
The Rate of Interactive Codes Is Bounded Away from 1

Klim Efremenko
Ben-Gurion University

Israel

Gillat Kol
Princeton University

USA

Dmitry Paramonov
Princeton University

USA

Raghuvansh R. Saxena
Microsoft Research

USA

ABSTRACT

Kol and Raz [STOC 2013] showed how to simulate any alternating

two-party communication protocol designed to work over the noise-

less channel, by a protocol that works over a stochastic channel that

corrupts each sent symbol with probability 𝜖 > 0 independently,

with only a 1 + O
(√︁
H(𝜖)

)
blowup to the communication. In partic-

ular, this implies that the maximum rate of such interactive codes

approaches 1 as 𝜖 goes to 0, as is also the case for the maximum rate

of classical error correcting codes. Over the past decade, followup

works have strengthened and generalized this result to other noisy

channels, stressing on how fast the rate approaches 1 as 𝜖 goes

to 0, but retaining the assumption that the noiseless protocol is

alternating.

In this paper we consider the general case, where the noiseless

protocols can have arbitrary orders of speaking. In contrast to Kol-

Raz and to the followup results in this model, we show that the

maximum rate of interactive codes that encode general protocols

is upper bounded by a universal constant strictly smaller than 1.

To put it differently, we show that there is an inherent blowup in

communication when protocols with arbitrary orders of speaking

are faced with any constant fraction of errors 𝜖 > 0. We mention

that our result assumes a large alphabet set and resolves the (non-

binary variant) of a conjecture by Haeupler [FOCS 2014].
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1 INTRODUCTION

One of the gems in Shannon’s famous 1948 paper introducing

information theory [17] is the channel capacity formula, that gives

the maximum rate possible for an error correcting code over any

discrete memoryless channel. Recall that an error correcting code

with rate 𝑟 allows one party to reliably communicate a message

consisting of 𝑛 symbols to a remote second party, with a negligible

probability of error, by sending only 𝑛 · (1/𝑟 + 𝑜 (1)) symbols over

the channel. Let CΓ,𝜖 be the symmetric channel with alphabet set

Γ and noise rate 𝜖 .1 The channel capacity formula shows that the

maximum rate overCΓ,𝜖 approaches 1 as the noise rate 𝜖 approaches

0. For instance, the maximum rate over C{0,1},𝜖 is 1 − H(𝜖), where
H is the binary entropy function.

Schulman’s groundbreaking work [15] studied error correcting

codes in the łtwo-wayž setting, where there are noisy channels

between the two communicating parties in both directions. Such

error correcting codes are called interactive codes and they allow the

encoding of interactive protocols, which may consist of many back-

and-forth messages, in a noise-resilient way. Following Schulman’s

question regarding the maximum rate of interactive codes [15],

Kol and Raz [12] defined the notion of interactive channel capacity,

which is the analogue of channel capacity in the interactive setting.

For every 𝜖 > 0, they designed an interactive code with rate 𝑟𝜖 =

1 − O(
√︁
H(𝜖)) over the two-way binary symmetric channel, under

the assumption that the protocol being encoded is alternating2.

It is not hard to see that the interactive coding scheme of Kol

and Raz [12] also works for the CΓ,𝜖 channel, for every Γ. Their

result, stated for such channels, is that for any 𝜖 > 0, any alphabet

set Γ, and any alternating protocol Π with alphabet Γ, there exists

a protocol Π′ that simulates Π over CΓ,𝜖 with negligible error, and

has length |Π | · (1/𝑟𝜖 + 𝑜 (1)), where |Π | is the length of Π. Observe

that, as in the classical setting, the maximum rate approaches 1 as 𝜖

approaches 0. Following [12], the dependence of the maximum rate

on 𝜖 , under the same alternating turns assumption, was further im-

proved by [9] to 1−O(
√
𝜖), and was also studied for other two-way

channels, including the adversarial channel [4, 9], the (adversarial)

feedback channel [7, 14], the adversarial erasure channel [7], and

the adversarial insertion-deletion channel [10].

1That is, the input and output alphabets of the channel CΓ,𝜖 are Γ, |Γ | ≥ 2. On a sent
symbol 𝑧 ∈ Γ, the channel outputs 𝑧 with probability 1 − 𝜖 , and with probability 𝜖 , it
outputs a random symbol in Γ.
2That is, Alice sends a message to Bob in all odd rounds, and vice versa.
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1.1 Our Result

The main result of this paper is Theorem 1.1, showing that in the

general case, where the order of speaking in the noiseless commu-

nication protocols Π may be arbitrary, the maximum achievable

rate is bounded away from 1.

Theorem 1.1. For every 𝜖 > 0, there exists a set Γ and a determin-

istic protocol Π with alphabet Γ, such that any randomized protocol

Π
′ that simulates Π over CΓ,𝜖 with probability 0.99 has length at

least |Π |/(1 − Ω(1)).

Observe that since Theorem 1.1 holds for the CΓ,𝜖 channel that

has stochastic noise and for public-coin protocols Π′, it also holds

for adversarial noise and private-coin protocols. Furthermore, our

proof of Theorem 1.1 actually proves a much stronger claim (see

Section 2). For example, it implies that the maximum rate of an

interactive code over the feedback channel that randomly erases a

single communicated symbol (i.e., one of the sent symbols, selected

uniformly at random, is received as ‘⊥’ and the sender is notified) is
only 1−Ω(1) (cf. the results of [4, 7, 9, 10, 12, 14] for such channels

with maximum rate approaching 1).

We mention that our result settles the (non-binary version) of a

conjecture by Haeupler (Conjecture 1.1 in [9]), that also appears

in Haeupler and Gelles (Question 3 in Section 7 of [7]) and in

Gelles’s excellent survey (Question 2 in Section 5 of [6]). While

lower bounds on the maximum rate of various two-way channels

(i.e., upper bounds on the overhead of interactive codes) are known,

prior to our work, the only non-trivial upper bound was due to [12]

and is extremely involved (see Section 1.2).

We also mention that Theorem 1.1 uses a large alphabet set

(specifically, we need |Γ | = poly( |Π |)), as for such alphabets the

single erased symbol cannot be guessed by the receiver with high

probability (in the binary |Γ | = 2 case, the erased symbol can be

guessed with probability 1
2 ). Nevertheless, we believe that Theo-

rem 1.1 still holds for the binary setting (fixing Γ = {0, 1}), and
proving it is an outstanding question we leave open. Other interest-

ing directions for future work include finding the maximum rate of

interactive codes over CΓ,𝜖 , say when 𝜖 approaches 0, and charac-

terizing the łhardž communication orders resulting in maximum

rates bounded away from 1.

Finally, we wish to point out a corollary of Theorem 1.1: Many

works involving interactive protocols (in the noisy or noiseless

settings) assume an alternating order of speaking, as it is often

simpler to deal with and only incurs at most a factor 2 blowup to

the communication. Theorem 1.1 shows that this transformation

of general protocols to alternating ones incurs at least a factor

𝑐 blowup, for some 𝑐 > 1: Assume that the blowup is only by

a 1 + 𝑜 (1) factor. By converting the hard-to-simulate protocol Π

from Theorem 1.1 to a protocol with alternating turns and then

applying the [12] scheme, we obtain a noise-resilient protocol Π′

that simulates Π with only 1 + 𝑜 (1) blowup to the communication,

in contradiction to Theorem 1.1.

1.1.1 Techniques. The proof of Theorem 1.1 is quite involved and

a detailed overview can be found in Section 2. In this section we

give some of the highlights of our proof.

Theorem 1.1 is proved by combining Theorem 4.1 and Theo-

rem 4.2. As mentioned above, our result holds even over the very

mildly noisy channel that has feedback and only randomly erases

a single communicated symbol. Theorem 4.1 considers a pointer

chasing protocol with order of speaking 𝜎3 and shows that it can

only be simulated over this mildly noisy channel by a protocol

with order of speaking 𝜎′, for which 𝜎 is a strong subsequence of

𝜎′. By a strong subsequence, we mean that for most coordinates

𝑖′ of 𝜎′, 𝜎 remains a subsequence of 𝜎′ even after coordinate 𝑖′ is
removed. Observe that given Theorem 4.1, to prove Theorem 1.1,

all we have to do is exhibit a 𝜎 such that any 𝜎′ for which 𝜎 is a

strong subsequence of 𝜎′ is a constant factor longer than 𝜎 . This is

done in Theorem 4.2.

At a high level, Theorem 4.1 is proved by proving a general-

ized pointer chasing lower bound: while prior pointer chasing lower

bounds assume that players alternate (e.g., [13]), our proof holds

for any order of speaking. To analyze cases where one of the par-

ties speaks in several consecutive rounds, we use a lower bound

for a generalization of the well-known Index problem, where the

communication is not one-way, but the party holding the index

speaks substantially less than what it takes to convey the index.

To see why this lower bound is useful, assume for example that

in the noiseless protocol Alice speaks three times and then Bob

speaks once, i.e., 𝜎 = 𝐴𝐴𝐴𝐵. We think of Alice’s message in those

three rounds as an index 𝑖 , and of Bob’s input as a vector 𝑣 . When

Bob speaks in the fourth round he gives 𝑣𝑖 to Alice. Now consider

a simulation protocol with order of speaking 𝜎′ = 𝐵𝐴𝐵𝐴𝐵𝐴. Can

Bob give 𝑣𝑖 to Alice? We show that he cannot. The reason is that

Alice only speaks in two instead of three rounds before Bob’s final

round, thus she can only give partial information about 𝑖 , which is

not enough for Bob to compute 𝑣𝑖 .

Theorem 4.2 is a purely combinatorial claim about strong subse-

quences, and is shown using the probabilistic method. We provide

a detailed overview in Section 2.2, but for the high level idea, con-

sider, for any 𝑇 > 0 the pair of strings (𝜎, 𝜎′) =
(
(𝐴𝐵)𝑇 , (𝐴𝐵)𝑇+1

)
,

and observe that 𝜎 is a strong subsequence of 𝜎′ and 𝜎′ is almost

the same length as 𝜎 . Roughly speaking, our proof shows that the

only reason 𝜎 is a subsequence of 𝜎′ for such a short 𝜎′, is that 𝜎 is

highly łpredictablež, in the sense that one can łguessž the symbols

after coordinate 𝑖 based on the previous symbols. We formalize this

notion and show that a uniformly random 𝜎 is not predictable, and

use this to show that for most 𝜎 , no short 𝜎′ will be such that 𝜎 is

a strong subsequence of 𝜎′.

1.2 Additional Related Work

We next survey the most relevant work on the maximum rates of

interactive codes over different channels.

The C{0,1},𝜖 channel. The study of error correcting codes for

interactive communication was pioneered by Schulman [15], who

showed how to transform any interactive communication protocol

over the (noiseless) binary channel to an equivalent noise-resilient

protocol that works over the (two-way) C{0,1},𝜖 channel, with only

a constant overhead in the communication. This shows that for any

3We think of the order of speaking in a communication protocol as a string 𝜎 ∈
{𝐴, 𝐵}∗ , where 𝜎𝑖 = 𝐴 means that Alice speaks in round 𝑖 , and 𝜎𝑖 = 𝐵 means that
Bob speaks in round 𝑖 .
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𝜖 <
1
2 , the maximum rate of an interactive code over C{0,1},𝜖 is at

least some constant strictly greater than 0.

Kol and Raz [12] studied the maximum rate 𝑟𝜖 achievable by any

interactive code overC{0,1},𝜖 , but as mentioned above, it is not hard

to see that their results hold for every channel CΓ,𝜖 . They showed

that for alternating noiseless protocols and protocols whose com-

munication order is periodic with a small period, 𝑟𝜖 = 1−𝑂
(√︁
H(𝜖)

)
.

The assumption that the noiseless protocol is alternating (or has a

small period) is crucial as their coding scheme uses the rewind-if-

error mechanism [15], where the parties run the noiseless protocol

over the noisy channel, and periodically compare their received

transcripts to detect errors. If an error was detected, the parties

łrewindž to the last agreed upon point and continue the execution of

the noiseless protocol from that point. Since the noiseless protocol

is assumed to be alternating, by taking the order of speaking of

the simulating protocol to also be alternating, they can ensure that

when rewinding, the order of speaking in the simulation matches

the assumed order of speaking in the noiseless protocol. Kol and

Raz also proved a matching upper bound of 1−Ω

(√︁
H(𝜖)

)
for some

carefully chosen communication orders4.

We mention that the Kol-Raz result gives the first separation

between the maximum rate of classical error correcting codes and

that of interactive codes, and observe that Theorem 1.1 gives a

substantially stronger separation.

Building on [12] and also assuming an alternating order of speak-

ing, [8] presented a deterministic coding scheme that achieves a

rate of 𝑟𝜖 (the [12] scheme is randomized), and [2] gave a coding

scheme that handles larger 𝜖’s (observe that the [12] scheme is

only meaningful for small 𝜖’s). Specifically, [2] showed that the

maximum rate of interactive codes over C{0,1},𝜖 is at least 0.0302

times the maximum rate of classical error correcting codes over

C{0,1},𝜖 .

Other (non-adaptive) channels. The maximum rates of interactive

codes over other two-way channels, that are well studied in the

context of classical codes, were also considered with the alternating

communication order assumption. Pankratov [14] studied the rate

of interactive codes over channels with random errors and feedback,

and gave a scheme with rate 1 −𝑂 (
√
𝜖). Haeupler and Gelles [7]

improved his result and gave a scheme with rate 1 − Θ(H(𝜖)) that
works for the adversarial feedback channel. A schemewith the same

rate was also given by [7] for the adversarial erasure channel. The

adversarial channel with corruption errors (bit flips) was considered

in [3, 4, 9, 16], and an interactive codewith rate 𝑟𝜖 for this model was

presented in [4]. The adversarial binary insertion-deletion channel

was considered by [10], who demonstrated an interactive coding

scheme with rate 𝑟𝜖 for it.

Adaptive channels. In this paper as well as in most of the prior

works on interactive coding, including all the paper surveyed so

far, the assumption is that the protocols Π and Π
′ have a non-

adaptive (a.k.a, oblivious or static) communication order, meaning

4Specifically, the upper and lower bounds match when the communication order is

periodic with a period 𝑘 that satisfies 𝜖 = Θ

(
log𝑘

𝑘2

)
. Indeed, Hauepler and Velingker

[11] showed that if the parties alternate in sending 𝑘 = Ω (poly(1/𝜖 ) ) consecutive
symbols, then the maximum rate is 1 − Θ(H(𝜖 ) ) , violating the upper bound of [12].

that the order of communication in the protocol is fixed in advance.

Haeupler [9] considered the adaptive setting, where at any round,

each party decides whether to send a bit or listen for one based on

its input and received transcript (which, in turn, depends on the

channel’s noise). Observe, however, that protocols in these models

may have several parties attempting to send a symbol in the same

round, or even no senders at all, and the received bits in these cases

need to be specified.

Haeupler [9] constructed interactive codes that encode non-

adaptive protocols Π (with any communication order) by adaptive

protocols over the C{0,1},𝜖 channel with rate 1 − O
(√
𝜖
)
, bypass-

ing the upper bound of [12]. Put together, [12] and [9] imply a

separation between the maximum rates obtained via adaptive and

non-adaptive encodings. [9] conjectured that this separation can be

strengthened, even for a single erasure error, and our Theorem 1.1

proves his conjecture. We mention that other adaptive models were

studied in the literature, see e.g., [1, 5].

2 OVERVIEW

Our main result (Theorem 1.1) says that regardless of how small

the noise parameter 𝜖 is, the overhead required to simulate a noise-

less channel over a noisy channel that corrupts each symbol with

probability 𝜖 independently, is a constant strictly larger than 1. As

mentioned in Section 1.1, we will actually prove a much stronger

version of this, showing that it holds even if the channel corrupts

exactly one (uniformly chosen) round, and the parties know in ad-

vance which round it is (and therefore, can change the simulation

protocol they use arbitrarily based on this round, as long as this

change does not affect the order in which the parties speak in the

other rounds).

Showing a lower bound for a simulation protocol in a noise

model that allows the protocol to change in response to the noise

essentially means that we have to show a lower bound for a noiseless

protocol, where all we know about the noiseless protocol is that its

order of speaking is the same regardless of which round is corrupted

by noise. Thus, a big part of our proof (Section 5) is, given two orders

of speaking 𝜎, 𝜎′, understanding when can noiseless protocols with

order of speaking 𝜎′ simulate noiseless protocols with order of

speaking 𝜎 . This part subsumes and generalizes famous łpointer-

chasingž and łround-complexityž lower bounds in communication

complexity [13, e.g.] and is overviewed in Section 2.1. The answer

turns out to be quite elegant: 𝜎′ can simulate 𝜎 if and only if 𝜎 is a

subsequence of 𝜎′.
We now look back at our original problem of designing a noise-

less protocol Π that cannot be simulated by any (short) protocol

over a noisy channel, even when the noise corrupts only one ran-

dom symbol in the simulation protocol that is known to the parties

as soon as they fix the order of speaking in the simulation protocol.

Having shown that an order 𝜎′ can simulate 𝜎 if and only if 𝜎

is a subsequence of 𝜎′, this means that we have to construct an

order of speaking 𝜎 (which will be the order in which the parties

speak in Π) such that any short order of speaking 𝜎′ satisfies the
property that 𝜎 is not a łstrongž subsequence of 𝜎′. By that we mean

that removing one uniformly chosen coordinate from 𝜎′ ensures
that, with high probability, 𝜎 is not a subsequence of 𝜎′ with that

coordinate removed (see Definition 3.7). This is the second main
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part of our proof and is described in Section 6 and overviewed in

Section 2.2.

2.1 Lower Bounds on Noiseless Simulations

Recall that the order of speaking for a protocol Π of length 𝑇 is a

string 𝜎 ∈ {𝐴, 𝐵}𝑇 that captures the order in which Alice and Bob

speak in Π, in the sense that, for all 𝑖 ∈ [𝑇 ], party 𝜎𝑖 is the party

speaking in round 𝑖 of Π. The goal of this section is to show that,

given any two orders of speaking 𝜎 and 𝜎′, all (noiseless) protocols
with order of speaking 𝜎 can be simulated by (noiseless) protocols

with order of speaking 𝜎′ if and only if 𝜎 is a subsequence of 𝜎′.
The łifž direction is straightforward and we shall focus on showing

the łonly ifž direction.

We argue this in the contrapositive. Suppose that two orders 𝜎

and 𝜎′ are given such that 𝜎 is not a subsequence of 𝜎′. We first

note that if 𝜎 is alternating, i.e., 𝜎 is of the form 𝐴𝐵𝐴𝐵𝐴 . . . , then

the desired result follows from (an easy extension of) the pointer

chasing lower bounds in [13] and subsequent work. However, a

lower bound only for alternating 𝜎 is not good enough for us, as

we want the lower bound for a string 𝜎 such that any short 𝜎′

satisfies the property that 𝜎 is not a strong subsequence of 𝜎′. This
is provably not the case for alternating 𝜎 as for any alternating

𝜎 , the string 𝜎′ = 𝐴𝐵 | |𝜎 satisfies the property that 𝜎 is a strong

subsequence of 𝜎′, where | | denotes concatenation.
However, as our lower bound must subsume these lower bounds,

it is important to understand them. For this, consider the case when

𝜎 = 𝐴𝐵 so that 𝜎′ (as 𝜎 cannot be a subsequence of 𝜎′) is of the form
𝐵𝐵 . . . 𝐴𝐴𝐴𝐴 . . . , say 𝜎′ = 𝐵𝐵𝐵𝐴𝐴𝐴. Consider now the well-known

Index problem, where Bob has a large array and Alice has an index

for the array, and the goal of the parties is to output the element at

Alice’s index in Bob’s array. There is a simple protocol with order

of speaking 𝜎 that solves this problem, where Alice first sends her

index and then Bob sends the element at that index. However, if

the order of speaking is restricted to be 𝜎′ there is no way for Bob

to send the right element to Alice, as all his messages are before he

acquires any knowledge of Alice’s index (unless of course, he sends

to Alice the entire array, but this is impossible if Alice’s alphabet is

large enough).

For our more general result, we first extend the above lower

bound to a more general class of 𝜎 that has many Alice messages

before the last Bob message, say, 𝜎 = 𝐴𝐴𝐴𝐵. The hard protocol for

these 𝜎 is also the protocol for the Index problem except that this

time, Alice’s index is so large that it will not fit in one message

(and requires three messages). For all 𝜎′ where all Bob’s messages

precede all Alice’s messages, the argument is the same as before, but

this time there are additional 𝜎′ that are not of the form above and

satisfy that 𝜎 is not a subsequence of 𝜎′, for example 𝜎′ = 𝐵𝐴𝐵𝐴𝐵𝐴.

When 𝜎′ = 𝐵𝐴𝐵𝐴𝐵𝐴, as a protocol with order of speaking 𝜎′

proceeds, Bob does get somemessages fromAlice (in rounds 2 and 4)

but these messages are not long enough to contain her entire index.

Thus, to show a lower bound for such 𝜎′, we need to extend the

aforementioned lower bound for Index to work for protocols where

Bob has partial information about Alice’s index. This is exactly what

we do, showing that such partial information from Alice cannot

help Bob in guessing the right index a whole lot, and he still cannot

send her the right index without sending a huge portion of his

array. However, Bob cannot send a huge portion without having

high communication, which is impossible if 𝜎′ is not much longer

than 𝜎 .

To extend this argument to general 𝜎 and 𝜎′ such that 𝜎 is not

a subsequence of 𝜎′, we break the string 𝜎 into łintervalsž, where

an interval is defined a set of consecutive rounds where the same

party is speaking, e.g., the first three Alice rounds in 𝜎 = 𝐴𝐴𝐴𝐵. For

each such interval starting from the first, we treat it like the Index

problem above, and show that the interval cannot be simulated

unless the party speaking in that interval has spoken enough times

in the simulation. Once the party has spoken enough times, we

remove the interval from 𝜎 and the corresponding rounds from 𝜎′

and arrive at a smaller problem with a fewer number of intervals.

As 𝜎 is not a subsequence of 𝜎′, we will run out of rounds in 𝜎′

before we run out of intervals in 𝜎 , giving us a trivial protocol for

a non-trivial task, a contradiction.

2.2 Analysis of Strong Subsequences

In this part, our goal is to show that there exists an order of speaking

𝜎 ∈ {𝐴, 𝐵}∗, such that for any 𝜎′ ∈ {𝐴, 𝐵}∗ for which 𝜎 is a strong

subsequence of 𝜎′, it holds that 𝜎′ is a constant factor longer than 𝜎 .
Recall that 𝜎 is a strong subsequence of 𝜎′ if, for most coordinates

𝑖 of 𝜎′, it holds that 𝜎 is a subsequence of 𝜎′ with coordinate 𝑖

removed. Throughout this section, we will disregard the connection

of 𝜎 and 𝜎′ to communication protocols, and look at them simply as

strings in {𝐴, 𝐵}∗. Also, we let𝑇 be the length of 𝜎 and assume that

the length of 𝜎′ is 𝑇 ′
= (1 + 𝛿)𝑇 , where 𝛿 > 0 is a small constant.

Patterns. We will show this using the probabilistic method, cat-

egorizing the relevant pairs (𝜎, 𝜎′) into various łpatternsž, where

for each pattern 𝜌 and each 𝜎 , there is exactly one 𝜎′ such that

the pair (𝜎, 𝜎′) is in the pattern 𝜌 . We then show that, for every

fixed pattern, and a randomly chosen pair (𝜎, 𝜎′) in the pattern,

the probability that 𝜎 is a strong subsequence of 𝜎′ is extremely

small, small enough to union bound over all the patterns, and our

result follows.

Specifically, a pattern for us will be defined by a string 𝜌 ∈
{𝐴, 𝐵, •}𝑇 ′

such that the number of coordinates of 𝜌 that are equal

to the łbulletž symbol • is 𝑇 . We say that a pair (𝜎, 𝜎′) is in the

pattern 𝜌 if it holds that upon łinsertingž the string 𝜎 in the bullet

coordinates of 𝜌 , we get the string 𝜎′. Note that we can indeed

restrict attention to the pairs (𝜎, 𝜎′) that are in some pattern, as

if a pair is not in any pattern, then it must be the case that 𝜎

is not a subsequence of 𝜎′, and therefore, it cannot be a strong

subsequence of 𝜎′ either. Moreover, the number of patterns 𝜌 is

at most
( (1+𝛿 )𝑇

𝑇

)
· 2𝛿𝑇 ≤ 2O(𝛿 log 1

𝛿 ) ·𝑇 and we will ensure that,

assuming 𝛿 is a small enough constant, the relevant probabilities

are small enough for a union bound over all the patterns.

Analyzing a toy pattern. Following the above framework, we

now fix a pattern 𝜌 and show that for a random pair (𝜎, 𝜎′) in 𝜌 , we

have that 𝜎 is not a strong subsequence of 𝜎′ with high probability.

The high level idea here is best understood by taking 𝜌 = •𝑇 , the
𝑇 -length string each of whose coordinates are •, even though this

is not a valid pattern according to the definition above. However,

picking 𝜌 = •𝑇 also means that the only way a pair (𝜎, 𝜎′) can be

in this pattern is if 𝜎 = 𝜎′, implying that 𝜎 is trivially not a strong
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subsequence of 𝜎′ = 𝜎 . Thus, to make the argument non-trivial, we

will show that, for a uniformly random 𝜎 ∈ {𝐴, 𝐵}𝑇 , even a prefix

of 𝜎 of length 0.9𝑇 is not a strong subsequence of 𝜎 .

For this, consider what happens if we erase the first coordinate

of 𝜎 to get a string 𝜎−1, and try to estimate the length of the longest

prefix of 𝜎 that is a subsequence of 𝜎−1 (the case when a different

coordinate is erased is similar). To estimate the length of the longest

prefix, we consider the greedy algorithm łmatchingž the string

𝜎 to the string 𝜎−1: Namely, match each coordinate of 𝜎 to the

earliest coordinate possible5 in 𝜎−1. To analyze this algorithm, for

all 𝑖 ∈ [𝑇 ], define lag𝑖 to be the difference between 𝑖 and the

coordinate in 𝜎 corresponding to the coordinate in 𝜎−1 that 𝑖 is
matched to. For example, if coordinate 1 of 𝜎 is matched to the first

coordinate in 𝜎−1 (equivalently, the second coordinate in 𝜎), then,

lag1 = 1.

As 𝜎 is uniformly random in {𝐴, 𝐵}𝑇 , each coordinate of 𝜎 is

uniformly and independently random in {𝐴, 𝐵}, and thus each coor-

dinate in 𝜎 will take (in expectation) two coordinates of 𝜎−1 to find
a match. This means that, in expectation6, we have lag𝑖 ≥ lag𝑖−1+1.
Using concentration bounds, we can conclude that, except with

probability exponentially small in 𝑇 , at most a 0.9 fraction of the

coordinates will end up being matched, implying that the length of

the longest prefix of 𝜎 that is a subsequence of the resulting string

𝜎−1 is at most 0.9𝑇 , as desired.

Towards actual patterns. The argument above does not extend

to actual patterns 𝜌 ∈ {𝐴, 𝐵, •}𝑇 ′
, but for a very specific reason:

To understand the reason, note that the argument above crucially

relied on the fact that lag is non-zero throughout (in fact, it starts

from 1 and never decreases). This means that we are always trying

to compare a coordinate in 𝜎 to another łfreshž coordinate, which

is independently and uniformly random, and this allowed us to say

that lag increases by 1 in expectation. In fact, if the lag were to

have been 0, then we would be comparing every coordinate in 𝜎 to

itself, which means that it will aways match, and we will therefore

be able to match all of 𝜎 .

Now, observe that the presence of non-bullet coordinates in 𝜌

can actually decrease the lag and make it 0, ruining our argument

above. For an example, consider the case 𝑇 ′
= 𝑇 + 2, and the

pattern 𝜌 = •, 𝐴, 𝐵, •𝑇−1. Specifically, consider the case where the
first coordinate is erased, creating a lag of 1. However, as the two

coordinates 𝐴, 𝐵 immediately follow the erased coordinate, one can

always match the first coordinate of 𝜎 to one of these coordinates,

bringing the lag back down to 0, and allowing the rest of 𝜎 to be

matched as is.

To get around this, we use the observation that any non-bullet

symbol in 𝜌 can decrease the lag by at most 1. Thus, as the number

of non-bullet symbols in 𝜎 is 𝛿𝑇 , if we could somehow magically

start with lag = 𝛿𝑇 , then, lagwill never vanish for any fixed pattern

𝜌 and we can apply exactly the same analysis as in the toy pattern

above to get that 𝜎 will not be a subsequence except with probability

exponentially small in 𝑇 . This probability is small enough for us to

union bound over all possible 𝜌 and get that except with probability

5For example, to match 𝐴𝐴𝐵𝐴 in the string 𝐴𝐵𝐴𝐵𝐴𝐵, the matching will look like
the following (matched characters underlined)𝐴𝐵𝐴𝐵𝐴𝐵.
6Note that if a match is found after 𝑙 coordinates, the lag increases by 𝑙 − 1.

exponentially small in 𝑇 , a uniformly random 𝜎 will not have any

𝜎′ such that 𝜎 is a strong subsequence of 𝜎′.

Starting with a small lag. All we need to do now is to apply the

argument above for large initial lag to the case at hand where the

initial lag is 1. For this, observe from our example above (and also in

the toy example 𝜌 = •𝑇 ) that lagwill actually increase as 𝑖 increases,
in the sense that the final lag is at least Ω(𝑇 ) more than the initial

lag, except with exponentially small probability in 𝑇 . This holds

despite the fact that we have a small number (= 𝛿𝑇 ) of non-bullet

symbols, as each such symbol can decrease lag by at most 1, but

the much larger number (= 𝑇 ) of bullet symbols, each increasing

lag by 1 in expectation (as the small number of non-bullet symbols

are not enough to make lag vanish), will eventually override the

effect of the non-bullet symbols.

The fact that the lag increases can be used as follows: Suppose

we are currently considering an 𝑖 such that lag𝑖 is some value

𝐿 > 0. Consider the pattern starting from the coordinate where

𝑖 is matched and look at the segment consisting of the next, say,

𝐿/
√
𝛿 coordinates. As only a 𝛿 fraction of the coordinates are non-

bullet, this segment is expected to have
√
𝛿 · 𝐿 < 𝐿 of non-bullet

symbols. As the number of non-bullet symbols is smaller than the

initial lag, we can conclude that (even after union bounding over

all possible ways to place the non-bullet coordinates) except for a

łbadž event that happens with probability exponentially small in 𝐿,

this segment is expected to increase the lag to 𝐿′ = Ω(𝐿/
√
𝛿).

Now, we can consider the next segment of length 𝐿′/
√
𝛿 , and

show that except with probability exponentially small in 𝐿′, this
segment is expected to increase lag even more. The increasing

length of these segments allows us to show that the sum of the

bad probabilities converges to a constant, implying that for any

erased coordinate 𝑖 , one of the following holds: (1) The fraction

of non-bullet symbols in one of the segments that are generated is

much larger than 𝛿 . (2) There exists a segment generated from 𝑖

for which the bad event occurs. (3) When 𝑖 is erased, the final lag

increases to be Ω(𝑇 ).
By Markov’s inequality, both Items 1 and 2 will happen for at

most a small constant fraction of 𝑖 . Thus, there exists a 𝜎 such that

for most 𝑖 , Item 3 will occur, implying that, for any 𝜎′ such that 𝜎 is

a subsequence of 𝜎′, we have that 𝜎 is not a subsequence of 𝜎′−𝑖 . It
follows that there exists a 𝜎 such that for no 𝜎′ is it the case that 𝜎
is a strong subsequence of 𝜎′, as desired. In terms of organization,

the definition of 𝑖 in Item 2 is formalized in Definition 6.6 and the

proof that there is a small number of such 𝑖 is in Lemmas 6.7 and 6.8.

Analogous statements about Item 1 can be found in Lemma 6.10

while the proof of Item 3 can be found in Section 6.6 (specifically,

Lemma 6.12).

3 MODEL AND PRELIMINARIES

3.1 Notation

For 𝑛 > 0, we use [𝑛] to denote the set {1, 2, . . . , 𝑛}. For 𝑎, 𝑏 > 0,

we use [𝑎, 𝑏] to denote the set {𝑎, 𝑎 + 1, . . . , 𝑏}. Additionally, we use
(𝑎, 𝑏] to denote the set {𝑎 + 1, . . . , 𝑏}. The notations [𝑎, 𝑏) and (𝑎, 𝑏)
are defined analogously.

Let Σ be an alphabet set and 𝑛 > 0 be an integer. For a string

𝑠 ∈ Σ
𝑛 and a set 𝐼 ⊂ [𝑛], we use 𝑠𝐼 to denote the |𝐼 |-length string
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obtained by taking only those coordinates of 𝑠 that are in 𝐼 , e.g., we

have (𝐴𝐵𝐴𝐴𝐵){1,3,4} = 𝐴𝐴𝐴. For 𝑖 ∈ [𝑛], we sometimes abbreviate

𝑠{𝑖 } to 𝑠𝑖 , 𝑠 [𝑖 ] to 𝑠≤𝑖 , and 𝑠 [𝑛]\{𝑖 } to 𝑠−𝑖 . We also use the notations

𝑠<𝑖 , 𝑠>𝑖 and 𝑠≥𝑖 that are defined analogously. Whenever we have

𝐶 ∈ {𝐴, 𝐵}, we use 𝐶 to denote the unique element of {𝐴, 𝐵} not
equal to 𝐶 .

Throughout this paper, we use sans-serif letters to denote ran-

dom variables.

3.2 Embedding Strings

Let 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ and𝑇 = |𝜎 | and𝑇 ′
= |𝜎′ |. For 𝑖 ∈ {0} ∪ [𝑇 ], we

define the function Emb(𝜎, 𝜎′, 𝑖) inductively by Emb(𝜎, 𝜎′, 0) = 0

and as follows when 𝑖 > 0:

Emb(𝜎, 𝜎′, 𝑖) =
min

({
Emb(𝜎, 𝜎′, 𝑖 − 1) < 𝑖′ ≤ 𝑇 ′ | 𝜎′𝑖′ = 𝜎𝑖

}
∪

{
𝑇 ′ + 𝑖

}) (1)

Note that the min above is taken over a finite non-empty set,

and is therefore well-defined. We also define the set:

E
(
𝜎, 𝜎′

)
=

{
𝑖′ ∈ [𝑇 ′] | ∃𝑖 ∈ [𝑇 ] : Emb(𝜎, 𝜎′, 𝑖) = 𝑖′

}
. (2)

We say that 𝜎 is a subsequence of 𝜎′ if |E(𝜎, 𝜎′) | = 𝑇 .

Observation 3.1. Let 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ and 𝑇 = |𝜎 |. For all 𝑖1 ≤
𝑖2 ∈ {0} ∪ [𝑇 ], we have:

Emb(𝜎, 𝜎′, 𝑖1) + 𝑖2 − 𝑖1 ≤ Emb(𝜎, 𝜎′, 𝑖2).

We also use the following lemmas throughout our paper. The

formal proofs of Lemmas 3.2 to 3.6 are omitted for space and can

be found in the full version of the paper.

Lemma 3.2. Let 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ be given. Additionally, let 𝑖 ∈
[|𝜎 |], 𝑖′ ∈ {0} ∪ [|𝜎′ |] be such that Emb(𝜎, 𝜎′, 𝑖 − 1) ≤ 𝑖′. For all
𝑖′′ ≥ 𝑖′ ∈ [|𝜎′ |], we have:
Emb

(
𝜎, 𝜎′, 𝑖 − 1 +

��E
(
𝜎, 𝜎′

)
∩ (𝑖′, 𝑖′′]

��) ≤ 𝑖′′ −
��(𝑖′, 𝑖′′] \ E

(
𝜎, 𝜎′

) ��.

Lemma 3.3. Let𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ be given. Additionally, let 𝑖 ∈ [|𝜎 |],
𝑖′ ∈ {0} ∪ [|𝜎′ |] be such that Emb(𝜎, 𝜎′, 𝑖) > 𝑖′. For all 𝑖′′ ≥ 𝑖′ ∈
[|𝜎′ |], we have:

Emb
(
𝜎, 𝜎′, 𝑖 +

��E
(
𝜎, 𝜎′

)
∩ (𝑖′, 𝑖′′]

��) > 𝑖′′ .

Lemma 3.4. Let 𝜎, 𝜏, 𝜎′, 𝜏 ′ ∈ {𝐴, 𝐵}∗ be given. For all 𝑖′ ∈ {0} ∪
[min( |𝜎′ |, |𝜏 ′ |)] such that𝜎′≤𝑖′ = 𝜏 ′≤𝑖′ and all 𝑖 ∈ {0}∪[min( |𝜎 |, |𝜏 |)]
such that 𝜎≤𝑖 = 𝜏≤𝑖 , we have:

Emb(𝜎, 𝜎′, 𝑖) ≤ 𝑖′ =⇒ Emb(𝜏, 𝜏 ′, 𝑖) = Emb(𝜎, 𝜎′, 𝑖) .
Moreover, we also have:

Emb(𝜎, 𝜎′, 𝑖) > 𝑖′ =⇒ Emb(𝜏, 𝜏 ′, 𝑖) > 𝑖′ .

Lemma 3.5. Let𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ be given. Additionally, let 𝑖 ∈ [|𝜎 |],
𝑖′ ∈ {0} ∪ [|𝜎′ |] be such that Emb(𝜎, 𝜎′, 𝑖 − 1) ≤ 𝑖′ < Emb(𝜎, 𝜎′, 𝑖).
For all 𝑖′′ ≥ 𝑖′ ∈ [|𝜎′ |] and all 0 ≤ 𝑏 ≤ |E(𝜎, 𝜎′) ∩ (𝑖′, 𝑖′′] |, we have:

max
(
𝑖′, Emb

(
𝜎, 𝜎′, 𝑏 + 𝑖 − 1

) )
= Emb

(
𝜎≥𝑖 , 𝜎′(𝑖′,𝑖′′ ] , 𝑏

)
+ 𝑖′ ≤ 𝑖′′ .

Lemma 3.6. Let𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ be given. Additionally, let 𝑖 ∈ [|𝜎 |],
𝑖′ ∈ {0} ∪ [|𝜎′ |] be such that Emb(𝜎, 𝜎′, 𝑖 − 1) ≤ 𝑖′ < Emb(𝜎, 𝜎′, 𝑖).
For all 𝑖′′ ≥ 𝑖′ ∈ [|𝜎′ |] and all 0 ≤ 𝑎 ≤ 𝑏 ≤ |E(𝜎, 𝜎′) ∩ (𝑖′, 𝑖′′] |, we
have:

Emb
(
𝜎≥𝑖+𝑎, 𝜎′(𝑖′,𝑖′′ ] , 𝑏 − 𝑎

)
≤ Emb

(
𝜎≥𝑖 , 𝜎′(𝑖′,𝑖′′ ] , 𝑏

)
≤ 𝑖′′ − 𝑖′ .

Definition 3.7 (Strong Subseqences). For 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗, we
say that 𝜎 is a strong subsequence of 𝜎′ if there exists a set 𝐼 ⊆ [|𝜎′ |]
such that |𝐼 | ≥ |𝜎 ′ |

10 and for all 𝑖 ∈ 𝐼 we have that 𝜎 is a subsequence

of 𝜎′−𝑖 .

Observation 3.8. For any strings 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗, if 𝜎 is a strong

subsequence of 𝜎′, then 𝜎 is a subsequence of 𝜎′.

3.3 Our Noisy Channel

Let Γ be a set with |Γ | ≥ 2. A (deterministic) protocol with the

alphabet set Γ is defined by a tuple:

Π =

(
𝑇, 𝜎,X𝐴,X𝐵,Y, 𝑀1, . . . , 𝑀𝑇 , out

𝐴, out𝐵
)
, (3)

where: (1) 𝑇 > 0 is a parameter denoting the length of the protocol,

(2) 𝜎 ∈ {𝐴, 𝐵}𝑇 is a string that determines which party speaks

when (i.e., for all 𝑖 ∈ [𝑇 ], party 𝜎𝑖 is the unique party speaking in

round 𝑗 ), (3) X𝐶 for 𝐶 ∈ {𝐴, 𝐵} is the input set of party 𝐶 , (4) Y
is the set of possible outputs of the protocol, (5) For all 𝑖 ∈ [𝑇 ],
𝑀𝑖 : X𝜎𝑖 × Γ

𝑖−1 → Γ is a function that computes the message sent

in round 𝑖 based on the input of the party 𝜎𝑖 speaking in round

𝑖 and the transcript ∈ Γ
𝑖−1 received by party 𝜎𝑖 in the first 𝑖 − 1

rounds, (6) out𝐶 : Γ
𝑇 → Y for 𝐶 ∈ {𝐴, 𝐵} are functions that

each player uses to compute the output from the transcript of the

protocol. We suppress items on the right hand side of Eq. (3) when

they are clear from context. We use the notation spkrs(Π) = 𝜎 and

|Π | = 𝑇 . We define a randomized protocol Π to be a distribution

over deterministic protocols Π that all have the same value of(
𝑇, 𝜎,X𝐴,X𝐵,Y

)
. We define spkrs(Π) and |Π| to be the common

value of spkrs(Π) and |Π | respectively.

Execution of a protocol. Let Π be a protocol as above and 𝜖 ≥ 0.

We now describe how Π is executed over the channel CΓ,𝜖 that

corrupts each sent symbol (independently) to a uniformly random

symbol in Γ with probability 𝜖 . To describe this execution, we

let ★ be a special symbol not in Γ indicating łno noisež and 𝑁 ∈
(Γ ∪ {★})𝑇 be a noise vector such that for all 𝑖 ∈ [𝑇 ], the symbol

𝑁𝑖 = ★with probability 1− 𝜖 and a uniformly random symbol from

Γ with probability 𝜖 (independently for all 𝑖), so that 𝑁 captures

the noise inserted by the aforementioned channel. We shall abuse

notation and use CΓ,𝜖 to denote both the channel and the above

distribution over noise vectors.

The execution begins with both parties 𝐶 ∈ {𝐴, 𝐵} having input

𝑥𝐶 ∈ X𝐶 and proceeds in 𝑇 rounds, maintaining the invariant

that before round 𝑖 ∈ [𝑇 ], both parties 𝐶 ∈ {𝐴, 𝐵} have a partial
transcript Π𝐶

<𝑖 ∈ Γ
𝑖−1. In round 𝑖 , party 𝜎𝑖 computes the symbol

𝛾𝑖 = 𝑀𝑖

(
𝑥𝜎𝑖 ,Π

𝜎𝑖
<𝑖

)
, appends it to its own partial transcript, and

sends it over the channel to the other party 𝜎𝑖 .

The noise 𝑁 then acts on the symbol as follows: If 𝑁𝑖 = ★, then

the symbol is sent uncorrupted and party 𝜎𝑖 receives the symbol

𝛾𝑖 . Otherwise, we have 𝑁𝑖 ∈ Γ and party 𝜎𝑖 receives the symbol 𝑁𝑖 .

In either case, party 𝜎𝑖 appends the received symbol to its partial

transcript and the execution proceeds to the next round.

After the 𝑇 rounds are over, each party 𝐶 ∈ {𝐴, 𝐵} outputs

out𝐶
(
Π
𝐶
≤𝑇

)
∈ Y. Note that this execution is entirely determined

by the triple
(
𝑥𝐴, 𝑥𝐵, 𝑁

)
, which we shall often write as (𝑋, 𝑁 ) using
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𝑋 to denote the pair of inputs
(
𝑥𝐴, 𝑥𝐵

)
. This fact allows us to write

Π
𝐶
𝑖 (𝑋, 𝑁 ), Π𝐶

≤𝑖 (𝑋, 𝑁 ), etc. to denote the corresponding value in the

execution of Π in the presence of noise 𝑁 when the inputs are 𝑋 .

For 𝐶 ∈ {𝐴, 𝐵}, we also define the notation res𝐶
Π
(𝑋, 𝑁 ) to denote

the output of party 𝐶 in the above execution and resΠ (𝑋, 𝑁 ) =(
res𝐴

Π
(𝑋, 𝑁 ), res𝐵

Π
(𝑋, 𝑁 )

)
. We omit 𝑁 from the above notations

when 𝜖 = 0 and the execution is noiseless, as in this case, 𝑁 is

always the vector with all coordinates equal to ★. Note that, in this

case, the transcripts for Alice and Bob are the same and we can

omit the superscript 𝐶 in the notation.

Simulations and hole simulations. Let Γ be an alphabet set as

above. Let Π and Π′ be two randomized protocols with alphabet

Γ and with the same input sets X𝐴,X𝐵 for Alice and Bob. For

𝑝 ∈ [0, 1] and 𝜖 ≥ 0, we say the protocol Π′ simulates the protocol

Π over the channel CΓ,𝜖 with probability 𝑝 if for all 𝑥𝐴 ∈ X𝐴, 𝑥𝐵 ∈
X𝐵 , it holds that

Pr
𝑁∼CΓ,𝜖 ,Π∼Π,Π′∼Π′

(resΠ′ (𝑋, 𝑁 ) = resΠ (𝑋 )) ≥ 𝑝.

Throughout this text, the protocol Π being simulated will be deter-

ministic and we shall omit it from the subscript above. As our main

result in a lower bound, the fact that Π is deterministic only makes

our result stronger. As Γ is determined by Π, we shall sometimes

omit writing łover the channel CΓ,𝜖 ž when 𝜖 = 0.

For our proof of Theorem 1.1, we actually work with a different

(and weaker7) notion of simulation that we call łhole simulationž

and is defined as follows: Let 𝜎′ ∈ {𝐴, 𝐵}∗ and Π be a protocol

as above. For 𝑝 ∈ [0, 1], we say that 𝜎′ hole-simulates Π with

probability 𝑝 if there exists a set 𝐼 ′ ⊆ [|𝜎′ |], |𝐼 ′ | ≥ |𝜎 ′ |
10 such that

for all 𝑖′ ∈ 𝐼 ′, there exists a randomized protocol Π′
𝑖′ with alphabet

Γ and the same input sets as Π that simulates the protocol Π (over

the channel CΓ,0) with probability 𝑝 and satisfies spkrs
(
Π
′
𝑖′

)
= 𝜎′−𝑖′ .

3.4 Pointer Chasing

Let𝑚,𝑇 ∈ N. We inductively define the function PC𝑚,𝑇 that takes as

input functions (𝑓𝑖 )𝑖∈[𝑇 ] where 𝑓𝑖 : [𝑚]𝑖−1 → [𝑚] for all 𝑖 ∈ [𝑇 ]
and outputs a value in [𝑚]𝑇 as follows: For the case 𝑇 = 1, we

simply define PC𝑚,1 (𝑓1) = 𝑓1. For 𝑇 > 1 and functions (𝑓𝑖 )𝑖∈[𝑇 ] ,
let 𝑧 = PC𝑚,𝑇−1 ((𝑓𝑖 )𝑖<𝑇 ) be the value defined by the induction hy-

pothesis, and define PC𝑚,𝑇 ((𝑓𝑖 )𝑖∈[𝑇 ] ) = 𝑧 | |𝑓𝑇 (𝑧). We omit the pa-

rameters𝑚,𝑇 when they are clear from context. It is clear from the

above definition that for all 𝑇 ′ ∈ [𝑇 ], the value of PC((𝑓𝑖 )𝑖∈[𝑇 ] ) is
independent of (𝑓𝑖 )𝑖∈[𝑇 ′ ] as long as PC((𝑓𝑖 )𝑖∈[𝑇 ′ ] ) is the same. Cor-

respondingly, for 𝑧 ∈ [𝑚]𝑇 ′
, we sometimes write PC(𝑧, (𝑓𝑖 )𝑖∈ (𝑇 ′,𝑇 ] )

to denote the value of PC((𝑓𝑖 )𝑖∈[𝑇 ] ) when PC((𝑓𝑖 )𝑖∈[𝑇 ′ ] ) = 𝑧.

Pointer chasing protocols. Let 𝑇 ∈ N and 𝜎 ∈ {𝐴, 𝐵}𝑇 . Define
𝑚 = (200𝑇 )200 and the protocol PC𝜎 to be the 𝑇 -round communi-

cation protocol with alphabet [𝑚] where Alice’s input are func-
tions (𝑓𝑖 : [𝑚]𝑖−1 → [𝑚])𝑖:𝜎𝑖=𝐴 and Bob’s input are functions

(𝑓𝑖 : [𝑚]𝑖−1 → [𝑚])𝑖:𝜎𝑖=𝐵 , and the message sent in round 𝑡 , for

7The fact that weworkwith a weaker notionmakes are proof stronger, and in particular,
would also work for the erasure channel. To see the formal sense in which this is
weaker, see Section 4.

𝑡 ∈ [𝑇 ] is coordinate 𝑡 of PC𝑚,𝑇 ((𝑓𝑖 )𝑖∈[𝑇 ] ). After 𝑇 rounds, the

parties output all of PC𝑚,𝑇 ((𝑓𝑖 )𝑖∈[𝑇 ] ).

4 PROOF OF THEOREM 1.1

The goal is section is to prove Theorem 1.1 assuming two other

theorems that we shall prove in the following sections. We start by

stating these two theorems.

Theorem 4.1. Let 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ be given. Assume that |𝜎′ | ≤
5 · |𝜎 |. If 𝜎′ hole simulates PC𝜎 with probability 1

5 , then 𝜎 is a strong

subsequence of 𝜎′.

Theorem 4.2. For all𝑇 > 0, there exists 𝜎 ∈ {𝐴, 𝐵}𝑇 such that for

all 𝜎′ ∈ {𝐴, 𝐵}∗ such that 𝜎 is a strong subsequence of 𝜎′, we have
|𝜎′ | ≥

(
1 + 10−100

)
· |𝜎 |.

We are now ready to prove Theorem 1.1 (assuming Theorems 4.1

and 4.2).

Proof of Theorem 1.1. Fix 𝜖 > 0 and assume that 𝜖 < 0.001

without loss of generality. Define 𝑇 =
1
𝜖2

and let 𝜎 be as promised

by Theorem 4.2. Define Γ =
[
(200𝑇 )200

]
and Π = PC𝜎 . Let Π

′ be a
randomized protocol that simulates Π with over the channel CΓ,𝜖

with probability 0.99 and 𝜎′ = spkrs(Π). As the proof is trivial

otherwise, assume that |𝜎′ | = |Π′ | ≤ 5𝑇 . We claim that 𝜎′ hole
simulates PC𝜎 with probability 0.5. This finishes the proof as it

implies using Theorem 4.1 that 𝜎 is a strong subsequence of 𝜎′

which using Theorem 4.2 means that |𝜎′ | ≥
(
1 + 10−100

)
· 𝑇 , as

desired.

It remains to show the claim. To this end, let 𝑇 ′
= |𝜎′ | and

for 𝑖′ ∈ [𝑇 ′], define the protocol Π′
𝑖′ with spkrs(Π′

𝑖′ ) = 𝜎′−𝑖′ as

follows: For 𝑡 ∈ {0} ∪ [𝑇 ′], let 𝑝𝑡 =
(𝑇 ′
𝑡

)
· 𝜖𝑡 (1 − 𝜖)𝑇 ′−𝑡 be the

probability that the channel CΓ,𝜖 corrupts exactly 𝑡 symbols in Π′.
This means that

𝑝𝑡
1−𝑝0 is the probability the channel CΓ,𝜖 corrupts

exactly 𝑡 symbols in Π′ conditioned on it corrupting at least one

symbol. Then, the protocolΠ′
𝑖′ is exactly the same asΠ′ except that

it (1) It does not have round 𝑖′ and the party supposed to receive in

this round assumes it got a uniformly random symbol in Γ. Observe

that this can equivalently be seen as the channel always corrupting

round 𝑖′ in Π′. (2) Samples 𝑡 ′ ∈ [𝑇 ′] with probability
𝑝𝑡 ′
1−𝑝0 , and

then artificially corrupts 𝑡 ′ − 1 rounds, ignoring the bit actually

received in these rounds and using a uniformly random symbol in

Γ instead.

Observe that picking 𝑖′ ∈ [𝑇 ′] uniformly at random and running

Π′
𝑖′ over the noiseless channel CΓ,0 is the same as running Π′ over

CΓ,𝜖 and conditioning on the fact that the channel corrupts at least

one symbol. As Π′ simulates Π with over the channel CΓ,𝜖 with

probability 0.99, we get:

1

𝑇 ′ ·
𝑇 ′∑︁

𝑖′=1

Pr
Π
′
𝑖′∼Π′

𝑖′

(
resΠ′

𝑖′
(𝑋 ) = resΠ (𝑋 )

)

= Pr
𝑁∼CΓ,𝜖 ,Π′∼Π′

(
resΠ′ (𝑋, 𝑁 ) = resΠ (𝑋 ) | 𝑁 ≠ ★

𝑇
)

≥ Pr
𝑁∼CΓ,𝜖 ,Π′∼Π′

(resΠ′ (𝑋, 𝑁 ) = resΠ (𝑋 )) − Pr
𝑁∼CΓ,𝜖

(
𝑁 = ★

𝑇
)

≥ 0.9.
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It follows that PrΠ′
𝑖′∼Π′

𝑖′

(
resΠ′

𝑖′
(𝑋 ) = resΠ (𝑋 )

)
≥ 0.5 for at least

𝑇 ′
10 values of 𝑖′, as desired. □

5 PROOF OF THEOREM 4.1

The goal of this section is to show Theorem 4.1. Owing to the

definition of hole simulations and Definition 3.7, it suffices to show

the following lemma:

Lemma 5.1. Let 𝜏 ∈ {𝐴, 𝐵}∗,𝑚 = (200 · |𝜏 |)200, and Π be a ran-

domized protocol with alphabet [𝑚]. Assume that |Π| ≤ 5 · |𝜏 |. If
Π simulates PC𝜏 with probability 1

|𝜏 | , then 𝜏 is a subsequence of

spkrs(Π).

We prove Lemma 5.1 in the rest of this section. Fix 𝜏,Π and define

𝑛 = |𝜏 |, 𝑇 = |Π|, and 𝜎 = spkrs(Π). We shall show the lemma in

the contrapositive, assuming that 𝜏 is a not subsequence of 𝜎 and

showing that Π does not simulate PC𝜏 with probability 1
𝑛 . As 𝜏, 𝜎

are fixed we shall often omit them from our notation and write

Emb(·) instead of Emb(𝜏, 𝜎, ·) and E instead of E(𝜏, 𝜎).
Let X𝐴 and X𝐵 be input sets of Alice and Bob respectively in

PC𝜏 (and therefore also in Π). Recall from Section 3.3 that we have

to show that there exist 𝑥𝐴 ∈ X𝐴, 𝑥𝐵 ∈ X𝐵 such that:

Pr
Π∼Π

(
resΠ (𝑋 ) = resPC𝜏 (𝑋 )

)
<

1

𝑛
.

Let F be the uniform distribution over all inputs of PC𝜏 , defined as

in Section 3.4. To show the foregoing equation, we fix an arbitrary

deterministic protocol Π in the support of Π and show that (noting

that resPC𝜏 (𝐹 ) = PC(𝐹 )):

Pr
𝐹∼F

(resΠ (𝐹 ) = PC(𝐹 )) < 1

𝑛
. (4)

5.1 Notation

For a finite non-empty set 𝑆 , we shall use U(𝑆) to denote the

uniform distribution over 𝑆 . We omit 𝑆 from the notation when it is

clear from the context. All probabilities and random variables will

be defined over the randomness in F , and we will often abbreviate

Pr𝐹∼F to Pr for brevity of notation. Throughout, if X is a random

variable and 𝑥 is a value that X can take, we sometimes abbreviate

the event X = 𝑥 as simply 𝑥 when it is clear from context. Thus,

we may write Pr(𝑥) instead of Pr(X = 𝑥) and Pr(· | 𝑥) instead of

Pr(· | X = 𝑥). We use dist(X) to denote the distribution of a random

variable X.

We will use F to denote the random variable corresponding to a

sample from F and 𝐹 to denote a given value of F. Observe that 𝐹 is

an 𝑛-tuple (𝑓1, 𝑓2, · · · , 𝑓𝑛). For a set 𝑆 ⊆ [𝑛], we define 𝑓𝑆 = (𝑓𝑖 )𝑖∈𝑆 .
For 𝑖 ∈ [𝑛], we may write 𝑓≤𝑖 instead of 𝑓[𝑖 ] and 𝑓<𝑖 instead of

𝑓[𝑖−1] . We also define 𝑓 𝐴 = 𝑓{𝑖∈[𝑛] |𝜏𝑖=𝐴} and 𝑓 𝐵 = 𝑓{𝑖∈[𝑛] |𝜏𝑖=𝐵} .
We may combine these notations and use 𝑓 𝐴≤𝑖 = 𝑓{𝑖′∈[𝑖 ] |𝜏𝑖′=𝐴} , etc..
We will use f≤𝑖 to denote the random variable corresponding to

𝑓≤𝑖 . The notations f𝑆 , f<𝑖 , f𝐴 , etc. are defined similarly.

Recall the functions Π𝑡 (·) and Π≤𝑡 (·) from Section 3.3. In this

section, we extend this notation to sets 𝑆 ⊆ [𝑇 ] by defining Π𝑆 (·) =
(Π𝑡 (·))𝑡 ∈𝑆 . For 𝑡 ∈ [𝑇 ], we will use Π𝑡 = Π𝑡 (F) to denote the

random variable obtained by sampling F and outputting Π𝑡 (F), and
use Π𝑡 to denote a value Π𝑡 can take. The notations Π≤𝑡 , Π𝑆 are

defined analogously.

5.2 Definitions

Recall that we fixed 𝜏 ∈ {𝐴, 𝐵}𝑛 as the order in which the parties

speak in the protocol PC𝜏 being simulated. We also fixed a determin-

istic protocol Π and defined 𝑇 = |Π | and 𝜎 = spkrs(Π) ∈ {𝐴, 𝐵}𝑇 .

The set L. We consider the set of indices 𝑖 ∈ [𝑛] where the value
of 𝜏𝑖 is different from 𝜏𝑖+1. Define the set:

L = {𝑛} ∪ {𝑖 ∈ [𝑛 − 1] | 𝜏𝑖 ≠ 𝜏𝑖+1}. (5)

Informally, L is the rounds where 𝜏 łswitchesž from 𝐴 to 𝐵 or 𝐵 to

𝐴. Equivalently, we partition 𝜏 into consecutive intervals consisting

of the same player and L is the set of endpoints of these intervals.

The element 𝑛 is added to L for convenience. For 𝑖 ∈ [𝑛], we define
ℓ≥𝑖 to be smallest value ℓ ∈ L satisfying ℓ ≥ 𝑖 . This is well defined

as 𝑛 ∈ L is one such value. Similarly, define ℓ<𝑖 to be largest value

ℓ ∈ {0} ∪ L satisfying ℓ < 𝑖 . Observe that for all 𝑖 ∈ [𝑛], we have
𝜏𝑖 = 𝜏ℓ≥

𝑖
and ℓ<𝑖 > 0 implies 𝜏𝑖 ≠ 𝜏ℓ<

𝑖
(so 𝜏𝑖 = 𝜏 ℓ<

𝑖
).

Defining Good and Rem. For 𝑡 ∈ {0} ∪ [𝑇 ], define the set
Good(𝑡) =

{
𝑖 ∈ [𝑛] : Emb

(
ℓ<𝑖

)
≤ 𝑡 < Emb

(
ℓ≥𝑖

)}
. (6)

Informally, Good gets a round 𝑡 of the protocol Π and outputs the

first interval of 𝜏 that we do not expect to have fully simulated

after round 𝑡 . Observe that Good(𝑡) ≠ ∅ for all 𝑡 ∈ {0} ∪ [𝑇 ]. Let
𝑡 ∈ {0} ∪ [𝑇 ] and 𝑖 ∈ Good(𝑡). Define:

Rem𝑖 (𝑡) =



(
𝑖 − ℓ<𝑖 − 0.1

)
· log𝑚, if Emb

(
ℓ<𝑖

)
= 𝑡

(
𝑖 − ℓ<𝑖 − 0.3

−
��E ∩

(
Emb

(
ℓ<𝑖

)
, 𝑡

] ��) · log𝑚, if Emb
(
ℓ<𝑖

)
< 𝑡

.

(7)

Roughly speaking, Rem𝑖 (𝑡) is the amount of (min-)entropy remain-

ing in the random variable PC
>ℓ<

𝑖
(f≤𝑖 ) before round 𝑡 of the proto-

col.

łRevealingž information. To make our analysis cleaner, we reveal

some information to the players at various points in the protocol.

More precisely, let 𝑡 ′ ∈ [3𝑇 ] be given and 𝐹 in the support8 of F be

arbitrary. Let 𝑡 ∈ [𝑇 ] be the unique value satisfying 3(𝑡 − 1) < 𝑡 ′ ≤
3𝑡 . We shall define values Φ𝑡 ′ (𝐹 ) inductively. If 𝑡 ′ = 3𝑡 − 2, define:

Φ𝑡 ′ (𝐹 ) = Π𝑡 (𝐹 ) . (8)

If 𝑡 ′ = 3𝑡 − 1, define:

Φ𝑡 ′ (𝐹 ) =
{
PC

>ℓ<
𝑖

(
𝑓≤ℓ≥

𝑖

)
, if ∃𝑖 ∈ [𝑛] : 𝑡 = Emb

(
ℓ≥𝑖

)

0, otherwise
. (9)

Informally, this definition amounts to revealing the correct tran-

script for any interval at the end of the interval. Finally, if 𝑡 ′ = 3𝑡 ,

define:

Φ𝑡 ′ (𝐹 ) = 1

(
∃𝑖 ∈ [𝑛] : 𝑡 = Emb

(
ℓ<𝑖

)
, 2−1−Rem

𝑖 (𝑡 )

< Pr
(
PC

>ℓ<
𝑖
(f≤𝑖 ) = PC

>ℓ<
𝑖
(𝑓≤𝑖 ) | Φ<𝑡 ′ (𝐹 )

))
. (10)

Informally, this definition amounts to revealing, at the end of an in-

terval, whether the right answer for the next interval can be guessed

with probability much better than what Rem would indicate. We

8Henceforth, we omit writing łin the support ofž when the random variable is clear
from context.
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will later show that, this answer is no (= 0) with high probability.

Henceforth, we treat Φ the same way as Π in our notation, i.e., we

let Φ𝑡 ′ = Φ𝑡 ′ (F) denote the random variable obtained by sampling

F and outputting Φ𝑡 ′ (F), use Φ𝑡 ′ to denote a value Φ𝑡 ′ can take, and

define Φ≤𝑡 ′ , Φ𝑆 etc. analogously to Π≤𝑡 , Π𝑆 , etc.

We claim that Φ provides all the necessary information in order

to reconstruct PC(f), as claimed below.

Claim 5.2. For any ℓ ∈ L satisfying Emb(ℓ) ≤ 𝑇 , the value of

Φ≤3Emb(ℓ )−1 fixes the value of PC(f≤ℓ ).

The formal proof of Claim 5.2 is omitted for space and can be

found in the full version of the paper.

We also claim that Φ is a transcript of a protocol. By this, we

mean that each coordinate of Φ can be computed fully by just one

player using only their input and the transcript Φ so far. Formally:

Lemma 5.3. For 𝑡 ′ ∈ [3𝑇 ], there exists 𝜎′𝑡 ′ ∈ {𝐴, 𝐵} and a function
𝑀′
𝑡 ′ such that for any 𝐹 ,

Φ𝑡 ′ (𝐹 ) = 𝑀′
𝑡 ′

(
𝑓 𝜎

′
𝑡 ′ ,Φ<𝑡 ′ (𝐹 )

)
.

Furthermore, for 𝑡 ∈ [𝑇 ], we have that:
𝜎′3𝑡−2 = 𝜎𝑡

𝜎′3𝑡−1 = 𝜎𝑡

𝜎′3𝑡 = 𝜎𝑡 .

The formal proof of Lemma 5.3 is omitted for space and can be

found in the full version of the paper.

The sets Guess and Info. We are now ready to define the sets

Guess and Info, the primary focus of our analysis. For 𝑡 ∈ {0}∪ [𝑇 ]
and 𝑖 ∈ Good(𝑡), we define:

Guess𝑖 (𝑡) =
{
Φ≤3𝑡 | H∞

(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑡

)
< Rem𝑖 (𝑡)

}
. (11)

Informally, this is the set of transcripts that allow us to guess the

edges in the current interval (until 𝑖) with probability better than

that indicated by Rem. For 𝑡 ∈ {0} ∪ [𝑇 ] and 𝐶 ∈ {𝐴, 𝐵}, define:

Info𝐶 (𝑡) =
{
Φ≤3𝑡 | D

(
dist

(
f𝐶 | Φ≤3𝑡

)
| | U

)
> 𝑚0.01

}
. (12)

Informally, this is the set of transcripts that give a lot of information

about party 𝐶’s input.

5.3 Properties of Info

This section is dedicated to proving Lemma 5.4, which will be

key to proving our main result. Roughly, Lemma 5.4 says that

transcripts are unlikely to be informative enough to be in the set

Info as that requires information ≥ 𝑚0.01 which is much more than

the communication (as𝑚 is larger than the communication to the

power of 200).

Lemma 5.4. For all 𝑡 ∈ {0} ∪ [𝑇 ] and 𝐶 ∈ {𝐴, 𝐵},

Pr
(
Φ≤3𝑡 ∈ Info𝐶 (𝑡)

)
≤ 1

𝑚0.5
.

For all 𝑡 ′ ∈ [3𝑇 ], let 𝜎′𝑡 ′ and𝑀
′
𝑡 ′ be as in Lemma 5.3. We define

for all 𝐶 ∈ {𝐴, 𝐵}, for all 𝑡 ′ ∈ {0} ∪ [3𝑇 ], for all Φ≤𝑡 ′ , the set:

Rec𝐶 (Φ≤𝑡 ′ ) =
{
𝑓𝐶 | ∀𝑡 ′′ ∈ [𝑡 ′] s.t. 𝜎′𝑡 ′′ = 𝐶, (13)

we have Φ𝑡 ′′ = 𝑀′
𝑡 ′′

(
𝑓𝐶 ,Φ<𝑡 ′′

)}
.

Roughly, our definition ofΦ ensures that the pairs of inputs that lead

to the transcript Φ≤𝑡 ′ form a combinatorial rectangle (Rec denotes

rectangle), and Rec𝐶 denotes the projection of this rectangle on

party 𝐶’s inputs. In other words, Rec𝐶 is the set of all inputs of

party 𝐶 that may lead to the transcript Φ≤𝑡 ′ .

Observation 5.5. For all 𝑡 ′ ∈ [3𝑇 ], for all Φ≤𝑡 ′ , for all 𝐶 ∈
{𝐴, 𝐵}, if 𝜎′𝑡 ′ ≠ 𝐶 , Rec𝐶 (Φ≤𝑡 ′ ) = Rec𝐶 (Φ<𝑡 ′ ).

We now show several properties of Rec𝐶 . The formal proofs of

Lemmas 5.6 to 5.8 are omitted for space and can be found in the

full version of the paper.

Lemma 5.6. For all 𝑡 ′ ∈ {0} ∪ [3𝑇 ], for all Φ≤𝑡 ′ , the event
(
∀𝐶 ∈

{𝐴, 𝐵} : f𝐶 ∈ Rec𝐶 (Φ≤𝑡 ′ )
)
and the event Φ≤𝑡 ′ are equivalent.

Lemma 5.7. For all 𝑡 ′ ∈ {0} ∪ [3𝑇 ], for all Φ≤𝑡 ′ ,

Pr(Φ𝑡 ′ | Φ<𝑡 ′ ) =

���Rec𝜎
′
𝑡 ′ (Φ≤𝑡 ′ )

���
���Rec𝜎

′
𝑡 ′ (Φ<𝑡 ′ )

���
.

Lemma 5.8. For all 𝑡 ′ ∈ {0} ∪ [3𝑇 ],𝐶 ∈ {𝐴, 𝐵},

Pr

( ��Rec𝐶 (Φ≤𝑡 ′ )
��

��supp
(
f𝐶

) �� <
1

𝑚2𝑡 ′

)

≤ 𝑡 ′

𝑚0.6
.

Wenow have the tools necessary to finish the proof of Lemma 5.4.

Proof of Lemma 5.4. For all Φ≤3𝑡 ∈ Info𝐶 (𝑡) we have:

D

(
dist

(
f𝐶 | Φ≤3𝑡

)
| | U

)
> 𝑚0.01 (Eq. (12))

=⇒ D

(
dist

(
f𝐶 | ∀𝐶′ ∈ {𝐴, 𝐵} : f𝐶′∈ Rec𝐶

′ (Φ≤3𝑡 )
)
| | U

)
> 𝑚0.01

(Lemma 5.6)

=⇒ D

(
dist

(
f𝐶 | f𝐶 ∈ Rec𝐶 (Φ≤3𝑡 )

)
| | U

)
> 𝑚0.01

(Independence of f𝐴 and f𝐵 )

=⇒
��Rec𝐶 (Φ≤3𝑡 )

��
��supp

(
f𝐶

) �� <
1

2𝑚
0.01

. (Lemma A.9)

=⇒
��Rec𝐶 (Φ≤3𝑡 )

��
��supp

(
f𝐶

) �� <
1

𝑚6𝑡
.

Thus, we get that Pr
(
Φ≤3𝑡 ∈ Info𝐶 (𝑡)

)
≤ Pr

(
|Rec𝐶 (Φ≤3𝑡 ) |
|supp(f𝐶 ) | <

1
𝑚6𝑡

)
.

The result follows from Lemma 5.8. □

5.4 Key Lemma

We now show our key lemma.

Lemma 5.9. Let 𝑡 ∈ {0} ∪ [𝑇 ] and 𝑖 ∈ Good(𝑡). We have:

Pr
(
Φ≤3𝑡 ∈ Guess𝑖 (𝑡)

)
≤ 𝑡

𝑚0.1
.

Proof. Proof by induction on 𝑡 . The base 𝑡 = 0 is straightforward

as we get Emb
(
ℓ<𝑖

)
= 0 which means that ℓ<𝑖 = 0 implying that

Guess𝑖 (𝑡) = ∅. We show the result for 𝑡 > 0 assuming it holds for

smaller values of 𝑡 . We consider the following cases:
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When Emb
(
ℓ<𝑖

)
< 𝑡 : At a high level, this case amounts to ana-

lyzing a variant of the well-known Index problem, where the party

holding the index can communicate a small number of bits but not

enough to send the entire index. Let 𝑢 = Emb
(
ℓ<𝑖

)
for convenience.

Note that 𝑖 ∈ Good(𝑢). Applying the induction hypothesis on 𝑢,

we get:

Pr
(
Φ≤3𝑢 ∈ Guess𝑖 (𝑢)

)
≤ 𝑢

𝑚0.1
.

It is therefore sufficient to show that

Pr
(
Φ≤3𝑡 ∈ Guess𝑖 (𝑡) | Φ≤3𝑢 ∉ Guess𝑖 (𝑢)

)
≤ 1

𝑚0.1
.

We assume 𝜏𝑖 = 𝐴 as the argument for 𝜏𝑖 = 𝐵 is analogous. For this,

we shall fix an arbitrary Φ≤3𝑢 ∉ Guess𝑖 (𝑢), and an arbitrary 𝑓 𝐵

and show that

Pr
(
Φ≤3𝑡 ∈ Guess𝑖 (𝑡) | Φ≤3𝑢 , 𝑓 𝐵

)
≤ 1

𝑚0.1
.

By Eq. (11), it suffices to show that:

Pr

(
Φ(3𝑢,3𝑡 ] ∈

{
Φ(3𝑢,3𝑡 ] | H∞

(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑡

)

≤ Rem𝑖 (𝑡)
}
| Φ≤3𝑢 , 𝑓 𝐵

)
≤ 1

𝑚0.1
. (14)

We now focus on showing Eq. (14). Define 𝑧 = (0.2 + |E ∩ (𝑢, 𝑡] |) ·
log𝑚 for convenience. For this, we will apply Lemma A.7 with

X = f𝐴 , 𝑓 (X) = PC
>ℓ<

𝑖
(f≤𝑖 ), 𝑔(X) = Φ(3𝑢,3𝑡 ] , 𝐸 = (Φ≤3𝑢 , 𝑓 𝐵), and

𝑡 = 𝑧. Note that as conditioning on Φ≤3𝑢 fixes the value of PC(f≤ℓ<
𝑖
)

(Claim 5.2), PC
>ℓ<

𝑖
(f≤𝑖 ) is indeed a function of f𝐴 . Similarly, as

we condition on 𝑓 𝐵 , Φ(3𝑢,3𝑡 ] is indeed a function of f𝐴 . Finally,

observe from Eqs. (9) and (10) that for all 𝑢′ ∈ (𝑢, 𝑡], we have

Φ3𝑢′−1 = Φ3𝑢′ = 0 and thus 𝑔(·) takes at most 𝑚 |E∩(𝑢,𝑡 ] | many

values.9

From Lemma A.7, we get:

Pr
(
Φ(3𝑢,3𝑡 ] ∈ 𝐺∗ | Φ≤3𝑢 , 𝑓 𝐵

)
≤ 1

𝑚0.1
, (15)

where:

𝐺∗
=

{
Φ(3𝑢,3𝑡 ] | H∞

(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑡 , 𝑓 𝐵

)

≤ H∞
(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑢 , 𝑓 𝐵

)
− 𝑧

}
.

Next, we claim that we can łdropž the conditioning on 𝑓 𝐵 . For this,

recall from Lemma 5.6 that the events Φ≤3𝑡 and
(
∀𝐶 ∈ {𝐴, 𝐵} : f𝐶 ∈

Rec𝐶 (Φ≤3𝑡 )
)
are equivalent. As the latter event is a combinatorial

rectangle (it is of the form (f𝐴 ∈ A)∧ (f𝐵 ∈ B) for some setsA,B)

and the random variables f𝐴 and f𝐵 are independent, we get that the

random variables f𝐴 and f𝐵 are also independent conditioned on

Φ≤3𝑡 . Next, recall that PC>ℓ<
𝑖
(f≤𝑖 ) is a function of f𝐴 conditioned

on Φ≤3𝑢 , and conclude that PC>ℓ<
𝑖
(f≤𝑖 ) and f𝐵 are also independent

conditioned on Φ≤3𝑡 allowing us to drop 𝑓 𝐵 . A similar argument

allows us to drop 𝑓 𝐵 from the other min-entropy term and we get:

9For 𝑡 ′ ∈ (𝑢, 𝑡 ] where 𝜏𝑡 ′ = 𝐵, conditioning on 𝑓 𝐵 makes each message
Φ3𝑡 ′−2 a deterministic function of the transcript so far. As such, there are at most

𝑚 | {𝑡 ′ ∈ (𝑢,𝑡 ]:𝜏𝑡 ′ =𝐴} | possible transcripts, as there are𝑚 possible values of Φ3𝑡 ′−2 for
each 𝑡 ′ ∈ (𝑢, 𝑡 ] where 𝜏𝑡 ′ = 𝐴. Finally, by the definition of ℓ≥

𝑖
and Eqs. (1) and (2),

we get that {𝑡 ∈ (𝑢, 𝑡 ] : 𝜏𝑡 ′ = 𝐴} = E ∩ (𝑢, 𝑡 ].

𝐺∗
=

{
Φ(3𝑢,3𝑡 ] | H∞

(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑡

)

≤ H∞
(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑢

)
− 𝑧

}
.

By Eq. (11) and our choice of Φ≤3𝑢 ∉ Guess𝑖 (𝑢), we have:

𝐺∗ ⊇
{
Φ(3𝑢,3𝑡 ] | H∞

(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑡

)
≤ Rem𝑖 (𝑢) − 𝑧

}
.

Using Eq. (7) and the definition of 𝑧, we get:

𝐺∗ ⊇
{
Φ(3𝑢,3𝑡 ] | H∞

(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑡

)
≤ Rem𝑖 (𝑡)

}
.

This together with Eq. (15) shows Eq. (14).

When Emb
(
ℓ<𝑖

)
= 𝑡 : At a high level, the analysis in this case

follows the popular pointer chasing lower bound of [13].We assume

𝜏𝑖 = 𝐴 as the argument for 𝜏𝑖 = 𝐵 is analogous. As 𝑡 > 0, we have

ℓ<𝑖 > 0 and we get 𝜏ℓ<
𝑖

= 𝐵. It follows that 𝜎𝑡 = 𝐵. Let 𝑢 = 𝑡 − 1.

Applying the induction hypothesis on 𝑢 and ℓ<𝑖 , we get:

Pr
(
Φ≤3𝑢 ∈ Guessℓ

<

𝑖 (𝑢)
)
≤ 𝑢

𝑚0.1
.

By Lemma 5.4, we also have:

Pr
(
Φ≤3𝑢 ∈ Info𝐴 (𝑢)

)
≤ 1

𝑚0.5
.

Thus, it suffices to show that:

Pr
(
Φ≤3𝑡 ∈ Guess𝑖 (𝑡) | Φ≤3𝑢 ∉ Guessℓ

<

𝑖 (𝑢) ∪ Info𝐴 (𝑢)
)
≤ 1

𝑚0.15
.

For this, we shall fix an arbitrary Φ≤3𝑢 ∉ Guessℓ
<

𝑖 (𝑢) ∪ Info𝐴 (𝑢)
and show that:

Pr
(
Φ≤3𝑡 ∈ Guess𝑖 (𝑡) | Φ≤3𝑢

)
≤ 1

𝑚0.15
. (16)

For all 𝑖′ ∈
(
ℓ<𝑖 , ℓ≥𝑖

]
, define the set:

𝑆𝑖′ =

{
𝑧 ∈ [𝑚]ℓ<𝑖

| D
(
dist

(
PC

>ℓ<
𝑖

(
𝑧, f(ℓ<𝑖 ,𝑖′]

)
| Φ≤3𝑢

)
| | U

)
≥ 1

𝑚0.42

}
. (17)

Also, define 𝑆 =
⋃

𝑖′∈(ℓ<𝑖 ,ℓ≥
𝑖 ] 𝑆𝑖′ . Roughly speaking, 𝑆 is the set

of prefixes 𝑧 that allow the parties to guess the transcript in the

next interval. Recall that Emb
(
ℓ<𝑖

)
= 𝑡 means that we are currently

at the end of an interval. We now show that the probability of

landing in 𝑆 is small, as formalized in Eq. (18) below. Next, use the

fact that 𝜏𝑖 = 𝐴 and the definition of ℓ<𝑖 and ℓ≥𝑖 to conclude that

𝜏𝑖′ = 𝐴 for all 𝑖′ ∈
(
ℓ<𝑖 , ℓ≥𝑖

]
. It follows that for all 𝑖′ ∈

(
ℓ<𝑖 , ℓ≥𝑖

]
, f𝐴

determines f(ℓ<𝑖 ,𝑖′] . This, together with Lemma A.11 and the fact

that D
(
dist

(
f𝐴 | Φ≤3𝑢

)
| | U

)
≤ 𝑚0.01 (which follows as Φ≤3𝑢 ∉

Info𝐴 (𝑢)) implies that D
(
dist

(
f(ℓ<𝑖 ,𝑖′] | Φ≤3𝑢

)
| | U

)
≤ 𝑚0.01. We

get, for all 𝑖′ ∈
(
ℓ<𝑖 , ℓ≥𝑖

]
, that:

𝑚0.01 ≥ D
(
dist

(
f(ℓ<𝑖 ,𝑖′] | Φ≤3𝑢

)
| | U

)

≥
∑︁

𝑧∈[𝑚]ℓ
<

𝑖

D

(
dist

(
PC

>ℓ<
𝑖

(
𝑧, f(ℓ<𝑖 ,𝑖′]

)
| Φ≤3𝑢

)
| | U

)

(Lemma A.11)
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≥
∑︁

𝑧∈𝑆𝑖′
D

(
dist

(
PC

>ℓ<
𝑖

(
𝑧, f(ℓ<𝑖 ,𝑖′]

)
| Φ≤3𝑢

)
| | U

)

≥ |𝑆𝑖′ | ·
1

𝑚0.42
. (Eq. (17))

As such, we get that for all 𝑖′ ∈
(
ℓ<𝑖 , ℓ≥𝑖

]
, we have |𝑆𝑖′ | ≤ 𝑚0.44 im-

plying that |𝑆 | ≤ 𝑚0.45. Next, note that as Φ≤3𝑢 ∉ Guessℓ
<

𝑖 (𝑢), we
also have by Eq. (11) that H∞ (PC

>ℓ<
ℓ<
𝑖

(f≤ℓ<
𝑖
) | Φ≤3𝑢 ) ≥ Remℓ<

𝑖 (𝑢).
Observe from Claim 5.2 that conditioning on Φ≤3𝑢 fixes the value of

PC(f≤ℓ<
ℓ<
𝑖

) = PC≤ℓ<
ℓ<
𝑖

(f≤ℓ<
𝑖
). Thus, we get H∞ (PC(f≤ℓ<

𝑖
) | Φ≤3𝑢 ) ≥

Remℓ<
𝑖 (𝑢). It follows from Eq. (7) and Definition A.5 that

Pr
(
PC

(
f≤ℓ<

𝑖

)
∈ 𝑆 | Φ≤3𝑢

)
≤ 𝑚0.45 · 2−Rem

ℓ<
𝑖 (𝑢 ) ≤ 1

𝑚0.25
. (18)

As a consequence, Eq. (16) follows if we show that:

Pr
(
Φ≤3𝑡 ∈ Guess𝑖 (𝑡) | Φ≤3𝑢 , PC

(
f≤ℓ<

𝑖

)
∉ 𝑆

)
≤ 1

𝑚0.2
.

Next, note from Claim 5.2 that the value of Φ<3𝑡 fixes the value

of PC(f≤ℓ<
𝑖
) (and also of Φ≤3𝑢 ). Thus, it suffices to fix an arbitrary

Φ<3𝑡 that agrees with Φ≤3𝑢 and for which the corresponding value

of PC(𝑓≤ℓ<
𝑖
) ∉ 𝑆 , and show that

Pr
(
Φ≤3𝑡 ∈ Guess𝑖 (𝑡) | Φ<3𝑡

)
≤ 1

𝑚0.2
.

By Eq. (11), this is the same as:

Pr
(
Φ3𝑡 ∈

{
Φ3𝑡 | H∞

(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ≤3𝑡

)
< Rem𝑖 (𝑡)

}
| Φ<3𝑡

)

≤ 1

𝑚0.2
.

Fixing such a Φ<3𝑡 , this is because of the following two claims. We

omit the formal proofs of these claims, which can be found in the

full version of the paper.

Claim 5.10. It holds that:

Pr(Φ3𝑡 = 1 | Φ<3𝑡 ) ≤
1

𝑚0.2
.

Claim 5.11. It holds that:

H∞
(
PC

>ℓ<
𝑖
(f≤𝑖 ) | Φ<3𝑡 ,Φ3𝑡 = 0

)
≥ Rem𝑖 (𝑡) .

□

5.5 Finishing the Proof

We are now ready to prove Lemma 5.1

Proof of Lemma 5.1. Recall that we are showing the lemma

in the contrapositive, assuming that 𝜏 is a not subsequence of 𝜎 .

This means that Emb(𝑛) > 𝑇 implying by Eq. (6) that there exists

𝑖 ∈ [𝑛] such that 𝑖 ∈ Good(𝑇 ). Fix such an 𝑖 and apply Lemma 5.9 to

conclude that Pr(E) < 1
𝑛2 , where E is the event Φ≤3𝑇 ∈ Guess𝑖 (𝑇 ).

We now derive Eq. (4) as follows:

Pr(resΠ (F) = PC(F)) ≤ Pr(E) + Pr
(
resΠ (F) = PC(F) | E

)

(Union bound)

<
1

𝑛2
+ Pr

(
resΠ (F) = PC(F) | E

)
.

Thus, it suffices to show that Pr
(
resΠ (F) = PC(F) | E

)
≤ 1

𝑛2 . We

show this holds under a stronger conditioning by conditioning on

an arbitrary Φ≤3𝑇 such that Φ≤3𝑇 ∉ Guess𝑖 (𝑇 ). Fixing such a Φ≤3𝑇
and noting that fixing Φ≤3𝑇 also fixes resΠ (F) to some value res

we get:

Pr(resΠ (F) = PC(F) | Φ≤3𝑇 ) ≤ Pr(PC(F) = res | Φ≤3𝑇 )

≤ Pr
(
PC

>ℓ<
𝑖
(f≤𝑖 ) = res

>ℓ<
𝑖

| Φ≤3𝑇
)

≤ 2−Rem
𝑖 (𝑇 )

(Eq. (11) as Φ≤3𝑇 ∉ Guess𝑖 (𝑇 ))
≤ 𝑚−0.5 (Eq. (7))

≤ 1

𝑛2
.

□

6 PROOF OF THEOREM 4.2

In this section, we prove Theorem 4.2. For notational convenience,

we define the constant 𝜂 = 10−5.

6.1 A Customized Concentration Inequality

Fact 6.1. For all integers 1 ≤ 𝑘 ≤ 𝑛, we have:

(𝑛
𝑘

)𝑘
≤

(
𝑛

𝑘

)
≤

(
3𝑛

𝑘

)𝑘
.

Lemma 6.2. Let 𝑍 ⊆ N and 𝑛 > 0 be an integer. Also, let 𝑝 > 0

and X1, X2, · · · , X𝑛 be random variables taking values in N. Then, if

𝛿 > 0 is such that for all 𝑖 ∈ [𝑛] and all 𝑥1, 𝑥2, · · · , 𝑥𝑖−1 ∈ N, we
have:

Pr
(
X𝑖 = 1 | ∀𝑖′ ∈ [𝑖 − 1] : X𝑖′ = 𝑥𝑖′

)

≤ 1 − 𝑝 · 1
(
𝑖−1∑︁

𝑖′=1

𝑥𝑖′ ∉ 𝑍

)

· 1
(
𝑖−1∑︁

𝑖′=1

𝑥𝑖′ ≤ (1 + 𝛿) · 𝑛 − 1

)

.

Then, it holds that:

Pr

(
𝑛∑︁

𝑖=1

X𝑖 ≤ (1 + 𝛿) · 𝑛
)

≤ 2−𝑝𝑛+𝛿𝑛·log
12
𝛿
+|𝑍 | .

The formal proof of Lemma 6.2 is omitted for space and can be

found in the full version of the paper.

6.2 Basic Definitions

Recall that 𝜂 = 10−5. Also recall from Section 2.2 that we consider

segments of geometrically increasing lengths. These segments will

be parameterized by an integer ℓ > 0. We will use 𝐿ℓ to denote the

length of segment ℓ , 𝐷ℓ to denote the łdelayž or the łlagž before

the segment starts, and 𝐶ℓ to denote the non-bullet symbols in the

pattern for this segment. We set these parameters as follows:

𝐿ℓ = 𝜂−2ℓ−2 𝐶ℓ =
⌊
𝜂6𝐿ℓ

⌋
𝐷ℓ = 𝜂4𝐿ℓ .

(19)

We also define 𝐿≤ℓ =
∑ℓ
ℓ ′=1 𝐿ℓ ′ and 𝐿<ℓ =

∑ℓ−1
ℓ ′=1 𝐿ℓ ′ . We adopt the

convention that 𝐿≤0 = 0 and observe that all these parameters

integers. Next, we define the set {𝐴, 𝐵}• to denote the set {𝐴, 𝐵}• =

{𝐴, 𝐵} ∪ {•}. For 𝜌 ∈ {𝐴, 𝐵}∗•, we use bull(𝜌) to denote the number

of coordinates in the string 𝜌 that are equal to the łbulletž symbol
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•. Formally, we have bull(𝜌) = |{𝑖 ∈ [|𝜌 |] | 𝜌𝑖 = •}|. The following
simple observation counts the number of strings 𝜌 with a given

value of bull(𝜌).

Observation 6.3. For all 0 ≤ 𝑇 ′ ≤ 𝑇 , we have:

���
{
𝜌 ∈ {𝐴, 𝐵}𝑇• | bull(𝜌) = 𝑇 ′

}��� = 2𝑇−𝑇 ′ ·
(

𝑇

𝑇 −𝑇 ′

)
.

For strings 𝜌 ∈ {𝐴, 𝐵}∗• and 𝜎 ∈ {𝐴, 𝐵}bull(𝜌 ) , we can insert the

coordinates of 𝜎 into the bullet coordinates of 𝜌 to get a string

ins(𝜎, 𝜌) ∈ {𝐴, 𝐵} |𝜌 | , whose 𝑖th coordinate, for 𝑖 ∈ [|𝜌 |], is denoted
by ins𝑖 (𝜎, 𝜌) and defined as:

ins𝑖 (𝜎, 𝜌) =
{
𝜌𝑖 , if 𝜌𝑖 ≠ •
𝜎bull(𝜌≤𝑖 ) , if 𝜌𝑖 = •

. (20)

The function ins(·) satisfies the following:

Lemma 6.4. Let 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ and define 𝑇 = |𝜎 |, 𝑇 ′
= |𝜎′ |. For

all (possibly empty10) sets 𝑆 ⊆ [𝑇 ] such that Emb(𝜎, 𝜎′,max(𝑆)) ≤
𝑇 ′, there exists a string 𝜌 ∈ {𝐴, 𝐵}𝑇 ′

• such that bull(𝜌) = |𝑆 | and
ins(𝜎𝑆 , 𝜌) = 𝜎′.

Lemma 6.5. Let 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ and define 𝑇 = |𝜎 | and 𝑇 ′
= |𝜎′ |.

Let 𝑖 ∈ [𝑇 ], 𝑖′ ∈ {0} ∪ [𝑇 ′] be such that Emb(𝜎, 𝜎′, 𝑖 − 1) ≤ 𝑖′ <

Emb(𝜎, 𝜎′, 𝑖). For all 𝑖′′ ≥ 𝑖′ ∈ [𝑇 ′] and 0 ≤ 𝑏 ≤ |E(𝜎, 𝜎′) ∩ (𝑖′, 𝑖′′] |,
there is a string 𝜌 ∈ {𝐴, 𝐵}𝑖′′−𝑖′• such that bull(𝜌) = 𝑏 and:

ins
(
𝜎[𝑖,𝑖+𝑏 ) , 𝜌

)
= 𝜎′(𝑖′,𝑖′′ ] .

The formal proofs of Lemmas 6.4 and 6.5 are omitted for space

and can be found in the full version of the paper.

6.3 Predictable Indices

We are now ready to define the notion of predictable indices.

Definition 6.6 (Predictable indices). Let ℓ > 0 and 𝜎 ∈
{𝐴, 𝐵}∗ be given. Let 𝑖 be an integer satisfying 𝐷ℓ ≤ 𝑖 ≤ |𝜎 | −2𝐿ℓ . For

all integers 0 ≤ 𝑗 ≤ 𝐿ℓ and 𝜌 ∈ {𝐴, 𝐵}𝐿ℓ• satisfying bull(𝜌) = 𝐿ℓ −𝐶ℓ ,

define the function11:

Delay(ℓ, 𝜎, 𝑖, 𝑗, 𝜌)

= Emb
(
𝜎>𝑖−𝐷ℓ

, ins
(
𝜎 (𝑖+𝑗,𝑖+𝑗+𝐿ℓ−𝐶ℓ ] , 𝜌

)
, (1 − 𝜂) · 𝐿ℓ

)
.

We say that 𝑖 is ℓ-predictable in 𝜎 if there exist 𝜌, 𝑗 as above for

which Delay(ℓ, 𝜎, 𝑖, 𝑗, 𝜌) ≤ 𝐿ℓ and use Predℓ (𝜎) to denote the set of
all indices 𝐷ℓ ≤ 𝑖 ≤ 𝑇 − 2𝐿ℓ that are ℓ-predictable in 𝜎 .

Lemma 6.7. Let integers 𝑇, ℓ > 0 and 𝐷ℓ ≤ 𝑖 ≤ 𝑇 − 2𝐿ℓ be given.

We have:

Pr
𝝈∼{𝐴,𝐵}𝑇

(𝑖 ∈ Predℓ (𝝈)) ≤ 2−
𝐿ℓ
4 .

The formal proof of Lemma 6.7 is omitted for space and can be

found in the full version of the paper.

10We adopt the convention that max(∅) = 0.
11Note that Eq. (19) implies that (1 − 𝜂 ) · 𝐿ℓ is an integer.

6.4 Strings With Small Predℓ (·) Exist
Lemma 6.8. For all integers 𝑇 > 0, there exists 𝜎 ∈ {𝐴, 𝐵}𝑇 such

that for all ℓ > 0, we have:

|Predℓ (𝜎) | ≤ 2−
𝐿ℓ
8 ·𝑇 .

The formal proof of Lemma 6.8 is omitted for space and can be

found in the full version of the paper.

6.5 Structure of Long Subsequences

For the remainder of this section, readers may like to recall the

definition of the set E𝜎,𝜎 ′ in Eq. (2). We borrow the following lemma

from [16].

Lemma 6.9 ([16], Lemma 6). Let𝑇 ′
> 0 be an integer. Also, letI be

an indexing set and a collection of pairs
{
𝑡 ′𝑖 , 𝑡𝑖

}
𝑖∈I be given. Assume

that 0 ≤ 𝑡 ′𝑖 < 𝑡𝑖 ≤ 𝑇 ′ for all 𝑖 ∈ I. There exists a set I′ ⊆ I such

that the intervals
{
(𝑡 ′𝑖 , 𝑡𝑖 ]

}
𝑖∈I′ are mutually disjoint and satisfy:

�����

⋃

𝑖∈I
(𝑡 ′𝑖 , 𝑡𝑖 ]

�����
≤ 2 ·

�����

⋃

𝑖∈I′
(𝑡 ′𝑖 , 𝑡𝑖 ]

�����
.

Lemma 6.10. Let 𝜎, 𝜎′ ∈ {𝐴, 𝐵}∗ be such that 𝜎 is a subsequence

of 𝜎′. If |𝜎′ | ≤
(
1 + 𝜂20

)
· |𝜎 |, then:

���
{
𝑖′ ∈

[��𝜎′
��] | ∃0 < 𝑘 ≤

��𝜎′
�� − 𝑖′

:
��E𝜎,𝜎 ′ ∩ (𝑖′, 𝑖′ + 𝑘]

�� ≤
(
1 − 𝜂8

)
· 𝑘

}��� ≤ 𝜂8 ·
��𝜎′

��.

The formal proof of Lemma 6.10 is omitted for space and can be

found in the full version of the paper.

6.6 Proof of Theorem 4.2

Proof of Theorem 4.2. We define 𝜎 to be the string promised

by Lemma 6.8. Thus, for all ℓ > 0, we have:

|Predℓ (𝜎) | ≤ 2−
𝐿ℓ
8 ·𝑇 . (21)

Fix an arbitrary 𝜎′ ∈ {𝐴, 𝐵}∗ such that 𝜎 is a strong subsequence

of 𝜎′ and let 𝑇 ′
= |𝜎′ |. Assume for the sake of contradiction that

𝑇 ′
<

(
1 + 𝜂20

)
· 𝑇 . As 𝜎 is a strong subsequence of 𝜎′, we must

have 𝑇 ′ ≥ 𝑇 + 1 and
��E𝜎,𝜎 ′

�� = 𝑇 . From these, we conclude that

2𝑇 ≥ 𝑇 ′ ≥ 𝑇 ≥ 𝜂−20 and
��E𝜎,𝜎 ′

�� ≥
(
1 − 𝜂10

)
·𝑇 ′.

Next, we use Definition 3.7 to get a set 𝐼 ⊆ [𝑇 ′] such that |𝐼 | ≥ 𝑇 ′
10

and for all 𝑖′ ∈ 𝐼 we have that 𝜎 is a subsequence of 𝜎′−𝑖′ . Define
the following sets:

𝐼1 = [𝑇 ′] \
[ ⌊
0.999𝑇 ′⌋ ]

𝐼2 = [𝑇 ′] \ E𝜎,𝜎 ′

𝐼3 =

{
𝑖′ ∈ [𝑇 ′] | 0 < 𝑘 ≤ 𝑇 ′ − 𝑖′

:
��E𝜎,𝜎 ′ ∩ (𝑖′, 𝑖′ + 𝑘]

�� ≤
(
1 − 𝜂8

)
· 𝑘

}

(22)

Also, define, for ℓ > 0, the set:

𝐼3+ℓ =
{
𝑖′ ∈ [𝑇 ′] | boundℓ (𝑖′) ∈ Predℓ (𝜎)

}
, (23)

where, for 𝑖′ ∈ [𝑇 ′], we define
boundℓ (𝑖′) = max

{
𝑖 ∈ {0} ∪ [𝑇 ] | Emb

(
𝜎, 𝜎′, 𝑖

)
≤ 𝑖′

}

+ (1 − 𝜂) · 𝐿<ℓ + 𝐷ℓ − ℓ .
(24)
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We claim that:

Claim 6.11. We have:
������

⋃

𝑗>0

𝐼 𝑗

������
≤ 𝑇 ′

100
.

The formal proof of Claim 6.11 is omitted for space and can be

found in the full version of the paper.

Conclude from Claim 6.11 and the fact that |𝐼 | ≥ 𝑇 ′
10 that there

exists an index 𝑧′ ∈ 𝐼 \ ⋃
𝑗>0 𝐼 𝑗 . We show that this leads to a

contradiction. As 𝑧′ ∈ 𝐼 , we have that 𝜎 is a subsequence of

𝜎′−𝑧′ . Recall that this implies that
���E

(
𝜎, 𝜎′−𝑧′

)��� = 𝑇 or, equivalently,

Emb
(
𝜎, 𝜎′−𝑧′ ,𝑇

)
≤ 𝑇 ′ − 1 < 𝑇 ′. Henceforth, for notational conve-

nience, we abbreviate Emb
(
𝜎, 𝜎′−𝑧′ , ·

)
to Emb∗ (·) and E

(
𝜎, 𝜎′−𝑧′

)
to

E∗. We also abbreviate Emb(𝜎, 𝜎′, ·) to Emb(·) and E(𝜎, 𝜎′) to E.

We now use the fact that 𝑧′ ∉
⋃

𝑗>0 𝐼 𝑗 to get more information

about 𝑧′. From Eq. (22), we get that 𝑧′ ≤ 0.999𝑇 ′ and 𝑧′ ∈ E. Due to

Eq. (2), this implies that there exists 𝑧 ∈ [𝑇 ] such that Emb(𝑧) = 𝑧′.
We claim that:

𝑧 ≤ (1 − 𝜂) ·𝑇 . (25)

Indeed, if not, we have from Observation 3.1 that 0.999𝑇 ′ ≥ 𝑧′ ≥
𝑧 ≥ (1 − 𝜂) ·𝑇 , a contradiction to 𝑇 ′

<

(
1 + 𝜂20

)
·𝑇 . Next, Eq. (22)

also says that for all 0 < 𝑘 ≤ 𝑇 ′ − 𝑧′, we have (as the left hand side

is an integer):

��E ∩ (𝑧′, 𝑧′ + 𝑘]
�� ≥

⌈(
1 − 𝜂8

)
· 𝑘

⌉
. (26)

Finally, use Eq. (23) and Observation 3.1 and Emb(𝑧) = 𝑧′ to get

that, for all ℓ > 0:

boundℓ (𝑧′) = 𝑧 + (1 − 𝜂) · 𝐿<ℓ + 𝐷ℓ − ℓ ∉ Predℓ (𝜎) . (27)

To derive a contradiction, we claim that:

Lemma 6.12. For all ℓ ≥ 0 such that 𝑧 ≤ 𝑇 − 3𝐿≤ℓ , we have:

Emb∗ (𝑧 + (1 − 𝜂) · 𝐿≤ℓ − ℓ) ≥ 𝑧′ + 𝐿≤ℓ .

The formal proof of Lemma 6.12 is omitted for space and can be

found in the full version of the paper.

We finish the proof of Theorem 4.2 by showing that it implies a

contradiction. For this, define ℓ∗ =
⌊
log1010

(
𝜂4𝑇 ′) ⌋ and note that

𝑇 ′ ≥ 𝜂−20 implies that ℓ∗ ≥ 5. We get from Eq. (19) that

𝐿≤ℓ∗ ≤ 2𝐿ℓ∗ ≤ 2𝜂2𝑇 ′ 𝐿≤ℓ∗ ≥ 𝐿ℓ∗ ≥ 𝜂4𝑇 ′ . (28)

Due to Eqs. (25) and (28), we can use Lemma 6.12 with ℓ∗ to get:

Emb∗ (𝑇 ) ≥ Emb∗
(
𝑧 + (1 − 𝜂) · 𝐿≤ℓ∗ − ℓ∗

)

+𝑇 − 𝑧 − (1 − 𝜂) · 𝐿≤ℓ∗ + ℓ∗ (Observation 3.1)

≥ 𝑧′ + 𝜂 · 𝐿≤ℓ∗ +𝑇 − 𝑧

≥ 𝜂 · 𝐿≤ℓ∗ +𝑇 (As Observation 3.1 implies 𝑧′ ≥ 𝑧)

≥ 𝜂5𝑇 ′ +𝑇 . (As 𝐿≤ℓ∗ ≥ 𝜂4𝑇 ′)

As we know that Emb∗ (𝑇 ) < 𝑇 ′, this contradicts 𝑇 ′
<

(
1 + 𝜂20

)
·

𝑇 . □
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A INFORMATION THEORY PRELIMINARIES

Recall that we use sans-serif letters to denote random variables.

We reserve 𝐸 to denote an arbitrary event. All random variables

will be assumed to be discrete and we shall adopt the convention

0 log 1
0 = 0. All logarithms are taken with base 2.

All formal proofs in this section are omitted for space and can

be found in the full version of the paper.

A.1 Entropy

Definition A.1 (Entropy). The (binary) entropy of X is defined

as:

H(X) =
∑︁

𝑥∈supp(X)
Pr(𝑥) · log 1

Pr(𝑥) .

The entropy of X conditioned on 𝐸 is defined as:

H(X | 𝐸) =
∑︁

𝑥∈supp(X)
Pr(𝑥 | 𝐸) · log 1

Pr(𝑥 | 𝐸) .

Definition A.2 (Conditional Entropy). We define the condi-

tional entropy of X given Y and 𝐸 as:

H(X | Y, 𝐸) =
∑︁

𝑦∈supp(Y)
Pr(𝑦 | 𝐸) · H(X | Y = 𝑦, 𝐸) .

Henceforth, we shall omit writing the supp(·) when it is clear

from context.

Lemma A.3 (Chain Rule for Entropy). It holds for all X, Y, Z

and 𝐸 that:

H(XY | Z, 𝐸) = H(X | Z, 𝐸) + H(Y | X,Z, 𝐸) .
Lemma A.4 (Conditioning reduces Entropy). It holds for all

X, Y, Z and 𝐸 that:

H(X | Y,Z, 𝐸) ≤ H(X | Z, 𝐸).
Equality holds if and only if X and Y are independent conditioned on

Z, 𝐸.

A.2 Min-Entropy

Definition A.5 (Min-Entropy). The min-entropy of a discrete

random variable X is

H∞ (X) = min
𝑥 :Pr(𝑥 )>0

log
1

Pr(𝑥) .

Fact A.6. If the random variable X takes values in the set Ω, it

holds that

0 ≤ H∞ (X) ≤ H(X) ≤ log|Ω |
Lemma A.7. Let Ω, 𝐴, 𝐵 be (finite) sets and X be a random variable

that takes values in the set Ω. Let 𝑓 : Ω → 𝐴 and 𝑔 : Ω → 𝐵 be

functions. For an event 𝐸 and 𝑡 > 0, define the set:

𝐵′ = {𝑏 ∈ 𝐵 | H∞ (𝑓 (X) | 𝐸,𝑔(X) = 𝑏) ≤ H∞ (𝑓 (X) | 𝐸) − 𝑡}.
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It holds that:

Pr
(
𝑔(X) ∈ 𝐵′ | 𝐸

)
≤ |𝐵 | · 2−𝑡 .

A.3 KL Divergence

Definition A.8 (KL Divergence). If 𝜇, 𝜈 are two distributions

over the same (finite) set Ω, the Kullback-Leibler (KL) Divergence

between 𝜇 and 𝜈 is defined as:

D(𝜇 | | 𝜈) =
∑︁

𝜔∈Ω
𝜇 (𝜔) · log 𝜇 (𝜔)

𝜈 (𝜔) .

For a finite non-empty set 𝑆 , we shall use U(𝑆) to denote the

uniform distribution over 𝑆 . We omit 𝑆 from the notation when it is

clear from the context. We use dist(X | 𝐸) to denote the distribution
of the random variable X conditioned on the event 𝐸.

Lemma A.9. Let X be a random variable uniformly distributed

over a set Ω and 𝑆 ⊆ Ω be given:

D(dist(X | X ∈ 𝑆) | | U) = log
|Ω |
|𝑆 | .

Lemma A.10. It holds for all X and 𝐸 that:

D(dist(X | 𝐸) | | U) = log( |supp(X) |) − H(X | 𝐸) .

Lemma A.11. It holds for all X, Y and 𝐸 that:

D(dist(XY | 𝐸) | | U) ≥ D(dist(X | 𝐸) | | U) + D(dist(Y | 𝐸) | | U).

A.4 Total Variation Distance

Definition A.12 (Total variation distance). Let 𝜇, 𝜈 be two

distributions over the same (finite) set Ω. The total variation distance

between 𝜇 and 𝜈 is defined as:

∥𝜇 − 𝜈 ∥TV = max
Ω′⊆Ω

∑︁

𝜔∈Ω′
𝜇 (𝜔) − 𝜈 (𝜔) .

Fact A.13 (Pinsker’s ineqality). Let 𝜇, 𝜈 be two distributions

over the same set Ω. It holds that:

∥𝜇 − 𝜈 ∥TV ≤
√︂

1

2
· D(𝜇 | | 𝜈).
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