Rarest-First with Probabilistic-Mode-Suppression
(RFwPMS)

Nouman Khan, Student Member, IEEE, Mehrdad Moharrami, and Vijay G. Subramanian, Senior Member, IEEE

Abstract—Recent studies suggested that the BitTorrent’s
rarest-first (RF) protocol, owing to its work-conserving nature,
can become unstable in the presence of non-persistent users.
Consequently, for any provably stable protocol, many peers, at
some point, have to be forced to hold off their file-download
activity. In this work, we propose a tunable piece-selection policy
that minimizes this (undesirable) requisite by combining the
(work-conserving but not stabilizing) RF protocol with only an
appropriate share of the (stabilizing but not work-conserving)
mode-suppression (MS) protocol. We refer to this policy as
“Rarest-First with Probabilistic Mode-Suppression” or simply
RFwPMS. We study RFwPMS using a stochastic abstraction of
the BitTorrent network that is general enough to capture a multi-
swarm setting of non-persistent users—each swarm having its
own altruistic preferences that may or may not overlap with
those of other swarms. Using Lyapunov drift analysis, we show
that for all kinds of inter-swarm behaviors and all arrival-rate
configurations, RFWPMS is stable. Then, using the Kingman’s
moment bound technique, we further show that the steady-
state expected sojourn time of RFwPMS is independent of the
arrival-rate in the single-swarm case (under a mild additional as-
sumption). Finally, our simulation-based performance evaluation
confirms our theoretical findings, and shows that the steady-
state expected sojourn tim = is linear in the file-size (compared
to our loose estimate of a polynomial with degree 6). Overall, an
improved performance is observed in comparison to previously
proposed stabilizing schemes like MS.

Index Terms—P2P File-Sharing, BitTorrent,
Mode-Suppression, Foster-Lyapunov Theorem

Rarest-First,

I. INTRODUCTION

ONSIDER the task of distributing a large file to peers in a

peer-to-peer (P2P) network. The file is initially available
with a distinguished peer (usually termed as the seed) and each
peer can initiate a transfer connection with any other peer [/1].
One method to perform this distribution task is to chop the
file into a large number of small and roughly equally-sized
pieces/chunks, and to allow peers to share the pieces with each
other. Chopping the file allows peers to distribute parts of it
before possessing it completely—this is the key idea behind
the popular “BitTorrent protocol” [2]]. Such an upload-while-
download scheme reduces the average file-download time and
more importantly, enables the network to scale its throughput
with the number of peers. As a result, the BitTorrent protocol
has gained large popularity over the years. Even today, despite
the growth of streaming services like Netflix, Hulu, and
Youtube, BitTorrent sharing remains a significant source of
internet traffic [3]]. In the research literature also, the protocol

A short version of this work appeared in /IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications, 2020, pp. 1153-1162.
I'The time a peer remains in the system collecting all the pieces of the file.

has gained extensive interest. For instance, on the theoretical
side, various mathematical models have been recently studied
[1]], [4]-[16]—each model providing a high-level abstraction
of the detailed workings of the actual protocol.

Once a file has been chopped into pieces, peers in the
network make contacts and exchange pieces with each other.
The set of rules that describe how peers exchange pieces with
each other, and which pieces are chosen during exchange, are
referred to as the piece-exchange mechanism and the piece-
selection policy, respectively—both being critical to the net-
work’s performance. The original BitTorrent protocol uses the
Rarest-First (RF) piece-selection policy in combination with
Tit-for-Tat and Optimistic-Unchoking piece-exchange mech-
anisms Tit-for-tat, as the name indicates, are interactions
where both peers share the file-contents with each other based
on mutual benefit; on the other hand, opportunistic-unchoking
interactions are those in which a peer altruistically offers
pieces to other peers. Both these interactions are important for
BitTorrent’s performance; opportunistic-unchoking helps the
incoming empty-peers to get some pieces of the file whereas
the tit-for-tat interactions help ward off free-riders (users who
download the file but do not contribute any of it back). In the
RF piece-selection policy, peers prefer downloading pieces that
are rarest in the network.

A common occurrence in BitTorrent-like networks is that
a peer usually spends relatively more time downloading the
last few pieces of the file. This phenomenon, referred to
as the delay-in-endgame-mode |[2], is because the last few
pieces are often the rare ones in the network. Inspired by this,
Hajek and Zhu [5] studied a stochastic model and showed
that an unstructure BitTorrent-like network that employs a
work—conservin piece-selection policy (e.g., Random-Novel
(RN), Rarest-First (RF)) becomes unstable if peers are non-
persisten and their arrival-rate exceeds the fixed seed’s up-
load rate.

The cause behind instability is a phenomenon called the
Missing Piece Syndrome or Last Piece Syndrome (LPS) |5],
wherein the network can get trapped in the one-club scenario.
In this scenario, there are a large number of peers who possess
all the pieces of the file except one (such peers are called one-
club peers), a very small number of peers who possess that one
piece (such peers are called infected peers), and a very small
number of peers that are in neither of these two groups (they

2See [2] for an overview on how a BitTorrent network operates.

3Each peer contacts another peer uniformly at random.

“In a work-conserving piece-selection policy, a piece transfer always
happens if the uploading peer has a piece that the downloading peer needs.

SEach peer departs immediately upon completing their own file-download.



are called young peers). Since a vast majority of the peers
are one-club peers, owing to random peer contacts and work-
conserving nature of the piece-selection policy, all the infected
peers leave the network quickly, and almost all young peers
(including the new-comers) join the one-club peers. Inevitably,
the fixed seed is tasked with uploading that one rare piece
to the entire one-club whose growth rate is larger than its
upload capacity. The network thus remains trapped in this
configuration and the size of the one-club grows to infinity,
causing instability. This result was later substantiated with
experimental checks performed by Mendes, de Souza e Silva,
Menasché, Ledo, and Towsley [17]], where it was observed that
when seeds have a small effective service capacity, or when
seeds are intermittent, the throughput saturates as the popu-
lation size grows. Importantly, the authors also demonstrated
that LPS can unfold in a closed BitTorrent network wherien
each departure causes an arrival of an empty peer.

Another typical phenomenon in BitTorrent-like networks is
the low availability of chunks in the start-up phase when only
one user (the seed) has the complete contents of the file and
the rest are emptyﬂ Reference [|17] calls this scenario the first
block problem Understandably, the duration of this phase, for
any choice of piece-selection algorithm, depends on the upload
capacity of the seed. However, if the incoming peers choose
to leave the network immediately upon download completion,
then the choice of piece-selection policy is important—it
should hold off download activity at times (to endogenously
enforce some form of peer-persistence).

Finally, multiple file downloads occurring simultaneously
is commonly observed in practice. This is the multi-swarm
setting [7]], [8]] for which there isn’t as yet a piece-selection
policy that guarantees stability for all arrival-rates, particularly
when the swarms interact with each other.

In the above discussion, we have highlighted multiple design
criteria for BitTorrent-like file-sharing networks. These are:

« stability guarantees for all arrival-rates in both single-

swarm and multi-swarm settings;

« improved steady-state file-delivery times; and

« improved transient responses (e.g. low flush-out times in

flash-crowds).
Our goal in this paper is to propose a flexible piece-selection
policy that can attain the aforementioned design criteria. To
this end, in Section we will first go through the existing
work and then in Section [[-B, list the contributions of this
manuscript.

A. Related Work

A series of recent works have appeared of which the relevant

papers are [[1]], [4]—[12].

o Zhu and Hajek [6], in a follow-up to [5], showed that if,
after completing their file-download, each peer remains in
the system long enough to upload one additional piece, then
the network is stable under any positive seed uploading

OFlash-crowd is a start-up phase when a large number of users enter the
network and only a few existing users possess the complete file.

TIndeed, [17]] argues that the last piece syndrome (LPS) is overestimated
whereas the first block problem is much more critical in practice.

capacity and any peer arrival-rate. This demands persistence
of peers, which may not hold, especially with wireless users
who are sensitive to their energy and bandwidth usages.
Additionally, current implementations of BitTorrent allow
peers to depart immediately after their own download is
completed. Thus, recent works have also studied stability
when peers are strictly non-persistent.

Massoulié and Vojnovi¢ [4] considered a BitTorrent-like
stochastic system where before entering the system, users
obtain one piece (referred to as coupon in [4]]) from a central
bootstrap server. Under this assumption, they showed that
the performance of the network does not depend critically
on either persistence of users or on load balancing piece-
selection policies like RF.

Norros, Reittu, and Eirola [1] proposed the Enforced Fried-
man algorithm in which a peer makes three contacts si-
multaneously (with replacement), and if there are ‘minority
pieces’ (pieces possessed by exactly one of the three peers),
then the peer downloads one of them uniformly at random.
If there are no minority pieces, then the peer waits for
the next triple contact. The stability of the protocol was
shown for a two-chunk system whereas for the case of
a multi-chunk system, it was left as a conjecture, with
numerical simulations providing evidence of stability. In a
follow-up work, Oguz, Anantharam, and Norros [9] proved
the stability of the Enforcement Friedman protocol for
multi-chunk systems, and also proposed a provably stable
improvement under the name of Common Chunk protocol.
In this protocol, only new peers who arrive with no pieces
follow the rules in [1]], and peers who lack only one piece,
can download it only if every piece they have is also present
with at least two of the three contacted peers.

Bilgen and Wagner [[10] proposed the Group Suppression
Protocol. Here, peers who share the same piece profile
are defined as a group, and the group with the largest
population is defined as the largest club. In this protocol, a
peer belonging to the largest club uploads only to those peers
who hold more pieces than it does, and refuses the upload
to all other peers. Stability of the protocol was proven for a
two-chunk file-sharing system, and stability for multi-chunk
systems was left as a conjecture.

Reddyvari, Parag, and Shakkottai [[11f] took a chunk-level
viewpoint and proposed the Mode-Suppression (MS) proto-
col. Here, the transfer of pieces in the mode (present with
the most number of peers) is prohibited, except when all
pieces are in the mode, and a random-novel piece not in
the mode (if any) is sent. In a follow-up [12]], Reddyvari,
Parag and Shakkottai prove the stability and scalability
of Threshold Mode-Suppression (TMS) wherein pieces in
the mode are prohibited from transfer when the largest-
mismatch (difference between chunk-counts of the most-
abundant and the rarest chunks, see|3)) crosses a certain fixed
threshold. This line of work showed stability and scalability
for all arrival-rates in the single-swarm setting.

Previous works have also considered bundling different
swarms together in the same network and then allowing
content-sharing across them. Such sharing can be useful
in multi-priority cache networks—wherein all users store



the highest priority cache content. This was proposed by
Zhou, loannidis, and Massoulié [7] with the claim that
such “universal swarms” can increase the stability region
of a BitTorrent network. Then, Zhu, Ioannidis, Hegde, and
Massouli¢ [8] formally characterized the stability region
of such networks under work-conserving piece-selection
policies. The stability region is indeed larger than in the
single-swarm setting, but, yet again, it doesn’t include all
arrival-rate configurations.

B. Contributions
The contributions of this paper are listed below:

» Developing a tractable model (that extends the stochastic
model from [5] and [6]) in Section for the analysis
of file-sharing P2P networks that employ tit-for-tat and
optimistic-unchoke mechanisms (such as the BitTorrent net-
work);

» Demonstrating that instability occurs when a hard tit-for-tat
rule is used without optimistic-unchoking. Here, instability
occurs due to a first piece syndrome (FPS) wherein newly
arriving peers have to rely solely on the seed to get their
first piece (Proposition [I);

» Showing that soft tit-for-tat or optimistic-unchoking mech-
anisms cannot ward off LPS whenever a work-conserving
piece-selection policy is used (Proposition [2));

o In a general multi-swarm setting, proposing the (swarm-
based) RFwPMS piece-selection policy and proving its
stability using a novel Lyapunov function (Theorem [I).
The Lyapunov function that we use is designed carefully
by viewing the multi-swarm model as a system of coupled
simple harmonic oscillators—see Sections [[I-D2 and
for detailed intuition behind RFwWPMS and our choice of
Lyapunov function.

» Demonstrating the scalability of swarm-based RFwPMS
in the single-swarm case—i.e., the expected steady-state
sojourn time is upper-bounded by a constant which is
independent of the arrival-rate of the incoming peersﬂ
(Theorem [). Contrary to the standard approach in using the
Kingman’s moment bound technique, (where the Lyapunov
function for stability determines performance bounds), our
bounds are obtained by using the drift of two other non-
negative functions.

» Showing improved performance of swarm-based RFwPMS
in steady-state and flash-crowds via an extensive numerical
investigation; see Section
A preliminary version of this work was presented in [14]

with a partial theoretical analysis and a special case of the
general stochastic model studied here. The current work adds
to the contributions of [14]] — items a) through f) above —
and provides complete detailed intuition and methods for the
stability analysis of (swarm-based) REFwPMS.

C. Organization

Since the single-swarm model is a special case of the multi-
swarm model, henceforth we only consider the multi-swarm

8Showing scalability in the general multi-swarm case is for future work.

model, except when we discuss our scalability results. The
remainder of the paper is organized as follows. In Section
we introduce the multi-swarm model (building upon the
model in [8]]). Section [[II| presents the main stability theorem
along with the preliminary setup needed for the detailed proof
(the detailed proof is provided in Appendix [E). Section [V,
presents our scalability result (and its proof) for the single-
swarm setting. Section [[V]discusses the working of RFwPMS
as well as a few types of inter-swarm behaviors that can be
relevant in specific P2P environments and follow naturally as a
result of the general nature of our assumption on inter-swarm
behaviors. Section presents few important snapshots of
numerical results on stability, scalability and performance of
RFwPMS. Finally, in Section [VII] we give concluding remarks
and a few future-work directions.

D. Notation

To aid in the reading experience, we refer the reader to the
list of symbols given in Appendix [G!

II. SYSTEM MODEL

In this section, we introduce the stochastic model and
describe our proposed piece-selection policy.

A. Key Model Assumptions

A master-file, denoted by F, is chopped into at least two
equally-sized pieces, i.e., F = [K]E] where K > 2. There is a
distinguished peer, the seed, which holds the master-file F and
stays in the network indefinitely. The existence of the seed for
indefinite period of time ensures that every piece is available
in the network at all times, thus allowing us to study the long-
term behavior of the network. We define file-WW as any non-
empty subset of the master-file with at least two pieces, thus,
W # &, W < F, and |W| = 2. The number of pieces in file-
W is denoted by Ky, i.e., Ky = |W/|. With this definition of
file, swarm-W is defined as the set of peers who are primarily
interested in downloading (pieces of) file-W. We note that
peers entering the network can be interested in any file, i.e., the
files need not be disjoint subsets of F. Besides their primary
interest in file-WW, swarm-WW peers may also have a secondary
preference for some other pieces of the master-file. Thus, the
set of pieces that a swarm-WW peer can download during its
stay in the network is given by Fy where W < Fyy € F. Itis
assumed that peers enter the network according to independent
Poisson processes, i.e., a swarm-W peer enters the network
according to a Poisson process of rate Ay > 0, independent
of other swarms. We denote the set of all swarms entering the
network by W, and let X := (Ay : W € W) denote the vector
of their arrival-rates. The total arrival-rate is denoted by |A|,
ie., |)\| = ZWEW Aw .

Now, we list three important assumptions of the model.

a) Empty Cache upon Arrival: Each peer maintains a cache
to store the pieces it downloads. The cache is empty upon
arrival and has a capacity of |Fy| pieces. The part of the

°For ¢,d € Z = {...,—1,0,1,...} and ¢ < d, we use the notation
[e,d] :=={c+1,...,d} and [d] for [0,d] when d € N := {1,2,...}.



cache that is devoted for the pieces of secondary interest
is called the excess-cache (where pieces from the set
Fw\W are stored). In the context of [4], the empty cache
assumption aligns with the case when the central bootstrap
server is bottlenecked, for example, in the case of a high
peer arrival-rate or during a ﬂash—crowd

b) Ally Swarms: While peers interested in the same file (i.e.,
belonging to the same swarm) exchange pieces with each
other, they may or may not prefer to collaborate with peers
who are interested in other files (i.e. peers belonging to a
different swarm). Thus, each swarm has an associated set of
receiving-ally-swarms. Formally, the receiving-ally-set of
swarm-W, denoted by Wé{i“y'm, is a non-empty subset of
W that consists of swarm-WW as well as any other swarms
to which its peers upload pieces (W € W‘(/{;”y'” < W).
Equivalently, the donor-ally-set of swarm-W is given by

Wi = v ew: we w1,

c) Strictly Non-persistent Peers: Once a peer finishes down-
loading their pieces of primary interest, they leave the
network immediately.

B. State Description

The notation used in this paper is a combination of related
notations in [8] and [11f]. We classify peers into types accord-
ing to the swarm they belong to, and the set of pieces in their
cache. So, a peer in swarm-W holding S S Fyy is said to be
of type (W, .S). We denote the number of (W, S)-type peers
at time ¢ > 0 by :(;%,5) (t) € Zso :=={0,1,...}. Then, the state
of the network at time ¢ is given by the vector,

x(t) = (ol : W eW, S € Fip, and WAS £ ). (1)

Note that as a result of aforementioned assumptions, the cache-
profile S of a swarm-W peer always satisfies the conditions,
S < Fw and W\S # ¢, with the latter condition capturing
strictly non-persistent peers. For the sake of brevity, from
hereon, we will omit writing these two conditions. Also, since
the fixed seed is always present in the network, we do not
include it in x(t).

The population-size of swarm-W (number of swarm-W
peers) at time ¢ is given by

Z Ty 2

Similarly, the total number of peers at time ¢ is given by

XI(8) = D) Ixlw(t). 3)

Wew

Ix|w (1)

From hereon, for brevity, we will write x(¢) as x (since the
dependence on time ¢ will be clear from the context).

10A situation in which the network suddenly encounters a very large number
of empty peers; this is commonly seen with torrents of popular files.

C. Peer-Contact Method

Consistent with the stochastic models of [1]], [4]-[11],
we assume that the network employs random peer-contacts.
Specifically, it is assumed that each peer has a fixed number
of contact-links, denoted by L € N. In normal peers, the first
(L—1[YP) =1]) of these links are reserved for tit-for-
tat based piece exchanges whereas the L link is used for
optimistic-unchoking if and only if Y (°PY) — 1; otherwise it
is also used for tit-for-tat based piece exchanges. Here, Y (°P*)
is a binary parameter that is set to 1 if optimistic-unchoking
is desired in the network. In contrast to normal peers, all the
L links of the fixed seed are used for optimistic-unchokes.

For normal peers, we assume that each tit-for-tat link is
activated according to an independent Poisson process of
rate (M) > 0, and the optimistic-unchoke link is activated
according to another independent Poisson process of rate
,u(c’pt) > (. Upon activation of the link, the peer contacts some
other (normal) peer from the network uniformly at random
For the fixed seed, each of its (optimistic-unchoke) links is
activated according to a Poisson process of rate U > 0. We
assume that the transfer of piece/s occurs instantaneously with
the contact (in reality, this will take more time than initiating
a contact).

To define the tit-for-tat and optimistic-unchoking mecha-
nisms, let us imagine a contact in which a peer, say peer-(1),
which is of type (W7,S1), has contacted another peer, say
peer-(2), which is of type (W, S3). The interaction between
the two peers depends on the type of contact that peer-(1) has
made with peer-(2). Thus, there are two cases.

a) Tit-for-Tat Contact: In this case, both peers first check
the swarm-identity of each other after which they reveal
their cache-profiles (based on how they view each other’s
swarm). Specifically, for each k& = 1,2, the following
events happen sequentially.

i) Peer-(k
(k2

i) If W_p ¢ W(a”y T), peer-(k) reveals an empty cache-
profile, Sk = otherwise it shows its true cache-
profile, Sk = Sk We call Sk( ) the revealed cache-
profile of peer-(k).

iii) Peer-(k) checks if the contact is potentially useful, i.e.,
if (S_r N Wy)\Sk is non-empty. If (S_r N Wr)\Sk
is non-empty, peer-(li) commits to transfer some piece
to peer-(—k) from Sy. If (S_; N Wy)\Sk is empty,
the network forces peer-(k) to conduct a Bernoulli(p)
trial, only upon the success of which, it must commit to
transfer some piece to peer-(—k) from Si. Once peer-
(k) has committed to transfer a piece to peer-(—k)

shares its swarm-identity W) with peer-

"'The motivation behind introducing a separate rate for the optimistic-
unchoke link comes from how BitTorrent operates. In practice, by default,
the number of links L is 5, and which peer is optimistically-unchoked is

rotated roughly every third tit-for-tat period (see [2]). By introducing( ,u()tf“)
tft
and (°PY) | this can be captured in our model by setting ju(°PY) = £

2Here, —k denotes the element in {1, 2}\{k}.

13This ensures that no piece is transferred to a non-ally peer.

14Checking (S_ n Wi)\S) instead of (S_j Fw,, )\Sk matches
with our assumption that extra pieces (in Fyy, \W}j) are given secondary
preference.



from S, we say that “peer-(k) has push-contacted
peer-(—k) using revealed cache-profile Sj” or equiv-
alently “peer-(—k) has pull-contacted peer-(k) having
revealed cache-profile S;”. Here, importantly, we note
that the probability of this push-contact is at least p.
b) Optimistic Unchoke: In this case, peer-(1) checks the
swarm-identity Wo and then push-contacts peer-(2) with
revealed cache-profile S; (if Wy € Wé;fly"”) or & (if
W ¢ WD),

From a) and b), it is clear that no piece is transferred from
peer-(k) to peer-(—k) if W_j, ¢ W‘(;ily—ﬁ (k = 1,2). Hence,
we need not consider push-contacts from a peer to its non-ally
peer. Once a push-contact has been made, which exact piece
is chosen for transfer, and whether the transfer is successful
or not, is determined by the network’s piece-selection policy.
This is described next.

D. Piece-Selection Policy (Swarm-based RFwPMS)

Suppose that at time ¢ > 0, a (V,T)-peer has push-
contacted its receiving-ally peer, say a (W, S)-peer, using
revealed cache-profile T'. To describe swarm-based RFwPMS,
some definitions (a’la [11], [12]]) are needed.

Definition 1: The frequency of piece i in swarm-W is
denoted by 7y (x) and is defined as follows:

1 (¢
|x|w S%S w ( )

0 if x|y = 0.

if x|y > 0,

Wl(/‘i,) (x) = “)

The chunk-count of piece 7 in swarm-W is then given by
A\ (x) == ) (%) x| w- )

The maximum and minimum chunk frequencies in swarm-W

are denoted by Ty (x) and my, (x) respectively, i.e.,

(i)(

Tw (x) = max my, x) and my (x) = 1;161‘1/1111 W‘(,lv) (x). (6)

Similar definitions hold for maximum and minimum chunk-
counts of swarm-W, denoted respectively by ¢y (x) and

ow (%), ie.,
ow (%) =TwX)|x|lw and ¢y (x) =1 (X)|x|lW. ()

Importantly, both are computed over file-W and not Fyy .
Definition 2: The total chunk-count in swarm-W is given
by
P (x) = Y] el (x). (®)
ieW
Definition 3: The mismatch of piece 7 in swarm-W is given
by

mi)(x) = ew (x) — ¢\ (x). )
Importantly, we shall be interested in the largest-mismatch
mw (x) = (ew — cw) (%), (10)
and the total-mismatch
My (x) = Z m%,iv)(x). (11)

iEeW

Here, we note that

Definition 4: For swarm-W, the complementary chunk-
. . (3) .. .
count of piece 7, denoted by dyy (x), is its number of copies

in other donor-ally swarms of swarm-W. That is,

A\ (x) == > D (x).

Vewlttv O\ (wy

13)

Definition 5: The set of rare pieces in swarm-W, denoted
by Rw (x), is defined as follows:

Ruy (x) i {ieWw: cg,) (x) <ew(x)} if ew(x) # ey (%),
YT w if Z(x) = ey (%)
(14)

Definition 6: The set of non-rare pieces in swarm-W is

given by Rf, (x) := W\Rw (x).

Definition 7: The set of extra pieces for swarm-W is given
1) Rules of Swarm-Based RFwPMS: Unless otherwise
noted, we will refer to a rare piece by r, a non-rare piece
by n, and importantly many times, the rarest piece (one with
the lowest chunk-count) by r. We now list the rules of swarm-

based RFwWPMS for a possible piece transfer when the (V, T)-

peer has push-contacted (its receiving-ally) (W, S)-peer using

revealed cache-profile 7T'.

a) Download of a Rare Piece: If a novel rare piece is available
for transfer, i.e., (IA“ N Rw(x)) \S # &, then the (V,T)-
peer uploads the rarest piece it can offer, i.e., a piece chosen
uniformly at random from the set,

E(f“,W,S) (x) = arg min cg/{,) (x). (15)

je(TnRw (x))\S
b) Download of a Non-rare Piece: In the case that no novel
rare piece is available for transfer but a novel non-rare
piece is, i.e., (f N RW(X)) \S = & and (T n W)\S #
&, then the (V,T')-peer chooses some non-rare piece n €
(T nW)\S uniformly at random, and uploads it only if the
result of a Bernoulli (CI(,(}) (x)) trial is a success. We refer

to (‘(,:,L) (x) as the non-rares’ sharing factor, and define it
as follows.

(7w o+ (4 0) ™)\ .
C‘(};) (x) = exp (— ooy e if By > 0,
0 if By = 0.
(16)

Here, Sy = 0,aw € (0, 1] are tuning parameters. (As an
aside, we note that MS piece-selection policy is covered as
we allow Sy = 0.)

Intuition Behind The Non-Rares’ Sharing Factor: Let
us develop some intuition about our choice of C‘(,(,L) (x).
As indicated earlier in Section [[, the MS protocol [11]]
strictly forbids the replication of non-rare pieces. This strict
rule does a good job of maintaining a uniform chunk-
distribution throughout the network’s evolution. However,



there is an accompanying undesirable effect—no pieces
of file-W are transferred in all those push-contacts where
only non-rare pieces are novel. As shown in Section
this can incur a high penalty on the file-delivery time
during a ﬂash—crowd Besides flash-crowds, even under
normal operating conditions, completely suppressing non-
rare pieces is unnecessary and, as indicated in [11], [12], a
trade-off exists between their suppression and sharing. Too
much suppression will force peers to linger in the system
longer (to replicate the rare pieces), thus increasing the
expected sojourn time, whereas too much sharing (trying
to be work-conserving) will lead to causing instability.
Swarm-based RFwPMS allows for tuning this trade-off
via Cg}) (x). Even though different swarms are coupled
together in the same system, one can optimistically expect
that if each swarm tries to keep close its own maximum
and minimum chunk-counts, the stochastic system should
hopefully converge to some form of equilibrium (after
possibly some temporary transient behavior due to the
effects of other swarms). Keeping this in mind, the first

term of C‘(,IT,‘) (x),
« _mw(X)>
‘ p( BwKw )’

is intended to increase the (probabilistic) suppression of
non-rare pieces as the largest-mismatch in swarm-W gets
larger.

Ideally, we would have liked Cg}) (x) to consist of the
first term only. But showing stability of our multi-swarm
model in that case is hard. The key technical difficulty is
the form of the Lyapunov function that we use (see (30),
(31)), and our analysis of the unit-transition drift (where we
are essentially trying to decouple the inter-swarm effects).
Owing to these reasons, if we consider states with large
mw (x) and a large complementary chunk-count d(W”) (x),
then the suppression through exp (‘% turns out
to be insufficient to satisfy the unit-transition drift condi-
tions We circumvent this technical issue by introducing

the second term,
() )"
(dW (X)>

o AN
P Bw Kw ’

where, by choosing ayw € (0, 1] sufficiently small, (I(,{}) (x)
effectively becomes a function of the ratio of swarm-W’s
largest-mismatch to its file-size K. The higher this ratio,
the lesser the likelihood that the (non-rare) piece n gets
replicated. The choice of the ratio instead of just the largest-
mismatch matches the intuition that a file with larger
number of pieces should allow relatively more sharing of
non-rare pieces.

¢) Download of an Extra Piece: If, from rules (b) and (c), no
piece of file-WW could be uploaded to the (W, S)-peer, then

15 A situation in which the network suddenly encounters a very large number
of empty peers; this is commonly seen with torrents of popular files.

16The term exp (—B;VI K;VIWW(X)) cannot counter a polynomial term

in dg;)(x).

the (V,T)-peer uploads a novel extra piece (if it exists),
chosen uniformly at random—i.e., a piece from the set (T'n
Fw)\(S u ).

2) Intuition Behind Swarm-Based RFwPMS: One may get
an intuition of how swarm-based RFwPMS operates by view-
ing the multi-swarm network as a collection of coupled simple
harmonic oscillators—where the coupling arises due to the
inter-swarm interactions—, and a given system’s displacement
from its equilibrium region, say that of system-W, arises
due to swarm-W peers greedily downloading file-W (thus,
increasing the largest-mismatch my (x))—see Fig. [I)). Work-
conserving policies which always cater to this greediness of
users, are doomed to keep increasing this mismatch in high
arrival-rate regimes, thus causing instability. On the other
hand, swarm-based RFwPMS, via deterministic download of
rarest-pieces and appropriate suppression of non-rare pieces,
provides sufficient restoring force to keep the system near
equilibrium.

Algorithm 1 Transferable-set of swarm-based RFwPMS.
Input: x, W, S, T. R
Output: Transferable-set, A0 (x, T, W, S).
1: Set A — (.
2: Set Hy < (T'n RW(X)) \S.

3 Set Hy « (T W) \S.

4: Set Hy « YA’m]-"W> \(SuW).
5. if H; # ¢ then
6: Choose r randomly from E 7 v, S)(x).
7: Set A— Au {r}.
8: else if Hy # (J then
9: Choose n randomly from (T n W )\S.
10: Conduct Bernoulli trial with success probability
(n)
G’ (%)
11: if Success then
12: Set A — AU {n}.
13: else
14: Set A «— Au ChooseExtraPiece(H3).
15: else
16: Set A «— Au ChooseExtraPiece(H3).
return A.

17: function CHOOSEEXTRAPIECE(H3)
18: if Hs # (J then

19: Choose e randomly from Hs.
20: return {e}.
return ¢J.
With the above three rules, the transferable-set

A (x, T ,W,S) for swarm-based RFwWPMS can be
computed according to Algorithm [[] By transferable set,
we mean the set of pieces chosen for transfer by the piece-
selection policy — in our case, the transferable set will either
be empty or a singleton set.

In order to extend our rules to the seed, we assume that
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Fig. 1. Intuition behind swarm-based RFWPMS and the role of ays and

Bw in the definition of non-rares sharing factor C‘(/"/L ) (x). The restoring force
(in response to myy) arises through RF (for download of rare pieces) and
probabilistic MS (for download of non-rare pieces). The parameter ayy helps
tackle the coupling with other swarms, and Sy functions as a proportionality
constant.

the seed is a (f,F)-type pee with the receiving-ally-set
WT(a”y'T) = W. Thus, the set of rare pieces when the seed
push-contacts a normal peer is given by

(j)(

R w,s)(x) = argmin cp/ (x).

JERw (x)\S

Remark: Swarm-based RFwPMS is not a work-conserving
scheme—when there is no (novel) rare piece at offer, a
(novel) non-rare piece n € (T n W)\S is transferred only
probabilistically.

Remark: With rules a), b) and c), we note that each swarm
maintains its own chunk-table and also prioritizes its primary
pieces over other pieces of the master-file. For these two
reasons, we call our policy, “swarm-based” RFwPMS.

E. Process Description / Suitable Bounds on Transition Rates

For the sake of notational simplicity, from hereon, we
will write function f(-) as f when the dependence on the
argument is clear. Given a state x, the next state of the network
depends solely on x because the piece-selection policy solely
depends on x and the new arrivals (of empty peers) are
determined by independent Poisson processes. Hence, the evo-
lution of the network described by the process {x(t) : t = 0}
is a continuous-time, time-homogeneous, and irreducibl
Markov chain with state space,

S {S:SCFw and W\S#F}|

S:= 7V (17)

A typical element of S represents the number of peers of each
type (see (1)).

Given a state x, there are different events that can lead to
state-transitions, namely, the arrival of a new empty peer, the
download of a single-piece or a (two-sided) piece-exchange
(download of two pieces simultaneously as a result of some
tit-for-tat contact). Here, we do not list the transition rates of

"For example, 1 can be F u {K + 1}.

18Since the seed is present indefinitely in the network, has all the pieces of
the master-file, and has a positive contact rate, there is a positive probability
of reaching a zero population state.

(two-sided) piece-exchanges: later in Section we will see
that with our choice of Lyapunov function, such transitions
can be viewed as two separate single-piece-download events.

a) Arrival of an Empty-peer: A swarm-W peer with an empty
cache enters the network according to a Poisson process
of rate Ayy. This results in a unit increase in the number
of swarm-W peers with no pieces. Let us denote this
transition by {(&,+)w} and its corresponding rate by

qgg’ﬂ. Then,

(F:+)

dw (18)

= Aw.

b) Download of Piece of Primary Interest: Consider the event
that a (W, .S)-peer missing piece ¢ € W downloads piece
i. The necessary condition for this event is that (W,.5)-
peer gets push-contacted by a (V,T')-peer such that V €
W‘(ﬁ”y'“ and 7 € T'. There are three distinct ways in which
that can happen.

i) The (W, S)-peer gets push-contacted by the (V, T') peer
as a result of a tit-for-tat contact initiated by the (V, T))-
peer. By the superposition and thinning properties of
Poisson processes, the rate at which a donor-ally peer
of swarm-W with piece ¢ makes a tit-for-tat contact
with a (W, S)-peer is

>

VeW‘(};”y—l)7
T:eT

(L—1 [y(opt) _ 1])'u(tft)

S
NEEERY
1

Here, we recall that Y (°PY) is the binary parameter
reserved for optimistic-unchoking; the term in the first
parenthesis is the aggregate rate with which a donor-
ally peer of swarm-W having piece ¢ activates one of its
tit-for-tat links; and the term in the second parenthesis
is the probability that a (W, .S)-peer is chosen after the
activation.

ii) The (W, S)-peer gets push-contacted by the (V,T)-
peer as a result of an optimistic-unchoke (initiated by
the (V, T)-peer). The rate at which a (W, S)-peer gets
contacted in an optimistic-unchoke by a donor-ally peer
having piece ¢ is given by

(5)

x o T
UL-|TW‘+ 1[Y<Pt>:1]u<opt> I
vewlh,
T:eT
S
vy x|
x| |x[ -1

Here, the first term is the aggregate rate with which
the seed contacts a (W, S)-peer; and the second term
is the aggregate rate with which a normal donor-ally
peer of swarm-W with piece ¢ contacts a (W, .S)-peer.
iii) The (W, S)-peer gets push-contacted by the (V,T)-
peer as a result of a tit-for-tat contact initiated by the
(W, S)-peer. The rate at which a (W, .S)-peer makes a



tit-for-tat contact with a donor-ally peer that has piece

1 is given by
((L -1 [Y(Opt) — 1:| )M(tft)x$)>

ZVEW‘(};”“”} l’g)
% T:eT x|
x| x| -1

Here, the term in the first parenthesis is the aggregate
rate with which a tit-for-tat link of a (W, S)-peer gets
activated; and the term in the second parenthesis is the
probability that a normal donor-ally peer of swarm-W
with piece ¢ is chosen after the activation.

Let us denote by I‘g,) = I‘(VQ (x) the aggregate rate at which
a donor-ally peer of swarm-V with piece  push-contacts
in the network. The exact form of Fgfv) is complicated,
however, from i), ii), iii) and our descriptions of tit-for-tat
and optimistic-unchoke, we can bound it both from above
and below. Let

L) = LU + ry (el +diy)
> LU + kyely), (19)

and TV (x) = LU + k1€ (c(;’V) + d“))
< LU + 2r ( @ 4 gl )) (20)

where, we have used the shortand,
€= €00 =
and kg == 2 <L -1 [y(opt) _ 1]) COM

+1 [Y(Opt) - 1] 1P, (aeo,1]).
(21)

x|

(x| > 2)

Intuitively, for any a € [0,1], x, denotes the aggregate
rate with which a normal peer would push-contact another
normal peer if the network were to enforce a push-contact
probability of a in all tit-for-tat contacts (regardless of the
cache-contents of the interacting peers). It is clear that

) <1 < TV, 22)
and

T LU+ (c“) +di))

r{) LU+/€I,§< +d“)

L—1 (tft)+ (opt) . o
<7T:= 1+ 2((L—1))uu“ft>p+l;(°"°) if Yrt =1,
1+ if Yort) = .
(23)

Here, T = Y(L,Y (P ;,(t7) 1, (oPt) 1) is a constant that
depends on the model parameters.

After the (W, S)-peer has downloaded piece 4, depending
on S, it will either remain in the network or leave it
immediately. Therefore, we have two cases.

i) If W\S 2 {i}, the peer stays in the system. Let us
denote this transition by {(S,i+)w} and the corre-
sponding rate by q‘(,{j “*) Based on the description of
(swarm-based) RFwPMS, q‘(,f,g i) depends on whether
1€ Ry orie Ryj,. If i = r is some rare piece in Ry,

then we have
() ()

Tw n(r) Tw §(r) o (Sr+)
I‘ T>-"2T >
WS W T
o [ LUL[re Rirws)|
x| |E(f,W,S)|

1 [T € E(T,W7S)] xg) (24)

+rpé Z

vewGinbh,
T:reT

B w,s)l

where the two indicator terms ensure that piece 7 is
transferred only if it is the rarest of all the avail-
able (novel) rare pieces. Importantly, when the chunk-
distribution in swarm-W is uniform i.e., ¢y = cy,, by
definition, Ry = W and the above expression assumes
a more tractable form. Therefore, for each swarm-W,
we partition the state space into two regions, namely
S‘(,V) and S, where S( ) ; ={xeS:Rw(x) < W}
and S? = {x e S : Ruv (x) = wilelte i = n s
some non-rare piece in RS, then

(S)

q(vg nt) qég ) o %F(H)C( ") < |( )F(”)T((”)
(25)
where
29 [LU1[Rw\S = &]
S5 [ w
W IXI WS

A1 A Rw\S = ] | m)

ik ;hw (T~ WS W
VEWW"'/' s
T:neT
(26)

i) If W\S = {i}, the only piece of file-T¥ that is missing
with the (W, S)-peer is piece i. Consequently, for both
X € Sl(,é) and x € S‘(;), piece ¢ is the rarest piece trans-
ferable to the (W, S)-peer—which leaves the network
immediately upon downloading it. Let us denote this
transition by {(S,i—)w } and its corresponding rate by

q‘(,{,q’i_). Then,
x|w zl) (1) (1)  g(S:i) |x[w xW £ ral),
x| [ T W xl Ixlw
27)

where, we have used the shorthand,

al) = al)(x):=c1[ie RG]+ 1[ie Rw]. (28)

“When x € S‘(/a), both the indicator terms in evaluate to 1.
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pieces

Fig. 2. Subsystems 1 and 2 in tandem.

¢) Download of Extra Piece: Recall that extra pieces are
preferred only when no pieces from the file of primary
interest are transferable. We shall see that the drift analysis
of our Lyapunov function does not depend on the download
of extra pieces. Hence, we skip listing the associated rates.

F. Last Piece Syndrome vs. Tit-for-Tat

While it is clear that a tit-for-tat mechanism helps combat
the last piece syndrome (LPS), the issue of quantifying its
efficacy via a suitable model was left as an open problem in
[5]l. Our stochastic model described above is partly motivated
by this question. Here, we show that introducing tit-for-tat does
not prevent instability if a work-conserving piece-selection
policy (like RF and RN) is used.

Proposition 1: Consider the multi-swarm model as de-
scribed in Section with a hard tit-for-tat mechanism (p = 0),
and without optimistic-unchoking (Y (°PY) = 0). If |A| > LU,
then the network is unstable under any piece-selection policy.

Proof: We divide the network into two subsystems, where
subsystem-1 consists of empty peers and subsystem-2 consists
of the rest of the peers. The two subsystems are connected
in tandem as shown in Fig. 2] The arrival-rate of incoming
peers in subsystem 1 is |A| and the departure rate is upper-
bounded by LU (at each tick of the fixed seed’s contact-
link, at most 1 empty peer can depart from subsystem-1 and
there are L such links). It is well-known that subsystem-1 is
unstable if |A| > LU, rendering the network unstable. Since
this instability is manifested by the build-up of empty peers,
we call this phenomenon, first piece syndrome (FPS). ]

Fig[3] shows FPS manifesting in a single-swarm network
when it uses a hard tit-for-tat mechanism without optimistic-
unchoking.

Proposition 2: Consider a single-swarm model (swarm-W)
of the type presented in Section [[} (a) with a soft tit-for-tat
mechanism (p > 0) or, (b) with a hard tit-for-tat mechanism
(p = 0) and optimistic-unchoking (Y (°?Y) = 1). If a work-
conserving piece-selection policy is used, then the network is
unstable whenever Ay > LU.

Proof: The method of the proof remains the same as in [5]
Proposition 2.1 (i)]. In soft tit-for-tat mechanism, a young peer
can get a piece from a one-club peer with probability at least
p > 0 whereas in a hard tit-for-tat mechanism with optimistic-
unchoking, it can get a piece from a one-club peer via the
optimistic-unchoke. In either case, by taking the initial size of

the one-club peers suitably large, it can be shown that the LPS
event has a positive probability, establishing the transience of
the system. [ ]

Table [[ summarizes the results of Propositions [I] and J2]
together which motivate the design of a piece-selection policy
that is provably stable in file-sharing networks whose piece-
exchange mechanism is either “soft tit-for-tat” or “hard tit-for-
tat with optimistic-unchoking”.

III. STABILITY OF SWARM-BASED RFWPMS IN THE
MULTI-SWARM

In this section, we present our main result on the stability
of swarm-based RFwPMS. The proof is established using
the Foster-Lyapunov theorem [18]], [[19]; see Proposition |§| in
Appendix [F}

Theorem 1: For the multi-swarm model with non-persistent
peers as described in Section [l swarm-based RFwPMS is
stable over the parameter region,

,P(stab) — {U > 07)\ > O,LENNKJP >0,

Ky e N\{1} VW e W}. (29)

Remark: Here, xk, > 0 includes
o “soft tit-for-tat™: pu(t® > 0 AND (L = 1,Y (Pt = 0
OR L > 1);
 “hard tit-for-tat with optimistic-unchoking”: p = 0 AND
Y(Opt)u(opt) > O’ and
« stability result of our earlier work [[14]: Y(PY) — 1 [ =
1, plort) > 0,
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Fig. 3. First Piece Syndrome (FPS) in a single-swarm Network with hard
tit-for-tat (p = 0) and no optimistic-unchoking (Y (°P¥) = 0). Assignment
of other model parameters was W = [10], Ay = 4, U = p(tft) = 1,
pler) = 1, 23

TABLE I
CAUSE OF INSTABILITY FOR HIGH ARRIVAL-RATE ||
UNDER WORK-CONSERVING PIECE-SELECTION POLICIES

[ Tit-for-tat | Optimistic-unchoking |
Yes No
Yes LPS IPSifp>0. FPSifp =07
No LPS —

2Holds for all piece-selection policies.



The proof of Theorem [1| uses a novel Lyapunov function that
is based on the refinement of our earlier intuition in [[14]]. The
key ideas of the proof are as follows:

« In the case of large total-mismatch, extract negative drift
from the download of rare pieces, and use the non-rares
sharing factor to upper-bound the positive component of
the drift from the download of non-rare pieces; (this is
proved in Lemma [7] in Appendix [B] and Lemma [J] in
Appendix [D); and

« When the total-mismatch is not too large, extract negative
drift from the download of all primary pieces (this is
incorporated into the proof of Lemma [§]in Appendix [C).

The Lyapunov function we use is given by

> Vw(x) (30)
Wew
where
Vw (X) = VW,l(X) + waz(X) + VW’g(X),
2

Vi (x) = ((MW - UEW)+) ;
31
VW72(X) = 01(}[1,) (Kw|X‘W — P‘E;Ot)) s ( )

+
Viv (%) = 0(2) (Cs) Pé;ot))

Here, n € (0,1), and CI(/;), C‘(,[Q,), C‘(,g) € R.o are suitable
constants. Instead of presenting the relations satisfied by ng,
C"(,[z,), and C‘(/é), in the onset, we will go through the analysis
and present them naturally as and when they are needed.

A. Intuition Behind Choice of Lyapunov Function

The exact details of the Lyapunov function given by
and are complicated. However, the following lines will
prove to be of substantial value in following the proof of
Theorem

o Given each swarm maintains its own chunk-counts, V'
being the superposition of V- ’s, reflects the intuition that
the network shall be stable if each swarm is stable.

« To develop some intuition behind the choice of Vyy,
let us consider a multi-swarm network in which each
swarm'’s receiving-ally-set contains that swarm only (later
in Section [TV} we call this the setting of selﬁsh swarms).
In this case, the non-rares sharing factor (W (assuming

w
Bw Kw

— Given that swarm-based RFwPMS would allow the
download of non-rare pieces with high probability
whenever the largest-mismatch my, > KMW is rel-

atively small, it is reasonable, as a starting point, to

guess a term of the form (My,)2. Unfortunately, as
it turns out, with the bounds that we have derived,
working with (My/)? fails in satisfying the unit-
transition drift stability conditions. The primary reason
behind this is the fact the rarity of the rarest piece and
the abundance of the non-rare pieces are not related
to each other, that is, knowing that ¢y is large does

Bw > 0) takes the form exp (—

20For all d € R, we use the notation (d)* := max{d,0}.

not necessarily imply that the largest-mismatch myy is

large as well. We circumvent this issue by using Vv

(see (BI)) as a “proxy”zfor (Mw)?. Specifically, by

using ((MW — néw)+) instead of (Myy)?,

any drift penalization (i.e., positive drift) whenever

My is less than rjcyy. Therefore, in essence, whenever

My < ncw, as concerns Vyy 1, our Lyapunov function

discards the distinction between rare and non-rare

pieces. On the other hand, if My > ncy, this implies

that my > ﬁéw, and now, the abundance of
non-rare pieces, i.e., large €y, also implies a high
largest-mismatch my. This will trigger our non-rares
sharing factor (‘(;}) which will ensure that the positive
component of the drift from the non-rare pieces decays
to zero with increasing Gy .

— In contrast to Vyy1, the second term, Viy 2, promotes
the download of every piece of file-W. The intuition
behind including Vyy 2 is to ensure a negative drift is
generated from every piece download. This helps us
generate sufficient negative drift in the case when Viy;
is inactive, i.e., when My < ncy . Furthermore, an
important technical purpose that it serves is to ensure
that V' has finite level-sets.

— Finally, the last term Vjy 3 handles all the states in
which swarm-W is seriously piece-deprived—states
in which very few pieces of file-WW are present with
swarm-W).

we avoid

Next, we present Lemmas [2] and [3] together which establish
that V' has finite level-sets.

Lemma 2 (Bounds on Chunk-Counts): For all x, the total
chunk-count in swarm-W is upper-bounded by (Kw —1)|x|w .
Consequently, the fraction of swarm-W peers who have the
rarest piece, i.e., myy, is upper-bounded by (Kw — 1)/Kw
and the fraction of swarm-W peers who are missing the rarest
piece is lower-bounded by 1/Kyy.

Proof: For all x, we can lower bound the total chunk-
count in swarm-W as follows,

Kwey < Z cy Zx S nW| <
eW
< (Kw — 1)21:55) = (Kw — 1)|x|w.

S

Kw—1 1
Hence, my, < —g5— and 1 — 7y > . The second

inequality is true because WA\S # . v [ |
Lemma 3 (Finite Level-Sets of V): V (x) — 0 as |x| — oo.
Proof: We have P\™Y) < (Kw —1)|x|w for every x. So,
Viv (x) = Viva(x) = C §V>\X|W — o as |x|y — o0. Since
|x| — oo only if |x|w — oo for some W € W, it follows that
V(x) — o0 as |x| — 0. Consequently, for all C' € R, the
set {x: V(x) < C} is finite. |

B. Upper Bounds on Potential Changes

Having established the finite level-sets of V, we evaluate
the potential change for each possible transition. Note that,
with our choice of V, any transition that occurs in swarm-W,
affects the term Vyy only.



1) Arrival of an Empty Peer: The arrival of a (W, ¢f)-peer
results in a unit increase in |x|y but does not affect any chunk-
count. Therefore, My, ¢y, Pé[t,Ot) stay the same. The potential
change as a result of this transition, denoted by AV(V‘?7+), is
component-wise given by

AV <.
AVZD = KwCy
AV =o.
Overall,
AV = kol (32)

2) Download of a Single Piece i € W with Peer-Departure:
Assume that a (W, S)-peer with W\S = {i} downloads piece
1 and leaves the system. The departure causes a unit-decrease
in [x|y; a unit-decrease in chunk-count of every piece j €
W\{i}. The chunk-count of piece i, i.e., cg,) , stays the same.
Therefore, P( °Y) decreases by Ky —1. The resulting potential

change, denoted by AV(S =) can be component-wise upper-
bounded as

AV < —Cf.

AV

+
-cy) [(C§3> — P+ (Kw — 1))

3 tot)\ *
(o) — P ]
<O (Kw - 1| e + Kw =12 P |

<O Ew1|Cf) + 2w = PE | = 1P (%),

where AVE/‘S,Y i;) depends on whether ¢ is a rare or non-rare
piece. When ¢ = r is some rare piece, AVE,VI )" further
depends on Whether swarm-W’s chunk distribution is umform
or non-uniform, i.e., whether x € SW or X € SI(/V Ifxe SW s
then c%,V) # Cyw, therefore the departure reduces both the total

mismatch and the highest chunk-count by 1. This gives
AV

(M = — (= )*) = (M ) )’

if My, >
(1=n)%=2(1 —n) (Mw — new) _
< (1 —mn) + new
0 otherwise.
if My, =
2(1 —n)2 —=2(1 —n) (M —ne
< ( 77) ( 77)( w—n W) 201 — 1) + new
0 otherwise.

Ifxe ST(,?,), the download of piece r makes it the only non-
rare piece in the next state with its chunk-count equal to ¢y .
The chunk-count of every other piece decreases to ¢y —1. The
total mismatch My changes from 0 to Ky — 1. Consequently,

AV = (w1 - mzw)™) — (o))

< Kjy < 4K

Combining the two cases for ¢ = r, we have

AV
if My >
2(1 —n)? —2(1 - My —new) <0
< (1—n) (1 =mn) (Mw —new) 2(1 — 1) + 1w,
4K%, otherwise.

=9, (x).
When i = n is some non-rare piec then the highest chunk-
count ¢y = C(v;) stays the same and the total mismatch My,

increases by Ky — 1. Overall, this causes an increment of
Kw — 1 < Kw in My — ncw. Therefore,

AV
+\2 +\?
= ((MW —new + Kw) ) - ((MW —ntw) )
(Kw + 2)? otherwise.

{ 4K3, otherwise
=: Yy (x).
To utilize the negative drift from the download of swarm-11"’s
rare pieces, we partition the state space into regions Rg,ll,) =
{x: Mw —2(1—n) = new} and R%f,) = S\R%,). (Note that
R%,) c SI(,‘I,) and R(Vf,) ) 8&2,)). We can now write

AV
<YyllieRy]+v, 1[ie Rw]—Cy + 1§
—1|xe R |4 + ...
+1 [x e ng] @Wn i€ Riy]+ ¢, 1[ie RW]) -
—C + I = v (x). (33)

3) Download of a Single Piece 1 € W without Peer
Departure: Here, a (W, S)-peer with W\S 2 {i} downloads
piece ¢ and remains in the system. The total number of
swarm-W peers remains the same and the chunk-count of
piece 7 (and thus P (tot) ) gets incremented by 1. The resulting
potential change, denoted by AV%,}?H) is component-wise
upper-bounded as

AV = —cfp),
AVES) 0@ [(C$> _ plen 1)+_ (O‘(;) ) P$°t))+]
<-CP1 [053) —1> P“Ot)]
<—cP1[cf) -2 PV = -1 ).

Like AV&%_), one can show that AVE,;’T) is upper-bounded
by Yy 1[i € R§, ]+ ¥, 1[i € Rw]. Therefore,

AV &)

2INon-rare pieces in swarm-WW exist if and only if x € S‘(/‘l,).



<¢Pwllie Ryl + ¢, 1[ie Rw]—
1xeREP|4Kd + ..

+1xeRY| (Pwilic Ry + v, 1ic Rw)
—cW 1) = wiM(x). (34)

Lookmg at (34) and . we note that by choosing
cV > 4Kz, say C > 8KZ,, we ensure that the term
ILT; e R 4K2, —

the region R%,?,), as concerns the potential-change, our upper-

bounds treat the non-rare and rare pieces in the same way.

4) Download of a Single Extra Piece: It can be observed
that for any swarm-W, no potential change is induced in Vi
by the download of its extra pieces.

5) Two-Sided Piece Exchanges: Now, we consider the
state-transitions that involve two mutually-ally peers, each
transferring a piece to the other, as a result of some tit-for-
tat contact initiated by one of them. In 4), we noted that
no potential change is induced by the download of extra
pieces. Therefore, as concerns the potential changes, all those
transitions that involve the transfer of two extra pieces can be
ignored. Similarly, those transitions that involve the transfer
of an extra-piece coupled with some rare/non-rare piece can
be viewed as (single) download of the accompanying rare/non-
rare piece, which we have covered in 1)-3). We therefore focus
only on those transitions that involve the transfer of two non-
extra pieces. For this, consider two mutually-ally peers, say a
(W, S)-peer missing piece i € W (and holding piece j € V)
and a (V,T)-peer missing piece j (and holding piece i), who
download the respective missing pieces as a result of a tit-for-
tat contact initiated by one of them. We denote this transition
by {(S,it)w, (T,j*)v} where “—" indicates departure of
the peer and “+” indicates otherwise. From 1)-3), we note
that the potential change induced by this piece exchange will
depend on

Cév) is non-positive. Intuitively, over

« The type of piece i (i = r € Ry or i = n € Rfy),
« The type of piece j (j =7 € Ry or j =n' € RY,),
o Whether (W,S)-peer stays in or leaves the system,
(WA\S 2 {i} or W\S = {i}), and
o Whether (V,T)-peer stays in or leaves the system
(VAT 2 {j} or VAT = {j}).
Table [l summarizes the upper-bounds on the potential change
associated with each of those cases. Importantly, in each case,
the upper-bound has been decomposed as the sum of two
upper-bounds for the corresponding single piece download
events. The bounds are obvious for the case W # V and
with some work, are fairly easy to establish when W = V.
For completeness, they are derived in Appendix [Al

C. Upper Bounds on Unit-Transition Drifts

Having established upper-bound estimates of the potential
changes, we can now proceed to evaluate the unit-transition
drift QV (x). We have established that for any swarm W, the
upper-bound on potential-change induced by the download
of piece ¢+ € W depends only on its type (: € Ry or
i € RY;,), whether or not the download is accompanied with

the departure of the peer (¢+ or i—), and the current chunk-
distribution in swarm-W (\IIE,‘T,JF) and \I/g,_) depend on whether
X € RE/II,) or X € R%f,)). Thus, for any state x, we can write

QV(x) = Y V2T + N Qvifv ) 4 uifv?)
Wew Wew
) QV(W,+)
Y QU QT (35)
WeW
.—QV(MV,V )
where
QV(Q +)(X) _ (QJF AV%?’+)
Qg™ () = 2 aw AV,
reRw,
W\S2{r}
QT = Y AV
reRw,
WS~} (36)
QU = N AV,
neRy,,
W\S2{n}
QU Iy = Y ¢ravign).
neRy,,
W\S={n}

1) Empty Peer Arrivals: Let CV) = maxywepw KWC%).
Using and (32),
> ViZt < Iajc™.

Wew

(37)

2) Downloads of Primary Pieces without Peer Departure:
The potential-change from the download of rare pieces without
accompanying peer-departure via the rarest-first (RF) mech-
anism is non-positive. (\IIE,y) is always non-positive). In
Lemma [7|in Appendix [B| we upper-bound the corresponding
drift by what we would have obtained if we were to replace
RF by random-novel (RN), i.e.,

(5)

x LU
Qv(RW7+) < YW |:
W r;; ] RS
WA\S2{r}
Z zy (r+)
.y vt (38)
v (T RS
T:reT

Remark: Since is also an upper-bound for the download
of rare pieces using the random-novel (RN) mechanism, the

TABLE 11
UPPER-BOUNDS ON POTENTIAL CHANGES ASSOCIATED WITH
SIMULTANEOUS DOWNLOAD OF PIECES 7 AND j BY MUTUALLY
ALLY-PEERS (W, S) AND (V, T) RESPECTIVELY

Category | Transition Potential Change
1 G, Hw, G, +H)v | ohP +obt

s | Hw, Gy [ eyt + el

(i Dw, Gy | v + e

3 | Gow Gov | el + e




stability proof of RFwPMS also works for “RNwPMS” —
a piece-selection policy same as RFwPMS except that rare
pieces are downloaded randomly.

Using (23], (26). (34), and the fact that 1 [x € Rg,)] 4KZ, —

C‘(/[l,) - I‘(;) < 0, we get

QUi < N S |1 |xe R 4K - Cfy)
neRy,,
WA\S2{n}
o) 7w M7
AR o L Tow [xe R | (. (39)
neRy,,
W\S={n}

Lemma [§] in Appendix [C| combines and to give

(4) (l)
w+) _ [Xlw | R @ ()
\ 1 - -
QViy X EZV:V ( K ( w VW)

x [1[xe RY| (KwThw 1l € By + 6, 100 € Rw])

+1[xe R |aKE - o) — 1| )

(40)

we have introduced ’y‘(,?,)

where, as a short-hand for

e, 0 PO . ..
W, i.e., the fraction of swarm-W peers missing

only p);evge 1 of file-W.
3) Downloads of Primary Pieces with Peer Departure:
Using 27), (33), and the fact that 1 [x € RE?V)] 4K%, —CI(;,) +

[xeR ]1/} 1[i € Rw] < 0, we have

QUi < IXIW S ralilad)
eW
(1) R ,
1|xe Ry | (T¥wllieRiy] +¢,,1[i € Rw]
+1[xe RP|aKE - o) + 11| @1
4) Combining Everything: Let us define
v)(x) =1 [x € R(V?] AR,

+1 [x € R%)] (KWTEWI [ie Ry ] +¢,1lie RW])

_c® (42)
Then, using (37), (40), and @I), in (35), we get
x
o< Y Mgy, (43)
Wew |X|

where

[< (z)) )

-(1-7 - ygv)1“+wa<wr1<2>].

QVw(x) = ]AlC™ + Z
€W
(44)

With this initial setup in place, the rest of the proof is provided
as a succession of lemmas in Appendix [E.

IV. DISCUSSION

A. Sharing vs Suppression Trade-off for Non-Rare Pieces

Note that with ayy € (0, 1] sufficiently small, if we take the
limit By — o0, swarm-based RFWPMS converges to a swarm-
based version of RF (which is unstable in high arrival-rate
regime), whereas if we take the limit 8y — 0, swarm-based
RFwWPMS converges to a swarm-based version of MS [11].
Thus, our expectation is that by choosing ay sufficiently
small, and Sy appropriately, a good trade-off between the
sharing and suppression of non-rare pieces can be found. Via
numerical simulations, we found that the expected sojourn
time appears to be minimized with small ay ~ 0 and
Bw ~ 1

Remark: Swarm-based RFwWPMS like MS is a centralized
scheme as it requires the knowledge of piece distribution in
the network; we assume that in practice, peers can keep such
estimates either via gossiping or via a centralized tracker.

B. Rarest-First vs Random-Selection for Rare Pieces

Another notable observation about mode-suppression (from
[11]) is that it performs random-selection on the set of avail-
able rare pieces. We assert that knowing the relative chunk-
counts of the rare pieces should allow for more advantage
than just random-selection (RN), and that a load-balancing
scheme like RF will reduce the duration of the transient phase.
This also gets manifested in Section where we compare
the flash-crowd response of RNwPMS (replacing the selection
of the rarest available rare piece by random-selection) with
RFwPMS.

C. Inter-Swarm Collaboration

Our multi-swarm model in section |ll|is general in terms of
inter-swarm behavior of peers and their secondary download
preferences. Here, we discuss three different behaviors that are
covered:

a) Altruistic Swarms: In most wired P2P environments (e.g.,
the Internet), peers are generally insensitive to the con-
sumption of their download and upload bandwidths, and
they may download extra pieces in order to help other
swarms. Such behavior can be captured in our model by
setting Wy, (@lly1) _ Wy and Fyy = F for every W e W.
From [8]], a network in which all swarms are altruistic is
called a universal swarm network.

b) Opportunistic Swarms: A different type of altruism is
when peers do not download any extra pieces but share
their pieces with those of other swarms who need them.
We obtain this by setting W(a”y D — W and Fw =W
for every W e W.

c) Selfish Swarms: In wireless P2P networks, peers may be
sensitive to the consumption of their download and up-
load bandwidths. This holds by setting W{*™ = {7}
and Fyr = W. Thus, the peers do not download any extra
pieces nor do they upload any piece to other swarms.



D. Piece-Selection Policies for Excess-Cache

In our original version of RFwPMS, random-selection was
assumed for the download of extra pieces, but the stability
result in Theorem [I| extends to any piece-selection policy
one may use for the excess-cache. Without loss of generality,
consider a piece-selection policy (or the excess-cache, whose

transferable-set is denoted by F |{ x, ZA“, W, S), i.e., F satisfies

E(x,f,w,s) c (fmfw)\(suW).

Recall that the Lyapunov function given by and is not
affected by a piece download from the set E. Consequently,
all the bounds on QV(x) including Lemma still hold.
The final step of combining Lemma and Proposition [f]
has to be modified, however, because under some policies,
the Markov process may no longer be irreducible with the
current definitions of the state space and state (I)). For
instance, take a single-swarm network in which F = ¢, and
the incoming swarm, say swarm-W, satisfies Fyy = F 2 W.
Then, the set of all states in which some peer holds a piece
from the set F\W is not reachable from all other states. In
such cases, the set of all states that are reachable from the
zero population state is a closed irreducible set of states and
should be defined as the state space of the network. Stability
then follows from combining Lemma and Proposition [6]
We summarize this discussion in the following proposition.

Proposition 3: For the multi-swarm network model with
non-persistent peers as described in Section [II, swarm-based
RFwPMS with any piece-selection policy for the excess-cache,
is stable over the parameter region, P(5tab)

E. Autonomous Swarms

One more case to consider is when all the swarms in the
network operate in isolation from each other. Specifically, a
peer belonging to swarm-W contacts and exchanges pieces
with peers in the same swarm. The fixed seed, on the other
hand, divides its uploading capacity across swarms, providing
a static non-zero fraction of its total capacity to each swarm;
optimal partition of the seed capacity is for future work. Such
swarms are called autonomous swarms in [§]]. The stability of
swarm-based RFwPMS holds for such swarms as well.

Corollary 3.1: Consider a multi-swarm network where each
swarm W e W behaves autonomously and the seed has
allocated a static non-zero fraction of its total capacity for each
swarm-W (say Uy, > 0). Then, the network is stable under
swarm-based RFWPMS over the parameter region, P(ste0),

Proof: Each swarm-W can be considered as an isolated
single-swarm network with fixed seed of capacity Uy > 0.
Stability follows by applying Theorem [I] to each swarm. W

FE. Optimistic-Unchoking and Tit-for-Tat

In our description of the Peer-Contact Policy in Section
peer-(1) makes a tit-for-tat contact with peer-(2), it is
assumed that the probability of peer-(k) committing to transfer
a piece to peer-(—k), in the event that it does not benefit
from peer-(—k) is some fixed value, p € [0, 1]. However, from
the stability analysis in Appendix [E, one may note that this

assumption can be relaxed in two ways. i) If the network
enforces optimistic-unchoking on the incoming peers, i.e.,
Yy (©rt) — 1, then the system is inherently stable regardless
of what p value is chosen by each peer in any of its tit-
for-tat contacts — indeed it may depend on the history of
peer-(k)’s interactions with peer-(—k). (Y in remains
bounded). ii) In the case that y(ort) = ), the stablllty of the
network still holds with variable p values as long as peers are
forced to choose p values larger than or equal to some positive
threshold value pg € (0, 1]. (T in remains bounded). In
particular, this means that our stablhty result holds for a history
based tit-for-tat mechanism where each peer keeps track of
its interactions with other peers. From i) and ii), we get the
following proposition.

Proposition 4: Consider the multi-swarm network model
with non-persistent peers (as described in Section with
the change that now each peer, in any tit-for-tat contact,
can choose a variable p value in [pg, 1]. Then, swarm-based
RFwPMS is stable over the parameter region,

(U>0,A>0,LeN,ky, >0,KyecN{1}YIWeW}.

G. Comparison with Work of [|11], [12)]

As mentioned in Section [12] introduced a threshold
based version of mode-suppression, where the non-rare pieces
are (completely) suppressed only when the largest-mismatch
crosses a fixed constant threshold. Compared with this, swarm-
based RFwPMS inhibits the replication of non-rare pieces
by smoothly decreasing the non-rares sharing factor ‘(,;)
in proportion with the largest-mismatch value. In Section
[VI-D2] we note that a smoother-suppression like this should
be preferred compared to a threshold-based suppression.

Another notable observation is that [11]], [12] perform
random-selection on the set of available rare pieces. We assert
that knowing the chunk distribution should allow for more ad-
vantage than just random-selection, and that a load-balancing
scheme like rarest-first should do a better job in reducing the
duration of transient phases. This gets manifested in Section
and is also in line with the practical conclusions made
in [20]] (albeit without a theoretical backing).

H. Effect of Policy Parameters {aw }:

An interesting question is whether or not the stability result
for swarm-based RFWPMS can be extended to the case when
aw = 0 for at least one of the swarms From Lemma[9] we see
that the positive component of QVW W) can be upper-bounded
by a fixed constant, namely

Dy = DYy + D1 Wi\ # ]

DWW = 12¢72) Y (LU + k)85 Ky, @5)
(1 awl)

DY) = 35—y (LU + op) B W KOO
aWW

If a swarm-W does not have any donor-ally swarm besides
itself, then Dy is independent of aryyy. This immediately gives
the below proposition.



Proposition 5: For the multi-swarm model with non-
persistent peers as described in Section [[I] swarm-based RFw-
PMS is stable over the parameter region, ’P(Smb), where aypy
can be chosen to be zero for any swarm which does not have
any donor-ally swarms (besides itself).

When swarm-W has other donor-ally swarms, the constant
Dy — o as ay — 0. Based on this, one may speculate
that the stability of swarm-based RFwPMS is coupled with
the choice of {aw}’s in the sense that the state of the
system can possibly spiral out into ever increasing loads if
aw = 0 (for swarms W that have other donor-ally swarms
also). However, this does not seem to be the case in the
numerical simulations we have performed. FigH] shows one
such numerical snapshot for illustration. This corroborates the
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Fig. 4. Stability-check of a three-swarm network when ayy = 0. The file-
configurations were Wy = [10], Wa = [6,15], W3 = [16,30] and all
swarms interacted altruistically. Initial state of each swarm was one-club—all
peers in the swarm missing one specific piece of the file. Assignment of other
model parameters was A = (8,4,2),U = %,u(tm =1, plopt) — %,L =
3,p=05,Y0P) =1 By =1.5.

assertion that the parameter ayy is a technical artifact for
upper-bounding the positive drift from the download of non-
rare pieces for ever increasingly large states which have large
d%). For the aforementioned reasons, we believe that swarm-
based RFwWPMS is stable in the setting when aiyy’s can assume
zero values. We state this as a conjecture below.

Conjecture 1: For the multi-swarm model with non-
persistent peers as described in Section [[I, swarm-based RFw-
PMS is stable over the parameter region, P(stab) \where aw
can be chosen to be zero for any W e W.

L. Scalability of swarm-based RFwPMS

Scalability is also necessary for a P2P network, i.e., the
system-wide throughput should scale with the number of
peers. For the multi-swarm model presented in Section [II}
this means that the expected steady-state sojourn time in the
network should be upper-bounded by a constant independent
of A. Unfortunately, analytically showing the scalability of
stochastic models similar to the one we considered in this
work is a hard endeavor and we leave this as an open problem.
However, using an approach similar to that used in [12], we

are able to show (under a mild assumption) the scalability of
RFwWPMS in the single-swarm case. This result is formally
stated below.

Theorem 4: For the single-swarm case of the multi-swarm
model described in Section Ge, W = {(WhHLF =
W, |x|w = |x]|), provided that the empty-peers are always
push-contacted in a tit-for-tat contact, swarm-based RFwPMS
is scalable over its stability region. That is, the steady-state
expected sojourn time, denoted by Ty, is upper-bounded by
a constant independent of the arrival-rate of empty-peers. In
particular,

- O (K3,) if 2K%\w < LU,
Tw = 6 : 2
O (KS,) if 2K2A\w > LU,

when By = O (Ky?).

The proof is established using Kingman’s moment bound
[18] which uses the well-known technique of designing a
suitable non-negative function and setting the steady-state ex-
pectation of its unit-transition drift equal to zero. Provided that
the Markov chain is positive-recurrent, one usually hopes to
obtain some convenient bound on the queue-length—although
determining a good function (for a tight bound) is usually a
challenging task. For reference, please see Proposition [6] in
Appendix [F}

In the next section, we provide the proof of Theorem

V. SCALABILITY OF SWARM-BASED RFWPMS IN THE
SINGLE-SWARM

Positive-recurrence of {x(t) : t > 0} is guaranteed by
Theorem [T} Thus, to establish scalability, the key novelty is to
first partition the stability region into two distinct load-regimes
based on the size of total arrival-rate Ay in comparison to
the seed’s aggregate upload capacity LU and then design a
suitable non-negative function for each. The regimes are

i) £1:=PEW) ~ {\y < 05K;7LU}; and

ii) Lo =P A {A\y > 0.5K,°LU}.
Let us denote the stationary distribution of {x(¢) : ¢ > 0}
by {p(x) : x € S}, so that the expected number of peers in
steady-state is given by E,[|x|] = E,[|x|w], and by Little’s
Law, Ty = Ay E,[|x|w]-

A. Low Load Regime L1

For regime £,, we have the following Lemma.

Lemma 5: For the single-swarm case of the multi-swarm
model described in Section [lI, with swarm-based RFwPMS as
the piece-selection policy, if the network parameters belong
to L, then the steady-state expected sojourn time Ty is
independent of Ay . In particular, Ty = O(K3;,).

Proof: The intuition behind this upper-bound is as fol-
lows: In L4, the total arrival-rate Ay, is sufficiently small
compared to the seed’s aggregate upload-rate LU therefore,
we expect the seed to quickly flush the system without any
contribution from the normal peers. Keeging this in mind,

the (u(t™), ;(°PY)-independent bound, Ky (Kw+1)

T , can be



established by using Kingman’s moment bound on a suitable
non-negative function. Let

2
Vi(x) = (KW|X|W - PV%O“) + Kwx|w — P9, (46)

It can be observed that V; heavily penalizes the states which
have large number of missing pieces The arrival of an
empty-peer in swarm W causes a unit-increase in |x|w . So,
the potential change associated with the arrival of an empty-
peer is given by

AVIZT) < 9(8:4)

= K2 + 2Ky (KW|X\W — PV%"”) + K.
47

The download of a piece ¢ € W by any (W, .S) peer causes a
unit-decrease in the difference Ky |x|w — P&Ot). Therefore,
the associated potential change is given by

AV < @ -2 (Kiylxlw — PY™) . @9)

Upper-bounding QV(x) by considering peer-arrivals, and
downloads of the rarest-pieces (from R r 1y gy) by the fixed
seed only,

QV4(x)
< Aw@(®’+) +

S ()

T€R w5y ‘E(]‘—:Wﬁ)‘i

(@)
= \w®@H 4 LUK,'®

(b)
= Aw (K + 28w (Kwlxlw = Py + K )
— LUK (Kw|X|W - PVW))
= A\w (K + Kw)
~2 (LUK = awEKw) (Kwlxlw = Py™)
©
< M (K3 + Kw) — Ky LU |x|w . (49)
Here, (a) uses 1 — my, > Ky' (Lemma ; () uses
and (@8); () follows from Ay < 0.5K,”LU and |x|w <
Kw|X‘W — P‘E;Ot).
Now, applying Kingman’s moment-bound to with
f(x) = Ki' LU|x|w and g(x) = A\w (Kw + K3,) gives

)\WK%/(KW + 1)

E/)[|X|W] < LU 9 and
2
Ty < BwlEw+1) (K3,).

LU

B. High Load Regime Lo

For regime L5, we have the following Lemma.

Lemma 6: For the single-swarm case of the multi-swarm
model described in Section [II} with swarm-based RFwPMS as
the piece-selection policy, if the network parameters belong

2 Kw|x|lw — P‘E‘;Ot) is the number of pieces of file-W that are missing
in swarm-W.

to Lo and the empty-peers are always push-contacted in a
tit-for-tat contact, then the steady-state expected sojourn time
Tw is independent of Ay . In particular, Ty, = O(K§,) for
Bw = O(Ky”).

Proof: Let

VQ(X) = Vw,l(X) + VW,Q (X)
2
_ ((MW - nm)*) + 0V (Ixlw —ew) . (50)
The above function uses the terms Vi and Viyo of Vi
given in (31). Therefore, by ignoring the terms associated with
Viv,3(x) and noting that W = {W}, from (@3), we get

V) < K Cl) + Y S [(1 ) ).
iEeW

w W
Kw

Case 1 -x¢€ R(MQ,): Here,

QV,(x) -
2 sl + Y (1 n0) (ah, - i)

ieW
(b) r®
< AwEw ) + 25 [ (1= my) (—0501) |
(©) )
< AwKwCl + KTl [~0.50) |

9 (1) _ o 5 or(D) o2

< /\W}(ch O5CW KW (LU + HPQW)

(e)

<A EKwCS —05C K2 (LU + 5, (1 — n)(@w — 2))
< AwKwCl = (1= n)Kyew |05C1)n, |

+ K2 (201 =)k, — LU)T [0.5053] . (51)
Here, () uses the definition of \I/%,) (see (42)); (o) uses C‘(,[lf) >
8KZ, and then upper-bounds the summation by considering
only the rarest-piece (denoted by 7r); uses 1 —my, > Kv}l
(Lemma ; (d) uses E(Mz,) > LU + kpeyy (see (19)); (e) uses
cw > (L—n)(ew — (2)

Cw n)(€w — 2) because x € Ry, .

Case 2 -x€ Rg,ll,): Here,
QV 5 (x)
(a) F(’")a(i) .
< AwEwCly + Y =W (] — )
5 0 (1)
x (Kw Yoy 1[ie RS 1[i e Ryw] - CY
wY¢wllie Ry ]+ ¢, 1[i€ Rw] w

(b) 7 () .
< MwEwCy + ) Lw w1 2) Ky Yoy ]

Kw

C
neRy,

* 3 Rl -]

reRw
(r)
Swkwof) + e 3 B (1), - o]

TGRW

@
< AwKwCW + DI

= 2(1 =) Ey? [2(1 = n) (LU - 2(1 = n)ky)



+ ((Kw —mew = | C(v§/)> (LU A~ 2(1 - 77)’%)]
itr
© W, pO

= 2(1 = )Ey? [2(1 = 1) (LU = 2(1 = n)s,)
+(1 = n)ew (LU A 2(1 = n)kyp)]
= \wKwC(y) + DY)
— (1= mEy?ew [2(1 = 1) (LU A 2(1 = 1)ky)]
+ KI;E 2(1 —n)kp — LU)+ [4(1 — 17)2] .
Here, (&) uses the definition of \IJE;,) (see @2)); (o) uses cl) >
0; (c) follows from Lemma [9} (d) follows from Lemma

(e) uses ¢y < Tw.
Combining and (52)), we get

QV,y(x) < \wKwCS + DI
+ K2 (21 — n)ky — LU)Y (0.5055’ 41— 77)2)

(52)

— K;2(1 — n)ew min {0.505},)%, 2(1 — ) LU,
4(1 - 77)2’%}
(@)

<8\wK3 + D + 50201 - n)k, — LU)T

—2(1 — n)2 Ky ew min{LU, 2(1 — n)k,}. (53)

Here, () follows from choosing C"(,[l,) = 8K3, and using 4(1—
n)? < Kj.

Applying Kingman’s moment bound to with f(x) =
2(1-n)2 K2 min{ LU, 2(1—n)x, }ew and g(x) = 8\w K+
Dg‘l,) +5(2(1 —n)k, — LU)T, we get

(a)
E,[|xlw — 2if)] < E,[P™] < KwE,[ew]

(8xw A +5 (21 = )y — LUY* + DY) Ky
2(1 = )2 min{LU,2(1 — n)k,p}
K3y (8\w Ky +5 (21— n)r, — LU)T) + DI K,
2(1 = n)?min{LU, 2(1 — n)k,} '

Here, () uses the fact that each non-empty peer must possess
at least one piece of the file.

Now, we divide the single-swarm system into two sub-
systems; one with empty-peers and the other with peers
who hold some piece of file-W. The two subsystems are
connected in tandem as shown in Fig. [5] Only the empty
peers arrive in subsystem-1, so the arrival rate in subsystem-
1 is Aw. Since both systems are stable in steady-state, the
departure rate of subsystem-1 (which is also the arrival rate of
subsystem 2) and the departure rate of subsystem-2 are Ayy.
Let Tw.1 and Ty denote the steady-state expected sojourn-
times in subsystems 1 and 2 respectively, so that by Little’s
Law, E, [|x|w] = Aw (Tw,1 + Tw,2). Under swarm-based
RFwWPMS, consider two situations — one in which a (W, S)-
peer contacts a (W, T')-peer where T' # (& and the other in
which it contacts a (W, &¥)-peer. Then under the assumption,
that empty-peers are always push-contacted, (W, S)-peer will
push-contact (W, &f)-peer with probability 1. This combined
with the fact that S\T' < S\(J ensures that the probability of

<

Peers with

pieces |
o %0 ~
o:o:o..° R0 >\W \

Fig. 5. Subsystems 1 and 2 in tandem (Single-swarm version of the multi-
swarm model described in Section [II).

an empty peer downloading a piece in the next state transition
is always lower-bounded by that of a peer from subsystem-2.
Thus, TW,I < Tw)g, which giVCS

E,[|xlw] < 2A\wTw,2 = 2E[|x|w — 2\2’], and
K3, (8K§V + 55 (21 — )k — LU)+)
(1 =) min{LU, 2(1 — n)r,}

At DWW K,

1—=n)?min{LU,2(1 — n)k,}"

Tw <

i

Using A\ > 0.5KV_V2LU, the definition of DS,) from (@53),
and the choice of By = O(K,;”), we get

Tw =0 (Kyy).

VI. SIMULATION BASED PERFORMANCE EVALUATION

Next, we investigate the stability, scalability and sojourn
times of (swarm-based) RFWPMS via numerical simulations.
Since our stability result holds for any number of swarms,
we will evaluate performance in both single-swarm and multi-
swarm settings. Unless otherwise noted, in all cases, we set
aw to 1072 and Sy to 1.5. Furthermore, the tabulated steady-
state sojourn times are based on samples which were taken
after the simulated Markov chain hit stationarity (simulation
end-times were chosen long enough to collect sufficiently large
number of samples from the stationary distribution).

A. Stability Check

We illustrate the stability of (swarm-based) RFwPMS by
simulating four instances of a two-swarm network with the
setting of “hard tit-for-tat (p = 0) and opportunistic-unchoking
(Y(Pt) = 1)” — the four instances correspond to altruistic,
opportunistic, selfish, and autonomous inter-swarm behaviors.
In each instance, the network consists of a master-file F of 25
pieces, i.e., F = [25]. The two swarms entering the network
are denoted by W; and Wy, each having an arrival-rate of
20. Peers from swarm-W; wish to download file W7 = [15]
whereas those from swarm-W5 are interested in file Wy =
[10,25]. We initiate the network in a state where both swarms
are in the one-club scenario: both have 500 peers with all
in swarm-W; missing piece 1, and all in swarm-W> missing



piece 11. For the autonomous case, the seed’s upload capacity
is divided evenly among the two swarms, i.e., (Uw,,Uw,) =
(0.5,0.5).

Fig. [6] shows the evolution of the swarms’ population-sizes
for the four inter-swarm behaviors. It is observed that each
swarm is able to escape the one-club in finite time, after
which a stable regime persists with minimal fluctuations. In
the case of altruistic and opportunistic swarms, the popula-
tion of swarm-Ws, suddenly drops in the beginning. This is
because piece 11, which is missing in swarm-Ws, is widely
available in swarm-W7; due to altruism of swarm-W; peers,
the one-club peers in swarm-W5 quickly grab piece 11 and
leave the network. In the opportunistic case, the population
of swarm-Wj increases almost linearly after the big initial
drop. This is because once most of the one-club peers in
swarm-Ws have left, the network is dominated by swarm-
W1 peers. Therefore, most of the contacts of the new-comers
in swarm-Ws are with swarm-W; peers. Since the files are
not identical, these new-comers cannot accumulate all pieces
from swarm-W; peers and are forced to linger in the system —
till swarm-W,’s population-size reduces enough and they get
more opportunities for useful contacts.

B. Scalability Check

Here, we simulate twelve instances of a two-swarm network
with the setting of “soft tit-for-tat (choice of p = 0.5) and
no optimistic-unchoking (Y (°?Y) = 0)”. In each instance, the
network’s master-file comprises of 18 pieces (F = [18]), and
the two swarms entering the network are interested in files
W1 = [10] and W5 = [8,18]. The twelve instances corre-
spond to four inter-swarm behaviors (altruistic, opportunistic,
selfish, and autonomous) and three arrival-rate configurations
(A = (4,2), 4X and 16A). For the autonomous case, the seed’s
upload capacity is again split equally between the two swarms.

Table || lists the (steady-state) expected sojourn times for
the twelve model instances. We note that the expected sojourn
time practically stays constant in all the four inter-swarm
behaviors, and improves as swarms interact more altruistically.
Another observation is that the autonomous setting has lower
expected sojourn times than the altruistic setting. This is not
unexpected though; in autonomous setting, every peer makes
contacts within their own swarm (no inter-swarm interactions),
thus the likelihood that the next contact is useless is generally
lower.

C. Steady-State Expected Sojourn Times in Multiple Swarms

How does the (steady-state) expected sojourn time scale
with the file-size is another important performance measure.
For this, in Section [V, we obtained an upper-bound estimate
of O (K§,), for choice of B = O (Ky;”). In Fig. IZL we
verify this for a two-swarm network in a soft tit-for-tat setting
(choice of p = 0.5) with optimistic-unchoke (Y (°P) = 1)—
once again, under the four different inter-swarm behaviors.

Fixing the arrival-rate vector to A = (6, 2), increasing con-
figurations of the two file-sizes were simulated such that for
every choice of Wi = [Kw, |, we set Wa to [ Kw,, 3Ky, ].
(Again the seed’s upload capacity was split evenly in the

autonomous case). The sojourn times for each swarm are
observed to scale linearly with the file-size. Additionally, we
note that for each swarm, the altruistic and autonomous cases
are Pareto better than opportunistic and selfish cases.

D. RFwPMS vs. Mode Suppression

Via simulations MS [11] has been shown to outperform
other previously proposed piece-selection policies. Here, we
do a base-line comparison of RFwPMS and MS in a single-
swarm network.

1) Steady-State Expected Sojourn Times: Table com-
pares the (steady-state) expected sojourn times of RFwPMS,
MS, and TM for different values of file-size Ky with
the arrival-rate fixed at A\yy = 4. It is noted that using
RFwWPMS (with By = 1.7), the expected sojourn time is
indeed reduced compared to MS. This reduction is observed
to be less significant when Ky is large (roughly 100 or
more)—the increased chunk diversity in steady-state reduces
the number of contacts in which only the non-rare pieces are
offered. The expected sojourn times of RFWPMS and TMS,
on the other hand, are comparable for all values of Kyy .

2) Flash-Crowd Responses: Real torrents seldom experi-
ence steady-state behavior as the arrival-rates vary over time
with intermittent bursts of empty peers. Fig. [§| compares the
flash-crowd response of MS, TMS, RFwPMS, and RNwPMS
(replacing RF by RN in our policy) for Ky = 100 (“large")
and an initial population of 500 empty peers (|x|w (0) =
a:%,? ) (0) » Kw); RFwPMS flushes out the system in the least
amount of time (about half the time as MS) whereas RNwPMS
takes the most amount of time (see Fig.[8a). The reason behind
such responses can be understood from Fig. Initially, there
are no pieces in the system. Therefore, the time till all Ky,
pieces are introduced into the system depends solely on the
seed’s uploading capacity which is set to 1. Thus, for every
policy, if Kyy is sufficiently large, it will take on average Ky

2 Threshold Mode-Suppression with suppression-threshold set to 2Ky

TABLE III
STEADY-STATE EXPECTED SOJOURN TIMES
FOR DIFFERENT ARRIVAL RATE VECTORS.
(U =p =1,u0P) = 1 1, =3,p=05,Y0P) =0).

Swarms’ Arrival E,[Sojourn Time|
Behavior Rates® | W; = [10] Wo = [8,18]

Altruistic A 2.927 4.400

DY 3.088 3.990

16X 3.134 3.971

L A 3.704 5.042

Opportunistic BN 3830 5 3A]

16 3.956 5.570

A 4.378 6.394

Selfish x 1590 6.452

16 4.667 6.604

Autonomous A 2791 3.769

4 2.712 2.667

16 2.788 2.740

aX = (4,2).

Simulation end-time: 1000 units.

The confidence intervals are not shown due to their negligible
magnitude (even with a choice of 99.9 percent confidence
level).



Fig. 6. Number of peers in a two-swarm network (W7 = [15], Wa = [10, 25]) for different inter-swarm behaviors. Other model parameters were set to
U = p(tft) = 1, ylopt) — %, L =3,p=0,Y(P) = 1 In the case of autonomous-swarms, the seed’s upload capacity was divided equally among the

swarms.

Expected Sojourn Time

Fig. 7. Steady-state expected sojourn times vs file-sizes. Fig.shows the expected sojourn times of swarm-1 and Fig.@shows those of swarm-2. Assignment

of remaining model parameters was XA = (6,2), U = p(tt) = 1, ylopt) = %, L =3,p=0.5, Y(P) = 1. The error-bars (for confidence intervals) are
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not shown due to their negligible magnitude (even with a choice of 99.9 percent confidence level).

time units till every piece has been introduced into the system has introduced the last piece into the system. After that, the
number of copies of the non-rare piece and the rarest piece

(see Fig. [8b). MS forbids the download of non-rare pieces.
Thus, there is exactly one copy of each piece when the seed go hand-in-hand with at most a difference of 1. TMS, on the



STEADY-STATE EXPECTED SOJOURN TIMES FOR RFWPMS AND MS.

TABLE IV

Aw = 4,U = P — [ = Y (o) =1, gy, — 1.7).

K E,[Sojourn Time] Perc. Improv.
w MS TMS | RFwPMS over MS
2 6.246 5.022 5.178 17.103
10 18.250 12.546 12.525 31.367
20 31.741 23.020 23.058 27.356
40 55.648 43.775 43.750 21.382
80 100.300 84.374 84.421 15.831
100 121.804 | 104.849 104.610 14.116
200 | 226.998 | 205.300 | 205.176 9.613
500 | 533.737 | 506.480 | 506.351 5.131

Simulation end-time: 5000 units.
The confidence intervals are not shown due to their negligible
magnitude (even with a choice of 99.9 percent confidence level).

other hand, allows the download of non-rare pieces till the
largest-mismatch equals the threshold (twice the size of the
file). After that, no peer is allowed to download those pieces.
Therefore, by the time, the last piece is introduced into the
system, there are many peers who have yet to download a
large number of pieces to depart.

Comparing with MS and TMS, both RFWPMS and RNw-
PMS allow the (probabilistic) download of non-rare pieces,
and since Kyy is sufficiently large, by the time the last piece
is introduced into the system, the largest-mismatch myy has
increased considerably coupled with proportional decrease in
C(Wn). At this point, the largest-mismatch is very large, but
owing to the RF piece-selection, RFWPMS quickly stabilizes
the this mismatch by giving preference to the rarest of all
available rare pieces in all peer encounters. On the other hand,
RNwPMS does not consider the frequency differences of the
rare pieces. Thus, if Ky is sufficiently large, the system is
likely to get trapped in a one-club type state where almost
all peers have all the pieces except the rarest one. Once this
happens, only the seed can flush such peers from the system,
which leads to a larger file-delivery time than that of MS.

It is worth noting that RFwWPMS can also get trapped in
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(a) Number of Peers vs. Time.

20

such one-club like states. This is specially true when file-
size is much larger than the size of the flash-crowd (Ky >»
Ix|w(0) = xg/g)(O)). As an example, Fig. 9 shows such a
flash-crowd situation—RFwPMS gets locked into the one-club
like state (Fig.[9a) whereas MS avoids this (Fig.[9b). (Note that
the flush-out time of MS is still larger than RFwPMS). The
locking-in of RFWPMS in this one-club like state is because
the non-rares’ sharing factor C‘(,[T,") defined in (16) suppresses
non-rare pieces via the ratio %VVV Since myy is upper-bounded
by the network’s population-size (which in this case is much
smaller than K7y ), the suppression is not enough to slow down
the download of non-rare pieces/?*| This observation while
simple is worth noting as it is reflective of what should happen
in practice. Usually, files shared over such networks would
have chunk-sizes that are much larger than the flash-crowd. In
such transient situations, to obtain a good trade-off between
suppression and sharing, it would make sense to have a non-
rares’ sharing factor that takes into account the flash-crowd’s
size (besides network’s parameters and the file-size). One way
we could choose a (jg}) that can work for both types of flash-
crowds would be to replace it by
k1 mw +dY)
Bw LU min{ K, |x|}

exp (54
Fig. [10] shows the flash-crowd response of RFWPMS for the
aforementioned choice of Cg}’) with different values of By,
namely 0.2, 0.4, and 0.5. When By is set to 0.4, it seems to

replicate the response of RFwPMS in Fig. [§] and attains the
least flush-out time.

VII. CONCLUSION

In this work, we proposed and studied a piece-selection
policy, (swarm-based) RFwPMS, for a BitTorrent-like P2P

24This locking-in of RFWPMS would still occur if we suppress each piece

; i C%) —w
1 through the ratio B et

—e— MS - G
MS - ¢
—4=RNwPMS - ¢y
RNwPMS - ¢y
«ohes TMS - G
TMS - ¢y
—4k=RFwPMS - ¢y
—-—=-RFwPMS - ¢y

Max. and Min. Chunk-Counts

300
Time

400 600

(b) Chunk-counts vs Time.

Fig. 8. Flash-crowd responses of MS, RNwPMS, TMS, and RFwPMS when flash-crowd size is much larger than file-size. Initial population and file-size
were set to 500 and 100 respectively. Assignment of other model parameters was A\yy = 0, U = ,u(‘”pt) =L =y(pt) = 1)



21

100 100
90 b 90 ! q
80 | b 80 .'" 1
7ol - 70t -
!
60 f 1 60 - i .
]
50 ¢ 1 50 - I .
40 b 40 - i .
! i
30k . 30+ ! 1
1
20 } |=====No. of Peers y 20 |- | === No. of Peers i ]
— = Max. Chunk-count — = Max. Chunk-count i
10T | =-=-Min. Chunk-count i 107 =e=-Min. Chunk-count I |
0 - L L i L o Y e = A R R
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time Time
(b) MS.

(a) RFWPMS.
Fig. 9. Flash-crowd responses of RFWPMS and MS when file-size is much larger than the size of the flash-crowd. Initial population and)ﬁle sizes were set

to 100 and 600 respectively. Assignment of other model-parameters was Ay = 0, U = %, ptt) — ylopt) — 1 [, =3 p =05, Yr) =1,

Il
70¢
f -
6o Bw = 0.5 60 ’1 Bw =0.4
soft 50 50
I | —r==-=1
40 40q L e i
n ! i
30 30 300r |
| 1 i
20 | |====DNo. of Peers 20 |t |====No. of Peers 20 |t |[=====No. of Peers i
= = Max. Chunk-count I |= = Max. Chunk-count — — Max. Chunk-count i
10} |—-—-Min. Chunk-count 10§ |—-—-Min. Chunk-count 10§ |—-—-Min. Chunk-count i
0 0 0 -
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time Time
(©) Bw = 0.2.

Time

(a) Bw = 0.5. (b) fw = 0.4.
Fig. 10. Flash-crowd responses of RFWPMS when file-size is much larger than the size of the flash-crowd. The non-rares’ sharing factor given by (54) was
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A. Change in Vv
Case 1 - Both ¢ and j are swarm-W’s non-rare pieces: If
both peers remain in the system, Ew,c(vi,),cg,) increase by
I; c%) stays the same for all ' € W\{s,j}. If both peers
depart, cyy, cg,), cg/) decrease by 1; c%) decreases by 2
for all i/ € W\{i,j}. If one peer departs and the other
() ) stay the same; cg,/) decreases by 1 for all

stays, cw, ¢y, Cyy/
i’ € W\{4, j}. Overall, in all cases, the total mismatch My,

increases by Ky — 2 and the highest chunk-count reduces
by at most 1. Overall, this causes an increment of at most
Kw —2+n < Kw in My — ncw . Therefore,

network with multiple swarms of non-persistent users. RFw-
PMS combines rarest-first (for rare pieces) with an adjustable
sharing-versus-suppression choice for non-rare pieces. Using
Lyapunov drift analysis, we proved the stability of RFwWPMS
in a multi-swarm setting, independent of how peers use their
excess cache, and whether or not swarms collaborate with each
other. By using the Kingman’s moment bound technique, we
established the scalability of RFWPMS in the single-swarm
case. Our numerical simulations demonstrated evidence that
RFwWPMS can reduce the steady-state expected sojourn times
as well as file-delivery times during a flash-crowd.

Lastly, since RFWPMS uses RF with a minor modification
(use of the non-rares’ sharing factor), it is amenable to be
incorporated into BitTorrent-like protocols.

In regards to future-work, proving (or disproving) Conjec-
ture[T]and determining the multi-swarm scaling behavior could

2
< ((Mw —riew + Kw)*) " = (M —ew) ")
<Yy < 20y
Case 2A - ¢ and j are swarm-WW’s rare pieces and x € S

()
W

2

be topics for future work.
1),
W

If both peers remain in the system, ¢y, stays the same; c
C(v{/) increase by 1; c(&,) stays the same for all i € W\{3, j}.
If both peers depart the system, ¢y decreases by 2; cvi, and

each decrease by 1; cg,/) also decreases by 2 for all

APPENDIX A
Two-SIDED PIECE EXCHANGES IN THE SAME SWARM

Here, we consider the event that (W, .S) and (W, T') peers

download pieces i and j respectively. cg,)



i'e W\{z j}- If one peer departs and the other stays, ¢y and
c(i/) (i' € W\{i,j}) decrease by 1; c() and C(J) remain the
same. Overall, in all cases, the total mlsmatch My, reduces
by 2 and ¢y decreases by 2 at most. Therefore,

AV{ST)

< ((MW —new —2(1 — 77))+)2 - ((MW - UEW)+)2

if My >
2[2(1 —n)* —2(1 = n) (Mw — new) _
= [ ] 2(1 —mn) +new
0 otherwise.

<2,

Case 2B - ¢ and j are swarm-W’s rare pieces and x € S‘(f,):

@) ) ;

If both peers remain in the system, ¢y, ¢y, ¢y increase by

I; CE/V) remains the same for all i € W\{3, j}. If both peers

depart the system tw, CW, c%{,) decrease by 1; CE/V) decreases

by 2 for all i’ € W\{i,j}. If one peer departs and the other
stays Cw,CE/V),CE/]V) stay the same; CE/V) decreases by 1 for all
i € W\{4, j}. Overall, in all cases, the total mismatch My,
increases from 0 to Ky — 2 and ¢y decreases by at most 1.

Therefore,
Av%i’ii)’(T’ji))

< (w249 —mew)") — (o))
< (Kw +2)° <2(Kw +2)° <20,

Case 3 - ¢ is a rare piece and j a non-rare piece: If both

peers stay in the system 6W,c(vi,),c(V{}) increase by 1; c%,f,/)

stays the same for all i € W\{z j}. If both peers depart,

Cw, cE/V),CE,V) decrease by 1; c%,v)

W\{i, j}. If one peer departs and the other stays, Ty, cW7

decreases by 2 for all i€
9
w
stay the same; CE/V) decreases by 1 for all ¢/ € W\{i,j}.
Overall, in all cases, the total mismatch My increases by
Ky — 2 and ¢y decreases by at most 1. Therefore,

AVE/‘(,:gl’ii)’(T’ji))
= (v = e+ Koy =2 )*) = (4 = o))
(vt e
(vt —ew)*)’
(Mt~ mew)*)”
< ((MW —iew + Kuw)) = (O = 7))

—(1- 77))+)2 - ((MW - 775W)+)2

NE
—

2
(MW — nNew + Kw — 1)+) —

NS
—

2
(Mw —new + KW)+) -

((MW —new — 1)+)2 -

Here, step (a) uses n < 1; uses 77 > 0; and step (b)) uses
the inequality

(@+a)")’ = (@)’ < (@+1+a)")° = ((2)*)°
+ ((z - 1)*)2 - ((:r)*)2 VzeR,a>0.
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The case when ¢ is a non-rare piece and j is a rare piece is
similar.
The above inequalities ensure that we can write

AVIEE I < N Y1 [ e Ry ] + ¢, 1[i € Rw] .
i'=i,j

(A.55)

B. Change in Viy o
(tot)

(@)

For Viy2, note that Kw [x|w — Py, = X [x|w — ey
() )

If both peers stay in the system, |x|y stays the same; cy;, ¢y
increase by 1; c%v,) stays the same for all ' € W\{¢, j}. If both
peers depart, |x|y decreases by 2; cW , c%) decrease by 1; C%/V)
decrease by 2 for all i € W\{i, j}. If one peer leaves and the
other departs; |x|y decreases by 1; c%/),c%) stay the same;
c(W) decreases by 1 for all i € W\{4,j}. In all cases, the
deficit |x|w — C%/V) stays the same for all ' € W\{i,j} and
decreases by 1 for i’ € {i,j}. Thus, we can write

AV{vf/?éii)’(T’ji)} — 2o (A.56)

C. Change in Viy 3

The change in Viy 3 depends on whether peers depart or
not, and does not depend on the type of ¢ and j. There are

three cases. If both peers stay in the system, PV(;Ot) increases
by 2. Therefore,

AVISOTI) < a0 [0 — 25 P = 21y,

(A.57)
If only one of the two peers depart, then PIE‘BOt) decreases by
Kw — 2. Therefore,
AV%{(/%H/*),(TJ*/H}

< O (Kw - 91| + Ky —2 > P |

< O w1 [C§) + 2Kw > PYV) — 1| o) —2> P
= Iy ~ Iy (A.58)
If both peers depart the system, P&t,()t) decreases by 2(Ky —
1). Therefore,
AV%{(/%Z’—%(TJ—)}
< OF (2(Kw — 1)1 [Céi) +2AKy —1) > PV(;O“]
<20 Kwl [053) +2Kw > Pv‘ﬁ,(’“] 21, (A59)

Equations (A.53) to (A.59) establish the bounds in Table

APPENDIX B
RAREST-FIRST VS RANDOM-NOVEL OVER RARE PIECES
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Here, @ uses the fact that glr+) is the same for all » € Ry,
which we have denoted by \IJV‘J,r )
the first term as follows.

. Then, we can upper bound
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U w

LU reRw x| |E(f,w,s)|

S:WA\S2{r}
@ 2\ r € Rz s}
o w
S:SAW|<Kw—1 X[ 1B w.s)
rreRw\S
s

= Z x%V) 1 \I/(+)

S:|SAW |<Kw—1 x| |B(RW7S)‘

’I’ZTGE(}-,W,S)
e
_ Z W (+)
x| "
S:|SAW|<Kw—1

- 3

IW) |RW\S|‘I,(+)

S:SAW |<Kw —1 x| [Bw\S|
s
_ Z o 1 (+)
S:|SAW <Ky —1 x| [Bw\S|
rreRw\S
(b x(S) 1
= W ol (B.61)
DI G
S:WA\S2{r}

In steps (a) and (b), we change the order of summation.
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Similarly, we can upper bound the second term as follows.

(S) xv 1{7" € R(TWS)}

Second Term _ Z \I,(Jr

I{pg reRw, |X‘ ‘E T’W’S)|
S:W\S2{r},
VEW‘(;‘(/L”y-l)7T:TET
| s) (1)
® ) oD 1r € Rerwis) g
” w
o x| B (rw,s)]
Vew@ ) 1T Ry )\S£D,
rire(TARw )\S
2(5) (1)
) 5 Two Ty g
S5 . x| |R(TWS)|
VEW‘(/I,;ZZ?/—U ,T:(TmRW)\Sig’
r:'r‘EE(T,W,S)
2t T
i Iw (1) g ()
S:|SNW|<Kw—1, x
Vew@ ) TUTARw )\S#Z
) 5 2y |(T n Rw)\S|ai v
S:|SAW|<Kw—1, |X| (T 0 Bw)\S|
VEW[(/]L;”yVU’T:(TmRW)\S#@
x(s) .’L‘(T)
) 2 w v ‘I’w)
S SAW[<Kw—1, [l (T~ Bw )\S|
Vew@ ) 1T Rw )\S£G,
rire(TnRw )\S
N (S) (T)
o W my o) (B.62)
reRw, ‘X| ‘(T N RW)\S|
S:W\S2{r},

VEW‘(;”!"” ,TreT

In steps (a) and (b)), we change the order of summation. Using

(B.61) and (B.62) in (B.60), we get

(S) LU
QV(Rw,-F) < [
v Tg%, Tl [TRw's
S:W\S2{r}
Z SC§/T) (r+)
+hpE R — T
vengiun [T 0 Ew)\S]
T:reT
|
APPENDIX C

CoMBINING QV (") anp QV {fw+)
Lemma 8: For all x,
[x[w 3 Ly ayy
| ‘ iEW Kw

QVWJr < (1—771(,9—7‘(,?)

<1 e R (RuTBu i G + 0, 1T R)
+1 [x € Rg,)] 4K124/ - 01(41/) - It(/llf)] :
Proof: Let

g(i,x) =1 [x € R(MZ,)] 4KE, — C"(,[l,) — Ié‘l,)
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+1|xe Ry i€ Rw|v, <0

(©) (Z) 1 xg/g)
- " L A
. . . . . , ; |W\5| Z WAS| | x|
Adding with the first term 1nA, and using the defini- mﬁis M W\SD G
tions of Qw’nﬂ (see (26)) and T\ (see (34)), we get @ 25 40
< —g(i, x). (C.64)
(5) g1 o e &, IXI Kw
Z Ty U( wl[i € Ry, Rw\S = ] WASZl)
€W, || WS Steps (a) and (c) change the order of summation; step (b) uses
S:W\S;{Z}l[ieR | o %K < 1and 0> g(n,x) > g(r,x) for all n € Rf,,r € Ry;
=Wl T uses |[W\S| < Ky . Similarly,
s )t Bl
V:wew{tvh Second Term
T:eT T aE
(@) q 15 c p
" Cwllie Ry, (T n Rw)\S = ] .
(T W) oy S 0
) T
1[i e Rw] (i, %). (C.63) vew(elvh | ieRg, W\S2{i}, (T WNS|
[(T n Ry )\S| ’ i€T,(TARw)\S=@
u S . 29 ()
ere, + g(i, x)
e isog, (L0 Bw)\S| |X|
First Term ieT
i vy > i
(4) () Vewlativ-d) S:|SAW|<Kw—1, (T W\S]
C 1 X w .
_ Z W Z - lg(i X) (TARw)\S=,ie(TnW)\S
i, IW\S| |Rw\S| | [x| 7
wW\S2{i}, WA\S2{i} S (1
| Rw\S=0 1 z(W)x§/) .
[ - t oA T aes |
Y Gy (T amnSes,
— Niw )
ie(TnR S
Sawiztw_1, WS (T Rw)\
| Ry \S=5,ieW\S o "
W
1 2\ < 2 2 (T A WN\S|
Ty . vew atiy-d) S| SAW|<Kw—1,
" Z |Rw\S| | |x] 9(5,%) w (TARw \S=,ic(TAW)\S
w =4,
RS s X 5 K9
(b) (4) [SAW|<Kw—1, (T A WS
< Z Cw (TARw )\S#Z,ie(T RS \S
|SAW|<Kw—1, [WAS] S) (T
Rw\S=0,ieW\S 1 xE,V)zg, ) '
’ * 2 @awnsl | X
n Z Cw |SAW |<Kw—1,
S Wik 1, |[WA\S] (TnRw)\S#D,ie(TnRw)\S
Rw\S#J,ieR%\S "
(©) C ?
W
(5) = Z 2
1 x v | ipe LT A WONS|
+ > — = | (i, x) vew(pvh | ieRiy W\S21i)
|SAW|<Kw—1, [WAST | I e
Rw\S#g,icRw\S (8),.(T)
1 Ty, Ty
_ + > VY g(i,x)
o e oy TS |
= W T:eT P
|SAW|<Kw -1, @
ieRG\S ) be(V' KV[I/:/ Yo 2P, (C.65)
) WSt} vewip
W .
+ WAS| | x| g(i;x) Steps @) and (c) change the order of summation; step (b) uses

|SAW |<Kw—1,

R \S#3,ie Ry \S (z < 1land 0> g(n,x) > g(r,x) for all n € RY,,r € Ry;



and step (d) uses |(T' n W)\S| < Kw. Adding (C.64) and
(C.65) gives the below upper-bound on (C.63),

249 1) gl
Kw

|1 [x e R | 4K}, — ) — 1)

ieW, |X|
WAS2A{i}

+1 [xe R ie RWMW] .

Adding (C.66) with the second term in (39), we get

(S) 1) 1) [H[XER%)]

Z Tw iwow
ieW, |X| KW
X (1 [i e Riy] Kw Yoy +1,,1[ie RW])

W\S21i)
+1[xe R |aKE - o) — 1|
[]l [x € 'Rg/‘l,)]
€W,
WAS21i)

x (1[i € Riy] Kw X + 6, 1[i € Rw])
+1[xe R | 4kf, - o) - 1|

{0

- 3 B 1y ) e
iEeW

(C.66)

Qv <

vy’ Dyayy
xlw Kw

_ Ixlw
x|

< (KwTwllic Ryl + g, 1ie Rw])
+1[xe RP|aKE - o) - 1],

where we recall that %(,f,) is the fraction of swarm-W peers

who have all the pieces of file-IW except i. ]

APPENDIX D
EXPONENTIAL DECAY OF POSITIVE DRIFT FROM
NON-RARE PIECES IN R%,)

Lemma 9: For all x € R(Ml/),
Egﬁ)C(n)

w

{4
neRy,

where
DW = DW <n7T7LaUa K‘vaWaW[(/Ii”y-i))

- Dw L D@1 [y £ g,

D) = 1272972 (LU + k) B3 KTy,
(2) (1+aw) 1+ay, 54a,
D@ =3 "Iy (LU + k) ALV KOO
an
w
Proof:
D) ()
Z *le( [(1—7w) Kw Ty ]
neRy, w
()
<Y (LU + 2, (EW + d(;))) Y (3K3ew) ¢
neRy,
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S 3K2T (LU + 26,) 3 <cw +d ) w et
neRy,

(D.67)

Here, (a) uses ¢y, < 3K3,¢w in R( ): @) uses 1 < Cw+d( n)

Now, in R%,V), My = ncy . This implies that

_ ncw
= — > =
mw Cw — Cwy K
Therefore,
w
o mew Kl + (d(;))
G’ < exp

If fw = 0, then C‘(,(,L) = 0 (non-rare pieces are completely
suppressed) and the Lemma follows trivially. If Sy > 0, then

n
2, v Bw Ky y)
Bw K3

neRg,
2
= KW (2W> 6_2
n

= 46727772ﬂ1%VK€V7

(n)

<K 2 -
W IAX Y exp (

(D.68)

and

3 ewdi

C
neRy,

= Y awdp 1w Wy # g

neR;,

n
<K —
w r;lgécyexp ( ﬁWK{%V y)
oW

)1 [ « o]

X max zexp | —
2=0

= KW (5WK%V) 671

n
K ww 1 ally-
x (QWW) Yo mwl [WI(/V”y T)\{W} ~ @]
aw
—(1+ay)
_ e — 71/61+OLW K3+QW 1 [ (ally T)\{W} £ @:l
aWW

(D.69)
Using (D.68) and (D.69) in (D.67), the Lemma follows. H

APPENDIX E
PROOF OF THEOREM 1]

For each W € W, let éy € (0,1) be sufficiently small
number to be chosen appropriately, and recall that the two
blocks R{}) = {x € S : My —2(1 — 1) > new} and R{? =
S\R( form a partition of the state space S. For each k € [2],

we further divide the block Rgf,) into three regions, namely

5W|X|W}7

R(m) RE,V) N {5w|XW > (Kw —n)ew — Z ew
TET

R(kl) Rg/{/) A {(KW n)ew — Z cW
TFET



Z Cg{./) < (Sw|X|W and

RUD = RW) A {(KW —n)ew —
AT

(Kw —n)ew — chv) <

1FET Kw

Below we prove Theorem |l| through a series of lemmas,
together which establish that the unit-transition drift conditions
are satisfied by the candidate Lyapunov function given by
and (31).

Lemma 10: For all W € W, k € [2], and X € Rgf,l), the
highest frequency 7y is lower-bounded by . Therefore,

K-
the total chunk-count P( °%) is lower-bounded by de x| w -

Proof: We can lower-bound P(mt) by ¢w. Given (K W —
77)CW 21 7&7"

= ow|x|w in R( Y the Lemma is obvious.

[ |
Lemma 11: For all W e W, k € [2], and x € R QR

the fraction of peers missing piece 7 € W, ie., 1 — w‘(,:,) is

lower-bounded by 0.5 provided dy < 0.5(1 — 7).

Proof: In R(WI?) U Rg,[k,g), we have (Kw — n)ew —
Diir cg,f/) < 0w |x|w. Since cg/) is at most Gy, this implies
that (1 — U)EW < 6W|X‘W == 7w < STWT]

1
pieceieW,wehavel—m(}/)>1—ﬁw>1—ﬂ—wn.By

Now, for any

choosing dyw < 0.5(1 — 7)), we ensure that 1 — 71"(;/) >05 ®

Lemma 12: For all W e W, k € [2], and x € R(m) Rg/lk,?)),
the fraction of peers (who are missing only plece 1e W, ie.,

= 2.8:W\S—{i} Ty 1S upper bounded by 2w
Proof A swarm-W peer missing only plece ) of file-W

has all the other pieces of the file, therefore,
s
Z ( ) = ’YW ‘X|
S:W\S={i}
< 7r1(/9|x|w for all 7 € W such that 7 # i
< ﬁw|Xlw.
Given Ty < f_—wn in Rgﬁz) U R(V]f,?’), the inequality follows. W
Lemma 13: For all W e W, §; > 0, and 0y > 2(1 —n)?,

let g be defined as
[(1=?) (2 =)

Then, for all x € R%,), g is upper-bounded by

i)
2 Gy

reRw

9(017 92) =

2L 01— ) (20— 20~ mpy)
+ <(KW —new — Y. cgig) (LU A 2(1 — n)np)] .
TFET

Consequently, for any 6 and ¢ > 0, there exists N‘%) =
N (8,601,065, €¢) € R such that for all x € R\,

0+ 9(01,02) < —e¢

() —2)0 —77)}
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if (Kw —n)ew = Y, ) > Ny,

Proof: Since x € RE,‘I,), QW < 0. Given 65 > 0, each
term in the summation is negative. Let us denote the rarest-
piece by 7, i.e., c%,) = ¢y By Lemma 1— w%) is bounded
from below by ﬁ Upper-bounding the summation in g by
considering only the rarest-piece r, we get

g(th,02)
ry) ) _
< [2(1—77) —2(1 —n) (Mw — new) —92]

S0 Kw

a) _ (r)
A (- g

—

irr
(2 Zéjilzw) (LU + kpew)
x ((KW —n)ew — Z ey — CW>
it
= glew: 01),

where, (a) uses 62 > 2(1 —77)2 and the definition of My (see

(11)); and (b) uses E%,) > LU + kpeyy (see (19)).

Since x € RS,), we have My — 2(1 — n) > neéw, which
implies that ¢y < (Kw — n)ew — X, cg,) - 2(1 —n).
It can be verified that g(cy;61) is a quadratic and strictly
convex function of cy,. Therefore, it has a unique minimum

and attains its maximum at the boundary points, 0 and (Ky —

mew = Disr c%},) —2(1 —mn). This gives
el —20 - n))

g(bh,02) <g0) A g <(KW —n)ew —

TFET
-2 o1 ) (U - 200 - )y)
+ ((KW —n)ew — Z c%)) (LU A 2(1 — n)mp)] .
FET

|
Lemma 14: For any € > 0 and any W € W, there exists a
countable set Ay, and a finite constant By, = 0 such that
QVy < —€l[xe A5y ]+ Bwl[xe Ay,
Nw = max |x|w < o0.
XG.AW

and

Proof: We will show that @T/ w 1s upper bounded by —e
over the region Rgf,) for each k € [2], except possibly, for a

finite and bounded population of swarm-W.

Case1- x€ R( ): From (@4) and (@2), we have

', @

e 3 ! s (o-e6)

- (1 — i) —7§V)> f(l) + 1y Kw YLy
where
Ui (x) = KwYowl[ie Ry] +,,1[i € Rw] - CY).



Region Rg,‘l,l): Here, P&Ot) > oy > S
Lemma . Therefore, for all large |x|w, Ié‘l,), I‘(,a)

zero. This gives
[ (1)

IAjct +Z
(Kwrawn[z‘eRc 1+¢ ]l[ieRW]—C(l))]

are both

QVy <
eW

o)
< AlC® 4+ Z L6y [(1 = 7w) Kw X Pw]
neRy, W
)

(r)
Ly (r)
2 g (=) (o -
2 (T) ")
< |A[CY + Dy + [(1—771},)% ],
reRw KW v
where Dy = Dw(n,T,L Unp,ﬂW,KW) is given by
Lemma |9} From Lemma L it follows that QVW < —eif
(Kw = n)ew = Sy ) = NP(© = [NCD + Dy, 01 =
Kw,0, = C‘(,V),e). Since (Kw — n)ew — Z#TCE}V)
Ow |x|w, this is true for all large |x|y . -

WV

Region R%,Q): Here, we use the bounds,

(1) (2)
c ‘ -1/ <0, I,/ <
K WCI(/V)’ and 7‘(,;,) < f_ln for every i € W (Lemma . Then,
for all large x|y,

-

x (KwYPwllie Ryl + 6, 1lie Rwl - Cf))

(1) (z)
Iy

1
QVy < [AJCW + Z oy o

+—51V ngrcga]

F(l)
< AlcM 4 ) =W

(i)
3 B (1)

(wawﬂ [i € Riy] + ¢, 1[i € Rw] — C)

L 20w KWTC ﬂ

1 —
b ) (1)
N ERESY
S

s Ee )
(wawﬂ i € Ryl + ¢, 1[i € Rw]
~05C) )]

<PlC®W+ » =

neRy,

) B[ (1=#7) (1 ~0500)]
)

< AlCW + Dy + ] *V“; [(1 - W;Q) %W] .

reRw

()(n)

Here, (a) uses 1 — W‘(;l/) = 0.5 for every ©« € W (Lemma
[11); (b) follows from choosing dy small enough so that
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‘5"" KWTC(2) <0. 50‘,; ; (]:) follows from LemmaEl From
Lemma | it follows that QVyy < —e if (Kw — n)ew —
Siwtid = N0 = NCO + Dw b = Ky.0, =

y (3 _oy(1—
0.56"(,[1,), €). Since (Kw — n)ew — Zz# ) > W
P —2)(1- 1
-0 o NG _
050‘(;[/),6) ensures that

choosing 01(4/) large enough so that
IACY) + Dy,0, = Kyw,0y =
QVy, < —e for large enough |x|w .

Region Rg/ll,g): Here, (Kw — n)ew
(C =2 (=n)
Kw
the total chunk-count P%Ot) is upper-bounded by Ky cy <
C‘(/g) — 2. Consequently, I ‘(,;) and Ié[z,) are both non-zero. We
use the bounds ¢ 1[i € Rw] — C’I(/Il,) < 0 and 'yl(/‘l) < f—ln

for every i € W (Lemma[12). Then, for all large |x|w,

o L)

_ ) . i )
x (KwY¢wllie Rj]) — (1 — ) 13}) c

- Zi;ég CE}/) <

S _ c® 2
- This implies that ¢y < —g—. Therefore,

0
QVyw < [AlCW + Z

1)
- KWTC(Q)]
g (i) " B
2 AC + Z =W W [(1 —w;v) (Kw Xy 1i € BS))
W
—0.501 + 15KV770(2)( +KWT)]
) F(Z)a(l) ,
(1) ~w 4w (1)
2o+ 5 I [(1 )

x (Kw Tyl ie Byl) — 02501 |
0 )

(1) —W w _= b
<Al +n§0 on [(1—7w) (KwTow)]

+ 7 i [ 0.25C1) |

reRw
(©) F(T’)
<PICD + Dy + Y, - [4).25053)]
reRw w
(d 1 (2)
< IAICY + Dy — 0.25K 5, LUCSE

(e)
< —e€.

Here, (a) uses 1 — 7/} > 0.5 for i € W (Lemma b {®)
follows from choosing dy small enough so that ‘SW 7Cw ( 1+

K3 Y) < 0. 25CI(/V), (c) follows from Lemma EL @) upper-
bounds the summation by considering only the rarest piece

and using Eg,) = LU (see (19)); (e) follows by choosing C"(f,)
large enough so that O.25KV_V1LUC"(,‘2,) > (A|CY) + Dy + e

Case 2 - x¢€ R( : From (44) and @2), we can write

PN +Z [( (”) (4KW 0(1))

QVy <



—(1—771(4,)

Region R(2 ): Like in R(W ), Iév),l‘(f,) are both zero for
large |x|w . Since x € R ), Mw —2(1 —n) < néw. This
implies that oy < new + 2(1 —n) = ¢ > (1—n)ew —
2 > Swl=m x|, — 2 Then, for all large |x|w.

Kw—n
al (0-) (o -t

QVW<IAC“”%§]F%$V[@
(2 IAlc® 4+ E(VVV: [(1 — ) <—0-5055)>]

W) I + 2 Kw I |

€W

(b)
< AW + Kr |00 |

(©
< AICW — 050 K2 ke

dw(l—n)
R =y w2

Here, (a) uses 4K %VfC‘(/Il,) < 70.5055) and then upper-bounds
the summation by considering only the rarest- piece that is
denoted by 73 (®) uses 1 — my, > Ky (Lemma 2); (c) uses

I > kpep (see (O); (@) uses ey > 6“’ - ")|x| —2 (e)
uses the fact that |x|y is large enough.

Region R( ) . Like R( 2 we use the bounds,

(d)
< AICW — 050V K2k, (

(e)
< —e€.

—1{Y <o,

Iég) < KWC , and V(Z) fﬁ"n for every i € W (Lemma
[12). Then,
QVy < |AICD) + 2 [( ) (4% - )

€W
5
+ XV,, K%VTCV?,)]

) r(” (i
<|AIC 4+ w

[(1 i) (~050)))

< mcm 3 f%;;(w) (1) (~o0.508)
eW

1)) (0250 |

F(l) ()[ 0.125C4) |

< e =W
ieW W

(e
< AlcW —o0.125¢ KT

f)

< AICW —0.125C K ke

(2 (0(3) _ 2)(1 _ 77)2

< AC® — 01250V K1k W )

(h)
< —e€.
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Here, (a) uses 4K2,—C\) < —0.5C%; @) uses 1-7{) = 0.5
for every ¢ € W (Lemma [L1); . follows from choosing dyy
small enough so that 25W K2 TCW < 0. 25C @) uses 1—

(1) > 0.5 for every i € W (Lemma ; (e) upper-bounds the
summatlon by considering only the rarest piece (denoted by 7);

() uses F( D> KpCw (see (19)); (g) uses ¢y = (1—n)ew —2
and ¢y = %, (h) follows by choosing C’( ) large
(P -2a-n? _ 2) -

enough so that 0.125C’V(1,)K;V1/£p < R (R =)
IACD) + e.

Region R( %): Like R%/za), I‘(,[l,) and Iéé) are both non-zero.
We use the bounds, I( ) < Kw 0(2), 4K§V—Cl(,;) <0, 71(41,) <
5W for every 1 e W (Lemma . Then,

__ OO ,

V.o < IAlcW 4 =whw | ()

Q w K w
ieW w

5W ()
— K%Y
oy Rt ]

ow 2)
1—n>c

(ol
2 AlcM 4 ) =W

ieW

w0501
oW (2) 2
+Ti—cw(1+KWT)
R =

()
< AlCM —o0.25K; LUuc?

(d)
< —e€.

)

2 A 4 [ 0.25C2 ]

Here, (a) uses 1 — W‘(,?/) = 0.5 for every « € W (Lemma
11); (]_(B_D follows from choosing oy small enough so that
w o)1+ K& Y) < 0.2501(;); (c) upper-bounds the
summation by considering only the rarest piece and uses
E%},) > LU (see (19)); (d) follows by choosing C"(/IQ,) large
enough so that 0.25K@1LUC‘(,[2,) > [A|CW) + e [ |

Lemma 15: For any ¢’ > 0, there exists a finite set A and
a finite constant B such that

QV(x) < —l[xe Al + Bl[xe A].

Proof: Fix ¢ > (. For any € > 0 and any W e W, it
follows from Lemma that QVy, < —e, except possibly
over Ay where its population and corresponding term @T/ W
are bounded from above by Ny, and By, > 0 respectively.
We can write the state space as S = | J Sy, where

HHSW
Su = {|x|lw, < Nw, for all W; € H, and

[x|w, > Ny, for all Wy € W\H}.

Case 1 - H = J: Let x € Sy. Since |[x|w > Ny for all
W e W, from Lemma it follows that (:2\‘7 w < —e for all
W e W. From (3), this gives QV < —e. Choosing € > ¢
ensures QV < —¢€.

Case 2 - H = WV: The set Syy is finite. Therefore, for any
x € Syy, we can write QV < Byy = max QV)*
XEOWW




Case 3 - J #H < W: Let x € Sy. We can upper-bound
QV as follows.

X|W1 A3 X|Wse <35
WieH WaeW\H
< ZWleH NWIBWI
ZWQEW\H |x|w,

ZWgeW\H Ix|w, B
ZWle’H Nw, + ZWQEW\H Ixw,

Note that >y, o4 [X[w, — 00 over the set Sy, which
implies
ZWleH NW1 BWl

— 0 and
ZWQGW\H |%|w,

ZWQEW\H [%|w,
2wyen Nwi + szeww Ix|w,
Therefore, for any ¢ > 0, there exists Ny = Ny (¢) € Rop
such that QV < ¢ + (1 — ¢)(—e¢) for any x € Sy with
Yw,ew |X[w, = Ny Choosing € = 2¢’ and 0 < ¢ < 164/35
ensures QV < —¢€'.
For all ‘H such that & # H < W, let us define

Az =Sy n { Z |x|o < NH} (finite),

UeH

U AH) U Sw

P#FHEW
B = max (QV (x))* < 0.
xe A

and then A := < (finite),

Then, for any state x, we can write
QV(x) < —l[xe Al + Bl [xe A].

establishing the result. [ |
Lemma is the final stage. Combining Lemma
and Proposition [6] we conclude that Theorem [I] holds.
As a final step, we now illustrate how the constants
{C’I(,Il,), 01(,[2,), C$),5W}Wew can be set consistently.
Setting {Cl(,Il,),C‘(,{%),CI(,g),ziw}WeW: Set some ¢/ > 0, € =
2¢’, and n € (0,1).
« For all W e W, individually set C}) = 8K2,.
o Set C(l) = maxXwew ch‘(/ll/)
o For all W € W, individually set C&%) such that

0.25K ' LUCS = IA|CW + Dy +e.
« For all W € W, individually set dy such that

dw < 0.5(1 —n),
26
KRG < 0.25Cy), and
—1)
5
%C‘(f,)(l + K27) <0.25C).

o For all W e W, set C‘(,g) so that

‘ NY(IACD + Dy, K, 0.5C Y,
CI(,S)—QZKW W(l | 111/7’ v W 6) and
(O —2)(1 —n)*

Kw (Kw —n)

0.125C) Ky, ( - 2) > A]CW + ¢,

€).
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where Néé)(-) is as specified in Lemma

APPENDIX F
FOSTER-LYAPUNOV THEOREM

Proposition 6: Let {x(t) : t = 0} be a continuous-time,
time-homogeneous and irreducible Markov chain with state
space S and generator matrix (). Suppose there exist a non-
negative function V' : & — R.g, an € > 0, a finite set A,
and a finite constant B such that {x : V(x) < C} is finite
for all C € R, and the unit-transition drift QV (x) is upper-
bounded as

QV(x) < —€l[xe A% (x) + Bl [x € A] (x).

Then, the process {x(¢) : ¢t = 0} is positive recurrent. The
unit-transition drift QV (x) is given by

QV(x) = abxy)(V(y) = V(x)).

YES, y#x

(F.70)

Now, suppose V', f, and g are non-negative functions on S,
and suppose QV'(x) < —f(x) + g(x) for all x € S. In
addition, suppose {x(t) : ¢ = 0} is positive-recurrent, so that
the means, f = 7 f and § = 7g are well-defined. Then f < g.
(In particular, if g is bounded, then g is finite, and therefore
f is finite).

APPENDIX G
LIST OF IMPORTANT SYMBOLS
o RF: Rarest-First.
« MS: Mode-Suppression.
« PMS: Probabilistic Mode-Suppression.

« RFwPMS: with  Probabilistic-Mode-
Suppression.

Rarest-First

« P2P: Peer-to-peer.

« RN: Random-Novel.

« LPS: Last Piece Syndrome.

o TMS: Threshold Mode-Suppression.

« FPS: First Piece Syndrome.

o JF: Master-file.

o K: Number of pieces in F, i.e., |F|. It is assumed that
K e N\{1}.

o W: Denotes a file or the corresponding swarm.

o Ky |W|. It is assumed that Ky € N\{1}.

o Fy: Set of all pieces downloadable by swarm-.

o Aw: Arrival-rate of an empty swarm-W peer.

o W: Set of all swarms entering the network.

e X (Aw : WeWw).

o [AL ZWGW Aw .

Wé;lly-T): Receiving-ally-set of swarm-TV.

Wég”y'l): Donor-ally-set of swarm-W.

. x%,f}): Number of (W, .S)-type peers.

o x: State of the network. See ().
o |x|w: Number of peers in swarm-W. See (2).
« |x|: Number of peers in the network. See (3).



L: Number of contact links with each peer (seed in-
cluded).

Y (°PY): Binary parameter for optimistic-unchoke.
M) Ticking rate of a tit-for-tat link.

p°PY): Ticking rate of a normal peer’s optimistic-unchoke
link.

U: Ticking rate of each link of the fixed seed.

p: In a given tit-for-tat contact, p is a lower-bound on the
probability of a peer push-contacting the other peer.

i: Typically used to denote a file’s piece.

w‘(,f,): Frequency of piece ¢ in swarm-W. See ().

clt): Chunk-count of piece 7 in swarm-W. See (3).

Tw and my,: Maximum and minimum chunk-frequencies
in swarm-WW (computed over pieces of file-W). See (6).

¢y and c¢p: Maximum and minimum chunk-counts in
swarm-TW (computed over pieces of file-W). See (7).
Pé[t,Ot): Total chunk-count in swarm-T. See (8).

m%/iv): Mismatch of piece ¢ in swarm-TV. See (9).

mw: Largest-mismatch in swarm-W. See (10).

Myy: Total-mismatch in swarm-W. See and (12).
dgjv) : Swarm-W’s complementary chunk-count of piece .
See (13).

Ry Set of rare pieces in swarm-W. See (14).

Ry WA\Ryw, set of non-rare pieces in swarm-W.

r: Typically used to denote rare piece in a swarm.

n: Typically used to denote a non-rare piece in a swarm.

r: Typically used to denote a piece with the smallest
chunk-count in a given set of rare pieces.

E(f,W, )" Set of raresﬁ novel pieces transferable from
revealed cache-profile T to (W, S)-peer. See (15).

C&}): Non-rares sharing factor for swarm-W and non-
piece n € Rf;,. See (16).

aw and By . Tuning parameters in the definition of Qé{}).
Altrf) (%, f, W, S): Transferable-set. See Algorithm
S: State space of {x(t) : t = 0}. See (17).

q‘(,g’ﬂ: Aw. See (18).

F%,), E(VQ, and FE;/? : Exact, lower, and upper estimates for
the aggregate rate at which some donating ally-peer of
swarm-WW push-contacts in the network. See (19), (20),

and (22).

&, kq: See (2I).

T: An upper-bound on the ratio ﬁ;,) /E%,) for all W e W
and 7 € . See (23).

q$’l+): Aggregate rate at which a (W, S)-peer downloads
piece i without departing the system. See (24)-(26).
ggg,nﬂ: Lower estimate for aggregate rate of (W, S)-peer
downloading non-rare piece n € RS;,. See (26).

SU: {x: Rw(x) € W}

SP: {x: Rw(x) = W}.

qéﬁ’l*): Aggregate rate at which a (W, S)-peer downloads
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piece ¢ and departs the system. See (27).
all): See ([28).

Plstab): See ([29).

VY wew Y (x). See (30).

Viv: See (B1).

7, C‘(,;v), C"(f,), C"(,[?}): Suitable constants in the definition of
Viy. See (31).

Rg,ll,): {x: My —2(1 —n) = new}.
RP: S\R{}).

1§ CPKwi O + 2k = P .
Yy

(21— ) =201 =) (M — mew)) 1 [x € RYY |

+ K1 [xe R .

Vyy:
(K3 + 2K (M —new)) 1| x e RY) |
+ 4K [xe R

\Ilg,_): Upper bound on the potential change due to down-
load of piece ¢ in swarm-W accompanied by departure
of a peer. See (33).

1y | —2= P,

\IJ(V?): Upper bound on the potential change due to
download of piece ¢ in swarm-W without any departure

of a peer. See (34).
QV': See and (36).
C(l)l maxwew ch‘(/[l/) See .

(i) vy
Tw - ZS:W\S:{i} ﬁ

v See ([@2).

QV - Used in upper estimate of QV'. See and (@4).
Dy, Dl(,‘l/), and Dg,). See (453).

Tyw. Steady-state expected sojourn time of swarm-W
peers (in the stability region).

Ly: PEt) ~ Ay < 05K, LU}

Lo: Pt ~ { Ay = 05K, LU}

Vi: See (@6).

Va: See (50).

Sw: Small number in (0,1) used in Appendix [El

Rgf,j ): Used in Appendix [E.

N‘S&)(-): Used in Lemma

Aw, Bw, Ny : Used in Lemma

H, Sy, Ay, A, B, Byy: Used in Lemma
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