

bounded away from one, and finally, we conclude that sup✓2⇥,!2[ 1
cRR ,cRR] �

g
✓,! < 1.

2. From (72), we can see that state (0, 0) belongs to C
g
✓,! for all ✓ 2 ⇥ and ! 2 [ 1

cRR , cRR]. In
order for Cg

⇤ to be a finite set, the supremum of xgj
i,✓,! over ⇥ and ⇧̃ should be finite. From the

definition of xg1
1,✓,! in Appendix F.3,
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and we can derive a lower bound for the denominator from (75). Similarly, we can show that
sup✓2⇥,!2[ 1

cRR ,cRR] x
g2
2,✓,! is finite. We next find a uniform upper bound for xg1

2,✓,! from Ap-
pendix F.3,
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which is uniformly bounded as �g
✓,! is unformly bounded away from 1 and the second line follows

from (74) and the fact that �g
✓,! � ⇣2,✓,! � 1� �

g
✓,!. Arguments verifying the finiteness of the

supremum of xg2
1,✓,! follow similarly, and we conclude that |Cg

⇤ | < 1. To confirm a uniform
upper bound for bg✓,! , we note that from (73),
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which is finite as ag✓,cRR is independent of the choice of ✓ and |C
g
⇤ | <1.

Assumption 4. We next verify Assumption 4 and show that there exists a finite set Cp
✓,!, constants

�
p
✓,! , bp✓,! > 0, r/(r + 1)  ↵
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✓,! < 1, and a function V
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Proposition 4. The discrete-time Markov process obtained from the queueing system governed by
parameter ✓ = (✓1, ✓2) 2 ⇥ and following policy ⇡! 2 ⇧̃ is polynomially ergodic. This follow
because (76) holds for

V
p
✓,!(x) =

x
2
1

!
+ x

2
2, (77)

C
p
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↵
p
✓,! =

1

2
. (81)

Proof of Proposition 4 is given in Appendix F.4. Next, we verify the remaining conditions of
Assumption 4.

1. From (77) and the fact that ! 2 [ 1
cRR , cRR], the first condition holds with r

p
⇤ = 2 and s

p
⇤ =
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which follows from the fact that ✓1  R✓2 and ✓̃1 � 0.25 + 0.25�. Thus, from the definition
of Cp

✓,! in (78), Cp
⇤ = [✓2⇥,!2[ 1

cRR ,cRR]C
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✓,! is a finite set. We next verify that the infimum of
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which is finite as |Cp
⇤ | <1.

3. We need to show that K✓,!(x) :=
P1

n=0 2
�n�2 (P⇡!

✓ )n (x, 0d) is strictly bounded away from
zero. We show this using the fact that from any state x, the queueing system hits (0, 0) in one step
with positive probability. Take xi,✓,! = maxx2C✓,! xi for i = 1, 2. We have
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The infimum in the right-hand side of the above equation is attained for the minimum normalized
service rates possible for each server, or ✓̃1 = 1+�

4 and ✓̃2 = 1+�
4R . Therefore, the infimum of

K✓,!(x) over the finite set Cp
⇤ , ⇥, and interval [ 1

cRR , cRR] is strictly greater than zero.

Assumption 5. We finally verify that sup✓2⇥ J(✓) is finite. We first note that for x = (x1, x2),
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From the above equation,
J(✓) = EX⇠µ✓,!⇤(✓)

[c(X)]
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p
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i
,

where µ✓,!⇤(✓) is the stationary distribution of the discrete-time process governed by parameter ✓ and
following the best in-class policy according to ✓, shown by ⇡!⇤(✓). From [43], Theorem 14.3.7,
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which is finite from the the previous verified assumption. Thus,
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F Proofs related to the queueing model examples

F.1 Proof of Proposition 1

Proof. We define the normalized rates as

�̃ =
�

�+ ✓1 + ✓2
, ✓̃i =

✓i

�+ ✓1 + ✓2
, (83)

for i = 1, 2. From the choice of parameter space ⇥, we have �̃  0.5� 0.5�, ✓1 + ✓2 � 0.5 + 0.5�,
and ✓1 � 0.25 + 0.25�. To prove geometric ergodicity, from the discussions of Section 2, it
suffices to show that there exists a finite set Cg
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Take V
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✓,t(x) = exp(ag✓,tkxk1) for some a
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Take ã✓,t = exp(ag✓,t). We need to find ã✓,t > 1 and 0 < �
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✓,t < 1 such that
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We now verify (85):

�̃ã
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where the last line follows from �̃  0.5� 0.5� < (1� �)/ (2� �).

For x = (i, 0, 1) and i � 1, we have
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which results in the same conditions as previously discussed. When x = (i, 1, 0) and i � t also same
argument holds.

Finally, (84) holds for
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(1� �̃)(1� �) + �̃ (1� �)�1

⌘
,

V
g
✓,t(x) = exp(ag✓,tkxk1),

b
g
✓,t = max

x2Cg
✓,t

exp(ag✓,tkxk1)
⇣
exp(ag✓,t) + 1

⌘
,

where the last line holds because PV
g
✓,t(x)  V

g
✓,t(y) for y such that kyk1 = kxk1 + 1.

F.2 Proof of Proposition 2

Proof. In order to show polynomially ergodicity, we will verify (62). We define V p
✓,t(x) = kxk

2
1 and

↵
p
✓,t = 1/2, which is equal to r/(r + 1) for r = 1; r is defined in Assumption 1. For x = (i, 0, 1)

and i � 1,

P
t
✓V

p
✓,t(i, 0, 1) = �̃V

p
✓,t(i, 1, 1) + ✓̃1V

p
✓,t(i� 1, 0, 1) + ✓̃2V

p
✓,t(i� 1, 1, 0),

in which �̃, ✓̃1, and ✓̃2 are the normalized rates defined in (83). Thus,

P
t
✓V

p
✓,t(i, 0, 1)� V

p
✓,t(i, 0, 1) + �

p
✓,t

q
V

p
✓,t(i, 0, 1)

= �̃(i+ 2)2 + (✓̃1 + ✓̃2)i
2
� (i+ 1)2 + �

p
✓,t(i+ 1)

= i(4�̃� 2 + �
p
✓,t) + 4�̃� 1 + �

p
✓,t.
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For �
p
✓,t = 1 � 2�̃, the right-hand side of above equation is non-positive for i �

2�̃
1�2�̃

. For
x = (i, 1, 0) and i � t,

P
t
✓V

p
✓,t(i, 1, 0) = �̃V

p
✓,t(i, 1, 1) + ✓̃1V

p
✓,t(i� 1, 0, 1) + ✓̃2V

p
✓,t(i� 1, 1, 0).

Thus,

P
t
✓V

p
✓,t(i, 1, 0)� V

p
✓,t(i, 1, 0) + �

p
✓,t

q
V

p
✓,t(i, 1, 0)

= �̃(i+ 2)2 + (✓̃1 + ✓̃2)i
2
� (i+ 1)2 + �

p
✓,t(i+ 1)

= i(4�̃� 2 + �
p
✓,t) + 4�̃� 1 + �

p
✓,t,

which is also non-positive under the same conditions as the previous case. For i � 1 and x = (i, 1, 1),

P
t
✓V

p
✓,t(i, 1, 1) = �̃V

p
✓,t(i+ 1, 1, 1) + ✓̃1V

p
✓,t(i, 0, 1) + ✓̃2V

p
✓,t(i, 1, 0).

Thus,

P
t
✓V

p
✓,t(i, 1, 1)� V

p
✓,t(i, 1, 1) + �

p
✓,t

q
V

p
✓,t(i, 1, 1)

= �̃(i+ 3)2 + (✓̃1 + ✓̃2)(i+ 1)2 � (i+ 2)2 + �
p
✓,t(i+ 2)

= i(4�̃� 2 + �
p
✓,t) + 8�̃� 3 + 2�p

✓,t,

which is non-positive under the same conditions as the first case. Finally, (62) holds for

C
p
✓,t = {(x0, x1, 0) : x0 < t} [

(
(x0, x1, x2) : x0 <

2�̃

1� 2�̃
, x1 + x2 � 1

)
,

�
p
✓,t = 1� 2�̃,

↵
p
✓,t =

1

2
,

V
p
✓,t(x) = kxk

2
1,

b
p
✓,t = max

x2Cp
✓,t

(kxk1 + 1)2),

where the last line holds because PV
p
✓,t(x)  V

p
✓,t(y) for y such that kyk1 = kxk1 + 1.

F.3 Proof of Proposition 3

Proof. To show geometric ergodicity of the chain that follows ⇡! , we verify (70). Take ag✓,! > 0 and

V
g
✓,!(x) =

!

! + 1
exp

✓
a
g
✓,!

x1 + 1

!

◆
+

1

! + 1
exp

⇣
a
g
✓,! (x2 + 1)

⌘
. (86)

First, we find PV
g
✓,!(x) for the function defined above. We have

PV
g
✓,!(x) = E⇡!

x


!

! + 1
exp

✓
a
g
✓,!

X1(2) + 1

!

◆�
+ E⇡!

x


1

! + 1
exp

⇣
a
g
✓,! (X2(2) + 1)

⌘�
,

(87)
where X(2) = (X1(2), X2(2)) is the state of the system at the second arrival, starting from state x.
To find the above expectations, we first find the corresponding transition probabilities. If the number
of departures from server i during a fixed interval with length t is less than the total number of jobs
in the queue of that server, the number of departures follows a Poisson distribution with parameter
✓it. Let P ((x1, x2)! (x0

1,X )) be the probability of transitioning from a system with xi jobs in
server-queue pair i (just after the assignment of the arrival) to a queueing system with x

0
1 jobs in the

first server-queue pair (just before the upcoming arrival). For 1  x
0
1  x1, we have

P ((x1, x2)! (x0
1,X )) =

Z 1

0
� exp(��t)

(✓1t)x1�x0
1

(x1 � x0
1)!

exp(�✓1t) dt =
�

✓1 + �

✓
✓1

✓1 + �

◆x1�x0
1

,

(88)
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and

P ((x1, x2)! (0,X )) = 1�
x1X

i=1

�

✓1 + �

✓
✓1

✓1 + �

◆x1�i

=

✓
✓1

✓1 + �

◆x1

. (89)

Assume 1 + x1  !(1 + x2), which results in the new arrival being assigned to the first server. For
the first term in (87), we have

E⇡!
x


exp

✓
a
g
✓,!

X1(2)

!

◆�

=
x1+1X

i=0

P ((x1 + 1, x2)! (i,X )) exp

✓
a
g
✓,!

i

!

◆

=

✓
✓1

✓1 + �

◆x1+1

+
x1+1X

i=1
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✓
a
g
✓,!

i

!

◆
�

✓1 + �

✓
✓1

✓1 + �

◆x1+1�i

=

✓
✓1

✓1 + �

◆x1+1

+
�

✓1 + �
exp

✓
a
g
✓,!

x1 + 1

!

◆ 1� exp
⇣
�a

g
✓,!

x1+1
!

⌘⇣
✓1

✓1+�

⌘x1+1
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⇣
�
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✓,!

!

⌘
✓1

✓1+�

,

<

✓
✓1

✓1 + �

◆x1+1

+
�

✓1 + �
exp

✓
a
g
✓,!

x1 + 1

!

◆
1

1� exp
⇣
�
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✓,!

!

⌘
✓1

✓1+�

. (90)

Similarly, for the second term in (87), we have

E⇡!
x

h
exp

⇣
a
g
✓,!X2(2)

⌘i


✓
✓2

✓2 + �

◆x2

+
�

✓2 + �
exp

⇣
a
g
✓,!x2

⌘ 1

1� exp
⇣
�a

g
✓,!

⌘
✓2

✓2+�

. (91)

To satisfy (70), for some 0 < �
g
✓,! < 1 and all but finitely many x, the following should hold,

PV
g
✓,!(x)  �

g
✓,!V

g
✓,!(x),

or from (86) and (87),

E⇡!
x


! exp

✓
a
g
✓,!

X1(2) + 1

!

◆�
+ E⇡!

x

h
exp

⇣
a
g
✓,! (X2(2) + 1)

⌘i

 �
g
✓,!

✓
! exp

✓
a
g
✓,!

x1 + 1

!

◆
+ exp

⇣
a
g
✓,! (x2 + 1)

⌘◆
.

Notice that

!

✓
✓1

✓1 + �

◆x1+1

+

✓
✓2

✓2 + �

◆x2

 cRR+ 1.

From (90) and (91), it suffices to have

(cRR+ 1) exp(cRRa
g
✓,!) +

!
�

✓1+� exp
⇣
a
g
✓,!

x1+2
!

⌘

1� exp
⇣
�

ag
✓,!

!

⌘
✓1

✓1+�

+

�
✓2+� exp

⇣
a
g
✓,! (x2 + 1)

⌘

1� exp
⇣
�a

g
✓,!

⌘
✓2

✓2+�

 �
g
✓,!

✓
! exp

✓
a
g
✓,!

x1 + 1

!

◆
+ exp

⇣
a
g
✓,! (x2 + 1)

⌘◆
. (92)

Define

⇣1,✓,! =
�

✓1+�

1� exp
⇣
�

ag
✓,!

!

⌘
✓1

✓1+�

, ⇣2,✓,! =
�

✓2+�

1� exp
⇣
�a

g
✓,!

⌘
✓2

✓2+�

.

Simplifying (92), we need the following to hold

(cRR+ 1) exp(cRRa
g
✓,!) + ! exp

✓
a
g
✓,!

x1 + 1

!

◆ 
⇣1,✓,! exp

 
a
g
✓,!

!

!
� �

g
✓,!

!

+ exp
⇣
a
g
✓,! (x2 + 1)

⌘⇣
⇣2,✓,! � �

g
✓,!

⌘
 0. (93)
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As ⇣i,✓,! < 1, there exists �g
✓,! such that

⇣2,✓,! < �
g
✓,! < 1.

From the assumption 1 + x1  !(1 + x2) and the above equation, (93) can be further simplified as

(cRR+ 1) exp(cRRa
g
✓,!) + exp

✓
a
g
✓,!

x1 + 1

!

◆ 
!⇣1,✓,! exp

 
a
g
✓,!

!

!
+ ⇣2,✓,! � (! + 1)�g

✓,!

!
 0.

(94)
For the above to hold outside a finite set, we need to have

⇣1,✓,!!

1 + !
exp

 
a
g
✓,!

!

!
+

⇣2,✓,!

1 + !
< �

g
✓,!. (95)

Define

⇣3 =
1

1 + �
, ⇣4 =

1� 0.5�

1� �
. (96)

Note that ⇣3 < 1 and ⇣4 > 1. Defining function f(y) := 1+⇣4y�exp(y), we note that for y  log ⇣4,
f(y) > 0, where log ⇣4 is the maximizer of f(y). Similarly, taking g(y) := 1 � ⇣3y � exp(�y),
for y  � log ⇣3, g(y) > 0, where � log ⇣3 is the maximizer of g(y). Thus, we conclude that for
a
g
✓,!  min (�! log ⇣3,�log ⇣3,! log ⇣4),

exp(�y)  1� ⇣3y holds for y  max

 
a
g
✓,!

!
, a

g
✓,!

!
, (97)

exp(y)  1 + ⇣4y holds for y 
a
g
✓,!

!
. (98)

To guarantee the existence of 0 < �
g
✓,! < 1 that satisfies (95), we need to ensure the left-hand side of

(95) is strictly less than 1. Using the bounds found in (97) and (98) and the definition of ⇣1,✓,! and
⇣2,✓,! , we simplify (95) to get

�
1+!

⇣
! + a

g
✓,!⇣4

⌘

�+
✓1a

g
✓,!⇣3
!

+
�

1+!

�+ ✓2a
g
✓,!⇣3

< 1,

which is equivalent to

a
g
✓,!⇣3✓2

✓
�⇣4 �

⇣3✓1(1 + !)

!

◆
< �⇣3 (✓1 + ✓2)� �

2
⇣4. (99)

To make sure there exists ag✓,! > 0 that satisfies (99), the right-hand side of (99) needs to be positive,
which follows as below:

�⇣3 (✓1 + ✓2)� �
2
⇣4 = �

✓
✓1 + ✓2

1 + �
� �

1� 0.5�

1� �

◆

= �(✓1 + ✓2 + �)

 
1� �̃

1 + �
� �̃

1� 0.5�

1� �

!

= �(✓1 + ✓2 + �)

✓
1

1 + �
� �̃

✓
1

1 + �
+

1� 0.5�

1� �

◆◆

� �(✓1 + ✓2 + �)

✓
1

1 + �
�

1� �

2

✓
1

1 + �
+

1� 0.5�

1� �

◆◆

=
�

4
�(✓1 + ✓2 + �) (100)

where �̃, ✓̃1, and ✓̃2 are the normalized rates defined in (83) and we have used the stability condition
�̃  0.5� 0.5�. We further simplify the left-hand side of (99) as

⇣3✓2

✓
�⇣4 �

⇣3✓1(1 + !)

!

◆
< ✓2�⇣3⇣4 <

1� 0.5�

1� �2
(✓1 + ✓2 + �)�.
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From the above equation and (100), ag✓,! needs to satisfy

a
g
✓,! 

�(1� �
2)

8(1� 0.5�)
.

Finally, we take a
g
✓,! as

a
g
✓,! = min

✓
�! log ⇣3,�log ⇣3,! log ⇣4,

�(1� �
2)

8(1� 0.5�)

◆
.

After finding an appropriate a
g
✓,! , we can choose 0 < �

g
✓,! < 1 such that (95) holds or

�
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✓,! �
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g
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!

!
+
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!
.

Moreover, from (94) a lower bound x
g1
1,✓,! for x1 is derived; In other words,(94) holds for x1 > x

g1
1,✓,! .

From (93), we can find the corresponding x
g1
2,✓,! and take xg1

✓,! = (xg1
1,✓,!, x

g1
2,✓,!). By repeating the

same arguments when 1 + x1 < !(1 + x2), we finally conclude that
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✓
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F.4 Proof of Proposition 4

Proof. Define V
p
✓,!(x) = x2

1
! + x

2
2, and ↵

p
✓,! = 1/2. Assume that x1 = 0 and x2 > (1 � !)/!;

which means the new job will be assigned to the first server. The transition probabilities of the
discrete-time chain sampled at Poisson arrivals is given in (88) and (89), and we calculate PV

p
✓,!(x)

as
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p
✓,!(x) =

�
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+
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✓
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✓
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.

(101)

We define di := ✓i/(✓i + �) for i = 1, 2 and
x2X
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i
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�+ ✓2

✓
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2
2

�

(1� d2)2
. (102)

From (101),
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p
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p
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p
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2
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�

(1� d2)2
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Outside a finite set, we need the above equation to be non-positive; which is equivalent to
✓
�2 + �

p
✓,!

1� d2
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◆
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As d2 < 1,
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2  y for y � 1. (103)

Thus,
✓
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By taking �
p
✓,!  d2/2, it suffices for the following to be non-positive,

�
1� d2

2
x2 + cRR

1� d2

d2
 0,

which holds for x2 � 2cRR/d2. Thus, for x1 = 0 and x2 � max (2cRR(�+ ✓2)/✓2, (1� !)/!) =
2cRR(�+ ✓2)/✓2, (76) holds. The case of x2 = 0 and non-zero x1 follows same arguments and (76)
holds for �p

✓,!  d1/2
p
!, x2 = 0, and x1 � max (2cRR(�+ ✓1)/✓1,! � 1) = 2cRR(�+ ✓1)/✓1.

We now consider the case of x1, x2 > 0 and x1 + 1  !(x2 + 1), and note that
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!
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p
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As x1 + 1  !(x2 + 1), the new arrival is assigned to the first queue and we find �V
p
✓,!(x) +p

! + 1�p
✓,!(x2 + 1) using the same calculations as (102).
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p
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�
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We next consider two different cases based on the value of d1 and analyze them separately.

One. 0.8  d1 < 1 : We first notice that the coefficient of x1 in (104) is negative, as d1 > 1/2. For
x1 � 1, (104) is equal to

1
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< 0,

where the third line follows from (103), and the last line from the fact that when 0.8  d1 < 1, both
terms �d31 � 2d21 � 2d1 + 2 and �d21 � 3d1 + 3 are negative. Next, we notice that (105) is equal to

x2

✓
�

2d2
1� d2

+
p
! + 1�p

✓,!

◆
+
p
! + 1�p

✓,! +
(1� d

x2
2 )
�
d2 + d

2
2

�

(1� d2)2

 x2

✓
�

2d2
1� d2

+
p
! + 1�p

✓,!

◆
+

d2 + d
2
2

1� d2
x2 +

p
! + 1�p

✓,!

= x2

✓
�

2d2
1� d2

+
d2 + d

2
2

1� d2
+
p
! + 1�p

✓,!

◆
+
p
! + 1�p

✓,!

= x2

⇣
�d2 +

p
! + 1�p

✓,!

⌘
+
p
! + 1�p

✓,!,

where the second line follows from (103). Taking �
p
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p
! + 1, we get
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which is non-positive for x2 � 1. Finally, when 0.8  d1 < 1, x1, x2 > 0, and x1 + 1  !(x2 + 1),
(76) holds for �p

✓,!  d2/2
p
! + 1.
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Two. d1 < 0.8 : Taking �
p
✓,! 

d2p
!+1(1�d2)

, we note that the coefficient of x2 in (105) is negative.
Thus, from x1 + 1  !(x2 + 1), (104) and (105),
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(106)

As di = ✓̃i/(✓̃i + �̃) in terms of the normalized rates, we get
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which is negative from the stability condition. For �p
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As d1 < 0.8, we can see that �̃ > ✓̃1/4; thus,
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where we have used the fact that ✓̃1 � ✓̃2, !  cRR, ✓̃1 + ✓̃2 � �̃ � �, and �̃  0.5 � 0.5� and it
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Finally, when x1 + 1  !(x2 + 1) and x1, x2 > 0, (76) holds for �
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where the fourth line holds since PV
p
✓,!(x)  V

p
✓,!(y) for y = (y1, y2) such that yi = xi + 1 for

i = 1, 2.

G Numerical results

G.1 Comparison of Algorithm 1 with other learning algorithms

We first note that due to the countably infinite state-space setting of our problem, we are unable
to directly compare our algorithm to other learning algorithms proposed in the literature. One
potential candidate algorithm uses the reward biased maximum likelihood estimation (RBMLE)
[33, 34, 11, 42], which estimates the unknown model parameter with the likelihood perturbed a
vanishing bias towards parameters with a larger long-term average reward (i.e., optimal value).
This scheme also uses the principle of “optimism in the face of uncertainty” in how it perturbs the
maximum likelihood estimate. The naive version of the RMBLE algorithm does not apply to our
examples due the following key assumption: over all parameters (and the control policies used for
them), the transition probabilities are assumed to be mutually absolutely continuous; this is critical
for the proofs and also allows the use of log-likelihood functions for computations. Similarly, naive
use of the algorithms in [36] and [24] is not possible, again due to a similar absolutely continuity
assumption which is critical for the proofs. Our posterior computations avoid such issues as the true
parameter always has non-zero mass during the execution of the algorithm: episode k always starts
in state 0d which is positive recurrent for the Markov chain with true parameter ✓⇤ and policy used
⇡
⇤
✓k

. The RBMLE algorithm has yet another issue in that it requires knowledge of the optimal value
function, and hence, for our examples, it may only apply to Model 1 for which the value function is
known analytically. Finally, whereas we do get to observe inter-arrival times for both model, we never
directly observe completed service times owing to the sampling employed, and this precludes the
direct use of Upper-Confidence-Bound based parameter estimation followed by certainty equivalent
control algorithms. Owing to these issues, at this point in time, we’re unable to perform empirical
comparisons of Algorithm 1 to other candidate algorithms with theoretical performance guarantees in
a countable state setting.

As discussed in the previous paragraph, learning algorithms with theoretical performance guarantees
are established in the finite state setting. One such algorithm is the certainty equivalence control with
forcing, which is proposed and discussed in detail in [4]. To assess the finite-time performance of our
algorithm, in Figure 4, we compare the performance of our proposed learning algorithm, denoted
as TSDE, with the algorithm introduced in [4], referred to as AgrawalTeneketzis. Reference [4]
proposes a certainty equivalence control law with forced exploration, which operates in episodes
with increasing lengths and a priori fixed sequences of forcing times. Specifically, at the beginning of
each episode, all possible stationary control laws are explored for one recurrence interval of state
(0, 0). Subsequently, based on this exploration, an empirical estimate of the average collected reward
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(a) Model 1: Queueing system of Figure 2a. (b) Model 2: Queueing system of Figure 2b.

Figure 4: Comparison of the regret performance of Algorithm 1 (referred to as TSDE) with the
algorithm proposed by [4] (denoted as AgrawalTeneketzis) for the queueing models of Figure 2.

(a) Model 1: Queueing system of Figure 2a. (b) Model 2: Queueing system of Figure 2b.

Figure 5: Total variation distance between the posterior and real distribution for � = 0.3, 0.5, 0.7.
The y axis is plotted on a logarithmic scale to display the differences clearly.

is formed, and the control law resulting in the maximum average reward is implemented for the
remainder of the episode. The length of the episodes are determined according to sequence {ai}

1
i=0

defined as following:

a0 = 0,

ai =
iX

k=1

bk + ip, for i � 1,

where p is the number of possible stationary control laws and bi =
⌅
exp

�
i

1
1+�
�⇧

for any � > 0.
Specifically, episode i terminates after completing additional ai � ai�1 recurrence intervals to state
(0, 0). Both algorithms are implemented in the two queueing systems of Figure 2, where the arrival
rate is � = 0.5 and service rates are distributed according to a Dirichlet prior over [0.5, 1.9]2. In
Figures 4a and 4b, we set � = 3.5 and � = 3, respectively. Moreover, in Figure 4b, the goal is to find
the optimal weight w in the set {1.5, 2, 2.5, 3, 3.5}. The results in Figure 4 show that both algorithms
exhibit a sublinear regret performance. Specifically, Algorithm 1, TSDE, achieves an Õ(

p
T ) as

predicted in our theoretical results of Theorem 1 and Corollary 1. Furthermore, in both queueing
models, our proposed algorithm consistently outperforms the algorithm presented in [4] in terms of
regret order.
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(a) Model 1: Queueing system of Figure 2a. (b) Model 2: Queueing system of Figure 2b.

Figure 6: Optimal policy parameters for different service rate vectors in the two exemplary queuing
systems in Model 1 and Model 2 with � = 0.5.

Figure 7: Estimated average cost of Model 2 for three different service rate vectors.

G.2 Model 1: Two-server queueing system with a common buffer.

Figure 3b illustrates the behavior of the regret of Model 1 for three different arrival rate values and
averaged over 2000 simulation runs. In these simulations, the parameter space is selected as

⇥ =
�
(✓1, ✓2) 2 [0.5, 0.6, . . . , 1.9]2 : � < ✓1 + ✓2, ✓2 < ✓1

 
,

which results in a prior size of 105. As depicted in Figure 3a, the regret has a sub-linear behavior and
increases with the arrival rate. The total variation distance between the posterior and real distribution,
a point-mass on the random ✓⇤, are plotted in Figure 5a. As expected, the distance diminishes towards
0, indicating the learning of the true parameter. As mentioned in Appendix E.1, the optimal policy
minimizing the average number of jobs in a system with parameter ✓, is a threshold policy ⇡t(✓) with
optimal finite threshold t(✓) 2 N, which can be numerically determined as the smallest i 2 N for
which J

i(✓) < J
i+1(✓), calculated in [38]. We compute the optimal threshold t(✓) for every ✓ 2 ⇥

and present the results in Figure 6a. We can see that the threshold increases as the ratio of the service
rates grows. Specifically, this is why in Appendix G, we imposed conditions on ⇥ to ensure that the
ratio between the service rates is both upper and lower bounded.

G.3 Model 2: Two heterogeneous parallel queues

Figure 3b illustrates the behavior of the regret of Model 2 for three different arrival rate values and
averaged over 2000 simulation runs. We note that the regret is sub-linear and increases with higher
arrival rates. In these simulations, the parameter space is selected as

⇥ =
�
(✓1, ✓2) 2 [0.5, 0.7, . . . , 1.9]2 : � < ✓1 + ✓2, ✓2 < ✓1

 
,

which results in a prior size of 28. As discussed earlier, our goal is to find the average cost minimizing
policy within the class of policies ⇧ = {⇡!;! 2 [(cRR)�1

, cRR]}, cR � 1, where ⇡!(x) =
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argmin (1 + x1,! (1 + x2)) with ties broken for 1. As discussed before, even with the transition
kernel fully specified (by the values of arrival and service rates), the optimal policy in ⇧ is not known
except when ✓1 = ✓2 where the optimal value is ! = 1, and so, to learn it, we will use Proximal
Policy Optimization with approximating martingale-process (AMP) method for countable state-space
MDPs [18]. We run the algorithm for 200 policy iterations, using 20 actors for each iteration. We
take the state (0, 0) as a regeneration state and simulate 1500 independent regenerative cycles per
actor in each algorithm iteration. To approximate the value function, we employ a fully connected
feed-forward neural network with one hidden layer consisting of 10⇥ 10 units and ReLU activation
functions. The AMP method is also employed for variance reduction in value function estimation.
The optimal ! for every ✓ 2 ⇥ is shown in Figure 6b, indicating that ! increases as the ratio of the
service rates grows. Therefore, it is necessary to ensure that the ratio between the service rates is
bounded from above and below. Furthermore, to evaluate the regret numerically, the value of J(✓)
is required for every ✓ 2 ⇥, which is not known. Thus, after finding the optimal ! using the PPO
algorithm, we perform a separate simulation to approximate the optimal average cost. In Figure 7, we
plot the estimated average cost for three different service rate vectors, demonstrating that the optimal
average cost decreases as the service rates increase. In Figure 5b we also depict the total variation
distance between the posterior and real distribution, which is a point-mass on the random ✓⇤, and
observe that the distance is converging to zero.
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