|)
Check for
updates

The Rate of Interactive Codes Is Bounded Away from 1

Klim Efremenko
Ben-Gurion University
Israel

Dmitry Paramonov
Princeton University
USA

ABSTRACT

Kol and Raz [STOC 2013] showed how to simulate any alternating
two-party communication protocol designed to work over the noise-
less channel, by a protocol that works over a stochastic channel that
corrupts each sent symbol with probability € > 0 independently,

with only a1+ O(\/H(e)) blowup to the communication. In partic-

ular, this implies that the maximum rate of such interactive codes
approaches 1 as € goes to 0, as is also the case for the maximum rate
of classical error correcting codes. Over the past decade, followup
works have strengthened and generalized this result to other noisy
channels, stressing on how fast the rate approaches 1 as € goes
to 0, but retaining the assumption that the noiseless protocol is
alternating.

In this paper we consider the general case, where the noiseless
protocols can have arbitrary orders of speaking. In contrast to Kol-
Raz and to the followup results in this model, we show that the
maximum rate of interactive codes that encode general protocols
is upper bounded by a universal constant strictly smaller than 1.
To put it differently, we show that there is an inherent blowup in
communication when protocols with arbitrary orders of speaking
are faced with any constant fraction of errors € > 0. We mention
that our result assumes a large alphabet set and resolves the (non-
binary variant) of a conjecture by Haeupler [FOCS 2014].

CCS CONCEPTS

« Theory of computation — Communication complexity; Inter-
active computation.

KEYWORDS

Interactive Coding, Communication Complexity, Error Correcting
Codes

ACM Reference Format:

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena.
2023. The Rate of Interactive Codes Is Bounded Away from 1. In Proceedings
of the 55th Annual ACM Symposium on Theory of Computing (STOC ’23),
June 20-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3564246.3585249

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06...$15.00
https://doi.org/10.1145/3564246.3585249

1424

Gillat Kol
Princeton University
USA

Raghuvansh R. Saxena
Microsoft Research
USA

1 INTRODUCTION

One of the gems in Shannon’s famous 1948 paper introducing
information theory [17] is the channel capacity formula, that gives
the maximum rate possible for an error correcting code over any
discrete memoryless channel. Recall that an error correcting code
with rate r allows one party to reliably communicate a message
consisting of n symbols to a remote second party, with a negligible
probability of error, by sending only n - (1/r + 0(1)) symbols over
the channel. Let Cr ¢ be the symmetric channel with alphabet set
I and noise rate e.' The channel capacity formula shows that the
maximum rate over Cr ¢ approaches 1 as the noise rate e approaches
0. For instance, the maximum rate over Cyq 1} ¢ is 1 — H(e), where
H is the binary entropy function.

Schulman’s groundbreaking work [15] studied error correcting
codes in the “two-way” setting, where there are noisy channels
between the two communicating parties in both directions. Such
error correcting codes are called interactive codes and they allow the
encoding of interactive protocols, which may consist of many back-
and-forth messages, in a noise-resilient way. Following Schulman’s
question regarding the maximum rate of interactive codes [15],
Kol and Raz [12] defined the notion of interactive channel capacity,
which is the analogue of channel capacity in the interactive setting.
For every € > 0, they designed an interactive code with rate re =
1 - O(y/H(e)) over the two-way binary symmetric channel, under
the assumption that the protocol being encoded is alternating?®.

It is not hard to see that the interactive coding scheme of Kol
and Raz [12] also works for the Cr ¢ channel, for every I'. Their
result, stated for such channels, is that for any € > 0, any alphabet
set I, and any alternating protocol IT with alphabet T', there exists
a protocol IT” that simulates IT over Cr ¢ with negligible error, and
has length |II| - (1/re + 0(1)), where |II| is the length of IT. Observe
that, as in the classical setting, the maximum rate approaches 1 as €
approaches 0. Following [12], the dependence of the maximum rate
on €, under the same alternating turns assumption, was further im-
proved by [9] to 1 — O(+/€), and was also studied for other two-way
channels, including the adversarial channel [4, 9], the (adversarial)
feedback channel [7, 14], the adversarial erasure channel [7], and
the adversarial insertion-deletion channel [10].

IThat is, the input and output alphabets of the channel Cr ¢ are T, |T'| > 2. On a sent
symbol z € T, the channel outputs z with probability 1 — €, and with probability €, it
outputs a random symbol in T'.

2That is, Alice sends a message to Bob in all odd rounds, and vice versa.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

1.1 Our Result

The main result of this paper is Theorem 1.1, showing that in the
general case, where the order of speaking in the noiseless commu-
nication protocols IT may be arbitrary, the maximum achievable
rate is bounded away from 1.

THEOREM 1.1. For every e > 0, there exists a set T' and a determin-
istic protocol I1 with alphabet T, such that any randomized protocol
II" that simulates I1 over Cr ¢ with probability 0.99 has length at
least [TT|/(1 — Q(1)).

Observe that since Theorem 1.1 holds for the Cr ¢ channel that
has stochastic noise and for public-coin protocols I’ it also holds
for adversarial noise and private-coin protocols. Furthermore, our
proof of Theorem 1.1 actually proves a much stronger claim (see
Section 2). For example, it implies that the maximum rate of an
interactive code over the feedback channel that randomly erases a
single communicated symbol (i.e., one of the sent symbols, selected
uniformly at random, is received as ‘L’ and the sender is notified) is
only 1 —Q(1) (cf the results of [4, 7, 9, 10, 12, 14] for such channels
with maximum rate approaching 1).

We mention that our result settles the (non-binary version) of a
conjecture by Haeupler (Conjecture 1.1 in [9]), that also appears
in Haeupler and Gelles (Question 3 in Section 7 of [7]) and in
Gelles’s excellent survey (Question 2 in Section 5 of [6]). While
lower bounds on the maximum rate of various two-way channels
(i.e., upper bounds on the overhead of interactive codes) are known,
prior to our work, the only non-trivial upper bound was due to [12]
and is extremely involved (see Section 1.2).

We also mention that Theorem 1.1 uses a large alphabet set
(specifically, we need |T'| = poly(|II|)), as for such alphabets the
single erased symbol cannot be guessed by the receiver with high
probability (in the binary |T'| = 2 case, the erased symbol can be
guessed with probability %). Nevertheless, we believe that Theo-
rem 1.1 still holds for the binary setting (fixing I' = {0, 1}), and
proving it is an outstanding question we leave open. Other interest-
ing directions for future work include finding the maximum rate of
interactive codes over Cr ¢, say when € approaches 0, and charac-
terizing the “hard” communication orders resulting in maximum
rates bounded away from 1.

Finally, we wish to point out a corollary of Theorem 1.1: Many
works involving interactive protocols (in the noisy or noiseless
settings) assume an alternating order of speaking, as it is often
simpler to deal with and only incurs at most a factor 2 blowup to
the communication. Theorem 1.1 shows that this transformation
of general protocols to alternating ones incurs at least a factor
¢ blowup, for some ¢ > 1: Assume that the blowup is only by
a1+ o(1) factor. By converting the hard-to-simulate protocol IT
from Theorem 1.1 to a protocol with alternating turns and then
applying the [12] scheme, we obtain a noise-resilient protocol IT’
that simulates IT with only 1 + 0(1) blowup to the communication,
in contradiction to Theorem 1.1.

1.1.1 Techniques. The proof of Theorem 1.1 is quite involved and
a detailed overview can be found in Section 2. In this section we
give some of the highlights of our proof.

Theorem 1.1 is proved by combining Theorem 4.1 and Theo-
rem 4.2. As mentioned above, our result holds even over the very

1425

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena

mildly noisy channel that has feedback and only randomly erases
a single communicated symbol. Theorem 4.1 considers a pointer
chasing protocol with order of speaking ¢® and shows that it can
only be simulated over this mildly noisy channel by a protocol
with order of speaking o’, for which o is a strong subsequence of
o’. By a strong subsequence, we mean that for most coordinates
i’ of ¢’, o remains a subsequence of ¢’ even after coordinate i’ is
removed. Observe that given Theorem 4.1, to prove Theorem 1.1,
all we have to do is exhibit a ¢ such that any ¢’ for which o is a
strong subsequence of ¢’ is a constant factor longer than o. This is
done in Theorem 4.2.

At a high level, Theorem 4.1 is proved by proving a general-
ized pointer chasing lower bound: while prior pointer chasing lower
bounds assume that players alternate (e.g., [13]), our proof holds
for any order of speaking. To analyze cases where one of the par-
ties speaks in several consecutive rounds, we use a lower bound
for a generalization of the well-known Index problem, where the
communication is not one-way, but the party holding the index
speaks substantially less than what it takes to convey the index.
To see why this lower bound is useful, assume for example that
in the noiseless protocol Alice speaks three times and then Bob
speaks once, i.e, 0 = AAAB. We think of Alice’s message in those
three rounds as an index i, and of Bob’s input as a vector v. When
Bob speaks in the fourth round he gives v; to Alice. Now consider
a simulation protocol with order of speaking ¢’ = BABABA. Can
Bob give v; to Alice? We show that he cannot. The reason is that
Alice only speaks in two instead of three rounds before Bob’s final
round, thus she can only give partial information about i, which is
not enough for Bob to compute v;.

Theorem 4.2 is a purely combinatorial claim about strong subse-
quences, and is shown using the probabilistic method. We provide
a detailed overview in Section 2.2, but for the high level idea, con-
sider, for any T > 0 the pair of strings (o, 0”) = ((AB)T, (AB)T+1),
and observe that o is a strong subsequence of ¢’ and ¢’ is almost
the same length as 0. Roughly speaking, our proof shows that the
only reason o is a subsequence of ¢’ for such a short ¢, is that o is
highly “predictable”, in the sense that one can “guess” the symbols
after coordinate i based on the previous symbols. We formalize this
notion and show that a uniformly random o is not predictable, and
use this to show that for most ¢, no short ¢’ will be such that o is
a strong subsequence of ¢’.

1.2 Additional Related Work

We next survey the most relevant work on the maximum rates of
interactive codes over different channels.

The Cyg,1},e channel. The study of error correcting codes for
interactive communication was pioneered by Schulman [15], who
showed how to transform any interactive communication protocol
over the (noiseless) binary channel to an equivalent noise-resilient
protocol that works over the (two-way) Cyg 1} channel, with only
a constant overhead in the communication. This shows that for any

3We think of the order of speaking in a communication protocol as a string ¢ €
{A, B}", where 0; = A means that Alice speaks in round i, and o; = B means that
Bob speaks in round i.

The Rate of Interactive Codes Is Bounded Away from 1

€< % the maximum rate of an interactive code over Cy 1} ¢ is at
least some constant strictly greater than 0.

Kol and Raz [12] studied the maximum rate re achievable by any
interactive code over Cyg 1} ¢, but as mentioned above, it is not hard
to see that their results hold for every channel Cr ¢. They showed
that for alternating noiseless protocols and protocols whose com-
munication order is periodic with a small period, re = 1— O(\/H(e))
The assumption that the noiseless protocol is alternating (or has a
small period) is crucial as their coding scheme uses the rewind-if-
error mechanism [15], where the parties run the noiseless protocol
over the noisy channel, and periodically compare their received
transcripts to detect errors. If an error was detected, the parties
“rewind” to the last agreed upon point and continue the execution of
the noiseless protocol from that point. Since the noiseless protocol
is assumed to be alternating, by taking the order of speaking of
the simulating protocol to also be alternating, they can ensure that
when rewinding, the order of speaking in the simulation matches
the assumed order of speaking in the noiseless protocol. Kol and

Raz also proved a matching upper bound of 1 - Q (\/H(e)) for some

carefully chosen communication orders®.

We mention that the Kol-Raz result gives the first separation
between the maximum rate of classical error correcting codes and
that of interactive codes, and observe that Theorem 1.1 gives a
substantially stronger separation.

Building on [12] and also assuming an alternating order of speak-
ing, [8] presented a deterministic coding scheme that achieves a
rate of r¢ (the [12] scheme is randomized), and [2] gave a coding
scheme that handles larger €’s (observe that the [12] scheme is
only meaningful for small €’s). Specifically, [2] showed that the
maximum rate of interactive codes over Cy 1} ¢ is at least 0.0302
times the maximum rate of classical error correcting codes over

Cio,1},e-

Other (non-adaptive) channels. The maximum rates of interactive
codes over other two-way channels, that are well studied in the
context of classical codes, were also considered with the alternating
communication order assumption. Pankratov [14] studied the rate
of interactive codes over channels with random errors and feedback,
and gave a scheme with rate 1 — O(+/€). Haeupler and Gelles [7]
improved his result and gave a scheme with rate 1 — @(H(¢)) that
works for the adversarial feedback channel. A scheme with the same
rate was also given by [7] for the adversarial erasure channel. The
adversarial channel with corruption errors (bit flips) was considered
in 3,4, 9, 16], and an interactive code with rate r, for this model was
presented in [4]. The adversarial binary insertion-deletion channel
was considered by [10], who demonstrated an interactive coding
scheme with rate r, for it.

Adaptive channels. In this paper as well as in most of the prior
works on interactive coding, including all the paper surveyed so
far, the assumption is that the protocols IT and II’ have a non-
adaptive (a.k.a, oblivious or static) communication order, meaning

4Specifically, the upper and lower bounds match when the communication order is
log k
e

[11] showed that if the parties alternate in sending k = Q(poly(1/€)) consecutive
symbols, then the maximum rate is 1 — ©(H(€)), violating the upper bound of [12].

periodic with a period k that satisfies € = @() Indeed, Hauepler and Velingker

1426

STOC ’23, June 20-23, 2023, Orlando, FL, USA

that the order of communication in the protocol is fixed in advance.
Haeupler [9] considered the adaptive setting, where at any round,
each party decides whether to send a bit or listen for one based on
its input and received transcript (which, in turn, depends on the
channel’s noise). Observe, however, that protocols in these models
may have several parties attempting to send a symbol in the same
round, or even no senders at all, and the received bits in these cases
need to be specified.

Haeupler [9] constructed interactive codes that encode non-
adaptive protocols IT (with any communication order) by adaptive
protocols over the Cg 1} ¢ channel with rate 1 — O(+e), bypass-
ing the upper bound of [12]. Put together, [12] and [9] imply a
separation between the maximum rates obtained via adaptive and
non-adaptive encodings. [9] conjectured that this separation can be
strengthened, even for a single erasure error, and our Theorem 1.1
proves his conjecture. We mention that other adaptive models were
studied in the literature, see e.g., [1, 5].

2 OVERVIEW

Our main result (Theorem 1.1) says that regardless of how small
the noise parameter € is, the overhead required to simulate a noise-
less channel over a noisy channel that corrupts each symbol with
probability € independently, is a constant strictly larger than 1. As
mentioned in Section 1.1, we will actually prove a much stronger
version of this, showing that it holds even if the channel corrupts
exactly one (uniformly chosen) round, and the parties know in ad-
vance which round it is (and therefore, can change the simulation
protocol they use arbitrarily based on this round, as long as this
change does not affect the order in which the parties speak in the
other rounds).

Showing a lower bound for a simulation protocol in a noise
model that allows the protocol to change in response to the noise
essentially means that we have to show a lower bound for a noiseless
protocol, where all we know about the noiseless protocol is that its
order of speaking is the same regardless of which round is corrupted
by noise. Thus, a big part of our proof (Section 5) is, given two orders
of speaking o, 0’, understanding when can noiseless protocols with
order of speaking ¢’ simulate noiseless protocols with order of
speaking o. This part subsumes and generalizes famous “pointer-
chasing” and “round-complexity” lower bounds in communication
complexity [13, e.g.] and is overviewed in Section 2.1. The answer
turns out to be quite elegant: ¢’ can simulate o if and only if ¢ is a
subsequence of ¢”.

We now look back at our original problem of designing a noise-
less protocol IT that cannot be simulated by any (short) protocol
over a noisy channel, even when the noise corrupts only one ran-
dom symbol in the simulation protocol that is known to the parties
as soon as they fix the order of speaking in the simulation protocol.
Having shown that an order ¢’ can simulate o if and only if o
is a subsequence of ¢/, this means that we have to construct an
order of speaking o (which will be the order in which the parties
speak in IT) such that any short order of speaking o’ satisfies the
property that o is not a “strong” subsequence of ¢’. By that we mean
that removing one uniformly chosen coordinate from ¢’ ensures
that, with high probability, o is not a subsequence of ¢’ with that
coordinate removed (see Definition 3.7). This is the second main

STOC ’23, June 20-23, 2023, Orlando, FL, USA

part of our proof and is described in Section 6 and overviewed in
Section 2.2.

2.1 Lower Bounds on Noiseless Simulations

Recall that the order of speaking for a protocol IT of length T is a
string o € {A, B}T that captures the order in which Alice and Bob
speak in II, in the sense that, for all i € [T], party o; is the party
speaking in round i of I1. The goal of this section is to show that,
given any two orders of speaking o and ¢’, all (noiseless) protocols
with order of speaking ¢ can be simulated by (noiseless) protocols
with order of speaking ¢’ if and only if ¢ is a subsequence of ¢”.
The “if” direction is straightforward and we shall focus on showing
the “only if” direction.

We argue this in the contrapositive. Suppose that two orders o
and o’ are given such that o is not a subsequence of ¢’. We first
note that if o is alternating, i.e., o is of the form ABABA . .., then
the desired result follows from (an easy extension of) the pointer
chasing lower bounds in [13] and subsequent work. However, a
lower bound only for alternating o is not good enough for us, as
we want the lower bound for a string ¢ such that any short ¢’
satisfies the property that o is not a strong subsequence of ¢’. This
is provably not the case for alternating o as for any alternating
o, the string ¢’ = ABl||o satisfies the property that ¢ is a strong
subsequence of o’, where || denotes concatenation.

However, as our lower bound must subsume these lower bounds,
it is important to understand them. For this, consider the case when
o = AB so that ¢’ (as o cannot be a subsequence of ¢”) is of the form
BB...AAAA... say o’ = BBBAAA. Consider now the well-known
Index problem, where Bob has a large array and Alice has an index
for the array, and the goal of the parties is to output the element at
Alice’s index in Bob’s array. There is a simple protocol with order
of speaking o that solves this problem, where Alice first sends her
index and then Bob sends the element at that index. However, if
the order of speaking is restricted to be ¢’ there is no way for Bob
to send the right element to Alice, as all his messages are before he
acquires any knowledge of Alice’s index (unless of course, he sends
to Alice the entire array, but this is impossible if Alice’s alphabet is
large enough).

For our more general result, we first extend the above lower
bound to a more general class of ¢ that has many Alice messages
before the last Bob message, say, 0 = AAAB. The hard protocol for
these o is also the protocol for the Index problem except that this
time, Alice’s index is so large that it will not fit in one message
(and requires three messages). For all ¢’ where all Bob’s messages
precede all Alice’s messages, the argument is the same as before, but
this time there are additional ¢’ that are not of the form above and
satisfy that o is not a subsequence of ¢’, for example ¢’ = BABABA.

When ¢’ = BABABA, as a protocol with order of speaking ¢’
proceeds, Bob does get some messages from Alice (in rounds 2 and 4)
but these messages are not long enough to contain her entire index.
Thus, to show a lower bound for such ¢’, we need to extend the
aforementioned lower bound for Index to work for protocols where
Bob has partial information about Alice’s index. This is exactly what
we do, showing that such partial information from Alice cannot
help Bob in guessing the right index a whole lot, and he still cannot
send her the right index without sending a huge portion of his

1427

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena

array. However, Bob cannot send a huge portion without having
high communication, which is impossible if ¢’ is not much longer
than o.

To extend this argument to general ¢ and ¢’ such that o is not
a subsequence of ¢/, we break the string o into “intervals”, where
an interval is defined a set of consecutive rounds where the same
party is speaking, e.g., the first three Alice rounds in 0 = AAAB. For
each such interval starting from the first, we treat it like the Index
problem above, and show that the interval cannot be simulated
unless the party speaking in that interval has spoken enough times
in the simulation. Once the party has spoken enough times, we
remove the interval from ¢ and the corresponding rounds from ¢’
and arrive at a smaller problem with a fewer number of intervals.
As o is not a subsequence of ¢/, we will run out of rounds in ¢’
before we run out of intervals in o, giving us a trivial protocol for
a non-trivial task, a contradiction.

2.2 Analysis of Strong Subsequences

In this part, our goal is to show that there exists an order of speaking
o € {A, B}, such that for any ¢’ € {A, B}* for which o is a strong
subsequence of ¢”, it holds that ¢’ is a constant factor longer than o.
Recall that ¢ is a strong subsequence of ¢’ if, for most coordinates
i of ¢’, it holds that o is a subsequence of ¢’ with coordinate i
removed. Throughout this section, we will disregard the connection
of o0 and ¢’ to communication protocols, and look at them simply as
strings in {A, B}"*. Also, we let T be the length of o and assume that
the length of ¢’ is T” = (1 + 6)T, where § > 0 is a small constant.

Patterns. We will show this using the probabilistic method, cat-
egorizing the relevant pairs (o, ¢’) into various “patterns”, where
for each pattern p and each o, there is exactly one ¢’ such that
the pair (o, ¢’) is in the pattern p. We then show that, for every
fixed pattern, and a randomly chosen pair (o, ¢’) in the pattern,
the probability that o is a strong subsequence of ¢’ is extremely
small, small enough to union bound over all the patterns, and our
result follows.

Specifically, a pattern for us will be defined by a string p €
{A, B, O}Tl such that the number of coordinates of p that are equal
to the “bullet” symbol e is T. We say that a pair (o, 0”) is in the
pattern p if it holds that upon “inserting” the string ¢ in the bullet
coordinates of p, we get the string ¢’. Note that we can indeed
restrict attention to the pairs (o, ¢’) that are in some pattern, as
if a pair is not in any pattern, then it must be the case that o
is not a subsequence of ¢’, and therefore, it cannot be a strong
subsequence of ¢’ either. Moreover, the number of patterns p is
at most ((H;S)T) 28T < 20(8108 5) T 414 we will ensure that,
assuming J is a small enough constant, the relevant probabilities
are small enough for a union bound over all the patterns.

Analyzing a toy pattern. Following the above framework, we
now fix a pattern p and show that for a random pair (o, ¢”) in p, we
have that o is not a strong subsequence of ¢’ with high probability.
The high level idea here is best understood by taking p = 7, the
T-length string each of whose coordinates are e, even though this
is not a valid pattern according to the definition above. However,
picking p = o7 also means that the only way a pair (o, 0”) can be
in this pattern is if o = ¢, implying that o is trivially not a strong

The Rate of Interactive Codes Is Bounded Away from 1

subsequence of ¢’ = ¢. Thus, to make the argument non-trivial, we
will show that, for a uniformly random o € {A, B}T, even a prefix
of o of length 0.9T is not a strong subsequence of o.

For this, consider what happens if we erase the first coordinate
of o to get a string 01, and try to estimate the length of the longest
prefix of o that is a subsequence of o_; (the case when a different
coordinate is erased is similar). To estimate the length of the longest
prefix, we consider the greedy algorithm “matching” the string
o to the string o_1: Namely, match each coordinate of o to the
earliest coordinate possible® in o_1. To analyze this algorithm, for
all i € [T], define lag; to be the difference between i and the
coordinate in o corresponding to the coordinate in o_; that i is
matched to. For example, if coordinate 1 of ¢ is matched to the first
coordinate in o_1 (equivalently, the second coordinate in o), then,
lag; = 1.

As o is uniformly random in {A, B}T, each coordinate of ¢ is
uniformly and independently random in {A, B}, and thus each coor-
dinate in o will take (in expectation) two coordinates of o_; to find
amatch. This means that, in expectation®, we have lag; > lag; _,+1.
Using concentration bounds, we can conclude that, except with
probability exponentially small in T, at most a 0.9 fraction of the
coordinates will end up being matched, implying that the length of
the longest prefix of ¢ that is a subsequence of the resulting string
o_1 is at most 0.9T, as desired.

Towards actual patterns. The argument above does not extend
to actual patterns p € {A, B, O}T', but for a very specific reason:
To understand the reason, note that the argument above crucially
relied on the fact that lag is non-zero throughout (in fact, it starts
from 1 and never decreases). This means that we are always trying
to compare a coordinate in o to another “fresh” coordinate, which
is independently and uniformly random, and this allowed us to say
that lag increases by 1 in expectation. In fact, if the lag were to
have been 0, then we would be comparing every coordinate in o to
itself, which means that it will aways match, and we will therefore
be able to match all of o.

Now;, observe that the presence of non-bullet coordinates in p
can actually decrease the lag and make it 0, ruining our argument
above. For an example, consider the case T’ = T + 2, and the
pattern p = o, A, B, o1, Specifically, consider the case where the
first coordinate is erased, creating a lag of 1. However, as the two
coordinates A, B immediately follow the erased coordinate, one can
always match the first coordinate of o to one of these coordinates,
bringing the lag back down to 0, and allowing the rest of o to be
matched as is.

To get around this, we use the observation that any non-bullet
symbol in p can decrease the lag by at most 1. Thus, as the number
of non-bullet symbols in ¢ is 8T, if we could somehow magically
start with lag = 6T, then, lag will never vanish for any fixed pattern
p and we can apply exactly the same analysis as in the toy pattern
above to get that o will not be a subsequence except with probability
exponentially small in T. This probability is small enough for us to
union bound over all possible p and get that except with probability

SFor example, to match AABA in the string ABABAB, the matching will look like
the following (matched characters underlined) ABABAB.
Note that if a match is found after I coordinates, the lag increases by I — 1.

1428

STOC ’23, June 20-23, 2023, Orlando, FL, USA

exponentially small in T, a uniformly random ¢ will not have any
o’ such that o is a strong subsequence of ¢’.

Starting with a small lag. All we need to do now is to apply the
argument above for large initial lag to the case at hand where the
initial lag is 1. For this, observe from our example above (and also in
the toy example p = oT) that lag will actually increase as i increases,
in the sense that the final lag is at least Q(T) more than the initial
lag, except with exponentially small probability in T. This holds
despite the fact that we have a small number (= §T) of non-bullet
symbols, as each such symbol can decrease lag by at most 1, but
the much larger number (= T) of bullet symbols, each increasing
lag by 1 in expectation (as the small number of non-bullet symbols
are not enough to make lag vanish), will eventually override the
effect of the non-bullet symbols.

The fact that the lag increases can be used as follows: Suppose
we are currently considering an i such that lag; is some value
L > 0. Consider the pattern starting from the coordinate where
i is matched and look at the segment consisting of the next, say,
L/V5 coordinates. As only a § fraction of the coordinates are non-
bullet, this segment is expected to have V5 - L < L of non-bullet
symbols. As the number of non-bullet symbols is smaller than the
initial lag, we can conclude that (even after union bounding over
all possible ways to place the non-bullet coordinates) except for a
“bad” event that happens with probability exponentially small in L,
this segment is expected to increase the lag to L’ = Q(L/V5).

Now, we can consider the next segment of length L’/ V6, and
show that except with probability exponentially small in L’, this
segment is expected to increase lag even more. The increasing
length of these segments allows us to show that the sum of the
bad probabilities converges to a constant, implying that for any
erased coordinate i, one of the following holds: (1) The fraction
of non-bullet symbols in one of the segments that are generated is
much larger than é. (2) There exists a segment generated from i
for which the bad event occurs. (3) When i is erased, the final lag
increases to be Q(T).

By Markov’s inequality, both Items 1 and 2 will happen for at
most a small constant fraction of i. Thus, there exists a ¢ such that
for most i, Item 3 will occur, implying that, for any o’ such that o is
a subsequence of o’, we have that o is not a subsequence of o’ ;. It
follows that there exists a o such that for no ¢’ is it the case that o
is a strong subsequence of ¢”, as desired. In terms of organization,
the definition of i in Item 2 is formalized in Definition 6.6 and the
proof that there is a small number of such i is in Lemmas 6.7 and 6.8.
Analogous statements about Item 1 can be found in Lemma 6.10
while the proof of Item 3 can be found in Section 6.6 (specifically,
Lemma 6.12).

3 MODEL AND PRELIMINARIES
3.1 Notation

For n > 0, we use [n] to denote the set {1,2,...,n}. Fora,b > 0,
we use [a, b] to denote the set {a,a + 1,...,b}. Additionally, we use
(a, b] to denote the set {a + 1,..., b}. The notations [a, b) and (a, b)
are defined analogously.

Let ¥ be an alphabet set and n > 0 be an integer. For a string
s € X" and a set I C [n], we use s; to denote the |I|-length string

STOC ’23, June 20-23, 2023, Orlando, FL, USA

obtained by taking only those coordinates of s that are in I, e.g., we
have (ABAAB) (13 4) = AAA.For i € [n], we sometimes abbreviate
s(i) to si, S[;] to s<i, and s[p]\ (;) to s—;. We also use the notations
S<i, S>i and sx; that are defined analogously. Whenever we have
C € {A, B}, we use C to denote the unique element of {A, B} not
equal to C.

Throughout this paper, we use sans-serif letters to denote ran-
dom variables.

3.2 Embedding Strings
Leto,0’ € {A,B}* and T = |o| and T’ = |o’|. For i € {0} U [T], we
define the function Emb(o, ¢’, i) inductively by Emb(a, 67,0) = 0
and as follows when i > 0:

Emb(o,0’,i) =

min({Emb(o,0’,i=1) <i’ <T'| o}, = 0} U{T" +1i})

¢y

Note that the min above is taken over a finite non-empty set,
and is therefore well-defined. We also define the set:

E(o,0’) = {i’ € [T'] | Ji € [T] : Emb(a,o’,i) = i'}.

We say that o is a subsequence of o’ if |E(a,0”)| = T.

@

OBSERVATION 3.1. Let 0,0’ € {A,B}Y* and T = |o|. For all i; <
iz € {0} U [T], we have:

Emb(o,0’,i1) + iy — i1 < Emb(o,0’,i2).

We also use the following lemmas throughout our paper. The
formal proofs of Lemmas 3.2 to 3.6 are omitted for space and can
be found in the full version of the paper.

LEMMA 3.2. Let 0,0’ € {A,B}* be given. Additionally, let i €
[lol], i’ € {0} U [|o’|] be such that Emb(c,0’,i—1) < i’. For all
i’ > i’ € [|d’|], we have:

Emb(a, o i—1+ |E(0, G') N (

Y

Y4
i,

i’

1)) <" =|(,i"]1\ E(o.o")].

LEmMA 3.3. Leto, o’ € {A, B} be given. Additionally, leti € [|o]],
i’ € {0} U [|o’|] be such that Emb(o,0’,i) > i’. Foralli"” > i’ €
[lo’]], we have:

AR

Emb(o,0’,i+ |E(a, o)n (i]\) > i,

LEmMMA 3.4. Leto,7,0’,7" € {A, B}* be given. For alli’ € {0} U
[min(|o’|, |’|)] such thata’si, = T’Si, andalli € {0}U[min(|o], |7])]
such that o<; = 7<;, we have:

Emb(o,0’,i) <i’ = Emb(r,7’,i) = Emb(o, o', i).
Moreover, we also have:
Emb(o,0’,i) > i’ = Emb(r,7,i) > i’.
LEMMA3.5. Leta, o’ € {A, B}* be given. Additionally, leti € [|o]],

i’ € {0} U [|o”|] be such that Emb(c,0’,i— 1) < i’ < Emb(c, d’,i).
Foralli” > i’ € [|6’|] and all0 < b < |E(0,0”) N (i’,1""]|, we have:

max(i’,Emb(o,0’,b+i—1)) = Emb(azi, aéi,,i,,],b) +i <i”.
LEMMA 3.6. Leta, o’ € {A, B}* be given. Additionally, leti € [|o]],
i’ € {0} U [|o”|] be such that Emb(c,0’,i— 1) < i’ < Emb(c, d’,i).

Foralli” > i €[|d’|] and all0 < a < b < |E(0,0”) N (i,i"]], we
have:

Emb(ozim, UEi’,i”J’b - a) < Emb(ozi,aéi,’i,,J, b)

1429

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena

DEFINITION 3.7 (STRONG SUBSEQUENCES). Foro, o’ € {A, B}, we
say that o is a strong subsequence of o’ if there exists a set1 C [|o”[]
o
such, that |I| > %
of o’ ;.

OBSERVATION 3.8. For any strings 0,0’ € {A, B}", if o is a strong
subsequence of o’, then o is a subsequence of o’ .

and for all i € I we have that o is a subsequence

3.3 Our Noisy Channel

Let T be a set with |T'| > 2. A (deterministic) protocol with the
alphabet set I is defined by a tuple:

®)

where: (1) T > 0 is a parameter denoting the length of the protocol,
(2) o € {A B}T is a string that determines which party speaks
when (i.e, for all i € [T], party o; is the unique party speaking in
round j), (3) X€ for C € {A, B} is the input set of party C, (4) Y
is the set of possible outputs of the protocol, (5) For all i € [T],
M; : X9 x T'~1 — T is a function that computes the message sent
in round i based on the input of the party o; speaking in round
i and the transcript € I''~! received by party o; in the first i — 1
rounds, (6) out® : TT — Y for C € {A,B} are functions that
each player uses to compute the output from the transcript of the
protocol. We suppress items on the right hand side of Eq. (3) when
they are clear from context. We use the notation spkrs(II) = o and
|II| = T. We define a randomized protocol I1 to be a distribution
over deterministic protocols II that all have the same value of

(T, 0, X4, X5, y). We define spkrs(I1) and |[1] to be the common
value of spkrs(IT) and |II| respectively.

= (T, o, XA XB Yy, My,..., Mg, out?, outB),

Execution of a protocol. Let I be a protocol as above and € > 0.
We now describe how II is executed over the channel Cr that
corrupts each sent symbol (independently) to a uniformly random
symbol in I' with probability €. To describe this execution, we
let x be a special symbol not in T indicating “no noise” and N €
(T U {*})T be a noise vector such that for all i € [T], the symbol
N; = % with probability 1 — e and a uniformly random symbol from
T’ with probability € (independently for all i), so that N captures
the noise inserted by the aforementioned channel. We shall abuse
notation and use Cr ¢ to denote both the channel and the above
distribution over noise vectors.

The execution begins with both parties C € {A, B} having input
x€ € XC€ and proceeds in T rounds, maintaining the invariant
that before round i € [T], both parties C € {A, B} have a partial
transcript Hgi € I''~1. In round i, party o; computes the symbol
Yi = M; (x"i ,Hzii), appends it to its own partial transcript, and
sends it over the channel to the other party o;.

The noise N then acts on the symbol as follows: If N; = %, then
the symbol is sent uncorrupted and party o; receives the symbol
Yi- Otherwise, we have N; € I' and party o; receives the symbol N;.
In either case, party o; appends the received symbol to its partial
transcript and the execution proceeds to the next round.

After the T rounds are over, each party C € {A, B} outputs

out® (HET) € Y. Note that this execution is entirely determined

by the triple (xA, xB N), which we shall often write as (X, N) using

The Rate of Interactive Codes Is Bounded Away from 1

X to denote the pair of inputs (xA, xB) This fact allows us to write

Hic (X,N), Hg ;(X, N), etc. to denote the corresponding value in the
execution of IT in the presence of noise N when the inputs are X.
For C € {A, B}, we also define the notation resﬁ (X, N) to denote
the output of party C in the above execution and res(X,N) =

(resﬁ (X,N), resI].3I (X, N)). We omit N from the above notations

when € = 0 and the execution is noiseless, as in this case, N is
always the vector with all coordinates equal to . Note that, in this
case, the transcripts for Alice and Bob are the same and we can
omit the superscript C in the notation.

Simulations and hole simulations. Let T be an alphabet set as
above. Let 1 and N’ be two randomized protocols with alphabet
I' and with the same input sets XA, XB for Alice and Bob. For
p € [0,1] and € > 0, we say the protocol II” simulates the protocol
IT over the channel Cr with probability p if for all xd e X4 xB e
X8, it holds that

N~Crf,III)£ﬂ,H’~ﬂ'(resn/ (X,N) =resp(X)) > p.
Throughout this text, the protocol II being simulated will be deter-
ministic and we shall omit it from the subscript above. As our main
result in a lower bound, the fact that IT is deterministic only makes
our result stronger. As T is determined by II, we shall sometimes
omit writing “over the channel Cr” when € = 0.

For our proof of Theorem 1.1, we actually work with a different
(and weaker”) notion of simulation that we call “hole simulation”
and is defined as follows: Let 0’ € {A, B}* and II be a protocol
as above. For p € [0, 1], we say that ¢’ hole-simulates IT with
probability p if there exists a set I’ C [|o”]], |I’| = 191 such that
for all i’ € I, there exists a randomized protocol IT}, with alphabet
T and the same input sets as I that simulates the protocol IT (over

’
i’

the channel Cr) with probability p and satisfies spkrs (H;,) =0

3.4 Pointer Chasing

Letm, T € N. We inductively define the function PC,, 7 that takes as
input functions (fi)ie[T] where f; : [m]'=! — [m] foralli € [T]
and outputs a value in [m]7 as follows: For the case T = 1, we
simply define PCn1(f1) = fi. For T > 1 and functions (fi);c(7),
let z = PCp, 7—1((fi);<1) be the value defined by the induction hy-
pothesis, and define PCm,T((fl')ie[TJ) = z||fr (z). We omit the pa-
rameters m, T when they are clear from context. It is clear from the
above definition that for all 7" € [T], the value of PC((fi);e[7]) is
independent of (f;);c7+] as long as PC((fi);e[71) is the same. Cor-
respondingly, for z € [m]T’, we sometimes write PC(z, (Biec,1))
to denote the value of PC((fi);c[7]) when PC((fi)iec[7/]) = 2-

Pointer chasing protocols. Let T € N and o € {A, B}T. Define
m = (200T)?*° and the protocol PC to be the T-round communi-
cation protocol with alphabet [m] where Alice’s input are func-
tions (f; : [m]'™! — [m])i.s,=4 and Bob’s input are functions
(fi : [m]'™' - [m])i.s,=B, and the message sent in round ¢, for

"The fact that we work with a weaker notion makes are proof stronger, and in particular,
would also work for the erasure channel. To see the formal sense in which this is
weaker, see Section 4.

1430

STOC ’23, June 20-23, 2023, Orlando, FL, USA

t € [T] is coordinate t of PCp, 7((fi)icT])- After T rounds, the
parties output all of PCpp, 7((fi)ie[T])-

4 PROOF OF THEOREM 1.1

The goal is section is to prove Theorem 1.1 assuming two other
theorems that we shall prove in the following sections. We start by
stating these two theorems.

THEOREM 4.1. Let 0,0’ € {A, B}* be given. Assume that |o’| <
5-|o|. If o’ hole simulates PC with probability é, then o is a strong
subsequence of o”.

THEOREM 4.2. Forall T > 0, there exists o € {A, B}T such that for
all o’ € {A, B}* such that o is a strong subsequence of o’, we have
lo'| > (1+107100) . |o].

We are now ready to prove Theorem 1.1 (assuming Theorems 4.1
and 4.2).

Proor oF THEOREM 1.1. Fix € > 0 and assume that € < 0.001
without loss of generality. Define T = eiz and let o be as promised

by Theorem 4.2. Define T = [(ZOOT)ZOO] and IT = PC,. Let I’ be a
randomized protocol that simulates IT with over the channel Cr ¢
with probability 0.99 and ¢’ = spkrs(II). As the proof is trivial
otherwise, assume that |¢’| = |[1"| < 5T. We claim that ¢’ hole
simulates PC, with probability 0.5. This finishes the proof as it
implies using Theorem 4.1 that o is a strong subsequence of ¢’
which using Theorem 4.2 means that |0’ > (1+1071%9) - T, as
desired.

It remains to show the claim. To this end, let T’ = |¢’| and
for i’ € [T'], define the protocol N’y with spkrs(M’y) = o’ ,, as
follows: For t € {0} U [T], let p; (Tt,) e’ (1-€)T' " be the
probability that the channel Cr ¢ corrupts exactly ¢ symbols in 1",
lf;’o
exactly ¢t symbols in 1" conditioned on it corrupting at least one
symbol. Then, the protocol "7 is exactly the same as 1" except that
it (1) It does not have round i’ and the party supposed to receive in
this round assumes it got a uniformly random symbol in '. Observe
that this can equivalently be seen as the channel always corrupting
round i’ in . (2) Samples ¢’ € [T’] with probability 1{ ’1;0,
then artificially corrupts ¢’ — 1 rounds, ignoring the bit actually
received in these rounds and using a uniformly random symbol in
T instead.

Observe that picking i’ € [T’] uniformly at random and running
I’y over the noiseless channel Cr g is the same as running 1" over
Cr,¢ and conditioning on the fact that the channel corrupts at least
one symbol. As I’ simulates IT with over the channel Cr ¢ with
probability 0.99, we get:

This means that

is the probability the channel Cr ¢ corrupts

and

T/
1
o Z_;H’.,Erﬂ’y (resné/ (X) = resH(X))

- P (J(X,N) = res(X) | N ;e*T)
N~Cr,5,rH’~ﬂ’ respy () = res(X) |

> P (X,N) = resg (X)) = P (N:*T)
N~cr,e,rn'~n'(resn() = res(X)) chrr’e

> 0.9.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

It follows that Pryy .17, (resn(, (X) = resyy (X)) > 0.5 for at least

4 .
% values of i/, as desired. O

5 PROOF OF THEOREM 4.1

The goal of this section is to show Theorem 4.1. Owing to the
definition of hole simulations and Definition 3.7, it suffices to show
the following lemma:

LEMMA 5.1. Let 7 € {A, B}, m = (200 - |7])?%°, and I be a ran-
domized protocol with alphabet [m]. Assume that || < 5 - |z]. If
M simulates PC; with probability ﬁ then t is a subsequence of
spkrs(I).

We prove Lemma 5.1 in the rest of this section. Fix 7, 1 and define
n = |r|, T = ||, and o = spkrs(1). We shall show the lemma in
the contrapositive, assuming that 7 is a not subsequence of o and
showing that 1 does not simulate PC; with probability % Ast,0
are fixed we shall often omit them from our notation and write
Emb(-) instead of Emb(z, o, -) and E instead of E(, o).

Let X4 and XB be input sets of Alice and Bob respectively in
PC; (and therefore also in I1). Recall from Section 3.3 that we have
to show that there exist x4 € X4, xB € XB such that:

1
HIirn(resH (X) = respc, (X)) < -
Let ¥ be the uniform distribution over all inputs of PC, defined as
in Section 3.4. To show the foregoing equation, we fix an arbitrary
deterministic protocol II in the support of 1 and show that (noting
that respc, (F) = PC(F)):

Pr (resy (F) = PC(F)) < ~. @
FoF n

5.1 Notation

For a finite non-empty set S, we shall use U(S) to denote the
uniform distribution over S. We omit S from the notation when it is
clear from the context. All probabilities and random variables will
be defined over the randomness in F, and we will often abbreviate
Prp_4 to Pr for brevity of notation. Throughout, if X is a random
variable and x is a value that X can take, we sometimes abbreviate
the event X = x as simply x when it is clear from context. Thus,
we may write Pr(x) instead of Pr(X = x) and Pr(- | x) instead of
Pr(- | X = x). We use dist(X) to denote the distribution of a random
variable X.

We will use F to denote the random variable corresponding to a
sample from # and F to denote a given value of F. Observe that F is
an n-tuple (fi, f2,- -+, fu). Fora set S C [n], we define fs = (fi);cs-
For i € [n], we may write f<; instead of f];] and f<; instead of
fii-1]- We also define fA = flie[n]|n=A) and fB = flie[n]|z=B}-
We may combine these notations and use fg = flieli]|zp=A}> €tc.
We will use f<; to denote the random variable corresponding to
f<i. The notations fs, f<;, A etc. are defined similarly.

Recall the functions IT;(-) and I1<;(-) from Section 3.3. In this
section, we extend this notation to sets S C [T] by defining II5(-) =
(I1¢(-)) es- For t € [T], we will use M; = II;(F) to denote the
random variable obtained by sampling F and outputting IT; (F), and
use II; to denote a value I1; can take. The notations <, g are
defined analogously.

1431

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena

5.2 Definitions

Recall that we fixed 7 € {A, B}" as the order in which the parties
speak in the protocol PC; being simulated. We also fixed a determin-
istic protocol IT and defined T = |II| and o = spkrs(II) € {A, B}T.

The set L. We consider the set of indices i € [n] where the value
of 7; is different from 7;;. Define the set:

L={nyulie[n-1] |5 # 51} 6)

Informally, £ is the rounds where 7 “switches” from A to B or B to
A. Equivalently, we partition 7 into consecutive intervals consisting
of the same player and L is the set of endpoints of these intervals.
The element n is added to L for convenience. For i € [n], we define
t’iz to be smallest value ¢ € L satisfying ¢ > i. This is well defined
as n € L is one such value. Similarly, define £ to be largest value
¢ € {0} U L satisfying ¢ < i. Observe that for all i € [n], we have
T =1 and £ > 0 implies 7; # Tp= (s0 7 =T4<).

Defining Good and Rem. For t € {0} U [T], define the set

Good(t) = {i € [n] : Emb(£7) <t < Emb(£7)}. (6)

Informally, Good gets a round ¢ of the protocol IT and outputs the
first interval of 7 that we do not expect to have fully simulated
after round ¢. Observe that Good(¢) # 0 for all ¢ € {0} U [T]. Let
t € {0} U [T] and i € Good(t). Define:
(i-¢£5-0.1)-logm,
Rem'(t) =14 (i-£°-03 A
—[EN (Emb(£7),t]|) - logm, if Emb(£~) <t

| ”)
Roughly speaking, Rem*(¢) is the amount of (min-)entropy remain-
ing in the random variable PC., £ (f<i) before round t of the proto-
col.

if Emb(ff) =t

“Revealing” information. To make our analysis cleaner, we reveal
some information to the players at various points in the protocol.
More precisely, let t’ € [3T] be given and F in the support® of F be
arbitrary. Let ¢ € [T] be the unique value satisfying 3(t — 1) < ¢’ <
3t. We shall define values @ (F) inductively. If ' = 3t — 2, define:

Oy (F) = I (F). ®)
If t’ =3t — 1, define:
PCo,<(f.,=), if3ie[n]:t=Emb|eZ
<I>z'(F)={ S U R (3
0, otherwise

Informally, this definition amounts to revealing the correct tran-
script for any interval at the end of the interval. Finally, if t’ = 3t,
define:

Oy (F) = IL(Ei €ln]:t= Emb(gf),z—l—reemf(t)

<Pr(F. g () =P) |00 (P))). (10)

Informally, this definition amounts to revealing, at the end of an in-
terval, whether the right answer for the next interval can be guessed
with probability much better than what Rem would indicate. We

8Henceforth, we omit writing “in the support of” when the random variable is clear
from context.

The Rate of Interactive Codes Is Bounded Away from 1

will later show that, this answer is no (= 0) with high probability.
Henceforth, we treat ® the same way as II in our notation, i.e., we
let ®;» = @4/ (F) denote the random variable obtained by sampling
F and outputting &, (F), use &4 to denote a value ¢4 can take, and
define ® <4/, g etc. analogously to IN<;, Mg, etc.

We claim that ® provides all the necessary information in order
to reconstruct PC(f), as claimed below.

Cram 5.2. For any ¢ € L satisfying Emb(¢) < T, the value of
@ <3Emb(¢)-1 fixes the value of PC(f<¢).

The formal proof of Claim 5.2 is omitted for space and can be
found in the full version of the paper.

We also claim that @ is a transcript of a protocol. By this, we
mean that each coordinate of ® can be computed fully by just one
player using only their input and the transcript ® so far. Formally:

LEmMA 5.3. Fort’ € [3T], there exists o;, € {A, B} and a function
Mt', such that for any F,

Oy (F) = M), (£, by (F))~

Furthermore, fort € [T], we have that:

o
0342 = Ot
/ —
03;-1 = 0t
;=
O—3t =0¢.

The formal proof of Lemma 5.3 is omitted for space and can be
found in the full version of the paper.

The sets Guess and Info. We are now ready to define the sets
Guess and Info, the primary focus of our analysis. For t € {0} U [T]
and i € Good(t), we define:

Guess'(1) = {0st | Hoo (PO (Fe) | @<ar) < Rem' (). (11)

Informally, this is the set of transcripts that allow us to guess the
edges in the current interval (until i) with probability better than
that indicated by Rem. For t € {0} U [T] and C € {A, B}, define:

InfoC (1) = {cpgg,t | D(dist(fc | c1>53t) I w) > m°~°1}. (12)

Informally, this is the set of transcripts that give a lot of information
about party C’s input.

5.3 Properties of Info

This section is dedicated to proving Lemma 5.4, which will be
key to proving our main result. Roughly, Lemma 5.4 says that
transcripts are unlikely to be informative enough to be in the set
001 which is much more than
the communication (as m is larger than the communication to the
power of 200).

Info as that requires information > m

LEMMA 5.4. Forallt € {0} U [T] and C € {A, B},

1
< —

Pr(¢33; € lnfoc(t)) o5

For all t’ € [3T], let U;, and M;, be as in Lemma 5.3. We define
for all C € {A, B}, for all # € {0} U [3T], for all &<, the set:

Rec® (@<y) = {fc | Vi e [t'] st o), =C, (13)

1432

STOC ’23, June 20-23, 2023, Orlando, FL, USA

we have ®;» = M, (fc cI><t")}~

Roughly, our definition of ® ensures that the pairs of inputs that lead
to the transcript <, form a combinatorial rectangle (Rec denotes
rectangle), and RecC denotes the projection of this rectangle on
party C’s inputs. In other words, RecC is the set of all inputs of
party C that may lead to the transcript &< .

OBSERVATION 5.5. For allt’ € [3T], for all &<y, for all C €
{A,B}, ifo;, # C, RecC(®<y) = RecC(Doyp).

We now show several properties of RecC. The formal proofs of
Lemmas 5.6 to 5.8 are omitted for space and can be found in the
full version of the paper.

LEmMA 5.6. Forallt’ € {0} U [3T], for all ®<y, the event (VC €
{A,B} : f€ € Recc(fbsy)) and the event < are equivalent.

LEMMA 5.7. Forallt’ € {0} U [3T], for all @<y,

Recr (B<yr)

Pr(0p | Dop) =
[Rec (@)

LEMMA 5.8. Forallt’ € {0} U [3T],C € {A, B},

|ReCC(¢St/)|)
Pr{ w———"— <
r(|supp (€)|

We now have the tools necessary to finish the proof of Lemma 5.4.

+
m0-6°

1
m2t’

PROOF OF LEMMa 5.4. For all ®<3; € Info€(¢) we have:

D(dist(fc | <1>53t) I w) > m001 (Eq. (12))
— D(dist(fc |VC' € {A, B} : fCe Recc’(cpggt)) I 71) > m0-01
(Lemma 5.6)

— D(dist(fc | € e RecC(CI>§3t)) I w) > m001
(Independence of f4 and fB)

[RecC (@<3)] 1
|supp(fc)| e (Lemma A.9)
[RecC(@<3s)| 1
[supp(f€)| mS
C
Thus, we get that Pr(¢53t € Infoc(t)) < Pr(% # .
The result follows from Lemma 5.8. O

5.4 Key Lemma

We now show our key lemma.

LEMMA 5.9. Lett € {0} U [T] and i € Good(t). We have:
t

Pr(¢53t € Guessi(t)) < —7-
mo-

Proor. Proofby induction on t. The base t = 0 is straightforward
as we get Emb(£°) = 0 which means that £~ = 0 implying that
Guess! (1) = 0. We show the result for t > 0 assuming it holds for
smaller values of t. We consider the following cases:

STOC ’23, June 20-23, 2023, Orlando, FL, USA

When Emb(t’f) < t: At a high level, this case amounts to ana-
lyzing a variant of the well-known Index problem, where the party
holding the index can communicate a small number of bits but not
enough to send the entire index. Let u = Emb(¢,;°) for convenience.
Note that i € Good(u). Applying the induction hypothesis on u,
we get:

Pr(¢'53u € Guessi(u)) <71
mo-
It is therefore sufficient to show that
. ; 1
Pr(¢53t € Guess'(t) | P<3y ¢ Guess’(u)) <=7
mo-
We assume 7; = A as the argument for 7; = B is analogous. For this,
we shall fix an arbitrary ®<3,, ¢ Guess’(u), and an arbitrary B

and show that

Pr(d)s3t € Guess' () | <I>§3u,fB) <

mo-1
By Eq. (11), it suffices to show that:

Pr (¢(3u,3t] € {‘D(3u,3t] | HW(PC%; (f<i) | (I)§3t)

1
< —

—7 (19

< Remi(l‘)} | <Dgsu,f3)

We now focus on showing Eq. (14). Define z = (0.2 + [EN (u, £]]) -
log m for convenience. For this, we will apply Lemma A.7 with
X = A, f(X) = PCp= (f<i), 9(X) = P(33,), E = (P<3u, fP), and
t = z. Note that as conditioning on ®<3,, fixes the value of PC(f <)
(Claim 5.2), PC, < (f<;) is indeed a function of fA. Similarly, as
we condition on B, ®(34,3¢] is indeed a function of A Finally,
observe from Egs. (9) and (10) that for all v’ € (u,t], we have

P31 = P3yy = 0 and thus g(+) takes at most mlEN(t]| many
values.”?
From Lemma A.7, we get:
1
Pr(®(su50) € G | D f7) < —7, (15)
mo-

where:
6" = {D(su301 | Hoo (PCo g (i) | @31, £7)
< Hoo (PO = (Fei) | D f7) - 2.

Next, we claim that we can “drop” the conditioning on fB. For this,
recall from Lemma 5.6 that the events ®<3; and (YC € {4, B} : € e
Recc(tbggt)) are equivalent. As the latter event is a combinatorial
rectangle (it is of the form (f4 € A) A (B € B) for some sets A, B)
and the random variables f4 and fB are independent, we get that the
random variables f4 and fB are also independent conditioned on
d<3;. Next, recall that PC, I (f<;) is a function of f4 conditioned

on ® <3y, and conclude that PC., ;< (f<;) and B are also independent

conditioned on ®<3; allowing us to drop fB. A similar argument
allows us to drop fB from the other min-entropy term and we get:

For t' € (u,t] where 7, = B, conditioning on fB makes each message

@3,/ _, a deterministic function of the transcript so far. As such, there are at most
’ .. -

m{t eGutlzy=A}] possible transcripts, as there are m possible values of @3,/ _, for

each ¢’ € (u,t] where 7, = A. Finally, by the definition of {;iz and Egs. (1) and (2),

we get that {t € (w,t] : 7 = A} =EN (u, t].

1433

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena

G* = {¢(3u,3t] | Hoo (PC>[i< (f<i) | @53:)

< Hoo (PCo = (Feci) | D) - z}.
By Eq. (11) and our choice of d<3, ¢ Guess! (1), we have:
G2 {®(3u,3t] | Heo (PC>Q.< (f<i) | <I>53t) < Rem‘(u) —Z}~
Using Eq. (7) and the definition of z, we get:
G 2 {330y | Hoo(PCo g (F) | @) < Remi(1)].
This together with Eq. (15) shows Eq. (14).

When Emb(t’f) = t: At a high level, the analysis in this case
follows the popular pointer chasing lower bound of [13]. We assume
7; = A as the argument for 7; = B is analogous. As t > 0, we have
£= > 0 and we get 7<= B.It follows that oy = B. Letu =t — 1.

Applying the induction hypothesis on u and £;°, we get:

Pr(¢s3u € Guess'i’ (u)) < %.
mo-
By Lemma 5.4, we also have:
1
Pr(d)sgu € lnfoA(u)) <5
mo-

Thus, it suffices to show that:

Pr(q)ggt € Guess' (t) | <3y ¢ Guess'i (w) U lnfoA(u)) < =71
mo-

For this, we shall fix an arbitrary ®<s3,, ¢ Guess’i (w) v Info? (u)
and show that:

Pr(dJSgt € Guess'(?) | @g3u) < (16)

1
m0-15°

Forall i’ € (t’f, fl.z], define the set:

Sy {z € [m][i<

| D(dist(PCs = (= g7) | o) 1 U) 2

Also, define S = Ui’e(ff,fl
of prefixes z that allow the parties to guess the transcript in the
next interval. Recall that Emb(lf) = t means that we are currently
at the end of an interval. We now show that the probability of
landing in S is small, as formalized in Eq. (18) below. Next, use the

fact that 7; = A and the definition of {’i< and [f to conclude that
.4
determines f(=] This, together with Lemma A.11 and the fact
that D(dist(fA | @5314) [l (Ll) < m%01 (which follows as ®<3, ¢

m0-42

}- (17)

2] Si». Roughly speaking, S is the set

>

7 =Aforalli’ € (ff {’iz]. It follows that for all i’ € ({’f, L

1

Info (u)) implies that D(dist(f([g’i,] | ®g3u) [(Ll) < m%01 We

get, forall i’ € (ff,t’iz], that:
m®ol > D(dist(f([f’i,] | q>s3u) I fu)

> Z D(dist(PC>[i< (Z’f([f,i']) |<1353u) Il W)

<
ze[m]

(Lemma A.11)

The Rate of Interactive Codes Is Bounded Away from 1

> Z D(dist(PC>[i< (Z, f(f[.(,l'/]) | q)S:‘}u) || (LI)
ZESir
> ISy - ﬁ (Eq. (17))

>

As such, we get that for all i’ € (t’l.<, I 0.44 4

], we have |Si| < m"** im-

plying that |S| < m%%. Next, note that as ®<3,, ¢ Guessfi’ (u), we
also have by Eq. (11) that Heo (PCs p< (f<p<) | P<3y) = Remfi’ (u).
= T

Observe from Claim 5.2 that conditio;ling on ® <3, fixes the value of
PC(f<[<) = PC<[< (f<=). Thus, we get Hoo(PC(fgp<) | P<su) 2

Remi (u) It follows from Eq. (7) and Definition A.5 that

0.45 Z—Rem(i (u) <)
m0-25

Pr(PC(fof) es| cpggu) <m (18)

As a consequence, Eq. (16) follows if we show that:

Pr(d)ggt € Guess' (t) | ®<3u, PC(f<g<) ¢ 5) < —.
. A m .

Next, note from Claim 5.2 that the value of ®3; fixes the value
of PC(f. <) (and also of ®<3,). Thus, it suffices to fix an arbitrary

d3; that agrees with ®<3,, and for which the corresponding value
of PC(f<,<) ¢ S, and show that

1

Pr(¢'53t € Guessi(t) | <I><3t) <=3
mo-

By Eq. (11), this is the same as:

Pr(sr € { @3¢ | HooPCo= (Fe) | @car) < Rem' ()} | o)
1
< o0z

Fixmg such a @3, this is because of the following two claims. We
omit the formal proofs of these claims, which can be found in the
full version of the paper.

CrA1vM 5.10. It holds that:

Pr(ds; =1 Oc3p) < R

CraIM 5.11. It holds that:
Hloo (PC = (Fp) | @, @30 = 0) > Rem (1),

5.5 Finishing the Proof

We are now ready to prove Lemma 5.1

Proor oF LEMMA 5.1. Recall that we are showing the lemma
in the contrapositive, assuming that 7 is a not subsequence of o.
This means that Emb(n) > T implying by Eq. (6) that there exists
i € [n] suchthati e Good(T) Fix such an i and apply Lemma 5.9 to
conclude that Pr(&) < 2 , where & is the event ® <37 € Guess!(T).
We now derive Eq. (4) as follows:

Pr(resrp(F) = PC(F)) < Pr(&) + Pr(resH(F) =PC(F) | E)
(Union bound)

<L +Prresi1(F) = PC(F) | E).

1434

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Thus, it suffices to show that Pr(resH(F) =PC(F) | 5) < # We
show this holds under a stronger conditioning by conditioning on
an arbitrary ® <37 such that <37 ¢ Guess'(T). Fixing such a ®<37
and noting that fixing ® <37 also fixes resp(F) to some value res

we get:
Pr(respy(F) = PC(F) | ®<37) < Pr(PC(F) = res | ®<37)

< Pr(PC>[_< (f<i) = ress < | CI>S3T)

< 2—Remi(T)

(Eq. (11) as ®<37 ¢ Guess!(T))
<m0 (Eq. (7))
< i
<3

[m}

6 PROOF OF THEOREM 4.2

In this section, we prove Theorem 4.2. For notational convenience,
we define the constant 5 = 107>,

6.1 A Customized Concentration Inequality

Fact 6.1. For all integers 1 < k < n, we have:
)=

k k

o <))
k

LEMMA 6.2. Let Z C N andn > 0 be an integer. Also, let p > 0

and X1,Xa, - - - , Xpn be random variables taking values in N. Then, if
& > 0 is such that for alli € [n] and all x1,x3,--- ,xi—1 € N, we

have:

n 3n

k

n
k

Pr(Xi =1|Vi'e[i-1]: Xy =x,-f)
i-1

le‘/ ¢Z|-

i’=1

i-1
IL(inf <(1+6)-n-1
7

=1

<l-p- IL(
Then, it holds that:

.

The formal proof of Lemma 6.2 is omitted for space and can be
found in the full version of the paper.

Zx,<(1+5) n

)< 2 —pn+dn- log +\Z|
i=1

6.2 Basic Definitions

Recall that = 107°. Also recall from Section 2.2 that we consider
segments of geometrically increasing lengths. These segments will
be parameterized by an integer ¢ > 0. We will use Ly to denote the
length of segment ¢, Dy to denote the “delay” or the “lag” before
the segment starts, and Cp to denote the non-bullet symbols in the
pattern for this segment. We set these parameters as follows:

Lp=n 22 Cr = [n°Le]

n D, = I]4L[.

(19)
We also define L<p = 3¢ p=1 Ly and Lep = Y- e L[/ We adopt the
convention that L<g = 0 and observe that all these parameters
integers. Next, we define the set {A, B}, to denote the set {A, B}, =
{A, B} U {e}. For p € {A, B};, we use bull(p) to denote the number

of coordinates in the string p that are equal to the “bullet” symbol

STOC ’23, June 20-23, 2023, Orlando, FL, USA

o. Formally, we have bull(p) = |{i € [|p|] | pi = }|. The following
simple observation counts the number of strings p with a given
value of bull(p).

OBSERVATION 6.3. Forall0 < T’ < T, we have:

'’ T
=oT-T (

\{p € (BT 1 buti(p) = 1} _—

)

For strings p € {A, B}: and o € {4, B}""(®) e can insert the
coordinates of ¢ into the bullet coordinates of p to get a string
ins(o, p) € {A,B}lpl, whose i coordinate, for i € [Ipl], is denoted
by ins; (o, p) and defined as:

: if p:
ins; (o, p) = P 1 piEe . (20)
Tbull(pe;)s i pi=e
The function ins(-) satisfies the following:
LEMMA 6.4. Leto,0’ € {A, B}* and define T = |o|, T’ = |o’|. For

all (possibly empty'®) sets S C [T such that Emb(c, o’, max(S)) <
T’, there exists a string p € {A,B}Z, such that bull(p) = |S| and
ins(os, p) = 0o’.

LEMMA 6.5. Let 0,0’ € {A, B} and defineT = |o| and T’ = |o”|.
Leti € [T], i’ € {0} U[T’] be such that Emb(c,0’,i—1) < i’ <
Emb(o, o’,i). Foralli” > i’ € [T’] and0 < b < |E(5,0") N (i’,i"]],
there is a string p € {A,B}iﬂ_i' such that bull(p) = b and:

ins(a[i’,urb),p) = O-Ei’,i”]'

The formal proofs of Lemmas 6.4 and 6.5 are omitted for space
and can be found in the full version of the paper.

6.3 Predictable Indices

We are now ready to define the notion of predictable indices.

DEFINITION 6.6 (PREDICTABLE INDICES). Let £ > 0 and o €
{A, B}" be given. Let i be an integer satisfying Dy < i < |o|—2L;. For
all integers0 < j < Ly andp € {A,B}],“’ satisfying bull(p) = Ly —Cp,
define the function'!:

Delay(?, 0,1, j, p)
= Emb(cf>i—D,, ins(o'(i+j,i+j+L{—C[]sP)a (1-n) ’Lt’)~

We say that i is £-predictable in o if there exist p, j as above for
which Delay (¢, 0,1, j, p) < Ly and use Pred¢ (o) to denote the set of
all indices Dy < i < T — 2Ly that are {-predictable in o.

LEMMA 6.7. Let integersT,£ > 0 and Dp < i < T — 2Ly be given.
We have:

Pr

L
{AB}T(i € Pred/(0)) < 277
a~{A4,

The formal proof of Lemma 6.7 is omitted for space and can be
found in the full version of the paper.

10We adopt the convention that max(0) = 0.
Note that Eq. (19) implies that (1 —) - Ly is an integer.

1435

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena

6.4 Strings With Small Pred,(-) Exist

LEMMA 6.8. For all integers T > 0, there exists 0 € {A, B} such
that for all £ > 0, we have:

Le
|Preds(o)] <2778 - T.

The formal proof of Lemma 6.8 is omitted for space and can be
found in the full version of the paper.

6.5 Structure of Long Subsequences

For the remainder of this section, readers may like to recall the
definition of the set E4 o+ in Eq. (2). We borrow the following lemma
from [16].

LEMMA 6.9 ([16], LEMMA 6). LetT’ > 0 be an integer. Also, let I be
an indexing set and a collection of pairs {tl’ ti}ie] be given. Assume
that0 < t; <t; < T’ foralli € I. There exists a set 1’ C I such
that the intervals {(tl' ti] }iGI’ are mutually disjoint and satisfy:

g u) L @)1

iel iel’
LEMMA 6.10. Let 0,0’ € {A, B}* be such that o is a subsequence
of o’ If |0’ < (1+1%°) - |a], then:

<2

{i’ elle|] 130 <k <|o’|-

|Eoor N (1 +K]| < (1 - 178) kH <n®-|o.

The formal proof of Lemma 6.10 is omitted for space and can be
found in the full version of the paper.

6.6 Proof of Theorem 4.2

Proor oF THEOREM 4.2. We define o to be the string promised
by Lemma 6.8. Thus, for all £ > 0, we have:

L
IPred;(0)] < 27% - T. (1)

Fix an arbitrary ¢’ € {A, B}* such that o is a strong subsequence
of ¢’ and let T” = |o’|. Assume for the sake of contradiction that
T’ < (1+1?°) - T. As o is a strong subsequence of ¢’, we must
have T’ > T+ 1 and |Eg’gr| = T. From these, we conclude that
2T>T >T2n 2 and|Esqe| > (1-1') - T

Next, we use Definition 3.7 to geta set I C [T”] such that |I| > %
and for all i’ € I we have that o is a subsequence of ¢’ ;,. Define
the following sets:

I =[T']\ [|0.9997" |]
L= [T/] \ Eo‘,o"
I3={i’e[T’]|0<ksT’—i’ (22)
Eoor N (11 +K]| < (1 - r]g) ~k}
Also, define, for £ > 0, the set:
Iy = {i' € [T’] | bound,(i’) € Predg(a)}, (23)
where, for i’ € [T’], we define
bound,(i") = max{i € {0} U [T] | Emb(c,0’,i) < i’} (24)

+(l—l])~L<[+D{—f.

The Rate of Interactive Codes Is Bounded Away from 1

We claim that:

CrLAIM 6.11. We have:

UIJ < r

) 100

The formal proof of Claim 6.11 is omitted for space and can be
found in the full version of the paper.

Conclude from Claim 6.11 and the fact that |I| > {—(; that there
exists an index 2z’ € I'\ UjsoI;. We show that this leads to a
contradiction. As z’ € I, we have that o is a subsequence of

o’ .- Recall that this implies that ‘E(o, o’ Z,) =T or, equivalently,

Emb(a, o"_z,, T) < T’ —1 < T’. Henceforth, for notational conve-

nience, we abbreviate Emb(O', o"_z,,) to Emb*(-) and E(O’, o"_z,) to
E*. We also abbreviate Emb(o, ¢’, -) to Emb(-) and E(o, 0”) to E.

We now use the fact that z’ ¢ {5 I; to get more information
about z’. From Eq. (22), we get that 2’ < 0.999T” and z’ € E. Due to
Eq. (2), this implies that there exists z € [T] such that Emb(z) = 2’.
We claim that:

z<(1-n)-T. (25)

Indeed, if not, we have from Observation 3.1 that 0.999T’ > z’ >
z> (1-7)-T,a contradiction to T" < (1+7%°) - T. Next, Eq. (22)
also says that for all 0 < k < T” — 2/, we have (as the left hand side
is an integer):

[En (.2 +K]| > [(1 - 1) ﬂ.

Finally, use Eq. (23) and Observation 3.1 and Emb(z) = 2’ to get
that, for all £ > 0:

(26)

boundg(z’) =z+ (1 —1n) - L<p + Dy — £ ¢ Predg(0). (27)

To derive a contradiction, we claim that:
LEmMA 6.12. For all ¢ > 0 such that z < T — 3L<y, we have:
Emb*(z+(1—-1n)-L<p—£) 22’ +L<y.

The formal proof of Lemma 6.12 is omitted for space and can be
found in the full version of the paper.

We finish the proof of Theorem 4.2 by showing that it implies a
contradiction. For this, define ¢* = |log;qi0 (7*T’) | and note that
T’ > 2% implies that £* > 5. We get from Eq. (19) that

Lep < 2Lp < 25°T’ Leps > L > T’ (28)

Due to Egs. (25) and (28), we can use Lemma 6.12 with £* to get:
Emb*(T) = Emb*(z+ (1 - 1) - L<p= — £¥)
+T—-z—(1-n) L<p +£* (Observation 3.1)

272 +n Lep+T—2
>n-Lep+T (As Observation 3.1 implies 2’ > z)
> T +T. (As L<pr = n*T")

As we know that Emb*(T) < T, this contradicts T’ < (1 +7%) -
T. O

1436

STOC ’23, June 20-23, 2023, Orlando, FL, USA

ACKNOWLEDGEMENTS

We thank Sepehr Assadi for Lemma A.7 (and a clean proof of it).

Klim Efremenko is supported by the Israel Science Foundation
(ISF) through grant No. 1456/18 and European Research Council
Grant number: 949707. Gillat Kol is supported by a National Science
Foundation CAREER award CCF-1750443 and by a BSF grant No.
2018325.

A INFORMATION THEORY PRELIMINARIES

Recall that we use sans-serif letters to denote random variables.
We reserve E to denote an arbitrary event. All random variables
will be assumed to be discrete and we shall adopt the convention
0log % = 0. All logarithms are taken with base 2.

All formal proofs in this section are omitted for space and can
be found in the full version of the paper.

A.1 Entropy

DEFINITION A.1 (ENTROPY). The (binary) entropy of X is defined
as:

1
0= D, Prix)-log g
xesupp(X)
The entropy of X conditioned on E is defined as:

1
H(X | E) = Z Pr(x | E) ‘logm.
xesupp(X)

DEFINITION A.2 (CONDITIONAL ENTROPY). We define the condi-
tional entropy of X given Y and E as:

HX|Y,E)= > Pr(y|E)-H(XX|Y=yE).
yesupp(Y)

Henceforth, we shall omit writing the supp(+) when it is clear
from context.

LEMMA A.3 (CHAIN RULE FOR ENTROPY). It holds for allX,Y, Z
and E that:

H(XY | Z E) =H(X | ZE) + H(Y | X, Z, E).

LEMMA A.4 (CONDITIONING REDUCES ENTROPY). It holds for all
X, Y, Z and E that:

H(X |Y,Z E) < H(X | Z,E).
Equality holds if and only if X and Y are independent conditioned on
Z,E.
A2

DEFINITION A.5 (MIN-ENTROPY). The min-entropy of a discrete
random variable X is

Min-Entropy

1 1
8 Pr(x)’

Fact A.6. If the random variable X takes values in the set Q, it
holds that

min

Heo (X) =
) x:Pr(x)>0

0 < Heo(X) < H(X) < log|Q|

LEmMMA A.7. Let Q, A, B be (finite) sets and X be a random variable
that takes values in the set Q. Let f : Q — Aandg : Q — B be
functions. For an event E and t > 0, define the set:

B'={b € B|Hoo(f(X) | E,g(X) = b) < Heo(f(X) | E) - t}.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

It holds that:
Pr(g9(X) € B | E) < |B|] - 27",

A.3 KL Divergence

DEFINITION A.8 (KL DIVERGENCE). If i, v are two distributions
over the same (finite) set Q, the Kullback-Leibler (KL) Divergence
between yi and v is defined as:

D(u [l v) =)" p(w) - log

WEeQ

p(w)
v(w)

For a finite non-empty set S, we shall use U(S) to denote the
uniform distribution over S. We omit S from the notation when it is
clear from the context. We use dist(X | E) to denote the distribution
of the random variable X conditioned on the event E.

LEMMA A.9. Let X be a random variable uniformly distributed
over a set Q and S C Q be given:

12|

D(dist(X | X € S) || U) =1log SR
LEMMA A.10. It holds for all X and E that:

D(dist(X | E) || U) = log(Isupp(X)]) — H(X | E).
LEMMA A.11. It holds for all X,Y and E that:

D(dist(XY | E) || ¥) = D(dist(X | E) || U) + D(dist(Y | E) || U).

A.4 Total Variation Distance

DEFINITION A.12 (TOTAL VARIATION DISTANCE). Let u, v be two
distributions over the same (finite) set Q. The total variation distance
between yi and v is defined as:

D, @) = (o).

lp = vllpy = Jax
we’

Q

FAcT A.13 (PINSKER’S INEQUALITY). Let u, v be two distributions
over the same set Q. It holds that:

1
It =vilry <4/ Dl v).
2

1437

Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena

REFERENCES

[1] Shweta Agrawal, Ran Gelles, and Amit Sahai. 2016. Adaptive protocols for
interactive communication. In International Symposium on Information Theory
(ISIT). 595-599.

Assaf Ben-Yishai, Young-Han Kim, Or Ordentlich, and Ofer Shayevitz. 2021.
A Lower Bound on the Essential Interactive Capacity of Binary Memoryless
Symmetric Channels. IEEE Transactions on Information Theory 67, 12 (2021),
7639-7658.

Mark Braverman and Anup Rao. 2011. Towards coding for maximum errors
in interactive communication. In Symposium on Theory of computing (STOC).
159-166.

Gil Cohen and Shahar Samocha. 2019. Capacity-Approaching Deterministic
Interactive Coding Schemes Against Adversarial Errors. Electronic Colloquium
on Computational Complexity: ECCC (2019), 147.

Klim Efremenko, Elad Haramaty, and Yael Tauman Kalai. 2020. Interactive Coding
with Constant Round and Communication Blowup. In Innovations in Theoretical
Computer Science Conference (ITCS), Thomas Vidick (Ed.), Vol. 151. 7:1-7:34.
Ran Gelles. 2017. Coding for Interactive Communication: A Survey. Foundations
and Trends® in Theoretical Computer Science 13, 1-2 (2017), 1-157.

Ran Gelles and Bernhard Haeupler. 2014. Capacity of Interactive Communication
over Erasure Channels and Channels with Feedback. In Symposium on Discrete
Algorithms (SODA). 1296-1311.

Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson.
2016. Towards optimal deterministic coding for interactive communication. In
Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, 1922-1936.

Bernhard Haeupler. 2014. Interactive channel capacity revisited. In Foundations
of Computer Science (FOCS). 226-235.

Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. 2018. Synchro-
nization Strings: Channel Simulations and Interactive Coding for Insertions and
Deletions. In International Colloquium on Automata, Languages, and Programming
(ICALP), Vol. 107. 75:1-75:14.

Bernhard Haeupler and Ameya Velingker. 2017. Bridging the Capacity Gap
Between Interactive and One-Way Communication. In Symposium on Discrete
Algorithms (SODA). 2123-2142.

Gillat Kol and Ran Raz. 2013. Interactive channel capacity. In Symposium on
Theory of computing (STOC). 715-724.

Noam Nisan and Avi Widgerson. 1991. Rounds in communication complexity
revisited. In Proceedings of the twenty-third annual ACM symposium on Theory of
computing. 419-429.

Denis Pankratov. 2013. On the Power of Feedback in Interactive Channels.
Manuscript (2013).

Leonard J Schulman. 1992. Communication on noisy channels: A coding theorem
for computation. In Foundations of Computer Science (FOCS). 724-733.
Leonard] Schulman. 1993. Deterministic coding for interactive communication.
In Symposium on Theory of computing (STOC). 747-756.

Claude E. Shannon. 2001. Originally appeared in Bell System Tech. J. 27:379-423,
623-656, 1948. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review 5, 1 (2001. Originally appeared in
Bell System Tech. J. 27:379-423, 623-656, 1948), 3-55.

[2]

[12

(13]

[14

[15

(16

-
=

Received 2022-11-07; accepted 2023-02-06

	Abstract
	1 Introduction
	1.1 Our Result
	1.2 Additional Related Work

	2 Overview
	2.1 Lower Bounds on Noiseless Simulations
	2.2 Analysis of Strong Subsequences

	3 Model and Preliminaries
	3.1 Notation
	3.2 Embedding Strings
	3.3 Our Noisy Channel
	3.4 Pointer Chasing

	4 Proof of Theorem 1.1
	5 Proof of Theorem 4.1
	5.1 Notation
	5.2 Definitions
	5.3 Properties of Info
	5.4 Key Lemma
	5.5 Finishing the Proof

	6 Proof of Theorem 4.2
	6.1 A Customized Concentration Inequality
	6.2 Basic Definitions
	6.3 Predictable Indices
	6.4 Strings With Small Pred() Exist
	6.5 Structure of Long Subsequences
	6.6 Proof of thm:random

	A Information Theory Preliminaries
	A.1 Entropy
	A.2 Min-Entropy
	A.3 KL Divergence
	A.4 Total Variation Distance

	References

