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Abstract

Models of many real-life applications, such as queueing models of communication
networks or computing systems, have a countably infinite state-space. Algorithmic
and learning procedures that have been developed to produce optimal policies
mainly focus on finite state settings, and do not directly apply to these models. To
overcome this lacuna, in this work we study the problem of optimal control of a
family of discrete-time countable state-space Markov Decision Processes (MDPs)
governed by an unknown parameter § € O, and defined on a countably-infinite
state-space X' = 7%, with finite action space A, and an unbounded cost function.
We take a Bayesian perspective with the random unknown parameter 8™ generated
via a given fixed prior distribution on ©. To optimally control the unknown MDP,
we propose an algorithm based on Thompson sampling with dynamically-sized
episodes: at the beginning of each episode, the posterior distribution formed via
Bayes’ rule is used to produce a parameter estimate, which then decides the policy
applied during the episode. To ensure the stability of the Markov chain obtained by
following the policy chosen for each parameter, we impose ergodicity assumptions.
From this condition and using the solution of the average cost Bellman equation, we
establish an O(dh?+/|.A|T) upper bound on the Bayesian regret of our algorithm,
where 7' is the time-horizon. Finally, to elucidate the applicability of our algorithm,
we consider two different queueing models with unknown dynamics, and show that
our algorithm can be applied to develop approximately optimal control algorithms.

1 Introduction

Many real-life applications, such as communication networks, supply chains, and computing systems,
are modeled using queueing models with countably infinite state-space. In the existing analysis of
these systems, the models are assumed to be known, but despite this, developing optimal control
schemes is hard, with only a few examples worked out [35] 9} [54]]. However, knowing the model,
algorithmic procedures exist to produce approximately optimal policies [35] (such as value iteration
and linear programming). Given the success of data-driven optimal control design, in particular
Reinforcement Learning (RL), we explore the use of such methods for the countable state-space
controlled Markov processes. However, current RL methods that focus on finite-state settings do
not apply to the mentioned queueing models. With the model unknown, our goal is to develop
a meta-learning scheme that is RL-based but obtains good performance by utilizing algorithms
developed when models are known. Specifically, we study the problem of optimal control of a family
of discrete-time countable state-space MDPs governed by an unknown parameter 6 from a general
space © with each MDP evolving on the countable state-space X = Zi and finite action space A.
The cost function is unbounded and polynomially dependent on the state, following the examples of
minimizing waiting times in queueing systems. Taking a Bayesian view, we assume the model is
governed by an unknown parameter 8* € © generated from a fixed and known prior distribution. We
aim to learn a policy 7 that minimizes the optimal infinite-horizon average cost over a given class of
policies II with low Bayesian regret with respect to the (parameter-dependent) optimal policy in II.
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To avoid many technical difficulties in countably infinite state-space settings, it is crucial to establish
certain assumptions regarding the class of models from which the unknown system is drawn; some
examples are: i) the number of deterministic stationary policies is not finite; and ii) in average cost
optimal control problems, without stability/ergodicity assumptions, an optimal policy may not exist
[40]], and when it exists, it may not be stationary or deterministic [20]. With these in mind, we
assume that for any state-action pair, the transition kernels in the model class are categorical and
skip-free to the right, i.e., with finite support with a bound depending on the state only in an additive
manner; both are common features of queueing models where an increase in state is due to arrivals.
A second set of assumptions ensure stability by assuming that the Markov chains obtained by using
different policies in II are geometrically ergodic with uniformity across ©. From these assumptions,
moments on hitting times are derived in terms of Lyapunov functions for polynomial ergodicity.
These assumptions also yield a solution to the average cost optimality equation (ACOE) [9].

Contributions: To optimally control the unknown MDP, we propose an algorithm based on Thomp-
son sampling with dynamically-sized episodes; posterior sampling is used based on its broad applica-
bility and computational efficiency [46,/47]. At the beginning of each episode, a posterior distribution
is formed using Bayes’ rule, and an estimate is realized from this distribution which then decides the
policy used throughout the episode. To evaluate the performance of our proposed algorithm, we use
the metric of Bayesian regret, which compares the expected total cost achieved by a learning policy
77, until time horizon T" with the policy achieving the optimal infinite-horizon average cost in the
policy class II. We consider regret guarantees in three different settings as follows:

1. In Theorem [T, for II being the set of all policies and assuming that we have oracle access to the
optimal policy for each parameter, we establish an O(dh®\/|A|T) upper bound on the Bayesian
regret of this algorithm compared to the optimal policy.

2. In Corollary [T} where class II is a subset of all stationary policies and where we know the best
policy within this subset for each parameter via an oracle, we prove an O(dh®+/|A|T) upper bound
on the Bayesian regret of our proposed algorithm, relative to the best-in-class policy.

3. In Theorem 2] we explore a scenario where we have access to an approximately optimal policy,
rather than the optimal policy in set II (which are all assumed to be stationary policies). When the
approximately optimal policies satisfy Assumptions we prove an O(dh?/]A|T) regret bound,
relative to the optimal policy in set II.

Finally, to provide examples of our framework for developing approximately optimal control algo-
rithms for stochastic systems with unknown dynamics, we study two different queueing models that
meet our technical conditions. The first example is a continuous-time queueing system with two
heterogeneous servers with unknown service rates and a common infinite buffer with the decision
being the use of the slower server. Here, the optimal policy that minimizes the average waiting time is
a threshold policy [38] which yields a queue-length after which the slower server is always used. The
second model is a two-server queueing system, each with separate infinite buffers, to one of which
a dispatcher routes an incoming arrival. Here, the optimal policy minimizing the waiting time is a
switching-curve [26] with the specifics unknown for general parameter values, so we find the best
policy within a commonly used set of switching-curve policies (Max-Weight policies [58,59]]), and
assign the arrival to the queue with minimum weighted queue-length. For both models, we verify our
assumptions for the class of optimal/best-in-class policies corresponding to different service rates
and conclude that our proposed algorithm can be used to learn the optimal/best-in-class policy.

Related Work: Thompson sampling [62]], or posterior sampling, has been applied to RL in many
contexts of unknown MDPs [55145]] and partially observed MDPs [28]]; see tutorials [22}150] for a
comprehensive survey. It has been used in the parametric learning context [6] to minimize either
Bayesian [46} 147, 149, [1} |60} [61] or frequentist [5, 23] regret. The bulk of the literature, including
[5,1231149], analyzes finite-state and finite-action models but with different parameterizations such
that a general dependence of the models on the parameters is allowed. The work in [61] studies
general state-space MDPs but with a scalar parameterization with a Lipschitz dependence of the
underlying models. Our problem formulation specifically considers countable state-space models
with the models related via ergodicity, which we believe is a natural choice. Our focus on parametric
learning is also connected to older work in adaptive control [3| |24] which studies asymptotically
optimal learning for general parameter settings but with either a finite or countably infinite number of
policies. Learning-based asymptotically optimal control in queues has a long history [36} [35] but
recently there is increased work that also characterizes finite-time regret performance with respect to
a well-known good policy or the optimal policy; see [63] for a survey. A series of work has studied



learning with Max-Weight policies to get stability and linear regret [44} 30] or just stability [65]. A
recent related work [ 18] considers learning optimal paramterized policies in queueing networks when
the MDP is known. In a finite or countable state-space setting of specific queueing models where the
parameters can be estimated, many works (2} [17} 1531321311114} 21} [16]] have used forced exploration
type schemes to obtain either regret that is constant or scaling logarithmically in the time-horizon.

Another line of work studies the problem of learning the optimal policy in an undiscounted finite-
horizon MDP with a bounded reward function. Reference [66] uses a Thompson sampling-based
learning algorithm with linear value function approximation to study an MDP with a bounded
reward function in a finite-horizon setting. Reference [15] considers an episodic finite-horizon MDP
with known bounded rewards but unknown transition kernels modeled using linearly parameterized
exponential families. A maximum likelihood (ML) based algorithm coupled with exploration done
by constructing high probability confidence sets around the ML estimate is used to learn the unknown
parameters. In another work, [48] extends the problem setting of [[15] to an episodic finite-horizon
MDP with unknown rewards and transitions modeled using parametric bilinear exponential families.
To learn the unknown parameters, they use a ML based algorithm with exploration done with explicit
perturbation. We note that all mentioned works consider a finite-horizon problem. In contrast,
our work considers an average cost problem, an infinite-horizon setting, and provides finite-time
performance guarantees. In addition, these works focus on an MDP with a bounded reward function.
Our focus, however, is learning in MDPs with unbounded rewards with the goal of covering practical
queueing examples. We note that the parameterization of transitions used in [48] [15] can be used
within our framework. However, similar to our work, additional stability assumptions are necessary
to guarantee asymptotic learning and sub-linear regret. Another issue with exponential transition
families is that they do not allow for 0 entries, which limits their applicability in queueing models.

In another work, [51] studies discounted MDPs with unknown dynamics, and unbounded state-space,
but with bounded rewards, and learns an online policy that satisfies a specific notion of stability. It
is also assumed that a Lyapunov function ensuring stability for the optimal policy exists. We note
that [51] ignores optimality and focuses on finding a stable policy, which contrasts with our work
that evaluates performance relative to the optimal policy. Secondly, [51] considers a discounted
reward problem, essentially a finite-time horizon problem. Average cost problems, such as ours,
are infinite-time horizon problems, so connections to discounted problems can only be made in the
limit of the discount parameter going to 1. Moreover, [51] considers a bounded reward function,
simplifying their analysis but not practical for many queueing examples. Further, the assumption
of a stable optimal policy with a Lyapunov function (as in [51]]) is highly restrictive for bounded
reward settings with discounting. Additionally, average cost problems with bounded costs need strong
state-independent recurrence conditions for the existence of (stationary) optimal solutions, which
many queueing examples don’t satisfy; see [[12]. Further complications can also arise with bounded
costs: e.g., [20] shows that a stationary average cost optimal policy may not exist.

2 Problem formulation

We consider a family of discrete-time Markov Decision Processes (MDPs) governed by parameter
6 € © with the MDP for parameter ¢ described by (X, A, ¢, Py). For exposition purposes, we
assume that all the MDPs are on (a common) countably infinite state-space X = Zi. We denote
the finite action space by .4, the transition kernel by Py : X x A — A(X), and the cost function by
c¢: X xA— Ry. As mentioned earlier, we will take a Bayesian view of the problem and assume that
the model is generated using an unknown parameter 8* € ©, which is generated from a given fixed
prior distribution v(-) on ©. Our goal is to find a policy 7 : X — A that tries to achieve Bayesian
optimal performance in policy class II, i.e., minimizes the expected regret with 8* chosen from the
prior distribution v(-). For each value § € O, the minimum infinite-horizon average cost is defined as

J(0) = inf hmsuplﬂz D e(X(1), A1), (1)

€l T
™ T—o0 =1

where we optimize over a given class of policies IT and X (¢) = (X;(¢),...,Xq(t)) € X and
A(t) € A are the state and action at ¢ € N. Typically, we set this class to be all (causal) policies, but
it is also possible to consider II to be a proper subset of all policies as we will explore in our results.
For a learning policy 7, that aims to select the optimal control without model knowledge but with



knowledge of © and the prior v, the Bayesian regret until time horizon T > 2 is defined as

T
R(T,m) =E[ > [e(X (1), A(t) — J(6")]], 2)

t=1

where the expectation is taken over 8 ~ v and the dynamics induced by 7. Owing to underlying
challenges in countable state-space MDPs, we require the below assumptions on the cost function.

Assumption 1. The cost function c : X x A — R is assumed to satisfy the following two conditions:
1. For every number z > 0 and action a € A, c(x,a) > z outside a finite subset of X.

2. The cost function is upper-bounded by a multivariate polynomial f, : Z‘i — Ry which is
increasing in every component on € € Zi and has maximum degree of r (> 1) in any dimension.

We can assume that f.(x) = K Zle(xi)rfor some K > 0, where x = (z1,...,2q).

Thus, the cost function increases without bound (in the state) at a polynomial rate. This assumption
is common in practice—holding costs in queueing models are polynomial in the state components.
To avoid technical issues the infinite state-space setting also necessitates some assumptions on the
class from which the unknown model is drawn. For instance, irreducibility of Markov chains on such
state-spaces does not ensure positive recurrence (and ergodicity). Moreover, for average cost optimal
control problems, without stability even the existence of an optimal policy is not guaranteed, and we
need more conditions. The following assumption ensures a skip-free behaviour for transitions, which
holds in many queueing models, where an increase in state corresponds to (new) arrivals.

Assumption 2. From any state-action pair (i, a), the transition is to a finite number of states. We
also assume that all transition kernels are skip-free to the right: for some h > 1 which is independent
of 0 € © and (z,a) € X x A, we have Py(x';x,a) = Oforallx’ € {x € Z4 : ||z||, > ||=||, + h}.

Learning necessitates some commonalities within the class of models so that using a policy well-suited
to one model provides information on other models too. For us, these are in the form of constraints
on the transition kernels of the models and stability assumptions. As simple union bound arguments
don’t work in the countably infinite state-space setting, we will use the stability assumptions instead.
In our setting, we consider a class of models, each with a policy being well-suited to at least one
model in the class, and use the set of policies to search within. Using a reduced set of policies is
necessary as the number of deterministic stationary policies is infinite. To learn correctly while
restricting attention to this subset policy class, requires some regularity assumptions when a policy
well-suited to one model is tried on a different model. Our ergodicity assumptions are one convenient
choice; see Appendix [A.T|for details. These assumptions let us characterize the distributions of the
first passage times of the Markov processes via stability conditions; see Lemmas|10|and

Assumption 3. For any MDP (X, A, ¢, Py) with parameter 6 € ©, there exists a unique optimal
policy m that minimizes the infinite-horizon average cost within the class of policies 11. Further-
more, for any 01,05 € O, the Markov process with transition kernel P;rl 2 obtained from the MDP
(X, A, c,Py,) by following policy Ty, is irreducible, aperiodic, and geometrically ergodic with
geometric ergodicity coefficient 731’92 € (0,1) and stationary distribution g, o,. This is equivalent
to the existence of finite set 031’92 and Lyapunov function Veg1 0, X — [1, +00) satisfying

-
AV(fh(,,2 (®) < —(1-— 731,92)%?92 (z), z€ X\ Cghe2 and P9192 Vaglﬁ2 (x) < 400, T € 031792,

T . a*
where AV , () := Py 2Vg o (@) = Vi (). Setting by, = maXgecy P2V o () +

Vi o, (x) yields

A‘/@gl,% (.’IJ) < - (1 B 731792)‘/991792 (JI) + bglﬁzﬂcg

01,62

02

(x), xelX. 3)
Then, we have the following assumptions relating all the models in ©:
1. The geometric ergodicity coefficient is uniformly bounded below 1: v{ = SUPg, 9,co 731,02 <1

2. We assume that {0*} C Mg, 6,c0CY, o, and C = Uy, p,c0Cy 4. is a finite set. We further
assume that b := supy, 4, bg1 g, < F00.



Remark 1. The uniqueness of the optimal policy is not essential for the validity of our results,
provided that all optimal policies satisfy our assumptions. When this condition is not met, we need to
select an optimal policy that is geometrically ergodic for all 0 € ©. This issue can be avoided by
using a smaller subset of policies for which ergodicity can be shown, such as Max-Weight policies.

Geometric ergodicity implies that all moments of the hitting time of state 0¢, say 7y«, from any
initial state & # 07 are finite as Eg[k70¢] < ¢;V9(x) (for specific £ > 1 and ¢1), and so, Eg [70,] <
e V9(x)k!/logh(k) < +oc forall k € N; see Appendix Function V¢ is typically exponential
in some norm of the state and yields an exponential bound for moments of hitting times, and a poor
regret bound. To improve the regret bound, we need a different drift equation with function V? with
polynomial dependence on a norm of the state that bounds certain polynomial moments of 7ya.
Assumption 4. Given 61,02 € ©, Markov process obtained from MDP (X, A, ¢, Py, ) by following
policy mg, is polynomially ergodic through the Foster-Lyapunov criteria: there exists a finite set Cgl 0y
constants 3 4., Uy 5, >0,y o € [, 1), and function Vi , + X — [1, +00) satisfying

A‘/G[i,@z (w) = _651,92 (‘/911,92 (w)) 0z 4 bglﬁzﬂcgl,(m (:t), zed. @
Then, we have the following assumptions relating all the models in ©:

1. Vep1 g, Is a polynomial with positive coefficients, maximum degree (in any dimension) rgl g, and
sum of coefficients sy, . We assume 1 = supy, o, 14 o < 00 and st = supy, g, 55 g, < 00.

2. We assume that {0} C Mg, 0,e0Cy, 5, and C¥ = Uy, 9,c0Cy ,, is a finite set. We further
. D
assume that BY := infy, o, By 4, > 0and bf := supy, o, by 4, < oc.
9 Tr* . . L. .
3. Let Ky, p,(x) := > 00 27" 2 (P9192)"(w, 04), which is positive for any pair 01,0 € © by
irreducibility. We assume that it is strictly positive in ©: K, := infg, o, mingecr Ko, 9,(2) > 0.

Assumptions 344 hold in many models of interest; see Appendix [El As average cost optimality is
our design criterion, we need to ensure the existence of solutions to ACOE when II is the set of all
policies, or Poisson equation when II is a subset of all policies. We discuss these two cases separately.
Case 1: 11 is the set of all policies. For any parameter § € ©, the MDP (X, A, ¢, Py) is said to satisfy
the ACOE if there exists a constant J(6) and a unique function v(-;6) : X — R such that

J(0) +v(x;0) = Eéiﬂ {e(x,a) + Z Py(y|z, a)v(y; 0) } with v(0%;60) = 0.
yeX

From [13] if the following conditions hold, ACOE has a solution, Jy is the optimal infinite-horizon
average cost, and there is an optimal stationary policy with ACOE becoming (3)): (i) for every (x, a)
and z > 0, cost function c¢(x,a) > z outside a finite subset of X’; (ii) there is a stationary policy
with an irreducible and aperiodic Markov process with finite average cost; and (iii) from every (i, a)
transition to a finite number of states is possible. From Assumptions[I}{3] the above conditions hold.
Case 2: 1l is a proper subset of all policies. Here, we posit that for every 6 € © and its best in-class
policy j, there exists a constant J (), the average cost of 7, and a function v(-; 0) : X — R with

J(0) + v(2:0) = c(a, mj () + Y Po(ylz, m5(@))o(y; 0). ®)
yekX
This holds by the solution of the Poisson equation with the appropriate forcing function. For a Markov
process X on the space X’ with transition kernel P and cost function ¢(-), a solution to the Poisson
equation [41] is a scalar J and function v(-) : X — R such that J + v = ¢+ Pv, where v(z) = 0 for
some z € X. In our setting using [41, Sections 9.6-9.8], for a model governed by 6 € © following
policy 75, we show a solution to the Poisson equation exists and is given by V™ (0%) = 0, and

J(0) = C (0) /Eg: [roa] and v™ (z) = C™ (x) — J(O)ER [r0a], V€ X, 6)

where C™0 (z) = R [Zzgdo_l (X (i), 75 (X (i)))], and expectation is over trajectories of Markov

chain X with transition kernel Pgr ¢ starting in state . In Appendix|A.3, we present related definitions
and show that from Assumptions[3}4] the requirements for the existence and finiteness of the solutions
to Poisson equation are satisfied. Finally, we assume supycg J(0) is finite, which typically holds as
a result of the boundedness assumptions stated in Asumptions [3|or[d] along with Assumption



Algorithm 1 Thompson Sampling with Dynamically-sized Episodes (TSDE)

1: Input: vy
2: Initialization: X (1) = 0%,¢ < 1
3: for episodes k =1,2,...do

4:  tp <+t

5:  Generate 0, ~ vy,

6:  whilet <t; +T;_1 and Ny(z,a) < 2Ny, (x,a) forall (z,a) € X x Ado
7: Apply action A(t) = 7 (X (1))

8: Ne (X (1), At)) « N (X (t), A1) +1

9: Observe new state X (¢ + 1)

10 Update v, 1 according to

11: t—t+1

12:  end while

13: T +t—tg

14:  while X (¢) # 0¢ do

15: Apply action A(t) = (X (1))
16: Observe new state X (¢ + 1)

17:  end while

18:  Tp +t—1t

19: end for

Remark 2. In Assumption {4|we can use any other policy g, such that the Markov process obtained
Sfrom MDP (X, A, c, Py,) by following policy g, is irreducible and polynomially ergodic via the
Foster-Lyapunov criteria with the uniformity discussed. Irreducibility is important as the policy will
be used at times when the state is not known in advance, specifically at Steps 14-17 in Algorithm([]

Assumption 5. We assume that J* := supgcg J(0) < +00.

3 Thompson sampling based learning algorithm

We will use the learning algorithm Thompson sampling with dynamically-sized episodes from [49]
to learn the unknown parameter * € © and the corresponding policy, 7., but suitably modify it for
our countable state-space setting. Consider the prior distribution vy = v defined on © from which 8*
is sampled. At each time ¢ € N, the posterior distribution v, is updated according to Bayes’ rule as

Y (d9) _ Py (X (t+1) |X (t)vA(t))Vt(de)
s Jyeo Por (X (t+1)[X (), A() 1 (d0")’

and the posterior estimate 6, 1, if generated, is from the posterior distribution v; 1. The modified
Thompson-sampling with dynamically-sized episodes algorithm (TSDE) is presented in Algorithm|T}
The TSDE algorithm operates in episodes: at the beginning of episode k, parameter 0y, is sampled from
the posterior distribution v, and during episode k, actions are generated from the stationary policy
according to 0y, i.e., 7, . Let ¢, be the time the k-th episode begins. Define tr41 as the first time after
ti, that the conditions of Line E] of Algorithm is triggered and ¢, | as the first time at or after £,
where state 0¢ is visited; for the last episode started before or at 7', we ensure that ¢;, and iy are less
than or equal 7'+ 1. Explicitly, ; = 1 and for k > 1, ¢, = min{t > #; : X (¢) = 0% ort > T}.
Let Ty = ti4+1 — ti be the length of the k-th episode and set T}, = £k+1 — tj, with the convention
Ty = 1. For any state-action pair (, a), we define N1(z,a) = 0 and for ¢ > 1,

(N

Ni(z,a) = |{te <i <ips1 < tforsomek >1:(X(i),Ai) = (x,a)}|.

Notice that for all state-action pairs (x,a) and £ 1 <t < t;,1, we have Ny(z,a) = N£k+1 (x,a).
We denote K as the number of episodes started by or at time T, or K7 = max{k : t;, < T}. The
length of episode k < K is not fixed and is determined according to two stopping criteria: (1)
t > tp+Th1, (2) Ny(,a) > 2Ny, (x,a) for some state-action pair (x, a). After either criterion is
met, the system will still follow policy ﬂ‘;k until the first time at which state 0¢ is visited; see Line
and Figure |I We use this settling period to 0¢ because the system state can be arbitrary when the
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Figure 1: MDP evolution in episode k < K.

first stopping criterion is met. As the countable state-space setting precludes a simple union-bound
argument to overcome this uncertainty (as in the literature for finite state settings), we let the system
reach the special state 0. Another (essentially equivalent) option is to wait until the state hits the
finite set CY or C¥ and then use a union bound argument for all states in either set. For analytical
convenience, we only use the state samples observed before arrival 7, to update the posterior
distribution. The posterior update is halted during the settling period to 0 as we have no control on
the states visited during it, despite it being finite in duration (by our assumptions).

4 Regret analysis of Algorithm

The performance of any learning policy 7y, is evaluated using the metric of expected regret compared
to the optimal expected average cost of true parameter 8, namely, J(0"). In this section, we evaluate
the performance of Algorithm and derive an upper bound for R(T, mrspg), its expected regret up
to time 7". In Section[2] we argued that at time ¢ in episode k (t; <t < tx1), there exist a constant
J (1) and a unique function v(-; 6%) : X — R such that v (0% 6)) = 0 and

J(Or) + 0(X (8); 0) = (X (1), 75, (X (8) + Y Po (y1X (8), 75, (X ())o(y: 0r),  (8)
yex

in which 7j is the optimal or best-in-class policy (depending on the context) according to parameter
0y and J(0y) is the average cost for the Markov process obtained from MDP (X, A, c, Py, ) by
following mj . We derive a bound for the expected regret R(T, mrspr) following the proof steps of
[49] while extending it to the countable state-space setting of our problem. Using (8), the regret is
decomposed into three terms and each term is bounded separately:

Kr tkr1—1

R(T,mrspe) =E[Y Y e(X(t),m;, (X (t))] — TE[J(6)] = Ro + Ry + Ra, )

k=1 t=ty
Kr
with Ry =E [ Y " T},J (6x)] — TE[J(6")], (10)
k=1

Kr tp41—1

Ri=E[> > [0(X(t);0) — v(X(t+1);60)]], (11)
k=1 t=ty
Kr th41—1

Ro=E[Y Y [o(X(t+1):6) = Y Po, (X (t),m5, (X())o(y; 61)]]. (12)

k=1 t=ty yex

Before bounding the above regret terms, we address the complexities arising from the countable
state-space setting. Firstly, we need to study the maximum state (with respect to the /.,-norm) visited
up to time 7" in the MDP (X, A, ¢, Py~ ) following Algorithm[I; we denote this maximum state by
MJ.. In Appendix we derive upper bounds on the moments of hitting times of state 0¢ and utilize
this to bound the moments of random variable M., which then lets us study the number of episodes
K by time T'. Another challenge in analyzing the regret is that the relative value function v(x; 0) is
unlikely to be bounded in the countable state-space setting. Hence, in and (14), we find bounds
for the relative value function in terms of hitting time 75« from the initial state . Based on these
results, we provide an upper bound for the regret of Algorithm[I]in Theorem

Maximum state norm under polynomial and geometric ergodicity. Here we state the results that
characterize the maximum /,-norm of the state vector achieved up until and including time 7, and



the resulting bounds on the number of episodes executed until time 7. Owing to space constraints the
details (including formal statements) are presented in Appendix |B} The results are listed as below:

(i) In Lemma@ we bound the moments of the maximum length of recurrence times of state 0%, using
the ergodicity assumptions [3/and[@. This, along with the skip-free property, allows us to prove that

the p-th moment of max;<;<r Téfl) and M. are both of order O(log? T').

(ii) In Lemma(7, we find an upper bound for the number of episodes in which the second stopping
criterion is met or there exists a state-action pair for which NV;(a, a) has increased more than twice.
(iii) In Lemma(8] we bound the total number of episodes K7 by time T" by bounding the number of
episodes triggered by the first stopping criterion, using the fact that in such episodes, T, = Ty 1 + 1.
Moreover, to account for the settling time of each episode, we use geometric ergodicity and Lemma 6]

It follows that the expected value of the number of episodes K is of the order O(1/h4|A|T).

Regret analysis. Next, we bound regret terms Ry, R; and R, using the approach of [49] along
with additional arguments to extend their result to a countably infinite state-space. We consider the
relative value function v(z; 0) of policy 7 introduced for the optimal policy in ACOE or for the
best in-class policy in the Poisson equation. In either of these cases, policy 7 satisfies (3)), which
is the corresponding Poisson equation with forcing function ¢(x, 7} (x)) in a Markov chain with

transition matrix Pgr °.In (6)), we presented the solution (.J, v) to the Poisson equation, which yields
the following upper bound for the relative value function, as argued in Appendix

v(z;0) < O™ () < EX [Kd (|| 2]|c + hrga)" Tod] - (13)

We can similarly lower bound the relative value function using Assumption [3]as
o(@;0) > —J(0)EF’ [roa] > —J"EZ’ [roa]. (14)
From Assumption 3] all moments of 7ya and thus, the derived bounds are finite. Also, in Lemma
we bound the moments of 7y« of order 7 < r + 1 using the polynomial Lyapunov function Vgp1 057

which is then used to bound the expected regret. We next bound the first regret term R from the first
stopping criterion in terms of the number of episodes K and the settling time of each episode k.

Lemma 1. The first regret term Ry satisfies Ry < J* E[Kp(maxi<i<r Téfi) +1)].

Proof of Lemma\l‘is given in AppendixM From Lemma \g’, all moments of maxj<;<7 To(f,) are
bounded by a polylogarithmic function. Futhermore, as a result of Lemmal(8, expected value of the
number of episodes K is of the order O(+/h4|.A|T), which leads to a O(~/h?| A|T) regret term Ry
Next, an upper bound on R; defined in is derived. In the proof of Lemma 2] we argue that as the
relative value function is equal to O at all time instances ¢ for k& < K, the only term that contributes
to the regret is the value function at the end of time horizon 7". We use the lower bound derived in
to show that the second regret term I?; is O(l); the proof is given in Appendix E

Lemma 2. The second regret term Ry satisfies Ry < co B[(Mg. )™ |+c3, where co = J*27% s (82)~1
and c3 = J*(B2) 71 (st (20)" + BE(K.) ).

From Lemma E, E[(ME)™] is O(log’™ T); hence, R; is upper bounded by a polylogarithmic
function of the order . Finally, in Lemma E, we derive an upper bound for the third regret term
R5 defined in using the bound derived for the relative value function in (I3). To bound Rs, we
characterize it in terms of the difference between the empirical and true unknown transition kernel
and following the concentration method used in [64} 10, 49,7, i8], we argue that with high probability
the total variation distance between the two distributions is small; for proof, see Appendix [B.6.

Lemma 3. For problem-dependent constant c,,, and polynomial Q(T) = c,,(Th)" "% /48, we have

Ry < (og(AT + h) + 1)% + ¢, /[A[T log, (2| AIT?Q(T)) E [(Mg- + b))+ ( max 7\))].

1<i<T 0°

The above Lemma results in a O(Krd.J*h4t2 7% /| A|T) regret term as a result of Lemma E,
where £ is the skip-free parameter defined in Assumption |2, d is the dimension of the state-space,
K and r are the cost function parameters defined in Assumption |1, J* is the supremum on the
optimal cost, 7% is defined in Assumption E, and where O hides logarithmic factors in problem

parameters one of which is log®*"*"*+2(T'). For simplicity, we have not included the Lyapunov



functions related parameters in the regret. Finally, from Lemmas L, [2; [3, along with the Cauchy-
Schwarz inequality, we conclude that the regret of AlgorithmR(T, mrspE)(= Ro+ Ry + Rs) is

O(KrdJ*hd+2r+72 /| A|T); for brevity, we will state that regret is of the order O(dh®+/| A|T).
Theorem 1. Under Assumptions the regret ofAlgorithm R(T,mrspg), is O(dh®\/|A|T).

Theorem|I] can be extended to the problem of finding the best policy within a sub-class of policies in
set I, which may or may not contain the optimal policy. In Section 2] we stated that Assumptions 3]
and {]hold for policies in II and we used this to argue that the Poisson equation has a solution given
in (0). As a result, repeating the same arguments as in Theoremwith the modification that 7y is the
best in-class policy of the MDP governed by parameter 6, yields the following corollary.

Corollary 1. Under Assumptions 1| through Bl the regret of Algorithm[I|when using the best in-class
policy is O(dh?\/|A|T).

Requirement of an optimal policy oracle. To implement our algorithm, we need to find the optimal
policy for each model sampled by the algorithm—optimal policy for Theorem [I]and optimal policy
within policy class II for Corollary [T. In the finite state-space setting, [49]] provides a schedule of e
values and selects e-optimal policies to obtain O(+/T') regret guarantees. The issue with extending
the analysis of [49] to the countable state-space setting is that we need to ensure (uniform) ergodicity
for the chosen e-optimal policies. Another issue is that, to the best of our knowledge, there isn’t a
general structural characterization of all e-optimal stationary policies for countable state-space MDPs
or even a characterization of the policy within this set that is selected by any computational procedure
in the literature; current results only discuss characterization of the stationary optimal policy. In
the absence of such results, stability assumptions with the same uniformity across models as in our
submission will be needed, which are likely too strong to be useful. However, if we could verify
the stability requirements of Assumptions [3 and 4 for a subset of policies, the optimal oracle is not
needed, and instead, by choosing approximately optimal policies within this subset, we can follow the
same proof steps as [49]] to guarantee regret performance similar to Corollary |1|(without knowledge
of model parameters). Thus, in Theorem [2] we extend the previous regret guarantees to the algorithm
employing e-optimal policy; proof is given in Appendix [B.8.

Theorem 2. Consider a non-negative sequence {e€;,}7° , such that for every k € N, €, is bounded
above by %H and an eg-optimal policy satisfying Assumptionsand is given. The regret incurred

by Algorithmwhile using the ey,-optimal policy during any episode k is O(dh®\/|A|T).

5 Evaluation and Conclusion: Application of Algorithm (1|to queueing models

Next, we present an evaluation of our algorithm. We study two different queueing models shown
in Figure 2, each with Poisson arrivals at rate \, and two heterogeneous servers with exponentially
distributed services times with unknown service rate vector 0* = (0%, 0% ). Vector 8™ is sampled from

the prior distribution  defined on the space © given as © = {(6,05) € R : 72 < 5,1 <

Z—; < R}, for fixed R > 1 and § € (0,0.5). The first condition ensures the stability of the queueing
models, while the second guarantees the compactness of the parameter space of the parameterized
policies. In both systems, the goal of the dispatcher is to minimize the expected sojourn time of jobs,
which by Little’s law [52] is equivalent to minimizing the average number of jobs in the system. After
verifying Assumptions|L{5 in Appendix [E for the cost function ¢(x) = |||, Theorem|[l yields a

Bayesian regret of order O(+/|A[T) for Algorithm

Model 1. Two-server queueing system with a common buffer. We consider the continuous-time
queueing system of Figure where the countable state space is X = {x = (zo,21,22) €
7, x {0,1}?}, where x is the queue length, and x;, i = 1,2 equal 1 if server i is busy. The action
space is A = {h, b, 1,2}, where h means no action, b sends a job to both servers, and i = 1, 2 assigns
a job to server 7. In [38], it is shown that by uniformization [39]] and sampling the continuous-time
Markov process at rate A + 07 + 63, a discrete-time Markov chain is obtained, which converts the
original continuous-time problem to an equivalent discrete-time problem where we need to minimize
limsupy_, o, 771 ZtT;Ol || X (t)||1. Further, [38] shows that the optimal policy is a threshold policy
T(+) With optimal finite threshold t(0™) € N: always assign a job to the faster (first) server when
free, and to the second server if it is free and ||x||; > ¢(6"), and take no action otherwise. In



Infinite queue

Infinite queue
A \
E—— Dispatcher Dispatcher

(a) Queueing system with a common buffer. (b) Two parallel queues.

Figure 2: Two-server queueing systems with heterogeneous service rates.
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Figure 3: Regret performance for A = 0.3, 0.5, 0.7. Shaded region shows the 0 area of mean regret.

Appendix [E.1} we argue that the discrete-time Markov process governed by 6 € © and following
threshold policy 7 for any threshold ¢ belonging to a compact set satisfies Assumptions

Model 2. Two heterogeneous parallel queues. We consider the continuous-time queueing system
of Figure @ with countable state space X = {x = (z1,22) € Z2}, where z; is the number of
jobs in the server-queue pair ¢. The action space is A = {1, 2}, where action 7 sends the arrival to
queue ¢. We obtain the discrete-time MDP by sampling the queueing system at the arrivals, and then
aim to find the average cost minimizing policy within the class IT = {7,;w € [(crR)™!,crR]},
cg > 1. Policy m, : X — A routes arrivals based on the weighted queue lengths: =, (x) =
argmin (1 + z1,w (1 + z2)) with ties broken for 1. Even with the transition kernel fully specified
(by the values of arrival and service rates), the optimal policy in IT is not known except when 6, = 05
where the optimal value is w = 1, and so, to learn it, we will use Proximal Policy Optimization for
countable state-space MDPs [18]]. Note that [18]] requires full model knowledge, which holds in our
scheme as we use parameters sampled from the posterior for choosing the policy at the beginning
of each episode. In Appendix we argue that the discrete-time Markov process governed by
parameter § € © and following policy 7, for w € [(crR) ™!, crR] satisfies Assumptions

Next, we report the numerical results of Algorithm I in the two queueing models of Figure [2/and
calculate regret using (2). The regret is averaged over 2000 simulation runs and plotted against the
number of transitions in the sampled discrete-time Markov process. Figure [3/shows the behavior
of the regret of the two queuing models for three different arrival rates and service rates distributed
according to a Dirichlet prior over [0.5, 1.9]%. We observe that the regret is sub-linear in time and
grows as the arrival rate increases. For the queueing model of Figure[2a] the minimum average cost
J(8) and optimal policy 7 are known explicitly [38] for every § € ©, which are used in Algorithm
and for regret calculation. Conversely, for the second queueing model, J () and 7} are not known.
The PPO algorithm [18]] is used to empirically find both the optimal weight and the policy’s average
cost. Additional details of the simulations and more plots are presented in Appendix [G!

Conclusions and future work. We studied the problem of learning optimal policies in countable
state-space MDPs governed by unknown parameters. We proposed a learning policy based on
Thompson sampling and established finite-time performance guarantees on the Bayesian regret. We
highlighted the practicality of our proposed algorithm by considering two different queuing models
and showing that our algorithm can be applied to develop optimal control policies. For future work
we plan two directions to explore: to generalize our algorithm to consider polices that might not all
be stabilizing, and also to simplify the algorithm using ideas from [61} 57]].
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A Proofs related to problem formulation

A.1 Ergodicity definitions

Suppose that Markov process X on X with transition kernel P is irreducible, aperiodic and positive
recurrent with stationary distribution x and let f : X — [1, 00) be a measurable function such that
p(f) ==EL[f(Y)] < +oo with Y ~ . We are interested in conditions under which for a sequence
of positive numbers p := (p(n))n>0,

Tim p(n)|[PM(@, ) — p()f =0,  Vaex, (15)

where for a signed measure i on X, ||fi[|f := sup,, < [7i(g)|- The sequence p is interpreted as the
rate function, and three different notions of ergodicity are distinguished based on the following rate
functions: p(n) = 1, p(n) = ¢" for ¢ > 1, and p(n) = n°~! for ¢ > 1. Further, for each rate
function p, we state the Foster-Lyapunov characterization of ergodicity of the Markov process X,
which provides sufficient conditions for to hold.

L. If p(n) = 1 for all n > 0, the Markov process X satisfying is said to be f-ergodic.
From [43]], for an irreducible and aperiodic chain, f-ergodicity is equivalent to the existence
of a function V' : X — [0, 00), a finite set C, and positive constant b such that

AV < —f 4+ ble, (16)

where AV := PV — V with PV(x) := >, ., P(x,x')V(x’). The drift condition
implies positive recurrence of the Markov process, existence of a unique stationary
distribution p, and p(f) < b < 400 ([43], Theorem 14.3.7).

2. If p(n) = (™ for some ( > 1, the Markov process X satisfying is said to be f-
geometrically ergodic. From [43], for an irreducible and aperiodic chain, f-geometric
ergodicity is equivalent to the existence of a function V' : X — [1,00), a finite set C, a
constant y € (0, 1) and positive constant b such that

AV < —(1 =)V + ble. (17)
The drift condition implies positive recurrence of the Markov process, existence of
b

a unique stationary distribution g, and p(V) < 75 < oo ([43], Theorem 14.3.7).

Moreover, if f(-) = 1 in (15), then the Markov process X is called geometrically ergodic.

3. If p(n) = n¢~1! for some ¢ > 1, the Markov process X satisfying is said to be f-
polynomially ergodic. From [43} 29], for an irreducible and aperiodic chain, the existence
of a function V' : X — [1, 00), a finite set C, a constant « € [0, 1), and positive constants ¢
and b such that

AV < —cV* + ble (18)
implies V;-polynomial ergodicity of X at rate p(n) = n¢~! forall ¢ € [1,1/(1 — )]
with V; = Vy1=¢(1=2) The drift condition implies positive recurrence of the Markov
process, existence of a unique stationary distribution u, and pu(V®) < % < Ho0.

A.2 Lemmal[d

Lemma 4. For any state x # 09, there exists constants r > 1 and c such that the following holds
for the hitting time of state 0%, Toa,

Egl[cT0?] < 1 VI().

Proof. We define V := >l 0dP"V-q where 0dP" is the n-step taboo probability [43] defined as
APl =Py (X, € B,T4 >n),
for A, B C X, and 74 is the first hitting time of set A. We also let , P0p = I5(x). We have

OdPV<iL') = Z Pa:yV Z Z Pa:y OdPnng(z)

7$Od n=0y,z#£0d
S Y G PEVIE) = V) - Vi(a).
n=0 z#£04

16



In Appendix we argue that there exists b9 > 1 such that V (y) < b9V9(y) for all y € X, which
leads to ) )
de/:f/—Vg<f/—~f/:(1—~>f/. (19)
0
b9 b9

Define Lyapunov function

. (14209 V (), ifax 04
VI(x) = N )
1+ (2b9> . ife =0

From the above equation and , we get

PV9(x) = Y PayV(y) + PagaV9(0%)
y#0¢
- 1
- Z Pyy(1+ 209V (y) + Pyoa (1 + )
2b9
y#0?

2b9

( ) (14 2b9)V )+( 2;)17(.%)

:( b9>(1+2bq)f/( ).

Pia(a) < (1- ) 7o) +

To find an upper bound for E,, [ od], we apply [43) Theorem 15.2.5], which is a generalization of

S( >1+2b9 z)+ 14+ —

Thus,

29) (14 209V (0N)ga(x), x€X.

Lemma E

Tod —1

[ o]z e

As V9(y) > 1forall y € X, we have

Tod —1

Eg[c70] < KE, [ Z VI(X } < e WI(x)
- (1 n 2b9> Viz) <! (1 + 269) VI(x),

" Jand e; = b9e! (1 + 2bq) O

and the claim holds for any & € [1, -2 ng -

A.3 Poisson equation

For an irreducible Markov process on the countably-infinite space X’ with time-homogeneous transi-
tion kernel P and cost function &(-), a solution pair to the Poisson equation [41] is a scalar J and
function v(-) : X — R such that J + v = ¢ + Pv, where v(z) = 0 for some z € X If the Markov

process is also positive recurrent and E,, [ZT”_l |e(X (7)) |} < 00, where 7y, is the first hitting time
of some state y € X, then solution pair (J, v) given as
Ty—1 |- .
Ey |27 10X (6)] =

J= =] and o( { Z o(X } — JEg[r,], Ve X,

is a solution to the Poisson equation J + v = ¢ + Pv with v(z) = 0 [41] Theorem 9.5].
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Lemma 5. Consider Markov Decision Processes (X, A, c, Py) governed by parameter § € ©
following the best-in-class policy ;. Then the pair (J ), v”g) given as

_ Cmo(09) « -

J(0) = ———L and v™ () = O (z) — J(O)E’ [rpa], Va € X,
EOSL [Tod]

is a solution to the Poisson equation v+ J = c + Pgr; v, where v™0 (09) = 0 and C™ (x) =
5 Tod —1 . % .
B3’ | S (X (), m(X ()

Proof. From [41], Theorem 9.5], a solution pair to the Poisson equation exists if Ex? [T9a] and C ()
are finite for all @ € X'. The former follows from positive recurrence assumed in Assumption [3]and
for the latter, from Assumptions[T]and

Todfl Todfl

Cmi(@) = B3 | Y o(X (), m(X ()] <ES[ > SR, ()" ]
i=0 i=0 j=1
Todfl

<EF [ 3 Kd (||l + m)’”} <EY [Kd(|®|co + hrod)" 704,
i=0
which is finite from geometric ergodicity (Assumption [3) and the discussion following that. O

B Proofs of regret analysis

In this section, we state the proofs related to regret analysis of Section[d] We first note a key property
of Thompson sampling from [49]], which states that for any episode k, measurable function f, and
‘H., —measurable random variable Y, we have

E[/(00Y)] =E [£(6" V)], 20)

where H; == o (X (1),..., X (t),A(1),...,A(t—1)) for all t € N. We start with deriving
upper bounds on the hitting times of state 0% using the ergodicity conditions of Assumptions Eand
. Previous works [25] 27, 29] have already established bounds on hitting times in geometrically
and polynomially ergodic chains in terms of their corresponding Lyapunov function. However, our
objective is to provide a precise characterization of all constants included in these bounds in terms
of the constants of the drift equations[3 and [, This characterization allows us to derive uniform
bounds across the model class. In Appendix [C.I, using the polynomial Lyapunov function provided
in Assumption we establish upper bounds on the i-th moment of hitting time of state 0¢ from any
state x € X and for 1 < ¢ < r 4+ 1. Importantly, the derived bound is polynomial in terms of any
component of the state x;. Additionally, in Appendix we characterize the tail probabilities of the
return time to state 0 starting from 0¢ in terms of the geometric Lyapunov function of Assumption
The derived tail bounds will be used in Lemmal6 to derive upper bounds for all moments of hitting
times in the model class. These bounds, along with the skip-free behavior of the model, allow us to
study the maximum state (with respect to ¢,-norm) achieved up to time 7" in MDP (X, A, ¢, Pg+)
following Algorithm |1|as follows.

Lemma 6. For p € N, the p-th moment of maxi<;<rt Té? and Mgl, that is the maximum {,-norm

of the state vector achieved up until and including time T is O(log? T').

In the proof of Lemmal6 given in Appendix [B.T| we make use of geometric ergodicity of the chain
and the fact that hitting times have geometric tails to find an upper bound for moments of MJ.. Using
this, we aim to bound the number of episodes started before or at 7', denoted by K. We first find an
upper bound for the number of episodes in which the second stopping criterion is met or there exists
a state-action pair for which N;(x, a) has increased more than twice. In the following lemma, we
bound the number of such episodes, which we denote by Ky, in terms of random variable M, g* and
other problem-dependent constants. Proof of Lemma([7]is given in Appendix [B.2,

Lemma 7. The number of episodes triggered by the second stopping criterion and started before or
at time T, denoted by Ky, satisfies Ky < 2|A|(Mg. + 1)%log, T a.s.
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We next bound the total number of episodes K- by bounding the number of episodes triggered by the
first stopping criterion, using the fact that in such episodes, T, = T;_1 + 1. Moreover, to address the

settling time of each episode k, shown by Ey, = T}, — T}, we use the geometric ergodicity property
and Lemmal6] Finally, the proof of Lemma 8]is given in Appendix [B.3.

Lemma 8. The number of episodes started by T satisfies K1 < 2\/\A| (M. +1)T log, T a.s.

From Lemma the upper bound given in Lemma@ for moments of M{., and Cauchy—Schwarz in-

equality, it follows that the expected value of the number of episodes K is of the order O(+/h?| A|T).
This term has a crucial role in determining the overall order of the total regret up to time 7. In the rest
of this section, we present a detailed proof of the lemmas and other results used to prove Theorem I}

Remark 3. The skip-free to the right property in Assumption |2|yields a polynomially-sized subset of
the underlying state-space that can be explored as a function of T. This polynomially-sized subset
can be viewed as the effective finite-size of the system in the worst-case, and then, directly applying
finite-state problem bounds [49] would result in a regret of order O(T+°5); since d > 1, such a
coarse bound is not helpful even for asserting asymptotic optimality! However, to achieve a regret of
O(\/T ), it is essential to carefully understand and characterize the distribution of M. and then its
moments, as demonstrated in Lemmal6]

Remark 4. The derived regret bound can be extended to a larger class of MDPs which consist of
transient states in addition to the single irreducible class. Specifically, for any 01,05 € O, the Markov

process with transition kernel Pt;T1 % obtained from the MDP (X, A, ¢, Py, ) by following policy 5,
has a single irreducible class Iy, g, and a set of transient states Ty, ¢,. Furthermore, Assumptions
[3 and[ hold for the single irreducible class. The reasoning behind the proof remains true in this
case using the following argument: each episode k starts at 0% which is in the irreducible set for the
chosen policy my , hence, throughout the episode the algorithm remains in the irreducible set that is
positive recurrent and never visits any transient states. In other words, episodes starting and ending
at 0% with a fixed episode dependent policy implies that reachable set of 0% is all that can be explored,
which is positive recurrent by our assumptions. As a result, we can restrict our proof derivations to
the subset that is reachable from 0% in each episode and follow the same analysis. The Lyapunov
function based bounds apply to the positive recurrent states, and hence, restricting attention to states
reachable from 0% within each episode, we can use these bounds for our assessment of regret using
norms of the state. Thereafter, the coarse bounds on the norms of the state can be applied as carried
out in our proof.

Remark 5. By problem-dependent parameters, we refer to the parameters that characterize the
complexity or size of the model class ©. These parameters are not just a function of the size of the state-
space and diameter of the MDP (as mentioned in the literature on finite-size problems[5} |23} 49]]),
as stability needs to be accounted for in the countable state-space setting. The dependence is, thus,
more complex and requires the inclusion of stability parameters, such as Lyapunov functions, petite
sets, and ergodicity coefficients that are discussed in Assumptions

Remark 6. In the subsequent sections, several equalities and inequalities in the proofs are between
random variables and hold almost surely (a.s.). Throughout the remainder, we will omit the explicit
mention of a.s., but any such statement should be interpreted in this context.

B.1 Proof of Lemmal6l

Proof. Let {a;};>0 be the sequence of hitting times of state 0 starting from 0% (set oy = 0). Define

Téi) as the length of the i-th recurrence time of state 0¢ fori € N, ie., Té? = o; — ;1. For
1)

simplicity, we take 1ga = Téd . Bach such recurrence time is generated using policy 7, that is
determined using the algorithm in operation in an MDP governed by parameter 6*. Furthermore,
{Té?}ieN are independent with length at least 1, but they need not be identically distributed. The
time 7" can be in the middle of one‘of these recurrence times, hence the current recurrence interval
countis N(T) = inf{n : >, Té? > T'}. Note that the lower bound of 1 on every Téi) says that
N(T) < T a.s. Further, from the skip-free to the right property, the most any component of state can
(4) (2)

increase in during recurrence time Tod is hTod . Hence, the most any component of the state (and also
the || - ||o norm of the state) can increase is given by h max;—1, . T(SZ) where the random variables
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are independent with geometrically decaying tails with a worst case rate of

-1
sup 701 0, = 1—( sup bg1 02) ;

01,02€0 01,0,€0
see Lemma|[l1] From Lemma|10} we have
- 307, +1 o
b5, 6, = 91’929 ( IC3, 02|2 max (1 E.” [Tod]))
7 1 - 761,65 ’ uGCgl 92\{0 }
39 +1
< + |CY)? max (1 sup gl 92(1) (V(f1 95 (u) + b 9,0CT ))
1—n7 NI ’ NG
01,020
3 +1 1 P bh
< +g |C9)? max (1, sup (sgl 0, [l oat?* + 61,02 ))
L= ueC9\{0%} 591 02 ’ mlnyECG 6 Ko, 0,(y)
01,02€0
3y +1 P
<P osPmax (1 s (lulE + ) @1
1= weC?\ {04} Px K,

and we define ¢ := 1 — (b%)~!. From the definition of bJ, , in Assumption b3, 9, is greater than

b, 0, (5,0,) i @ )

or equal to 2. Thus, be 0, = 7 and we have

sup ¢ , = sup = < =,
01,0-€0 61,02 01,0-€0 bglﬂg -1 6
and as a result of Lemma
Poa(730 >n) <ed (1), 1<i<T. (22)

We upper bound E [Mg*] using the independence of {T(? }ien and the above equation,

E [MGT*] < hE[1r£za<XT Tod h P( 1rgza<x T ) > n)

—hZ(l— (qma, T()<n>—hz<1—HP( z)<n)>

Shno+h 31— (1= 60 o)

n=no
i T
<hio+ D) +h Y 1= (1-(9)"™)
n=no+1

where n is the smallest n > 0 such that ¢ (7)" < 1. By Reimann sum approximation, we get

E [Mg-] < h(no +1) +h§: 1—(1—(9)"M"
<hlng+1)+n [ 1= (-GN du
0

h b1 —aT
= 1
h(no + )+10g%€/ 1—u du

< h(ng +1) + (logT +1),

_h
log v/
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where the last inequality follows from 37 _ n~! < logT + 1 and thus E [Mg.] is O(hlog T). We
now extend the result to moments of order greater than one. From , forl1 <:<T,

Pou(rys > n) < cf (49)" = e (49)™ (49)" " < (49)" "
Forn > ng,lett =n—ng>0andY; = max(Téi) — nyg,0) to get
Poa(Y; > 1) = IEJ’od( —ng > t) < (v9)",

which means random variables {Y;}Z_, are stochastically domlnated by independent and identically
distributed geometric random variables with parameter 1 — ~¢. Furthermore, [56] argues that the p-th
moment of the maximum of 7" independent and identically distributed geometric random variables is
O(log? T). Thus, the p-th moment of max;<;<7 Y; is O(log” T') and

T 1
11%1iangY} max(7, a )—no,...,Téd) — ng,0) = max( éd), . éd),no)—no
> max( éi),...,ré:}r)) —ng > h M. — ny,

which gives

JE{(MT*)p} <hp]E[( max 70 )p} < hPE max Y; +ng ’ .
o = 1<i<r 0 - 1<i<
Since the right-hand side of the above equation is O(h? log? T'), the claim is proved. O

B.2 Proof of Lemmalf7|

Proof. Let K (x, a) be the number of episodes k such that 1 < k < K7 and in which the number
of visits to the state-action pair (x, a) is increased more than twice at episode k, or

Ky (x,a) ={k < Kr: Ngk“(:ua) > 2Ny, (x,a)}].
As for every episode in the above set the number of visits to (x, a) doubles,
Ky (w,a) < logy(Nrii(w, a)) + 1,

and we can upper bound K, as follows

Ky = Z Ky(z,a) = Z Ky (z,a)

zEX,a€A 1] oo < Mg
acA
d
< Y (I+logy Nryi(e,a)) < [ Al (Mg +1)° (1+1log, T).
[l 0o < Mg
acA
This completes the proof. O

B.3 Proof of Lemmaf3]

Proof. We define macro episodes with start times ¢,,,, &k = 1,2,..., Ky + 1 where ¢,,, = ty,
Z T + 1 (which is equivalent to ng,,+1 = Kr + 1),andfor 1 < k < Kps +1
tngy, = min{t; > t,, : N (x,a) > 2Ny, (x, a) for some (xz,a)},

which are episodes wherein the second stopping criterion is triggered. Any episode (except for
the last episode) in a macro episode must be triggered by the first stopping criterion; equivalently,

T] T 1+ 1forall j =ng,ng+1,...,n541 — 2. For 1 <k < Ky, let TM = Z;”“fllk 1T be
the length of the k-th macro episode. We have

ng+1—1 Ng+1—1 _ Nk1—2
T = > T;> > Tp=1+ > (j—nk+2)=05(nkp1 — ni)(ngsr — ng + 1).
Jj=ng J=nk Jj=ng

21



Consequently, ng+1 — ng < 2TkM forall 1 < k < K. From this, we obtain

Kn Km
KT =NKy+1 — 1= Z(nk+1 — nk) S Z \/QTI?J.
k=1 k=1

Using the above equation and the fact that Zf:Ml TM =T we get

K]\{ KM

Kp <) £\2TM <\ | Ky Y 2T = \/2KuT.
k=1 k=1

Finally, from Lemma[7| we get

Kr < 2KuT < 2\/\A| (MZ. +1) Tlog, T.

This completes the proof. O

B.4 Proof of Lemmalll

Proof. Let Ey, = T}, — T;, > 0 be the settling time needed to return to state 0% after a stopping
criterion is realized in episode k. We have

Ro=E [%Tkj(ek)} _TE {J(e*)}
k=1

KT KT
—E [ZTkJ(Hk)} +E [ZEkJ(Hk)} _TE [J(o*)}. (23)
k=1 k=1
We first simplify the first term in the above summation. From the monotone convergence theorem,

E {ifﬂ(ek)} - i E [H{tkST}TkJ(Qk)} .

k=1

Note that the first stopping criterion of Algorithmensures that T}, < Tj,_1 + 1 at all episodes k£ > 1.
Hence

E [H{tkST}TkJ(Gk)] <E [H{tkST} (Tk—l + 1)J(9k)j| .
Since Iy, <7} (Tj,—1 + 1) is measurable with respect to #;, , by we get

E [H{tkgT}(Tk—l + 1)J(9k)} =K [H{tkgT}(Tk—l + 1)J(9*)]

Therefore,
E [ifk,](ek)] < iE {H{tkg}(fk_l n 1)J(0*)] ~E [i(fk_l n 1)J(0*)]
k=1 k=1 k=1
Thus,
Kr _ Kr Kr
E [ZT;CJ(Q,C)} _TE [J(e*)] <E[J007)3 (Tio1 + 1)} —E [J(B*) ZTk]
k=1 ) k=1 k=1

—E -J(()*)<KT +1-Twyp — KilEk)}
B k=1

<E ’J(@*)KT] (24)
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For the second term in (23] . from Assumption [3]
Kr
{ZEkJ ak)} < J'E [ZE;C} < J*E[K7 max 7] (25)
k=1

1<i<r 0
Substitutinh (24) and (25)) in (23)), we get
<
RO ~ E [KTJ(O )] + J E[KT lréliaSXT TOd ]

< J7E [Kr] +J7 B[KT max 9]

:J*E[KT( maxTT“H)}

B.5 Proof of Lemmal2l

Proof. We note that the state of the MDP is equal to 0 at the beginning of all episodes and the
relative value function v(x; 0) is equal to 0 at & = 0¢ for all 6. Thus,

Kr tkr1—1

Ri=E[Y > [o(X@):00) —v(X (t+1);60)]]

k=1 t=tg

-E {i [v (X (tx);0,) —v (X (tk+1);9k)H
k=1

Kr—1
=E [ > [v (0% 65) — v (Od;ek)] +0 (0% 0k,) — v (X(T + 1); 0x,.)
k=1
= —Eu(X(T+1);0k,)]

From the lower bound derived for the relative value function in (14)),

K,

where the second inequality follows from in the proof of Lemmal6] We also note that || X (T +
Dl < M2 + h. Thus,

. p
—v(x;0) < J*Eg’ [194] < ﬁp ( —I- b ),

Ry = —E[v(X(T + 1); 6x,)] <E [gp( E(Mpe + 1) + Ib(pﬂ

From the inequality (a + b)" < 2"(a” 4+ b"), we have

J*or< gP P J* o P

N

B.6 Proof of Lemma[3l

Proof. Let Z (t) = (X (t), 7, (X (t))) be the state-action pair at t;, < ¢ < ty41. Ry can be upper
bounded as

RQ:E{itiZ:[”( (t+1); ;(Pak(y\x 5, (X (1) v (w:60) ]|

Kp te+1—1

<E[S S [ 1P wlZ (1) - Pow1Z )] [0(y:00)] ]|

k=1 t=tg yeX

giE[( max  [v(; 04)| )||Po- (12 (1)) = P, (12 (1)) 1] =

1<k<Kr
ll2|loo <M
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We have
[1Po-(-1Z(t)) = Po,. (-1 Z2())ln < |Po~(-|Z(2)) = Py, (1Z(0)[l1 + [ Po, (-|2(2)) = By, (1Z(1))]]1
where P (y|Z (1)) is the empirical transition probability defined as
Ny (Z (1),
P12 ) = e
and for any tuple (x, a,y), we define Ny (x, a,y) = 0 and for ¢ > 1,
Ny(z,a,y) = |{ty <i <tpp1 <t forsomek >1:(X (i),A(i), X (i+1)) = (x,a,y)}|

Thus, from (26) and defining random variable vy = max 1<k<r, |v(2;0k)],
ll]| oo < Mg

<) E (ol[Po- (12 (1) = By, (1Z (DIl | + D E [our1Po, (12 (1) = B, (12 ()] .

t=1
27)

We define set By, as the set of parameters 6 for which the transition kernel Py(+|z) is close to the
empirical transition kernel Py (+|z) at episode k for every state-action pair z = (x,a) € X X A, or

B = {0 P(12) = Py, (1)1 < Bu(2), 2 = (w,0) € {0,1,-+ AT} x A},

where 8;(z) = ijal;[(ﬁ }\E: (J;};)) log (2|“§|T) for & = (z1,...,24) and some 0 < 6 < 1, which will

be determined later. We simplify the ¢;-difference of the real and empirical transition kernels as
follows

1Po-(-|Z () — Py, (-1Z (1)) ]I
= Lor¢ny 176, (12 (1)) = Py, (-|Z (1)l + Lo-eny [ Po. (-1 Z (1) = Py, (-|Z (1)) [

< 2lgr¢m,y + B (Z (1)) -
Similarly, we have

1Po (-1Z (8)) = Py, (-1Z ()l < 2Lgo,¢m,y + Pr (Z (1)) -
Substituting in (27), we get

Kp tky1—1 Kp tep1—1
Ry <E [Z Z 2111\/[ H{9*¢Bk} + H{ekgBk} } {Z Z 2up B (Z (1)) } (28)
k=1 t=t k=1 t=ty

We first find an upper bound for vy = max 1<x< K. |v(a; 0| using the bounds derived in (13
and (14). From (13), el = Mo-
v(@; 01) < Ba’* [Kd (||]loc + h7a)” Toe]
< Ep (27 Kd(

T+ W7 (700)") o]
= Kd(2]#]|o) Bz’ [10a] + Kd(2h) Eg" [(704)" ]
T

< Kad2'" (e + A7) Ea™ [(oa)""]
< Kd(r + 12" (|Jalls, +17) 5, (r+ 1) (V3 (@) + b, acy )

< Kd(r+ 12 (Jalli + ) ¢f, (r+ 1) (2@l +02(K) ), 29)

where the second line follows from the inequality (a + b)" < 27(a” + b"), the fifth line from
Lemma [I0} and the last line from Assumption[]and (21). We further have

r+1

¢§1’92 (r+1)= H

(27 + G -Dacy, b 0,)

591792
r+1
r+1 ; )
< j—1 _ 1175
S ey (27 + U= D ().
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where using the definition of by’ , in (38),

n nj ~ ~ (a§1,92+"7j71)/(170‘}9)1792)
bei 02 (bgl 92) + njﬂgl,% max (1’ (651792> )

We also define

<1460+ 6P

r+1

1
oUr+1):= H - Tin(1 3P)
it )

We next find a lower bound for v(x; ) using as follows:

(277 4 (5 — 1) (KM + 08 + 67)) .

T p b€
v(@;0) > —J g™ [rga] > 7?(55”3;\\1;3 + ?)

Combining and the above equation, we get a uniform upper bound for |v(x; )| over ©, which

we use to upper bound vy = max 1<k<ri, |v(x;0k)| as below
ll2lloo <Mg-

var < (JF + Kd(r +1)27) ¢2(r + 1) ((MGT*)T + hr) (sg (ME)™ + bfj(K*)‘1>

= ¢p, ((MeT*)’" +h’") (s%: (ME)™ +b£(K*)—1)

)7‘-1-7‘i7

< cp, (Mg : (30)

where the constant terms are defined as
Cpy = (J"+ Kd(r+1)2") ¢%(r +1), ¢p, := max (1, cp (B 4+ 1)(s? + bf(K*)*l)) .

A deterministic upper bound on vy, can also be found from the above equation. Noting that from
Assumption |2} until time 7" only states with each component less than or equal to AT are visited, we
have

r+rf r+r
vy < Cp, (Mg*) < Cps (Th) i = Q(T)a

where Q(T') is a polynomial defined as above. Using the bounds derived for v,;, we bound Rs
starting with the first term on the right-hand side of (28). We have

Kr te+1—1 Kr tkt1—1
E[Z Z 2vm [H{9*¢Bk}+ﬂ{9k¢3k}” <2Q(T [Z Z H{e*gBkﬁ'H{ekgBk}]
k=1 t=ty k=1 t=ty

<2TQ(T [ZH{G *¢By} T H{ekQBk}:|

<2TQ(T ZE [H{e*gBk} + H{ekeka}}
k=1

< ATQ(T ZIE”{H* ¢ By}, (31)
k=1
where the last inequality follows from and the fact that set By, is H¢, —measurable. To further
simplify the first term in (28), we find an upper bound for P {0 ¢ By} using [64]. For a fixed
z = (x,a) and n independent samples of the distribution Pp-(.|z), the L!-deviation of the true
distribution Py- (.|2) and empirical distribution at the end of episode k, F;, (.[2), is bounded in [10]
as

AT (2 + b 21A|T 5
P ||Pe*<~|z>—P@k(-|z>||1>\/ et )log( 3 ) : ; |
n 5 20l AIT7 TT;_, (i + h)

Therefore,

n} < i
20 AT [1L, (z: + )’

P{I1Po-(12) = Py, (1)1 = Be(2) | Niy(2) =
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and

P{\|P0*<-|z> — P;, (12)l1 = By(2) }
Z {I1Po-(12) = Py, (12) 1 = Bu(2) | Niy () = 0} P{N,, (=) = )

)
<
201 |7 [T, (i + )

The probability that at episode k < T, the true parameter 8™ does not belong to the confidence set
Bj; can be bounded using the above and union bound as

PlO"¢ By < > P{IRe(l2) = B (12)lh = Bulz)}

2€{0,1,-- ,hT}dx A

IN

]
Z 20|A|T6H1 (i +h)

2€{0,1, ,hT}ex A

6
= 2 ;
x€{0,1,--- ,hT}d 2076 Hizl(mi + h)

)
<
2076
< )
= 20k6
In the summation in the above equation, we have simplified the expression by summing over z; < hT
instead of considering the more detailed summation over z; < MQT*. However, this simplification

does not affect the final evaluation of regret, as this term is not dominant and only contributes to a
logarithmic term in the regret bound. Substituting in (31J),

(log (R(T + 1)) + 1)*

(log (h(T + 1)) + 1)*.

Kr ter1—1

E {Z > 2om [lo-gn,) +H{9keBk}” < ATQ(T Z]P’{e* ¢ By}
k=1 t=ti
- 0 (log (h(TJrlE))) i%
k=1
< & (log (WT + 1)) + 1) TQ(T). (32)
We now upper bound the second term in (28). From (30),
Kp thii—1 Kr thpi—1
E{Z 3 2vmb (Z(t))} §2cp2E[(M9* )Y Bz } (33)
k=1 t=ty k=1 t=ty

To bound the regret term resulting from the summation of 8j (Z (t)), we note that from the second
stopping criterion, Ny (Z (t)) < 2Ny, (Z (t)) forall ¢, <t < tg41 and

Kr tp41—1

Z Z Br(Z

k=1 t=tg
_ ! 14111 (0 +R) (2AT
—g_Z wmax(1, Ny, (Z (1)) log< ; )

Krp tey1—1
2|"4|11 ~ 2]._[11
<o (350) |2 2 o

k=1 t=ty
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The first summation can be simplified as

Ky thy1—1 21—[1 1 ()Jrh) = Kp the1—1
Y3 it iz S VR Y s

< 34/2(Mg. + h)¢ > VNri1(2)

ze{0,1,- , ML }¥x A

2 AI(MZ. + ) 3 Nr1(2)]
ze€{0,1,-- ,Mg; }ix.A
< 3\/2[AT(MF. + )"
where the second inequality is due to the following arguments,
Kr tep1—1 1 Npy1(z)—1 1
= IiNria@)>0p + —
R ST

\ NT+1(Z).

MZI }ixA

< Kr (11<naxT ng’> (MZ. + h)d

|A|T log, T ( maXTT( )> (ME + h)?,

where Ey = T}, — Ty, and K7 is bounded from Lemma E Thus Y17, i’jti_l Br (Z () is
bounded as
Kr tey1—1

T
Z Z Br (Z (1)) < 24\/|ATlog2Tlog( |¢;l\ > (1ri1la<xTTéZ)> (ML +h)™.

k=1 t=ty
Substituting the above bound in (33)),

Krp tey1—1

E[Y Y 20mB(Z(0)]

k=1 t=tp

< 48c,, \/|A|Tlog2 T log (

2|A|IT TN\ 8T d (%)
5 ) E [(Mg*) (Mg~ + h) 1211;%)% Tod }

2|A|IT »
< Cps \/A|T10g2 T'log < |é| ) E [(MeT* + R)FHrE ( max 7" )> },

1<i<r 0
where ¢, := 48¢,,. Finally, from the above equation, (32)), and (28],
Ry <8 (log (h(T + 1)) + 1) TQ(T)

2|A|T ap
+ ey \/|A|Tlog2Tlog ( 4] ) E [(MGZ )t (11218%XTT(§(1)):|
By choosing § = W(T)’ we get
Ry
< (log(h(T + 1)) +1)" + ey /[ AT Tog, Tog RIATPQT)) E | (M- +h)** 7% ({maxe 71}

< (log(M(T + 1)) + 1) + ¢y, /AT log, (2 A|T*Q(T)) E [(MQT* n h)d+r+ri’( max 7 ))})

1<i<T 0°
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where Q(T) = ¢, (Th)"+'~. O

B.7 Proof of Theorem[

Proof. Lemmas [T} 2, and [3 along with Cauchy-Schwarz inequality showed that the regret terms
Ro and Ry are of the order O(Krd.J*h*+?7+7% /| A|T) and the term R; is O(J*(h)"*). There-
fore, from R(T,mrspr) = Ro + Ri1 + Ra, the regret of Algorithm E, R(T,mrspEr), is
O(KrdJ*hd+t2r+r2 /| A|T). O

B.8 Requirement of an optimal policy oracle.

To implement our algorithm, we need to find the optimal policy for each model sampled by the
algorithm—optimal policy for Theorem [I|and optimal policy within policy class II for Corollary
this has also been used in past work [23 24} [36]. In the finite state-space setting, [49] provides a
schedule of € values and selects e-optimal policies to obtain O(+/T") regret guarantees. The issue with
extending the analysis of [49] to the countable state-space setting is that we need to ensure (uniform)
ergodicity for the chosen e-optimal policies; the lim sup or lim inf of the time-average expected
reward (used to define the average cost problem) being finite doesn’t imply ergodicity. In other words,
we must formulate (and verify) ergodicity assumptions for a potentially large set of close-to-optimal
algorithms whose structure is undetermined. Another issue is that, to the best of our knowledge, there
isn’t a general structural characterization of all e-optimal stationary policies for countable state-space
MDPs or even a characterization of the policy within this set that is selected by any computational
procedure in the literature; current results only discuss existence and characterization of the stationary
optimal policy. In the absence of such results, stability assumptions with the same uniformity across
models as in our submission will be needed, which are likely too strong to be useful.

If we could verify the stability requirements of Assumptions [3 and [ for a subset of policies, the
optimal oracle is not needed, and instead, by choosing approximately optimal policies within this
subset, we can follow the same proof steps as [49] to guarantee regret performance similar to
Corollary (1| (without knowledge of model parameters). To theoretically analyze the performance of
the algorithm that follows an approximately optimal policy rather than the optimal one, we assume
that for a specific sequence of {e }32 ;, an e;-optimal policy is given, which is defined below.

Definition 1. Policy m € Il is called an e-optimal policy if for every 6 € ©,

c(@,m(@)) + Y Polyla,m(@))v(y:0) < c(@,m5(x)) + Y Polyla, m5(@)o(y;0) + e,
yeXx yeX

where 7}, is the optimal policy in the policy class I corresponding to parameter 6 and v(.; 0) is the
solution to Poisson equation (3)).

Given e-optimal policies that satisfy Assumptions [3 and [4, in Theorem [2 we extend the regret
guarantees of Corollary [T to the algorithm employing e-optimal policy, instead of the best-in-class
policy, and show that the same regret upper bounds continue to apply.

Theorem 3. Consider a non-negative sequence {€j}7° | such that for every k € N, ¢y, is bounded
above by %-5-1 and an eg-optimal policy satisfying Assumptionsand is given. The regret incurred

by Algorithmwhile using the ey-optimal policy during any episode k is O(dh®\/]A|T).

Proof. For the e;-optimal policy used in episode k, shown by 7, we have

c(a, 7% (@) + Y P, (yla, 7 (@))v(y; 0k) < c(a, 75, () + > Po,(ylw, 75, (2))o(y; k) + €x
yeXx yeX

= J(0k) + v(x; 0) + €.
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Thus,

Krp tey1—1 Kr

R(T, 7rspg) = E [Z 3 c(X(t),WEk(X@)))} —TE[J(6*)] = Ro+ Ry + Ry + E [ZTM}

k=1 t=ty k=1
- Kr
with Ry =E ZTkJ(ek)] —-TE [J(H*)}

CKop tey1—1
R =E[Y 3 [o(X():00) —o(X 4+ 1:00)] ]
Tk=1 t=tg
Kp tk41—1

By =E[3 3 [o(X(t+1)60) — 3 Po (wX(8), 7 (X (1))o(y: 60)] |

k=1 t=ty yeX

We assumed that given e-optimal policies satisfy Assumptions[3]and[d] As aresult, we can utilize the
proof of Theorem [1|to deduce that the term Ry + R; + Ry is of the order O(dh?+/|A|T). Moreover,

we can simplify the term E {ZkK:Tl T Ek} as below:

Kr Kr K
E [ZTM} —E [ZTM} +E [ZEM}. (35)
k=1 k=1 k=1

From the second stopping condition of Algorithm wehave Tj, <Tj,_1 +1<...<k+1land

Kr

E [ZTkEk} < E[KT],

k=1
where we have used the assumption that 5, < %ﬂ For the second term of (35]), from (23)

Kr Kr E
E {ZE’CE’“} SIE[ k—fl} <E {1<1<TT0 Z k+1} [ max T()log(KT—&-l)},

k=1 k=1
(36)

where in the last inequality we have used >_;" | + < 1+ log(n). Finally, as a result of Lemma@and
Lemmal 8] the result follows. O

C Bounds on hitting times under polynomial and geometric ergodicity
C.1 Polynomial upper bounds for the moments of hitting time of state 0¢

For any 601,05 € O, consider the Markov process with transition kernel P(;T1 ’2 obtained from the
MDP (X, A, ¢, Py, ) by following policy 7;, . [29, Lemma 3.5] establishes that if the process is
polynomlally ergodlc equivalently satisfies @) then for every 0 < n < 1, there exists constants
B4, 0> 04, 6, > 0 such that the following holds:

n o gy N1
AVEe) @ <=8 (VEo@) " 4 gl (@), meX, (D)
where for i € (0,1), 551’92 := min(Bf ,4,,1) and

)(O‘Sl,QQ +VI—1)/(1—0¢§1,92)>

B 00 = 155000 Vi = (%, 92) + 1, 5, max (1,(551,92 , (38)

and forn =1, By , = By 5, and by o =by , . Consequently, the following result is immediate
from the proof of [29) Theorem 3.6]; for completeness, we provide the proof in Appendix
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Lemma 9.1 Suppose a finite set Cgl,eg’ constants 551792717{;1,92 >0,r/(r+1) < 0/51792 <1, anda
function Ve‘i g, 1 X — [1, 4+00) exist such that (@) holds. Then, there exist a sequence of non-negative
functions Vgi1 g, 1 X = [1,400) fori = 0,...,r + 1 that satisfy the following system of drift
equations for finite sets Cy, ., constants by o, > 0and 3y o, > 0:

AV g, (@) < =Bh, 0,V5, 0,() + 0y, 0,10y , (@), weX, i=1...r+l (39

Notice that r is the maximum degree of the cost function ¢ defined in Assumption [I. Following
the proof and approach of [29] and using the set of equations (39), we can find an upper-bound
for Eg[754] fori = 1,...,7 4+ 1 in Lemma @ In order to establish upper bounds for the first
r + 1 moments of 7ya, it is crucial to choose the value of 0/51792 greater than or equal to .77, as
demonstrated in the proof of Lemma|[I0]in Appendix

Lemma10. Fori=1,...,r+ 1, and forallx €¢ X
Eg™ [(TOd)i] < i¢§1,02 (Z) (Véli.ﬂz (:B) + b§1792 acgl‘ez) ’

where ¢, 4 (i) = [, ﬁ (Qj_l + (- 1)0405’%62[’21,92), i =1-(G—1)(1~-ap,),

01,02

-1
un U . _ .
by, ¢, and By o, defined in (38), and agy , = (Imnyeqz;lﬁ2 Ky, 0, (y)) .

Based on Lemma[T0] we impose the conditions of Assumption[d]to obtain uniform (over model class)
and polynomial (in norm of the state) upper-bounds on the moments of hitting times to 0¢. Moreover,
these conditions lead to a uniform characterization of parameters of Lemma|l0|over all models in our
class.

C.2 Distribution of return times to state 0%

For any 6,0, € ©, consider the Markov process with transition kernel P;l %2 obtained from the MDP
(X, A, ¢, Py, ) by following policy 7 . In the following lemma, we show that the tail probabilities of

the return times to the common state 0%, again 744, converge geometrically fast to 0, and characterize
the convergence parameters in terms of the constants given in Assumption [3] Explicitly, we show

n
g <9
Pya(19a > n) < €y .0 (791,92) ,

for problem and policy dependent constants cgl 0, and ’ygl 0, We will follow the method outlined in
[27] with the goal to identify problem dependent parameters that will be relevant to our results. Proof
of the following lemma is given in Appendix [D.3]and follows the methodology of [27].

Lemma 11. For every 01,05 € O in the Markov process obtained from the Markov decision process
(X, A, c, Py,) following policy Ty,, the return time to state 0 starting from state O satisfies the
following:

n
g ~9g
Pya(19a > m) < Coy .0 (791,92) ,
where

- 2
, o (Ba) 1

~g 1
01,0, = BbY 1 and 761,00 = 1 79 ’
01,92 01502

- 30 o +1 .
b, =l s Pmax (1, max  Ey[rd | |-
01,02 g 01,02 0
' 1- 76,05 ' ungl,ez\{Od}

Based on Lemma [IT] it is necessary to impose the conditions in Assumption 3 to obtain uniform
tail probability bounds on 7y« for all model parameters and policy choices in ©. Moreover, these
conditions lead to a uniform characterization of cgl g, and ’ygl g, over ©. Furthermore, as a result of

with

Lemma@ and uniformity conditions of Assumption |4, EZGZ [Tp4] has a uniform bound over © and
Cgl 0, \ {0}, which can be characterized in terms of the polynomial Lyapunov function.
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D Proofs of hitting time bounds

D.1 Proof of Lemma/9]

Proof. In the proof, to avoid cumbersome notation we will drop the indices 61, 6. Following the
proof of Theorem 3.6 in [29], we choose 1; = 1 — (i — 1)(1 — o) fori = 1,...,r + 1 and note that

as o € [5,1), we have 7; € [, 1]. As aresult, we can apply (37) to each 7; to get

r+17
A (Vp)m (:B) S _ﬁm (Vp(w))iap_i-&-l + bmﬂcp(az), i = 17 T T 1.

Thus, the system of drift equations hold for

Vi = (vr)l e i=0,...,r+1,
Bi = p", i=1,...,7r+1,
b = b, i=1,.. .7 +1,
C; = CP, i=1,....r+1,
where 3" and b" are defined in (38). O

D.2 Proof of Lemma 10|

The proof of Lemma [T0|uses the following lemma.

Lemma 12 (Proposition 11.3.2, [43])). Suppose for nonnegative functions f, g, and V on the state
space X and every k € Z.., the following holds:

B[V (Xpt1)|Fr] < V(Xy) — f(Xk) + 9(Xi).
Then, for any initial condition x and stopping time T

T—1

> F(X)

k=0

E, <V(z)+E,

z_:g(Xk-)] :
k=0

Proof of Lemma Following [29], the proof uses an induction argument. We will use the notation
of Lemmal?]for simplicity. Similarly, in this proof we will also denote ¢ . (4) as ¢(i), Ko, 0,(-) as

K()’ and V91,92’ b91’92’ 691792’ 091,92 as Vi, by, Bi, Ci.

From irreducibility, for all x € X, K(x) is positive and finite. Considering the system of drift
equations found in Lemma E, C; =CPisafinitesetforall¢ = 1,...,r + 1. Thus, minyec, K(y)
is strictly positive. Forallz € X andi=1,...,r 4+ 1, we have

1o, (0) < ( an K >)1K<w>. (40)

yeC
We set acr = (mingec, K(y) '= (mingecr K(y))"". From Lemma@, forj=1landx e X
AVp(z) < =f1Va(x) + bile, (x).
By applying Lemma[I2] for all z € X we get

T(del Od 1

> Vi(Xk)| < Volx) + biEqg Z Ie, (X3) | - (41)
Using and @1)), followed by noting that

K(x ZQ”QP”mOd 22”21@ [Toa (X )],
n=0
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we get

Tod71 00 Todfl
1 biace —n—
Eo | Y Vi(Xp)| < - Vol@) + 2B | D272 ) Tpa (Xgin)
=0 B b n=0 k=0
1 bia = Tod Z1H" ]
= 7‘/0( ) + 12or Em Z 2—77,—2 Z Hod (Xk:)
51 ﬂl n=0 k=n
1 bia i 0o Tod —14n T
S 7‘/})( ) + 12or Em Z 2_n_2 Z Hod (Xk:)
B 631 = My
L =N Tod i
< iVO( )+ brace ir" 2(n+1)
B B 2
1 blan
= —W(z)+
B (@) 631
As Vi(x) > 1, this gives us a bound on E,[7ya] as follows:
1 bloch
Eg|mod] < —Vo(x) + .
m[ Od] ﬁl 0( ) ﬁl
Assume for ¢ > 1, by the induction assumption we have
Tod—l
Ee | Y (k+1)7Wi(Xk)| < 6(i) (Vo(x) + brocs) . (42)
k=0

Set j =i + 1 in (39), which yields
AVi(z) < =Bit1Vig1(x) + bipa1lor ().
Define Z;, = k*V;(X ). From the above equation, we have
E[Zes1| X k] < (k+1)" (Vi (Xk) = Big1Vigr (X)) + bigrlor (X))
< Zp +2'(k + 1)V (Xg) + (k4 D)'bigalon(Xg) = (k4 1) Big1 Viea (X)-
By applying Lemma[I2]to the above equation, we get

Tod —1
Bit1Bq | Y (k+1)"Vipr (X3)
k=0
Tod —1 Tod —1
<2E, | Y (k+ 1) WVi(Xk) | +bipaBa | > (k+1)Tew (Xi)
k=0 k=0
< 21p(i) (Vo(x) + brags) + aorbit1Be[(104)], (43)

where the second inequality follows from and the induction hypothesis (42). Thereafter, from
(by using integral lower bound after using V; > 1), we have

Tod—1

1 ) . .
7Ea(r00)’] < Eq Y (k1) (Xk) | < () (Vo(z) + bracs) .
k=0
Substituting in [@3), we get
Tod,fl
ﬁiJrlEm Z (k + 1)i‘/i+1 (Xk) < 21(;5(2) (Vo(a:) + blacp) + ib7;+1O[Cp¢(Z') (Vb(w) + blaCP)
k=0
= (QZ + Z‘bH_lCVCp) Qf)(Z) (Vb(.’B) + bloéCp)
= Bi+190(i +1) (Vo(x) + brace) -
This completes the proof. O
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D.3 Proof of Lemma

Proof. In the proof, to avoid cumbersome notation we will drop the indices 6;,60,. Based on
Assumption E, there exists a finite set C9, constants b9, v9 € (0, 1), and a function V9 : X —
[1,400) satisfying

AVI(x) < —-(1
For n > 1, define the n-step taboo probabilities [43] as
aPrs =Pz (X, € B,74a>n),

— VI (x) + Vce (), x€X. (44)

where A, B C X, and 74 is the first hitting time of set A. We also let 4P, = Ig(x) and
VI=3%>, oa " V9. Applying the last exit decomposition on C¥'\ {0?} for all z € X, we obtain

Vg(w)

S IPIREALE

n=0yex

= VI(x +ZZCQP VI(y

n=1yeXx

o PLy "V (y

0o n—1
+ Z Z Z Z odP
n=1yeX m=1zcC9\{04}

:Vg +ZZCQP Vg

n=1yeXx

D3NP

(Z 07 ) (ZCszyV
YyeX zeC9\{09} n=1

£ 3D DD B

n=1yeX zeC9\ {04}

g ony Ve (y)
(45)

y)>+Z Yo wPeViz), @6

n=1zeC9\{04}

Term 1

Term 2

where we break up the trajectories starting at state & and reaching state i while avoiding state 0¢
into two: ones that never visit the set C¥, and the others that visit C¢ \ {0¢} up until time m but not
afterwards and exit C9 \ {0} at time m.

We first bound Term 1 in by finding an upper bound for the probability term ) °_; 0dP using
the first entrance decomposition on C'9 \ {09} while noting that z € C9 \ {04}:

> P = Z Z S P Pow g P!
m=t m=11=1 ueCs\{0"}
vgCI
- Y (T e (X )
ueC9\{04} \I=0v¢C9 m=0
< Z Z odPQTZ
weC9\{04} m=0
< Z i P (194 > m)
weC9\{04} m=0
<|CY max By [7gal, (47)

ueC9\{04}

where the third line follows from the fact that >~,° > wgcs C PL, Py, is the probability of entrance
to C'Y through u € C? \ {0}, so it is less than 1. Irreducibility and posmve recurrence combined

with |C9] < oo imply that max, e o\ {01} Eu[Toa] < 00, which shows Y77 o2 P 1s finite. Next,
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by induction we prove that forn > 1and z € C9 \ {Od} we have
> o PR VI(y) < (49)" 0. (48)
yex
For n = 1, we have using Assumption@that
D o PeyVO(y) < PayVO(y) < Y.
yeXx yeX

Assuming that holds for n, for n 4+ 1 we have
ST o PEIVIY) < Y o PR Py VO(y) <47 > o PRV(v)  (Using (@4))

yex yex vgCo
vgCI
<~ Z cs P2 VI(v) < (v9)" b9, (By induction step)
veEX

so is shown. We collect these bounds later on for our result on Term 2.

We now simplify the summation in (45)). Similar to previous arguments, we will use induction for
n > 1 and show forall x € X

D e Pl Vo) < ()" (V) +19). (49)
YyeX
For n = 1, we have
> o Py VIY) < Y Py VO(y) <49V (x) + 17
yeXx yeX

Assuming that holds for n, for n + 1 we have

ST PV < 3 PR ST Py VI(y) <47 Y oo PRLV(2)

yeX z¢C9 yeX 2¢C9
<7D PR VI(z) < (1) (V) + )
zeX

where the first and second inequalities follow from the definition of taboo probabilities and (44).
Thus, is proved. Lastly, for Term 2 in (46), we note

DD wPRVIR) S max Vi) Y] > P

n=1zeC9\{04} zeC9\ {0} n=1

< bI|C9? uegﬁ){(od} Eo [704] (From (7).

From the above equation, (#7), (@8), and (49), we bound V9(z) as follows:

V()

<Vve IVI(z) + b9) )" O 1

<VI(x)+ (v )+ Z:: +|CY| uegﬁ){{od} w[Tod] ( + Z )
Ve 3|C912b9

< (@) €] max (1, max [E,[r4]
1—~9 1—~9 ucC9\{04}

g
< V(x) 341 |C92 max (1, max [E,[rod] )
1—~9 ueC9\{0%}

where the last line is due to V9(x) > 1. Taking

~ b9 +1
B 309 + ( |C9|2max (1’ max Eu[TOd])> > 1,
1—~9 ueC9\{04}
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we have shown that _ .

VI(x) <bVI(x), xelX. (50)
We now upper-bound Pya (79« > n) for all n > 1 in an inductive manner, starting with Pya (7ga > 1).
As a part of showing this, for every & # 09 we argue that for all n > 1

~ 1 n
Pa (700 > n) < V() (1 - ;)g> - (51)
First note that )
VI(x) > VI(x) > 1. (52)
Thus,
Pa(ro1 > 1) = D 0Py < Y Py V(1)
yeX yeX
=3 Py 3 D P VIR = DN WP VI). (5Y)
yex n=0zcX zeX n=1

We now apply the bound in to get

. N 1
Pa(rg0 > 1) < Y ZOdP” VI(z) =VI(x) — VI(x) < VI(z) (1 - '6g> . (54

zEX n=1

With the base of induction established, we assume the statement in (51)) is true for n, and show that it
continues to hold for n + 1 as follows:

Pao(ros >n+1) = Y PayPy(r9a > n)

y#04
1 n
y#04
B 1 n+1
<VI(x) (1 - ~) ,
by

where the final inequality uses the same arguments as in (53) and (54).

Finally, using the tail probabilities of hitting time of state 0¢ from any state « # 0%, we bound the
tail probability of the return time to state 0% (starting from 0¢) as follows

Pod (Tod >n+ 1 Z Pow Tod > n) < ) Z POng

xA£0d xA£04

- 1\"
< b9 (1—) > PaVi(z <b9b9<1—l~)g) ,

@04

where the final inequality follows from the definition of b9, and we have
N2
) o (b)
;)4/921777 andcg:~77
b9 by —1
and the proof is complete. O

E Queueing model examples

E.1 Model 1: Two-server queueing system with a common buffer
We consider a continuous-time queueing system with two heterogeneous servers with unknown

service rate vector 8 = (07, 03) and a common infinite buffer, shown in Figure @ Arrivals to the
system are according to a Poisson process with rate A and service times are exponentially distributed
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with parameter 67, depending on the assigned server. The service rate vector 8* is sampled from the
prior distribution v defined on the space © given as

9 A 1-946 01
@—{(61,02)6R+.91+92<1+5,1<92<R}7 (55)
for fixed § € (0,0.5) and R > 1. Note that for any (01,62) € O, we have 6; > 05
and the stability requirement A < #; + 65 holds. The countable state space X is defined as
X = {x = (zo,71,%2) : ®p € NU{0},z1,22 € {0,1}}, in which ¢ is the length of the queue,
and x;,7 = 1,2 is equal to 1 if server ¢ is busy serving a job. At each time instance » € R, the
dispatcher can assign jobs from the (non-empty) buffer to an available server. Thus, the action space
A is equal to
A={h,b1,2},

where h indicates no action, b sends a job to both of the servers, and ¢ = 1, 2 assigns a job to server i.
The goal of the dispatcher is to minimize the expected sojourn time of customers, which by Little’s
law [52] is equivalent to minimizing the average number of customers in the system, or

. e
Inf h;n_folip T /0 [ X ()l dr, (56)
where X (r) is the state of the system at time r € R, immediately after the arrival/departure and
just before the action is taken. In [38], it is argued that from uniformization [39] and sampling the
continuous-time Markov process at a rate of A 4 6] + 65, a discrete-time Markov chain is obtained,
which converts the original continuous-time problem shown in to an equivalent discrete-time
problem as below:
T T-1

1 1
inf lim sup — X dr = inf limsup — X (3)]]1. 57
in l;nfolipT/o 12X ()l dr = inf 1;n:;pT;H (@)l (57)
To obtain a uniform sampling rate of A + 67 + 603, the continuous-time system is sampled at arrivals,
real and dummy customer departures. In [38]], it is further shown that the optimal policy that achieves
the infimum in is a threshold policy 7, with the optimal finite threshold ¢(6) € N, with the policy
defined as below:

h lf{l‘o = O} 01'{“(13”1 S t,Il = 1} or {1’1 = T2 = 1}
m(x) =< 1 if {ag > 1,21 =0}
2 lf{CCO Z 17 ||.’13||1 Z t+ 1,1‘1 = I,IQ = 0},

note that action b is not used. Policy ; assigns a job to the faster (first) server whenever there is
a job waiting in the queue and the first server is available. In contrast, m; dispatches a job to the
second server only if the number of jobs in the system are greater than threshold ¢ and the second
server is available. If neither of these conditions hold, no action or A is taken. Consequently, we can
restrict the set of all policies II in to the set II;, which is the set of all possible threshold policies
corresponding to some ¢t € N.

In the rest of this subsection, our aim is to show that Assumptions 1-5 are satisfied for the discrete-time
Markov process obtained by uniformization of the described queueing system and hence, conclude
that Algorithm can be used to learn the unknown service rate vector 8* with the expected regret of

order O(VT).

Assumption 1. Cost function is given as ¢(x,a) = ||x||1, which satisfies Assumption E with
fe(@) =29+ x1+22and K =r = 1.

Assumption 2. For any state-action pair (x,a) and § € ©, we have Py(A(x);x,a) = 0 where
A(z) ={y € X : [|lyll; — ll=|,| > 1} thus, Assumption 2| holds with h = 1.

Assumption 3. Consider a queueing system with parameter 6 following threshold policy 7; for some
t € N. The uniformized discrete-time Markov chain is irreducible and aperiodic on a subset of state
space given as Xy = X'\ ({(¢,0,0) : 4 > min(¢,2)} U {(0,1,1)}). In [38], it is proved that for every
t, the chain consists of a single positive recurrent class and the corresponding average number of
customers, depicted by J*(#), is calculated. Moreover, it is shown that for every 6 € © the optimal
threshold ¢(6) can be numerically found as the smallest i € N for which J(0) < J*+1(6). Define
the set 7 as the set of all optimal thresholds corresponding to at least one § € ©, or

T ={t:t=1t(0) for 6 € ©}.
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Remark 7. There is a discrepancy between the class of MDPs defined in this section and in Section|2]
as in the former the MDPs are not irreducible in the whole state space X. Specifically, for every
Markov process generated by a queueing system with parameter 0 following threshold policy T,
irreducibility holds on X, C X. Nevertheless, the results of Section|are valid as starting from state
(0,0), the visited states are positive recurrent; see Remark

In the following proposition, we verify the geometric ergodicity of the discrete-time chain governed
by any parameter § € © and obtained by following any threshold policy 7, for ¢ € T™; proof is given

in Appendix [FI.

Proposition 1. The discrete-time Markov process obtained from the queueing system governed by
parameter § = (01, 03) € O and following threshold policy 7 for some t € T* is geometrically
ergodic. Equivalently, the following holds

AV@S{t(w) s - (1 - 7g,t) Vé?t(w) + bg,tﬂcgﬁt(fv), x € X,

for
Viiy(x) = exp(=log(1 = d)||z]l1),
Cia = {(wo,21,0) s w0 <t} UL(0,0, 1)}, (58)
by = max exp (—log(l —0) (el + 1)), (59)
g _ 1 1 _ _5nt
B =3 T (61 +0)0-8)+ 2101 -0)7"). (60)

Having described all the terms explicitly, we verify the rest of the conditions of Assumption [3} which
lead to uniform (over model class) upper-bounds on the moments of hitting time to 0¢ as follows:

1. From (60), supgee ser= Y5, < 1/2 < 1.

2. From (58), we can see that state (0,0) belongs to Cf , for all § € © and ¢ € T™. In order for
C{ = Upeo ter+ Cg’t to be a finite set, the supremum of the optimal threshold () over © should

be finite. In [37]] with service rate vector (61, 62), it is shown that the optimal threshold is bounded
above by V26, /02, which further gives

t(0) < \@Z—l < V2R. 61)
2

Thus, supgycq t(0) < V2R, which is finite. To confirm a uniform upper bound for bg) 4» WE note

that from (39),

2—46
sup b}, = —— max exp(—log(1l — d)||=|1),
s, = 2 m exp( g1~ 9l

which is finite as |C{| < oco.
Assumption 4. To find an upper bound on the second moment of hitting times, we verify Assumption4|

and show that there exists a finite set C}, ,, constants 3} ,, by, > 0,r/(r +1) < ap, < 1,and a
function V', : Xy — [1, +00) satisfying

O{p +
AVE (@) < =85, (Vi) " 4 ey (@), @ e X 62)

Proposition 2. The discrete-time Markov process obtained from the queueing system governed by
parameter § = (01,02) € © and following threshold policy T for some t € T* is polynomially
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ergodic. This is true because holds for

V(@) = |z, (63)
P 2\

Cy, = {(x0,21,0) 1 xg <t} UL (0, 21,22) 1 %0 < 7——F—,T1+x2> 17, (64)

’ 91 + 92 - A
by = oz (s + 1)%), 65)
2\
P — 1 _
0.t 91 + 92 + A (66)
1
O‘Z,t =3 (67)

Proof of PropositionEis given in Appendix We define the normalized rates as A = m
and éi = /\Jr(filiwz, for ¢ = 1,2. From the choice of parameter space ©, we have A < 0.5 —0.56,
91 + ég > 0.5+ 0.54, and 51 > 0.25 + 0.256. We verify the remaining conditions of Assumption
as follows:

1. From (63), the first condition holds with 7} = 2 and s% = 2.

2. From (64)), we can see that state (0,0) belongs to Cy , for all ¢ € © and ¢ € T*. Furthermore,

“u 2\ < 1-9
bcoer 01 +0— A= 0

which follows from the stability condition A < 0.5 — 0.55. Thus, from the definition of Cg,t
in (64), and the fact that supgeg t(6) < V2R as argued in in (1), C? = Upco ter+ Cgt is a
finite set. We also note that supycg ter+ b’9’7t is finite as |C¥| < oco. It remains to show that
infgeo,ter~ By ; is positive, which is equivalent to verifying that supycg 4 A < 1/2, which
follows from the stability condition A < 0.5 —0.56.

3. We need to show that Ky () := Y o2 ;27" 2 (P})" (,0%) is strictly bounded away from zero.
We notice that from any non-zero state x, the queueing system hits 0¢ in |||, transitions only if
all transitions are real departures. Hence,

Kﬁ,t(x) > 27H:c\|172 (PJ)HEHI (:B,Od)

> 9~ llzlli—2 (él)llw”l (52)Hw\|1

> 9~ leli-2 p=lizlh (él)mlwnl
1 5\ 2=l

> o-lleli—2p—lll: (= 4 ©

> i+ 7

where the third and fourth inequalities follow from the definition of © in (53)). Thus, the infimum
of Ky () over the finite set C¥ and sets © and T is strictly greater than zero.

Assumption 5. We finally verify Assumption which asserts that supycg J(0) is finite. We have

J(@) = EXN#e,t(e) [C(X)] = ]EXN:U'G,t(G) H|X||1] = ]EXN:U'Q,t(G) [ Vozjt(e) (X) ’
where (19 1(g) is the stationary distribution of the discrete-time process governed by parameter 6 and
following the optimal policy according to 6. From and [43] Theorem 14.3.7],
bt
Ho,t(6) ( ngjt(g) (X)> < @’
which is finite from the the previously verified assumption. Consequently,
bt

sup J(0) < —5 < oo.
0c6 P
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E.2 Model 2: Two heterogeneous parallel queues

We consider two parallel queues with infinite buffers, each with its own single server, and unknown
service rate vector 8° = (07, 63), shown in Figure @] The service rate vector 8 is sampled from the
prior distribution v defined on the space © given as

A 1-6 01
= R? . < —_1<—=<
O {(91,92)6 + 91+92 < 1+5, < _R}, (68)

N

for fixed 6 € (0,0.5) and R > 1, which ensures the stability of the queueing system. Consider the
discrete-time MDP (X, A, Py-, ¢) obtained by sampling the queueing system at the Poisson arrival
sequence. The countably infinite state space X is defined as below

XZ{CL':(QTLQEQ)ZQ%‘ GNU{O}}’

where the state of the system is the number of jobs in the server-queue pair ¢ just before an arrival.
Furthermore, the action space A is equal to

A={1,2},

where action ¢ € A indicates the arrival dispatched to queue i. The unbounded cost function c :
X x A — NU{0} is defined as the total number of jobs in the queueing system, i.e., c(x, a) = ||x]|;.
For every w € R, we define policy 7, : X — A, which routes the arrival according to the weighted
queue lengths, as

7w (x) = argmin (1 + z1,w (1 + z2)),

where the tie is broken in favor of the first server. We also define policy class I as the set of policies
7, such that w belongs to a compact interval; in other words,

where R is defined in and cg > 1. We aim to minimize the infinite-horizon average cost in the
policy class II, that is,

J(#) = inf limsup%ﬂi

well T—oo

Yo e(X (1), A)

t=1

) (69)

where X (t) = (X1 (t), X2(t)) is the occupancy vector of the queueing system just before arrival ¢.
Even with the controlled Markov process transition kernel fully-specified (by the values of the arrival
rate and the two service rates), the optimal polic that satisfies in policy class II is not known
except when 0, = 05 where the optimal value is w = 1, and so, to learn it, we will use Proximal
Policy Optimization for countable state-space controlled Markov processes as developed in [[18].
Note that [[18] requires full knowledge of the controlled Markov process, which holds in our learning
scheme since we use the parameters sampled from the posterior for determining the policy at the
beginning of each episode. Furthermore, for each policy in the set of applicable policies II, [18] also
requires that the resulting Markov process be geometrically ergodic, which we will establish below.

Proposition 3. The discrete-time Markov process obtained from the queueing system governed by

parameter 0 = (61, 602) € © and following policy 7, € 11 is geometrically ergodic. Equivalently, the
following holds

AVYGQ,Q) (w) < - (1 - 757w) ‘/Og,w ((L’) + bg,w]ICgM (33), T E X, (70)

'When #; = 62, then the policy with w = 1 (Join-the-Shortest-Queue) is the optimal policy [19] for the
underling MDP.
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. w
d Tw+1

z1+1 1
exp (ag’w 10.) ) + +1 &P (agyw (22 + 1)) ,

12056  1-050 81— 62)
g  =mi log(1 + 6),log(1 + 6),wl 71
cho = min (wlog(1-+ 0).log(1 + 8) wlog 17 log 1030, L SEET) )
cy., = {(xl,@) € X : z; < max (x,j?j'g,w,o) Vi j = 1,2} , (72)
2w T, + 2 2
) _ g g
b = max (w L exp (ag,w . >+w e (af, (xz+2))>, 73)

1 1 Cleww a’gw C20w Cleww C29w ( )
g _ _ - i) 5 0y 0, 0,
V9.0 — + max (Cl,@,waCQ,Q,uw 1+w exp w + 1+w7 1+w + 1+ w exp aew )
(74)

and problem-dependent constants xl . and Gig o fori, j =1,2.

Proof of Proposition[3]is given in Appendix In the rest of this subsection, our aim is to show that
Assumptions 1-5 are satisfied for the discrete-time MDP and conclude that Algorithm[I|can be used

to learn the unknown service rate vector 8* with expected regret of order O(\/T)

Assumption 1. Cost function is given as ¢(x,a) = ||x||1, which satisfies Assumption E with
fel®)=20+21 +a2and K =7 = 1.

Assumption 2. For any state-action pair (x,a) and § € O, we have Py(A(x);x,a) = 0 where
Alx) ={y € X :||y|l; — ||=|l; > 1}; thus, the MDP is skip-free to the right with b = 1. Moreover,
from any (z,a), the finite set {y € X : ||y||; < |||/, + 1} is only accessible in one step; thus,
Assumption 2] holds.

Assumption 3. In Proposition [3, we verified the geometric ergodicity of the discrete-time chain
governed by parameter § = (61,62) € © and following policy 7, € II and thus, it only remains
to verify the uniform model conditions. We define the normalized rates as A = m and
éi = m, for ¢ = 1,2. From the choice of parameter space ©, we have A < 0.5 —0.59,
01 + 65 > 0.5+ 0.56, and ; > 0.25 + 0.250.

1. We first argue that (; g, is bounded away from 1 as follows

1 7<1,9,w =1-

ag‘w 91 - ag,w 91
1—eXp(—w)01+/\ 1 —exp - Y

0 (e [ enn N\ g (e [ ey
0+ A P crR ! P crR
(S Gfg ((‘RR)71
> (0.25 4+ 0.25 1-— _ ,
(0.25 + ) exp R

where the first line follows from the definition of ¢; ¢ ., in Appendix the second line from (71)
and the definition of policy class I. As aj  does not depend on 6, supycq we[1r crR] Cl0w <1
; WEl R CR :

Furthermore, by similar arguments it can be shown that (2 ¢ ., is bounded away from 1. We next

argue that Cl 2e® exp ( e

) + $20.¢ j5 hounded away from 1 using an upper bound found in
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Appendix [F.3]as below,

1 Cl,@,ww ag,w <2,9,w
1+w w 1+w

A
> 1 m (W + az’wC4) H’%
= At 610§ .G A+ agazwé},

ag.,, (—az,w@@a (A@ — W) G (61 + 05) — )\2§4)
(1 +w)(A+ 01af w1 ) (A + Oaag )
. (Czag,,)? éiéz ]
w(A+01af  Cw™ ) (A + 0207 ,C3)
(§3a27(CRR),1)2(0.25 +0.255)2
crR2(1+crRGaj . g)*
where (3 = (1 +6)7%, ¢ = %2‘555, and we have used the arguments of Appendix and

the definition of ©. Using a similar argument, we can show that $L0:4 4 $2.0.0 oy, (af,? w) is

(75)

14w 14w
bounded away from one, and finally, we conclude that supgcg ¢ L cpR v5 ., <L
Wwelenrs .

2. From (72), we can see that state (0,0) belongs to Cj , forall § € © and w € [C}%R’ crR]. In
order for C{ to be a finite set, the supremum of xffé’w over © and II should be finite. From the
definition of {',  in Appendix E,

(crR + 1)exp(crRaj )

xél’fe’w = log : o
0w (w+ 1)y, — wC1,0,.0exp (Tw) — (20w

crR (crRR+1)exp(crRaj .. r)
< log )

g9 g
CLO,(CRR)*l ((,LJ —+ 1)’)/5,w — CUCLQ,W exp <a2w> _ <2,9,w

and we can derive a lower bound for the denominator from (75). Similarly, we can show that
SUPgco we| crR] x3’, . is finite. We next find a uniform upper bound for z3',  from Ap-

pendix [F3,
xg,lﬁ,w
g1 +1 g
L (crR+1)exp(crRaj ) +wexp (a‘gyw xl“’; ) (<l,9,w exp (%T‘“) — 'yg’w)

= —log
g g
a9 w Yo,0 — C2;97W

1 1 (2crR + 1) exp (CRRag,cRR (Jci’je,w + 2))
] 8 1—+7
0,(crR)~! 0,w

which is uniformly bounded as +j  is unformly bounded away from 1 and the second line follows
from and the fact that 7§ , — (2,00 > 1 — 7§ - Arguments verifying the finiteness of the

i

1
cprR>

)

supremum of x{%  follow similarly, and we conclude that |CY| < oo. To confirm a uniform
upper bound for bJ _, we note that from (73)),

0,w?

sup by ., < max (2 exp (CRRag enr(T1+ 2)) + 2exp (ag enr (T2 + 2))) ,
96@,0.)6[03%,@313] ’ zeCy ’ ’

which is finite as aj  p, is independent of the choice of 6 and |CY| < oo.

Assumption 4. We next verify Assumption Eand show that there exists a finite set C'y , constants
Bh s Vo > 0,7/(r+1) < ap , < 1,and a function V7, : X — [1, +00) satisfying

AVY,(®) < =B, (Ve’jw(w))%’“ +0) Iy (x), @EX. (76)
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Proposition 4. The discrete-time Markov process obtained from the queueing system governed by
parameter 0 = (01,02) € © and following policy m,, € 11 is polynomially ergodic. This follow
because holds for

2

Viu(@) = a3, )
P 2 p3—i A+0;

Cpo=1(x1,22) € X 12 < (16c¢;R*~" + 101cgR) —i= 1,2, (78)
» ) 02 01+ 62— A 02 01

By, = min , , , , (79)
’ 2003 + N Vw + 17 (01 4 0+ NvVw + 1 2(02 + X)) 2(61 + \)Vw

(z1+1)?
by, = (Bg.,+1) mlélgi <w + (z2+ 1)), (80)
1
of, =5 (81)

Proof of Proposition [ is given in Appendix [F4] Next, we verify the remaining conditions of
Assumption 4]

1. From and the fact that w € [CF%R, crR), the first condition holds with 7¥ = 2 and s} =

SUPgeo wel Ly crR) 50w = crRR+1.

2. From (78), state (0,0) belongs to Cy  forall § € © and w € [CR#R, crR]. Furthermore, for
i=1,2, '

sup )\—Hgigsupigsupﬁgﬁ,
€0 .we[Lx crR 0; o0 0y 9o Oy ~ 140

which follows from the fact that #; < R, and él > 0.25 + 0.254. Thus, from the definition
of Cj , in (78), C% = Upeo we[-1 cnr)Ch. is a finite set. We next verify that the infimum of

crR’

By - found in (79), is positive. In (82)), we showed that infimum of AJHF— over O is lower bounded
by %‘s. From this, the fact that w belongs to a compact set, and 81 + 65 + \ > 4, it follows that

Infyco wel—L crR) B4 ., > 0. Furthermore, it is easy to see that 8 = < y/cgR. Hence, from

(82)

cRE’
(80D,
ry +1)2
sup by, = sup By, +1) max <(1) 4 (22 + 1)2>
9697‘06[@1%1%701%5’/] 0€O,we[Lg ,crR] zeCy w

°R

< (verR+1) max (CrR(z1 + 12+ (z2 + 1)2) ,
zeC?

which is finite as |C¥| < oo.

3. We need to show that Ko ., (x) := Y oo (27" "2 (P]“)" (z,0) is strictly bounded away from
zero. We show this using the fact that from any state @, the queueing system hits (0, 0) in one step
with positive probability. Take x; 9., = maxzec, , ; fori = 1,2. We have

inf min K(x) > inf min P(z,09)
GGG,wG[c;R,cRR]mGCQ,W 9€®,w€[céR,cRR]mEce,w
. d
> inf P ((I1797w,1'279,w) ,0 ) .

- 9€®,w€[%%,cRR]

The infimum in the right-hand side of the above equation is attained for the minimum normalized
service rates possible for each server, or §; = 1%‘5 and 0, = 1%}'%6. Therefore, the infimum of
Ky ., (x) over the finite set C¥, ©, and interval [CI%R, crR] is strictly greater than zero.

Assumption 5. We finally verify that supgcg J(6) is finite. We first note that for x = (z1, z2),

(z1 + 22)? < 2max(w*(0),1) (w*x(lﬂ) + x%) = 2max(w" (), 1)V9ij*(9) (z).
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From the above equation,
J(Q) = EXN#@,W*(Q) [C(X)]
= EXNHe‘w*(g) [”XHI]
< V2max(@ (0), DEX g o) [/ Vr o) (X))

where f1g .- (¢) is the stationary distribution of the discrete-time process governed by parameter 6 and
following the best in-class policy according to £, shown by 7« (4). From [43], Theorem 14.3.7,

D
SUPgco,we[-Ls crR] b@,w
Ho,w>(9) ( Vrgp’w*(g) (X)) < 615 ;

which is finite from the the previous verified assumption. Thus,

\% 2CRR (SHPQE@ w€E[—= crR wa)
sup J(0) < welegmentt 0,

0co By

< Q.

F Proofs related to the queueing model examples

F.1 Proof of Proposition ]

Proof. We define the normalized rates as

A 5 0;
A0 +027 ' N+ 0+6y
for i = 1,2. From the choice of parameter space ©, we have A < 0.5 — 0.58, 81 + 6 > 0.5 + 0.56,

and 6; > 0.25 + 0.256. To prove geometric ergodicity, from the discussions of Section [2, it
suffices to show that there exists a finite set Cf ,, constants by , > 0, v, € (0,1), and a function

Vi, + X — [1, +o00) satisfying

A= (83)

AVE (@) < = (1-198,) V(@) + b Ty (@), @€ & (84)
Take Vi, (z) = exp(ag ,||z||1) for some af , > 0. Fori > land x = (i, 1,1),
PV, (i,1,1) = AV, (i + 1,1,1) + 01V, (6,0, 1) + 62V, (i, 1, 0),
where P} is the corresponding transition kernel. Thus,
Pﬁt‘/eg,t(’t? 17 1) - (1 - vg,t)‘/eg’t(ia la 1)
= Aexp (a‘g,t (i + 3)) + (01 + 6) exp (agyt (i + 1)) —(1—~7,)exp (af,?t (i + 2))
= exp (ag’75 (i + 1)) (5\ exp(2ag,t) + 601 4 65 — (1- ’Yg,t) eXp(aat)) .
Take ag,; = exp(ag ;). We need to find ag; > 1 and 0 < 77, < 1 such that
Xag, — (1=~ )ags + 01 + 62 < 0. (85)
Take dg; = (1 — )" > 1and

.t ;:1—7&:%(1+(1—X)(1—5)+X(1—5)*1).

We need to have 7y, < 1 which follows from the stability condition A < 0.5 — 0.56 as below:

.11 < A 11 . A
79,t—2+2<(1—)\)(1—(5)+1_5> —2+2<1—(5—/\(1—5)+1_5)
11 <1 —(1—96)2 11 ~0(2-19)
—2+2<1‘5“1_5>—2+2<l S+ AT
1 1 5(2-19) 52
<-+-(1- —1-2 <1
2+2<1 o+ 5 ) 1 4<1
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We now verify (83):

A 1 1—X A -

Y72 (1 _ A9 V5 j 0y — — — — —
Mgy — (1=, )a0, + 61 + 62 (1-6)2 2(1-9) > Tai-ep " b
A 1—A 1
= + -
2(1 — )2 2 (1 —4)

2

s (O
T3 <5717)\5+2>\)
(

A@-0)+5-1)
< 0,
where the last line follows from A < 0.5 — 0.55 < (1 —8)/ (2 — d).
For « = (7,0,1) and ¢ > 1, we have
PV (i,0,1) = AV#, (i, 1,1) + 01V, (i — 1,0,1) + 62V, (i — 1,1,0),

and

PyVgy(i,0,1) — (1 =7 )V, (4,0,1)

= Xexp (ag i+ 2)) + (61 + 62) exp (az’tz) — (1 =7 ,)exp (ag’t (i + 1))

= exp (ag N ) ()\exp(2a9 D401 40, — (1 - Yo4) exp(agwt)) ,

which results in the same conditions as previously discussed. When & = (7,1,0) and ¢ > ¢ also same
argument holds.

Finally, holds for

Cf, = {(z0,21,0) : 2o < t}U{(0,0,1)},
az,t == log(l - 6)7
11 - 5 -
%= 5" 5 ((1%)(1*6)“(1*5) 1),
T _exp(az,tum”l)a

B

=

=

&
|

b, = max exp(ag ,||z[1) (exp(ag)t) + 1) ,
:EECG,,L
where the last line holds because PV (x) < V{/,(y) for y such that [|y[|; = [|=[|; + 1. O

F.2 Proof of Proposition 2]

Proof. In order to show polynomially ergodicity, we will verify (62). We define V7, (z) = |l||? and

af , = 1/2, which is equal to r/(r + 1) for r = 1; r is defined in Assumption E For z = (i,0,1)
andi > 1,

PP (i,0,1) = AVP, (i, 1,1) + 6, VE, (i — 1,0,1) + 0,V (i — 1,1,0),
in which )\, 61, and 05 are the normalized rates defined in (33). Thus,

PYVE(3,0,1) = VE,(1,0,1) + B,/ Vi, (1,0, 1)

=Ai+2)%+ (01 +62)i — (i +1)> + B, (i +1)
=i(4A—2+ 85 ,) +4N—1+ 8},
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For g, = 1 — 2)\, the right-hand side of above equation is non-positive for i > —22-. For

1—2x
x =(i,1,0) and i > ¢,

PpVE(i,1,0) = AVE,(i,1,1) + 6,V (i — 1,0,1) + 6,V (i — 1,1,0).

Thus,
PgV(f?t(i, 1,0) — V(,’?t(i, 1,0) + Bgﬁt V;t(L 1,0)
= Xi+2)?+ (01 +02)i* — (i + 1)+ 85, (i +1)
=i(AN =2+ 85 ,)+4A - 147},
which is also non-positive under the same conditions as the previous case. Fori > 1and « = (4,1, 1),
PP (i,1,1) = AV, (i + 1,1, 1) + 6, VE,(4,0,1) + 6,V (i, 1,0).
Thus,
PIVE(i,1,1) = VE (i 1 1) + B VI 1, 1)
= Ai+3)*+ (61 + 2)(i + 1)* = (i +2)* + 85 (i + 2)
=i(4\ -2+, +8A—3+28)

which is non-positive under the same conditions as the first case. Finally, holds for

C’g)t = {(w9,21,0) 1 zg < t}U {(zo,xl,xg) tx < %,xl + x> 1},
By, =1-2}
ag, = %’
Vi) = |7,
oo = ma (]l + 1)),
where the last line holds because PV),(z) < V?,(y) for y such that [|y[|; = [|=[|; + 1. O

FE.3 Proof of Proposition 3]

Proof. To show geometric ergodicity of the chain that follows m,,, we verify (70). Take aj > 0 and

w r1+1 1
Vi () = o1 P (agw 1w ) + - —7 oxP (ag,w (w9 + 1)) : (86)

First, we find PV}/_(x) for the function defined above. We have

Xi1(2)+1 x 1
exp (a%ﬁ)} +E3~ L} 7 &P (ag’w (X2(2) + 1))} ,
(87)
where X (2) = (X7(2), X2(2)) is the state of the system at the second arrival, starting from state x.
To find the above expectations, we first find the corresponding transition probabilities. If the number
of departures from server ¢ during a fixed interval with length ¢ is less than the total number of jobs
in the queue of that server, the number of departures follows a Poisson distribution with parameter
0;t. Let P ((z1,22) — (27, X)) be the probability of transitioning from a system with x; jobs in
server-queue pair ¢ (just after the assignment of the arrival) to a queueing system with & jobs in the
first server-queue pair (just before the upcoming arrival). For 1 < z} < x;, we have

(0 A6\
I exp(—Oht) dt = —~—
(1 — oy PO A =G 5 ’

PV, (x) =Bz L —

P (21, 22) — (2}, X)) = / " Aexp(—A)
(88)
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and

(T ()
P((21,2) > (0,X)) =1 — = ' %

Assume 1 4+ z1 < w(1 + x2), which results in the new arrival being assigned to the first server. For
the first term in (87)), we have

= oo . 512)

- zilp((m +1,22) = (i, X)) exp (“Z’“ZJ)

61 $1+1 CD1+1 )\ 01 xl-‘rl—i
01 + A ) +ZeXp a“’“’ 61+ X \ 0 + A

z1+1 01 o1l
91 z1+1 A g 1+ 1 1 —exp (—a o ) (01+A)
+ exp | ag

01+ X 01+ A w 1—exp< )H—H\ )
1

2 >“+1 A (g 9:1+1) 1
exp | ap ” . (90)
01 + A 01 + A w l—exp(— %Jw)olejrx

A

Similarly, for the second term in (87), we have
ET [e (9X(2) <( b2 )x2+ A exp (al ! 1)
x |€XP ag X2 )] < —— exXp (ae’wm) .
O+ A Os + A 1—exp (_ag’w) gfi,\
To satisfy (70), for some 0 < 77 , < 1 and all but finitely many x, the following should hold,
PV, (@) <5 Vi, (),

or from and (87),
. Xi1(2)+1 7r
Emw |:w eXp <ag,W1(o~3):| + ]E i |:exp (ae (XQ( ) )>:|

1
<V <w exp (azw xl; ) + exp (agﬁw (zo + 1))) )

" 01 w1+1+ 02 m2<c Rl
01 + A 0, +1) —°F '

From and (91), it suffices to have
W eXP (ae w mljz) 7rrx €XP (ag,w (22 + 1))

_ _ 9,w 01 _ .9 02
1 eXp( w ) 01+ 1 GXp( a97w) O2+A

Notice that

(crR +1)exp(crRaj ) +

Ty +1
< ’ygw (w exp (ag,w 1w > + exp (azw (zo + 1))) . (92)
Define
A A
CLow = elﬁg T Q0w = Pat) ;
17exp< “) EY 1 —exp (—ae w) Y

Simplifying (92)), we need the following to hold
r1+1 ag w
(crRR+1) exp(cRRazw) + wexp (ag,w 1w > (Cl 0w €XP (i}) - 73w>

+exp (ag}w (22 + 1)) (@W _ ’ng) <0. (93)
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As (9., < 1, there exists 7 _ such that

C2797W < 75,0.1 <1
From the assumption 1 + z; < w(1 + x2) and the above equation, (93) can be further simplified as

1+ 1 ag .,
(crR+1) eXp(cRRaZ’w) + exp <ag’w lw ) <OJC1,9,w exp <Z}> + (0w — (W l)vg’w> <0.

94
For the above to hold outside a finite set, we need to have
Cl 0,wW az w CZ 0,w g
'y 9 ) £ . 95
1+w R +1+w<’ye’” ©3)
Define
1 1-0.56
= — = - 96
CS 1 + 67 <4 1-6 ( )

Note that (5 < 1 and {4 > 1. Defining function f(y) := 1+ {4y —exp(y), we note that for y < log (4,
f(y) > 0, where log (4 is the maximizer of f(y). Similarly, taking g(y) := 1 — (3y — exp(—y),
for y < —log(s, g(y) > 0, where — log (5 is the maximizer of g(y). Thus, we conclude that for
ag , < min (~wlog (3, —log (3, wlog (4),

od
exp(—y) <1— {3y holdsfor y < max (0’“, ag w) , 97)
w ,

ad

exp(y) < 1+ {4y holds for (98)

To guarantee the existence of 0 < ~§ < 1 that satisfies (95), we need to ensure the left-hand side of
is strictly less than 1. Using the bounds found in and and the definition of ¢y ¢ ., and
(2.0,w» We simplify to get

el G
M+ 91“9 »G3 A+ 02ag7w<3 ’
which is equivalent to
01(1+w
GZ’WC?,GQ (AC4 — Cgl(w)) < A3 (01 + 02) — N3¢y (99)

To make sure there exists aj , > 0 that satisfies (99), the right-hand side of needs to be positive,
which follows as below:

ACs (01 + 02) — A2Cq = A <9i§2 _All_o.655>
— A(G) + 65+ ) (;;_41—_0.;5)
Ao <1i5 A<1i5+11_0555)>
R <1i5 <1i5+11__0§6>>
*A(91 +02+)) (100)

\ivhere 5\, 0~1, and 52 are the normalized rates defined in and we have used the stability condition
A < 0.5 — 0.50. We further simplify the left-hand side of as

0:(1+ 1—-0.56
(305 ()\44 _ CSI(TW

)
< BaA(3(s < 1_752(91 + 02 + M)A
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From the above equation and (100), a§  needs to satisfy

(1 — 82)
g < - -7
9w = 3(1-0.50)

Finally, we take ag , as

' 5(1—6°
ag’w = Imin <—UJ 10g C?n _10g C?” w IOg C4’ 8((1—0535)) .

After finding an appropriate ag’w, we can choose 0 < vg’w < 1 such that holds or

1 C1,0,0wW ag w (2,00
g > |14 220" ; 0, )
79’“’_2<+1+w R +1—|—w
Moreover, from (94) a lower bound z{’, , for 21 is derived; In other words,(94) holds for z1 > x{!, .

From (93), we can find the corresponding 3}, , and take =’ , = (21 ,, %3y ). By repeating the
same arguments when 1 + z; < w(1 + x2), we finally conclude that

AVP (@) < = (190, Vi (@) + b oy (@), e,

Vi (@) =

w 1 +1 1
/ T (azw " )+w+1exp(ag)w(z2+1)),

. 1—-0.56 1-0.56 5(1 — 82
ag ,, = min (wlog(1+6),log(l+5),wlog 5 ,log T3 740312(1—0)-55)> ,
ngw ={(z1,22) € X : z; < max (xffgﬁwﬂ) i, =1,2},

1 ]. CI,O,QJW ag,w C270,w C1797ww CQ,@,W
Vow = 5 T 5 max (Cl,@,wa<2,9,w7 el Gall I wrtle sy e (ag,w> ’

2w T+ 2 2
bgw = wrélg;w (w 7 exp (ag,w " ) + o1 exp (agw (zo + 2))) ,

_A
C1,0,0 = fts
e aj o,
—_ — 2w 1
1 —exp ( - ) ey
A
_ 2+
CQ,G,w - g P) )
2
1 —exp ( aaw) Toix
W (crR +1)exp(cgRaj )
9 =——1o :
1,0,w g g )

g
o (w4 1)7],, — wC10wexp (%”) — (20w

z91 1 al
| (erR+ Dexplentaf) +wep (af Lo ) (e () <o)

g1 —
T = log
2,0,w g g
aﬁ,w ’Y(),w - C2,9,w

(crR+ 1)exp(crRay )

)

g2 —
x2,07w - g IOg

YW (W 1)vg, —wliew — (2,00 eXD (GZ,J

w | (crR+1) exp(cRRag)w) + exp (agw(acg?&w + 1)) (Cg’e’w exp (agyw) — Wg,w)
—g — 10g
ae’w w (’ng - Clﬂ,w)

)

92 —
xl,@,w -
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F.4 Proof of Proposition 4]

2
Proof. Define V' (x) = = + 23, and af , = 1/2. Assume that z; = 0 and z3 > (1 — w)/w;
which means the new job will be assigned to the first server. The transition probabilities of the
discrete-time chain sampled at Poisson arrivals is given in and (89), and we calculate PV} (x)
as

A T3 . A 0, T2—1 T2 . A 0, T2—1
PVP (&) = — s ’ ’ :
Vow(@) w(A+91)+;Z N+ 0 (02+>\> <CRR+§’ N+ 0 (02+A>

(101)
We define d; := 0, /(0; + \) fori = 1,2 and
Sevtn(ats)
=1 A+ 92 92 + A
1 T 2 2 (2 2 2
=0 ae (—d3? (do + d3) + d5 (25 4 222 + 1) + dg (—225 — 222 + 1) + 23)
1
-0 (1 —d3?) (do + d3) + 23 (d5 — 2d2 + 1) + 22 (2d3 — 2d»))
2d (1—d3?) (dg + d2)
2 2 2 2
=5 — 102
LTI, (1 — do)? (1
From (101)),
2ds (1—d3?) (dg + d%)
PV, (@) = Vi, () + By 22 < (— —a " Bé’yw) Ty + 0y +crR.
Outside a finite set, we need the above equation to be non-positive; which is equivalent to
1—ds (1-4d3?)(1+ds) 1—ds
-2+ 5 2 R <0.
< + 8o A )szr 4 +erR—g—= <
Asdy < 1,
1—dj y—1
T4 =14+dy+...+dy "<y for y > 1. (103)
— d2
Thus,
—2—|—ﬂp 1—ds - (1—d§2)(1—|—d2) T Rl_d2
Ow dg 2 1-— dQ R d2
1-— 1-—
< |de—1+85 1-d x2 +crR d2-
g dg dg

By taking 3} < d2/2, it suffices for the following to be non-positive,

1—-d 1-d
— 2LE2—|—CRR 2

<0

)

2

which holds for x5 > 2cgrR/ds. Thus, for 1 = 0 and x5 > max (2cgR(\ + 02) /02, (1 — w)/w) =
2¢cgrR(\+065) /65, holds. The case of x5 = 0 and non-zero x; follows same arguments and
holds for ﬁg}w < dy/2\/w, x5 = 0,and 1 > max (2cgR(A + 01)/01,w — 1) = 2cgR(\ + 61)/6;.
We now consider the case of x1, 22 > 0 and 1 + 1 < w(z2 + 1), and note that

@ = ag < O o 1 < VT T+ )

w

Hence, it suffices to find finite set C}) , constants bg’w and 65,w > 0, such that the following holds

7(“)7

2
for Vi, (&) = T + 3,

Avgfw(m) < —Vw+1 gw(xg +1)+ b’e’,wﬂcgw (x).
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As 21 +1 < w(zy + 1), the new arrival is assigned to the first queue and we find AV}’ (x) +
Vw—+ 185 (22 + 1) using the same calculations as (102).

AVY (x) +Vw + 164 (zo + 1)

L 2 2d; (1 - dglcﬁ_l) (dl + d%) 2
o ((1‘1—1-1) 1—d (z1+1)+ (1—d;)2 Iy

1—d5?) (do + d3
_2dy x2+( 2°) (d2 + d3)
1—ds (11— do)?

+ Vw187 (22 +1)

_mf, 2 1—3d;,  (L—dP™) (di +d?) (104
w 1—d; w(l—dy) w(l —dy)?
20 2dy  (1-d3*) (d> + d3)
1) (- Vo + 188 1
+(:v2+)( g, TYet 69,w>+1d2 10— ) (105)

We next consider two different cases based on the value of d; and analyze them separately.

One. 0.8 < d; < 1: We first notice that the coefficient of ;1 in (104) is negative, as d; > 1/2. For
x1 > 1, (104) is equal to

1 2 L %

13172
1 _
= ((2 —ddy)(w1 — 1) +di(1+dr) Y di +di(1+dr)” +3 - 7d1>

(JJ(l—dl) part
1

< m((2—4d1)($1—1)—|—di’(1+d1)(:r1—1)+d1(1+d1)2+3_7d1)
1

= oy (@ — 4+ 2 = 1) di(1+ i) 45— Td)
— 1

_3_2 2_2 9 o

Bl bl R T AL UL

<0,

where the third line follows from (103), and the last line from the fact that when 0.8 < d; < 1, both
terms —d3 — 2d? — 2d; + 2 and —d} — 3d; + 3 are negative. Next, we notice that (T03)) is equal to
(1—d3?) (d2 +d3)

(1 —dy)?

dy + d3
12 d2x2+\/w+1 -
—dy ,

2d
9 (— - 2d +Vwt 1ﬁ§7w> +Vw 18, +
— U2

2
<x2<—1 il+x/w+15§,w>+
- W2

2ds d2+d§ » »
= o9 _1—d2+ 11— +Vw+ 18y, | + Vw+ 18y,

= X9 (—dg +Vw+ 1Bg’w) +Vw+1 g,w’
where the second line follows from (103). Taking Bg,w < dy/2v/w + 1, we get

(1—d3?) (d2 + d3) b b
(1—dy)? = 9T gy

2d
9 ( : 2d + Vo 165@) +Vw 185, +
— W2

which is non-positive for 25 > 1. Finally, when 0.8 < d; < 1, 21,22 > 0,and 21 + 1 < w(xs + 1),

holds for A7 , < d2/2v/w + 1.
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Two. d; < 0.8 : Taking Bg’w < %, we note that the coefficient of x5 in (103) is negative.
Thus, from 1 + 1 < w(x2 + 1), (104) and (103),

AVY (®) + Vw + 1585 (22 + 1)
Ll (2_ 2d, > L (L—df*™) (di +d?)

w 1—dy) w w(l —dyp)?

1+ 1 2ds 2ds (1—d3?) (d2 + d3)
_ 18P
+ ( 1_d2+\/w+ ﬁe7w>+1_d2+ TPAL
X1 +1 2d1 2d2 ng d1 +d% d2+dg
2— — V 15?7 .
ST ( T—d 1-d, TV@t B97“>+1—d2+w(1—d1)2+(1—d2)2
(106)
Asd; = éi/(éi + 5\) in terms of the normalized rates, we get
o 2 2y, 200 200 —2(01+0:- )
1—di 1—ds A A A 7
which is negative from the stability condition. For ng <4 yj% 2 from (106) we get
AVY () + Vw + 1585, (22 + 1)
—(01 + 6 — N 2ds dy + d? dy + d3
< -~ ].
S S R A W M erc p s T Ay
(01 + 05— X 20, 01(20, + 1))  62(205 + X
_ (61406, )(z1+1)+~2+1(1~ ), 62(20; )’
wA A w2 A2
which is non-positive for
5 (95, 43 i (20 -
ol 61 ( 9111—{\)+<i)92(~92+3)\).
A0+ 02— N)
As d; < 0.8, we can see that 2> §1/4; thus,
01(20) + N) + whx(205 +3X) 460, (201 + N) + 4wB5(205 + 3))  4cgrR(1 + 2\
1(201 +A) + w82(202 +3A) _ 461(201 + A) + 4w05(20, +31) _ derB(1 + )S4CRR,

;\(é1 + 52 — ;\) é1(é1 + ég — 5\) )
where we have used the fact that 01 > 0y, w < crR, 0; + 0y — X\ >4,and A < 0.5 — 0.50 and it
suffices for x; to be greater than or equal to 4cg R. For x1 < 4cgR, (104) can be upper bounded as

8&cpR  1—3d; dy + d? 8crR 2 8crR + 50
< < ,
w w(l—dy) w(l-d1)?~ w w(l—dy)? w

where in the last inequality we have used d; < 0.8. From (105) and taking ﬁg’w <dy/2v/w+1,
A\/gjw(sc) +Vw + 155,w($2 +1)

8crR + 50 2dy | dy 2dy (1 —d3?) (do + d3)
< - —= 1
< +( 1_d2+2>(m+)+1_d2+ 1= dy)?

( 2ds do dg+d%>x2+d2+86RR+50

w

C1—dy 2 1—dy
d dy  8cgrR+ 50
2 + 2Jr CR :

2 w

- 7?@ 2 w

which is negative for

16cg R + 100

>1
T2 = + WdQ
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Finally, when z1+1 < w(ze + 1) and z1,20 > 0, (76) holds for gy <
\/ﬁmin( T +A 01 + 0y — ), x1 > 4epR, and x5 > 1+ 16cp 1100 Repeating

wds

the same arguments when z1,75 > 0 and z1 +1 > w(xe + 1), (76) holds for Bg’w <

\/ﬁmin( 200, -s—A 91 + 0y — ;\), T > 1+ mcRdiM, and x» > 4cgrR?. Finally, (76)
holds with
2
x
VP _ -1 2
O,w(w) w + Iy,
P 34 A+ 0;
Coo = (x1,29) € Xty < (IGCRR + 101CRR) ) i=1,2
ﬂp — min 92 91 + 92 - 92 91
O 20y + Mvw +1 Vw+1 "20,+X) 26, +A\)w )’
(1 +1)2 5
by = (B +1) Do <w + (w2 + 1)),
1
p = —
O‘O,w 2’
where the fourth line holds since PV (x) <V (y) for y = (y1,y2) such that y; = x; + 1 for
i=1,2. 0

G Numerical results

G.1 Comparison of Algorithm [T with other learning algorithms

We first note that due to the countably infinite state-space setting of our problem, we are unable
to directly compare our algorithm to other learning algorithms proposed in the literature. One
potential candidate algorithm uses the reward biased maximum likelihood estimation (RBMLE)
[33L 134} [11} 142], which estimates the unknown model parameter with the likelihood perturbed a
vanishing bias towards parameters with a larger long-term average reward (i.e., optimal value).
This scheme also uses the principle of “optimism in the face of uncertainty” in how it perturbs the
maximum likelihood estimate. The naive version of the RMBLE algorithm does not apply to our
examples due the following key assumption: over all parameters (and the control policies used for
them), the transition probabilities are assumed to be mutually absolutely continuous; this is critical
for the proofs and also allows the use of log-likelihood functions for computations. Similarly, naive
use of the algorithms in [36] and [24] is not possible, again due to a similar absolutely continuity
assumption which is critical for the proofs. Our posterior computations avoid such issues as the true
parameter always has non-zero mass during the execution of the algorithm: episode k always starts
in state 0% which is positive recurrent for the Markov chain with true parameter 8* and policy used
75, - The RBMLE algorithm has yet another issue in that it requires knowledge of the optimal value
function, and hence, for our examples, it may only apply to Model 1 for which the value function is
known analytically. Finally, whereas we do get to observe inter-arrival times for both model, we never
directly observe completed service times owing to the sampling employed, and this precludes the
direct use of Upper-Confidence-Bound based parameter estimation followed by certainty equivalent
control algorithms. Owing to these issues, at this point in time, we’re unable to perform empirical
comparisons of Algorithm [I]to other candidate algorithms with theoretical performance guarantees in
a countable state setting.

As discussed in the previous paragraph, learning algorithms with theoretical performance guarantees
are established in the finite state setting. One such algorithm is the certainty equivalence control with
forcing, which is proposed and discussed in detail in [4]. To assess the finite-time performance of our
algorithm, in Figure [d, we compare the performance of our proposed learning algorithm, denoted
as TSDE, with the algorithm introduced in [4], referred to as AgrawalTeneketzis. Reference [4]]
proposes a certainty equivalence control law with forced exploration, which operates in episodes
with increasing lengths and a priori fixed sequences of forcing times. Specifically, at the beginning of
each episode, all possible stationary control laws are explored for one recurrence interval of state
(0,0). Subsequently, based on this exploration, an empirical estimate of the average collected reward

52



_
103,
102,
+ 4+ 102
o 2
g g
= — TSDE & 1014 —— TSDE
1001 —— AgrawalTeneketzis —— AgrawalTeneketzis
-%- 0.12703 100] -%- 0.35703
-@- 0.0237%9% -@- 0.15708
102 103 104 102 102 10 10%
T T
(a) Model 1: Queueing system of Figure (b) Model 2: Queueing system of Figure

Figure 4: Comparison of the regret performance of Algorithm |I (referred to as TSDE) with the
algorithm proposed by [4] (denoted as AgrawalTeneketzis) for the queueing models of Figure
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Figure 5: Total variation distance between the posterior and real distribution for A = 0.3,0.5,0.7.
The y axis is plotted on a logarithmic scale to display the differences clearly.

is formed, and the control law resulting in the maximum average reward is implemented for the
remainder of the episode. The length of the episodes are determined according to sequence {a; }$2,
defined as following:

G'O:O»

i
aizz:bk—&—ip, fori > 1,
k=1

where p is the number of possible stationary control laws and b; = | exp (zﬁ)J for any 6 > 0.
Specifically, episode 7 terminates after completing additional a; — a,;_1 recurrence intervals to state
(0,0). Both algorithms are implemented in the two queueing systems of Figure where the arrival
rate is A = 0.5 and service rates are distributed according to a Dirichlet prior over [0.5,1.9]%. In
Figures|4a and[4b| we set § = 3.5 and § = 3, respectively. Moreover, in Figure [4b] the goal is to find
the optimal weight w in the set {1.5,2,2.5, 3, 3.5}. The results in Figure show that both algorithms
exhibit a sublinear regret performance. Specifically, Algorithm |1, TSDE, achieves an O(v/T) as
predicted in our theoretical results of Theorem [I and Corollary [[[ Furthermore, in both queueing
models, our proposed algorithm consistently outperforms the algorithm presented in [4] in terms of
regret order.
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(a) Model 1: Queueing system of Figure (b) Model 2: Queueing system of Figure

Figure 6: Optimal policy parameters for different service rate vectors in the two exemplary queuing
systems in Model 1 and Model 2 with A = 0.5.
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Figure 7: Estimated average cost of Model 2 for three different service rate vectors.

G.2 Model 1: Two-server queueing system with a common buffer.

Figure 3blillustrates the behavior of the regret of Model 1 for three different arrival rate values and
averaged over 2000 simulation runs. In these simulations, the parameter space is selected as

© = {(01,02) €[0.5,0.6,...,1.9]* : A\ < 01 + 05,05 <0},

which results in a prior size of 105. As depicted in Figure [3a, the regret has a sub-linear behavior and
increases with the arrival rate. The total variation distance between the posterior and real distribution,
a point-mass on the random 6*, are plotted in Figure @. As expected, the distance diminishes towards
0, indicating the learning of the true parameter. As mentioned in Appendix [E.T] the optimal policy
minimizing the average number of jobs in a system with parameter 0, is a threshold policy 7;(gy with
optimal finite threshold ¢(6) € N, which can be numerically determined as the smallest i € N for
which J¥(0) < J+1(0), calculated in [38]. We compute the optimal threshold ¢(6) for every 6 € ©
and present the results in Figure[6a, We can see that the threshold increases as the ratio of the service
rates grows. Specifically, this is why in Appendix [G, we imposed conditions on © to ensure that the
ratio between the service rates is both upper and lower bounded.

G.3 Model 2: Two heterogeneous parallel queues

Figure3b illustrates the behavior of the regret of Model 2 for three different arrival rate values and
averaged over 2000 simulation runs. We note that the regret is sub-linear and increases with higher
arrival rates. In these simulations, the parameter space is selected as

© = {(01,02) €[0.5,0.7,...,1.9* : A< 01 + 05,05 < 0},

which results in a prior size of 28. As discussed earlier, our goal is to find the average cost minimizing
policy within the class of policies Il = {m,;w € [(crR)™!,crR]}, cr > 1, where 7, (z) =
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argmin (1 + z1,w (1 + x2)) with ties broken for 1. As discussed before, even with the transition
kernel fully specified (by the values of arrival and service rates), the optimal policy in II is not known
except when 0, = 05 where the optimal value is w = 1, and so, to learn it, we will use Proximal
Policy Optimization with approximating martingale-process (AMP) method for countable state-space
MDPs [18]]. We run the algorithm for 200 policy iterations, using 20 actors for each iteration. We
take the state (0, 0) as a regeneration state and simulate 1500 independent regenerative cycles per
actor in each algorithm iteration. To approximate the value function, we employ a fully connected
feed-forward neural network with one hidden layer consisting of 10 x 10 units and ReLU activation
functions. The AMP method is also employed for variance reduction in value function estimation.
The optimal w for every § € © is shown in Figure [6b, indicating that w increases as the ratio of the
service rates grows. Therefore, it is necessary to ensure that the ratio between the service rates is
bounded from above and below. Furthermore, to evaluate the regret numerically, the value of J(6)
is required for every 6 € ©, which is not known. Thus, after finding the optimal w using the PPO
algorithm, we perform a separate simulation to approximate the optimal average cost. In Figure[7} we
plot the estimated average cost for three different service rate vectors, demonstrating that the optimal
average cost decreases as the service rates increase. In Figure [5b we also depict the total variation
distance between the posterior and real distribution, which is a point-mass on the random 6™, and
observe that the distance is converging to zero.
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