&

Investigations

Bernstein, J. M., de Souza, H. F., Murphy, J. C., Voris, H. K., Brown, R. M., Myers, E. A,,
Harrington, S., Shanker, K., & Ruane, S. (2023). Phylogenomics of Fresh and Formalin
Specimens Resolves the Systematics of Old World Mud Snakes (Serpentes:
Homalopsidae) and Expands Biogeographic Inference. Bulletin of the Society of
Systematic Biology. https://doi.org/10.18061/bssb.v2i1.9393

Phylogenomics of Fresh and Formalin Specimens Resolves the
Systematics of Old World Mud Snakes (Serpentes: Homalopsidae)
and Expands Biogeographic Inference

Justin M. Bernstein'*®, Hugo F. de Souza’®, John C. Murphy‘®, Harold K. Voris*®, Rafe M. Brown’®,

Edward A. Myers®’®, Sean Harrington®*®, Kartik Shanker’

, Sara Ruane*

1 Center for Genomics, University of Kansas, 2 Department of Biological Sciences, Rutgers University-Newark, 3 Centre for Ecological Sciences, Indian
Institute of Science, 4 Negaunee Integrative Research Center, Life Sciences Section, Field Museum of Natural History, E Biodiversity Institute and
Department of Ecology and Evolutionary Biology, University of Kansas, © Department of Biological Sciences, Clemson University, 7 Department of
Herpetology, California Academy of Sciences, 8 INBRE Data Science Core, University of Wyoming, 2 Department of Herpetology, American Museum of

Natural History

Keywords: Ancient DNA, Natural history collections, Phylogenomics, Sea-level fluctuations, Southeast Asia

https://doi.org/10.18061/bssb.v2i1.9393

Bulletin of the Society of Systematic Biology

Abstract

Our knowledge of the biodiversity of Asia and Australasia continues to expand with more
focused studies on systematics of various groups and their biogeography. Historically,
fluctuating sea levels and cyclic connection and separation of now-disjunct landmasses
have been invoked to explain the accumulation of biodiversity via species pump
mechanisms. However, recent research has shown that geological shifts of the mainland
and species dispersal events may be better explanations of the biodiversity in these
regions. We investigate these processes using the poorly studied and geographically
widespread Mud Snakes (Serpentes: Homalopsidae) using a target capture approach of
~4,800 nuclear loci from fresh tissues and supplemental mitochondrial data from formalin
tissues from museum specimens. We use these datasets to reconstruct the first resolved
phylogeny of the group, identify their biogeographic origins, and test hypotheses
regarding the roles of sea-level change and habitat selection on their diversification.
Divergence dating and ancestral range estimation yielded support for an Oligocene origin
and diversification from mainland Southeast Asia and Sundaland in the rear-fanged group
~20 million years ago, followed by eastward and westward dispersal. GeoHiSSE models
indicate that niche expansion of ancestral, rear-fanged lineages into aquatic environments
did not impact their diversification rates. Our results highlight that Pleistocene sea-level
changes and habitat specificity did not primarily lead to the extant species richness of
Homalopsidae and that, alternatively, geological shifts in mainland Southeast Asia may
have been a major driver of diversity in this group. We also emphasize the importance
of using fresh and degraded tissues, and both nuclear and mitochondrial DNA, for filling
knowledge gaps in poorly known but highly diverse and conceptually important groups.
Here, Homalopsidae represents a non-traditional but effective model study system for
understanding transitions between terrestrial, marine, and freshwater environments.

Introduction

Geological Paradigms of Southeast Asia and
Australasia

The increasing use of phylogenomic approaches has re-
solved the evolutionary histories of many organismal
groups, resulting in a better understanding of their diver-
sification, biogeography, and trait evolution (Blair et al.,
2018; Hallas et al., 2022; Streicher & Ruane, 2018). Recur-
rent systematic studies in ‘model regions’ might find that

the same geological processes are responsible for the di-
versification of disparate taxonomic groups, providing in-
sight into the effects of broad geological processes on spe-
ciation (Brown et al., 2013). South and Southeast Asia, New
Guinea, and northern Australia are excellent examples of
areas with complex geological histories that have influ-
enced the diversification of many groups (e.g., Brown et
al., 2013; de Bruyn et al., 2014); these regions have under-
gone significant geological shifts, including tectonic uplift,
river catchment events, and Pleistocene sea-level fluctua-
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tions, the latter of which have cyclically joined and discon-
nected landmasses that are isolated today (Brown et al.,
2013; Hall, 2009; Hutchison, 1989; Rainboth, 1996; Work-
man, 1977). The sea-level fluctuations of this region are of-
ten cited as a driver of speciation and population structure
in invertebrates and vertebrates (Li & Li, 2018; Wu et al.,
2022; Wiister et al., 2005). However, recent geological stud-
ies that better identify the dates of land bridges (Husson et
al., 2020; Sarr et al., 2019) suggest that current hypothe-
ses must be revisited to test if newly identified processes in
other taxa also affect diversification and dispersal scenarios
(Garg et al., 2022; Sholihah et al., 2021).

Focal System

Caenophidian snakes (‘advanced snakes’) of the family
Homalopsidae, known as Old World Mud Snakes, are a mor-
phologically and ecologically diverse group distributed
throughout Asia and Australasia (excluding New Zealand;
Gyi, 1970; Murphy, 2007). With 58 species in 29 genera,
Homalopsidae is split into two major lineages: the fangless
group (3 genera; 10 species) and rear-fanged group (26 gen-
era; 48 species). The fangless homalopsids, only found on
Sumatra, the Moluccas, and the Bird’s Head Peninsula of
New Guinea are poorly known but include aquatic and a few
terrestrial, possibly vermivorous, species (Murphy, 2012;
Murphy, Mumpuni, et al., 2012). The rear-fanged group is
represented by mildy venomous, aquatic snakes that dis-
play a variety of natural history traits, morphologies, feed-
ing behaviors, diets, and microhabitat preferences (Brooks
et al., 2009; Fabre et al., 2016; Jayne et al., 2018; Murphy,
2007). Rear-fanged homalopsids are widely distributed
across South and Southeast Asia, New Guinea, and north-
ern Australia (Murphy & Voris, 2014). The distribution and
habitat use of homalopsids makes them an ideal system to
test hypotheses regarding Asian biogeography. However, a
comprehensive understanding of the evolutionary history
of this group is precluded by the lack of a well-resolved
phylogeny.

Previous phylogenetic studies of Homalopsidae have
been limited to two loci and less than half of the known
species in the group (22 species, Alfaro et al., 2008; 34
species, Bernstein et al., 2021), leaving many relationships
uncertain. Additionally, 22 species (9 genera) are each
known from only one or few specimens and lack tissue pre-
served specifically for DNA extraction (Burrell et al., 2015;
Card et al., 2021; Simmons, 2014). Fortunately, within the
last decade a variety of methods to obtain DNA from these
intractable (also called ‘formalin-fixed, ‘museum,” or ‘his-
toric’; we use ‘degraded’ for the remainder of the text) spec-
imens have been developed (Hykin et al., 2015; O’Connell
et al., 2021; Ruane & Austin, 2017; Totoiu et al., 2020),
providing new opportunities for uncovering hidden diver-
sity, resolving phylogenetic placement of rare species, and
filling gaps in speciation and extinction hypotheses (Roy-
croft et al., 2021; Ruane, 2021). These advances, and the in-
creased ease of acquiring genomic data, provide an oppor-
tunity to resolve the evolutionary relationships and timing
of diversification in a family-wide gap in the phylogeny of
snakes.

Objectives

Increased genomic and taxon sampling will allow for the
testing of hypotheses regarding homalopsid evolution. The
estimated divergence times of the crown group have ranged
from ~20-55 Ma using single- and multi-locus approaches.
Bernstein et al. (2021) hypothesized that Pleistocene sea-
level fluctuations were responsible for the diversification of
many homalopsids, but low information in non-mitochon-
drial sequences and many missing taxa resulted in ambigu-
ous and possibly overestimated divergence times for gen-
era. Phylogenetic uncertainty has also limited inference of
the biogeographic origins and drivers of diversity within
Homalopsidae. More than half of homalopsid diversity is
known from mainland Southeast Asia, so it has been hy-
pothesized to be the biogeographic area of origin of this
family (Murphy, 2007). While sea-level fluctuations are of-
ten thought to be responsible for diversification in this
biogeographic region, the environment can also be a con-
tributing factor. Unlike the fangless group (3 genera, 10
species), half of which are terrestrial, the more speciose
rear-fanged homalopsids (26 genera, 48 species) inhabit a
variety of aquatic habitats. This difference in species rich-
ness between the two subgroups of Homalopsidae might in-
dicate that the use of different aquatic environments has
facilitated the diversification of the rear-fanged group.

To investigate hypotheses regarding homalopsid evolu-
tion, as well as the impacts of broader biogeographic par-
adigms in Southeast Asian vertebrate evolution (e.g., sea-
level fluctuations, potential environmental influences on
diversification), we use a target capture probe set to se-
quence thousands of loci (Faircloth et al., 2012; Lemmon
et al., 2012; Singhal et al., 2017). We use these data, along
with supplemental mitochondrial (mt)DNA, to test the hy-
potheses that i) diversification dates of homalopsids will
predate Pleistocene sea-level changes, ii) homalopsids
originated in mainland Southeast Asia, and iii) that living
in a variety of aquatic environments (freshwater and brack-
ishwater) led to increased diversification rates of the spe-
ciose rear-fanged homalopsid clade. We provide a resolved
phylogeny of Homalopsidae, phylogenetically place five
genera that have never been included in any evolutionary
study to date, and discuss Oligocene divergence and range
expansion of homalopsids that predate sea-level change in
the Pleistocene.

Methods

We used both fresh tissues (high quality tissues with easily
sequencable DNA) and formalin-preserved tissues or those
that were taken from whole specimens fixed in ethanol (low
quality, degraded DNA) from natural history museums and
field collecting efforts. We targeted ~5,200 nuclear loci to
generate a species tree based on genomic data for biogeo-
graphic and diversification rate analyses. Due to difficulty
in capturing nuclear loci for the degraded tissues (see Re-
sults), we repeated our analyses on a cytochrome b (cyt-
b) tree generated from mitochondrial bycatch of degraded
samples and sequence data from Bernstein et al. (2021).
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Taxon Sampling and Data Generation

We obtained tissue from 157 homalopsids, consisting of 47
(~81%) species and 27 (~93%) genera (see Supplementary
Appendix S1). Of these, 41 tissues (20 species) were from
degraded samples. These samples from preserved speci-
mens include members of the fangless and rear-fanged
homalopsids and include 14 species and 12 genera that
have never been included in any phylogenetic analysis. Be-
cause a majority of molecular studies on this group have
used mtDNA, we include published cyt-b sequences from
NCBI (Genbank) to supplement our taxon and locus sam-
pling for the degraded samples (Alencar et al., 2016; Alfaro
et al., 2008; Bernstein et al., 2021; Colli et al., 2002; Karns
et al., 2010; Kumar et al., 2012; Murphy, Mumpuni, et al.,
2012; Murphy, Voris, et al., 2012; Ukuwela et al., 2017,
Wiister et al., 2002; Supplementary Appendix S1). Addi-
tionally, we obtained a sample of a rear-fanged homalopsid,
Homalophis doriae, which has not been included in any
phylogenetic study, after genomic sequencing. To include
this taxon in our phylogeny, we used the DNA extraction
and PCR protocols of Bernstein et al. (2021) to sequence
cyt-b and add it to our cyt-b dataset containg fresh and
degraded samples. To further maximize our taxon sam-
pling, we downloaded the genome of Myanophis thanlyinen-
sis (Kohler et al., 2021) to extract nuclear loci using the
BLAST (megaBLAST) function in Geneious v11.1.5 and in-
clude them in our pipelines and analyses. We incorporated
two vipers (Bothrops moojeni, Bothrops pauloensis), a colu-
brid (Chironius exoletus), a dipsadid (Philodryas olfersii), and
one elapid (Micrurus brasiliensis) from Singhal et al. (2017)
as outgroups.

Total genomic DNA from fresh tissues of muscle and
liver was extracted using Qiagen® DNeasy blood and tissue
kit protocols. Tissues from museum specimens (liver and
muscle) were extracted using the protocol of Ruane and
Austin (2017). This method uses a heated alkali buffer so-
lution and modifications to the Qiagen® kit protocol to in-
crease the DNA yield from intractable specimens. Two of
our museum samples were bone (see Supplementary Ap-
pendix S1). For these, 122 mg (sample 1) and 14 mg (sample
2) of bone were frozen with liquid nitrogen and pulverized
with a mortar and pestle. Using protocols from Allentoft et
al. (2018; 2015), the bone powder was then incubated for
24 h at 45 °C in a ~5 mL digestion buffer containing 4.7 mL
0.5 M EDTA buffer, 50 pL of proteinase-K (0.14-0.22 mg/
mL, Roche, Basel, Switzerland), 250 puL 10% N-Lauryl-Sar-
cosyl, and 50 pL TE buffer (100x). An additional 35 pL of
proteinase-K was added at 23 h. Then, 400 uL of AL buffer
and 400 pL of 100% ethanol per 650 uL of lysis solution was
added to the mixture. Finally, 200-pL batches of the mix-
ture were used starting at step 7 of the Qiagen® DNeasy®
Blood & Tissue Kit protocol for compact animal bone. All
DNA extractions were performed on surfaces that were ster-
ilized with bleach and with UV-sterilized equipment and fil-
ter pipette tips; the 41 samples with degraded DNA were
extracted in a separate lab space. We used a Qubit 3 fluo-
rometer (high sensitivity; Thermo Fisher Scientific: Invitro-
gen) to quantify all extractions.

Genomic DNA was sent to Daicel Arbor Biosciences (Ann
Arbor, Michigan). Fresh samples were sonicated and size
selected following a protocol to produce an average insert
length of approximately 500 nucleotides (nt). Up to 200 ng
of sonicated and size-selected DNA from the fresh sam-
ples was used for input in a library preparation method
optimized for targeted capture using the Squamate Con-
served Loci (SqCL) v2 probe set (Singhal et al., 2017). This
probe set targets 5,462 nuclear loci consisting of ultracon-
served elements (UCEs), anchored hybrid enrichment loci
(AHEs), and nuclear protein coding genes (NPCGs) com-
monly used in Squamate phylogenetic studies (e.g., BDNF,
CMOS, RAG2). Unique dual-index combinations were added
to each sample via 6 cycles of PCR amplification. For the
degraded samples, a single-stranded library preparation
chemistry appropriate for short and degraded fragments
was applied to the samples in a cleanroom setting using up
to 5 ng of DNA as input. Unique dual-index combinations
were added to each sample via 12 cycles of PCR amplifica-
tion.

The degraded and fresh indexed libraries were quantified
with both a spectrofluorimetric assay and a quantitative
PCR assay. To prepare for capture, libraries were pooled
in equimolar ratios for capture (7- to 10-plex captures for
fresh, 3- to 5-plex captures for degraded) and dried down
to 7 pL by vacuum centrifugation. Captures were performed
following the myBaits v5 protocol with an overnight hy-
bridization. Hybridization and washes were performed at 60
°C for the degraded and 65 °C for the fresh samples. For
each sample, half of the volume of beads in the elution
buffer were amplified for 10 cycles. For captures that did
not yield sufficient mass, the second half of bead volume
was amplified for 14 cycles. Final capture pools were quan-
tified again with both a spectrofluorimetric assay and a
quantitative PCR assay and were also visualized on an Agi-
lent Tapestation 4200. One sequencing pool was made from
the captures composed of fresh samples. A second sequenc-
ing pool was made from the captures composed of degraded
samples. A third sequencing pool was prepared with un-
enriched libraries from the degraded samples, combined in
equimolar ratios. Due to the presence of residual dimer in
the degraded samples (both enriched and unenriched), a
gel excision was required to remove the dimer. The two
degraded pools were quantified and visualized a second
time. Because there was residual dimer, the unenriched
pool was reamplified for 6 cycles, and the gel excision and
quantification were repeated. A final sequencing pool for
the degraded samples was prepared by combining the en-
riched (85%) and unenriched (15%) pools. Samples were se-
quenced on the Illumina NovaSeq 6000 platform on partial
S4 PE150 lanes.

Bioinformatics and Phylogenomic Analyses

To trim adapters and barcodes from raw reads, we used illu-
miprocessor (Del Fabbro et al., 2013; Faircloth, 2011; Lohse
et al., 2012) with default settings. Reads were then assem-
bled with SPAdes (Bankevich et al., 2012) and processed
for phylogenomic analysis using the Phyluce v1.7.1 pipeline
(Faircloth, 2016). Due to computational constraints and
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some samples having higher numbers of reads, we subsam-
pled 3.5 million reads from each pair of reads (up to 7 mil-
lion reads total) using seqtk (https://github.com/lh3/seqtk).
Alignments of homologous nucleotide sites for each locus
were edge-trimmed using Gblocks, and data matrices were
created for each locus that contained at least 75% of the
taxa in the dataset. Due to varying degrees of missing data
in historic specimens with degraded DNA (see Results), we
ran the Phyluce pipeline separately for fresh and degraded
samples. To obtain individual loci from degraded specimen
raw reads, and confirm that obtained loci were not arte-
factual sequences, we created pseudoreference genomes in
Geneious using loci from the fresh homalopsid sample that
recovered the highest number of complete loci during data
assembly. Using a pseudoreference provides a computation-
ally less-demanding and more efficient way to identify loci
obtained from degraded DNA in museum specimens (Bern-
stein & Ruane, 2022). We then mapped contigs obtained
from Phyluce to this reference. Using loci greater than 200
bp, we manually created DNA alignments using the
Geneious Alignment option under default parameters in
Geneious R11. To get a better understanding of DNA align-
ment quality between those with and those without de-
graded samples, we calculated parsimony informative sites
using the ape and ips packages in R (Heibl, 2008; Paradis
& Schliep, 2019) and locus lengths in Geneious. To extract
mitochondrial bycatch, we mapped raw reads from our mu-
seum samples to the Myanophis thanlyinensis homalopsid
mitochondrial genome (Kohler et al., 2021).

We generated three trees to use as input for downsteam
analyses: 1) a ‘nuclear species tree’ consisting of targeted
loci from fresh tissues only, 2) a mitochondrial ‘cyt-b tree’
from both fresh and degraded tissues, and 3), a ‘concatened
nuclear tree’ of homalopsids from only fresh tissues using
the targeted nuclear loci to assess the monophyly of species
and determine divergence dates at the population level. For
the concatenated nuclear tree, we concatenated the align-
ments for each locus and ran a maximum likelihood tree
search using IQ-TREE v1.6.12 (Nguyen et al., 2014), search-
ing for the best nucleotide model for each dataset using
ModelFinder (Kalyaanamoorthy et al., 2017), and assessed
branch support with 1,000 ultrafast bootstrap (UFB) itera-
tions (Hoang et al., 2017). Nodes with UFB > 95 are consid-
ered strongly supported relationships (Hoang et al., 2017).
For the nuclear species tree, we ran a coalescent tree search
for species tree analysis in ASTRAL-III (Zhang et al., 2018).
We generated individual nuclear trees for each locus us-
ing IQ-TREE with the same parameters used for the con-
catenated nuclear tree. These trees were used as input for
ASTRAL-III, which was run using default parameters. Rela-
tionships were considered supported if Bayesian Posterior
Probabilities (Bpp) were > 0.95.

Our approaches were able to obtain some nuclear loci for
degraded specimens (see Results), but the level of overlap
with fresh specimens and the short alignment lengths pre-
clude their use in the concatenated nuclear and species tree
approaches. Cyt-b has been used in many studies on homa-
lopsids (Alfaro et al., 2008; Bernstein et al., 2021; Quah et
al., 2018), and, while it is informative enough to produce

consistent, supported relationships for some genera, many
taxa are poorly supported and have ‘unstable’ phylogenetic
positions. Thus, to identify the phylogenetic position of the
specimens with degraded DNA, we reconstructed a cyt-b
tree using RAXML-NG v 1.1.0 (Kozlov et al., 2019) with one
tip per species, using the nuclear species tree as a backbone
constraint on the topology. We consider bootstraps > 70 to
be supported. Tree reconstruction was run with 1,000 boot-
strap iterations and using a GTR+G model of nucleotide
evolution.

Divergence Dating, Biogeographic, and
Modeling Analyses

For comparative reasons, we perform divergence dating
seperately on three trees: 1) the nuclear species tree, which
contains lower taxonomic sampling but greater locus sam-
pling, 2) the cyt-b tree (one tip per species), consisting of
a single locus but a higher taxonomic sampling than the
nuclear species tree, and 3) the concatenated nuclear tree
(containing more than one tip per species). Additionally,
ancestral range estimation and hidden state speciation and
extinction (HiSSE) model analyses were run on the nuclear
species tree and cyt-b tree to compare potential differences
in results due to greater taxonomic sampling in the cyt-b
tree.

The estimation of divergence dates can become com-
putationally demanding when many loci are included, so
we used treePL v1.0 (Smith & O’Meara, 2012) to estimate
the divergence times of our concatenated nuclear, nuclear
species tree, and cyt-b trees. We iteratively ran the analysis
until convergence, using optimal parameters obtained for
the run and the ‘thorough’ and ‘prime’ commands, respec-
tively. To ensure that this method obtained consistent re-
sults, we performed this process five times. We determined
the best smoothing parameter, which affects the penalty
for rate variation across the tree, by using random subsam-
ple and replicate cross-validation (RSRCV). The RSRCV ap-
proach randomly samples multiple terminal nodes with re-
placement and calculates the rates and dates of the tree
with the terminal nodes removed; the average error is then
sampled over the nodes (Smith & O’Meara, 2012). The
smoothing parameter with the lowest error (= 0.1) was cho-
sen to run the analysis. No known homalopsid fossils exist,
thus we rely on one fossil and two secondary calibrations
of our outgroup taxa. Using the fossils provided in Head
et al. (2016), we used Coluber cadurci to calibrate the di-
vergence of Colubridae+Elapoidea, with a minimum thresh-
old of 30.9 million years (Myr) on the (Micrurus brasilien-
sis,(Chironius exoletus, Philodryas olfersii)) node in our trees.
As fossils often only represent minimum ages for calibra-
tions, we used custom R scripts with the ape (Paradis &
Schliep, 2019) and phytools (Revell, 2012) packages to ex-
tract the upper bound of the 95% confidence interval from
the Colubridae+Elapoidea node in Burbrink et al. (2020),
making a constraint of 30.9-46.75 Myr. Using this R script
and the same phylogeny from Burbrink et al. (2020), we
also obtained the 95% confidence intervals to create lower
and upper bounds on two additional nodes in the tree: i)
Colubroidea+Viperidae (common ancestor of all outgroup
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taxa: 45.74-58.63 Myr), ii) Colubroidea+Elapoidea+Homa-
lopsidae (Homalopsidae and all outgroups except Bothrops
spp.: 37.59-49.32 Myr).

Using two of these time-calibrated trees (nuclear species
and cyt-b trees), we estimated the ancestral ranges and dis-
persal history of Homalopsidae using the R package Bio-
GeoBEARS (Matzke, 2013a). We used our ingroup (Homa-
lopsidae) from our time-calibrated cyt-b tree and nuclear
species tree (see below) as input, pruning outgroups from
the tree using ape (Paradis & Schliep, 2019). Although we
do not have 100% of homalopsid diversity in the cyt-b tree
(see Results), the species that are not included occur in the
same ecoregions that are used as input for BioGeoBEARS,
thus it is likely we are not missing any important range
transitions/states. Additionally, several studies have used
BioGeoBEARS to obtain biologically meaningful results,
even when species-level sampling has ranged from
~54-69% (Peterson et al., 2022; Schools et al., 2022) and
when genus-level sampling was ~85% (Fric et al., 2022).

We coded areas using eight distinct geographic regions
(Fig. 1), based on the geographic distributions of homa-
lopsids (Murphy & Voris, 2014) and the geological history
of these regions, particularly during periods of Pleistocene
land bridge (Hall, 2009; Voris, 2000): Indochina (I), Sun-
daland (N), Philippines (P), Micronesia (M), Wallacea (W),
South Asia (S), Australia (A), and New Guinea (G). The
Malay Peninsula has been repeatedly separated and con-
nected from the Greater Sunda Islands during Pleistocene
sea-level fluctuations (Hall, 2009; Voris, 2000), thus we
group the Greater Sunda Islands and Malay Peninsula as
one distinct region (Sundaland). Similar to Weinell et al.
(2020), we treated the Isthmus of Kra (5°-13° N), a zone of
species turnover on the Thai-Malay Peninsula between In-
dochina and Sundaland, as a boundary. This region is where
many faunal ranges of Indochina and Sundaland reach their
southern- and northernmost distributions, respectively (de
Bruyn et al., 2004; Hughes et al., 2003). Other regions were
defined based on geographic distributions of species and
endemism as well as geographic changes in topography
(e.g., India separated from Indochina near the Arkan Moun-
tains; Wallacea as oceanic islands separated from Sunda-
land and Australasia; New Guinea and Australia repeatedly
separated and connected during the Pleistocene). Addition-
ally, while parts of East Asia (e.g., coast of China and Tai-
wan) are not traditionally considered part of Indochina,
we include them here given the continuous range of some
homalopsids in Indochina. We created different dispersal
scenarios within regions and between adjacent regions that
have current contiguous landscapes or regions that were
connected during the Pleistocene (e.g., Sundaland, In-
dochina to Sundaland, Australasia [Australia and New
Guinea)); this created a total of 13 dispersal scenarios. We
did not allow connection between Borneo and the Philip-
pines as it is not known to what extent flora and fauna
have dispersed into the Philippines via Palawan or the Sulu
Archipelago (Brown et al., 2013), and two homalopsid
species are currently documented to inhabit the Philip-
pines.

We estimated ancestral ranges by testing six models:
Dispersal-Extinction-Cladogeneses (DEC; Ree & Smith,
2008); DIVALIKE, which is a likelihood version of the parsi-
mony model Dispersal-Vicariance (DIVA; Ronquist, 1997);
and the BAYAREALIKE model, a likelihood version of the
BAYAREA model (Landis et al., 2013). These models vary in
the range evolution processes that can occur during clado-
genesis (Matzke, 2013a, 2014). The DEC model assumes
that daughter lineages will inherit the ancestral area state
if the most recent common ancestor (MRCA) is limited to a
small range (single area), or, if the MRCA is widely distrib-
uted, the daughter lineage will inherit a range that is within
the MRCA’s ancestral area (Ree & Smith, 2008). The DIVA
model assumes that speciation is dependent on vicariance
events and does not make assumptions of relationships be-
tween areas (Ronquist, 1997). Lastly, the BAYAREA model
assumes no range evolution during cladogenetic events, so
the daughter lineages inherit the ancestral range of the
MRCA (Landis et al., 2013; Matzke, 2013b). We also com-
puted the likelihoods of these models with the ‘“+]’ jump
dispersal parameter included to allow for founder-event
speciation: DEC+], DIVALIKE+], BAYAREALIKE+] (Matzke,
2013b, 2014), for a total of six models. It has been shown
that statistical problems can arise when using the DEC and
DEC+] models and that ‘+] parameterizes the mode, but
not the rate, of speciation, leading to inaccurate biogeo-
graphic inference (Ree & Sanmartin, 2018); there are also
concerns that BioGeoBEARS does not take extinct lineages
into account. However, simulations in Matzke (2014) show
that BioGeoBEARS inference is not badly biased if extinc-
tion is random (an assumption we have made) and also that
d and j parameters are identifiable (Klaus & Matzke, 2020;
Matzke, 2014). Additionally, the statistical validity of us-
ing models implemented in BioGeoBEARS has been sup-
ported when compared to ClaSSE models (Matzke, 2022).
We statistically compared the fit of all models under differ-
ent dispersal scenarios using the Akaike Information Cri-
terion (AIC; Akaike, 1974) and the AIC corrected for small
sample sizes (AICc; Burnham & Anderson, 2004a, 2004b),
considering model schemes with the lowest AIC and AICc
scores to be the best fit models. Likelihood ratio tests were
calculated to determine if likelihoods for models with and
without the +] parameter were statistically different from
each other. We also ran the ancestral range estimation on
the nuclear species tree with only fresh samples; while we
focus on the results of our cyt-b tree, the results for the an-
cestral range estimation of the nuclear species tree can be
found in Supplementary Text S1.

Before performing HiSSE model analyses that assume
the ancestral rear-fanged homalopsid was aquatic, we pe-
fomed Ancestral Character Estimation (ace) in the R pack-
age ape (Paradis & Schliep, 2019) to determine the an-
cestral state of this clade. Because the input tree data is
discrete, the estimation of character transitions were calcu-
lated using the Maximum Likelihood method (Pagel, 1994).
For this analysis, we used our nuclear species tree as an
input phylogeny and scored habitat states using three
schemes: i) terrestrial or aquatic, ii) terrestrial or freshwa-
ter (FW) or brackish water (BW), or iii) terrestrial or FW or
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a) South Asia

b) Indochina

c¢) Sundaland

d) Philippines

e) Wallacea

f) Micronesia (Palau)
g) New Guinea

h) Australia

Figure 1. The eight bioregions used in the ancestral range estimation in BioGeoBEARS. Regions of interest are colored in
blue. Inset maps in panels e) and f) show the island groups that form Wallacea and the Republic of Palau (the Micronesia

bioregion), respectively.

BW or unknown habitat. Natural history information was
obtained from previously published literature (Kohler et al.,
2021; Murphy, 2007; Quah et al., 2017). The third scheme
includes 5 homalopsids that are known to be aquatic, but
their microhabitat preference is unknown; thus, they are
excluded from all analyses except one (see below). A total
of 36 representative taxa (31 homalopsids and 5 outgroups)
were labelled as being terrestrial (N = 6), freshwater (Npyy
= 11), brackish-water (Npy; = 14), or unknown (Ny; = 5).
The analysis was coded to allow for an ‘all-rates-different’
(ARD) mode of character evolution: the conversion in habit
from a FW to BW, and vice-versa, was assumed to occur at a
different rate than the transition from terrestrial to aquatic
and back. The ‘equal-rates’ (ER) model was also tested, but
the results were poorly supported (likely due to changes be-
tween FW and BW being more likely to occur than between
the states of terrestrial and aquatic); so ER results were not
included. The analysis was run for every possible combi-
nation of states (called ‘cases, here and in the R code): 1)
Terrestrial vs. FW vs. BW, 2) Terrestrial vs. Aquatic, 3) Ter-
restrial vs. FW vs. BW with unknown taxa removed, 4) Ter-
restrial vs. FW vs. BW with unknowns and outgroups re-
moved, and 5) Terrestrial vs. Aquatic with unknowns and
outgroups removed. Outgroups were included (or removed)

to verify that their inclusion would not bias the analysis
via additional terrestrial character weightage (all outgroups
are terrestrial). All combinations were run multiple times to
check for congruency between results. The R code for an-
cestral state reconstruction can be found in Supplementary
Data D1-D7.

To determine if the partitioning of rear-fanged homalop-
sids into aquatic systems is correlated with their diversifi-
cation rates, we used a Geographic Hidden-State Speciation
and Extinction (GeoHiSSE) framework using the rear-
fanged group of our nuclear species and cyt-b trees. This
model estimates speciation, extinction, and transition rates
for two geographic areas while including unobserved char-
acter states (‘hidden states’) to incorporate rate hetero-
geneity that is independent of geography (Caetano et al.,
2018). We scored homalopsids as existing in one of three
states that correspond to their aquatic habitat preference:
0 = both freshwater and brackish, 1 = freshwater, and 2
= brackish. Natural history information was obtained from
previously published literature (Kohler et al., 2021; Mur-
phy, 2007; Quah et al., 2017). Because all rear-fanged
homalopsids are aquatic, and our ancestral state recon-
structions indicate that the ancestral lineages of the rear-
fanged group were aquatic (see Results; Supplementary Fig.
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S6), we are confident in restricting our GeoHiSSE analysis
to only aquatic states. Sampling fractions were estimated to
be 0.692, 0.529, and 1 (nuclear species tree) and .870, .529,
and 1 (cyt-b tree) based on our sampling divided by the
total number of homalopsids inhabiting freshwater, brack-
ish, and both types of habitats, respectively. While some
homalopsids have been found in both brackish and fresh
waters, we only scored homalopsids with state 0 if they
are often found in both types of aquatic habitat. We fitted
15 models (Table 1), which vary in the models being char-
acter (state) dependent or independent, the inclusion or
absence of hidden states, and the number of transition
rates. Models include both GeoSSE/GeoHiSSE-like models
in which habitats evolve according to dispersal and extinc-
tion as well as MuSSE/MuHiSSE-like models in which habi-
tat shifts evolve according to transition rates among each
state. We also fitted a classic Birth-Death model (Birth-
Death 1, no hidden states or state-dependence) that in-
cludes dispersal parameters only and no range-dependent
diversification as a null model. We fitted a second Birth-
Death model (Birth-Death 2) that differs from Birth-Death
1 in that the model allows for transitions out of states based
on transition rates, not just the extinction in one area. Fol-
lowing the GeoHiSSE vignette, we set the extinction frac-
tion, “eps,” equal across all states for all models (including
range-dependent and hidden state models). Full details and
parametrization of all ancestral range estimations, ances-
tral state reconstructions and HiSSE models can be found in
the associated R code (see Supplementary Data D8-D12).

Results
Taxon Sampling and Data Generation

Our fresh tissue dataset consisted of 116 individuals (31
species [53%]; 18 genera [62%]). Our concatenated align-
ment contained 4,110,774 bp across 4,837 loci (4,501 UCEs/
306 AHEs/30 NPCGs). Reads from fresh specimens yielded
more complete loci than those from museum specimens
(Table 2). Using the pseudoreference to map Phyluce-out-
putted contigs in Geneious obtained 29,631 individual se-
quences across 40 formalin specimens, with small average
locus length (in bp) of 218.84 (UCEs), 156.37 (AHEs), and
120.5 (NPCGs); loci length ranged from 28-1,988 bp (Table
3). We successfully generated nuclear DNA alignments >200
bp for 10 of the 41 museum specimens (number of spec-
imens given parenthetically) of the fangless homalopsids
Brachyorrhos gastrotaenius (3) and Calamophis ruuddelangi
(1) and the rear-fanged Dieurostus dussumieri (2), Ferania
sieboldii (1), Hypsiscopus plumbea (1), Mintonophis pakistan-
icus (1), and Miralia alternans (1). However, the recovery
of homologous loci among these specimens was minimal,
and high levels of missing data of targeted nuclear loci pre-
cluded their use. Thus, we relied on the cyt-b sequences
obtained as mitochondrial bycatch from Calamophis ruud-
delangi, Brachyorrhos gastrotaenius, Ferania sieboldii,
Mintonophis pakistanicus, Dieurostus dussumieri, Miralia al-
ternans, and Homalophis doriae and included these only in
the cyt-b tree.

Phylogenomic Analyses

The concatenated nuclear tree (fresh samples only) is topo-
logically identical to the species tree with strong support
at most nodes (Supplementary Figs. S1-S3). All species
are monophyletic in the concatenated nuclear tree except
Cerberus schneiderii, Homalopsis buccata, and Hypsiscopus
plumbea. Cerberus microlepis and C. dunsoni are nested
within C. schneiderii, Homalopsis semizonata is embedded in
H. buccata, and H. plumbea is paraphyletic with respect to
H. matannensis.

The homalopsid species tree with only fresh specimens
recovers a monophyletic Homalopsidae with strong support
(Bpp=1) at all nodes except the divergence between En-
hydris enhydris and E. longicauda+E. innominata (Fig. 2A).
The fangless genus Brachyorrhos is sister to the rear-fanged
clade, which comprises all other homalopsids. The rear-
fanged homalopsids consist of two subclades (subclade I
and II; Fig 2B). The species tree is broadly consistent with
the cyt-b (constrained by the genomic tree topology) tree
regarding the fangless/rear-fanged split and the two sub-
clades of rear-fanged taxa. The cyt-b tree recovered a poorly
supported fangless clade (UFB=66), sister to the strongly
supported rear-fanged clade (UFB=96), with all genera as
monophyletic and most nodes strongly supported (Fig. 2B;
Supplementary Figure S4). For the fangless taxa, the poorly
known New Guinea endemic Calamophis diverges from
Brachyorrhos. The rear-fanged South Asian homalopsids
Ferania sieboldii, Mintonophis pakistanicus, and Dieurostus
dussumieri are the closest related group to all other homa-
lopsids in Subclade I with strong support (Fig. 2B). Miralia
alternans is strongly supported as sister to Myrrrophis. En-
hydris jagorii is minimally divergent from E. innominata and
E. longicauda. Additionally, Homalophis doriae is recovered
as part of a clade consisting of the Sundaic taxa Raclitia in-
dica and Phytolopsis punctata.

Divergence Dating, Biogeographic, and
Modeling Analyses

Our divergence dating, ancestral range, and GeoHiSSE re-
sults of the nuclear species and cyt-b tree are broadly con-
gruent; therefore, we focus our discussion on the cyt-b tree
for all subsequent analyses as it contains a greater level of
taxonomic sampling. We mention the results for the nu-
clear species tree parenthetically, with full details of the
analyses using the nuclear species tree in Supplementary
Text S1. Divergence time estimation supports an Oligocene
origin for crown homalopsids, ~26.4 (27.7) million years ago
(Ma; Fig. 2B). Subclades I and II split ~21.8 (15.3) Ma, with
both of these clades diverging around 21.2 (13.4) Ma and
19.8 (14.7) Ma, respectively. Most intergeneric-level splits
occurred throughout the Miocene between 11 and 18 (7-15)
Ma and most interspecific divergences ~200 thousand years
ago (Ka) to 5 Ma (~300 Ka-3 Ma).

The best fit biogeographic model to our data was the
DEC+] model. Although the ancestral range of crown homa-
lopsids remains unresolved, this model suggests an In-
dochina+South Asian origin of the rear-fanged clade (Fig.
2B; Tables 4-5; Supplementary Fig. S5). At 21.2 Ma, sub-
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Table 1. List of models that were fitted in the GeoHiSSE analysis using the cyt-b tree as input. States differed in their
inclusion of hidden states, if they were character dependent (CD) vs. character-independent (CID), and the number of
transition rates and turnover parameters. The model with the highest AIC weight is the best fitted model (bolded).
Models are given in order of highest to lowest AIC weight for the cyt-b tree. Model information for the nuclear species

tree can be found in Supplementary Text S1.

Model #in Model Hidden CD Number of Number of turnover AIC weight

R code states transition rates parameters
CID

model 3 GeoHiSSE 1 Yes No 2 2 0.371600862
Birth-Death

model 1 1 No No 1 1 0.186871975
CID
MuHiSSE-

model 7 like 1 Yes No 3 2 0.137667855
Birth-Death

model 6 2 No No 2 1 0.068746358

model 2 GeoSSE No Yes 1 3 0.044386173
CID
MuHISSE-

model 9 like 2 Yes No 3 4 0.037046849
MuHiSSE-

model 8 like 1 Yes Yes 3 4 0.028061116
Birth-Death

model 11 3 No No 4 1 0.028053372
MuHiSSE-

model 13 like 2 Yes Yes 5 4 0.026377869

model 4 GeoHiSSe Yes Yes 2 0.02617015
CID
MuHISSE-

model 14 like 4 Yes No 5 4 0.018583806
CID

model 4a GeoHiSSE 2 Yes No 2 6 0.014497523

model 5 MuSSE-like 1 No Yes 2 2 0.005610634
CID
MuHiSSE-

model 12 like 3 Yes No 2 0.003796616

model 10 MuSSE-like 2 No Yes 4 0.002528843

Table 2. Comparison of fresh and formalin datasets post-bioinformatics processing (out of 4,860 locus alignments). The

number of samples in alignments (Alsample

s), alignment lengths, number of alignments >250 bp (Al,s), and number of

parsimony informative sites (PIS) are given for each dataset of N samples. All parenthetical numbers represent averages.

Dataset (N) AIsamples Alignment length (bp) Alyso PIS
Fresh (116) 87-116(112.9) 224-2633(845.8) 4,857 1.08-54.17 (17.5)
Formalin (41) 3-16(6.7) 10-864(121.5) 61 0-82.81(5.4)

clade I diverged into two groups, with one diversifying in
South Asia and the other within Indochina, with eastward
dispersal in Hypsiscopus and Enhydris enhydris ~5-8 Ma. In
subclade II, ancestral lineages diversified in Indochina until
expanding their ranges ~17 Ma. The clade containing Bitia,
Fordonia, Gerarda, and Cantoria had likely underwent range
expansions westward into South Asia and south/eastward
into Sundaland and Wallacea. A similar pattern is also seen
amongst Erpeton, Pseudoferania, and Myron (17.6 Ma), with
the latter two diversifying into Australasia ~11 Ma. Sev-

eral other ancestral lineages from Indochina further spe-
ciated in Sundaland, such as the clade containing Racli-
tia, Phytolopsis, and Homalophis (16.9 Ma); Subsessor (15.6
Ma); and Homalopsis (2.9 Ma). Cerberus dispersed eastward
and westward ~4.6-10 Ma. The nuclear species tree sup-
ported the BAYAREALIKE+] (statistically identical to DEC
and DEC+J; see Supplementary Text S1) as the best model
and a similar biogeographic history, with the exception that
the rear-fanged group’s ancestral range originated in Sun-
daland and subsequently dispered east and west.
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Table 3. Statistics on loci mapped to the pseudoreference genome in Geneious. The number of unique DNA sequences

(Ngequences)> number of unique specimens (N ocimens)> and the range, average, and median locus lengths across UCEs,
AHEs, and NPCGs are given.

Data Type Nsequences Nspecimens Locus Length Ranges Average Locus Length

UCEs 27,796 40 28-1,627 218.84

AHEs 1,638 38 28-1,988 156.37

NPCGs 198 30 34-1,225 233.47

All ancestral state reconstructions support the ancestor
of Homalopsidae as being terrestrial and the ancestor of
the rear-fanged clade as aquatic, likely inhabiting brackish
watersystems (Supplementary Fig. S6). The best supported
model in the GeoHiSSE analysis, using AIC weights, was
the character independent GeoHiSSE 1 model (model 3),
in which diversification rates are constant across all taxa
(AICweight = 0.372; Table 1). The model-averaged ancestral
state reconstruction in the GeoHiSSE analysis suggests the
ancestral rear-fanged homalopsid likely inhabited both
freshwater and brackish aquatic systems. Reconstructions
support transitions to brackish water (Bitia, Fordonia, Ger-
arda, Cantoria) and freshwater (Enhydris) states but also in-
stances of reversals, inhabiting both states (MRCAs of Hyp-
siscopus, Myrrophis, and Cerberus; Fig. 3). These instances
of reversals are also seen with the brackish and freshwater
states in several lineages (Fig. 3). The GeoHiSSE analysis
using the nuclear species tree as input found the best sup-
ported model was the Birth-Death 1 model (model 1), in
which diversification rates are constant across all taxa
(AICweight = 0.338; Supplementary Text S1).

Discussion

Genomic data has expanded our understanding of evolu-
tionary relationships (e.g., Hime et al., 2021; McFadden
et al., 2021), phylogenetic incongruence and gene conflict
(Myers et al., 2021; Singhal et al., 2021), and evolutionary-
ecological dynamics (Brennan et al., 2021). In this study,
we resolve the phylogeny of a morphologically and ecologi-
cally diverse family of snakes. Using thousands of loci from
modern tissue samples and mtDNA from degraded speci-
mens, we expand our knowledge of the biogeographic his-
tory and evolutionary origins of homalopsids and discuss
current gaps in our knowledge of the group and areas of fu-
ture study.

Evolutionary Relationships of Homalopsidae

The phylogenetic relationships here are broadly congruent
with previously published homalopsid studies using mul-
tilocus Sanger datasets (Alfaro et al., 2008; Bernstein et
al., 2021). Homalopsidae consists of two major lineages:
the fangless and the rear-fanged groups, the latter divided
into two subclades. In our study, we estimate younger di-
vergence dates, which were consistent across independent
treePL runs. Other squamate studies have used genomic
data with penalized likelihood methods (e.g., Burbrink et

al., 2020; Deepak et al., 2022), and our results yield dates
that are broadly consistent with prior estimates. The im-
portance of using genomic data is also exemplified in our
concatenated analyses. Populations of Cerberus have long
been classified as distinct, endemic species based on mor-
phology, but our molecular data suggest that these may
represent founder populations in the Philippines (C. mi-
crolepis) and Palau (Micronesia; C. dunsoni). We recover
both nominal taxa embedded within C. schneiderii (Supple-
mentary Figs. §2,S3). This founder scenario is also exem-
plified by a population of C. schneiderii on Timor Island
that shows similar levels and patterns of divergence to C.
microlepis and C. dunsoni. We note that genome-wide data
support the non-monophyly of C. schneiderii with respect
to C. microlepis and C. dunsoni and the morphologically
distinct Homalopsis buccata and H. semizonata (Murphy,
Mumpuni, et al., 2012).

Biogeographic Origins and Evolution of
Homalopsidae

Our crown age estimate of homalopsids (26 Ma) points to
an Oligocene origin, rather than the Eocene as previously
suggested (Bernstein et al., 2021). The rear-fanged homa-
lopsids are inferred to have diverged during the Oligocene
in Indochina 21.8 Ma. Many studies focus on shallow
timescale patterns and the importance of Pleistocene sea-
level fluctuations that have led to species- and population-
level divergences (de Bruyn et al., 2014; Hall, 2009; How
& Kitchener, 2003; Lohman et al., 2011; Maryanto et al.,
2021; Voris, 2000). However, our data suggest that older ge-
ological events may have facilitated homalopsid diversifica-
tion in Indochina and Sundaland, supporting our hypoth-
esis that divergence dates predate Pleistocene sea-level
fluctations. Major riverways in mainland Southeast Asia be-
gan shifting southward ~17 Ma, close to several divergences
in our tree (Fig. 2B; or closer to the divergence of the en-
tire rear-fanged clade in the nuclear species tree). These
geological changes affected the flow of these waterways
downwards towards parts of the then-contiguous Sunda-
land (Clark et al., 2004; Hall, 2013; Hennig et al., 2018;
Hennig-Breitfeld et al., 2019), especially Borneo (Breitfeld
et al., 2020), and may have been an important driver of spe-
ciation in homalopsid snakes.

The rear-fanged group likely has ancestral origins in
South Asia+Indochina (cyt-b; Fig. 2B) or Sundaland (nu-
clear species tree; Supplementary Text S1). Our best sup-
ported model for ancestral range estimation, DEC+], allows
either vicariance or subset (partial sympatry) speciation if
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Figure 2. a) Nuclear species tree of Homalopsidae using ASTRAL-III, with fangless and rear-fanged groups boxed in
green and blue, respectively. Green nodes denote strong support and green branches represent topology that matches
that cyt-b tree in panel B. b) Cyt-b tree of Homalopsidae, with degraded sample tips in purple; fangless and rear-fanged
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clade are highlighted in green and blue, respectively. Rear-fanged subclades I and II labeled. Numbers at nodes represent
dates (Ma) of major divergences in Homalopsidae. Pie charts at nodes denote the likelihood of a particular ancestral
range, corresponding to the colors in the key; only colors of highest likelihood shown. Tips represent the current
geographic range (I = Indochina; N = Sundaland; W = Wallacea; D = India; M = Micronesia/Palau; P = Philippines/Lake
Buhi); A = Australia; G = New Guinea). Time scale: Paleo. = Paleocene; Eocen. = Eocene; Oligo. = Oligocene; Mioce. =
Miocene; Plioc. = Pliocene; Pleist. = Pleistocene; Q = Quaternary (Holocene not shown). Map in upper right shows the
origin and diversification of Homalopsidae based on cyt-b (blue region and arrows) and the nuclear species tree
(Indochina; red star and arrows). Outgroups not shown. Scale bar in coalescent units. Photo credits: Hypsiscopus plumbea
= Bryan L. Stuart; Myrrophis chinensis = Artur Tomaszek; Enhydris enhydris = Kenneth Chin; Bitia hydroides = Bruce Jayne;
Fordonia leucobalia = Luke Allen; Gerarda prevostiana = Vivek Sharma; Cantoria violacea = Kenneth Chin; Myron
richardsonii = Jacob Loyacano; Pseudoferania polylepis = Tom Charleton; Raclitia indica = Evan Quah; Phytolopsis punctata
= Kenneth Chin; Subsessor bocourti = Tom Charleton; Homalopsis nigroventralis = Peter Brakels; Cerberus schneiderii =
Kenneth Chin, Brachyorrhos raffrayi = Kate Sanders; Ferania sieboldii = DP Srivastava; Dieurostus dussumieri = Vivek
Sharma; Miralia alternans = Rendra Wahyudi; Homalophis doriae = Anton Sorokin.

Table 4. Likelihood ratio tests of the alternative and null models for BioGeoBEARS using the cyt-b tree. The log

likelihoods of the alternative (LnL,;,) and null (LnL

) models are given, with corresponding p-values (ot = 0.05).

null
Alternative Model Null Model LnL,;; LnL p-value
DEC+)J DEC -115.8 -119.2 0.0096
DIVALIKE+)J DIVALIKE -119.6 -121.7 0.041
BAYAREALIKE+)J BAYAREALIKE -120 -134.2 9.7E-08

Table 5. Model comparison for reconstruction of ancestral range estimations in BioGeoBEARS using the cyt-b tree. Log
likelihoods (LnL), number of parameters, dispersal rate (range expansion; d), and extinction rate (range contraction; e)
are given for each model (model in bold = model of best fit based on AIC and AICc). Model are listed in order of best fit.

Model LnL Parameters d e AIC AlCc

DEC+J -115.8 3 0.0065 1E-12 237.7 238.3
DEC -119.2 2 0.0074 1E-12 242.4 242.7
DIVALIKE+) -119.6 3 0.0076 1E-12 245.3 245.9
BAYAREALIKE+J -120 3 0.0046 1E-07 246 246.6
DIVALIKE -1217 2 0.0086 1E-12 247.5 247.8
BAYAREALIKE -134.2 2 0.0046 0.053 2724 2727

one of the daughter lineages has a range defined by a sin-
gle area, as well as jump dispersal (founder events), which
seems likely given their tolerance of a variety of aquatic
habitats, including marine. Additionally, vicariance, which
is part of the DEC+] model, has been supported in many
narrow-scale homalopsid studies (Bernstein et al., 2021;
Lukoschek et al., 2011), and the region’s changing river sys-
tems have led to both corridors and barriers to migration
in Indochina and Sundaland (Salles et al., 2021). Rivers
have often been thought of as barriers to some terrestrial
vertebrate groups (e.g., draconin lizards; Klabacka et al.,
2020) but can also act as migration corridors for semi-
aquatic fauna like hylid frogs (Fonseca et al., 2021). With
Southeast Asia’s mosaic of geological events, it would not
be surprising that the tectonically-induced changes in river
currents and morphology have turned rivers into barriers
to migration, even in aquatic groups (Kurata et al., 2022).
With their different levels of salinity tolerance (Dunson &
Dunson, 1979; Kumar et al., 2012) and sensitivity to ele-
vational gradients (Karns et al., 2005), vicariance or subset

sympatry is a likely diversification scenario for many homa-
lopsids. We also note that the +] parameter for founder
events is reflected in the diversity of this group, such as en-
demic taxa like Cerberus microlepis and C. dunsoni as well
as the Timor population of C. schneiderii. It is possible that
the salt glands in C. schneiderii have facilitated their dis-
persal capabilities, leading to them being the most wide-
spread homalopsid genus and species and one of the most
abundant and widespread reptiles in Southeast Asia (Mur-
phy, 2007).

Our findings from the ancestral state reconstructions
and GeoHiSSE analysis suggest that aquatic habitat speci-
ficity did not influence diversification rates, thus rejecting
our hypothesis. However, these results do suggest that rear-
fanged homalopsids had aquatic ancestors that lived in
both brackish and freshwater environments. Thus, it is pos-
sible that the physical shifting of these aquatic pathways
led to the formation of paleodrainage systems and influ-
enced the diversification and distribution of lineages. These
geological processes in Indochina have been associated
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Figure 3. Model-averaged GeoHiSSE results using subclade II from the time-calibrated cyt-b tree in Fig. 2B. Branch
outlines are colored by net diversification rates (hotter = faster) and branches colored by reconstructed ancestral habitat
states. Squares at tips denote the currently known habitat preference of the respective taxon. Rear-fanged clade (blue)
from the nuclear species tree used for the GeoHiSSE analysis is shown in the upper right.

with species diversity in fish (Alshari et al., 2021; de Bruyn
et al., 2013), lizards (Klabacka et al., 2020), and snakes (in-
cluding homalopsids; Lukoschek et al., 2011; Voris et al.,
2012). Whereas many of these cases represent more re-
cent divergences, our results indicate that geologically-in-
fluenced diversification may have also taken place at much
older timescales. We also recover shallow, species-level, ge-
ographic-based divergences in Indochina and Sundaland
(e.g., Enhydris, Homalopsis, Myrrophis; ~200 Ka-5 Ma in the
cyt-b tree; ~300 Ka-3 Ma in the nuclear species tree). Re-
cent geological research (Salles et al., 2021) has shown that
in the last 500 Ka, changes in landscape dynamics may
have played a larger role in species dispersal within and
across Southeast Asia, and biogeographic scenarios involv-
ing Pleistocene sea-level changes may need to be revisited
due to a new paradigm showing continuous subaerial pres-
ence of Sundaland until 400 Ka (Husson et al., 2020; Sarr et
al., 2019). Although widespread studies on aquatic snakes
are limited, these geological findings are supported by phy-
logeographic studies on fish, suggesting that sea-level fluc-
tuations are not solely responsible for population structure
within the Indochinese region in some groups even over the
last 5 Ma (Sholihah et al., 2021), which is congruent with
our date estimates.

Some taxa in our study (e.g., Myron, Pseudoferania) re-
quire further sampling to better understand the dispersal

of Indochinese/Sundaic lineages into Wallacea and Aus-
tralasia. Although lineages in New Guinea and Australia
likely have dispersed across the Torres Strait land bridge
(between southern New Guinea and northern Australia) in
the Plio-Pleistocene (Jones & Torgersen, 1988; Torgersen et
al., 1985), our dates, even at the population level (1.7-4.9
Ma; Fig. 2B; Supplementary Fig. S3), predate these land
bridges that occurred between ~130-10 Ka (Reeves et al.,
2008; Sloss et al., 2018). Some population-level studies on
elapid snakes and cardiid bivalves have found genetic struc-
ture correlated with the Torres Strait land bridge but at
dates older than 130 Ka (Keyse et al., 2018; Wiister et al.,
2005). More thorough sampling is needed to reassess diver-
gence times and determine whether one or multiple disper-
sals occurred between New Guinea and Australia in Myron
and Pseudoferania (Supplementary Fig. S3) and determine if
these dispersals coincide with the Torres Strait land bridge,
as has been seen in frogs (Oliver et al., 2021). Our ancestral
range estimation shows a long distance, over-water, jump
dispersal from Indochina to Australasia at 11 Ma (Pseudo-
ferania and Myron; Fig. 2B), a pattern also seen in Hylara-
nine frogs (Chan et al., 2020). This would be possible only
through the intermediate region of Wallacea, likely through
land bridges or stepping-stone dispersal as more land and
ephemeral islands emerged in Wallacea (Lohman et al.,
2011). Lydekker’s Line (separating Wallacea and Australa-
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sia; Lydekker, 1896) and Wallace’s Line (separating South-
east Asia’s Greater Sunda Islands and Bali from Wallacea;
Mayr, 1944; Wallace, 1860) are well known faunal bound-
aries which are crossed by many of the younger lineages
in our tree (e.g., Hypsiscopus spp., Cerberus schneiderii). Be-
cause of the aquatic nature and salinity tolerance of many
Mud Snakes, it is not surprising to find that some taxa have
crossed Wallace’s Line. Although not tolerant to high salin-
ity, this pattern has also been seen in some pythonids and
elapids (Esquerré et al., 2020; Lee et al., 2016). Additional
sampling will help determine the origin of C. schneiderii in
Australia and on Timor. This origin is inconclusive given
our data, and no tissues for DNA analysis exist for pop-
ulations in eastern Indonesia (the Moluccas). The Timor
clade subtends branches from the Greater Sundas, and it is
likely that the Timor population was established by colo-
nization of intermediate landmasses in Wallacea, such as
the Lesser Sundas. Our results suggest that Australia is
likely not within the ancestral range of Cerberus schneiderii
populations (Fig. 2B), which, in our concatenated analysis,
includes C. dunsoni and C. microlepis (Supplementary Figs.
$2,S83). This pattern may indicate that Australia-to-Wal-
lacea dispersals are inhibited. The Indonesian Throughflow
are strong ocean currents that trace Wallace’s line, flowing
eastward over the Lesser Sunda Islands that wrap around
the islands of Timor, Damar, and Babar. Inhibited dispersal
due to ocean currents has been suggested for other reptiles
(Karin et al., 2020), and future studies will require more
samples from eastern Indonesia, New Guinea, and Australia
to test if these currents influence the movement of homa-
lopsids.

Museum Genomics of Homalopsidae

The inclusion of degraded samples from natural history
collections has been useful for determining the phyloge-
netic placement (Delling et al., 2023) and biogeography
(Garg et al., 2022) of poorly known or extinct lineages. In
this study, we phylogenetically place five genera and six
species for the first time, each of which are known from
only a few voucher specimens, and use these results to
formulate hypotheses regarding homalopsid evolution. Us-
ing multilocus data, Bernstein et al. (2021) estimated di-
vergence dates of Brachyorrhos of ~1.5 Ma (95% HPD: 180
Kyr-2.58 Ma). The grouping of Calamophis and a mono-
phyletic Brachyorrhos as a clade likely indicate recent di-
versification events. Brachyorrhos and Calamophis consist of
five and four species, respectively, with Brachyorrhos en-
demic to the Moluccan and Aru islands of eastern Indonesia
and Calamophis restricted to the Bird’s Head peninsula of
New Guinea. Most of the Molucca and Aru islands have only
been emergent for ~5 Ma (Hall, 2009). Our results indicate
that the Brachyorrhos crown group is 5.8 Ma (Supplemen-
tary Fig. S4). Within this timeframe, New Guinea’s Tam-
rau region, from which Calamophis ruuddelangi is uniquely
known, underwent a collision with an island arc in the
late Miocene-Pliocene (Webb et al., 2019). Although more
data will be needed to determine more accurate divergence
times, our results allow us to formulate a hypothesis of how
fangless homalopsids may have diversified. Future studies

can test scenarios of dispersal of ancestral lineages from
New Guinea into the Molucca and Aru islands to determine
if this led to the evolution of the Brachyorrhos clade.
Additionally, the placement of the South Asian homa-
lopsids Dieurostus, Mintonophis, and Ferania (by subclade
I, 18 Ma; Supplementary Fig. S4) supports the hypothesis
that homalopsids may have diversified in mainland South-
east Asia and then dispersed eastward and westward (Mur-
phy, 2007); the recovery of these three genera as a clade,
and the respective long branches in the tree, may indicate
long-term isolation due to the heterogeneous topography
of South Asia and considerable distances between the dis-
tributions of these lineages (i.e., Indus River of Pakistan
[Mintonophis]; Kerala, India [Dieurostus]; northwest India,
Bangladesh and Nepal [Ferania]). Interestingly, the rela-
tionships of the South Asian lineages differ from previous
hypotheses based on morphology (Murphy, 2007) in that
the two species from India are not each other’s closest rel-
atives, which may be evidence of dispersal into Pakistan
when the Ganges and Punjab Rivers (the latter of which is
now connected to the Indus River) drainage systems were
connected until tectonic shifts separated these aquatic sys-
tems (Clift & Blusztajn, 2005). Finally, multiple dispersals
to Borneo and Sumatra from Indochina/Sundaland are ev-
ident from the placement of Miralia from Sumatra (sister
to Myrrophis [Indochina]) and Homalophis from Borneo (sis-
ter to Phytoplopsis [Peninsular Malaysia]). Our results em-
phasize that the use of nuclear and mtDNA from museum
specimens can help to test previous, morphology-based hy-
potheses, as seen by our placement of M. alternans and F.
sieboldii which were hypothesized to be closely related to
species now recognized as distantly related (Gyi, 1970).
Despite our increased sampling, we could not reject or
support our hypothesis on the geographic origins of Homa-
lopsidae as the range estimation for the ancestral node is
unresolved in both the cyt-b and nuclear species trees (Sup-
plementary Fig. S5). This is likely due to the overlapping
ranges of fangless and rear-fanged homalopsids, with fang-
less homalopsids in eastern Indonesia and the rear-fanged
group in South Asia, all of Southeast Asia (including east-
ern Indonesia), New Guinea, and Australia. All recent esti-
mated dates of divergence between the fangless homalop-
sids of eastern Indonesia and the widespread rear-fanged
group are ~20-55 Ma (Alfaro et al., 2008; Bernstein et al.,
2021; Harrington & Reeder, 2017; Zaher et al., 2019). Based
on geological evidence (Hall, 2009), these age estimates,
including our own, for the crown group of Homalopsidae
are too old for there to be any possible dispersals from In-
dochina/Sundaland to the Moluccan islands (i.e., no sub-
aerial land/islands at that time), the latter of which had
not formed until the last few million years (Hall, 2009,
2013). However, an additional genus of fangless homalop-
sids, Karnsophis, only known from the holotype, is from
Sumatra. This individual represents the only specimen of
fangless homalopsid known from Sundaland, which bridges
the distributional gap of fangless homalopsids (Karnsophis,
Calamophis, Brachyorrhos) between Indochina/Sundaland
and the Moluccas and New Guinea. While molecular data
has yet to confirm the familial identity of Karnsophis as a
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homalopsid, the systematic affinities of this taxon stands
as a ‘missing puzzle piece’ that will be required to under-
stand how homalopsids diversified between the two distant
regions of Sundaland and Australasia. If Karnsophis is in
fact a homalopsid, we speculate that extinction events have
taken place along the branch spanning these taxa, and,
thus, our divergence dates may be overestimated. Bernstein
et al. (2021) hypothesized there may be unsampled extinc-
tions in the homalopsid tree as shown by a 35 Ma diversi-
fication gap in their species tree. We recover a ~13 Ma gap
of no diversification in the cyt-b tree (~ 5 Ma in the nuclear
species tree) between the fangless and rear-fanged homa-
lopsids, potentially indicating unsampled extinction events
(Ricklefs, 2007). Testing for extinction in future studies will
be an interesting investigation into homalopsid evolution-
ary history but is not possible in our study due to the ab-
sence of any known homalopsid fossils (Rabosky, 2010).
Since no fossils exist, we had to rely on one fossil and two
secondary calibrations for our divergence time estimations.
We acknowledge that caution must be taken when using
secondary calibrations, which could lead to erroneous date
estimation (Schenk, 2016). Thus, we rely on our rigorous
approach with high levels of molecular and taxonomic sam-
pling to pave the way for future work.

While our use of historical museum samples here was
limited to mitochondrial data, their inclusion has expanded
our biogeographic inferences to encompass South Asia.
This region contains some of the most poorly known and
undersampled species and is one of the biggest gaps to fill
in homalopsid evolutionary and biogeographic history. We
emphasize that, whenever possible, studies should utilize
any molecular data that can be leveraged from museum
samples. We encourage researchers to consider attempting
DNA extractions from different tissue types (e.g., bone)
and spiking libraries with non-enriched DNA to increase
the chances of bycatching mtDNA. Including museum sam-
ples can be a costly risk if minimal data is retrieved, but
the methods used here ultimately recovered useful molec-
ular loci, which also may be incorporated into future stud-
ies. With recent works advancing the uses and successes of
museomics (Bernstein & Ruane, 2022; Nunes et al., 2022;
Roycroft et al., 2022), it is important to continue to attempt
inclusion of taxa known only from intractable specimens to
better expand our knowledge of the evolutionary processes
that generate diversity.

Conclusions

In this study, we used dense sampling of all genera and
species of homalopsid snakes for which fresh tissues exist
and bolstered this sampling by including previously in-
tractable museum specimens in our phylogenomic frame-
work. We provide the most comprehensive phylogeny thus
far for homalopsids, raising the genus/species coverage
from previous studies (62%/62%) to 83%/74%. Including
degraded samples and use of biogeographic range estima-
tion models allow us to fill in several gaps in homalopsid
biogeography and evolution, and we articulate several hy-
potheses to be tested regarding poorly known species in fu-

ture phylogenetic analyses. Focal studies on the fangless
homalopsids will shed light on the species richness and
biogeography of homalopsids in eastern Indonesia. With
further molecular sampling from museum specimens and
denser specimen sampling schemes for population-level
studies, we may better understand geological processes
that have contributed to species dispersal throughout In-
dochina and Sundaland and dispersal modes into Wallacea
and Australasia.
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