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Abstract
In this work, we design an interactive coding scheme that converts any two party interactive protocol Π

into another interactive protocol Π′, such that even if errors are introduced during the execution of Π′, the
parties are able to determine what the outcome of running Π would be in an error-free setting.

Importantly, our scheme preserves the space complexity of the protocol, in addition to the communication
and computational complexities. Specifically, if the protocol Π has communication complexity T , computa-
tional complexity t, and space complexity s, the resulting protocol Π′ is resilient to a constant ε > 0 fraction
of adversarial errors, and has communication complexity approaching T as ε approaches 0, computational
complexity poly(t), and space complexity O(s log T ).

Prior to this work, all known interactive coding schemes required the parties to use at least Ω(T ) space, as
the parties were required to remember the transcript of the conversation thus far, or considered weaker error
models.

1 Introduction

1.1 Interactive Coding Theory
Background. In the well-studied field of coding theory, which dates back to the seminal work of Shannon [24],

researchers attempt to understand the fundamental limits on the transfer of information imposed by unreliable
communication channels. Most work in this regime focused on the one-way model of communication, where one
party (henceforth referred to as Alice) wishes to send a single message to a second party (Bob). While classical
coding schemes have found innumerable applications both in theory and in practice, modern systems, which are
often very interactive, have motivated the development of radically new coding schemes.

Motivated by this scenario, Schulman [23] initiated the study of the following model of interactive
communication over a noisy channel. There are two parties who wish to carry out a conversation. The additional
wrinkle: the channel through which the parties communicate is now unreliable, and may change some of the sent
symbols. Therefore, the goal is to transform the original protocol into a new protocol which is still guaranteed
to correctly determine the outcome of the original protocol (or, say, succeed with high probability), even if some
errors are introduced into the conversation. The new protocol is referred to as a robust simulation of the original
protocol. In the literature, errors may be random or adversarial, and in our work, we consider the most general
adversarial error model, so our results can be applied in all other (weaker) error models.

Resource-efficient interactive coding. Schulman’s breakthrough works in the 1990’s [21, 22, 23] already
showed that every protocol can be robustly simulated by a protocol that only incurs a constant multiplicative
overhead in the communication complexity, even in the case that an adversary is allowed to corrupt a constant
fraction of the total communication. It would be another twenty years before Brakerski and Kalai [1] show
that the robust simulation can also be made computationally efficient. That is, the running time of the two
communicating parties in the simulation protocol is polynomial (or even linear [2]) in the running time of the
parties in the original protocol.
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Constructing interactive coding schemes that preserve the communication and time complexities of the original
protocol (at least up to polynomial factors) is an important step towards making interactive coding practical. In
fact, as in the case of (one-way) classical codes, we wish for the coding layer to be as “seamless” as possible and
for the simulation to preserve as many of the properties of the original protocol as possible.

In this work, we take another step towards this vision and show that the space complexity can also be
preserved. Specifically, we show how to convert any two party protocol into one that is resilient to constant
fraction of adversarial errors, while preserving the communication complexity (up to constant factors), the time
complexity (up to polynomial factors), and preserving the space complexity (up to logarithmic factors).

We note that all prior works on robust simulation blow up the space complexity of the parties, by forcing them
to save in memory the entire transcript of the conversation thus far1. Storing the entire transcript can be wasteful,
or even impractical for very long protocols, and therefore it is beneficial to have noise-resilient communication
protocols which are more space-efficient.

1.2 Our Result Our main result is a time-efficient and space-efficient interactive coding scheme with rate
approaching 1 that is resilient to a constant fraction of adversarial errors.

Theorem 1.1. (Informal Statement; cf. Theorem 3.2) Let Π be a protocol of length T , computational
complexity t, and space s. Let ε > 0 be a small enough constant. There exists a protocol Π′ that robustly
simulates Π with probability 1− 1

T in the presence of an ε fraction of adversarial errors and has length approaching
T as ε approaches 0, computational complexity poly(t), and space complexity O(s log T ).

We mention that our work is essentially a compiler, taking an interactive coding scheme C (that may not
have small space overhead), and outputting a new scheme C′ with a small space overhead. The scheme C′ applies
the original scheme C to blocks of consecutive rounds of Π, and combines the transcripts of Π for these blocks in
a space-efficient manner. Since our scheme C′ can be viewed as an efficient oracle machine that uses the original
scheme C as an oracle, it preserves the running time and other properties of the original scheme C. For instance,
since in Theorem 3.2, we apply our compiler on the coding scheme C of [8] that has rate approaching 1, we are
able to show that our scheme C′ has rate approaching 1. One can also apply our compiler to other interactive
coding schemes to get additional results, e.g., applying it to the scheme of [2] would give a scheme C′ that has an
almost linear running time (but a rate that is a constant bounded away from 1).

We believe that the multiplicative O(log T ) blowup in the space complexity in Theorem 1.1 is necessary when
converting protocols into noise resilient ones. Proving or disproving this conjecture is left as an open problem.
We mention that a similar blowup appeared in [10]2 (see below for further discussion). At least in the case of
[10], proving that this blowup is necessary would require proving new circuit lower bounds.

Our model. We finish this section with a discussion of our specific communication model, noting that our
ideas would extend to other models as well. For us, a communication protocol starts with the parties having an
input and a memory of s bits and proceeds in rounds: In each round, each party sends a bit (which can be an
arbitrary3 function of their input and current memory state) to the other party over the channel. Upon receiving
a (possibly flipped) bit from the channel, each party updates their memory state to a new memory state (that is
an arbitrary function of their received bit, their input, and their current memory state) and continue executing
the remaining rounds. After all the rounds have been executed, the parties use their input and memory state to
compute an output value. We mention that in the protocol Π′ in Theorem 1.1, the functions that are used to
compute the sent bits and update the memory are efficient in terms of time and space, given oracle access to the
functions of Π.

We also mention that Theorem 1.1 is shown in the most general fully adaptive adversarial error model.
Specifically, the adversary is assumed to know all inputs, and, at any point in the execution of the protocol, the
adversary sees all the messages that have been communicated by the parties and all the random strings used by
them till that point. For a formal definition, see Section 3.2.

1We note that one exception is the work of [7], which is a followup to an earlier version of this work [18], and which we elaborate

on in Section 1.3.
2In [10], this blowup manifests itself as a blowup in the circuit size. As in our case, the blowup occurs as the simulation needs to

remember geometrically spaced locations, called “meeting points”, in the original protocol (see Section 2).
3In particular, computing this function can take more than s bits of memory.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3588

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1.3 Prior Work
Interactive coding. The problem of communicating over a noisy channel was originally formulated

by Schulman [21, 22, 23], and since then, there have been numerous works improving various aspects of
the resulting robust protocol, such as the communication rate, the error rate, the time complexity, etc.
[14, 6, 2, 3, 19, 17, 4, 15, 12, 13, 9, 5, to cite a few]. See [11] for an excellent survey.

Space bounded coding. The question of interactive coding with bounded space was first considered in
the unpublished manuscript [18]4, which we consider to be an earlier version of this work. Building on ideas
from [18], the space bounded interactive coding question was studied in weaker error models: The work of [7]
gives an interactive coding scheme that is space efficient (i.e., incurs only logarithmic overhead to the space
complexity, similarly to our work) and also achieves the (conjectured) optimal rate as ε approaches 0. However,
unlike our setting, the scheme of [7] assumes an oblivious adversary who makes all its corruption decisions in
advance. Specifically, the adversary decides what rounds to corrupt and what to corrupt them to, without seeing
the randomness of the parties or the communicated transcript.

We note that assuming an oblivious adversary greatly simplifies the question because the parties can quickly
detect when the adversary corrupts the communication5. Therefore, they will not add wrong symbols to their
local view of the transcript, and in turn, will never need to rewind to a previous version of this transcript before
the errors occurred. A space bounded interactive coding scheme follows, as the parties only need to remember
the current memory state of the original protocol Π, which is guaranteed to be correct.

Resilient circuits. Another work closely related to ours is the recent work on constructing error resilient
circuits [10], which translates the problem of constructing error resilient circuits to the problem of constructing
space bounded interactive coding schemes for a non-standard communication-like model (specifically, the model
of DAG-protocols with rectangular correctness). Their model is incomparable to the model we consider, with
several differences. For example, on the one hand, their model can be seen as a version of the feedback model,
where the parties know what the symbols they sent were corrupted to, and thus have more information, but on
the other hand, their work gives the adversary the power to tamper with the memory of the parties (in addition
to the communication), and thus makes his task easier.

2 High-Level Intuition

We now give an informal overview of our interactive coding scheme.

2.1 The Rewind-If-Error Framework The starting point of our interactive coding scheme is the rewind-if-
error framework of [21]. Let Π be the noiseless protocol being simulated and let T be the number of rounds in Π.
In this framework, the protocol Π is divided into constant-sized blocks6 and simulated block by block. In more
detail, the simulation consists of iterations, with each iteration having a simulation phase and a check phase. In
the simulation phase, the parties simulate one block of Π to obtain a transcript for this block. This transcript is
appended to the transcript of all the previous blocks and then checked for correctness, by exchanging a hash of the
transcript (say), in the check phase. If the check passes, i.e., if the transcript is correct, then parties continue to
simulate the next block of Π. If not, the parties “rewind” their transcripts in an attempt to remove the erroneous
blocks.

The classic rewind-if-error framework described above suffers from a high space complexity. Indeed, as
explained above, when parties run the simulation, they record the entire transcript of Π so far (using Ω(T ) space)
even if a noiseless execution of Π can be done using a lot less space, say s. The reason the parties record the entire
transcript is threefold: (1) To determine which symbols to send in the next block. (2) To rewind to a previous
correct prefix in case errors are detected in the check phase. (3) To compute a hash value that allows the parties
to check for correctness.

4This manuscript, now retracted, is by a subset of the current authors, and can be found in https://arxiv.org/abs/1805.06872v1.
5This can be done, for example, by having the parties exchange hashes of the transcript so far and check that the hashes are the

same. An oblivious adversary will not be able to cause hash collisions: To make Alice think that Bob has the same hash value when

he does not, the adversary needs to know Alice’s hash value and change Bob’s communicated hash to this value. Note that the fully
adaptive adversaries we consider, that have knowledge of the parties’ randomness and the communication history, can easily create

such collisions.
6Our scheme actually uses blocks of size O(log T ) for reasons to be explained later. See [1] and followup works for other schemes

with logarithmically sized blocks.
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In order to get a space bounded interactive coding scheme, one needs to perform Items 1 to 3 using space
as close to s as possible. Item 1 is the simplest to handle, as instead of storing the entire transcript so far, the
parties can simply store the s bit memory state that it leads to (the current memory state). Now, the fact that
Π has space complexity s implies that the bits the parties send in the future blocks of Π are a function of this s
bit memory state, and we can use this function in our simulation to compute these bits. Handling Items 2 and 3
is much more involved and discussed next.

2.2 Handling Item 2 via Meeting Points Our solution to handle Item 2 is to adapt the “meeting points”
approach of [17]. The main idea here is to have the parties store not only the memory state that the current
transcript leads to but also the memory state that some (a carefully chosen set) of its prefixes led to. These
prefixes, called meeting points, are chosen to be roughly geometrically apart. In other words, if the parties are
currently simulating round i of Π, then, for all z ∈ [log T ], the parties also remember the memory state that a
prefix of length (roughly) i − 2z led to. In fact, remembering these log T prefixes is the reason why our coding
scheme increases the space by a log T factor.

With this extra memory to store the meeting points, the parties perform the rewinds mentioned in Item 2 by
going to the closest meeting point that they have in memory. Then, the next iteration will check if this meeting
point is correct. If even this meeting point is found to be incorrect, the parties will rewind to the one before, and
so on. Note that as the meeting points are geometrically spaced, the parties never have to rewind more than twice
the number of rounds corrupted by the adversary. This is crucial and allows us to handle a constant fraction of
adversarial errors, as explained next.

Why remember log T meeting points? Recall that the reason Theorem 1.1 increases the space by a log T
factor is that the parties remember log T meeting points. One might wonder if we can get an improvement by
simply remembering fewer meeting points. Such an improvement, without any major new ideas, is unlikely, as if
the parties remember o(log T ) meeting points, then there exists a length l such that the parties have no meeting
point between the rounds i− 100l to i− l.

Now, imagine the adversary corrupted all rounds starting from i − l to round i. To fix these corruptions
the parties will have to go back to the closest correct meeting point (before round i − 100l) and continue the
simulation from there. Thus, by inserting l corruptions, the adversary was able to make the parties redo 100l
rounds, implying that the protocol cannot handle more than a 1

100 fraction of corruptions. As the constant 100
was arbitrary, it follows that the protocol cannot be resilient to any constant fraction of corruptions.

The variable E. Another way the adversary can cause the parties to waste many rounds with a small
number of corruptions is by causing “fake rewinds”. Imagine that the parties are currently simulating a round,
say i, of Π, and the transcript so far is correct. However, the parties do not remember any meeting points close to
i (due to previous rewinds, for example) and the closest meeting point they remember is i−∆, for some large ∆.
Now, if the adversary can insert a small number of corruptions to make the parties believe that their transcript
of length i is actually incorrect and send them to point i−∆, then he has again made them waste many rounds
with a small number of corruptions.

To prevent this from happening, we maintain a variable E that helps the parties avoid fake rewinds. At a
high level, whenever the parties want to rewind, they will increment E by 1 and only rewind when E reaches ∆,
when they also set E back to 0. This means that if the rewinds are actually fake, the adversary needs to insert ∆
corruptions, and the previous attack does not work. Finally, we mention that the variable E does slow down the
rewind process in case the rewinds are not fake, but if the rewinds are not fake, the adversary already inserted
enough corruptions to make the parties’ transcripts incorrect, and we can afford the slowdown.

2.2.1 Taxes As is evident from the examples above, the length of the correct transcript remembered by the
parties7 may change by a lot in one iteration of our interactive coding scheme. This complicates our analysis
significantly, as traditional approaches of showing that a potential function (which is governed, amongst other
things, by the length of the correct transcript) increases in every iteration do not work any more.

As an extreme example, consider the following scenario: The simulation proceeds correctly for the first i
iterations and the parties have a correct transcript of length i. At this point, the adversary starts inserting a lot

7More formally, the longest prefix of the correct transcript of Π which we currently have stored as a meeting point (i.e., the
corresponding memory state is stored).
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of corruptions and eventually takes the parties to an iteration i′ > i where they are about to forget8 the meeting
point at length i. Assume for simplicity that by the time parties reach round i′, they have already forgotten all
the meeting points with length smaller than i. Then, before iteration i′, the parties have a correct transcript of
length i but immediately afterwards, the length decreases to 0, causing a huge drop in the potential in a single
iteration.

The way to fix this situation is to note that in order to get this huge drop in potential in a single iteration,
the adversary must have inserted a lot of corruptions in many of the previous iterations. Thus, if we can somehow
“charge” this decrease in potential to those corruptions, our analysis might still work. We do exactly this, and
work with a more involved potential function that has an extra term called Tax. When the adversary tries to
insert corruptions hoping to cause a sudden drop in potential after a large number of iterations, we use these
corruptions to increase the value of Tax. Eventually, when the drop occurs, we reset Tax to 0 and use this decrease
to counter the change in the length of the correct transcript. For more details, see Lemmas 5.0.23 and 5.0.24.

2.3 Handling Item 3 via Chaining Hashes It remains to describe how the parties check if the simulation
so far is correct without the knowledge of the transcript. Recall that, if the parties knew the transcript, they
could simply exchange a hash of this transcript and if the hashes match, deduce that the transcript is likely to
be correct9. However, we cannot afford to remember the entire transcript, and in our scheme, the parties only
remember the memory state that the transcript leads to.

As a first attempt, one might consider hashing these memory states and checking if the hash values are equal.
Unfortunately, this does not quite work as illustrated by the following example (also described in [7]): Let Π be
the length O(n) protocol that computes the Hamming distance of two n-length bit vectors. Such a protocol is
possible using O(log n) space as the parties can exchange their vectors bit by bit, only counting how many bits
so far were different.

This protocol indeed works if there are no errors, but if there are errors, then by corrupting the bits receive
by both parties, an adversary can make both the parties wrongly increment the counter10. As the counter is
essentially all the parties remember, and the fact that both of them wrongly incremented it, means that their
values for the counter still agree, the parties will not be able to detect this error by simply exchanging hashes of
their memory. More generally, the fact that the two parties have the same memory state does not imply that this
memory state is the correct one.

Chaining hashes. Our solution is to maintain a “chained” hash of their view of the transcripts and the
hash seeds, and exchanging this hash to verify correctness. In more details, after the first iteration, the parties
only have a small transcript and can remember it in its entirety and compute a hash H1. Then, after the second
iteration, the parties hash the small transcript of this iteration and the hash H1 and the hash seed for H1 to
compute a new hash H2. In the third iteration, the parties would then hash the small transcript of this iteration
and H2 and the hash seed for H2 to get H3, and so on.

The reason we hash this way is that it (except with probability polynomially small in T ) ensures that, if the
hashes used by the parties are Ω(log T ) in length, then, for all i ∈ [T ], the pair Hi = (Hi, seed for Hi) is the
same for the parties only if their transcripts so far are the same (our notation for pairs follows the notation in
our protocol, see Eq. (4.4)). Put differently, looking at the current hash value and the current hash seed (which
can be maintained in O(log T ) space) allows the parties to check equality of their (much longer) transcripts. To
show the statement, we proceed by contradiction. Consider the smallest i such that the Hi is the same for both
the parties but the transcripts at iteration i are not. By our choice of i, we have that either Hi−1 is different for
the parties, or the transcripts for iteration i− 1 are the same. As the transcripts at iteration i are not the same,
the latter can only happen if the small transcript of iteration i is different.

Now, combine these facts to get that, at iteration i, the values of Hi are the same for the parties but either

8This must happen as the parties do not have enough memory to store all the lengths and they do not know which part of the

transcript is uncorrupted.
9The reason is that Alice’s transcript has the correct symbols communicated in rounds where she transmits, and Bob’s transcript

has the correct symbols communicated in rounds where he transmits. If the transcripts match, all rounds are correct.
10For instance, consider the case where the first bit in the inputs of both parties is 0, but the adversary corrupts the transmission

of these first bits to make it sound like they are both 1. In this case, after exchanging the first bits, the counter of both parties will

be 1 instead of 0. The reason is that, upon getting the 1 bit from Bob, since her first bit is 0, Alice increments her counter. Bob does
the same.
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Hi−1 or the small transcripts at iteration i are different. This means that the parties hash two different objects
with the same seed in iteration i and get the same hash value. As the hashes used by the parties are Ω(log T ) in
length, this can only happen with probability polynomially small in T for any given i. Union bounding over the
O(T ) many iterations i finishes the proof.

Blocks of length O(log T ). The above approach only works if the hashes the parties exchange are of length
Ω(log T ), as otherwise there may be hash collisions and we lose our correctness guarantee. In turn, this means
that the length of the check phase in any iteration must be at least Ω(log T ). With such a long check phase, the
only way we can have a constant rate interactive coding scheme that is resilient to a constant fraction of errors
is if the simulation phase also simulates a block of length Ω(log T ) of Π and works even if a constant fraction of
its rounds are corrupted.

To get these guarantees, in our simulation phase, we actually simulate a Θ(log T )-length block of Π using one
of the classic (not necessarily space bounded and with only a weak exponential time bound) interactive coding
schemes present in the literature. Using a scheme that is not space bounded is okay as the input to the scheme
is a protocol of length Θ(log T ) and thus, even in the worst case, it can only take O(log T ) space and poly(T )
running time, which we can afford.

3 Preliminaries

3.1 Building Blocks Our protocol can make use of the following objects:
Randomness Efficient Hash Functions. The following lemma is due to [20] (see also [18]):

Lemma 3.0.1. There exists a constant K1 such that the following holds: Let n,m > 0 and define c =
K1 · (m+ log n). There exists a family of functions {hsd}sd∈{0,1}c mapping {0, 1}n → {0, 1}m such that for

all x 6= y ∈ {0, 1}n, it holds that:
Pr

sd∼{0,1}c
(hsd(x) = hsd(y)) ≤ 2−m/K1 .

Furthermore, the time required to evaluate h, given inputs sd and x is polynomial in n,m.

Error Correcting Codes. We use the following standard result for error-correcting codes (see, e.g., [25, 16]):

Lemma 3.0.2. There exists a constant K2 such that the following holds: For all n > 0, there exists a function
ECCn : {0, 1}n → {0, 1}K2n such that for all s 6= t ∈ {0, 1}n, we have

∆(ECCn(s),ECCn(t)) > 0.1 ·K2n.

Here, ∆(·, ·) denotes the Hamming distance. Furthermore, the time required to evaluate ECCn is polynomial in n.

Note that maximum likelihood decoding for an ECC as above can be performed in time at most exponential
in n by brute force.

3.2 Two-Party Communication with Bounded Memory Recall that our main result is a memory-efficient
interactive coding scheme against adversarial noise. Our scheme will be randomized where the parties have access
to random coins in each round of the scheme, and the adversary in any given round will know all the random bits
sampled by the parties so far, but will not know any random bits they will sample in the future. Specifically, we
consider a formalization Alice and Bob are denoted by A and B respectively and where a protocol is defined by
a tuple:

Π =
(
T, s,

{
XC
}
C∈{A,B},Y,

{
msgCj

}
C∈{A,B},j∈[T ]

,
{
memC

j

}
C∈{A,B},j∈[T ]

,
{
outC

}
C∈{A,B}

)
,

where: (1) T = ‖Π‖ is the number of rounds in Π, (2) s = Sp(Π) is the space required by Π, (3) For all C ∈ {A,B},
XC is the input set of party C, (4) Y is the output space of the protocol, (5) For all j ∈ [T ] and all C ∈ {A,B},
msgCj : XC×{0, 1}s×

(
{0, 1}∗

)j → {0, 1}, is a function that takes as input the input of party C, the current memory
state of party C, and the random bits sampled by party C in the rounds so far, and computes a bit that they will

send in this round, (6) For all j ∈ [T ] and all C ∈ {A,B}, memC
j : XC×{0, 1}s×{0, 1}×

(
{0, 1}∗

)j → {0, 1}s, is a
function that takes as input the input of party C, the current memory state of party C, the bit received by party
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C in round j, and the random bits sampled by party C in the rounds so far, and computes their new memory

state. (7) For all C ∈ {A,B}, outC : XC × {0, 1}s ×
(
{0, 1}∗

)T → Y is a function that takes as input the input
of party C, its final memory state, all their randomness, and computes their output in the protocol.

We say that a protocol Π is deterministic if for all j ∈ [T ] and all C ∈ {A,B}, the functions memC
j , msgCj ,

and outC do not depend on their last argument.
Adversaries. Let Π be a protocol as above. An adversary Adv for Π is defined by the tuple Adv =(

AdvCj

)
C∈{A,B},j∈[T ]

, where for all C ∈ {A,B} and j ∈ [T ], the function AdvCj : XA × XB ×
(
{0, 1}∗

)j ×(
{0, 1}∗

)j → {0, 1} takes as inputs the inputs of the two parties and the randomness sampled by them in the first
j rounds and outputs a bit that they will receive in round j. We stress that this function does not depend on the
randomness that the parties will sample in the future rounds.

Execution of a protocol. Let Π be a protocol as above and Adv be an adversary for Π. Let xA ∈ XA,
xB ∈ XB be a pair of inputs for Alice and Bob respectively. Similarly, let µA0 = µB0 = 0s denote the initial
memory state of Alice and Bob respectively. For C ∈ {A,B} and j ∈ [T ], let RCj denote the random string

sampled by party C in round j. We shall use RC≤j to denote the tuple
(
RC1 , · · · , RCj

)
and sometimes write RC<j

instead of RC≤j−1. The execution of the protocol Π on inputs xA, xB in the presence of Adv proceeds as follows:

At the beginning of the execution, Alice and Bob start with memory states µA0 and µB0 respectively. In round
j ∈ [T ], party C ∈ {A,B} computes the bit βCj = msgCj

(
xC , µCj−1, R

C
≤j
)

and sends it over the channel. In turn, it

receives the β′Cj = AdvCj
(
xA, xB , RA≤j , R

B
≤j
)

and then updates its memory state to µCj = memC
j

(
xC , µCj−1, b

′C
j , R

C
≤j
)

and moves to the next round of the protocol. After T rounds, party C simply outputs yC = outC
(
xC , µCT , R

C
≤T
)
.

We define ΠAdv

(
xA, xB

)
=
(
yA, yB

)
.

Corruptions. Using the same notation as above, for C ∈ {A,B} and j ∈ [T ], we say that the message to
party C is corrupted if the symbol received by party C in round j is different from the symbol sent by the other
party in round j. More precisely, we define

corrAj (Π,Adv, xA, xB) = 1
(
βBj 6= β′Aj

)
and corrBj (Π,Adv, xA, xB) = 1

(
βAj 6= β′Bj

)
.

We also define corrj(·) = corrAj (·) + corrBj (·) and corr(·) =
∑
j∈[T ] corrj(·). Observe that all the quantities in

the previous two paragraphs are actually random variables that are functions of the randomness sampled by the
parties. For 0 ≤ ε ≤ 1, we say that the adversary corrupts at most ε fraction of the messages of Π if for all inputs
xA, xB , it holds that corr(Π,Adv, xA, xB) ≤ 2εT almost surely. When we omit writing Adv in our notations above,
we mean an adversary that corrupts a 0 fraction of the messages of Π. Observe that in this case, all the quantities
mentioned above are determined by Π, xA, and xB .

Simulating protocols. Let Π be a deterministic protocol to be simulated11 and 0 ≤ ε, p ≤ 1 be parameters.
Let Π′ be a randomized simulation protocol with the same input sets for the parties. We say that the protocol Π′

simulates Π with probability p in the presence of an ε fraction of errors if for all inputs xA, xB and all adversaries
Adv for Π′ that corrupt at most ε fraction of the messages of Π′, it holds that:

Pr
(
Π′Adv

(
xA, xB

)
= Π

(
xA, xB

))
≥ p,

where the probability is over the randomness sampled by the parties in Π′. We omit writing p when p = 1.

Remark 3.0.1. Note that for any protocol Π as above, there is an equivalent protocol Π′ with the same number
of rounds that also satisfies Sp(Π′) ≤ T + 1. This is because the parties can simply memorize all the bits they
receive and reconstruct the actual memory state “on the fly” using these bits. Thus, we always will assume the
bound Sp(Π′) ≤ T + 1.

Remark 3.0.2. (Space complexity of a protocol) Note that our definition of Sp(·) above does not actually
take into account the space needed by the parties to compute the functions msg, mem, and out. This is done only to
make the definition cleaner and the schemes we describe in this paper do not suffer from a high space complexity.

11We restrict attention to deterministic protocols as a randomized protocol can be simulated by simulating all deterministic protocols
in its support.
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We finish this section by recalling a well-known interactive coding result, which can be found in [8] (see also
[17]).

Theorem 3.1. Let Π be a deterministic protocol and ε > 0. There exists a deterministic protocol Π that simulates

Π in the presence of an ε fraction of errors such that ‖Π′‖ ≤ ‖Π‖·
(

1 +O
(√

ε log(1/ε)
))

. Furthermore, the parties

in Π′ run in time at most exponential in ‖Π‖ given oracle access to Π.

3.3 Formal Statement of Main Result We are now ready to formally state our main result.

Theorem 3.2. Let Π be a deterministic protocol with T = ‖Π‖ and s = Sp(Π). Let ε > 0 be a small enough
constant. There exists a (randomized) protocol Π′ that simulates Π with probability 1− 1

T in the presence of an ε
fraction of errors such that:

‖Π′‖ ≤ T ·
(

1 +O
(

3
√
ε log(1/ε)

))
and Sp(Π′) ≤ O(s log T ).

Furthermore, the parties in Π′ run in time at most polynomial in T given oracle access to Π.

4 Space Bounded Interactive Coding

The goal of this section is to prove Theorem 3.2. We fix Π and ε as in the theorem statement. By increasing
Sp(Π) by an additive log T , we can assume without loss of generality that the memory of both the parties in Π
contains (at least) the round number that they are executing. Throughout, we use s = Sp(Π) to denote the space
required by Π. Let K be a constant much larger than the constants promised by Lemmas 3.0.1 and 3.0.2 and
define the parameters:

h = 10K log T ε′ =
ε2/3

3
√

log(1/ε)
B∗ =

K5

ε′5
· log T(4.1)

M =
T

B∗
M ′ = M ·

(
1 + 106 · ε

ε′

)
r = 10Kh(4.2)

r′ =
K3

ε′3
· log T � r(4.3)

We also define {hsd} to be the hash function family promised by Lemma 3.0.1 with n = 10B∗ and m = h. This
family will be used in Line 6 and we will ensure that the input to the hash function is at most 10B∗ bits in length,
and thus can be hashed after being padded appropriately. Observe that 2r bits of randomness are sufficient to
sample a function from this family and therefore, we will assume sd ∈ {0, 1}2r. For all sd ∈ {0, 1}2r, we now
define the auxiliary function:

(4.4) Hsd(·) = hsd(·)‖sd.

Namely, the function H outputs the output of h concatenated with sd. We shall use this function in our protocol.
Finally, we let ECC be as promised by Lemma 3.0.2 with n = r′. The error correcting code ECC will be implicitly
used in our protocol in Lines 5 and 7, i.e., the messages exchanged by the parties in this line will be encoded
using ECC and the receiving party will decode to the closest possible message. We will ensure that message being
encoded is at most r′ bits and thus ECC can be applied after padding the message appropriately.

4.1 Our Protocol We now describe the protocol Π′ that shows Theorem 3.2. Roughly speaking, in the protocol
Π′, both Alice and Bob, maintain a pair Z which contains a memory state for the protocol Π being simulated
and a hash of the transcript that led to this memory state. We will use Z.state to denote the memory state and
Z.hash to denote the hash. Recalling our assumption that the memory state of a party Π contains the round
number, we get that Z also determines a unique round number Z.rn in Π where its memory state can happen. As
our protocol shall attempt to simulate Π in blocks of length B∗, we define Z.bn = Z.rn

B∗ to be the block number
corresponding to the memory state of Z.

Another important variable in the protocol Π′ is the set MP of meeting points. As the protocol Π′ may have
errors, the parties may sometimes need to rewind to correct those errors, and this is done through the set MP.
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More precisely, the set MP is initially empty but as the parties execute Π′, they store some values Z in the set
MP (see Line 9). If they decide to rewind (Line 17), they always rewind to a pair in MP with the largest bn.
Throughout, we adopt the convention that maxM∈MP M.bn = −1 if MP = ∅. For integers x, y, we also use bxcy to
denote the largest multiple of y that is at most x. For example, we have b5c3 = 3 and b28c7 = 28.

Finally, recall that our protocol Π′ simulates Π in blocks of length B∗. We now describe how this is done in
more detail. In Line 3, the parties (implicitly) construct a new protocol, call it Πblock, where the parties start
from the memory state Z.state (instead of the default starting state) and execute B∗ rounds of Π starting from
round Z.bn with the goal of outputting the length 2B∗ transcript, i.e. the transcript that contains the B∗ symbols
they sent and the B∗ symbols they received. We shall assume that Π is padded with sufficiently many dummy
rounds so that Πblock is always well defined. The parties then construct a noise resilient version of Πblock using
Theorem 3.1 with Πblock and ε′ and execute this noise resilient version. By Theorem 3.1, this needs at most

B∗ ·
(

1 +O
(√

ε′ log(1/ε′)
))

< 2B∗ rounds of communication. Finally, in Line 10, the parties use the received

symbols in the transcript (of length B∗) obtained in Line 3 to update the memory state Z.state of Π (using the
function mem).

We now formally describe our protocol.

Algorithm 1 Alice’s side of the space-bounded interactive coding scheme Π′.

Require: Alice starts with an input xA ∈ XA.
1: Z←

(
µA0 ,⊥

)
, MP← ∅, E ← 0.

2: for i ∈ [M ′] do

3: Using the input xA, simulate a block of Π from Z.state with resilience ε′ to get σ ∈ {0, 1}2B
∗
. As

explained above, this is done using the scheme from Theorem 3.1.

4: Sample a uniformly random string R ∈ {0, 1}r.
5: Send R and receive R′. Set sd = R‖R′ ∈ {0, 1}2r.
6: H ← Hsd(Z.hash, σ), b← Z.bn.
7: Send (H,E, b) and receive (H ′, E′, b′).
8: if H = H ′ and E = E′ = 0 then
9: MP← MP ∪ {Z}.

10: Z←
(
Use σ and xA to update Z.state, H

)
.

11: else if H = H ′ then
12: E ← max(E − 1, 0).
13: else if b ≥ b′ then
14: E ← E + 1.
15: if maxM∈MP M.bn ≥ b− E then
16: E ← E + maxM∈MP M.bn− b.
17: If MP 6= ∅, set Z← arg maxM∈MP M.bn, breaking ties lexicographically.
18: end if
19: end if
20: MP← {M ∈ MP | ∃z ≥ 0 : M.bn = bZ.bnc2z − 2z}.
21: end for
22: Output what Alice would have output in Π if her input was xA and memory was Z.state.

5 Analysis

5.1 Complexity We first show that our protocol in Algorithm 1 is not too long and does not require too much
memory.

Lemma 5.0.1. It holds that:

‖Π′‖ ≤ T ·
(

1 +O
(
ε1/3 ·

√
log(1/ε)

))
.

Proof. Note that the only communication in Π′ is in Lines 3, 5 and 7. These lines are executed in each iteration
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and require communication at most B∗ ·
(

1 +O
(√

ε′ log(1/ε′)
))

, Kr′, and Kr′ respectively. We get:

‖Π′‖ ≤M ′ ·
(
B∗ ·

(
1 +O

(√
ε′ log(1/ε′)

))
+ 2Kr′

)
≤ T

B∗
·
(

1 + 106 · 3
√
ε log(1/ε)

)
·
(
B∗ ·

(
1 +O

(√
ε′ log(1/ε′)

))
+ ε′B∗

)
(Eq. (4.1))

≤ T ·
(

1 + 106 · 3
√
ε log(1/ε)

)
·
(

1 +O
(√

ε′ log(1/ε′)
)

+ ε′
)

≤ T ·
(

1 + 106 · 3
√
ε log(1/ε)

)
·
(

1 +O
(

3
√
ε log(1/ε)

)
+ ε2/3

)
(Eq. (4.1))

≤ T ·
(

1 +O
(

3
√
ε log(1/ε)

))
.

Lemma 5.0.2. It holds that:
Sp(Π′) ≤ O(s log T ).

Proof. To bound the space complexity of Π′, we simply examine the variables used by Π′. These are the variables
Z, MP, E, i, σ, R, R′, sd, H, b, H ′, E′, b′, and the space needed to run Line 3. Using Remark 3.0.1, the space
needed to run Line 3 is at most 2B∗. Thus, the space need for all variables other than Z and MP is:

O(B∗ + log T + r) = O(log T ),

by Eq. (4.1). To analyze the space needed by MP, we first upper bound |MP|. For this, note that Line 20 ensures
that M.bn < Z.bn for all M ∈ MP. This together with Line 9 ensures (by induction) that all elements M ∈ MP
have different values M.bn. Finally, Line 20 also ensures that the number of such values is at most log T implying
that |MP| ≤ log T . Thus, the space needed for the variables Z and MP is

O(log T ) · (s+ r) = O(log T ) · (s+ log T ),

by Eq. (4.1). Adding, we get:
Sp(Π′) ≤ O(log T ) · (s+ log T ) = O(s log T ).

The following observation is due to our choice of parameters in Eq. (4.1).

Observation 5.0.1. The runtime of the parties in Algorithm 1 is polynomial in T assuming oracle access to Π.

5.2 Correctness We now show that the protocol Π′ indeed simulates the protocol Π with probability 1 − 1
T

in the presence of an ε fraction of errors. For this, fix inputs xA and xB for Alice and Bob respectively and
also fix an adversary Adv satisfying corr(Π′,Adv, xA, xB) ≤ 2ε · ‖Π′‖ almost surely. Using Lemma 5.0.1, we have
corr(Π′,Adv, xA, xB) ≤ 4εT . We have to show that:

(5.5) Pr
(
Π′Adv

(
xA, xB

)
= Π

(
xA, xB

))
≥ 1− 1

T
,

Next, note that fixing Adv and the inputs implies that all the variables in Algorithm 1 (for both Alice and Bob)
are random variables that are functions of the randomness sampled by the parties in Line 5. For i ∈ [M ′] and a
variable var in Algorithm 1, we will use varAi to denote Alice’s value of var at the end of iteration i of the loop in
Line 2. We will use varA0 to refer to the value of var at the beginning of the loop. The notations varBi and varB0
are defined analogously. We also define the notation Ri =

(
RAi , R

B
i

)
for all i ∈ [M ′] and fix R0 to be a dummy

value. We may use the sans-serif letters, e.g., Ri, to emphasize that we are looking at Ri as a random variable
instead of a fixed realization.

Finally, observe that for all i ∈ [M ′], the values of σAi , σ
B
i are determined by R1, . . . , Ri−1, and the values

varAi , var
B
i of all other variables are determined by R1, . . . , Ri.
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5.2.1 No Hash Collisions

Lemma 5.0.3. Let i ∈ [M ′]. For all R1, . . . , Ri−1 such that
(
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
, it holds that:

Pr
R1,...,Ri

(
HA
i = HB

i | R1, . . . , Ri−1
)
≤ 1

T 5
.

Proof. From Line 6, we get that the left hand side is the same as:

Pr
R1,...,Ri

(
HsdAi

(
ZAi−1.hash, σ

A
i

)
= HsdBi

(
ZBi−1.hash, σ

B
i

)
| R1, . . . , Ri−1

)
.

From Line 5 and Eq. (4.4), we get that this is the same as:

Pr
R1,...,Ri

(
hRA

i ‖R′Ai

(
ZAi−1.hash, σ

A
i

)
‖RAi ‖R′Ai = hR′Bi ‖RB

i

(
ZBi−1.hash, σ

B
i

)
‖R′Bi ‖RBi | R1, . . . , Ri−1

)
.

This can be upper bounded by:

Pr
R1,...,Ri

(
hRA

i ‖RB
i

(
ZAi−1.hash, σ

A
i

)
= hRA

i ‖RB
i

(
ZBi−1.hash, σ

B
i

)
| R1, . . . , Ri−1

)
.

As R1, . . . ,Ri are mutually independent, this is the same as

Pr
Ri

(
hRA

i ‖RB
i

(
ZAi−1.hash, σ

A
i

)
= hRA

i ‖RB
i

(
ZBi−1.hash, σ

B
i

))
.

Observe from Line 5 that RAi ,R
B
i are uniformly random. Thus, by Lemma 3.0.1, we can bound this by 1

T 10 , and
the lemma follows.

Lemma 5.0.4. It holds that:

Pr
R1,...,RM′

(
∃i ∈ [M ′] :

(
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
∧HA

i = HB
i

)
≤ 1

T 3
.

Proof. By a union bound and the fact that M ′ ≤ 2T (see Eq. (4.1)), it is enough to show that for all i ∈ [M ′],
we have:

Pr
R1,...,RM′

((
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
∧HA

i = HB
i

)
≤ 1

T 5
.

Note that the event inside the Pr(·) does not depend on Ri+1, . . . ,RM ′ and we can remove them from the
probability. We shall in fact show a stronger statement that for all R1, . . . , Ri−1 we have:

Pr
R1,...,Ri

((
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
∧HA

i = HB
i | R1, . . . , Ri−1

)
≤ 1

T 5
.

Now, recall that conditioning on R1, . . . , Ri−1 fixes the value of
(
ZCi−1.hash, σ

C
i

)
for C ∈ {A,B}. Thus, it is

enough to consider R1, . . . , Ri−1 such that
(
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
and show that:

Pr
R1,...,Ri

(
HA
i = HB

i | R1, . . . , Ri−1
)
≤ 1

T 5
.

This is exactly Lemma 5.0.3.

Lemma 5.0.5. It holds that:

Pr
R1,...,RM′

(
∃i′ < i ∈ [M ′], C ∈ {A,B} : RCi ∈

{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′
})
≤ 1

T 3
.
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Proof. By a union bound and the fact that M ′ ≤ 2T (see Eq. (4.1)), it is enough to show that for all i′ < i ∈ [M ′]
and all C ∈ {A,B}, we have:

Pr
R1,...,RM′

(
RCi ∈

{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′
})
≤ 1

T 8
.

Note that the event inside the Pr(·) does not depend on Ri+1, . . . ,RM ′ and we can remove them from the
probability. We shall in fact show a stronger statement that for all R1, . . . , Ri−1 we have:

Pr
R1,...,Ri

(
RCi ∈

{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′
}
| R1, . . . , Ri−1

)
≤ 1

T 8
.

Now, observe that conditioning on R1, . . . , Ri−1 fixes the value of
{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′

}
. We get from the fact that

RCi is uniformly random and from Eq. (4.1) that:

Pr
R1,...,Ri

(
RCi ∈

{
RAi′ , R

B
i′ , R

′A
i′ , R

′B
i′
}
| R1, . . . , Ri−1

)
≤ 4

T 10
≤ 1

T 8
.

For the rest of this proof, we fix an arbitrary R1, . . . ,RM ′ such that the events in Lemmas 5.0.4 and 5.0.5
do not happen, and show that for any such R1, . . . ,RM ′ , the event in Eq. (5.5) happens. This is enough to show
Eq. (5.5).

Observe that as we already fixed the inputs xA and xB for Alice and Bob and an adversary Adv, fixing
R1, . . . ,RM ′ fixes the values of all the variables in all the iterations of Algorithm 1. For C ∈ {A,B}, we define
C9 to be the set of all i ∈ [M ′] such that Line 9 is executed by party C in iteration i. The notations C12 , C14 ,

C16 are defined analogously. Finally, for all C ∈ {A,B} and i ∈ {0} ∪ [M ′], we define MP?
C
i = MPCi ∪

{
ZCi
}

.

5.2.2 The Functions ev(·) and ddl(·) For an integer l > 0, define ev(l) to be the smallest power of 2 that
does not divide l and define ddl(l) = l + ev(l). Define ev(0) = ddl(0) =∞ for convenience.

Observation 5.0.2. For all l > 0, we have ev(ddl(l)) = ev(l). Furthermore, for all l, l′ ≥ 0, we have:

l 6= l′ =⇒ ddl(l) 6= ddl(l′).

Lemma 5.0.6. For all l ≥ 0 and z ≥ 0, we have ddl(l) ≤ ddl(blc2z ).

Proof. Let l′ = blc2z . If l′ = l, there is nothing to show, so we assume that l′ < l. This implies that
ev(l) ≤ 2z ≤ 1

2 · ev(l′). We get:

ddl(l) ≤ l + 2z ≤ l′ + 2z+1 ≤ ddl(l′).

Lemma 5.0.7. Let l > 0 and λ < ev(l) be a power of 2. For all l < l′ < l + λ, we have ddl(l′) ≤ l + 3
2 · λ.

Proof. If ev(l′) ≤ λ/2, we are easily done. Otherwise, by definition of ev(·), we must have l′ = l + λ/2 and our
choice of λ implies ev(l′) = λ. The lemma follows.

Lemma 5.0.8. Consider integers l > 0, l′ ≤ l+ 3
4 · ev(l) such that ddl(l′) < ddl(l). We have ddl(l′) ≤ l+ 7

8 · ev(l).

Proof. Proof by contradiction. If the lemma is false, we can use the definition of ddl(·) to get:

l +
7

8
· ev(l) < ddl(l′) < l + ev(l).

This is impossible if ev(l) ≤ 8, so we assume otherwise. Observe from the definition of ev(l) that ev(l)/8 is a
power of 2 that divides l. Thus, the previous inequality implies that ev(l)/8 does not divide ddl(l′). Equivalently,
we can write ev(ddl(l′)) ≤ ev(l)/8. By Observation 5.0.2, we get ev(l′) ≤ ev(l)/8. This gives a contradiction as:

ddl(l′) = l′ + ev(l′) ≤ l +
3

4
· ev(l) + ev(l)/8 = l +

7

8
· ev(l).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3598

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Lemma 5.0.9. For all l > 0, it holds that:

1. For all l < l′ < ddl(l), there exists z ≥ 0 such that l = bl′c2z − 2z.

2. For all l′ ≥ ddl(l), there does not exist z ≥ 0 such that l = bl′c2z − 2z.

Proof. We prove each part in turn:

1. Define z to be such that 2z is the largest power of 2 that is at most l′− l. As we assume that 20 = 1 ≤ l′− l,
this is well defined. Moreover, as l′ < ddl(l), we have 2z ≤ ev(l)/2. Thus, by definition of ev(·), we have
that 2z divides l. Using this, observe that bl′c2z = l + 2z finishing the proof.

2. Assume for the sake of contradiction that there exists an z ≥ 0 such that l = bl′c2z − 2z. This means that
2z divides l and thus, we must have that 2z ≤ ev(l)/2. We get:

l = bl′c2z − 2z > l′ − 2z − 2z ≥ ddl(l)− ev(l) = l,

a contradiction.

5.2.3 Meeting Points and the Function Last(·)

Observation 5.0.3. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. For all M ∈ MPCi , we have M.bn < ZCi .bn. Due to

Line 9 and an inductive argument, it follows that the values M.bn are distinct for all M ∈ MP?
C
i .

Lemma 5.0.10. Let i ∈ [M ′] and C ∈ {A,B}. For all M ∈ MPCi−1 \ MP?
C
i , we have ZCi .bn = ddl(M.bn) and

i ∈ C9 . Moreover, if ZCi−1 /∈ MP?
C
i , then we have ZCi .bn < ZCi−1.bn.

Proof. To start, use Observation 5.0.3 to get that M.bn < ZCi−1.bn. We now show that M.bn < ZCi .bn. If

ZCi−1.bn ≤ ZCi .bn, this is trivial, if not, we must have i ∈ C16 implying that M.bn ≤ ZCi .bn. Due to
Observation 5.0.3, this inequality cannot be tight unless M = ZCi and we are done.

Having shown that M.bn < ZCi−1.bn, Z
C
i .bn, we combine this with M ∈ MPCi−1 \ MP?

C
i and Line 20

and Lemma 5.0.9 to get ZCi−1.bn < ddl(M.bn) ≤ ZCi .bn. The corollary now follows as Z.bn increases by at
most one in any iteration and increases only when a party executes Line 9. The “moreover” part is simply
because ZCi .bn ≤ ZCi−1.bn + 1 and Lines 9 and 20.

Lemma 5.0.11. Let 0 ≤ i′ ≤ i ≤ M ′ and C ∈ {A,B}. For all ZCi′ .bn < l ≤ ZCi .bn, there exists i′ < i′′ ≤ i such
that i′′ ∈ C9 and ZCi′′ .bn = l.

Proof. Proof by induction on i− i′. The base case i = i′ is trivial. We show the result for i > i′ assuming it holds
for i−1. If l ≤ ZCi−1.bn, the result follows from the induction hypothesis. If not, we must have ZCi−1.bn < l ≤ ZCi .bn.

Observing Algorithm 1, this only happens if i ∈ C9 and ZCi .bn = l finishing the proof.

The foregoing lemma (with i′ = 0) allows us to define:

Definition 5.0.1. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. For all l ∈
[
ZCi .bn

]
, we define LastCi (l) to be the largest

i′ ∈ [i] such that i′ ∈ C9 and ZCi′ .bn = l. We adopt the convention that LastCi (0) = 0.

Our definition satisfies the following properties:

Lemma 5.0.12. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}.

1. For all M ∈ MP?
C
i , we have:

(a) M = ZC
LastCi (M.bn)

.

(b) For all LastCi (M.bn) ≤ i′ ≤ i, we have M ∈ MP?
C
i′ and ZCi′ .bn < ddl(M.bn).
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(c) For all z ≥ 0, there exists M′ ∈ MP?
C
i with M′.bn = bM.bnc2z .

2. For all l ∈
[
ZCi .bn

]
, we have:

(a) For all LastCi (l) ≤ i′ ≤ i, it holds that LastCi′ (l) = LastCi (l) and ZCi′ .bn ≥ l. As Definition 5.0.1 implies

that LastCi (l) are distinct for all l, it follows that:

0 = LastCi (0) < LastCi (1) < · · · < LastCi
(
ZCi .bn

)
≤ i.

(b) ZC
LastCi (l)−1 = ZC

LastCi (l−1).

(c) If there does not exist M ∈ MP?
C
i with M.bn = l, then there exists LastCi (l) < i′ ≤ i such that

ZCi′ .bn ≥ ddl(l).

Proof. We prove each part separately.

1. Proof by induction on i. The base case i = 0 is straightforward. For Items 1a and 1b, note from Algorithm 1
that either M ∈ MP?

C
i−1 or i ∈ C9 and M = ZCi , but not both. If the latter happens, it is easy to see that

LastCi (M.bn) = i and therefore Items 1a and 1b hold. We therefore assume that the former happens, and
we have from Observation 5.0.3 and Definition 5.0.1 that LastCi (M.bn) = LastCi−1(M.bn) and Item 1a follows
from the induction hypothesis. For Item 1b, all we have to show is that ZCi .bn < ddl(M.bn). This is because,
otherwise, we must have M 6= ZCi ∈ MPCi but this contradicts Line 20 and Lemma 5.0.9.

It remains to show Item 1c. Note that this is trivial if M.bn = bM.bnc2z , so we assume that M.bn > bM.bnc2z .

We first show that there exists M′ ∈ MP?
C
i−1 with M′.bn = bM.bnc2z . If M ∈ MP?

C
i−1, this is because of

the induction hypothesis. If not, we must have ZCi .bn = ZCi−1.bn + 1 and M = ZCi . Now, M.bn > bM.bnc2z
implies bM.bnc2z =

⌊
ZCi−1.bn

⌋
2z

, and we are done by the induction hypothesis.

Next, as either M ∈ MP?
C
i−1 or not, we have from M′.bn < M.bn and Observation 5.0.3 that either

M′ ∈ MPCi−1 or i ∈ C9 . Using Lemmas 5.0.6 and 5.0.10, this means that the only way M′ /∈ MP?
C
i is

if ZCi .bn ≥ ddl(M′.bn) ≥ ddl(M.bn). However, this contradicts Item 1b.

2. We have:

(a) If LastCi′ (l) 6= LastCi (l), we have from Definition 5.0.1 that i′ < LastCi (l), a contradiction. If ZCi′ .bn < l,
then the i′′ promised by Lemma 5.0.11 contradicts Definition 5.0.1.

(b) Let i′ = LastCi (l) for convenience and note that i′ ∈ C9 by Definition 5.0.1 implying that l = ZCi′ .bn =
ZCi′−1.bn + 1. We get from Items 1a and 2a that:

ZCi′−1 = ZCLastC
i′−1

(l−1) = ZCLastCi (l−1).

(c) Proof by induction on i. The base case i = 0 is straightforward. For i > 0, note that our assumptions
imply that l ≤ ZCi .bn− 1 ≤ ZCi−1.bn. It follows by Definition 5.0.1 that LastCi (l) = LastCi−1(l). If there

does not exist M ∈ MP?
C
i−1 with M.bn = l, we are done by the induction hypothesis. Otherwise, as

either i ∈ C9 or l < ZCi−1.bn implying M ∈ MPCi−1, by Lemma 5.0.10, the only reason M /∈ MP?
C
i is if

ZCi .bn ≥ ddl(l), as desired.

5.2.4 The Variable E

Observation 5.0.4. The variables E and Z.bn are always non-negative and their values never increase by more
than 1 in one iteration.
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Lemma 5.0.13. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. It holds that:

ECi < ZCi .bn− max
M∈MPC

i

M.bn.

Furthermore, if i ∈ C16 , we have ECi = 0 and:

ECi−1 + 1 = ZCi−1.bn− max
M∈MPC

i−1

M.bn.

Proof. Proof by induction on i. The base case i = 0 is straightforward. We show the result for i > 0 assuming it
holds for i− 1. Consider the following cases:

• When i ∈ C9 : In this case, we must have ECi−1 = ECi = 0 and Observation 5.0.3 finishes the proof.

• When i ∈ C12 : In this case, MP and Z stay unchanged (Line 20 does not affect MP), and we simply have
by the induction hypothesis:

ECi ≤ ECi−1 < ZCi−1.bn− max
M∈MPC

i−1

M.bn = ZCi .bn− max
M∈MPC

i

M.bn.

• When i ∈ C14 and i /∈ C16 : In this case too, MP and Z stay unchanged (Line 20 does not affect MP).
Moreover, the fact that i /∈ C16 means that:

ECi < ZCi .bn− max
M∈MPC

i

M.bn.

• When i ∈ C16 : In this case, we have:

ZCi−1.bn− max
M∈MPC

i−1

M.bn ≤ ECi−1 + 1.

Together with our induction hypothesis, this implies that the inequality must be tight. Observing Line 16,
we get that ECi = 0 and the result follows.

5.2.5 The Variable Pre

Definition 5.0.2. For all i ∈ {0} ∪ [M ′], define the set:

Pi =
{
l ≥ 0 | ∃MA ∈ MP?

A
i ,M

B ∈ MP?
B
i : MA.hash = MB .hash ∧MA.bn = MB .bn = l

}
.

Observe that 0 ∈ Pi for all i ∈ {0} ∪ [M ′]. Also, define Prei = maxPi.

The following follows from Observation 5.0.3.

Observation 5.0.5. For all i ∈ {0} ∪ [M ′] and C ∈ {A,B}, it holds that 0 ≤ Prei ≤ ZCi .bn.

Lemma 5.0.14. Let i ∈ {0} ∪ [M ′], lA ∈
[
ZAi .bn

]
, lB ∈

[
ZBi .bn

]
be such that ZA

LastAi (lA)
.hash = ZB

LastBi (lB)
.hash. It

holds that: (
LastAi

(
lA
)
, σALastAi (lA),Z

A
LastAi (lA−1).hash

)
=
(
LastBi

(
lB
)
, σBLastBi (lB),Z

B
LastBi (lB−1).hash

)
.

Repeatedly applying the above, we also get lA = lB.
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Proof. For convenience, we define iC = LastCi
(
lC
)

for all C ∈ {A,B}. We first show that iA = iB by contradiction.
Suppose otherwise and assume without loss of generality that iA < iB . We have:

ZAiA .hash = ZBiB .hash =⇒ HA
iA = HB

iB

(As LastCi (l) ∈ C9 for all C ∈ {A,B})

=⇒ HsdA
iA

(
ZAiA−1.hash, σ

A
iA

)
= HsdB

iB

(
ZBiB−1.hash, σ

B
iB

)
(Line 6)

=⇒ sdAiA = sdBiB(Eq. (4.4))

=⇒ R′AiA = RBiB ,(Line 5)

a contradiction to Lemma 5.0.5. Having shown iA = iB , we call the common value i′. By Definition 5.0.1, we
have i′ ∈ A9 ∩ B9 and ZCi′ .bn = lC for all C ∈ {A,B}. We get:

ZAi′ .hash = ZBi′ .hash =⇒ HA
i′ = HB

i′(As i′ ∈ A9 ∩ B9 )

=⇒
(
ZAi′−1.hash, σ

A
i′
)
6=
(
ZBi′−1.hash, σ

B
i′
)

(Lemma 5.0.4)

=⇒
(
ZALastAi (lA−1).hash, σ

A
i′

)
6=
(
ZBLastBi (lB−1).hash, σ

B
i′

)
.(Lemma 5.0.12, Item 2b)

Recalling the definition of i′, the lemma follows.

Corollary 5.0.1. Let i ∈ [M ′] be such that HA
i = HB

i . It holds that Prei−1 = ZAi−1.bn = ZBi−1.bn.

Proof. As HA
i = HB

i , we have from Lemma 5.0.4 that ZAi−1.hash = ZBi−1.hash. Now applying Item 1a of
Lemma 5.0.12, we get ZA

LastAi−1(ZA
i−1.bn)

.hash = ZB
LastBi−1(ZB

i−1.bn)
.hash. From Lemma 5.0.14, we get ZAi−1.bn =

ZBi−1.bn. Using Definition 5.0.2, observe that this implies ZAi−1.bn = ZBi−1.bn = Prei−1.

Lemma 5.0.15. Let i ∈ {0} ∪ [M ′]. The following hold:

1. For all 0 ≤ l ≤ Prei, we have ZA
LastAi (l)

.hash = ZB
LastBi (l)

.hash and LastAi (l) = LastBi (l).

2. For all LastAi (Prei) ≤ i′ ≤ i, we have max
(
ZAi′ .bn,Z

B
i′ .bn

)
< ddl(Prei) and Prei ∈ Pi′ . It follows that

Prei ≤ Prei′ .

3. For all 0 ≤ l ≤ Prei, if there exists MA ∈ MP?
A
i , MB ∈ MP?

B
i such that MA.bn = MB .bn = l, then

MA.hash = MB .hash. It follows that l ∈ Pi.

Proof. We prove each part separately:

1. The second part follows from the first due to Lemma 5.0.14. For the first, notice from Lemma 5.0.14 that
it is sufficient to show the result for l = Prei. For this, we use Definition 5.0.2 to get MA ∈ MP?

A
i and

MB ∈ MP?
B
i such that MA.hash = MB .hash and MA.bn = MB .bn = Prei. The result now follows from

Item 1a of Lemma 5.0.12.

2. By Definition 5.0.2, there exists MA ∈ MP?
A
i and MB ∈ MP?

B
i such that MA.hash = MB .hash and

MA.bn = MB .bn = Prei. Using Item 1b of Lemma 5.0.12, the result follows.

3. By Item 1a of Lemma 5.0.12, we have MA = ZA
LastAi (l)

and MB = ZB
LastBi (l)

. The result follows from Item 1.

Lemma 5.0.16. Let i ∈ [M ′] be such that Prei−1 < Prei. We have i ∈ A9 ∩ B9 .

Proof. Recall that Prei ∈ Pi and let MA and MB be as in Definition 5.0.2. If Prei−1 < Prei, there exists

C ∈ {A,B} such that MC /∈ MP?
C
i−1. As MC ∈ MP?

C
i this is only possible if i ∈ C9 and MC = ZCi .

Conclude from this and Definition 5.0.1 that LastCi (Prei) = i. Now use Item 1 of Lemma 5.0.15 to get that
LastAi (Prei) = LastBi (Prei) = i implying that i ∈ A9 ∩ B9 .
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Lemma 5.0.17. Let i ∈ [M ′] be such that Prei < Prei−1. It holds that:

Pi =
{

0 ≤ l ≤ Prei−1 | ∃MA ∈ MP?
A
i ,M

B ∈ MP?
B
i : MA.bn = MB .bn = l

}
.

Proof. We let S denote the set on the right. Note that Pi ⊆ S is straightforward from Definition 5.0.2 as all
elements in Pi are at most Prei < Prei−1. We now show that S ⊆ Pi by fixing an arbitrary l ∈ S and showing

that l ∈ Prei. As l ∈ S, we have MA ∈ MP?
A
i and MB ∈ MP?

B
i such that MA.bn = MB .bn = l. Thus, it suffices to

show that MA.hash = MB .hash. For this, we first claim that for all C ∈ {A,B}, we have MC ∈ MP?
C
i−1. Indeed,

if this is not true for some C ∈ {A,B}, then we have from Algorithm 1 that MC .bn = l = ZCi−1.bn + 1, which is
impossible as l ≤ Prei−1. Together with this claim, Item 3 of Lemma 5.0.15 says that MA.hash = MB .hash, as
needed.

Corollary 5.0.2. Let i ∈ [M ′] be such that Prei < Prei−1. It holds that:

bPrei−1cev(Prei−1)
≤ Prei.

Proof. Define l = bPrei−1cev(Prei−1)
for convenience and observe that l < Prei−1. Use Definition 5.0.2 and Item 1c

of Lemma 5.0.12 to get that there exists M′A ∈ MP?
A
i−1 and M′B ∈ MP?

B
i−1 such that M′A.bn = M′B .bn = l.

As l < Prei−1, we can conclude that M′C ∈ MPCi−1 for all C ∈ {A,B}. We now claim that M′C ∈ MP?
C
i

for all C ∈ {A,B} as if not, we have by Lemmas 5.0.6 and 5.0.10 that there exists C ∈ {A,B} satisfying
ZCi .bn ≥ ddl(l) > ddl(Prei−1). As ddl(Prei−1) > ZCi−1.bn by Item 2 of Lemma 5.0.15, this contradicts
Observation 5.0.4. Together with this claim, Lemma 5.0.17 implies l ∈ Pi, and the result follows.

5.2.6 The Variable K For i ∈ {0} ∪ [M ′] and C ∈ {A,B}, we define:

(5.6) KCi = 1− 6 · 1
(
Prei = ZCi .bn

)
.

Lemma 5.0.18. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. It holds that:

KCi · ECi ≤ ZCi .bn− Prei.

Proof. If KCi < 0, then we are done by Observations 5.0.4 and 5.0.5. If KCi ≥ 0, we have by Eq. (5.6) that KCi = 1
and Prei 6= ZCi .bn. By Definition 5.0.2, this can only happen if Prei ≤ maxM∈MPC

i
M.bn. We get by Lemma 5.0.13

that:
KCi · ECi = ECi ≤ ZCi .bn− max

M∈MPC
i

M.bn ≤ ZCi .bn− Prei.

Lemma 5.0.19. Let i ∈ [M ′] and C ∈ {A,B}. It holds that:

KCi−1 · ECi−1 − ZCi−1.bn ≤ 6 + KCi · ECi − ZCi .bn.

Proof. Observe from Eq. (5.6) that K is never 0. We consider the following cases:

• When KCi−1 < 0: In this case, we have:

KCi−1 · ECi−1 − ZCi−1.bn = −5 · ECi−1 − ZCi−1.bn

≤ 6− 5 · ECi − ZCi .bn(Observation 5.0.4)

≤ 6 + KCi · ECi − ZCi .bn.(Observation 5.0.4)

• When KCi−1,K
C
i > 0: This means KCi−1 = KCi = 1 and these factors can be ignored. Consider the following

subcases:

– When ECi−1 ≤ ECi + 5: In this case, we simply note from Observation 5.0.4 that:

ECi−1 − ZCi−1.bn ≤ 5 + ECi − ZCi−1.bn ≤ 6 + ECi − ZCi .bn.
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– When ECi + 5 < ECi−1: Observe from Algorithm 1 that this only happens when i ∈ C16 . Applying
Lemma 5.0.13, we get that ECi = 0 and we have:

ECi−1 − ZCi−1.bn = − max
M∈MPC

i−1

M.bn− 1 ≤ −ZCi−1.bn ≤ 6 + ECi − ZCi .bn.

• When KCi < 0 < KCi−1: This means KCi−1 = 1 and this factor can be ignored. We have by Eq. (5.6)
and Observation 5.0.5 that Prei = ZCi .bn and Prei−1 < ZCi−1.bn. We consider the following subcases:

– When ZCi−1.bn ≤ ZCi .bn: This means that Prei−1 < Prei. We can apply Lemma 5.0.16 to get

i ∈ A9 ∩ B9 . We get ECi−1 = ECi = 0 and the lemma is trivial.

– When ZCi .bn < ZCi−1.bn: Observe from Algorithm 1 that this only happens when i ∈ C16 . Applying
Lemma 5.0.13, we get that ECi = 0 and we have:

ECi−1 − ZCi−1.bn = − max
M∈MPC

i−1

M.bn− 1 ≤ −ZCi−1.bn ≤ 6 + KCi · ECi − ZCi .bn.

5.2.7 Corruptions Recall Eq. (4.1). For i ∈ [M ′], we define Erri to be the indicator variable that is 1 if and
only if the number of corruptions made by the adversary in iteration i is at least ε′B∗ > r′/10. For a subset
I ⊆ [M ′], we define ErrI =

∑
i∈I Erri. When I = [i] for some i ∈ [M ′], we may instead write Err≤i. We define

Err<i analogously.

Lemma 5.0.20. Let i ∈ [M ′] be such that Erri = 0. The following hold:

1. We have: (
RAi , H

A
i , E

A
i−1, b

A
i

)
=
(
R′Bi , H

′B
i , E′Bi−1, b

′B
i

)
,

and likewise with A and B reversed.

2. We have i ∈ A9 ⇐⇒ i ∈ B9 and i ∈ A12 ⇐⇒ i ∈ B12 .

3. We have σAi = σBi .

4. If i /∈ A9 ∪ A12 , we have ZAi−1.hash 6= ZBi−1.hash.

5. If i ∈ A9 , we have Prei−1 + 1 = Prei = ZAi .bn = ZBi .bn.

6. If i /∈ A9 , we have Prei−1 = Prei and:∑
C∈{A,B}

(
KCi−1 · ECi−1 − ZCi−1.bn

)
<

∑
C∈{A,B}

(
KCi · ECi − ZCi .bn

)
.

Proof. We prove each part separately.

1. Recall that Lines 5 and 7 implicitly use the code ECC that outputs encodings of length 1000r′. As Erri = 0,
at most r′/10 bits of this encoding will be corrupted implying that the parties will decode each others
messages correctly. The result follows. We remark that it is Ei−1 instead of Ei as the value of E may
change in iteration i.

2. Follows from the previous part and Line 8.

3. Recall that the parties execute a protocol satisfying Theorem 3.1 in Line 3. Moreover, the fact that Erri = 0
implies there are at most ε′B∗ corruptions in this execution. We get from Theorem 3.1 that the output is
the same as the output of a noiseless execution, which satisfies σAi = σBi .
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4. Note from the fact that i /∈ A9 ∪ A12 and Item 1 that HA
i 6= HB

i . By Line 6, we get that
HsdAi

(
ZAi−1.hash, σ

A
i

)
6= HsdBi

(
ZBi−1.hash, σ

B
i

)
. Now, observe that Item 1 implies sdAi = sdBi . Using sd

to denote the common value, we get from Eq. (4.4) that hsd
(
ZAi−1.hash, σ

A
i

)
6= hsd

(
ZBi−1.hash, σ

B
i

)
. This

implies that
(
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
and Item 3 finishes the proof.

5. As i ∈ A9 , we have from Items 1 and 2 that i ∈ A9 ∩ B9 and HA
i = HB

i . Using Corollary 5.0.1, we get
Prei−1 = ZAi−1.bn = ZBi−1.bn and all that remains to show is Prei = ZAi .bn = ZBi .bn. For this, simply note

that HA
i = HB

i with i ∈ A9 ∩ B9 implies ZAi .hash = ZBi .hash and apply Definition 5.0.2.

6. Due to Lemma 5.0.16, it suffices to show that Prei−1 ≤ Prei. We show this by contradiction. If not, recall that

Prei−1 ∈ Pi−1 and let MA ∈ MP?
A
i−1, MB ∈ MP?

B
i−1 be as in Definition 5.0.2. Observe that Prei < Prei−1

can happen only if there exists C ∈ {A,B} such that MC /∈ MP?i. Using Item 2 and Lemma 5.0.10,
this happens only if i ∈ C16 and MC = ZCi−1 implying MC .bn = ZCi−1.bn = Prei−1. Now, using Item 4,
we get that ZAi−1.hash 6= ZBi−1.hash. Due to Observation 5.0.3 and Definition 5.0.2, this also means that
ZAi−1.bn 6= ZBi−1.bn. Assume C = A without loss of generality. Using Observation 5.0.5, we actually get

Prei−1 = ZAi−1.bn < ZBi−1.bn. This means that bAi < bBi = b′Ai by Item 1. This contradicts i ∈ A16 and we
are done.

We now show the remainder of Item 6. For this, recall Item 2 and consider the following cases:

• When i ∈ A12 ∩ B12 : In this case, the values of MP?
A

, MP?
B

, and therefore also of Pre remain
unchanged in iteration i. Moreover, we have EAi ≤ EAi−1 and EBi ≤ EBi−1. We use Item 1 to get that
HA
i = HB

i and that there exists C ∈ {A,B} such that ECi−1 > 0 =⇒ ECi−1 > ECi . It follows that
EAi +EBi < EAi−1 +EBi−1. Using Corollary 5.0.1, we get Prei−1 = ZAi−1.bn = ZBi−1.bn = Prei = ZAi .bn =
ZBi .bn. We get: ∑

C∈{A,B}

(
KCi−1 · ECi−1 − ZCi−1.bn

)
≤

∑
C∈{A,B}

(
KCi · ECi−1 − ZCi .bn

)
(Eq. (5.6))

<
∑

C∈{A,B}

(
KCi · ECi − ZCi .bn

)
.(As KAi = KBi < 0 and EAi + EBi < EAi−1 + EBi−1)

• When i /∈ A12 ∪ B12 : In this case, we claim that for all C ∈ {A,B}, we have

KCi−1 · ECi−1 − ZCi−1.bn + 1
(
i ∈ C14

)
= KCi · ECi − ZCi .bn.

The result easily follows from Line 13 and Item 1 and thus it suffices to show the claim. Fix C ∈ {A,B}.
If i /∈ C14 , the claim trivially holds due to Eq. (5.6) and the fact that Prei = Prei−1. Thus, we assume
that i ∈ C14 .

We first show that Prei−1 < ZCi−1.bn implying by Eq. (5.6) that KCi−1 = 1. We show this by
contradiction. Suppose not. Then, we have from Observation 5.0.5 that Prei−1 = ZCi−1.bn. We also

have from Item 4 that ZAi−1.hash 6= ZBi−1.hash. Let C be the unique element in {A,B} that is different
from C. By Definition 5.0.2 and Observation 5.0.3 these two are only possible if ZAi−1.bn 6= ZBi−1.bn

which by Observation 5.0.5 implies that ZCi−1.bn < ZCi−1.bn. However, due to Item 1, this means that

bCi < b′Ci , a contradiction to i ∈ C14 .

Having shown, KCi−1 = 1, if i /∈ C16 , we get ZCi .bn = ZCi−1.bn implying (as Prei = Prei−1) that
KCi = KCi−1 = 1. We get:

KCi−1 · ECi−1 − ZCi−1.bn + 1 = ECi−1 − ZCi−1.bn + 1 = ECi − ZCi .bn = KCi · ECi − ZCi .bn.

On the other hand, if i /∈ C16 , we have by Lemma 5.0.13 that ECi = 0:

KCi−1 · ECi−1 − ZCi−1.bn + 1 = − max
M∈MPC

i−1

M.bn = −ZCi .bn = KCi · ECi − ZCi .bn,

where the penultimate inequality is because of Line 17 and the fact that ZCi−1.bn > Prei−1 ≥ 0 implying

MPCi−1 6= ∅.
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Corollary 5.0.3. Let i ∈ [M ′] be such that Erri = 0. It holds that:

11 · Prei−1 +
∑

C∈{A,B}

5 ·
(
KCi−1 · ECi−1 − ZCi−1.bn

)
< 11 · Prei +

∑
C∈{A,B}

5 ·
(
KCi · ECi − ZCi .bn

)
.

Proof. From Item 2 of Lemma 5.0.20, we have i ∈ A9 ⇐⇒ i ∈ B9 . If both of these are true, we observe from
Line 9 that the terms corresponding to E are 0 and all the other quantities increase by exactly 1 (see Line 9 and
Item 5 of Lemma 5.0.20). On the other hand, if they are both false, we simply use Item 6 of Lemma 5.0.20.

5.2.8 Taxes Important to our analysis is the following notion of a “tax” associated with each “correct” meeting
point. Let i ∈ {0} ∪ [M ′]. Define the sets:

(5.7) CMPi =
⋃

C∈{A,B}

CMPCi where CMPCi =
{

0 ≤ l ≤ Prei | ∃M ∈ MP?
C
i : M.bn = l

}

(5.8) Si = {Prei} ∪
{

max
M∈MPC

i

M.bn

}
C∈{A,B}

∪

{
arg min
M∈CMPC

i

ddl(M.bn)

}
C∈{A,B}

.

We next define, for i ∈ {0} ∪ [M ′] functions Taxi : CMPi → Z inductively as follows: For i = 0, observe that
CMPi = {0} and define Taxi(0) = 0. For i > 0 and l ∈ CMPi, define:

(5.9) Taxi(l) =

{
0, if l /∈ CMPi−1

Taxi−1(l) + 1(Erri > 0 ∧ l ∈ Si), if l ∈ CMPi−1
.

Lemma 5.0.21. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. Let 0 ≤ l ≤ Prei be such that there exists M ∈ MP?
C
i with

M.bn = l. For all LastAi (Prei) ≤ i′ ≤ i, we have l ∈ CMPCi′ ⊆ CMPi′ .

Proof. Fix i, C, l, i′ as in the lemma statement. By Item 2 of Lemma 5.0.15, we have Prei ≤ Prei′ . It is
thus enough to show that M ∈ MP?

C
i′ , where M is as promised by the lemma. This is because of the fact that

LastAi (Prei) = LastBi (Prei) (which is due to Item 1 of Lemma 5.0.15) and Item 1b of Lemma 5.0.12.

Using Eq. (5.9) repeatedly, we also get:

Corollary 5.0.4. Let i ∈ {0} ∪ [M ′], 0 ≤ l ≤ Prei be such that there exists M ∈ MP?
A
i ∪MP?

B
i with M.bn = l.

It holds that:
Taxi(l) ≥

∑
LastAi (Prei)<i′≤i

1(Erri′ > 0 ∧ l ∈ Si′).

5.2.9 Understanding Taxes

Lemma 5.0.22. Let i ∈ [M ′]. We have:∑
l∈CMPi

Taxi(l) ≤ 5 · 1(Erri > 0) +
∑

l∈CMPi∩CMPi−1

Taxi−1(l).

Proof. We have: ∑
l∈CMPi

Taxi(l) ≤
∑

l∈CMPi∩CMPi−1

Taxi(l)(Eq. (5.9))

≤
∑

l∈CMPi∩CMPi−1

Taxi−1(l) +
∑

l∈CMPi∩CMPi−1

1(Erri > 0 ∧ l ∈ Si)(Eq. (5.9))

≤
∑

l∈CMPi∩CMPi−1

Taxi−1(l) + 1(Erri > 0) · |Si|

≤
∑

l∈CMPi∩CMPi−1

Taxi−1(l) + 5 · 1(Erri > 0).(Eq. (5.8))

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3606

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 9

6.
24

8.
68

.1
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Lemma 5.0.23. Let C ∈ {A,B} and i ∈ C9 be such that ZCi .bn = ddl(Prei−1). It holds that:

Prei−1 − Prei ≤ 8 · Taxi−1(Prei−1) + 8.

Proof. If Prei−1−Prei ≤ 8, this is trivial, so we assume otherwise. By Corollary 5.0.2, we get 8 < Prei−1−Prei ≤
Prei−1 − bPrei−1cev(Prei−1)

= 1
2 · ev(Prei−1). It follows that ev(Prei−1) ≥ 32. Moreover, from Corollary 5.0.4 and

the fact that LastAi−1(Prei−1) = LastCi−1(Prei−1) (see Item 1 of Lemma 5.0.15), we get:

(5.10) Taxi−1(Prei−1) ≥
∑

LastCi−1(Prei−1)<i′<i

1(Erri′ > 0 ∧ Prei−1 ∈ Si′).

In the remainder of this proof we simply show that the right hand side above is at least 1
16 · ev(Prei−1)− 1. For

this, define:

(5.11) l1 = Prei−1 l2 =
l1 + l5

2
l3 =

l1 + 3l5
4

l4 =
l1 + 7l5

8
l5 = ddl(Prei−1).

As ev(Prei−1) ≥ 32, we get that all of these are integers and l1 < l2 < l3 < l4 < l5. Observe that i ∈ C9 implies
ZCi−1.bn = l5 − 1.We consider the following cases:

• When ZA
LastCi−1(l3)

.hash 6= ZB
LastCi−1(l3)

.hash: In this case, Item 2a of Lemma 5.0.12 to continue Eq. (5.10) as:

Taxi−1(Prei−1) ≥
∑

l4≤l<l5

1
(
ErrLastCi−1(l)

> 0 ∧ Prei−1 ∈ SLastCi−1(l)

)
.

To finish, we show that each term above is 1 and use Eq. (5.11). Fix l4 ≤ l < l5 and define
i′ = LastCi−1(l). We first claim that Prei′ < l3. Indeed, if not, we have by Item 1 of Lemma 5.0.15
that ZA

LastC
i′ (l3)

.hash = ZB
LastC

i′ (l3)
.hash. Using Item 2a of Lemma 5.0.12, this gives ZA

LastCi−1(l3)
.hash =

ZB
LastCi−1(l3)

.hash, a contradiction.

We now use Prei′ < l3 to show that the term corresponding to l is 1. For this, we need to show that Erri′ > 0
and Prei−1 ∈ Si′ . For the former, note by Definition 5.0.1 that i′ ∈ C9 and ZCi′ .bn = l and thus, if Erri′ = 0,
we can derive a contradiction from Items 2 and 5 of Lemma 5.0.20. For the latter, we use Eq. (5.8) and
show that Prei−1 = arg minM∈CMPC

i′
ddl(M.bn).

Note that Prei−1 ∈ CMPCi′ follows from Definition 5.0.2 and Lemma 5.0.21 and it is enough to show that
ddl(Prei−1) ≤ ddl(l′) for all l′ ∈ CMPCi′ . Fix an arbitrary l′ and note from Eq. (5.7) that l′ ≤ Prei′ < l3.
Use Lemma 5.0.8 to conclude that either ddl(l′) ≥ ddl(Prei−1) or ddl(l′) ≤ l4. As Item 1b of Lemma 5.0.12
implies the latter cannot happen, we are done.

• When ZA
LastCi−1(l3)

.hash = ZB
LastCi−1(l3)

.hash: Let i3 = LastCi−1(l3). Applying Item 1a of Lemma 5.0.12, we

get that ZA
LastAi3(ZA

i3
.bn)

.hash = ZB
LastBi3(ZB

i3
.bn)

.hash. Now, applying Lemma 5.0.14, we get ZAi3 .bn = ZBi3 .bn. As

the definition of i3 implies this common value must be l3, we get from Definition 5.0.2 that Prei3 = l3 =
ZAi3 .bn = ZBi3 .bn.

Let C ∈ {A,B} be the unique element different from C. By Eq. (5.8) and Item 2a of Lemma 5.0.12, we can
continue Eq. (5.10) as:

Taxi−1(Prei−1) ≥
∑

i3≤i′<i

1

(
Erri′ > 0 ∧ Prei−1 = max

M∈MPC
i′

M.bn

)
.

Now, we claim that:

Claim 5.0.1. For all i3 ≤ i′ < i, if ZCi′ .bn = Prei′ = l2, then Prei−1 = max
M∈MPC

i′
M.bn.
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Proof. Due to Item 2 of Lemma 5.0.15 we have Prei−1 ∈ Pi′ implying due to ZCi′ .bn = l2 and Definition 5.0.2
that Prei−1 ≤ max

M∈MPC
i′
M.bn. Thus, it suffices to show that max

M∈MPC
i′
M.bn ≤ Prei−1. We show

this by contradiction. If this is not true, then, by Observation 5.0.3, there exists M ∈ MPCi′ such that
Prei−1 = l1 < M.bn < l2 = Prei′ . By Item 1 of Lemma 5.0.15, this means that LastAi′ (M.bn) = LastBi′ (M.bn)
and with Item 2a of Lemma 5.0.12, we get that they are both equal to LastCi−1(M.bn). However, by Item 1b

of Lemma 5.0.12, this means that l3 = ZCi3 .bn < ddl(M.bn), a contradiction to Lemma 5.0.7.

Using Claim 5.0.1, we get:

Taxi−1(Prei−1) ≥
∑

i3≤i′<i

1
(
Erri′ > 0 ∧ ZCi′ .bn = Prei′ = l2

)
.

Now, note that for all i3 ≤ i′ < i such that ZCi′ .bn = Prei′ = l2, i′ ∈ C14 \ C16 only if Erri′ > 0. Indeed,

i′ ∈ C14 \ C16 implies l2 = ZCi′ .bn = ZCi′−1.bn = bCi′ ≥ b′Ci′ . If Erri′ = 0, we can use Items 1 and 2 of
Lemma 5.0.20 to continue as l2 ≥ bCi′ = ZCi′−1.bn ≥ ZCi′ .bn. As the last term is at least l3 by Item 2a of
Lemma 5.0.12, this is a contradiction. We get:

Taxi−1(Prei−1) ≥
∑

i3≤i′<i

1
(
i′ ∈ C14 \ C16 ∧ ZCi′ .bn = Prei′ = l2

)
.

We now claim that:

Claim 5.0.2. There exists i3 < i∗ < i such that i∗ ∈ C16 and ZCi∗−1.bn = Prei∗−1 = l2.

We defer the proof of Claim 5.0.2 to later but show here why it finishes our proof of Lemma 5.0.23. Let
i∗ be as promised by Claim 5.0.2 and use Claim 5.0.1 to conclude that Prei−1 = max

M∈MPC
i∗−1

M.bn. As

i∗ ∈ C16 , this means that ZCi∗ .bn = Prei−1. By Lemma 5.0.13, we have ECi∗−1 = l2 − l1 − 1.

Note now from Algorithm 1 that whenever Z or MP change in any iteration, the value of E is reset to 0
(Line 9 and Lemma 5.0.13). Moreover, the value of E increases by at most 1 in any iteration and is increased

only when a party executes Line 14 but not Line 16. This means the only way we can have ECi∗−1 = l2−l1−1

is if there are l2 − l1 − 1 iterations a1 < a2 < · · · < al2−l1−1 < i∗, all of them in the set C14 \ C16 such

that
(
ZCi′ ,MPCi′

)
=
(
ZCi∗−1,MPCi∗−1

)
for all a1 ≤ i′ < i∗. By the definition of i3, this can only happen

if i3 < a1. Thus, we are done if we can show that Prei′ = l2 for all a1 ≤ i′ < i∗. Fix such an i′. As

ZCi′ .bn = ZCi∗−1.bn = l2 and we have Observation 5.0.5, it is enough to show that that Prei′ ≥ Prei∗−1 = l2.
This is because of Item 2 of Lemma 5.0.15.

We finish by showing Claim 5.0.2.

Proof. [Proof of Claim 5.0.2] Define i3 < i∗ < i to be the smallest such that Prei∗ < l2 and Prei∗−1 ≥ l2.
Recall that Prei3 = l3 and Prei−1 = l1 and therefore i∗ is well defined. Now, as Prei∗−1 ≤ ZCi∗−1.bn < l5 by
Item 2 of Lemma 5.0.15 and Corollary 5.0.2 says that bPrei∗−1cev(Prei∗−1) ≤ Prei∗ , we have that Prei∗ < l2

is possible only if Prei∗−1 = l2.

We now claim that it is enough to show that ZCi∗ .bn < l2. Indeed, if ZCi∗ .bn < l2, then ZCi∗ .bn < Prei∗−1 ≤
ZCi∗−1.bn implying that i∗ ∈ C16 and l2 > ZCi∗ .bn = max

M∈MPC
i∗−1

M.bn. From the latter and the fact that

Prei∗−1 = l2, we also get using Definition 5.0.2 that ZCi∗−1.bn = l2, as desired.

Finally, we show ZCi∗ .bn < l2. Let MA ∈ MP?
A
i∗−1, MB ∈ MP?

B
i∗−1 be as in Definition 5.0.2. As

Prei∗ < Prei∗−1 = l2, there exists C∗ ∈ {A,B} such that MC∗ ∈ MP?
C∗

i∗−1 \ MP?
C∗

i∗ . By Lemma 5.0.10

we either have ZC
∗

i∗ .bn ≥ ddl(l2) or ZC
∗

i∗ .bn < l2. The former is impossible as ddl(l2) > ddl(l1) (due to
Observation 5.0.2 and Lemma 5.0.6) and we have Item 2 of Lemma 5.0.15. Additionally, by Item 2a of
Lemma 5.0.12, the latter is possible only if C∗ = C and we are done.
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Lemma 5.0.24. Let C ∈ {A,B} and i ∈ C16 be such that ZCi−1.bn = Prei−1. It holds that:

Prei−1 − Prei ≤ 2 ·
(
ZCi−1.bn− ZCi .bn

)
+ 8 · Taxi−1(Prei−1).

Proof. We start by defining:

λ1 = Prei−1 − Prei λ2 = ZCi−1.bn− ZCi .bn l1 = Prei−1 −
1

2
· λ1.

As the lemma is trivial otherwise, we assume that 2λ2 < λ1. By Corollary 5.0.2, we continue as 2λ2 < λ1 ≤
1
2 · ev(Prei−1). As i ∈ C16 and ZCi−1.bn = Prei−1 > 0, we have MP?

C
i ⊆ MPCi−1 by Algorithm 1. By Line 20,

it follows that there exists z1, z2 ≥ 0 such that for all j ∈ [2] we have Prei−1 − λj = bPrei−1c2zj − 2zj . As
2λ2 < λ1 ≤ 1

2 · ev(Prei−1), this is only possible if for all j ∈ [2], we have λj = 2zj is a power of 2. It follows that:

ddl
(
ZCi .bn

)
= Prei−1 + λ2 ddl(l1) = Prei−1 +

1

2
· λ1 l1 =

⌊
ZCi .bn

⌋
1
2 ·λ1

= bPrei−1 − 1c 1
2 ·λ1

.

Now use 0 < 2λ2 < λ1 and Lemma 5.0.17 to get that there exists C ∈ {A,B} such that M.bn 6= l1 for

all M ∈ MP?
C
i . By Item 1c of Lemma 5.0.12, we get that C 6= C. Using, Item 1 of Lemma 5.0.15, define

i1 = LastCi−1(Prei−1) = LastCi−1(Prei−1). From Corollary 5.0.4 and Eq. (5.8), we get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1(Erri′ > 0 ∧ Prei−1 ∈ Si′) ≥
∑

i1<i′<i

1(Erri′ > 0 ∧ Prei−1 = Prei′).

By Lemma 5.0.20, note that for all i1 < i′ < i, we have that i′ ∈ C9 and ZCi′ .bn > ZCi′ .bn implies that Erri′ > 0.
We get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1
(
i′ ∈ C9 ∧ ZCi′ .bn > ZCi′ .bn ∧ Prei−1 = Prei′

)
.

Next, use Item 1b of Lemma 5.0.12 to get ZCi′ .bn < ddl
(
ZCi .bn

)
= Prei−1 + λ2 for all i1 ≤ i′ < i. We get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1
(
i′ ∈ C9 ∧ ZCi′ .bn ≥ Prei−1 + λ2 ∧ Prei−1 = Prei′

)
.

We now claim that for all i1 < i′ < i, if ZCi′ .bn ≥ Prei−1 + 3
2 ·λ2, then Prei−1 = Prei′ . Fix such an i′. As Item 2 of

Lemma 5.0.15 says that Prei−1 ≤ Prei′ and we know Prei′ ≤ ZCi′ .bn < Prei−1 +λ2 from the argument above, all we
have to show is that it is impossible for Prei−1 < Prei′ < Prei−1 +λ2 to hold. Indeed, if this holds we use the fact

that λ2 is a power of 2 and λ2 < ev(Prei−1) together with Lemma 5.0.7 to get ddl(Prei′) ≤ Prei−1 + 3
2 ·λ2 ≤ ZCi′ .bn.

This contradicts Item 2 of Lemma 5.0.15. We get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1

(
i′ ∈ C9 ∧ ZCi′ .bn ≥ Prei−1 +

3

2
· λ2
)
.

Now, note by definition of i1 that ZCi1 = Prei−1. Moreover ZC .bn increases by at most 1 in any iteration and only

increases in iterations in C9 . We get:

Taxi−1(Prei−1) ≥ max
i1<i′<i

ZCi′ .bn− Prei−1 −
3

2
· λ2 + 1.

We now claim that maxi1<i′<i Z
C
i′ .bn ≥ ddl(l1)−1 = Prei−1 + 1

2 ·λ1−1. Assuming this claim for now and recalling
that 2λ2 < λ1 =⇒ 4λ2 ≤ λ1 as λ1, λ2 are powers of 2, we get:

Prei−1 − Prei = λ1 ≤ 4λ1 − 10λ2 = 2λ2 + 8 ·
(

1

2
· λ1 −

3

2
· λ2
)
≤ 2λ2 + 8 · Taxi−1(Prei−1).
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It remains to show the claim. For this, first note from Observation 5.0.4 that is suffices to show that

maxi1<i′≤i Z
C
i′ .bn ≥ ddl(l1). If there exists M ∈ MPCi−1 \ MP?

C
i such that M.bn = l1, then we are done by

Lemma 5.0.10, so we assume otherwise. As ZCi−1.bn ≥ Prei−1 > l1, this means that there does not exist

M ∈ MP?
C
i−1 \ MP?

C
i such that M.bn = l1. Using our choice of C, we further get that there does not exist

M ∈ MP?
C
i−1 such that M.bn = l1.

Now, using Item 2c of Lemma 5.0.12, we get that max
LastCi−1(l1)<i

′<i
ZCi′ .bn ≥ ddl(l1). It therefore suffices

to show that max
LastCi−1(l1)<i

′≤i1 Z
C
i′ .bn < ddl(l1). By definition of i1, we have ZCi1 .bn < ddl(l1) and therefore it

suffices to show that max
LastCi−1(l1)<i

′<i1
ZCi′ .bn < ddl(l1). Use Item 2a of Lemma 5.0.12 to get that this is exactly

the same as showing max
LastCi1−1(l1)<i

′<i1
ZCi′ .bn < ddl(l1). However, this follows from l1 = bPrei−1 − 1c 1

2 ·λ1
, the

definition of i1 and Items 1b and 1c of Lemma 5.0.12.

5.2.10 A Potential Function We are now ready to define our potential function Φ. For i ∈ {0} ∪ [M ′], we
define:

(5.12) Φi = 1000 · Err≤i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi · ECi − ZCi .bn

)
.

In the lemmas that follow, we shall show that Φ increases by at least a constant in every iteration.

Lemma 5.0.25. Let i ∈ [M ′] be such that Prei < Prei−1. It holds that:

Φi−1 + 1000 · Erri − 900 ≤ Φi.

Proof. As Prei < Prei−1, we have Prei−1 ∈ CMPi−1 \ CMPi (using Lemma 5.0.21) which by Lemma 5.0.22 gives:

(5.13)
∑

l∈CMPi

Taxi(l) ≤ 5 +
∑

l∈CMPi−1

Taxi−1(l)− Taxi−1(Prei−1).

We also have, by Lemma 5.0.19, for all C ∈ {A,B}:

(5.14) KCi−1 · ECi−1 − ZCi−1.bn ≤ 6 + KCi · ECi − ZCi .bn.

Next, let MA ∈ MP?
A
i−1, MB ∈ MP?

B
i−1 be as in Definition 5.0.2. As Prei < Prei−1, there exists C ∈ {A,B} such

that MC ∈ MP?
C
i−1 \MP?

C
i . We assume C = A without loss of generality and consider the following cases:

• When MA ∈ MPAi−1 \MP?
A
i : In this case, use Lemma 5.0.10 to get that i ∈ A9 and ZAi .bn = ddl

(
MA.bn

)
=

ddl(Prei−1). We have from Lemma 5.0.23 that:

(5.15) Prei−1 − Prei ≤ 8 · Taxi−1(Prei−1) + 8.

Multiplying Eq. (5.13) by 100, Eq. (5.15) by 11, Eq. (5.14) by 5 (for all C ∈ {A,B}) and adding, we get

100 ·
∑

l∈CMPi

Taxi(l) + 11 · (Prei−1 − Prei) +
∑

C∈{A,B}

5 ·
(
KCi−1 · ECi−1 − ZCi−1.bn

)
≤ 900 + 100 ·

∑
l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi · ECi − ZCi .bn

)
.

Rearranging and using Eq. (5.12) finishes the proof.

• When MA = ZAi−1 /∈ MP?
A
i : In this case, we have ZAi−1.bn = Prei−1, and using Lemma 5.0.10, also have

that ZAi .bn < ZAi−1.bn implying i ∈ A16 . We have from Lemma 5.0.24 that:

(5.16) Prei−1 − Prei ≤ 2 ·
(
ZAi−1.bn− ZAi .bn

)
+ 8 · Taxi−1(Prei−1).
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Again using i ∈ A16 and ZAi .bn < ZAi−1.bn, we have by Lemma 5.0.13 that EAi = 0 and:

EAi−1 + 1 = ZAi−1.bn− max
M∈MPA

i−1

M.bn = ZAi−1.bn− ZAi .bn.

As Eq. (5.6) implies that KAi−1 = −5, we get from EAi = 0 that:

KAi−1 · EAi−1 − ZAi−1.bn ≤ −5 ·
(
ZAi−1.bn− ZAi .bn− 1

)
− ZAi−1.bn

= 5− 6 ·
(
ZAi−1.bn− ZAi .bn

)
− ZAi .bn

= 5− 6 ·
(
ZAi−1.bn− ZAi .bn

)
+ KAi · EAi − ZAi .bn.

Multiplying this by 5, Eq. (5.16) by 11, Eq. (5.14) for C = B by 5, Eq. (5.13) by 100 and adding, we get:

11 · Prei−1 + 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · ECi−1 − ZCi−1.bn

)
≤ 555 + 11 · Prei + 100 ·

∑
l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi · ECi − ZCi .bn

)
Rearranging and using Eq. (5.12) finishes the proof.

Lemma 5.0.26. Let i ∈ [M ′]. We have:
Φi−1 + 1 ≤ Φi.

Proof. We divide the proof into the following cases:

• When Erri = 0: In this case, we have:

Φi−1 = 1000 · Err≤i + 11 · Prei−1 − 100 ·
∑

l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · ECi−1 − ZCi−1.bn

)(Eq. (5.12) and Erri = 0)

≤ 1000 · Err≤i + 11 · Prei−1 − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · ECi−1 − ZCi−1.bn

)(Lemma 5.0.22 and Erri = 0)

≤ −1 + 1000 · Err≤i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi · ECi − ZCi .bn

)(Corollary 5.0.3)

≤ Φi − 1.(Eq. (5.12))

• When Erri = 1 and Prei < Prei−1: In this case, the lemma follows by Lemma 5.0.25.

• When Erri = 1 and Prei−1 ≤ Prei: In this case, we have:

Φi−1 ≤ 1000 · Err<i + 11 · Prei − 100 ·
∑

l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · ECi−1 − ZCi−1.bn

)(Eq. (5.12) and Prei−1 ≤ Prei)

≤ 500 + 1000 · Err<i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · ECi−1 − ZCi−1.bn

)(Lemma 5.0.22)

≤ 600 + 1000 · Err<i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi · ECi − ZCi .bn

)(Lemma 5.0.19)

≤ −100 + Φi.(As Erri = 1)
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Corollary 5.0.5. We have M ≤ PreM ′ .

Proof. Note from Eq. (5.12) and Lemma 5.0.26 that Φ0 = 0 and ΦM ′ ≥M ′. This means that

M ′ ≤ 1000 · Err≤M ′ + 11 · PreM ′ − 100 ·
∑

l∈CMPM′

TaxM ′(l) +
∑

C∈{A,B}

5 ·
(
KCM ′ · ECM ′ − ZCM ′ .bn

)
≤ 1000 · Err≤M ′ + 11 · PreM ′ +

∑
C∈{A,B}

5 ·
(
KCM ′ · ECM ′ − ZCM ′ .bn

)
≤ 1000 · Err≤M ′ + PreM ′ .(Lemma 5.0.18)

Next, we claim that Err≤M ′ ≤ 10M · εε′ . Indeed, if not, we have by definition of Err that the number of corruptions
made by the adversary is at least 10εT by Eq. (4.1), a contradiction. This means that M ′ ≤ 104M · εε′ + PreM ′
implying by Eq. (4.1) that M ≤ PreM ′ .

5.3 Finishing the Proof We now prove our main result.

Proof. [Proof of Theorem 3.2] Recall that due to Lemmas 5.0.1 and 5.0.2 and Observation 5.0.1 and the way we

fixed the randomness in Eq. (5.5), all we have to show is that Π′Adv
(
xA, xB

)
= Π

(
xA, xB

)
. Let π ∈ {0, 1}2T be

the transcript containing the symbols sent by both the parties in a noiseless execution of Π when the inputs are
xA and xB . Observe from Line 22 and the way we padded the protocol Π that Π′Adv

(
xA, xB

)
= Π

(
xA, xB

)
follows

if we show that there exists transcripts πA, πB that agree with π in the first 2T coordinates such that for all
C ∈ {A,B}, party C goes to state ZCM ′ .state when their input is xC and they receive symbols as in πC . To this
end, define, for C ∈ {A,B},

πC = σCLastC
M′ (1)

‖σCLastC
M′ (2)

‖ . . . ‖σC
LastC

M′(Z
C
M′ .bn)

.

We first fix an arbitrary C ∈ {A,B} and show that party C goes to state ZCM ′ .state when their input is xC and
they receive symbols as in πC . Due to Item 1a of Lemma 5.0.12, this follows from the following claim:

Claim 5.0.3. For all 0 ≤ l ≤ ZCM ′ .bn, party C goes to state ZC
LastC

M′ (l)
.state when their input is xC and they

receive the first 2B∗l symbols of πC .

Proof. Proof by induction on l. The base case l = 0 is straightforward. We show the result for l > 0 assuming it
holds for l − 1. For this, define i′ = LastCM ′(l) and consider the iteration i′. From Item 2b of Lemma 5.0.12, we
have ZCi′−1 = ZC

LastC
M′ (l−1)

. Using the induction hypothesis, we get that party C goes to state ZCi′−1.state when

their input is xC and they receive the first 2B∗(l − 1) symbols of πC . To finish the proof, simply observe from
Line 10, that if party C is in state ZCi′−1.state with input xC and receives σCi′ (which are the next 2B∗ symbols
of πC), then it goes to state ZCi′ .state.

It remains to show that the transcripts πA, πB agree with π in the first 2T coordinates. For this, note first that
due to Lemma 5.0.14 and Item 1 of Lemma 5.0.15, we have for all 0 ≤ l ≤ PreM ′ that LastAM ′(l) = LastBM ′(l) and,
using il to denote the common value, also have l > 0 =⇒ σAil = σBil . Due to Corollary 5.0.5, this in particular

holds for all l ∈ [M ]. Fix l ∈ [M ]. As σAil = σBil , we have that this common value is the transcript generated

when the parties execute B∗ rounds of Π, starting from the states ZAil−1.state, ZBil−1.state with inputs xA, xB

respectively and leads the parties to update their states to ZAil .state and ZBil .state (respectively). From Item 2b

of Lemma 5.0.12, we have ZCii−1 = ZCil−1
for all C ∈ {A,B} and thus, we have that σAil = σBil is the transcript

generated when the parties execute B∗ rounds of Π, starting from the states ZAil−1
.state, ZBil−1

.state with inputs

xA, xB respectively and leads the parties to update their states to ZAil .state and ZBil .state. As ZAi0 .state = µA0
and ZBi0 .state = µB0 are the starting states of Alice and Bob respectively, we get that πA, πB agree with π in the
first 2B∗M = 2T coordinates.
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