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Abstract

In this work, we design an interactive coding scheme that converts any two party interactive protocol II
into another interactive protocol II', such that even if errors are introduced during the execution of II', the
parties are able to determine what the outcome of running IT would be in an error-free setting.

Importantly, our scheme preserves the space complexity of the protocol, in addition to the communication
and computational complexities. Specifically, if the protocol II has communication complexity 7', computa-
tional complexity ¢, and space complexity s, the resulting protocol IT’ is resilient to a constant € > 0 fraction
of adversarial errors, and has communication complexity approaching 7" as € approaches 0, computational
complexity poly(t), and space complexity O(slogT).

Prior to this work, all known interactive coding schemes required the parties to use at least Q(T") space, as
the parties were required to remember the transcript of the conversation thus far, or considered weaker error
models.

1 Introduction

1.1 Interactive Coding Theory

Background. In the well-studied field of coding theory, which dates back to the seminal work of Shannon [24],
researchers attempt to understand the fundamental limits on the transfer of information imposed by unreliable
communication channels. Most work in this regime focused on the one-way model of communication, where one
party (henceforth referred to as Alice) wishes to send a single message to a second party (Bob). While classical
coding schemes have found innumerable applications both in theory and in practice, modern systems, which are
often very interactive, have motivated the development of radically new coding schemes.

Motivated by this scenario, Schulman [23] initiated the study of the following model of interactive
communication over a noisy channel. There are two parties who wish to carry out a conversation. The additional
wrinkle: the channel through which the parties communicate is now unreliable, and may change some of the sent
symbols. Therefore, the goal is to transform the original protocol into a new protocol which is still guaranteed
to correctly determine the outcome of the original protocol (or, say, succeed with high probability), even if some
errors are introduced into the conversation. The new protocol is referred to as a robust simulation of the original
protocol. In the literature, errors may be random or adversarial, and in our work, we consider the most general
adversarial error model, so our results can be applied in all other (weaker) error models.

Resource-efficient interactive coding. Schulman’s breakthrough works in the 1990’s [2T], 22] 23] already
showed that every protocol can be robustly simulated by a protocol that only incurs a constant multiplicative
overhead in the communication complexity, even in the case that an adversary is allowed to corrupt a constant
fraction of the total communication. It would be another twenty years before Brakerski and Kalai [I] show
that the robust simulation can also be made computationally efficient. That is, the running time of the two
communicating parties in the simulation protocol is polynomial (or even linear [2]) in the running time of the
parties in the original protocol.
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Constructing interactive coding schemes that preserve the communication and time complexities of the original
protocol (at least up to polynomial factors) is an important step towards making interactive coding practical. In
fact, as in the case of (one-way) classical codes, we wish for the coding layer to be as “seamless” as possible and
for the simulation to preserve as many of the properties of the original protocol as possible.

In this work, we take another step towards this vision and show that the space complexity can also be
preserved. Specifically, we show how to convert any two party protocol into one that is resilient to constant
fraction of adversarial errors, while preserving the communication complexity (up to constant factors), the time
complexity (up to polynomial factors), and preserving the space complexity (up to logarithmic factors).

We note that all prior works on robust simulation blow up the space complexity of the parties, by forcing them
to save in memory the entire transcript of the conversation thus farﬂ Storing the entire transcript can be wasteful,
or even impractical for very long protocols, and therefore it is beneficial to have noise-resilient communication
protocols which are more space-efficient.

1.2 Our Result Our main result is a time-efficient and space-efficient interactive coding scheme with rate
approaching 1 that is resilient to a constant fraction of adversarial errors.

THEOREM 1.1. (INFORMAL STATEMENT; CF. Let I be a protocol of length T, computational
complezity t, and space s. Let ¢ > 0 be a small enough constant. There exists a protocol I that robustly
simulates 11 with probability 1 — % in the presence of an € fraction of adversarial errors and has length approaching
T as € approaches 0, computational complezity poly(t), and space complexity O(slogT).

We mention that our work is essentially a compiler, taking an interactive coding scheme C (that may not
have small space overhead), and outputting a new scheme C’ with a small space overhead. The scheme C’ applies
the original scheme C to blocks of consecutive rounds of II, and combines the transcripts of II for these blocks in
a space-efficient manner. Since our scheme C’ can be viewed as an efficient oracle machine that uses the original
scheme C as an oracle, it preserves the running time and other properties of the original scheme C. For instance,
since in we apply our compiler on the coding scheme C of [§] that has rate approaching 1, we are
able to show that our scheme C’ has rate approaching 1. One can also apply our compiler to other interactive
coding schemes to get additional results, e.g., applying it to the scheme of [2] would give a scheme C’ that has an
almost linear running time (but a rate that is a constant bounded away from 1).

We believe that the multiplicative O(logT) blowup in the space complexity in is necessary when
converting protocols into noise resilient ones. Proving or disproving this conjecture is left as an open problem.
We mention that a similar blowup appeared in [10]E| (see below for further discussion). At least in the case of
[10], proving that this blowup is necessary would require proving new circuit lower bounds.

Our model. We finish this section with a discussion of our specific communication model, noting that our
ideas would extend to other models as well. For us, a communication protocol starts with the parties having an
input and a memory of s bits and proceeds in rounds: In each round, each party sends a bit (which can be an
arbitraryﬂ function of their input and current memory state) to the other party over the channel. Upon receiving
a (possibly flipped) bit from the channel, each party updates their memory state to a new memory state (that is
an arbitrary function of their received bit, their input, and their current memory state) and continue executing
the remaining rounds. After all the rounds have been executed, the parties use their input and memory state to
compute an output value. We mention that in the protocol II' in the functions that are used to
compute the sent bits and update the memory are efficient in terms of time and space, given oracle access to the
functions of II.

We also mention that is shown in the most general fully adaptive adversarial error model.
Specifically, the adversary is assumed to know all inputs, and, at any point in the execution of the protocol, the
adversary sees all the messages that have been communicated by the parties and all the random strings used by

them till that point. For a formal definition, see

TWe note that one exception is the work of [7], which is a followup to an earlier version of this work [I8], and which we elaborate
on in
2In [10], this blowup manifests itself as a blowup in the circuit size. As in our case, the blowup occurs as the simulation needs to
remember geometrically spaced locations, called “meeting points”, in the original protocol (see .

3In particular, computing this function can take more than s bits of memory.

Copyright © 2023 by SIAM
3588 Unauthorized reproduction of this article is prohibited



Downloaded 01/30/24 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.3 Prior Work

Interactive coding. The problem of communicating over a noisy channel was originally formulated
by Schulman [21, 22, 23], and since then, there have been numerous works improving various aspects of
the resulting robust protocol, such as the communication rate, the error rate, the time complexity, etc.
14, [6, 2, B, 19, 17, [, 15l 12l T3] @] 5] to cite a few]. See [11] for an excellent survey.

Space bounded coding. The question of interactive coding with bounded space was first considered in
the unpublished manuscript [18]EL which we consider to be an earlier version of this work. Building on ideas
from [18], the space bounded interactive coding question was studied in weaker error models: The work of [7]
gives an interactive coding scheme that is space efficient (i.e., incurs only logarithmic overhead to the space
complexity, similarly to our work) and also achieves the (conjectured) optimal rate as ¢ approaches 0. However,
unlike our setting, the scheme of [7] assumes an oblivious adversary who makes all its corruption decisions in
advance. Specifically, the adversary decides what rounds to corrupt and what to corrupt them to, without seeing
the randomness of the parties or the communicated transcript.

We note that assuming an oblivious adversary greatly simplifies the question because the parties can quickly
detect when the adversary corrupts the communicatiorﬂ Therefore, they will not add wrong symbols to their
local view of the transcript, and in turn, will never need to rewind to a previous version of this transcript before
the errors occurred. A space bounded interactive coding scheme follows, as the parties only need to remember
the current memory state of the original protocol II, which is guaranteed to be correct.

Resilient circuits. Another work closely related to ours is the recent work on constructing error resilient
circuits [10], which translates the problem of constructing error resilient circuits to the problem of constructing
space bounded interactive coding schemes for a non-standard communication-like model (specifically, the model
of DAG-protocols with rectangular correctness). Their model is incomparable to the model we consider, with
several differences. For example, on the one hand, their model can be seen as a version of the feedback model,
where the parties know what the symbols they sent were corrupted to, and thus have more information, but on
the other hand, their work gives the adversary the power to tamper with the memory of the parties (in addition
to the communication), and thus makes his task easier.

2 High-Level Intuition

We now give an informal overview of our interactive coding scheme.

2.1 The Rewind-If-Error Framework The starting point of our interactive coding scheme is the rewind-if-
error framework of [2I]. Let II be the noiseless protocol being simulated and let T" be the number of rounds in II.
In this framework, the protocol II is divided into constant-sized blocksﬂ and simulated block by block. In more
detail, the simulation consists of iterations, with each iteration having a simulation phase and a check phase. In
the simulation phase, the parties simulate one block of II to obtain a transcript for this block. This transcript is
appended to the transcript of all the previous blocks and then checked for correctness, by exchanging a hash of the
transcript (say), in the check phase. If the check passes, i.e., if the transcript is correct, then parties continue to
simulate the next block of II. If not, the parties “rewind” their transcripts in an attempt to remove the erroneous
blocks.

The classic rewind-if-error framework described above suffers from a high space complexity. Indeed, as
explained above, when parties run the simulation, they record the entire transcript of II so far (using Q(7') space)
even if a noiseless execution of II can be done using a lot less space, say s. The reason the parties record the entire
transcript is threefold: (1) To determine which symbols to send in the next block. (2) To rewind to a previous
correct prefix in case errors are detected in the check phase. (3) To compute a hash value that allows the parties
to check for correctness.

4This manuscript, now retracted, is by a subset of the current authors, and can be found in https://arxiv.org/abs/1805.06872v1k

5This can be done, for example, by having the parties exchange hashes of the transcript so far and check that the hashes are the
same. An oblivious adversary will not be able to cause hash collisions: To make Alice think that Bob has the same hash value when
he does not, the adversary needs to know Alice’s hash value and change Bob’s communicated hash to this value. Note that the fully
adaptive adversaries we consider, that have knowledge of the parties’ randomness and the communication history, can easily create
such collisions.

60ur scheme actually uses blocks of size O(log T') for reasons to be explained later. See [I] and followup works for other schemes
with logarithmically sized blocks.
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In order to get a space bounded interactive coding scheme, one needs to perform to |3] using space
as close to s as possible. is the simplest to handle, as instead of storing the entire transcript so far, the
parties can simply store the s bit memory state that it leads to (the current memory state). Now, the fact that
IT has space complexity s implies that the bits the parties send in the future blocks of II are a function of this s
bit memory state, and we can use this function in our simulation to compute these bits. Handling and
is much more involved and discussed next.

2.2 Handling via Meeting Points Our solution to handle is to adapt the “meeting points”
approach of [I7]. The main idea here is to have the parties store not only the memory state that the current
transcript leads to but also the memory state that some (a carefully chosen set) of its prefixes led to. These
prefixes, called meeting points, are chosen to be roughly geometrically apart. In other words, if the parties are
currently simulating round ¢ of II, then, for all z € [logT], the parties also remember the memory state that a
prefix of length (roughly) 7 — 2% led to. In fact, remembering these log T prefixes is the reason why our coding
scheme increases the space by a logT factor.

With this extra memory to store the meeting points, the parties perform the rewinds mentioned in by
going to the closest meeting point that they have in memory. Then, the next iteration will check if this meeting
point is correct. If even this meeting point is found to be incorrect, the parties will rewind to the one before, and
so on. Note that as the meeting points are geometrically spaced, the parties never have to rewind more than twice
the number of rounds corrupted by the adversary. This is crucial and allows us to handle a constant fraction of
adversarial errors, as explained next.

Why remember log T meeting points? Recall that the reason increases the space by a log T
factor is that the parties remember logT' meeting points. One might wonder if we can get an improvement by
simply remembering fewer meeting points. Such an improvement, without any major new ideas, is unlikely, as if
the parties remember o(log T') meeting points, then there exists a length [ such that the parties have no meeting
point between the rounds ¢ — 100! to ¢ — I.

Now, imagine the adversary corrupted all rounds starting from i — [ to round i. To fix these corruptions
the parties will have to go back to the closest correct meeting point (before round ¢ — 100!) and continue the
simulation from there. Thus, by inserting [ corruptions, the adversary was able to make the parties redo 100!
rounds, implying that the protocol cannot handle more than a ﬁ fraction of corruptions. As the constant 100
was arbitrary, it follows that the protocol cannot be resilient to any constant fraction of corruptions.

The variable E. Another way the adversary can cause the parties to waste many rounds with a small
number of corruptions is by causing “fake rewinds”. Imagine that the parties are currently simulating a round,
say i, of I, and the transcript so far is correct. However, the parties do not remember any meeting points close to
i (due to previous rewinds, for example) and the closest meeting point they remember is i — A, for some large A.
Now, if the adversary can insert a small number of corruptions to make the parties believe that their transcript
of length i is actually incorrect and send them to point ¢ — A, then he has again made them waste many rounds
with a small number of corruptions.

To prevent this from happening, we maintain a variable E that helps the parties avoid fake rewinds. At a
high level, whenever the parties want to rewind, they will increment E by 1 and only rewind when E reaches A,
when they also set E back to 0. This means that if the rewinds are actually fake, the adversary needs to insert A
corruptions, and the previous attack does not work. Finally, we mention that the variable E does slow down the
rewind process in case the rewinds are not fake, but if the rewinds are not fake, the adversary already inserted
enough corruptions to make the parties’ transcripts incorrect, and we can afford the slowdown.

2.2.1 Taxes As is evident from the examples above, the length of the correct transcript remembered by the
partiesm may change by a lot in one iteration of our interactive coding scheme. This complicates our analysis
significantly, as traditional approaches of showing that a potential function (which is governed, amongst other
things, by the length of the correct transcript) increases in every iteration do not work any more.

As an extreme example, consider the following scenario: The simulation proceeds correctly for the first 4
iterations and the parties have a correct transcript of length i. At this point, the adversary starts inserting a lot

More formally, the longest prefix of the correct transcript of IT which we currently have stored as a meeting point (i.e., the

corresponding memory state is stored).
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of corruptions and eventually takes the parties to an iteration ¢’ > ¢ where they are about to forgetﬁ the meeting
point at length . Assume for simplicity that by the time parties reach round ¢, they have already forgotten all
the meeting points with length smaller than i. Then, before iteration ¢’, the parties have a correct transcript of
length 4 but immediately afterwards, the length decreases to 0, causing a huge drop in the potential in a single
iteration.

The way to fix this situation is to note that in order to get this huge drop in potential in a single iteration,
the adversary must have inserted a lot of corruptions in many of the previous iterations. Thus, if we can somehow
“charge” this decrease in potential to those corruptions, our analysis might still work. We do exactly this, and
work with a more involved potential function that has an extra term called Tax. When the adversary tries to
insert corruptions hoping to cause a sudden drop in potential after a large number of iterations, we use these
corruptions to increase the value of Tax. Eventually, when the drop occurs, we reset Tax to 0 and use this decrease
to counter the change in the length of the correct transcript. For more details, see [Lemmas 5.0.29] and [5.0.24

2.3 Handling via Chaining Hashes It remains to describe how the parties check if the simulation
so far is correct without the knowledge of the transcript. Recall that, if the parties knew the transcript, they
could simply exchange a hash of this transcript and if the hashes match, deduce that the transcript is likely to
be correctﬂ However, we cannot afford to remember the entire transcript, and in our scheme, the parties only
remember the memory state that the transcript leads to.

As a first attempt, one might consider hashing these memory states and checking if the hash values are equal.
Unfortunately, this does not quite work as illustrated by the following example (also described in [7]): Let II be
the length O(n) protocol that computes the Hamming distance of two n-length bit vectors. Such a protocol is
possible using O(logn) space as the parties can exchange their vectors bit by bit, only counting how many bits
so far were different.

This protocol indeed works if there are no errors, but if there are errors, then by corrupting the bits receive
by both parties, an adversary can make both the parties wrongly increment the counteﬂ As the counter is
essentially all the parties remember, and the fact that both of them wrongly incremented it, means that their
values for the counter still agree, the parties will not be able to detect this error by simply exchanging hashes of
their memory. More generally, the fact that the two parties have the same memory state does not imply that this
memory state is the correct one.

Chaining hashes. Our solution is to maintain a “chained” hash of their view of the transcripts and the
hash seeds, and exchanging this hash to verify correctness. In more details, after the first iteration, the parties
only have a small transcript and can remember it in its entirety and compute a hash H;. Then, after the second
iteration, the parties hash the small transcript of this iteration and the hash H; and the hash seed for H; to
compute a new hash Hs. In the third iteration, the parties would then hash the small transcript of this iteration
and H, and the hash seed for Hs to get Hs, and so on.

The reason we hash this way is that it (except with probability polynomially small in T') ensures that, if the
hashes used by the parties are Q(logT) in length, then, for all ¢ € [T], the pair H; = (H;,seed for H;) is the
same for the parties only if their transcripts so far are the same (our notation for pairs follows the notation in
our protocol, see . Put differently, looking at the current hash value and the current hash seed (which
can be maintained in O(log T') space) allows the parties to check equality of their (much longer) transcripts. To
show the statement, we proceed by contradiction. Consider the smallest ¢ such that the H; is the same for both
the parties but the transcripts at iteration i are not. By our choice of ¢, we have that either #;_; is different for
the parties, or the transcripts for iteration ¢ — 1 are the same. As the transcripts at iteration ¢ are not the same,
the latter can only happen if the small transcript of iteration 7 is different.

Now, combine these facts to get that, at iteration ¢, the values of H; are the same for the parties but either

8This must happen as the parties do not have enough memory to store all the lengths and they do not know which part of the
transcript is uncorrupted.

9The reason is that Alice’s transcript has the correct symbols communicated in rounds where she transmits, and Bob’s transcript
has the correct symbols communicated in rounds where he transmits. If the transcripts match, all rounds are correct.

10For instance, consider the case where the first bit in the inputs of both parties is 0, but the adversary corrupts the transmission
of these first bits to make it sound like they are both 1. In this case, after exchanging the first bits, the counter of both parties will
be 1 instead of 0. The reason is that, upon getting the 1 bit from Bob, since her first bit is 0, Alice increments her counter. Bob does
the same.
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H;_1 or the small transcripts at iteration ¢ are different. This means that the parties hash two different objects
with the same seed in iteration ¢ and get the same hash value. As the hashes used by the parties are Q(logT) in
length, this can only happen with probability polynomially small in 7" for any given ¢. Union bounding over the
O(T) many iterations 4 finishes the proof.

Blocks of length O(logT). The above approach only works if the hashes the parties exchange are of length
Q(logT), as otherwise there may be hash collisions and we lose our correctness guarantee. In turn, this means
that the length of the check phase in any iteration must be at least Q(logT). With such a long check phase, the
only way we can have a constant rate interactive coding scheme that is resilient to a constant fraction of errors
is if the simulation phase also simulates a block of length Q(logT') of II and works even if a constant fraction of
its rounds are corrupted.

To get these guarantees, in our simulation phase, we actually simulate a ©(logT')-length block of II using one
of the classic (not necessarily space bounded and with only a weak exponential time bound) interactive coding
schemes present in the literature. Using a scheme that is not space bounded is okay as the input to the scheme
is a protocol of length ©(logT) and thus, even in the worst case, it can only take O(logT') space and poly(T)
running time, which we can afford.

3 Preliminaries

3.1 Building Blocks Our protocol can make use of the following objects:
Randomness Efficient Hash Functions. The following lemma is due to [20] (see also [I8]):

LEMMA 3.0.1. There exists a constant K; such that the following holds: Let n,m > 0 and define ¢ =
K; - (m+logn). There exists a family of functions {hSd}sd€{0,1}° mapping {0,1}" — {0,1}™ such that for
all z #y € {0,1}", it holds that:
Pr  (hs(z) = ha(y)) < 27™/ K1,
st{or,1}c( d(7) 4(y)) <

Furthermore, the time required to evaluate h, given inputs sd and x is polynomial in n,m.
Error Correcting Codes. We use the following standard result for error-correcting codes (see, e.g., [25] [16]):

LEMMA 3.0.2. There exists a constant Ko such that the following holds: For all n > 0, there exists a function
ECC,, : {0,1}™ — {0,1}%2" such that for all s #t € {0,1}", we have

A(ECC,(s),ECC,(t)) > 0.1 - Kan.
Here, A(-,-) denotes the Hamming distance. Furthermore, the time required to evaluate ECC,, is polynomial in n.

Note that maximum likelihood decoding for an ECC as above can be performed in time at most exponential
in n by brute force.

3.2 Two-Party Communication with Bounded Memory Recall that our main result is a memory-efficient
interactive coding scheme against adversarial noise. Our scheme will be randomized where the parties have access
to random coins in each round of the scheme, and the adversary in any given round will know all the random bits
sampled by the parties so far, but will not know any random bits they will sample in the future. Specifically, we
consider a formalization Alice and Bob are denoted by A and B respectively and where a protocol is defined by
a tuple:

= (Tas’ {XC}Ce{A,B}’y’ {mSgJC}C’e{A,B},je[T]’ {memJC}Ce{A,B},je[T]’ {O‘Jtc}ce{A,jz’})7

where: (1) T = ||II|| is the number of rounds in IT, (2) s = Sp(II) is the space required by II, (3) For all C' € {A, B},
X is the input set of party C, (4) Y is the output space of the protocol, (5) For all j € [T] and all C € {A, B},
msgjc : X% {0,1}° x ({O, 1}*)] — {0, 1}, is a function that takes as input the input of party C, the current memory
state of party C, and the random bits sampled by party C' in the rounds so far, and computes a bit that they will
send in this round, (6) For all j € [T] and all C € {A, B}, mem{ : X x {0,1}* x {0,1} x ({0,1}")” = {0,1}",is a
function that takes as input the input of party C', the current memory state of party C, the bit received by party

Copyright © 2023 by SIAM
3592 Unauthorized reproduction of this article is prohibited



Downloaded 01/30/24 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

C in round j, and the random bits sampled by party C' in the rounds so far, and computes their new memory
state. (7) For all C' € {A, B}, out? : X x {0,1}" x ({0, 1}*)T — Y is a function that takes as input the input
of party C| its final memory state, all their randomness, and computes their output in the protocol.

We say that a protocol II is deterministic if for all j € [T] and all C' € {A, B}, the functions mem]C, msgjc7
and out® do not depend on their last argument.

Adversaries. Let II be a protocol as above. An adversary Adv for II is defined by the tuple Adv =

(Advjc)c_e{A,B},je[T]’ where for all C € {A,B} and j € [T], the function Adv]C c XA x XB x ({0,1}*)1' X

({0, 1}*)J — {0, 1} takes as inputs the inputs of the two parties and the randomness sampled by them in the first
j rounds and outputs a bit that they will receive in round j. We stress that this function does not depend on the
randomness that the parties will sample in the future rounds.

Execution of a protocol. Let II be a protocol as above and Adv be an adversary for II. Let 24 € X4,
xB € XPB be a pair of inputs for Alice and Bob respectively. Similarly, let py' = uf = 0° denote the initial
memory state of Alice and Bob respectively. For C € {4, B} and j € [T}, let R]C denote the random string
sampled by party C in round j. We shall use R% to denote the tuple (Rlc, e ,ch) and sometimes write jo
instead of R%fl. The execution of the protocol IT on inputs z#, =% in the presence of Adv proceeds as follows:

At the beginning of the execution, Alice and Bob start with memory states i and uf respectively. In round
j € [T], party C € {A, B} computes the bit BJC = msg]C (acc, M]C_p jo) and sends it over the channel. In turn, it
receives the ﬂ;c = Advf (xA, 2B, Réj, jo) and then updates its memory state to ;LJC = memjC (:L'C, qup b;c, jo)
and moves to the next round of the protocol. After T rounds, party C' simply outputs y© = out® (xc, U, RQT).
We define IIaq4y (:CA, zB) = (yA, yB).

Corruptions. Using the same notation as above, for C € {A, B} and j € [T], we say that the message to
party C is corrupted if the symbol received by party C' in round j is different from the symbol sent by the other
party in round j. More precisely, we define

corrj‘(H,Adv,xA, zP) = ]l(ﬁf £ B;-A) and corrf(H,Adv,xA, zP) = ]l(ﬂ;-4 + ﬂ;-B).

We also define corr;(-) = corrf(-) + corr?(:) and corr(:) = >_jerrcorrj(+). Observe that all the quantities in
the previous two paragraphs are actually random variables that are functions of the randomness sampled by the
parties. For 0 < e < 1, we say that the adversary corrupts at most € fraction of the messages of II if for all inputs
x4, 2B it holds that corr(IT, Adv, 2%, 28) < 2¢T almost surely. When we omit writing Adv in our notations above,
we mean an adversary that corrupts a 0 fraction of the messages of II. Observe that in this case, all the quantities
mentioned above are determined by II, 24, and 25.

Simulating protocols. Let II be a deterministic protocol to be simulatedE and 0 < ¢,p < 1 be parameters.
Let II’ be a randomized simulation protocol with the same input sets for the parties. We say that the protocol IT’
simulates IT with probability p in the presence of an e fraction of errors if for all inputs z4, z? and all adversaries

Adyv for II’ that corrupt at most € fraction of the messages of IT’, it holds that:
Pr(H’AdV(J:A,x )= H(J:A,xB)) >p,
where the probability is over the randomness sampled by the parties in II'. We omit writing p when p = 1.

REMARK 3.0.1. Note that for any protocol II as above, there is an equivalent protocol II' with the same number
of rounds that also satisfies Sp(Il') < T 4 1. This is because the parties can simply memorize all the bits they
recetve and reconstruct the actual memory state “on the fly” using these bits. Thus, we always will assume the
bound Sp(Il') < T + 1.

REMARK 3.0.2. (SPACE COMPLEXITY OF A PROTOCOL) Note that our definition of Sp(-) above does not actually
take into account the space needed by the parties to compute the functions msg, mem, and out. This is done only to
make the definition cleaner and the schemes we describe in this paper do not suffer from a high space complexity.

TTWe restrict attention to deterministic protocols as a randomized protocol can be simulated by simulating all deterministic protocols

in its support.
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We finish this section by recalling a well-known interactive coding result, which can be found in [§] (see also
7).
THEOREM 3.1. LetII be a deterministic protocol and € > 0. There exists a deterministic protocol I1 that simulates
IT in the presence of an € fraction of errors such that ||II'|| < ||| (1 + (9( elog(l/e))). Furthermore, the parties

in I run in time at most exponential in ||I1|| given oracle access to II.

3.3 Formal Statement of Main Result We are now ready to formally state our main result.

THEOREM 3.2. Let I be a deterministic protocol with T = ||II|| and s = Sp(II). Let € > 0 be a small enough
constant. There exists a (randomized) protocol II' that simulates II with probability 1 — % in the presence of an €
fraction of errors such that:

| <T- (1 + o( 2 elog(l/e))) and  Sp(Il') < O(slog T).
Furthermore, the parties in II' run in time at most polynomial in T given oracle access to 1.

4 Space Bounded Interactive Coding

The goal of this section is to prove We fix II and € as in the theorem statement. By increasing
Sp(II) by an additive log T, we can assume without loss of generality that the memory of both the parties in II
contains (at least) the round number that they are executing. Throughout, we use s = Sp(II) to denote the space
required by II. Let K be a constant much larger than the constants promised by [Lemmas 3.0.1] and [3.0.2] and
define the parameters:

, 62/3 K5

(4.1) h=10KlogT € = —— B* = —= logT

s 1/9 e

T
(4.2) M= M’:M-(1+106~5,) r=10Kh
€

K3

(4.3) r = ey logT >r

We also define {hgy} to be the hash function family promised by with n = 10B* and m = h. This
family will be used in and we will ensure that the input to the hash function is at most 10B* bits in length,
and thus can be hashed after being padded appropriately. Observe that 2r bits of randomness are sufficient to
sample a function from this family and therefore, we will assume sd € {0,1}*". For all sd € {0,1}*", we now
define the auxiliary function:

(4.4) Hsd(') = hsd(~)||sd.

Namely, the function H outputs the output of h concatenated with sd. We shall use this function in our protocol.
Finally, we let ECC be as promised by with n = r’. The error correcting code ECC will be implicitly
used in our protocol in and (7} 7.e., the messages exchanged by the parties in this line will be encoded
using ECC and the receiving party will decode to the closest possible message. We will ensure that message being
encoded is at most 7’ bits and thus ECC can be applied after padding the message appropriately.

4.1 Our Protocol We now describe the protocol IT’ that shows Roughly speaking, in the protocol
IT', both Alice and Bob, maintain a pair Z which contains a memory state for the protocol II being simulated
and a hash of the transcript that led to this memory state. We will use Z.state to denote the memory state and
Z.hash to denote the hash. Recalling our assumption that the memory state of a party Il contains the round
number, we get that Z also determines a unique round number Z.rn in II where its memory state can happen. As
our protocol shall attempt to simulate II in blocks of length B*, we define Z.bn = ZBT to be the block number
corresponding to the memory state of Z.

Another important variable in the protocol II’ is the set MP of meeting points. As the protocol II' may have
errors, the parties may sometimes need to rewind to correct those errors, and this is done through the set MP.
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More precisely, the set MP is initially empty but as the parties execute IT', they store some values Z in the set
MP (see [Line 9)). If they decide to rewind (Line 17)), they always rewind to a pair in MP with the largest bn.
Throughout, we adopt the convention that maxpemp M.bn = —1 if MP = ). For integers x, 7, we also use L:L'Jy to
denote the largest multiple of y that is at most . For example, we have [5], = 3 and 28], = 28.

Finally, recall that our protocol II' simulates II in blocks of length B*. We now describe how this is done in
more detail. In the parties (implicitly) construct a new protocol, call it ITpjoex, where the parties start
from the memory state Z.state (instead of the default starting state) and execute B* rounds of II starting from
round Z.bn with the goal of outputting the length 2B* transcript, i.e. the transcript that contains the B* symbols
they sent and the B* symbols they received. We shall assume that IT is padded with sufficiently many dummy
rounds so that ITpoex is always well defined. The parties then construct a noise resilient version of Ilyjocx using
with Ipoex and € and execute this noise resilient version. By [Theorem 3.1} this needs at most

B* . (1 + (’)( € log(l/e’))) < 2B* rounds of communication. Finally, in [Line 10} the parties use the received

symbols in the transcript (of length B*) obtained in to update the memory state Z.state of II (using the
function mem).
We now formally describe our protocol.

Algorithm 1 Alice’s side of the space-bounded interactive coding scheme II'.

Require: Alice starts with an input 24 € x4,
1: Z4+ (pg, L), MP 0, E < 0.
2: for i € [M'] do
3: Using the input z#, simulate a block of II from Z.state with resilience ¢’ to get o € {0, 1}23*. As

explained above, this is done using the scheme from [Theorem 3.1

4:  Sample a uniformly random string R € {0,1}".

5: Send R and receive R'. Set sd = R|R € {0,1}"".
6: H < Hs4(Z.hash, o), b < Z.bn.

7: Send (H, E,b) and receive (H', E', V).

8: if H=H' and £ = F =0 then

9: MP «— MP U {Z}.

10: 7+ (Use o and z* to update Z.state, H)
11: else if H = H' then

12: E < max(E — 1,0).

13: else if b > b’ then

14: E+ E+1.

15: if maxpmemp M.bn > b — E then

16: FE < FE + maxmemp M.bn —b.

17: If MP # 0, set Z «— arg maxy;cyp M.bn, breaking ties lexicographically.
18: end if

19: end if
20: MP +— {M & MP|32>0:Mbn=|Zbn|,. —2%}.
21: end for

22:  Output what Alice would have output in I if her input was z* and memory was Z.state.

5 Analysis

5.1 Complexity We first show that our protocol in [Algorithm 1]is not too long and does not require too much
memory.

LEMMA 5.0.1. It holds that:

| <T- (1 +0(61/3 : \/m))

Proof. Note that the only communication in II" is in and [7] These lines are executed in each iteration
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and require communication at most B* - (1 + O( ¢ log(l/e’)))7 Kr', and Kr' respectively. We get:

I < - (B (14 0(Verlog(1/e)) ) +2K7)

(Eqa1) < oo (14107 /eTog(179) - (B - (14 O(V/108(1/)) ) +¢'B°)
<T. (1 +109- ¢ elog(l/e)) : (1 + (9( ¢ 1og(1/e’)) + e’)

[Eq (41)) <7 (1410°- {elog(1/e)) - (1+0(/elog(1/e)) + %)
<T- (HO(?/M))-

LEMMA 5.0.2. It holds that:
Sp(Il") < O(slogT).

Proof. To bound the space complexity of IT’, we simply examine the variables used by IT’. These are the variables

Z, MP, E,i,0, R, R',sd, H, b, H, E', I/, and the space needed to run Using [Remark 3.0.1} the space
needed to run is at most 2B*. Thus, the space need for all variables other than Z and MP is:

O(B* +1logT + 1) =0®1ogT),

by [Eq. (4.1)} To analyze the space needed by MP, we first upper bound |MP|. For this, note that ensures
that M.bn < Z.bn for all M € MP. This together with ensures (by induction) that all elements M € MP

have different values M.bn. Finally, also ensures that the number of such values is at most log T' implying
that [MP| <logT. Thus, the space needed for the variables Z and MP is

O(ogT) - (s+r)=0(logT) - (s+1ogT),

by Adding, we get:
Sp(I') < O(logT) - (s +logT) = O(slogT).

O
The following observation is due to our choice of parameters in [Eq. (4.1)]

OBSERVATION 5.0.1. The runtime of the parties in[Algorithm 1] is polynomial in T assuming oracle access to I1.

5.2 Correctness We now show that the protocol I’ indeed simulates the protocol II with probability 1 — %
in the presence of an e fraction of errors. For this, fix inputs ## and z® for Alice and Bob respectively and
also fix an adversary Adv satisfying corr(II’, Adv, 2, 28) < 2¢ - ||TI’|| almost surely. Using we have
corr(Il’, Adv, 24, 2B) < 4€T. We have to show that:

(5.5) Pr(Tpg, (a,27) = (a*, 2%)) 21—
Next, note that fixing Adv and the inputs implies that all the variables in [Algorithm 1] (for both Alice and Bob)
are random variables that are functions of the randomness sampled by the parties in [Line 5| For i € [M’] and a
variable var in we will use var{* to denote Alice’s value of var at the end of iteration i of the loop in
We will use varg' to refer to the value of var at the beginning of the loop. The notations var? and var{
are defined analogously. We also define the notation R; = (R{*, RP) for all i € [M'] and fix Ry to be a dummy
value. We may use the sans-serif letters, e.g., R;, to emphasize that we are looking at R; as a random variable
instead of a fixed realization.

Finally, observe that for all i € [M’], the values of ¢{*,07 are determined by Ry,..., R;_1, and the values

(2 3
ZA, UGTZB of all other variables are determined by Ry, ..., R;.

var
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5.2.1 No Hash Collisions

LEMMA 5.0.3. Leti € [M']. For all Ry,...,R;—1 such that (Zf‘fl.hash, 02‘»4) #£ (Zil.hash, O’,L-B), it holds that:

Rl,Pr,RI(HZA = HZB | Rl?"'vRifl) < —.

Proof. From we get that the left hand side is the same as:

Pr (Hsd? (Z{*, hash,07") = Hoys (22, hash,0P) | Ry, .. .,Ri,1>.
1yeees 7

From [Line 5| and [Eq. (4.4), we get that this is the same as:

le.fyR’_(hR?HR;A (Z{* , nash, o) |R{| R = hpo o (27, hash, o) |RP|| RP | Ry, .. .7Ri,1).

This can be upper bounded by:

Pr (hRiAHRiB (z , hash,0f') = hpaype (22, hash,of) | Ry, .. .,RH).
I PEREPLAY)

As Ry, ...,R; are mutually independent, this is the same as

Er<hRAHRB (Zf‘_l.hash, UlA) = hR.AHRB (ZzB_l.hash, 0?)).

Observe from |Line 5| that Rf‘7 RB are uniformly random. Thus, by [Lemma 3.0.1} we can bound this by ﬁ, and
the lemma follows. 0

LEMMA 5.0.4. It holds that:

1

Pr (Jie[M]: (Zf‘_l.hash, (T;-A) # (2P, hash,of) A H} = HP) < 73"

Ri,..., Rj\l’

Proof. By a union bound and the fact that M’ < 2T (see [Eq. (4.1)]), it is enough to show that for all ¢ € [M],
we have:

1
Pr ((Zf‘_l.hash, O'ZA) * (Zﬁl.hash, UZB) A HiA = HZB) < —.
Ri,e R T5
Note that the event inside the Pr(-) does not depend on R;t1,...,Ryr and we can remove them from the

probability. We shall in fact show a stronger statement that for all Ry,..., R,—1 we have:

1
RI?{Ri((z;“,l.hash, of') # (2P | hash,0P) NHA =HP | Ry,...,Ri_1) < 75

Now, recall that conditioning on Ry,...,R;_1 fixes the value of (Z?_l.hash7 O’ic) for C € {A,B}. Thus, it is
enough to consider Ry, ..., R;_1 such that (Z# | hash,of!) # (2, hash,c?) and show that:

RlvPI:Rz(HlA - HlB | Rl""vRi—l) < ﬁ

This is exactly |[Lemma 5.0.3] O

LEMMA 5.0.5. It holds that:

1

Pr (3 <ie[M],Ce{A B}:RY € {R},RE R RPY) < 75"

Ri,...,Rass
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Proof. By a union bound and the fact that M’ < 2T (see[Eq. (4.1)]), it is enough to show that for all i’ < i € [M’]
and all C € {A, B}, we have:

Pr (RY € {RYRERILREY) < oo

Ry,...;R s
Note that the event inside the Pr(-) does not depend on R;;1,...,Rpr and we can remove them from the
probability. We shall in fact show a stronger statement that for all Ry,..., R;,_1; we have:
1

R17P1‘7R7(R1C € {Rf}aRzBiaR'lLévR;’B} ‘ Rla-”aRi—l) < ﬁ

Now, observe that conditioning on Ry, ..., R;_; fixes the value of {Rg, R, R, RiP }. We get from the fact that

R¢ is uniformly random and from [Eq. (4.1)|that:

4 1
c A pB ptA pIB
Rl,lDI;RL(RZ S {Ri,’Ri/7Ri, 7Ri, } | Rl, .. ,lel) S W S 78
O
For the rest of this proof, we fix an arbitrary Ry,...,Ra such that the events in [Cemmas 5.0.4] and [5.0.5

do not happen, and show that for any such Ry,..., R, the event in happens. This is enough to show
Observe that as we already fixed the inputs z and z® for Alice and Bob and an adversary Adv, fixing
Ry, ..., Ry fixes the values of all the variables in all the iterations of For C € {A, B}, we define
to be the set of all 4 € [M’] such that Line |§| is executed by party C in iteration i. The notations [CII2, [CII4],
are defined analogously. Finally, for all C' € {A, B} and i € {0} U [M’], we define MP*iC = MPZ-C U {ZZC}

5.2.2 The Functions ev(:) and ddI(-) For an integer | > 0, define ev(l) to be the smallest power of 2 that
does not divide ! and define ddI(l) = I + ev(l). Define ev(0) = ddI(0) = oo for convenience.

OBSERVATION 5.0.2. For all l > 0, we have ev(ddI(l)) = ev(l). Furthermore, for all l,I" > 0, we have:
[ £ 1" = ddI(l) # ddI(l").
LEMMA 5.0.6. For alll >0 and z > 0, we have ddI(l) < ddlI(|{],.).

Proof. Let I! = |l],.. If I' = [, there is nothing to show, so we assume that I’ < [. This implies that
ev(l) < 2% < 1.ev(l'). We get:
ddi(l) <1427 <14 2°T < ddI(l).
]
LEMMA 5.0.7. Let 1 >0 and X < ev(l) be a power of 2. For alll <1 <1+ X, we have ddI(l') <1+ 3\,

Proof. If ev(l’) < A/2, we are easily done. Otherwise, by definition of ev(:), we must have I’ = { + A\/2 and our
choice of X implies ev(l’) = A. The lemma follows. O

LEMMA 5.0.8. Consider integers | >0, ' <1+ 3 -ev(l) such that ddI(I') < ddI(l). We have ddI(I') <1+ % -ev(l).
Proof. Proof by contradiction. If the lemma is false, we can use the definition of ddI(-) to get:
7
I+ 3 ev(l) < ddl(l") <1+ ev(l).
This is impossible if ev(l) < 8, so we assume otherwise. Observe from the definition of ev(l) that ev(l)/8 is a

power of 2 that divides [. Thus, the previous inequality implies that ev(l)/8 does not divide ddI(l"). Equivalently,
we can write ev(ddl(l)) < ev(l)/8. By |Observation 5.0.2] we get ev(l’) < ev(l)/8. This gives a contradiction as:

QL) =1+ ev(l) <145 ev(l) +ev(l)/8 = 1 + g cev(l).
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LEMMA 5.0.9. For alll > 0, it holds that:
1. For alll < 1" < ddl(l), there exists z > 0 such that | = |I'],. — 27.

2. For all ! > ddI(l), there does not exist z > 0 such that | = |I'],. —27.

Proof. We prove each part in turn:

1. Define z to be such that 27 is the largest power of 2 that is at most I’ — . As we assume that 20 =1 <[’ —1,
this is well defined. Moreover, as I’ < ddI(l), we have 2% < ev(l)/2. Thus, by definition of ev(-), we have
that 27 divides [. Using this, observe that |!’],. = [ + 27 finishing the proof.

2. Assume for the sake of contradiction that there exists an z > 0 such that [ = [I'],. — 2%. This means that
2% divides [ and thus, we must have that 2% < ev(l)/2. We get:

= Ll’j2z — 22> 1" =27 —2% >ddI(l) —ev(l) =1,
a contradiction.

d

5.2.3 Meeting Points and the Function Last(:)
OBSERVATION 5.0.3. Let i € {0} U [M'] and C € {A,B}. For all M € MPY, we have M.bn < Z€.bn. Due to

1

and an inductive argument, it follows that the values M.bn are distinct for all M € MP*iC.

LEMMA 5.0.10. Let i € [M'] and C € {A,B}. For all M € MPY | \ MP*Z»C, we have Z§.bn = ddI(M.bn) and
1€ . Moreover, if Zic_1 ¢ MP*iO, then we have ZiC.bn < Zic_l.bn,

Proof. To start, use |Observation 5.0.3| to get that M.bn < Zi(’ll.bn. We now show that M.bn < Zic.bn. If
ZC ,bn < Zbn, this is trivial, if not, we must have i € implying that M.bn < ZiC.bn. Due to
[Observation 5.0.3] this inequality cannot be tight unless M = Zic and we are done.

Having shown that M.bn < ZZ .bn, ZC.bn, we combine this with M € MP | \ MP*Z»C and
and to get Z& ;.bn < ddI(M.bn) < Z%bn. The corollary now follows as Z.bn increases by at
most one in any iteration and increases only when a party executes The “moreover” part is simply

because Z§'.bn < Z& | .bn+ 1 and and a

LEMMA 5.0.11. Let 0 <4’ <i < M’ and C € {A, B}. For all Z{.bn < | < Z§ .bn, there exists i’ < i" < i such
that 1" € and ZS,.bn = [.

Proof. Proof by induction on ¢ —i’. The base case i =4’ is trivial. We show the result for ¢ > ¢’ assuming it holds
for i—1. If 1 < Z{ ,.bn, the result follows from the induction hypothesis. If not, we must have Z{' ;.bn < 1 < Z¢ .bn.

Observing [Algorithm 1f this only happens if ¢ € and Z¢.bn = [ finishing the proof. ]
The foregoing lemma (with i = 0) allows us to define:

DEFINITION 5.0.1. Let i € {0} U [M'] and C € {A, B}. For alll € [Z{ bn|, we define Last® (1) to be the largest
i’ € [i] such that i’ € and Z§.bn = 1. We adopt the convention that Last{ (0) = 0.

Our definition satisfies the following properties:
LEMMA 5.0.12. Leti € {0} U[M'] and C € {4, B}.

C
., we have:

1. For all M € MP*
(@) M=ZF cmbm:

(b) For all Last’ (M.bn) < i’ < i, we have M € MP*Z»C: and Z§ .bn < ddI(M.bn).
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(¢) For all z > 0, there exists M' € MP*ZC with M’.bn = [M.bn],.

2. For alll € [Zf .bn], we have:

(a) For all Last® (1) <4’ < i, it holds that LastS (1) = LastS (1) and 25 .bn > 1. As|Definition 5.0.1| implies

that Last® (1) are distinct for all 1, it follows that:

0 = Last{(0) < Last{ (1) < --- < Last{ (2 .bn) <ii

c
(b) ZLastC (H-1 ZLastC(l 1)°

(¢) If there does not exist M € MP*iC with M.bn = [, then there exists Last®(l) < i/ < i such that
Z& .bn > ddI(l).

Proof. We prove each part separately.

1. Proof by induction on i. The base case i = 0 is straightforward. For and [IB] note from
that either M € MP*I Lori €8 and M = Z§| but not both. If the latter happens, it is easy to see that
Lasti (M.bn) = 4 and therefore [Items la] and m hold. We therefore assume that the former happens, and
we have from |Observation 5.0.3| and [Definition 5.0.1| that LastiC(M.bn) = Lastic_l(M.bn) and follows
from the induction hypothesis. For|Item 1b} all we have to show is that Z¢ .bn < ddI(M.bn). This is because,
otherwise, we must have M # Z¢ € MP; but this contradicts ILine 20| and [Lemma 5.0.9|

It remains to show[ltem Id Note that this is trivial if M.bn = [M.bn],., so we assume that M.bn > [M.bn|,..

We first show that there exists M’ € MP*C 1 with M.bn = [M.bn],.. If M € MP*Z 1, this is because of
the induction hypothesis. If not, we must have Z&.bn = Z¢ | .bn + 1 and M = Z§. Now, M.bn > [M.bn],.
implies [M.bn],. = |Z{ ;.bn|,., and we are done by the induction hypothesis.

22’
Next, as either M € MP*lC 1 or not, we have from M’.bn < M.bn and |Observation 5.0. 3| that either

M’ e MPY | or i € [CE]. Using |Lemrnas 5.0. 6| and |5 0. 10|, this means that the only way M’ ¢ MP*C i
if Z¢'.bn > ddI(M’.bn) > ddI(M.bn). However, this contradicts [[tem 1b,

2. We have:

(a) If Last (1) # Last? (1), we have from [Definition 5.0.1| that i’ < Last{ (1), a contradiction. If Z$.bn < I,
then the ¢ promised by [Lemma 5.0.11| contradicts [Definition 5.0.1}

(b) Let ¢ = Last® (1) for convenience and note that i’ € [C@] by [Definition 5.0.1/implying that | = Z$.bn =
ZG _,.bn+ 1. We get from and [2 . that:

C
Zl/ 1= ZLastC (=1 = ZLastic(l—l)'

(¢) Proof by induction on i. The base case i = 0 is straightforward. For ¢ > 0, note that our assumptions
imply that I < Z€.bn — 1 < Z€ | .bn. It follows by [Definition 5.0.1| that Last? (1) = Last" , (I). If there
does not exist M € MP*ﬁ1 with M.bn = [, we are done by the induction hypothesis. Otherwise, as

either i € or 1 < Z% , bn implying M € MPY || by [Lemma 5.0.10| the only reason M ¢ MP*" is if

Z€ bn > ddI(l), as desired.

d

5.2.4 The Variable F

OBSERVATION 5.0.4. The variables E and Z.bn are always non-negative and their values never increase by more
than 1 in one iteration.
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LEMMA 5.0.13. Leti € {0} U[M'] and C € {A, B}. It holds that:

EC < Z¢ bn — max M.bn.
MeMPS

Furthermore, if i € [0, we have Ef =0 and:

EC, +1=2%,bn— max M.bn.
=t it MeMPE
i—1

Proof. Proof by induction on i. The base case i = 0 is straightforward. We show the result for ¢ > 0 assuming it
holds for ¢ — 1. Consider the following cases:

e When i € [(): In this case, we must have EC | = EX = 0 and [Observation 5.0.3| finishes the proof.

e When i € [([Z: In this case, MP and Z stay unchanged (Line 20| does not affect MP), and we simply have
by the induction hypothesis:

EC <Ef, <Z¢ bn— max Mbn=2Zbn— max M.bn.
MeMPS | MeMPY

e When i € and i ¢ [(I@: In this case too, MP and Z stay unchanged (Line 20| does not affect MP).
Moreover, the fact that i ¢ means that:

ES < Z¢ bn — max M.bn.
MeMPS

e When i € [CIG): In this case, we have:

Z% . bn— max Mbn<EY, +1.
MeMPE_

Together with our induction hypothesis, this implies that the inequality must be tight. Observing
we get that EE = 0 and the result follows.

d

5.2.5 The Variable Pre

DEFINITION 5.0.2. For all i € {0} U [M'], define the set:
P; = {z >0 |3IMA € MP*?, M5 € MP*P . M4 hash = M5 hash A MA.bn = MB bn = l}.

Observe that 0 € P; for all i € {0} U [M']. Also, define Pre; = maxP;.

The following follows from [Observation 5.0.3]

OBSERVATION 5.0.5. For alli € {0} U[M'] and C € {A, B}, it holds that 0 < Pre; < Z& .bn.

LeMMA 5.0.14. Let i € {0} U[M'], I* € [Z{.bn], 17 € [Z].bn] be such that Z{\ 1) hash = ZF 5 hash. It
holds that:
(Last (1), ot ays Zisoea a1ybash) = (LastP (17), 08 n o), ZEn oy hash).
Repeatedly applying the above, we also get 14 = 1B,
Copyright © 2023 by SIAM
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Proof. For convenience, we define i€ = Last" (19) for all C' € {A, B}. We first show that i = i by contradiction.
Suppose otherwise and assume without loss of generality that i < i%. We have:

(As Last®(l) e for all C € {A, B})
Zﬁ;.hash = Zﬁg .hash = HzA = Hg

(Line 6] = Haa, (Zﬁ;fl.hash, Jﬁ,) = Hys, (Zﬁgil.hash, Jﬁ;)
(Eq. (44)) = sdih = sdjb
(Tine 5) = R4 =RE,

a contradiction to :Lemma 5.0.5L Having shown i4 = i®, we call the common value i’. By [Definition 5.0.1] we
have ' € [AQ]N[BA] and Z§.bn = 1€ for all C € {A, B}. We get:

(As i’ € [AQ N [BA)) Z/ hash = Z8 hash — H{' = H?

(Lemma 5.0.4)) == (Zf}fl.hash, Uf}) # (fol.hash, Uf)

(Lemma 5.0.12] [Item 2b)) = (Zf‘ast?(lA_l).hash, Jf}) + (Zﬁst?(lB_l).hash, 05).
Recalling the definition of ¢’, the lemma follows. 0

COROLLARY 5.0.1. Let i € [M'] be such that H{* = HP. It holds that Pre;_; = Z{* ,.bn = ZE | bn.
Proof. As H* = HP, we have from [Lemma 5.0.4] that Z{ | hash = ZZ  .hash. Now applying of

A — 2 —
Lemma 5.0.12, we get ZLast;Ll(Z;‘Ll.bn)'haSh = ZLastfil(Zfil.bn)'haSh' From [Lemma 5.0.14, we get Z: ,.bn =

ZP | .bn. Using [Definition 5.0.2|, observe that this implies Z# ;.bn = ZZ | .bn = Pre; ;. a
LEMMA 5.0.15. Let i € {0} U [M']. The following hold:

1. For all 0 <1 < Pre;, we have Z hash =78 hash and Last? (1) = Last?(1).

Last (1) Last? (1)

2. For all Last!'(Pre;) < i’ < i, we have max(Z{.bn,Z%.bn) < ddI(Pre;) and Pre; € Py. It follows that
Pre; < Pre;/.

3. For all 0 < 1 < Pre;, if there exists M4 € MP*?, ME ¢ MP*;Ee such that MA.bn = MB.bn = [, then
M4 hash = M hash. It follows that | € P;.

Proof. We prove each part separately:

1. The second part follows from the first due to [Lemma 5.0.14} For the first, notice from [Lemma 5.0.14] that
it is sufficient to show the result for | = Pre;. For this, we use [Definition 5.0.2 to get M4 € MP*;" and
MB e I\/IP*ZB such that M4 hash = M® hash and M#.bn = MZ.bn = Pre;. The result now follows from
ltem lalof [Lemma 5.0.121

2. By [Definition 5.0.2 there exists M4 € MP*;4 and MP ¢ l\/IP*éB such that M4.hash = MP hash and

M#.bn = M® .bn = Pre;. Using[Item 1b| of [Lemma 5.0.12] the result follows.

and MB = 7B

Last® (1) The result follows from

3. By |Item la{ of|Lemrna 5.0.12|, we have M4 = Zfastf(l)

0
LEMMA 5.0.16. Leti € [M'] be such that Pre;_1 < Pre;. We have i € [AQ]N[BA.

Proof. Recall that Pre; € P; and let M4 and MP be as in If Pre;_1 < Pre;, there exists
C € {A, B} such that M ¢ MP*icfl. As MY ¢ l\/IP*iC this is only possible if i € and M¢ = Z¢.
Conclude from this and that Last{ (Pre;) = i. Now use [Item 1| of [Lemma 5.0.15 to get that
Last? (Pre;) = Last? (Pre;) = i implying that i € N [B3l. 0
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LEMMA 5.0.17. Let i € [M'] be such that Pre; < Pre;_1. It holds that:
P; = {0 <1< Pre;_y | IMA € MP* MB € MP*Z . M4 bn = MB bn = l}.

Proof. We let S denote the set on the right. Note that P; C S is straightforward from as all
elements in P; are at most Pre; < Pre;—;. We now show that S C P; by fixing an arbitrary [ € S and showing
that [ € Pre;. Asl € S, we have M4 € MP*/* and M2 € MP*? such that M4 .bn = M5 bn = I. Thus, it suffices to
show that M4 hash = M hash. For this, we first claim that for all C € {A, B}, we have M® € MP*Z-CLl. Indeed,
if this is not true for some C' € {A, B}, then we have from [Algorithm 1| that M®.bn = [ = Z{' | .bn + 1, which is
impossible as | < Pre;_;. Together with this claim, [ltem 3| of [Lemma 5.0.15| says that M#.hash = M® hash, as
needed. |

COROLLARY 5.0.2. Let i € [M'] be such that Pre; < Pre;_1. It holds that:

LPrei,ljev(Preiil) S Prei.

Proof. Define | = |Pre;_1 ], pre, ,) for convenience and observe that I < Pre;_;. Use [Definition 5.0.2and Item 1|

of [Lemma 5.0.12] to get that there exists M4 € MP*.* | and M’B € MP*? | such that M4.bn = M"B.bn = 1.

As | < Pre;_;, we can conclude that M'C € MPY | for all C € {4, B}. We now claim that M'C ¢ MP*Z-C
for all C € {A, B} as if not, we have by [Lemmas 5.0.6| and [5.0.10| that there exists C € {A, B} satisfying
Z¢bn > ddi(l) > ddI(Pre;—1). As ddI(Pre;—;) > Z&,.bn by [Item 2| of [Lemma 5.0.15, this contradicts
[Observation 5.0.4l Together with this claim, implies [ € P;, and the result follows. ]

5.2.6 The Variable K For ¢ € {0} U[M'] and C € {A, B}, we define:
(5.6) K§ =1—6-1(Pre; = Z&.bn).
LEMMA 5.0.18. Leti € {0} U[M'] and C € {A, B}. It holds that:

KE - EF < Z¢bn — Pre;.

Proof. 1f K¢ < 0, then we are done by [Observations 5.0.4|and [5.0.5] If K¢ > 0, we have by [Eq. (5.6)| that K¢ =1

and Pre; # Z¢ .bn. By Definition 5.0.2|, this can only happen if Pre; < maXyevpe M.bn. We get by [Lemma 5.0.13
that:

KS - Bf = B <Z{.bn— max_ M.bn < Z{.bn — Pre;.
MeMP¢

]
LEMMA 5.0.19. Leti € [M'] and C € {A, B}. It holds that:

K, - ES

K3

=28 bn <6+ KE - EY — 78 bn.
Proof. Observe from [Eq. (5.6)| that K is never 0. We consider the following cases:

e When K¢ | < 0: In this case, we have:

K¢, -ES, —2¢  bn=—-5.-EY, — 7%  bn
(Observation 5.0.4) <6-5-E —27%bn
(Observation 5.0.4)) <6+KS-EC —Z¢ bn.

e When K¢ | K¢ > 0: This means K¢ | = K¢ = 1 and these factors can be ignored. Consider the following
subcases:

— When EZ | < E + 5: In this case, we simply note from [Observation 5.0.4 that:

EC, —Z¢ bn <54+ E° —Z% bn <6+ E- —Z% bn.
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— When EY +5 < E |: Observe from |[Algorithm 1| that this only happens when i € [CII6]. Applying
Lemma 5.0.13] we get that ES = 0 and we have:

EC,—Z¢ bn=— max Mbn—1<-Z¢ bn <6+ EF —Z¢ bn.
MeMPY |

e When K¢ < 0 < K¢ ;: This means K{ ; = 1 and this factor can be ignored. We have by [Eq. (5.6)
and [Observation 5.0.5( that Pre; = Z{'.bn and Pre;_; < Z& ,.bn. We consider the following subcases:

— When Z§ ,;.bn < Z&.bn: This means that Pre;; < Pre;. We can apply [Lemma 5.0.16| to get
1€ N[B3. We get El-c_1 = EZC = 0 and the lemma is trivial.

— When Z¢.bn < Z§ | .bn: Observe from [Algorithm 1|that this only happens when i € [CIG]. Applying
Lemma 5.0.13 we get that E€ = 0 and we have:

EY, —Z¢ bn=— max Mbn—1<-Z¢ bn<6+K-ES —Z¢ bn.
MeMPE

d

5.2.7 Corruptions Recall For i € [M'], we define Err; to be the indicator variable that is 1 if and
only if the number of corruptions made by the adversary in iteration ¢ is at least ¢ B* > r’/10. For a subset
I C [M'], we define Erry = >, _; Err,. When I = [i] for some i € [M'], we may instead write Err<;. We define
Err.; analogously.

el

LEMMA 5.0.20. Let i € [M'] be such that Erry = 0. The following hold:

1. We have:
(RiA7HzAvEZA—17b;4) = (R;BaHi’BrEz{élab;B)a

and likewise with A and B reversed.
2. We have i € [A0] < i € [BY and i € [ADD] < i € [B1A.
3. We have o = oP.
4. If i ¢ [AD]U[ADZ], we have Z{* | hash # ZB | hash.
5. If i € [AQ, we have Pre;_y +1 = Pre; = ZZ-A.bn = Z?.bn.

6. If i ¢ [AQl, we have Pre;_; = Pre; and:

Z (K1 By —ZE1bn) < Z (KS - B = ZF bn).
Ce{A,B} Ce{A,B}

Proof. We prove each part separately.

1. Recall that and [7] implicitly use the code ECC that outputs encodings of length 1000r’. As Err; = 0,
at most 7’/10 bits of this encoding will be corrupted implying that the parties will decode each others
messages correctly. The result follows. We remark that it is F;_; instead of F; as the value of E may
change in iteration 7.

2. Follows from the previous part and

3. Recall that the parties execute a protocol satisfying [I'heorem 3.1|in|Line 3} Moreover, the fact that Err; = 0
implies there are at most € B* corruptions in this execution. We get from [Theorem 3.1| that the output is

the same as the output of a noiseless execution, which satisfies o;*

_ B
=o;.
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4. Note from the fact that i ¢ |AQ - U [A and [ltem 1| that H HE. By we get that

Hyga (Z{L 1 hash, o) # Hes (Z7 hash,07). Now, observe that implies sd' = sd”. Using sd
to denote the common value, we get from [Eq. (4.4)| that he(Z{ | hash,07') # he(ZP | .hash,sP). This
implies that (ZAfl.hash, O'A) #+ (Z]il.hash O’B) and [[tem 3| finishes the proof.

. As i € [AQ), we have from and [2 I that i € [AQ] N [BA) and H = . Using [Corollary 5.0.1} we get

Pre;_1 = ZZ 1-bn = Z 1-bn and all that remains to show is Pre; = ZA bn = ZB bn. For this, simply note

that H = HP with i € - N[BE] implies Z£.hash = ZP hash and apply [Definition 5.0.2

. Dueto 6l it suffices to show that Pre;_ 1 < Pre;. We show this by contradiction. If not, recall that

Pre,_1 € P, and let M4 € MP*Z 1, ME ¢ MP* ~ 1 be as in |Definition 5.0. 21 Observe that Pre; < Pre;_
can happen only if there exists C' € {4, B} such that M¢ ¢ MP*,. Using [ltem 2| and [Lemma 5.0.10
this happens only ifi € - and MY = Z¢ | implying M®.bn = Z¢ ,.bn = Pre;,_;. Now, using [[tem 4
we get that Z{ ;.hash # ZZ  hash. Due to [Observation 5.0.3| and |Deﬁn1t10n 5.0.2, this also means that

ZA | bn # sz1 bn. Assume C = A without loss of generality. Using [Observation 5.0.5] we actually get
Pre;_y = Z# ,.bn < ZB | .bn. This means that b/ < bZ = b/* by [Item 1} This contradicts i € [ALG] and we
are done.

We now show the remainder of For this, recall and consider the following cases:

e When i € N[BLZ: In this case, the values of MP*A, MP*B, and therefore also of Pre remain
unchanged in iteration i. Moreover, we have B < EA | and EP < EP |. We use to get that

H# = HP and that there exists C € {A, B such that EC, >0 = EC L > Ei7. It follows that
EZA + EZB < Ef | +EB,. Using Corollary 5.0.1} we get Prel 1=2Z4,bn=278 bn= Prez- =Z4bn =
ZB.bn. We get:

(Eq. (5.6)) Z (K, - B, —ZE bn) < Z (Kf - B, —Z bn)

Ce{A,B} Ce{A,B}
(As KA =KB <0and EA + EP < EA | +EB)) < Y (KS-EY -2z bn).
Ce{A,B}

e When i ¢ U[BIZ: In this case, we claim that for all C € {A, B}, we have
K, B, -z bn+1(i €[C) = K - EF — Z¢ .bn.

The result easily follows from [Line 13|and [Item 1jand thus it suffices to show the claim. Fix C' € {A, B}.
If i ¢ [, the claim trivially holds due to[Eq. (5.6)|and the fact that Pre; = Pre;_;. Thus, we assume
that ¢ € [CI4].
We first show that Pre;_; < Z¢ ,.bn implying by [Eq. (5.6)] that K¢, = 1. We show this by
contradiction. Suppose not. Then, we have from [Observation 5.0.5 that Pre;_; = Z{ ;.bn. We also
have from [Item 4{that Z# |.hash # ZZ | hash. Let C' be the unique element in {4, B} that is different
from C. By [Definition 5.0.2 and |Observation 5.0.3| these two are only possible if Z# |.bn # ZP | .bn
which by |Observation 5.0.5| implies that Z& |.bn < Z& | .bn. However, due to this means that
b¢ < b€, a contradiction to i € [CI4].
Having shown, K¢, = 1, if i ¢ [CI6], we get Z{'.bn = Z¢ |.bn implying (as Pre; = Pre;_;) that
K¢ = chl—l Weget

KC - ES, —2¢ bbn+1=E°, -2  bn+1=E° —7Z%bn =K - EY — 7% bn.

On the other hand, if i ¢ [(II6], we have by [Lemma 5.0.13| that EC =0:

KC,-EBY, —Z¢ . bn4+1=— max Mbn=—-2bn=K".E -7 bn,
MeMPY,

where the penultimate inequality is because of W and the fact that ZZC 1-bn > Pre;_; > 0 implying
MPS | 0.
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O
COROLLARY 5.0.3. Let i € [M'] be such that Err; = 0. It holds that:
1-Prej 4+ Y 5. (KO, -EZ, —Z7 bn) <11-Pre;+ > 5- (K- EY —ZFbn).
Ce{A,B} Ce{A,B}

Proof. From |[[tem 2| of [Lemma 5.0.20, we have i € <= i € [BO. If both of these are true, we observe from
Line 9| that the terms corresponding to E are 0 and all the other quantities increase by exactly 1 (see|Line 9| and

Item 5|of [Lemma 5.0.20). On the other hand, if they are both false, we simply use [[tem 6|of |[Lemma 5.0.20} ad

5.2.8 Taxes Important to our analysis is the following notion of a “tax” associated with each “correct” meeting
point. Let ¢ € {0} U [M']. Define the sets:

(5.7) CMP; = | J CMP{ where CMP{ = {o <1< Pre; | 3M € MP*S : M.bn = l}
Ce{A,B}
(5.8) S; = {Pre;} U { max M.bn} U {argmin ddI(M.bn)} .
MeMP; Cef{A,B} MeCMP¢ Ce{A,B}

We next define, for ¢ € {0} U [M’] functions Tax; : CMP; — Z inductively as follows: For i = 0, observe that
CMP; = {0} and define Tax;(0) = 0. For ¢ > 0 and | € CMP;, define:

if | ¢ CMP,_
(5.9) Taxi(l) = 4 ifid '
Taxi,l(l) + ]l(EI’I’Z' >0AI1€e Sz); if l € CMP;_;

LEMMA 5.0.21. Leti € {0} U[M'] and C € {A,B}. Let 0 <1 < Pre; be such that there exists M € MP*ic with
M.bn = 1. For all Last{*(Pre;) < i’ <, we have | € CMPS C CMP;..

Proof. Fix i, C, I, i’ as in the lemma statement. By [[tem 2| of [Lemma 5.0.15] we have Pre; < Pre;. It is
thus enough to show that M € MF’*S7 where M is as promised by the lemma. This is because of the fact that

Last! (Pre;) = Last? (Pre;) (which is due to [ltem 1| of [Lemma 5.0.15) and [[tem 1b{of [Lemma 5.0.12| O
Using [Eq. (5.9)| repeatedly, we also get:

COROLLARY 5.0.4. Let i € {0} U[M’], 0 <1< Pre; be such that there exists M € MP** U MP*Z with M.bn = 1.
It holds that:

Tax; (1) > Z 1(Erry > 0A1€Sy).

Last/ (Pre;) <i’/<i

5.2.9 Understanding Taxes
LEMMA 5.0.22. Leti € [M']. We have:

D Taxi(l) <5-1(Err; > 0) + > Tax;_1(1).

1€CMP; 1€ECMP;NCMP; _
Proof. We have:
(Ea- 5.9) Y. Taa( < Y Taxi()
leCMP; leCMP;NCMP; _,

ﬁ
o
&
©
=
IN

Tax;—1 (1) + Z 1(Err; >0NLES))
leCMP;NCMP;_4 leCMP;NCMP; 4
> Tax;_1(1) + 1(Err; > 0) - |S;]
leCMP;NCMP;_4

Z Taxi,l(l) +5- ]I(EI’I’Z‘ > 0)
leCMP;NCMP; _1

IN

ﬁ
2
g
o0
=
IN
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LEMMA 5.0.23. Let C € {A,B} and i € be such that Z¢ .bn = ddI(Pre;_1). It holds that:
Prei_l — Prei S 8- Taxi_l(Prei_l) + 8.

Proof. If Pre;_; —Pre; < 8, this is trivial, so we assume otherwise. By [Corollary 5.0.2} we get 8 < Pre;_; —Pre; <

Pre;—1 — [Prei—1]ey(pre, 1) = 1 . ev(Pre;_1). It follows that ev(Pre;_1) > 32. Moreover, from [Corollary 5.0.4] and

the fact that Last?" | (Pre;_1) = Last” | (Pre;_;) (see Item 1| of [Lemma 5.0.15), we get:

(5.10) Tax;_1(Pre; 1) > > 1(Erry > 0 A Pre;_; € Sy).

LastS | (Pre;_1)<i/<i

In the remainder of this proof we simply show that the right hand side above is at least 1—16 -ev(Pre;_1) — 1. For
this, define:

hi+ls b3l

bt
2 3 4 -

(511) ll = Prei,l l2 4 )

l5 = ddI(Prei,l).

As ev(Pre;_1) > 32, we get that all of these are integers and I; < ls <l3 <l4 <l5. Observe that i € implies
Z& | .bn =I5 — 1.We consider the following cases:

e When 74

Last{ | (I3)

hash # Z8 .hash: In this case, |Item 2a| oflLemma 5.0.12| to continue [Eq. (5.10)| as:

LastS | (I3)

Taxi,l(Prei,l) > Z ]l(ErrLastiCLl(l) > 0APre;_1 € SLastiCLl(l))'

14 <I<ls

To finish, we show that each term above is 1 and use Fix Iy < 1 < Is and define
i' = Last? [(I). We first claim that Pre; < l3. Indeed, if not, we have by [ltem 1| of [Lemma 5.0.15

A _ 7B : f o A -
that ZLastiC/(lS).hash = ZLastS(lz).hash. Using |Item 2a| of ILemma 5.0.12|, this gives ZLast?_l(ZS).hash =
ZB

LastC | (1) .hash, a contradiction.

We now use Pre;; < I3 to show that the term corresponding to [ is 1. For this, we need to show that Err;; > 0
and Pre;_; € S;/. For the former, note by |Deﬁnition 5.0.1|that i’ € and Zg.bn = [ and thus, if Err;; =0,

we can derive a contradiction from [[tems 2| and [5| of [Lemma 5.0.20, For the latter, we use and

show that Pre;_; = arg minyccmpe ddI(M.bn).

Note that Pre;_; € CMPS follows from [Definition 5.0.2] and [Lemma 5.0.21| and it is enough to show that
ddi(Pre;_;) < ddI(l’) for all I’ € CMP$. Fix an arbitrary I’ and note from [Eq. (5.7)| that I’ < Pre; < Is.
Use [Lemma 5.0.8 to conclude that either ddI(I') > ddI(Pre;_1) or ddI(’) < l4. As|[Item 1] of [Lemma 5.0.12]
implies the latter cannot happen, we are done.

e When 74 ‘hash = ZB

Lastﬁ1 (13) Lasticf1 (I3)

get that Z‘éstg (Z%bn).hash = Zi‘Stg (Zg.bn).hash. Now, applying |Lemma 5.0.14] we get Zg.bn = Zg.bn. As

the definition of i3 implies this common value must be I3, we get from [Definition 5.0.2f that Pre;, = I3 =
Zg.bn = Zi.bn.

Let C € {A, B} be the unique element different from C. By |[Eq. (5.8)|and [Item 2al of [Lemma 5.0.12) we can
continue as:

hash: Let i3 = Last? | (I3). Applying [ltem 1a| of [Lemma 5.0.12] we

Tax;_1(Pre;—1) > Z 1| Erryy >0APre;_; = max M.bn|.
ig<i! <i MeMPS

Now, we claim that:

CLAIM 5.0.1. For all i <i' < i, if ZG.bn = Prey = I, then Pre;_1 = max,,_ypc M.bn.

MeM
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Proof. Due to |Item 2| oflLemma 5.0.15| we have Pre;_1 € P, implying due to Z?,.bn = [y and |Definition 5.0.2

that Pre;_; < maxMeMPg M.bn. Thus, it suffices to show that maxMeMPia/ M.bn < Pre;_;. We show

this by contradiction. If this is not true, then, by |Observation 5.0.3|, there exists M € I\/IP?, such that
Pre;_1 = l; < M.bn < Iy = Prey. By [ltem 1| of [Lemma 5.0.15] this means that Lastf}(l\/l.bn) = Lasté M.bn%
Ttem 1b,

and with [[tem 2a of [Lemma 5.0.12, we get that they are both equal to Last” | (M.bn). However, by

of|Lemma 5.0.12', this means that I3 = Zg.bn < ddI(M.bn), a contradiction to d
Using [Claim 5.0.1] we get:

Tax;_1(Prei1) > > ]l(Erri/ > 0AZ%.bn = Prey = 12).

i5<i/<i

Now, note that for all i3 < ¢/ < 7 such that Z?/.bn =Prey =15,4 € \ only if Erry; > 0. Indeed,
i€ \ 6| implies I; = ZG.bn = Z§_.bn = b5 > b¢. If Erryy = 0, we can use and [2| of

Lemma, 5.0.20( to continue as o > biq = ZiC,Ll.bn > Ziq.bn. As the last term is at least [3 by [[tem 2a| of
emma 5.0.12] this is a contradiction. We get:

Taxi_l(Prei_l) > Z ]].(Z/ € \/\ Z?,bn = Prey = lQ)

i3<i/<i

We now claim that:
CLAIM 5.0.2. There exists iz < i* < i such that i* € and Z?*_l.bn = Pre;«_q1 = Is.

We defer the proof of to later but show here why it finishes our proof of [Lemma 5.0.23] Let

i* be as promised by [Claim 5.0.2[ and use Ff[alm 5.ii.1| to conclude that Pre;_; = max, = M.bn. As
i*—1
i* e , this means that Zg.bn = Pre;_1. By |Lemma 5.0.13l we have Eiq_l =y —1;—1.

Note now from that whenever Z or MP change in any iteration, the value of E is reset to 0
(Cine 9] and [Cemma 5.0.13). Moreover, the value of E increases by at most 1 in any iteration and is increased
only when a party executesl!:ine 14| but not This means the only way we can have ES | = ly—1; —1
is if there are Iy — [; — 1 iterations a; < a2 < -+ < aj,—,—1 < ¢*, all of them in the set \ such
that (Z6 MP?/) = (Z?,_l, MP?*_l) for all a; < i’ < i*. By the definition of i3, this can only happen

i
if 43 < a;. Thus, we are done if we can show that Pre;y = Iy for all a; < 4’ < *. Fix such an i'. As
Zg.bn = Zg_l.bn =[5 and we have |Observation 5.0.5[, it is enough to show that that Pre;; > Pre;«_1 = Is.
This is because of [[tem 2| of [Lemma 5.0.15l

We finish by showing

Proof. [Proof of [Claim 5.0.2] Define i3 < ¢* < ¢ to be the smallest such that Pre;« < Il and Pre;«_; > Is.
Recall that Pre;, = I3 and Pre;_; = [; and therefore ¢* is well defined. Now, as Pre;«_; < Zg_l.bn <5 by
[Item 2| oflLemma 5.0.15| and |Corollary 5.0.2[ says that LPrei*—lje\,( ) < Pre;«, we have that Pre; < o

is possible only if Pre;«_1 = Is.

Pre; _1

We now claim that it is enough to show that Zgbn < ly. Indeed, if Zgbn < Iy, then Z?*.bn < Prej«_1 <
ngl.bn implying that * € and Iy > Zic*.bn = maxy, ypc M.bn. From the latter and the fact that

i*—1

Pre;« _1 = l2, we also get using [Definition 5.0.2[ that Z?_l.bn = ls, as desired.

Finally, we show ZZ.bn < l. Let M4 € MP*2 |  MB € MP*Z | be as in [Definition 5.0.Ql As

Pre;« < Preq_; = I, there exists C* € {A, B} such that M®" ¢ MP*gil \ MP*Z-C:. By |Lemma 5.0.10|
we either have Z& .bn > ddI(l2) or Z& .bn < ly. The former is impossible as ddl(l) > ddi(l;) (due to

Observation 5.0.2] and [Lemma 5.0.6) and we have [[tem 2| of [Lemma 5.0.15, Additionally, by of
Lemma 5.0.12} the latter is possible only if C* = C' and we are done. 0
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0
LEMMA 5.0.24. Let C € {A,B} and i € be such that Z$ |.bn = Pre;_1. It holds that:
Pre;_1 — Pre; <2 (Zio_l.bn — Zic.bn) + 8- Tax;—1(Pre;—1).

Proof. We start by defining;:
A1 = Pre;_; — Pre; Ay =Z% .bn —Z% bn Il =Pre;_1 — = - A1

As the lemma is trivial otherwise, we assume that 2\ < A;. By we_continue as 2Xo < A <
1 -ev(Pre;_y). Asi € and Z$ |.bn = Pre;_; > 0, we have MP*;” C MP{"; by |Algorithm 1} By [Line QOL
it follows that there exists z1,z2 > 0 such that for all j € [2] we have Pre;_; — Aj = LPrei,ljfj — 2%, As
2X2 < A1 < 5 - ev(Pre;_1), this is only possible if for all j € [2], we have \; = 2% is a power of 2. It follows that:

ddI(ZS.bn) = Pre;_1 + Ao ddI(l1) = Pre;_; + N L= LZiC.an%v\l = [Prei1 — 1)1,

Now use 0 < 2y < A and [Lemma 5.0.17| to get that there exists C € {A, B} such that M.bn # [; for
all M € MP*C. By |Item 1c| of |Lemma 5.0. 12L we get that C' # C. Using, |Item 1| of |Lemrna 5.0. 15|, define
i1 = Last" | (Pre; ;) = Last” | (Pre; ;). From |C0rollary 5.0. 4| and |Eq (5. 8)|, we get:

Tax;_1(Pre;—1) > Z 1(Err;y > 0APre;_1 €Sy) > Z 1(Err;y > 0 A Pre;—1 = Prey).

i< <i i1 <i/ <i
By [Lemma 5.0.20, note that for all 7; < i’ < 7, we have that i’ € and Z?,.bn > Z§ .bn implies that Err; > 0.

We get:
Tax;—1(Pre;—1) Z ]l(z € |CH -/\ Z .bn > Zg.bn A Pre;_1 = Prei/).

i1 <1’ <1

Next, use |Item 1b| of |Lemma 5.0.12| to get Zic,.bn < ddI(ZZG.bn) = Pre;_1 + X\s for all i; < ¢’ < i. We get:

Tax;—1(Pre;—1) Z ]l(z € -/\ Z .bn > Pre;_1 + Ao APre;_1 = Prei/>.

11 <4/ <1

We now claim that for all 71 <’ < 1, if Z?,.bn > Pre;_1 + % - Ao, then Pre;_; = Preys. Fix such an ¢'. As of
Lemma 5.0.15|says that Pre;_; < Pre; and we know Pre;, < Zg.bn < Pre;_1 + Ao from the argument above, all we
have to show is that it is impossible for Pre;_; < Pre;; < Pre;_1 + A to hold. Indeed, if this holds we use the fact

that s is a power of 2 and Ay < ev(Pre;_1) together with [Lemma 5.0.7|to get ddI(Pre; ) < Pre;_; + % ‘Ao < Z?,.bn.
This contradicts [[tem 2| of [Lemma 5.0.15] We get:

Taxi_1(Prei_1) > > ]1(2"6/\2 .bn > Pre;_ 1+7 )\2>

11 <t/ <3

Now, note by definition of i; that ZE = Pre;_1. Moreover Z%.bn increases by at most 1 in any iteration and only
increases in iterations in . We get:

Tax;—1(Pre;—1) > max Z .bn — Pre;_ 1—7 Ao+ 1.
i1 <t/ <i

We now claim that max;, <;<; Z?,.bn >ddl(l;)—1=Pre;—1+ % A1 — 1. Assuming this claim for now and recalling
that 2Xo < A1 = 44Xy < \; as Ay, A9 are powers of 2, we get:
Prei,l - Prel— = )\1 S 4)\1 - 10)\2 = 2)\2 + 8- ( )\1 — § )\2) § 2)\2 + 8- Taxi,l(Prei,l).
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It remains to show the claim. For this, first noteifrom [Observation 5.0.4] that is suffices to show that
max;, <ir<; 2G.bn > ddl(l). If there exists M € MPY | \ MP*iC such that M.bn = [y, then we are done by

Lemma 5.0.10, so we assume otherwise. As Zgl.bn > Pre;_1 > [y, this means that there does not exist

M e I\/IP*?_l \ MP*? such that M.bn = [;. Using our choice of C, we further get that there does not exist

M € MP*S | such that M.bn = [;.
Now, using [[tem 2c| of [Lemma 5.0.12) we get that Max, ..o q)<ir<i Z?.bn > ddl(ly). It therefore suffices
1—1
Z§ bn < ddi(l1). By definition of i, we have Z¢ .bn < ddi(l1) and therefore it
Z?,.bn < ddl(l1). Use[Item 2afof |[Lemma 5.0.12|to get that this is exactly
the same as showing maxl_ast?l_l(l1)<i,<i1 Z?/.bn < ddl(l;). However, this follows from [ = |Pre;—; — 1] L the

definition of 4; and and [Id of [Cemma 5.0.12 0

to show that MaX 4T (1,)<i'<iy

suffices to show that Max, 4o (1,)<irciy

5.2.10 A Potential Function We are now ready to define our potential function ®. For i € {0} U [M'], we
define:

(5.12) ®; =1000 Errc; +11-Pre; —100- > Taxi()+ Y 5 (KF - EF —zF bn).
1eCMP; Ce{A,B}

In the lemmas that follow, we shall show that ® increases by at least a constant in every iteration.
LEMMA 5.0.25. Let i € [M'] be such that Pre; < Pre;_1. It holds that:
®,_1 + 1000 - Err; — 900 < &,.
Proof. As Pre; < Pre;_1, we have Pre;_; € CMP;_; \ CMP; (using [Lemma 5.0.21)) which by [Lemma 5.0.22] gives:

(513) Z Taxz(l) < 5+ Z Taxi_l(l) — Taxi_l(Prei_l).
LECMP; 1ECMP;_y

We also have, by [Lemma 5.0.19 for all C' € {A, B}:

(5.14) KE - EBEY, —Z8 bn <6+ K- EY — 7% bn.

Next, let M4 € MP*2* | MB € MP*Z | be as in [Definition 5.0.2l As Pre; < Pre;_y, there exists C € {A, B} such

that M® € MF’*Z»CL1 \ MP*iC. We assume C' = A without loss of generality and consider the following cases:

e When M4 ¢ I\/IPﬁl \ MP*?: In this case, use|Lemma 5.0.10|to get that i € and Z&.bn = ddI(MA.bn) =
ddI(Pre;—1). We have from [Lemma 5.0.23| that:

(5.15) Pre;_1 — Pre; < 8- Tax;_1(Pre;_1) + 8.
Multiplying by 100, by 11, by 5 (for all C' € {4, B}) and adding, we get

100+ Y Taxi(l)+11-(Pre;_y —Prej)+ > 5 (KZ, - EZ, — 2 bn)
1ECMP; Ce{A,B}

<900+100- Y Taxia()+ Y. 5 (KE-ES -7z bn).
1eCMP;_, Ce{A,B}

Rearranging and using finishes the proof.

e When M4 =74 | ¢ MP*?: In this case, we have Z# ;.bn = Pre;_;, and using [Lemma 5.0.10} also have
that Z.bn < Z | .bn implying i € [AT6. We have from [Lemma 5.0.24| that:

(5.16) Pre;_1 — Pre; <2 (Z{,.bn — Z{*.bn) + 8 - Tax;_1(Pre;_1).
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Again using i € and Z.bn < Z | .bn, we have by |[Lemma 5.0.13|that E# = 0 and:

By +1=2Z%,bn— max Mbn=2Z", bn—Z"bn
MeMPA |

As[Eq. (5.6)|implies that K& | = —5, we get from E* = 0 that:
K, B, —Zz4 bn<—5-(Z2,bn—Z bn—1) —Z | bn
=5—6-(Z&,.bn —Z*.bn) — Z{ bn
=5—6-(Z~,.bn—Z.bn) + K- B — 2 bn.

Multiplying this by 5, [Eq. (5.16)| by 11, [Eq. (5.14)[for C = B by 5, |Eq. (5.13)| by 100 and adding, we get:

11-Pre;_1 +100- Y Taxi()+ > 5-(KY,-EZ, —Z¢ bn)

1€CMP; Ce{A,B}
<555+ 11-Pre; +100- > Tax, (D + Y, 5- (K B —Z7 bn)
1€CMP;_, Ce{A,B}
Rearranging and using [Eq. finishes the proof.
0
LEMMA 5.0.26. Let i € [M']. We have:
O, +1< 9,

Proof. We divide the proof into the following cases:

e When Err; = 0: In this case, we have:

(Eq. (5.12)[and Err; = 0)
®; 1 =1000-Errg; +11-Pre;_y —100- Y Taxia(D+ Y 5- (KL, B, -7 bn)
1eCMP;_4 Ce{A,B}
(Lemma 5.0.22| and Err; = 0)
<1000 - Errg; +11-Pre;_y —100- > Tax()+ Y 5- (K<, -EZ, -z .bn)
1ECMP; Ce{A,B}
(Corollary 5.0.3))
< —1+41000-Errg; +11-Pre; —100- Y Taxi()+ Y 5- (K- EF —ZF bn)
1eCMP; Ce{A,B}
Eq. (5.12)) < &; —1.

e When Err; =1 and Pre; < Pre;_;: In this case, the lemma follows by [Lemma 5.0.25]

e When Err; =1 and Pre;_; < Pre;: In this case, we have:

(Eq. (5.12)|and Pre;_; < Pre;)
®; 1 <1000-Erre; +11-Pre; =100 > Taxi () + > 5- (K, -EZ, —Z¢ bn)

1ECMP;_ Ce{A,B}
(Lemma 5.0.22))
C C C
<500 41000 - Erre; + 11+ Pre; —100- > Taxi()+ Y 5 (KE, - BZ, -z, bn)
leCMP; Ce{A,B}
(Lemma 5.0.19))
<600+ 1000 Errc; 4+ 11-Pre; —100- > Tax()+ > 5- (K- EY —Z{ bn)
leCMP; Ce{A,B}

(As Err; =1) < —-100+ ;.
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|

COROLLARY 5.0.5. We have M < Prey.

Proof. Note from [Eq. (5.12)| and [Lemma 5.0.26| that &g = 0 and ®,;s > M’. This means that

M’ <1000 Errcpp +11-Preyy — 100 > Taxar () + Y 5+ (K§p - Efy — Z§p.bn)
1ECMP ./ Ce{A,B}
<1000-Errcpy +11-Prey + Y 5+ (K§p - By — Z§p0.bn)
Ce{A,B}
(Lemma 5.0.18|) < 1000 - Err<psr + Prepg.

Next, we claim that Err<p;s < 10M - 5. Indeed, if not, we have by definition of Err that the number of corruptions

made by the adversary is at least 10T by [Eq. (4.1)} a contradiction. This means that M’ < 10*M - & + Preyy
implying by that M < Prejy.

5.3 Finishing the Proof We now prove our main result.

Proof. [Proof of [Theorem 3.2] Recall that due to [Lemmas 5.0.1] and [5.0.2] and [Observation 5.0.1] and the way we
fixed the randomness in [Eq. (5.5)} all we have to show is that ITj, (2, 2P) = II(z4,27). Let 7 € {0, 1}*" be
the transcript containing the symbols sent by both the parties in a noiseless execution of II when the inputs are
x4 and 2. Observe from and the way we padded the protocol II that ITj,, (xA7 xB) = H(mA, wB) follows
if we show that there exists transcripts 74, 72 that agree with 7 in the first 27" coordinates such that for all
C € {A, B}, party C goes to state Z§;,.state when their input is 2¢ and they receive symbols as in 7¢. To this
end, define, for C € {A, B},

c _ C C C
T = JLast‘;J,(l) HULasth,(Q) ” T HULastg‘l,(Zf/ﬂ.bn)'

We first fix an arbitrary C € {A, B} and show that party C goes to state Z%,.state when their input is ¢ and
they receive symbols as in 7¢. Due to [Item 1al of [Lemma 5.0.12] this follows from the following claim:

CLAamM 5.0.3. For all 0 <1 < Z(I(},.bn, party C goes to state Z€ .state when their input is € and they

Lastgﬂ(l)
receive the first 2B*1 symbols of 7€ .

Proof. Proof by induction on [. The base case | = 0 is straightforward. We show the result for [ > 0 assuming it
holds for I — 1. For this, define 7/ = Last$},(I) and consider the iteration 7. From [ltem 2b|of [Lemma 5.0.12] we

have 2571 = ZLCastfl,(l—l)‘ Using the induction hypothesis, we get that party C goes to state Zic,fl.state when

their input is ¢ and they receive the first 2B*(I — 1) symbols of 7¢. To finish the proof, simply observe from
that if party C is in state Zi(ffl.state with input ¢ and receives og (which are the next 2B* symbols
of 77), then it goes to state Z{ .state. 0

It remains to show that the transcripts 7, 72 agree with 7 in the first 27 coordinates. For this, note first that

due to |Lemma 5.0.14| and |Item 1| of |Lemma 5.0.15L we have for all 0 <[ < Preys that Last, )= Lastﬁp(l) and,
using i; to denote the common value, also have [ > 0 = ag‘l‘ = og . Due to this in particular
holds for all [ € [M]. Fix l € [M]. As o' = 07, we have that this common value is the transcript generated
when the parties execute B* rounds of II, starting from the states Zfl‘fl.state, fol.state with inputs z4, 28
respectively and leads the parties to update their states to Z;}.state and Z .state (respectively). From
ofw we have Zg_l = fo,l for all C € {A, B} and thus, we have that Ufl‘ = O‘ﬁ is the transcript
generated when the parties execute B* rounds of II, starting from the states Z-‘?i1 .State, 25,1 .state with inputs
A 4B

x respectively and leads the parties to update their states to Zfl‘.state and Zf.state. As Zf(‘).state = u()“
and Zg .state = uf are the starting states of Alice and Bob respectively, we get that 74, 78 agree with 7 in the

first 2B*M = 2T coordinates. 0
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