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Abstract—We study the optimal control of multiple video
streams over a wireless downlink from a base-transceiver-station
(BTS)/access point to N end-devices (EDs). The BTS sends video
packets to each ED under a joint transmission energy constraint,
the EDs choose when to play out the received packets, and the
collective goal is to provide a high Quality-of-Experience (QoE)
to the clients/end-users. All EDs send feedback about their states
and actions to the BTS which reaches it after a fixed deterministic
delay. We analyze this team problem with delayed feedback
as a cooperative Multi-Agent Constrained Partially Observable
Markov Decision Process (MA-C-POMDP).

First, using a recently established strong duality result for MA-
C-POMDPs, the original problem is decomposed into N indepen-
dent unconstrained transmitter-receiver (two-agent) problems—
all sharing a Lagrange multiplier (that also needs to be optimized
for optimal control). Thereafter, the common information (CI)
approach and the formalism of approximate information states
(AISs) are used to guide the design of a neural-network based
architecture for learning-based multi-agent control in a single un-
constrained transmitter-receiver problem. Finally, simulations on
a single transmitter-receiver pair with a stylized QoE model are
performed to highlight the advantage of delay-aware two-agent
coordination over the transmitter choosing both transmission and
play-out actions (perceiving the delayed state of the receiver as
its current state).

I. INTRODUCTION

The emergence of Open Radio Access Networks (O-RANs)
is disrupting the traditional cellular RAN by disaggregating
the components and making them accessible to data collection
and control methods that are based on open standards. Con-
currently, RAN intelligent control (RIC) is being developed
for the deployment of measurement and control policies at
multiple timescales over O-RAN. Not only can RIC utilize
RAN:-Ievel information—channel conditions and data backlog
associated with each connected device—, but it can also use
application-level state and performance information shared by
devices to optimize resource allocation. Thus, applications
such as media streaming, mixed reality, or robot control can be
enhanced via machine learning (ML) at the RIC with tighter
integration of RAN-level decision making and application-
level performance metrics.

While RIC promises new paradigms for supporting ML-
driven policies with application inputs, two questions arise
on its feasibility: (i) Scalability: As the number of con-
nected devices at any given time might be in the thousands,
and the system state is high-dimensional—spanning wireless

and application information—will the control policies be too
complex? (ii) Partial Observability: How much will partial
observability of the application-level states due to delayed
(or sporadically available) information degrade system per-
formance?

We address the twin issues of scalability and partial-
observability for application-aware RIC, focusing on video
streaming as a specific use-case. Here, the RIC located at
the base-transceiver-station (BTS) must decide on forwarding
video packets to the connected end-devices (EDs) under a
joint transmission energy constraint across all the EDs, and
the video players at the EDs must decide how best to play out
the buffered packets to ensure high quality of user experience
(QoE). Each ED provides delayed feedback on its application
states and decisions (via the uplink), and so the RIC is
only partially aware of the underlying system state. Our goal
is to design a simple and scalable approach for optimal
control and learning by factorizing the above complex multi-
agent constrained decision making problem into simpler sub-
problems.

A. System Overview and Main Results

We consider a cellular downlink with N EDs that are
connected to the Internet via a BTS. Each ED streams a
video from a remote server which is assumed to reach the
BTS in a steady manner in the form of chunks. These chunks
are buffered up at the BTS and then await transmission to
the appropriate ED. The BTS has a transmission constraint
and may provide high quality of service to a subset of the
EDs only. Each ED maintains a playback buffer and in each
time-step, to maximize a QoE function, EDs with non-empty
playback buffers must decide whether to play out a chunk
or wait for more chunks to be buffered up. Importantly, we
assume that the BTS and all EDs are interested in maximizing
the long-term discounted sum utility of all the video streams
(over a finite time-horizon, if there is no discounting).

Our contributions are: (i) a structural decomposition that
allows us to simplify a complex multi-agent constrained de-
cision making problem without loss of optimality; and (if)
a scalable learning-based algorithm that uses this structural
decomposition. We now discuss key aspects of our results.

1) Lagrangian Decomposition: The system state is defined
as a pair consisting of the states of the playback buffers (one
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Fig. 1. The first block has the initial (/N + 1)-agent constrained problem.

The second block has an unconstrained problem as a result of Lagrangian
decomposition, where the BTS has IV transmitters, each having the delayed
feedback from all the receivers. The third block has /N independent uncon-
strained transmitter-receiver problems, all sharing the Lagrange multiplier.

for each ED) and QoE tracking variables (one for each ED).
The transmission constraint at the BTS applies jointly across
all the EDs. The BTS has delayed information on states and
actions of all EDs, and each ED has access to its own local
information as well as the transmission actions of the BTS
for it. This setting becomes an (N + 1)-agent constrained
POMDP problem. First, we use a Lagrangian decomposition
(justified by a recently established strong duality result) to
decompose the problem into an unconstrained one wherein the
BTS has N transmitters inside, each sending video packets to
a specific ED, now synonymous with a receiver. Each of the
N transmitters has the (delayed) feedback of all the receivers.

2) Factorization of Transmission Policy: Having N trans-
mitters at the BTS that share (and use) all the fed-back
information is not scalable. Ideally, we desire scalable mi-
croservices, each handling a particular ED with only limited
information. Our next result states that after decomposition, we
may factorize the problem such that each transmitter can ig-
nore the feedback from all receivers except the one it transmits
to. We thus obtain N independent unconstrained transmitter-
receiver problems, all sharing the Lagrange multiplier. We
prove that this simplification does not sacrifice optimality.

Fig. 1 shows the steps of the structural simplifications.

3) Microservice-scale Learning-based Control with Ap-
proximate Information States: Each one of the N (indepen-
dent and unconstrained) transmitter-receiver problems is still
challenging. On one hand, the transmission-policy should be
selected based on the past of the play-out policy, because it
influences the conditional distribution of the unknown states
and actions of the receiver. On the other hand, by the nature
of dynamic programming, the optimal choice of play-out
actions at a given time, depends on future costs, which are
determined by the future choices made by the transmission
policy. The common-information (CI) approach [1] breaks
such dependency cycles by decomposing a given multi-agent
POMDP problem into an equivalent single-agent POMDP
problern.1 However, in the learning context, as the wireless
channel’s transition-law is unknown, we cannot use the belief-

I'This decomposition holds for both unconstrained and constrained settings.

based information state (IS) to be able to use an MDP-based
Reinforcement Learning (RL) algorithm.? Hence, we use the
notion of approximate information states (AISs) recently intro-
duced for the multi-agent team setting [2], [3]. These notions
help us design a multi-agent RL (MARL) approach wherein
the AISs and the corresponding control policies can be learned
concurrently.

4) Simulations: We empirically evaluate the performance
of our proposed MARL approach on a single unconstrained
transmitter-receiver problem with a stylized QoE model.
Specifically, we compare the performance of the approach with
a delay-oblivious BTS choosing both the transmission and
play-out actions. Our simulation results show that the delay-
aware MARL approach improves the system performance
significantly compared to the (single-agent) delay-oblivious
one. We, however, leave the implementation of a complete
primal-dual setup and its extensive performance evaluation for
future work.

B. Related Work

The growing popularity of video streaming applications, es-
pecially over wireless, has led to a concerted attempt to address
the various challenges that arise. In particular, many works
aim to improve QoE metrics in wireless environments: [4], [5]
analyzed the flow level dynamics to study buffer starvation and
the frequency of interruptions; [6]—[8] used the network utility
maximization paradigm, and then provided factorized primal-
dual congestion control-type algorithms; with no feedback
delay, full information sharing, and model knowledge, together
which yield an MDP, [9] proved that factorized policies are
optimal for the loosely coupled constrained discounted cost
MDP and developed a primal-dual algorithm, and in the
same setting, [10] developed similar results for the average
cost problem, again using LP duality; in same MDP setting
[10], [11] used index-based policies for finite-time horizon,
discounted cost, and average cost settings, all with hard
constraints; and fixing the policy of one of the two agents,
RL algorithms have also been proposed [12]-[14] for solving
the (unknown) MDP that results. For a non-exhaustive survey,
see [15].

MDPs require full observability of state—see [9]-[11] for
video streaming—, but realistic mechanisms (such as delayed
ED-feedback in video streaming) result in partial observabil-
ity of state, so POMDPs [16], [17] apply. With the model
known, principled solution approaches exist like [18]-[20], but
POMDPs are known to be PSPACE complete [21]. Use of the
belief-based information state (IS) [22], [23] is not robust,
and is also not implementable in the learning context (model
unknown case). Various other ways to abstract the large state
spaces that go hand in hand with the POMDP problem have
been suggested [24]. Recent methods [25], [26] using formal
notions of approximate information state (AIS) discovered
from data are currently most promising for this.

Besides partial observability due to the delayed ED-
feedback, the video streaming problem is also a multi-agent

2The update of belief-based IS requires model knowledge.



problem (with information asymmetry) when the BTS and
the EDs are viewed as a single team. Viewed as such, the
problem is an instance of a cooperative multi-agent constrained
POMDP (MA-C-POMDP) [3], [27], wherein enabling coordi-
nation between agents is hard. This perspective has not been
studied for video streaming: related work [9]-[11] has full and
instantaneous information sharing. The common information
(CI) approach [1], [28] is able to circumvent this difficulty
(conceptually, by formulating a POMDP) when the model
is known. In the learning context, we can employ the AIS
framework for learning in multi-agent POMDPs [2], [3].

C. Notation

The key notations in this paper are as follows:

« Probability and expectation operators are denoted by
P(-) and E[] respectively. Random variables are denoted
by upper-case letters and their realizations by the cor-
responding lower-case letters. We also use shorthand,
E[|r] 2 E[|X = 2] and P (y|z) 2 P(Y = y|X = x),
for conditional quantities.

« For every conditional probability or conditional expecta-
tion, it is implicitly assumed that the conditioning event
has positive probability.

« The sets of integers and positive integers are respectively
denoted by Z and N. For integers a and b, [a,b]z
represents the set {a,a + 1,...,b} if @ < b and
otherwise. The notations [a] and [a, 0]z are used as
shorthand for [1,a]z and {a,a + 1,...}, respectively.

« For integers a <b and ¢ < d, and a quantlty of interest
¢, ¢*° and ¢q..q are shorthand respectively for vectors
(q gt ,qb) and (qgc,qc+1,---,494). The notation
q¢:4 is shorthand for the vector (¢ :i€[a, blz, j€[c, d]z).
Infinite tuples (¢, ¢°**,...,) and (gc,qc41,...,) are
respectively denoted by ¢** and qc.q.

o A list of important symbols is given in Appendix A.

D. Organization

The rest of the paper is organized as follows. The multi-
agent constrained video streaming (MA-C-VS) problem is
formulated in Section II. Structural decomposition results
leading to N independent unconstrained transmitter-receiver
problems are laid out in Section III. For a single transmitter-
receiver problem, the CI approach and AISs are used in
Section IV to guide the design of a neural-network based
architecture for learning-based multi-agent control. Simulation
results on a single unconstrained transmitter-receiver pair with
a stylized QoE model are presented in Section V. Finally, in
Section VI, concluding remarks are presented.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As described earlier, the BTS transmits packets of different
video files on a shared downlink to /N EDs, which use their
playback buffers to store and play them out. While the BTS
is able to maintain steady-streams of video packets from the
remote servers (and hence, always has packets to transmit to
each ED), it has a fixed energy budget that applies jointly to all
downlink transmissions. Fig. 2 illustrates our system model.

MA-C-VS
(with N + 1 agents)

méﬂw(“»)
' a

bl)—

Remote servers

Fig. 2. Multi-Agent Constrained Video Streaming (MA-C-VS) problem with
N end-devices (EDs) and 1 base-transceiver-station (BTS).

A. System Model Components

We consider a discrete-time system with t = 1,2,...
denoting a single time-step. We now define the different
elements of the system model.

1) State Space: We denote the state of ED-n by X' which
is assumed to have two components, namely X, and X"
X tl '™ represents the state of the ED’s playback buffer (e.g., the
length of the playback buffer, the resolution of the packet at its
head etc.), whereas Xt2 " represents a QoE tracking variable
for the ED (e.g., the number of stalls experienced by the ED so
far, whether the ED is already in stall and the stall’s duration
etc.). We assume that each X' takes values from a finite set X'.
Finally, the state of the system at time # is given by X; £ X}V
which is controlled jointly by the actions of the BTS and the
EDs, as described next.

2) EDs’ Action Spaces: At time t, each ED-n decides a
play-out action from a finite set of possible actions denoted by
V (e.g., whether to play the packet at the head of its playback
buffer). We denote this decision of ED-n by V", and the play-
out decisions of all EDs by V; 2 V;1:V.

3) BTS’s Action Space: At time t, when sending a packet to
ED-n, the BTS chooses a transmission action from a finite set
U. For example, a transmission action could include service
class (e.g., a high service class being associated with a high
probability of successful transmission), the resolution of the
packet being sent, etc. We denote this decision for ED-n by
U € U and assume that the received packet arrives after
the ED’s action V;" has already been taken. The collective
transmission decision of the BTS is denoted by U, 2 U}V,

4) EDs’ Feedback: We assume that the BTS’s transmission
action for ED-n at time ¢, U, is available to the ED at the start
of the time-step ¢ + 1 (for example, through a separate control
channel). On the other hand, each ED’s feedback on their state
and play-out action is assumed to have a deterministic delay



of deZso = {0,1,...} time-steps before it reaches the BTS.
Importantly, the feedback by ED-n is only known to it and
the BTS, and not to the rest of the EDs. Viewed collectively,
the N + 1 controllers have no common information. This
inherent information asymmetry where each ED is unaware
of the states and actions of other EDs, is an important feature
of the problem. The BTS, on the other hand, knows and
(uses in its decisions) the (delayed) information it receives
from all the EDs. We also note that, whenever d > 0, then
for t € {0,—1,-2,...,1 — d}, we assume X; = X; and
V" = 0 = U] for all n € [N]. Fig. 3 shows the timeline of
events in each time-step.

EDs’ | | BTS’s Iransmission
Observations | 1 Observations; Actions
BTS P N
(Xt—d, Vi-a) U,
| V,l
ED-1——&————
(X1, ULL)
Vtz
ED-2 )
(X2, ULy) )
H H
’ :
V;N
ED-N —
(XN, UNy)
S s Time-step t

Fig. 3. Timeline of events in each time-step.

5) Transition-Law and Initial Distribution: Given the cur-
rent system state and actions of the BTS and the EDs, the next
state is assumed to be generated via a transition law,

r={P" (z",u",v",Z") : ne [N]}, (D
in a time-homogeneous and factorized manner as follows:
P (X1 = 21| Xy = 24, Up = ug, Vi = vy)
N
= n P (x?,u?mf,x?ﬂ) . (2)

n=1

N

= 1_[ P (x?+1’x;la U?vvf)
n=1

Furthermore, we assume that the initial system state X; is

A 1.
fixed at x; = 2}V,

B. Transmission and Play-out Policies
We denote the information available to the BTS right before
it chooses its transmission actions at time ¢ by H; BTS je.,

(X1:t—d: Vist—a, Urie—1) - 3)

On the other hand, the information available to ED-n before
it chooses its play-out action at time ¢ is denoted by H}, i.e.,

HBTS

n A n n n
Hl = (X2 Vi1, U a) - 4
Importantly, we note that
HBTS —@N_

L HP, for HY = (X7y_ g Vi g Ul—y). (9

With (3), the transmission policy of the BTS can be
described by a collection of functions f f1:00, Where
each f, returns a probability distribution on U~ for a given
realization of HPTS. The returned distribution is used by
the BTS to draw its collective transmission decision, i.e.,
Uy ~ fi(HPT®). Similarly, with (4), the play-out policy of
ED-n can be described by a collection of functions ¢" = g’
where each gi' returns a probability distribution on V for a
given realization of H{'. The returned distribution is used by
ED-n to draw its play-out action, i.e., V;* ~ g7*(H["). The
pair, (f,g) (here g = g'*V) is called the policy-profile of the
team.

We denote the set of all behavioral transmission policies of
the BTS by F, the set of all behavioral play-out policies of
ED-n by G", and let G = ]_[ _1 G" denote the set of all EDs’
play-out policies (g denoting a typical element of G).

C. End-Device and Team Cost Functions, and Team Problem

1) Immediate Cost Functions: We assume that at time ¢,
the team achieves a QoE metric that can be associated with an
immediate objective cost ¢(X, V;) of an additively separable
form, i.e.,

M=

(X, Vi) = ), " (X V). (6)

n=1

Similarly, we assume that the total energy spent by the BTS
at time ¢ is given by

e(Us) = " (U)- ©)

M=

n=1

2) Long-Term Costs: For a given policy-profile (f, g) and
a discount factor « € (0, 1), with the initial system state fixed
at x1, we can define the expected infinite-horizon discounted?
objective and constraint costs respectively as follows:

C,E:FxG—-R,

C(f,9) 2ELY lZa (X, Vi)

(fg fg) lz

; ®)

€))

As in [27], one can give F x G a suitable topology in which it is
compact and then define a compact set of probability measures
on it, here denoted by M7 (F x G). This allows the team to
work with mixtures of policy-profiles, i.e., before interacting
with the environment, say at time 0, the team uses a measure p
from M; (F x G) to draw its policy-profile and then proceeds
with it from time 1 onward. We can then extend the definitions
of C' and E as follows.

C,E: M(F xG) —>R,
C (n) 2 EWD~m [C(f,g)], (10)
E (n) S B W [E(f, )] (1)

3Due to technical challenges, the case of average costs is for future work.



3) Team Problem: Denoting the long-term discounted en-
ergy budget of the BTS by K € R, we have the following
multi-agent constrained video streaming (MA-C-VS) problem.

minimize C' (u) (12)
st.pueM(FxG)and E(p) <K. (13)
(MA-C-VS)

Note that (MA-C-VS) is feasible (since the BTS can choose a
no-transmission policy). We denote its optimal value by C.

Remark 1. By Kuhn’s theorem [29], for a single-agent, a
behavioral policy is equivalent to some mixture of its pure
policies with mixing done at time O (before interaction with
the environment). Thus, the team jointly mixing over the space
M (F x G) at time 0 is equivalent to the team jointly mixing
over pure policy-profiles at time 0. This, in turn, via the
coordinator’s viewpoint of the common-information approach,
is equivalent to the coordinator* adopting a behavioral pol-
icy, necessitating common randomness across all agents. In
Section IV-A, we shall see that the role of coordinator, in a
single transmitter-receiver problem is taken by the BTS. Thus,
the BTS can generate the random prescriptions, and then send
them to each ED over the control channel.

III. STRUCTURAL DECOMPOSITION RESULTS

A. MA-C-POMDP View, Lagrangian Relaxation, Strong Du-
ality, and Existence of Saddle-Point

Problem (MA-C-VS) has the following features: each ED
has a state that it fully observes; no ED observes either the
state or action of any other ED; the BTS has no state of its own
and observes the state and action of each ED after a fixed de-
terministic delay; the BTS’s transmission action for a specific
ED is observed by that ED (after the ED has taken its own
action); the BTS needs to respect a constraint—see (13)—on
the expected infinite-horizon discounted energy consumption;
and all of the agents wish to minimize the expected infinite-
horizon discounted objective cost—see (12). Note that there is
no information that is common to all agents—EDs and BTS
together. Based on this, the optimization problem (MA-C-VS)
is an instance of the (cooperative) MA-C-POMDP problem
in [27]. Importantly, (MA-C-VS) satisfies Slater’s condition
(existence of a strictly feasible policy-profile mixture).

As discussed in [27], Lagrangian relaxation can be used to
solve (MA-C-VS). The Lagrangian function L : M;(F x G) x
R>g — R is given by:

L(p, \) = EWO~M [L((f,9),\)], where
L((f,9),N) = ESD[C(f, 9) + ME(f, 9) — K)].

The following proposition, which is a restatement of [27][The-
orem 1] for our simpler context, establishes that the solution
to (MA-C-VS) can be obtained from solving the unconstrained
optimization problem corresponding to (14).

(14)

4For details, see Section IV-A.

Proposition 1 (Strong Duality and Existence of Saddle-Point).
The following statements hold:
(a) The optimal value of (MA-C-VS) satisfies

C = inf sup L JA). 15

T peMi(FxG) AEREO (1, 2) (13)
(b) Strong duality holds for (MA-C-VS), i.e.,
C = inf sup L JA
T peEM(FxG) /\e]RI:D (M )

= sup inf f/(p, A). (16)

AR HEM:1 (F xG)

Moreover, there exist u* € My(F x G) and X* € Rxq such
that the following saddle-point condition holds for all (u, \) €
Mi(F x G) x Rxy,

L(u*, A) < L(*, X*) < L(p, \), a7

that is, (1 minimizes Ii(7 A*) and \* maximizes Z(,u*, ).

B. Sufficiency of Factorized Transmission Policies

Proposition 1 yields an important structural simplification.
Deferring the calculation of the optimal A\* using a primal-
dual approach, here we restrict attention to solving the primal
problem resulting from the Lagrangian decomposition. Given
a candidate Lagrange multiplier A, this decomposition asserts
that instead of viewing the problem as a BTS with a single
joint constraint and sending packets to N EDs, one may
view it as an unconstrained problem wherein the BTS has [V
transmitters—each sending packets to a specific ED. Here, the
BTS pays a cost of A\e™(U;?) for the n'™ transmitter, whereas
ED-n pays a cost of ¢*(X}*, V). Despite this simplification,
the information structure remains unchanged; each of the IV
transmitters has access to the delayed feedback from all the
N EDs. In general, this would require the BTS to randomize
over the space of all of its transmission actions, UN . Next,
we show that with factorized transition law and additively
separable costs, the problem admits a pair-wise factorization,
that is, each of the N transmitters can discard the information
about all the receivers except its own. Thus, each transmitter
can be viewed as an agent on its own which randomizes over
its individual action space, /. We thus obtain /N independent
unconstrained transmitter-receiver problems—all sharing the
(common) Lagrange multiplier \.

Definition 1. A factorized transmission policy f is one whose
t*h component f, is given by f; = ngl fi* where each f['
returns a probability distribution on U for a given realization
of H['. The returned distribution is then used by the BTS to
draw (inde]gendently) its transmission action Ior ED-n, ie.,
Ul ~ fIr(HP). (See (5) for the definition of H]'.) We denote
the space of all factorized transmission policies by ®F.

The following lemma states that one can restrict the search
of optimal transmission policies to ®F.

Lemma 1. Consider the constrained team optimization prob-
lem (MA-C-VS). Let the EDs’ play-out policies be fixed to



g € G. Then, for every transmission policy f € F, there exists
fe OF such that f performs the same as f

Proof. Fix g € G and f € F. The objective and constraint
costs are separable (see (6) and (7)). If for two transmission
policies, the joint marginals of (X}*, U*, V;"*) are the same for
every t € N and n € [N], then they incur the same long-term
costs. For a fixed n € [N], we have

P (o it op)

(a) N ~ .
- ZP;{’” (s ) P (v
- ZIP 7.9) (h” ”) P (x?,vf\ﬁg,uy) .

Here, (a) uses the law of total probability over all realizations
of th’ and (b) follows because X7 Vt are independent of
f, X" given Hr, U, and X

Based on (18), if we can define a factorized transmission
policy f € ®F such that for all ¢ € N,

fg) (hn n) — ng];n)gn) (N?,u?) ,

then our proof is complete. To this end, we define f
component-wise as follows:

HCIE

We will now proceed with the proof using mathematical
induction. The base case for (19) (when t = 1) is trivial.
Assume that (19) is true for time ¢ € N, i.e.,

f 9) (hn 71) — ch];n,gn) (N?,u?) )

Tn . n
htaut)

(18)

19)

BLO (R ut) e p(fo) 5
L2 i Py (AY) > 0
PGy (5)
1

7k otherwise.

Then,
ng,g) (h?+1)

= }P’(f 9) (h" ut)P( 9 ($t+1—davzl+1—d|71?’u?)

_]P;(f",g hn n n |En n
= Lgn L Lit1—dr Vi41-d|" Ut

P(f 9 )( t+1)

Here, (a) uses Hp', = (H}', XI\, 4 Vit _ 4 U); and (b)
uses the inductive hypothesis and conditional independence
of X/ _4 Vit _gq from f, g7" and X ". By definition of
f, it then follows from (c) that (19) is true for time ¢ + 1. [

IV. LEARNING BASED MULTI-AGENT CONTROL VIA
APPROXIMATE INFORMATION STATES IN A SINGLE
UNCONSTRAINED TRANSMITTER-RECEIVER PROBLEM

In light of Proposition 1 and Lemma 1, we now focus
on solving the unconstrained version of a single (say n‘")

n

SHere, ¢—™ and q; " denote g% N\g™ and ql*N\q? respectively.

transmitter-receiver problem wherein the immediate cost is
parametrized by the Lagrange multiplier A, namely

(X VU A = (X8 V) A (" (U)) = K.

In this problem, at time ¢, the transmitter’s information is

HtBTS’" = H, and the receiver’s information is H;'; the
HBTS'—n
; .

(20)

information structure is nested, i.e., H{* 2

A. The Coordinator’s Viewpoint

To solve this cooperative two-agent POMDP problem, we
can use the common-information (CI) approach (see [1] for
details) using which we can transform it into a single-agent
POMDP problem. This is achieved by constructing a coordi-
nated system from the point of view of a fictitious coordinator
who observes only the common observations of the agents
but not the private ones. Thus, from the perspective of the
coordinator, the unknown state is (X" 1_g.¢, Vi1 _gii—1)-

At time t, the coordinator decides prescriptions for the trans-
mitter and receiver that map their respective local information
to their decisions. This choice of prescriptions is based on the
realization of the common information and the prescriptions
the coordinator has chosen before time ¢. In our setting, since
the transmitter has no private information, the coordinator’s
prescription for the transmitter is simply a prescribed decision,
U/. On the other hand, the prescription for the receiver, I'?,
is a mapping from X4 x V4~ to V which the receiver uses
to generate its action as follows:

th = F? ( Zl—d-&-l:ta Vfid-&-l:t—l) . (21)
Denoting the policy of the coordinator by ¥ =
(WBLS™ 4L ), we have
Ur = BTS-n HBTS—n " ’
t t ( 1.t71) 22)

F?:d)t (HBTsn Flt 1)

The system dynamics and the cost are same as in the original
problem, and one can show equivalence between the original
system with pure policy-profiles and (the new) coordinated
system—which in light of Remark 1 is sufficient.

Remark 2. As the common information between the trans-
mitter and receiver is the same as the information at the
transmitter, the transmitter can play the role of the coordinator.

B. Approximate Information State Representations

A key issue in solving the coordinated system is that the do-
main of coordinator’s information grows exponentially in time,
and whereas one may compress it, without loss of optimality,
to a belief-based information state (IS), the update of the
belief-based IS requires knowledge of P,,. (the transition-law)
which is not available in the learning context. To address this
challenge, we will use the notion of approximate information
states (AISs) [25] specialized for multi-agent systems [2], [3].
The aim of such approximations is to compress the common
and private histories of agents into a system statistic that can
be used for developing approximately optimal solutions, akin
to the belief-based IS used for optimal control in cooperative



multi-agent POMDPs. For more details, we refer the reader to
(2], [3].

The compression framework in [3], applied to our two-agent
problem, involves the following steps: i) compressing the pri-
vate history of the receiver to an approximate sufficient private
state (ASPS), denoted by ZZ’ This leads to a reduction in the
space of coordinator’s prescriptions. We denote the random
variable representing the reduced prescription by f;”. Finally,
the coordinator’s prescription-observation history (now with
the reduced prescriptions) is compressed to an approximate
sufficient common state (ASCS), denoted by ZtBTS'”.

Next, we specify the ASPS and ASCS properties at a
high-level, and refer the reader to [3] for the details of the
mathematical formulations. We have the following properties
for the ED’s ASPS:

1) It evolves (in a time-homogeneous manner) to Zg‘ based
on ZA[Ll, X7, V2. Optionally, one may also include
Xt Vita Uiqs 7 (th—la‘/?h)a and e" (Utn—l)'

2) Using it, the agents’ actions, and the coordinator’s
history, the immediate objective and constraint costs can
be well-approximated.

3) Using it, the agents’ actions, and the coordinator’s
history, the next observations of the transmitter and the
receiver can be well-approximated.

With an ASPS and reduced prescriptions in hand, the ASCS
satisfies the following properties:
1) It evolves (in a time-homogeneous manner) to ZtBTS'”
based on ZP% 5™, X1,V ,, U, and I'7 .. Option-
ally, one may include e” ( t”_l)
2) Using it and the reduced prescription, the immediate
objective and constraint costs can be well-approximated.
3) Using it and the reduced prescription, the next observa-
tions of the transmitter can be well-approximated.

The existence of good ASPS and ASCS representations helps
achieve approximate optimality, see [2], [3]. During deploy-
ment, realizations of the ASCS are used to produce actions at
the BTS and prescriptions for the ED, and the ED uses the
ASPS and the suggested prescription to determine its action.
Next, we use neural-networks as function-approximators to
learn ASPS and ASCS representations and corresponding
ASPS-ASCS based control policies.

C. Neural-Network Architecture for Learning-Based Control

The notions of ASCS and ASPS lead to a multi-agent
reinforcement learning (MARL) algorithmic framework [2],
[3]. Here, we present our implementation of such a framework
for a single unconstrained transmitter-receiver problem. The
framework is based on centralized training distributed execu-
tion (CTDE), assumes a constant Lagrange multiplier A, and
performs training in a two time-scale stochastic approximation
setup. First, the ASCS/ASPS are learnt on a fast time-scale,
and then the corresponding control policies are learnt on a
slower time-scale. Fig. 4 shows the architectural setup. Below
we give a brief outline of the different neural-networks, in
line with the high-level descriptions of ASPS and ASCS

Aad ¢ Predicted
h . \ XV
< Uy ¢ Predicted
& perti
. ASCS fn
Network| ZBTS-n | Coordinator’s s— N
Prescription o
Network Coordinator’s
Prediction
Network

11
L
J v Lae
SPS :
i ]\ﬁa};:k %n "ED-ns <t Vi >t Supervisor’s
“t Prescription s Prediction
Applier Network Network

Fig. 4. Neural-network based architecture for learning-based multi-agent
control in a single transmitter-receiver problem.

given earlier. Further details on the implementation including
training of the neural-networks and the specific loss functions,
are similar to those prescribed in [3], and are skipped due to
space constraints.

1) Block I is a recurrent neural network (RNN) that tries
to learn a good ASCS.

2) Block II, another RNN, tries to learn a good ASPS.

3) Block III is a feed-forward neural-network (FNN) for
generating the prescriptions, namely a distribution on U
(used by the transmitter to draw its transmission action
U/), and a pseudo-prescription f?é for the receiver.

4) Block IV, another FNN, uses the coordinator’s pseudo-
prescription f? and the ASPS ZAt" to generate a distri-
bution on V (used by the receiver to draw its play-out
action V).

5) Block V, another FNN, learns an ASCS via prediction
of the objective and constraint costs, and the next
observations of the transmitter.

6) Block VI, another FNN, learns an ASPS via prediction
of the objective and constraint costs, and the next
observations of the transmitter and the receiver.

Remark 3. Blocks V and VI are not used in the (distributed)
execution phase.

V. SIMULATION RESULTS

In this section, we perform simulations on a single (un-
constrained) transmitter-receiver problem with a stylized QoE
model. We will compare two alternatives: 1) the decentralized
team set-up using the CI approach with a controller each at the
BTS and the ED; and 2) the BTS choosing both transmission
and play-out actions using the fed-back (delayed) state from
the ED as the ED’s current state. We construct an environment
simulator with a BTS and an ED. The state of the ED is the
tuple of the number of video chunks buffered (th’") and the
number of stalls incurred thus far (Xf’"). In a single time-
step, the ED may choose to ‘play’ out (V;* = 1) a single

The term pseudo-prescription is used because the original interpretation
of a prescription is lost.



video chunk (if possible) or ‘pause’ (V;* = 0) for buffering
chunks. The BTS, on the other hand, has three possible actions
namely ‘high’ (U? = 2), ‘medium’ (U* = 1) and ‘low’
(U* = 0), corresponding to transmission energies that yield
different transmission success probabilities. Each successful
transmission results in L new chunks in the ED’s playback
buffer if there is room; if not, the L chunks are discarded. It
is assumed that (after the Lagrangian decomposition), the costs
of high, medium, and low transmission actions are 2\, A, and
0, respectively. The ED gets a reward r for successful chunk
playback while it suffers a cost due to stalling or pausing the
video—the cost of a stall event is proportional to the number
of stalls thus far. The transition-law and cost functions are as
follows.

Transition-law: Let X = (X" — V)™ + LR? and R} €
{0,1} denote the random variable that indicates the packet’s
successful reception at time ¢. Then,

~

X if X < B,

Ln
X = ( 1n V">+ .
X, =V otherwise.

t+1

X2 = min (M, X2" 4 1V = 0} U {X" = 0}]) .

Here, B is the playback buffer’s chunk capacity and M is the
maximum possible value for the stall counter.
Immediate objective cost: Let k > 0. Then,

XLV 2 VX > 0]
+RXP (L[ = 0y o vy =

0}]).
Immediate constraint cost: " (U]") = Up.

Few important parameters used in the simulations are shown
in Table I. Next, we describe the two aforementioned ap-
proaches towards control of this system.

Delay-oblivious BTS Choosing Both Transmission and
Play-out Actions: Here, the delayed receiver’s state is used to
obtain both the transmission and play-out actions. If the play-
out action is infeasible (‘play’ action chosen with an empty
playback buffer), it defaults to the ‘pause’ action. The RL
algorithm used is Reinforce [30]. In the discussions that follow,
we refer to this approach as ‘SA-DS’ for single-agent delayed-
state.

TABLE I
IMPORTANT SIMULATION PARAMETERS

Parameter [ Value |

50 time-steps

Episode’s time-horizon
Discount factor 0.95

State space (Buffer Length, Stall-Count)
Max. playback buffer length (B) 30

Max. stall-count (M) 30

Transmission actions & success probs. (low: 0.0, med: 0.2, hi: 0.85)
Play-out actions (Pause: 0, Play: 1)

Packet’s chunk-size L 2

Cost function parameters k=40,r=10, A =6

No. of iterations/gradient-steps 30,000

Delay-aware Two-agent Coordination with AISs: Here,
the approximate information states (ASPS and ASCS) are
computed using separate long short-term memory networks
(LSTMs). The ASCS is used to generate a distribution on
the transmission action and a pseudo-prescription for the ED.
The psuedo-prescription is then passed through a prescription-
applier network to output a distribution on the play-out action.
Again, the RL algorithm used for learning of the ASPS-ASCS
based control policies is Reinforce. We implement the system
based on single-agent AIS codebase from [26], which we
extended to the multi-agent learning system shown in Fig. 4.
We will refer to this approach as ‘MA-AIS’ for multi-agent
approximate-information-state.

Given the simulation setup, we now answer important
performance analysis questions.

Can we successfully train multi-agent based video streaming
policies with partial observability? Fig. 5 shows the training
curves of SA-DS and MA-AIS for different delays. The z-
axis shows the number of training iterations (gradient steps),
and the y-axis displays the running average (over a window of
25 iterations) of episode-reward, i.e., negative of the episode’s
total (discounted) cost. Each episode has a finite time-horizon
of 50 time-steps where a discount factor of 0.95 is used.
We note that the training performance of MA-AIS is almost
invariably bounded below by that of SA-DS.
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Fig. 5. Training curves of SA-DS and MA-AIS for different delays. (The
plot was generated using three distinct seeds.)

What is the impact of MA-AIS on episode-rewards, stall-
counts, and playback buffer lengths? We study this in Fig. 6
which was generated using 1000 test episodes on the trained
SA-DS and MA-AIS models. In (a) we note that, as the
training curves indicated, MA-AIS outperforms SA-DS more
significantly at larger delays. It is interesting to note that for
delays of 6 units or higher, only MA-AIS yields a positive
episode-reward. In (b) the empirical CDF of stall-count follows
on expected lines—MA-AIS has fewer stalls than SA-DS. We
would also expect that MA-AIS can be more aggressive in
maintaining shorter playback buffer lengths; in (c), we see
that this is indeed the case.

What is the structure of the learned policies? We delve into
the structure of the learned policies for a delay of 10 time-
steps. Fig. 7 (generated using 1000 test episodes on the trained
SA-DS and MA-AIS models) shows the fraction of times each
transmission action is taken at a specific length of the playback
buffer (aggregated over all stall-count values). We note that for
a given length of playback buffer, SA-DS (which has lower
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Fig. 7. Comparison of SA-DS and MA-AIS in transmission policy.

visibility into the ED’s state) chooses the ‘high’ action even at
large lengths of the playback buffer. The learnt play-out policy
in the case of both SA-DS and MA-AIS is to always play out
a chunk if possible.

VI. CONCLUSION

In this work, we explored the idea of application-aware
learning agents which engage in cross-layer optimization
for wireless resource allocation with imperfect information.
We showed how a complex multi-dimensional problem with
delayed client-feedback, in the context of video streaming,
can be reduced to multiple two-agent POMDP problems (all
sharing a common Lagrange multiplier). Furthermore, once
decomposed, the individual POMDPs are amenable to multi-
agent RL (MARL) using the notion of approximate informa-
tion states (AISs) as the number of agents is two. We showed
how to construct AIS-based learning agents, and illustrated
the performance improvement over a vanilla RL approach in
which the BTS perceives the delayed state of the ED as the
ED’s current state and decides both the transmission and play-
out actions.
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APPENDIX A
LIST OF IMPORTANT SYMBOLS

N: Number of end-devices (EDs).

o X}*: State of ED-n at time .

. th '"": State of ED-n’s playback buffer at time .

« X2>™: QOE tracker for ED-n at time .

« X: Finite set of all possible realizations of X'

o V/*: Play-out action of ED-n at time {.

« V: Finite set of all possible play-out actions for a given
ED.

o U;*: Transmission action of BTS for ED-n at time {.

o U: Finite set of all possible transmission actions for a
given ED.

o d: Denotes delay in each ED’s feedback.

o P, P™: See (1) and (2).

« HPTS: Information available to BTS right before it
chooses its transmission actions at time ¢. See (3).

o H}*: Information available to ED-n right before it chooses
its play-out action at time t. See (4).

« HP: See (5).

« JF: Set of all possible transmission policies.

o G": Set of all possible play-out policies of ED-n.

e G: 1_[7]:7:1 agnr.

e c,c" e e See (6) and (7).

« «: Discount factor.

« C,B,C,E: See (8)-(11).

« K: Total long-term discounted energy budget of the BTS.
See (MA-C-VS).

o C: Optimal value of (MA-C-VS) problem.

« L,L: See (14).

« A: Lagrange multiplier.

o OF: Set of all factorized transmission policies.

o [™: See (20).

« HPTS": Same as HJ.

o I'}': Prescription of the coordinator for ED-n at time t.
See (21).

« t: Coordinator’s (pure) policy in the the coordinated
system. See (22).

. Z{’: ASPS in the nt" transmitter-receiver problem.

. f‘?: Coordinator’s (reduced) prescription (based on
ASPS) in the nt" transmitter-receiver problem.

« ZPTSn: ASCS in the n'" transmitter-receiver problem.
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