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Abstract—With the increasing integration of Machine Learning
(ML) applications into cloud services, providing high throughput
Machine Learning inference serving has become a major demand
for cloud service providers. The inference requests need to
respond with bounded latency for each request to maintain
a consistent Service-Level Objective (SLO). To ensure SLO,
inference servers are equipped with multiple GPUs to satisfy the
computational requirements. However, multi-GPU systems are
extremely power-hungry. To resolve this, it is ideal to consolidate
the load to a sub-set of GPUs, and potentially share GPUs, in
order to minimize power consumption, without violating SLO.

By consolidating GPUs and potentially sharing GPUs we can
reduce the power consumption of multi-GPU inference servers.
However, multiple inference models typically share the same
inference server, which adds significant challenges in multi-
model multi-GPU inference server environments. In this paper,
we explore the challenges that this brings in achieving power
efficiency. We introduce WATTWISER, a model management
and scheduling policy that achieves power savings in multi-
model environments where GPUs are shared. Our results show
that WATTWISER can reduce power consumption by 34% while
serving multiple models and maintaining the SLO.

Index Terms—Power efficiency, GPU, Inference Server

I. INTRODUCTION

The demand for cloud-based inference solutions has

prompted the creation of numerous APIs, frameworks, and

hardware accelerators. Notably, Google’s Cloud Inference

platform has APIs for executing inference queries on large-

scale typed time-series data, and NVIDIA’s Triton Inference

Server [1] is an open-source inference server that is optimized

for NVIDIA GPUs. Similarly, Qualcomm Cloud AI 100 infer-

ence accelerator and Intel Nervana NNP-I (Spring Hill) have

released hardware accelerators for cloud inference solutions.

While application-specific accelerators (ASICs), such as

Google’s Tensor Processing Unit (TPUs), offer lower power

consumption and higher performance for cloud inference

services, GPUs remain popular in data centers due to their

programmability and support for general-purpose computing.

The integration of more GPUs into cloud systems has led

to power-hungry multi-GPU systems that present new power

management challenges during design and deployment of data

centers running machine learning-heavy workloads.

GPUs are designed for maximum efficiency at peak uti-

lization, but this is not always the case in machine learning

inference execution which tends to under-utilize the GPU [2]–

[5]. To optimize GPU utilization, concurrent processing of

inference requests is necessary. Moreover, the request-response

nature of inference workloads varies throughout the day due

to usage pattern fluctuations, leading to another source of

potential under-utilization, which poses challenges to energy

efficiency and can be exacerbated without proper coordination

and management. [6]

To improve the efficiency of multi-GPU inference servers,

prior works have explored how to spatially partition the

GPU to improve utilization [7]. NVIDIA Multi-Instance GPU

(MIG), as a hardware-supported feature, has been used to

partition and isolate the GPU’s resources to smaller slices

to be used for inference [3]. NVIDIA Multi-Process Service

(MPS), as a software/runtime feature, also have been used

to allocate a provisioned percentage of the GPU resources to

a process [4], [5]. However, both MIG and MPS allocated

GPU resources statically which requires offline profiling of

the optimal amount of resources required by the ML net-

work [8]. More recently, fine-grain kernel-level spatial par-

titioning techniques [2] have been proposed to enable fine-

grain kernel-scoped spatial partitioning, but this still requires

off-line profiling of individual kernels. While all of these

works improved GPU utilization, they do not necessarily target

power efficiency directly nor address the unique challenges

that multi-model multi-GPU inference servers present.

GPU-NEST [9] is the most relevant work to directly in-

vestigate the power characteristics of multi-GPU inference

servers. GPU-NEST has shown different sources (CPU-GPU

communication, GPU hardware resources, and scheduling) can

impact the energy efficiency and QoS of multi-GPU inference

servers among which scheduling policy plays an important role

in the overall energy- and resource efficiency of the inference

system. However, that work was limited to only exploring

inference servers that run a single inference model at a time.

In this paper, we propose WATTWISER, a scheduler to

address the power-efficiency issues of multi-model multi-GPU

inference servers. Our contributions are as follows:

• In Sec. II, we identify challenges and opportunities for power

savings in modern multi-model multi-GPU inference servers.

• In Sec. III, we introduce WATTWISER, our model manage-

ment framework to enable power-efficient inference. WATT-

WISER dynamically determines the number of active GPUs

and how to schedule incoming requests across allocated GPUs

to minimize power during varying ML inference loads.
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Fig. 1: a) High-level overview of multi-GPU inference server

design. Model manager instantiates one worker per GPU

assigned to the model. b) Model1 and Model2 workload

traces over time normalized to maximum throughput of 2

GPUs for each while sharing no GPUs on the server. c)

Combined load of Model1 and Model2 with GPU 2 shared.

• In Sec. IV, we thoroughly evaluate WATTWISER and demon-

strate the efficacy in achieving power savings under multi-

model multi-GPU inference server systems.

• We show that WATTWISER is able to reduce average power

by 34% compared to the baseline scenario.

II. BACKGROUND AND MOTIVATION

Multi-model multi-GPU inference servers. Figure 1(a)

shows the architecture of a multi-GPU inference server. For

each model that is loaded, there is a model manager that

handles the inference. Each model manager consists of a

scheduler that schedules incoming inference requests to a set

of workers. Each worker runs an inference backend (such as

pytorch, Tensorflow, etc.) and performs the inference requests

using a GPU that it is paired with. It’s possible for multiple

workers to share a single GPU, even across two model

managers (as shown in Figure 1(c)).

When a model is loaded, the inference servers allocate a

dedicated set of GPUs to each model in order to facilitate

inference requests for multiple models simultaneously. For

example, each ML model is allocated GPU 1,2 and 3,4,

respectively, in Figure 1(b) and each model is allocated GPU

1,2 and 2,3, respecitively, in Figure 1(c). The number of GPUs

assigned to each model is determined by the application’s

required maximum throughput, measured by requests per

second (RPS).

Under-utilization in multi-GPU inference servers. The

variability in inference workloads due to usage pattern fluctu-

ations can result in under-utilization of GPUs. For example,

Figure 1(b) shows two workload traces1. In this illustrative

scenario, each model is allocated 2 GPUs and the load shown

is normalized for the maximum load that 2 GPUs can support

(100% meaning 2 GPUs are fully utilized by the model).

As the total load in Figure 1(b) fluctuates, there are periods

of time where the allocated GPUs are underutilized and does

not require all 4 GPUs, but can fit into 3 GPUs if the GPUs

are shared. Figure 1(c) depicts this scenario where each model

are allocated with a shared GPU and shows how the same load

can be handled by 3 GPUs with higher utilization.

This presents an opportunity for power savings by con-

solidating model inference to a subset of GPUs. However,

there are many challenges towards consolidating models as

it would require sharing a GPU between multiple inference

models, potentially leading to interference and tail latency

violations. Therefore, consolidating model inference into a

subset of GPUs needs careful coordination.

Related Work. Most prior works on multi-model inference

servers have focused on improving the utilization of GPUs

through spatial partitioning techniques. For example, PARIS

and ELSA [3] and GPUlet [4] explored how to allocate mod-

els across multi-GPUs through spatial partitioning the GPUs

through Nvidia’s MIG and MPS, respectively. GSLICE [5]

and KRISP [2] explored how to spatially partition and share

a single GPU to maximize the number of models that can

run on a GPU using MPS and a novel kernel-scoped spatial

partitioning technique, respectively.

The most relevant work is GPU-Nest [9], which showed

the impact of inference request scheduling policy on energy-

efficiency of multi-GPU servers. It showed that the base-

line scheduling policy in Nvidia’s Triton inference server is

not energy-proportional due to uniformly scheduling requests

equally across all GPUs. It also demonstrated that consolidat-

ing GPUs may lead to power savings. However, this work does

not explore how to actively manage models and GPUs when

multiple models are handled by the inference server.

Summary. Clearly, there exists a gap in work that explores

the power efficiency of multi-model multi-GPU inference

servers. In order to improve the power efficiency of multi-

GPU inference servers, we need to both improve the utilization

of the GPUs and improve the scheduling policies that handle

multi-model GPU inference. In this work, we first show the

effect of scheduling policy on GPU utilization and power-

efficiency in multi-GPU multi-model inference servers. Then,

we propose a scheduling policy to enable consolidating GPUs

among models while maintaining SLO.

III. WATTWISER

In this section, we present WATTWISER, a power-efficient

model management framework for multi-model multi-GPU

inference servers. WATTWISER dynamically determines how

many GPUs should be active and manages the loading/un-

loading of workers. Next, WATTWISER determines how to

1Traces derived from Facebook [10]



distribute and schedule incoming requests across the avail-

able GPUs in order to minimize power consumption while

satisfying SLO targets. We will first highlight the scheduling

challenges in a multi-model multi-GPU inference server. Then

we will detail how WATTWISER’s scheduling policies enhance

power-efficiency multi-GPU inference servers.

A. Dynamic GPU allocation/deallocation

In order to save power, WATTWISER aims to enable a

minimal subset of GPUs that can support the total load of

the system for serving inference requests. In WATTWISER,

the inference server monitors the incoming RPS rate of each

model. Based on the incoming RPS rate, it determines how

many GPUs are required for that RPS rate (i.e. serving GPUs)

and turns off under-utilized GPUs initially allocated to that

model. To avoid thrashing the GPU by turning them on and

off during run-time (due to incoming RPS rate variations), we

use a hysteresis to determine when to turn a GPU on/off.

This dynamic GPU allocation/deallocation policy is formal-

ized in Algorithm 1, AllocateGPUs(). At runtime, server

monitors the current load of each model (current_rps)

at 1-second intervals. In order to detect if more GPUs

are needed for the current load (RPS) of the model, in

more_GPUs_needed(), current_rps is compared to

model max rps as the threshold. This threshold is used to

avoid SLO failure in case of a surge in the load (RPS). If

current_rps decreases to the point where the serving set

of GPUs are underutilized, in less_GPUs_needed(), we

remove a GPU from the serving set.

At a high-level, we are essentially “packing” the total work-

load into a sub-set of available GPUs. This is similar to the

packing policy proposed in GPU-NEST [9] which identified

that by packing workloads into a sub-set of available GPUs,

you can realize power savings by turning off unnecessary

GPUs. However, as we will see later, GPU-NEST can only

handle inference servers that run a single inference model. We

will now demonstrate how prior works cannot handle inference

servers that manage multiple models at the same time.

B. Scheduling policies

Once WATTWISER determines the number of GPUs that

should be utilized for the current load, the next decision

is how to schedule the incoming requests across the GPUs.

Scheduling has a large impact on power efficiency and tail

latency in multi-modal inference server environments. We will

Algorithm .1: Allocation policy

cur_rps: current RPS.

model_max_rps: model’s Max RPS a GPU can support.

allocated_gpus: GPUs initially allocated to the model.

serving_set: GPUs that serve requests

AllocateGPUs():

| if more_GPUs_needed(cur_rps, model_max_rps)

| | AddGPU(allocated_gpus, serving_set)

| else if less_GPUs_needed(cur_rps, model_max_rps)

| | RemoveGPU(serving_set)

| UpdateSharingWeights(); or

| UpdateSharingLoadWeights();
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Fig. 2: GPUs utilization with different scheduling policies

for two models. Uniform (a,b) and Sharing-aware (c) both

schedule requests to the shared GPU regardless of the load.

Sharing+Load-aware (d) policy utilizes the maximum capacity

of non-shared GPUs before scheduling requests to the shared

GPU.

first highlight the impact of scheduling and then propose

several scheduling policies.

1) Impact of scheduling in multi-model multi-GPU infer-

ence servers : As mentioned in the previous section, work-

loads are mostly operated below their maximum load which

creates an opportunity for power saving through resource

(GPU) sharing. As an example, Figure 2(a) illustrates an

example of the uniform scheduling effect on GPU utilization

in a scenario where no GPU is shared among two models.

Each model is allocated two GPUs with the requests uniformly

scheduled across all GPUs. This is the baseline behavior of

existing inference servers, such as Nvidia’s Triton inference

server [1].

However, the dynamic load of the server allows us to fit

the load within 3 GPUs if we can share a GPU between

both models. Figure 2(b), shows a scenario where one GPU is

shared between 2 models leading to utilizing 3 GPUs in total.

This scenario shows GPU-NEST’s scheduling policy where

the schedulers in each model manager are not coordinated

and schedule requests uniformly across their allocated GPUs

without knowledge that the backend GPUs are shared. This

can lead to over-utilization of the shared GPU (i.e. GPU2)

and tail latency violations. Therefore, to satisfy tail latency

requirements, the schedulers from different model managers

should be coordinated or be made aware of backend GPUs

that are shared and the load distribution across GPUs.

2) Sharing-aware Scheduling: To support multi-model in-

ference, we propose two scheduling policies: a Sharing-aware

scheduling policy and a Sharing+Load-aware scheduling pol-

icy. Both policies take into account the GPUs that are shared

when packing multiple inference models into a subset of active

GPUs while maximizing energy efficiency.

We first present a Sharing-aware Scheduling policy where

the model manager’s schedulers are made aware of how

many models are sharing a particular GPU. In Sharing-aware

scheduling, requests are scheduled to each GPU proportional

to the number of models sharing the GPU. For example,

in Figure 2(c), each inference model is allocated to two

GPUs (allocated_GPUs = 2), with the middle GPU

(GPU2) being shared. Therefore, GPU1 has a sharing fac-

tor of 1, and GPU2 has a sharing factor of 2. Model1’s

scheduler interleaves the requests among GPU1 and GPU2



Algorithm .2: Scheduling policies

cur_rps: current RPS.

model_max_rps: model’s Max RPS a GPU can support.

sharing_factor: number of models sharing each GPU.

gpu_rps: RPS load mapped to each GPU.

weights: request distribution weights of each GPU.

UpdateSharingWeights():

| remained_rps = cur_rps

| // Calculate weights w.r.t GPU’s sharing_factor

| lcm = LCM(sharing_factor)

| for gpu in allocated_gpus

| | weight[gpu] = lcm/sharing_factor[gpu]

UpdateSharingLoadWeights():

| remained_rps = cur_rps

| // Prioritize scheduling load to non-shared GPUs

| for gpu in not_share_gpus

| | gpu_rps[gpu] = model_max_rps

| | remained_rps -= gpu_rps[gpu]

| // Schedule the remaining load to shared GPUs

| for gpu in shared_gpus

| | shared_rps = model_max_rps/sharing_factor[gpu]

| | if remained_rps < shared_rps

| | | gpu_rps[gpu] = remained_rps; break

| | else

| | | gpu_rps[gpu] = shared_rps

| | remained_rps -= gpu_rps[gpu]

| // Calculate weights for request distribution
| min_gpus_rps = min(gpu_rps)

| for gpu in serving_set

| | weight[gpu] = gpu_rps[gpu]/min_gpus_rps

with the ratio of 2:1. By interleaving requests among GPUs

based on their sharing ratio, it aims to avoid contention

on the models that share GPUs but yet maintain a load

balance between the allocated GPUs. This policy is shown

in Algorithm 2 UpdateSharingWeights. Based on the

sharing_factor, we can compute the weight assigned

to each GPU by dividing the least common multiple (LCM) of

the sharing_factor by each GPU’s sharing_factor.

During runtime, the requests are scheduled to the GPUs

using a weighted round robin scheduling where every GPU

gets weight requests (2 requests for GPU1, 1 request for

GPU2 in Figure. 2). In our inference server, the Management

front-end, upon user’s request for loading a model into a

GPU, broadcasts the sharing_factor of each GPU to all

model’s scheduler to make them aware of the sharing status

of each GPU.

In Sharing-aware scheduling, even though the contention is

reduced while GPUs are shared, it does not take the current

load of the model into account. For example, in scenarios

where the load is too low, Sharing-aware scheduling still

schedules inference batches to the shared GPUs creating

unnecessary contention as well as under-utilization of the non-

shared GPU. To avoid contention and under-utilization, we

propose a Sharing+Load-aware scheduling policy.

3) Sharing+Load-aware Scheduling: We now present

Sharing+Load-aware scheduling, which aims to minimize

contention between different inference models while improv-

ing utilization of GPUs, which is the most energy efficient

operating point. Figure 2(d) illustrate an example of how

the Sharing+Load-aware scheduler distributes the requests to

GPUs. Sharing+Load-aware prioritizes the GPUs that are not

shared and can support inference requests for the current load

without violating SLO. This maximizes the utilization of non-

shared GPUs and minimizes the contention in shared GPUs.

For example, Model1 and Model2 prioritize and maximize the

utilization of the non-shared GPU1 and GPU3, respectively.

Then only when necessary, do the requests spill over to the

shared GPU, GPU2.

In Algorithm 2, UpdateSharingLoadWeights()

shows the pseudo-code of the Sharing+Load-aware scheduling

policy. The policy first distributes model_max_rps load to

the non-shared GPUs and any remaining load is spilled over

to the shared GPUs. We then normalize the load to each

GPU (gpu_rps) to get a weight ratio for each GPU. For

example, in Figure 2.d, Model2 will have a weight of 5

and 1 for GPU3 and GPU2, respectively. During runtime, the

requests are scheduled to the GPUs using a weighted round

robin scheduling where every GPU gets weight requests (5

requests for GPU3, 1 request for GPU2, etc.).

IV. EVALUATION

A. Evaluation Methodology

Server Hardware: We deployed our inference server on

a system with 4 AMD MI50 GPU, 2 AMD EPYC 7302 16-

Core Processor, 512 GB RAM, Ubuntu 18.04 LTS with kernel

5.4.0. The system runs the AMD ROCm 5.2 runtime stack.

Workloads: We use a combination of computer vision pre-

trained models for evaluation. Table I shows the model as

well as their SLO and max throughput. For each model,

SLO is measured similarly to prior works where we set

2x the isolated inference tail latency [2]–[4]. WATTWISER’s

framework support serving any number of models on servers

with any number of GPUs. To illustrate the efficiency of

WATTWISER, we deploy 2 models on 4 GPUs (2 GPUs

allocated for each model) as the workload. Our workload

consists of two models (resnext101 and resnet152)

with high latency, one model (vgg19) with medium la-

tency, and two models (alexnet and squeeznet1)

with low latency requirements. To evaluate our approach,

we picked five combinations of workloads with differ-

ent latency requirements: resnext101-resnet152 (high-

high), resnet152-vgg19 (high-medium), resnext101-

squeezenet1 (high-low), vgg19-alexnet (medium-

low), and alexnet-squeezenet1 (low-low) pairs.

Workload traces: For workload traces, we use Facebook

SWIM traces [10] shown in Figure 1(b). Each trace is nor-

TABLE I: Inference workload used with their maximum

throughput on single GPU. SLO is 95% tail latency of the

model on one GPU.

Model Max Throughput (RPS) SLO (ms) Latency

resnext101 140 101 High
resnet152 150 76 High
vgg19 320 41 Medium
alexnet 1750 25 Low
squeezenet1 2050 28 Low
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