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Abstract— We consider a dynamic sensor fusion problem
where a large number of remote sensors observe a common
Gauss-Markov process and the observations are transmitted
to a fusion center over a resource constrained communication
network. The design objective is to allocate an appropriate data
rate to each sensor in such a way that the total data traffic to the
fusion center is minimized, subject to a constraint on the fusion
center’s state estimation error covariance. We show that the
problem can be formulated as a difference-of-convex program,
to which we apply the convex-concave procedure (CCP) and the
alternating direction method of multiplier (ADMM). Through
a numerical study on a truss bridge sensing system, we observe
that our algorithm tends to allocate zero data rate to unneeded
sensors, implying that the proposed method is an effective
heuristic for sensor selection.

I. INTRODUCTION

The advancement of low-cost sensing technologies made
a large amount of data easily accessible in control systems.
While this is advantageous from the conventional control-
theoretic viewpoints, engineers now face the issue of exces-
sive data rate that often overwhelms systems’ communication
resources. Consequently, how to strategically discard super-
fluous sensor data is a relevant question to many applications.

In this paper, we consider a dynamic sensor fusion prob-
lem over a resource constrained communication network.
Our primary focus is to optimize the allocation of scarce
communication resources across a subset of different sensors.
Our problem is closely related to several sensor selection
problems that have been studied widely in the literature.
In [1], the authors approaches the sensor selection problem
to minimizes the determinant of the covariance matrix of
estimation error via a semidefinite programming (SDP) re-
laxation. In [2], energy constrained wireless network was
considered and solved using the re-weighted `1 relaxation.
The reference [3] applied stochastic dynamic programming
to gather adequate information for multi-stage problem for
control of a robotic assembly task. A structure sensor place-
ment problem was considered in [4], where an iterative
technique involving the Fisher information matrix (FIM)
was developed. The work [5] also considered determinant
of FIM and used genetic algorithm, which selects subset of
sensor positions maximizing the determinant of the matrix.
Structure sensor placement problems were also considered
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in [6] and [7]. In [8], mutual information (MI) was adopted
as the information gain metric and was applied to a target
location tracking problem using distributed sensors. The
reference [9] introduced an approximation algorithm which
estimates position of a target. The algorithm selects compet-
itive sensors to guarantee estimation error within factor 2 of
optimal choice under condition that the measurements are
merged.

The problem considered in this paper is different in that
we not only aim to select a subset of sensors, but also try to
allocate an appropriate data rate to each sensor to minimize
overall communication cost subject to a constraint on estima-
tor accuracy. We first invoke basic results on entropy-coded
data quantizers from the source coding literature to show
that the communication data rate (measured in bits) from
each sensor to the fusion center can be well-approximated
by the MI between certain random variables. Based on this
observation, we formulate an optimization problem (which is
referred to as the sensor resource allocation (SRA) problem
in the sequel) in which the sum of MI terms over all com-
munication links is minimized subject to a constraint on the
mean-square error (MSE) estimation performance achievable
by the fusion center. Then, the SRA problem is formulated
as a difference-of-convex program [10] to which we apply
the heuristics of convex-concave procedure. Although our
problem formulation is not combinatorial in nature, notably,
the proposed mechanism is sparsity-promoting – the algo-
rithm tends to identify unneeded sensors by allocating them
zero data rates, and the number of unneeded sensors tends to
increase as the constraint on the MSE performance is made
less stringent. Therefore, the proposed method can be used
as a new and effective heuristic for sensor selection.

This paper is organized as follows. In Section II, we
formulate the SRA problem after reviewing the method of
entropy-coded dithered-quantizers (ECDQ). In Section III,
the SRA problem is reformulated as a difference-of-convex
program. We propose practical solution approaches based
on the CCP and the ADMM in Section IV. Numerical
demonstrations on a truss bridge sensor placement problem
are presented in Section V. We conclude in Section VI.

Notation: Lower case boldface symbols such as x are used
to denote random variables. We use x1:t = (x1, ...,xt) to
denote the random process. We adopt standard notation for
information-theoretic functions [11]: the entropy of a discrete
random variable x is denoted by H(x), while the differential
entropy of a continuous random variable x is denoted by
h(x). The mutual information between x and y is denoted
by I(x;y), and the relative entropy is denoted by D(·‖·).
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We use Sn for the set of symmetric matrices of size n× n.
For X ∈ Sn, X ∈ Sn+ or X � 0 means that X is a positive
semidefinite matrix, and X ∈ Sn++ or X � 0 means that X
is a positive definite matrix.

II. PROBLEM FORMULATION

We consider a remote estimation problem over a sensor
network shown in Fig. 1. The random process to be estimated
is a discrete-time, n-dimensional Gauss-Markov process

xt+1 = Axt + Fwt, wt
i.i.d.∼ N (0, I), t = 1, 2, ..., T (1)

with x1 ∼ N (0, P1|1), where matrices A ∈ Rn×n and
P1|1 ∈ Sn+ are given. There are M distributed sensors, each
making a scalar-valued noiseless measurement yi,t = Cixt,
i = 1, 2, ...,M . For convenience, we write yt = Cxt where

yt =

 y1,t

...
yM,t

 , C =

 C1

...
CM

 ∈ RM×n.

Throughout the paper, the pair (A,C) is assumed to be
observable.

A. Data fusion over resource-constrained network

We consider the situation in which the output yi,t of
remote sensors must be transmitted to the data fusion center
over a resource-limited communication network. The net-
work model we introduce in this section assumes a CAN-
bus-like communication system. All the nodes in the network
operate synchronously in discrete-time. At every time step t,
each sensor i = 1, 2, ...,M encodes yi,t into a packet zi,t.
For each i and t, we assume that zi,t is a uniquely decodable
variable-length binary codeword with length `i,t.1 Packets
zi,t from sensors are received by the fusion center reliably
(no packet losses, no bit flips) without delay. They are de-
coded by the fusion center where the least mean-square error
(MSE) estimate x̂t|t of the source process (1) is computed.
Based on x̂t|t, the fusion center also computes a step-ahead
prediction x̂t+1|t := Ax̂t|t. Once x̂t+1|t is computed, we
further assume that the fusion center broadcasts x̂t+1|t back
to all the sensors (Fig. 1), which allows each sensor to apply
the predictive quantizer at time step t+ 1.2 We assume that
the feedback channel delivers the Rn-valued message x̂t+1|t
reliably.3

1In reality, a packet frame in the CAN protocol contains a header and
a tailer in addition to the data field. For simplicity, we assume `i,t only
represents the lengths of the data field, ignoring the header and footer bits.

2To improve the coding efficiency, it is known to be more advantageous
to quantize and encode the innovation yi,t+1−Cx̂t+1|t than yi,t+1 itself.
See, e.g., [12] [13].

3This assumption holds if the feedback message is given a sufficiently
large codeword length so that the effect of quantization is negligible.
Allowing feedback messages to have large blocklengths is a reasonable
design since the backward channel delivers only one message per time step,
whereas the forward channel delivers at most M messages per time step.

Fig. 1. Distributed sensors and data fusion center.

B. Entropy-coded dithered quantizer (ECDQ)

At each sensor node i, the continuous random variable
yi,t is first quantized into a discrete random variable, which
is then encoded as a binary codeword zi,t. We assume
that this process is implemented by the so-called entropy-
coded dithered quantizer (ECDQ) mechanism [14] shown
in Fig. 2(a). The ECDQ is easy to implement in practice,
its mathematical analysis is relatively simple, and it attains
a near-optimal performance (that is, the expected codeword
length is close to the fundamental lower bound). As shown
in Fig. 2(a), in time step t, the innovation signal θi,t =
yi,t−Cix̂t|t−1 is first computed. It is then quantized by the
dithered uniform quantizer with quantization step size ∆i,t:

Q∆i,t(θi,t + ξi,t) = k∆i,t

if (k − 1
2 )∆i,t ≤ θi,t + ξi,t < (k + 1

2 )∆i,t.

Here, ξi,t
i.i.d.∼ unif[−∆i,t

2 ,
∆i,t

2 ] is an artificial random vari-
able called dither. The dither signal may not be necessary for
practical implementations, but it simplifies the mathematical
analysis of the communication system. The output qi,t is
then encoded into a binary codeword zi,t ∈ {0, 1}`i,t using
an entropy-based data-compression scheme (e.g., Huffman
code, Shannon-Fano code). Notice that the codeword length
`i,t is a random variable. The codeword zi,t is decoded
losslessly as qi,t = D(zi,t) by the data fusion center. Then
the dither signal is subtracted to compute ηi,t = qi,t − ξi,t,
which is used for the belief update in the Kalman filter as
shown in Fig. 2(a). Notice that the end-to-end effect of the
ECDQ with input θi,t and output ηi,t is

ηi,t = Q∆i,t
(θi,t + ξi,t)− ξi,t. (2)

It can be shown [15] that (2) is mathematically equivalent to

ηi,t = θi,t + vi,t, vi,t
i.i.d.∼ unif[−∆i,t

2 ,
∆i,t

2 ] (3)

where the quantization noise vi,t is independent of θi,1:t.
The equivalence between (2) and (3) means that the channel
models in Fig. 2(a) and Fig. 2(b) are equivalent, which
simplifies the performance analysis.

C. Approximation of communication cost

We call the expected codeword length Ri :=
1
T

∑T
t=1 E(`i,t) the rate allocated to sensor i. The

next lemma shows a relationship between the rate Ri and
the mutual information I(θi,t;ηi,t):
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Fig. 2. (a) Channel model. (b) Equivalent channel model. (c) Simplified channel model.

Lemma 1: For every i and t, we have

I(θi,t;ηi,t) ≤ E(`i,t) < I(θi,t;ηi,t) + 1

where the mutual information is evaluated under the joint
distribution defined by the diagram in Fig. 2(b).

Proof: Due to the page limitation, the proof is deferred
to the extended version4 of this paper.

Since θi,t and ηi,t in Fig. 2(b) are not Gaussian random
variables, it is difficult to evaluate I(θi,t;ηi,t) directly. A
common approach (e.g., [16]) is to evaluate I(θG

i,t;η
G
i,t)

instead, where θG
i,t and ηG

i,t are Gaussian random variables
defined by the diagram in Fig. 2(c). In Fig. 2(c), the
quantization noise vi,t

i.i.d.∼ unif[−∆i,t

2 ,
∆i,t

2 ] is replaced by
a Gaussian random variable vG

i,t
i.i.d.∼ N (0, Vi,t), where we

set Vi,t =
∆2
i,t

12 so that vi,t and vG
i,t share the same co-

variance. Consequently, {xG
t|t,x

G
t|t−1,θ

G
t ,η

G
t }t=1,2,...,T are

jointly Gaussian random variables with the same mean and
covariance as {xt|t,xt|t−1,θt,ηt}t=1,2,...,T . The following
lemma provides an estimate of I(θi,t;ηi,t) in terms of
I(θG

i,t;η
G
i,t):

Lemma 2:

I(θG
i,t;η

G
i,t) ≤ I(θi,t;ηi,t) < I(θG

i,t;η
G
i,t) +

1

2
log

2πe

12
.

Proof: Please refer to the extended version.

From Lemma 1 and Lemma 2, we obtain

I(θG
i,t;η

G
i,t) ≤ E(`i,t) < I(θG

i,t;η
G
i,t) + 1 +

1

2
log

2πe

12︸ ︷︷ ︸
≈1.254[bits]

. (4)

This inequality implies that evaluating I(θG
i,t;η

G
i,t) under the

diagram Fig. 2(c) gives an estimate of the rate of the ECDQ

4The extended version is available at http://sites.utexas.edu/
tanaka/files/2020/09/JT_acc2021.pdf

under the architecture of Fig. 2(a) within the accuracy of
1.254 bits per time step. Notice that I(θG

i,t;η
G
i,t) depends

on ∆i,t through the covariance of vG
i,t ∼ N (0,∆2

i,t/12).
Therefore, the rate Ri allocated to sensor i can be tuned by
adjusting the quantizer step size ∆i,t of the ECDQ.

D. Least MSE estimation
In Fig. 2(c), we assume that the Kalman filter block

computes the least MSE estimates x̂G
t|t−1 = E(xt|ηG

1:t−1)

and x̂G
t|t = E(xt|ηG

1:t) recursively by x̂G
t|t−1 = Ax̂G

t−1|t−1

and x̂G
t|t = x̂G

t|t−1 +Ltη
G
t with the initial condition x̂1|1 = 0.

Here,
Lt = Pt|t−1C

>(CPt|t−1C
> + V )−1 (5)

is the Kalman gain computed from the Riccati recursion

P−1
t|t = P−1

t|t−1 + C>V −1C (6a)

Pt+1|t = APt|tA
> + FF>. (6b)

Matrices Pt|t ∈ Sn++ and Pt+1|t ∈ Sn++ represent the
corresponding estimation error covariances

Pt|t = Cov(xt − x̂G
t|t), Pt+1|t = Cov(xt+1 − x̂G

t+1|t).

We assume that the same Kalman gains are used in Fig. 2(a)
and (b) as well. Since random variables in Fig. 2(a) and (b)
share the same second order statistics with random variables
in Fig. 2(c), the MSE performance of the Kalman filter in
Fig. 2(a) and (b) is identical to the MSE performance in
Fig. 2(c). That is, we have

Pt|t = Cov(xt − x̂t|t), Pt+1|t = Cov(xt+1 − x̂t+1|t).

for Fig. 2(a) and (b). The next lemma provides an alternative
expression of I(θG

i,t;η
G
i,t) defined above.

Lemma 3: If Lt in Fig. 2(c) are chosen to be the Kalman
gains defined by (5), then I(θG

i,t;η
G
i,t) = I(xt;η

G
i,t|ηG

1:t−1).
Proof: Please refer to the extended version.
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E. Sensor Resource Allocation (SRA) Problem

We are now ready to state the main problem studied in
this paper. For each i = 1, 2, ...,M , let αi > 0 be the cost
of transmitting a binary value from the sensor i to the data
fusion center. We seek the best allocation of the rate Ri, i =
1, 2, ...,M in such a way that the total communication cost∑M
i=1 αiRi is minimized subject to the constraint on the

MSE estimation performance of the Kalman filter. Since
(4) and Lemma 3 imply that Ri can be approximated by
I(xt;η

G
i,t|ηG

1:t−1) evaluated under Fig. 2(c), in what follows,
our analysis focuses on the system shown in Fig. 2(c). The
SRA problem is formulated as:

min
1

T

T∑
t=1

M∑
i=1

αiI(xt;η
G
i,t|ηG

1:t−1) (7a)

s.t.
1

T

T∑
t=1

E‖xt − x̂t|t‖2 ≤ β. (7b)

The decision variable is the noise covariance matrix Vt =
diag(V1,t, ..., VM,t), t = 1, 2, ..., T . If {V ∗t }Tt=1 is the optimal
solution to (7) and f∗ is the corresponding optimal value, the
argument above implies that one can construct the ECDQ-
based communication system in Fig. 2(a) attaining the total
network cost less than f∗ + 1.254 ×

∑M
i=1 αi by selecting

the quantization step sizes ∆i,t by
∆2
i,t

12 = V ∗i,t. We are also
interested in the infinite-horizon problem:

min lim sup
T→∞

1

T

T∑
t=1

M∑
i=1

αiI(xt;η
G
i,t|ηG

1:t−1) (8a)

s.t. lim sup
T→∞

1

T

T∑
t=1

E‖xt − x̂t|t‖2 ≤ β. (8b)

III. CONVERSION TO CONVEX-CONCAVE PROGRAM

In this section, we reformulate (7) and (8) as more explicit
optimization problems.

A. Reformulation of the SRA problem

As before, let Pt|t−1 be the estimation error covariance
of xt given ηG

1:t−1. Denote by P
(i)
t|t−1 the estimation error

covariance of xt given ηG
1:t−1 and ηG

i,t. They are related by

P
(i)
t|t−1 = (P−1

t|t−1 + C>i V
−1
i,t Ci)

−1.

1) Mutual information: The mutual information terms in
(7a) can be written as

I(xt;η
G
i,t|ηG

1:t−1) = h(xt|ηG
1:t−1)− h(xt|ηG

1:t−1,η
G
i,t)

= 1
2 log detPt|t−1 − 1

2 log detP
(i)
t|t−1

= 1
2 log detPt|t−1 + 1

2 log det(P−1
t|t−1 + C>i V

−1
i,t Ci)

= 1
2 log det(I + P

1
2

t|t−1C
>
i V
−1
i,t CiP

1
2

t|t−1)

= 1
2 log(1 + V

− 1
2

i,t CiPt|t−1C
>
i V
− 1

2
i,t )

= 1
2 log V −1

i,t + 1
2 log(Vi,t + CiPt|t−1C

>
i ).

Introducing changes of variables Qt|t−1 := P−1
t|t−1, Qt|t :=

P−1
t|t and δi,t := V −1

i,t ,

I(xt;η
G
i,t|ηG

1:t−1) = 1
2 log δi,t − 1

2 log(δ−1
i,t +CiQ

−1
t|t−1

C>i )−1

=

{
minγi,t

1
2 log δi,t − 1

2 log γi,t

s.t. γi,t ≤ (δ−1
i,t + CiQ

−1
t|t−1Ci>)−1

=


minγi,t

1
2 log δi,t − 1

2 log γi,t

s.t.

[
δi,t − γi,t δi,tCi

C>i δi,t Qt|t−1 + C>i δi,tCi

]
� 0.

(9)

The last equality is obtained by applying the matrix inversion
lemma and the Schur complement formula to the constraint.

2) MSE: The MSE terms in (7b) can be written as

E‖xt − x̂G
t|t‖

2 = Tr(Pt|t) = Tr(Q−1
t|t )

=

{
minSt Tr(St)
s.t. Q−1

t|t � St
=


minSt Tr(St)

s.t.

[
St I

I Qt|t

]
� 0.

(10)

3) Reformulation of (7): From (9), (10) and (6), the SRA
problem (7) can be written as

min
1

T

T∑
t=1

M∑
i=1

αi
2

(log δi,t − log γi,t) (11a)

s.t.
[
δi,t − γi,t δi,tCi
C>i δi,t Qt|t−1 + C>i δi,tCi

]
� 0, (11b)[

St I
I Qt|t

]
� 0,

1

T

∑T

t=1
Tr(St) ≤ β, (11c)

Qt|t = Qt|t−1 +
∑M

i=1
δi,tC

>
i Ci, (11d)

Q−1
t|t−1 = AQ−1

t−1|t−1A
> + FF>. (11e)

with decision variables (δi,t, γi,t) for i = 1, ...,M and
t = 1, ..., T , St for t = 1, ..., T and (Qt|t, Qt|t−1) for
t = 2, ..., T . The constraints (11b) and (11c) are imposed
for t = 1, 2, ..., T while the constraints (11d) and (11e)
are imposed for t = 2, ..., T with the boundary constraint
Q1|1 = P−1

1|1 . Notice that (11b)-(11d) are convex constraints
on the decision variables, while the last constraint (11e) is
not. In the next proposition, we claim that (11e) can be
replaced by a convex constraint without changing the nature
of the problem. More precisely, introduce a new problem:

min
1

T

T∑
t=1

M∑
i=1

αi
2

(log δi,t − log γi,t) (12a)

s.t.
[
δi,t − γi,t δi,tCi
C>i δi,t Qt|t−1 + C>i δi,tCi

]
� 0, (12b)[

St I
I Qt|t

]
� 0,

1

T

∑T

t=1
Tr(St) ≤ β, (12c)

Qt|t = Qt|t−1 +
∑M

i=1
δi,tC

>
i Ci, (12d)

Q−1
t|t−1 � AQ

−1
t−1|t−1A

> + FF> (12e)

which is different from (11) only in that the equality con-
straint (11e) is replaced by the inequality constraint (12e).
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Proposition 1: Let J∗1 and J∗2 be the optimal values
of (11) and (12), respectively. Then, J∗1 = J∗2 . More-
over, if (δ∗i,t, γ

∗
i,t, S

∗
t , Q

∗
t|t, Q

∗
t|t−1) is an optimal solution

to (12), then an optimal solution to (11) is given by
(δ∗i,t, γ

∗
i,t, S

∗
t , Q

∗∗
t|t, Q

∗∗
t|t−1) where Q∗∗t|t and Q∗∗t|t−1 are recur-

sively defined by

Q∗∗−1
t|t−1 = AQ∗∗−1

t−1|t−1A
> + FF> (13a)

Q∗∗t|t = Q∗∗t|t−1 +
∑M

i=1
δ∗i,tC

>
i Ci (13b)

with Q∗∗1|1 = Q∗1|1.
Proof: Please refer to the extended version.

It is elementary to show that (12e) can be written as an
equivalent linear matrix inequality (LMI) condition. Conse-
quently, the SRA problem (7) can be equivalently written as

min
1

T

T∑
t=1

M∑
i=1

αi
2

(log δi,t − log γi,t) (14a)

s.t.
[
δi,t − γi,t δi,tCi
C>i δi,t Qt|t−1 + C>i δi,tCi

]
� 0, (14b)[

St I
I Qt|t

]
� 0,

1

T

∑T

t=1
Tr(St) ≤ β, (14c)

Qt|t = Qt|t−1 +
∑M

i=1
δi,tC

>
i Ci. (14d) Qt|t−1 Qt|t−1A Qt|t−1F

A>Qt|t−1 Qt−1|t−1 0
F>Qt|t−1 0 I

 � 0. (14e)

Note that (14) is the problem of minimizing the difference of
convex functions subject to convex constraints (14b)-(14e).

Before we proceed, we remark that the infinite-horizon,
time-invariant counterpart (8) of the SRA problem can also
be formulated as:

min
M∑
i=1

αi
2

(log δi − log γi) (15a)

s.t.
[
δi − γi δiCi
C>i δi Q̂+ C>i δiCi

]
� 0, ∀i = 1, ...,M, (15b)

Q = Q̂+
∑M

i=1
δiC
>
i Ci, Tr(S) ≤ β, (15c)[

S I
I Q

]
� 0,

 Q̂ Q̂A Q̂F

A>Q̂ Q 0

F>Q̂ 0 I

 � 0. (15d)

B. Nonconvexity of the SRA problem

Currently, it is not known to the authors if the SRA prob-
lem can be formulated as a convex optimization problem.
Since the formulation (15) is nonconvex in its variables, it
may admit multiple local minima. To see that multiple and
distinct local minima can indeed occur, notice that (15) can
be stated as a linear function minimization problem over the
feasible rate region Rβ :

min(R1,...,RM )∈Rβ

M∑
i=1

αiRi (16)

Fig. 3. The minimum MSE error β achievable under various rate
assignments (R1, R2). Each sub-level set corresponds to the rate region
Rβ . Clearly, they are nonconvex sets in general.

where Rβ ∈ RM is the set of rate allocation under which
(8b) (i.e., the MSE less than or equal to β) is achievable:

Rβ = {(R1, ..., RM ) ∈ RM : There exists Q, Q̂, S and

{δi, γi}Mi=1 such that δi = 22Riγi for i = 1, ...,M

and (15b)-(15d) hold.}

For each β, the rate region Rβ can be characterized by an
SDP feasibility problem. Fig. 3 shows feasibility regions Rβ
for various β when system parameters are set to

A =

[
3 −1
1 −1

]
, C =

[
1 0
0 1

]
and F =

[
−0.5 0.5
0.5 0.5

]
.

Fig. 3 shows an instance in which Rβ is a nonconvex set.

IV. ALGORITHMS

In this section, we propose two heuristic iterative algo-
rithms to solve the SRA problem. Although we will focus
on the infinite-horizon time-invariant case (15), the proposed
approach is also applicable to the finite-horizon time-varying
case (14). Despite the nonconvex nature of (15), we observe
that stationary points obtained by the proposed algorithms
often provide satisfactory solutions in practice.

A. Convex-concave procedure

Since log δi is the only source of nonconvexity in (15),
the class of convex-concave procedures [10] is applicable.
Here, we consider the linear approximation of log δi around
a nominal point δ̂i, which provides an upper bound, i.e.,
log δi ≤ 1

δ̂i
(δi− δ̂i)+log δ̂i and δ̂i is the value of δi obtained

from the previous iteration. Consequently, for any δ̂i > 0,
the value of the following convex optimization problem with
decision variables S,Q, Q̂ and {δi, γi}Mi=1 provides an upper
bound to the value of (15):

min
M∑
i=1

αi
2

(δi/δ̂i − 1 + log δ̂i − log γi) (17a)

s.t. (15b)-(15d). (17b)
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Proposed approach is summarized in Algorithm 1. Conver-
gence of this class of algorithms is known [10].

Algorithm 1: Convex-Concave Procedure (CCP)
Initialize f (0) ← +∞; δ̂i ← 1 for i = 1, 2, ...,M ;
for k = 1, 2, ... do

Solve (17);
(δk, γk, Sk, Qk, Q̂k)← Optimal solution to (17);
fk ← Optimal value of (17);
δ̂i ← δk for i = 1, 2, ...,M ;
Break if fk−1 − fk is sufficiently small;

B. Alternating direction method of multipliers (ADMM)

In this subsection, we apply the ADMM [17] to (15).
Notice that (15) can be expressed as the ADMM form as

min f(j) + g(z)

s.t. δ = δ′, γ = γ′,

where j = {δ, γ}, z = {δ′, γ′, Q, Q̂, S} and g is the
indicator function for the convex set C characterized by
(15b)-(15d). Setting z′ = {δ′, γ′} and u = {u1, u2}, the
augmented Lagrangian is

Lρ(j, z, u) = f(j) + g(z) + (ρ/2)‖j − z′k + uk‖22
where ρ is a penalty parameter and u is the set of Lagrangian
multipliers. The ADMM iterations for this problem are

jk+1 := arg min
j
{f(j) + (ρ/2)‖j − z′k + uk‖22},

zk+1 := Πc(j
k+1 + uk),

uk+1 := uk + jk+1 − z′k+1.

Due to the nonconvexity of f , the j-update step involves
a nonconvex optimization. Therefore, in the j-update step,
we replaced f(j) with its convex upper bound f̂(δ̂; j) by
considering a linear approximation of the log δi terms around
the current iterate δ̂ = δk in a similar fashion to (17).
The projection operator ΠC is implemented by solving a
Frobenius norm minimization problem subject to the convex
constraints (15b)-(15d). Our proposed ADMM approach is
presented in Algorithm 2.

Algorithm 2: The Alternating Direction Method of
Multiplier (ADMM)

Initialize f (0) ← +∞;
Set initial value of j, z, and u;
for k = 1, 2, ... do

jk+1 := argmin (f̂(δ̂; j) + (ρ/2)‖j − z′k + uk‖22);
zk+1 := Πc(jk+1 + uk) ;
uk+1 := uk + jk+1 − zk+1;
fk ← Current value of the objective function;
δ̂ ← δk+1;
Break if fk − fk+1 is sufficiently small;

Fig. 4. CCP and ADMM data rate (β = 0.1). (a) Sensor data rate allocation
under CCP, (b) sensor data rate allocation under ADMM, (c) total data rate
under CCP, and (d) total data rate under ADMM.

V. NUMERICAL STUDIES

In this section, we apply Algorithms 1 and 2 to a sensor
selection problem in an undamped 2D truss bridge system.
The system matrix of an undamped truss bridge is calculated
by via (cf. [18]) A = M−1K where M is mass matrix
and K is stiffness matrix. A method of generating the mass
matrix [19] [20] and the stiffness matrix [21] is introduced
in the extended version of this paper. In this experiment,
we developed a 14-node truss bridge model. Displacements
and velocities of each node in both x- and y-coordinates are
chosen as state variables. This results in a 56-dimensional
state space, and we assume there are 56 sensors measuring
individual state variables. In this study, we set αi = 1 for
i = 1, ..., 56. Results for the CCP and ADMM algorithms
are shown in Fig. 4. In each test, the same data rate is
initially allocated to each sensors, which is updated as the
iteration proceeds as color-coded in Fig. 4 (a) and (b). As
iteration proceeds, individual sensor’s data rate changes. The
total data rate is shown in Fig. 4 (c) and (d), respectively. We
observe the both algorithms converge to similar solutions for
individual sensor’s data rate and total data rate.

Fig. 5 presents allocated data rate to each sensor after a
sufficient number of CCP iterations with β = 0.1, 1 and 10.
We observe that the same subset of sensors is selected under
β = 0.1 and 1, but the overall data rate is less under β = 1.
As β is increased to 10, we observe more sensors are given
zero data rate. However, we also observe that the selected set
of sensors is not a subset of sensors selected under β = 1.

Fig. 6 shows the number of sensors allocated with nonzero
data rate by CCP tested over a wide range of the β values.
We observe a decrease tendency, although the relationship
is not necessarily monotone. This plot exhibits a sparsity-
promoting property of the proposed method, which is a
reminiscent of the widely used `1 heuristics.
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Fig. 5. Data rate allocation obtained by CCP with (a) β = 0.1 (b) β = 1
(c) β = 10.

Fig. 6. Number of sensors allocated non-zero data rate by CCP tested over
the range 1 ≤ β ≤ 280.

VI. CONCLUSION

In this paper, we considered a dynamic sensor fusion prob-
lem over a resource constrained communication network.
We formulated the optimal data rate assignment problem for
remote sensors as the sensor resource allocation (SRA) prob-
lem, which was shown to be reformulated as a difference-
of-convex program. The convex-concave procedure (CCP)
and the alternating direction method of multipliers (ADMM)
were applied. The algorithms were tested on a truss bridge
sensor selection problem. The sparsity-promoting property of
the proposed method was numerically confirmed, indicating
the effectiveness of the proposed approach as a sensor
selection heuristic. Future work includes the analysis of
the nonconvexity of (15) (e.g., whether local minima can
be severely suboptimal), scalable implementations of CCP
and ADMM, and formal analyses of the sparsity-promoting

property of the proposed method. Extension of the proposed
method to finite-horizon, time-varying cases and compari-
son with existing approaches may be considered as future
research.
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