
Noisy Radio Network Lower Bounds via Noiseless

Beeping Lower Bounds

Klim Efremenko
Ben-Gurion University, Beer Sheva, Israel

Gillat Kol
Princeton University, NJ, USA

Dmitry Paramonov
Princeton University, NJ, USA

Raghuvansh R. Saxena
Microsoft, Cambridge, MA, USA

Abstract

Much of todayŠs communication is carried out over large wireless systems with different input-output

behaviors. In this work, we compare the power of central abstractions of wireless communication

through the general notion of boolean symmetric f-channels: In every round of the f -channel, each

of its n parties decides to either broadcast or not, and the channel outputs f(m), where m is the

number of broadcasting parties.

Our Ąrst result is that the well studied beeping channel, where f is the threshold-1 function, is

not stronger than any other f -channel. To this end, we design a protocol over the f -channel and

prove that any protocol that simulates it over the beeping channel blows up the round complexity

by a factor of Ω(log n). Our lower bound technique may be of independent interest, as it essentially

generalizes the popular fooling set technique by exploiting a ŞlocalŤ relaxation of combinatorial

rectangles.

Curiously, while this result shows the limitations of a noiseless channel, namely, the beeping

channel, we are able to use it to show the limitations of the noisy version of many other channels.

This includes the extensively studied single-hop radio network model with collisions-as-silence (CAS),

which is equivalent to the f -channel with f(m) = 1 iff m = 1.

In particular, our second and main result, obtained from the Ąrst, shows that converting CAS

protocols to noise resilient ones may incur a large performance overhead, i.e., no constant rate

interactive code exists. To this end, we design a CAS protocol and prove that any protocol that

simulates it over the noisy CAS model with correlated stochastic noise, blows up the round complexity

by a factor of Ω(log n). We mention that the Ω(log n) overhead in both our results is tight.
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1 Introduction

As wireless systems have become massively popular, theoretical models for such systems have

become the topic of numerous works. In this paper we study the relative power of central

models abstracting broadcast communication. To this end, we use the notion of symmetric

boolean-valued f-channels.

For a function f : N∪ ¶0♢ → ¶0, 1♢, the f -channel is a synchronous channel that, in every

round, allows any number of parties to broadcast a bit. The round ends with all participants

receiving the bit f(wt(x)), where xi is the bit broadcast by party i, and wt(x) is the Hamming

weight of x ∈ ¶0, 1♢∗. It is useful to think of parties with xi = 1 as broadcasting, and of

parties with xi = 0 as silent. The output of the channel is then a function of the number of

broadcasting parties.
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46:2 Noisy Radio Network LBs via Noiseless Beeping LBs

Given two such channels f and g, we say that the f -channel is at least as strong as (or

stronger than) the g-channel if any protocol over the g-channel can be simulated by a protocol

over the f -channel with only a constant multiplicative blowup in the number of rounds. The

f -channel is strictly stronger than the g-channel if it is stronger, but not vice-versa. The two

channels are equivalent if each is at least as strong as the other. We note that two channels

may be incomparable, meaning that neither is stronger than the other.

Of special interest to us are binary versions of two well-studied channels, the single-hop

radio networks model and the beeping model:

The beeping model

In an n-party protocol over the binary beeping model [13], denoted here beeping, the parties

interact in synchronous rounds. In every round, each party can decide to either beep (emit

a signal) or not to beep (stay silent). If at least one party beeps, all parties hear a beep,

otherwise, all parties hear silence1. The beeping model received a lot of attention in recent

years, largely as it captures the simplest possible communication primitive, a detectable

burst of ŞenergyŤ, making it very well suited for describing certain wireless networks as well

as signal-driven biological systems2. It is easy to see that the beeping model is essentially

the f -channel for f(m) = 1[m ≥ 1] (the threshold[1] function).

The cas model

In a round of an n-party protocol over the binary collision-as-silence single-hop radio networks

model [10], each party can choose to either broadcasts a bit or stay silent. In rounds where

exactly one party broadcasts, his bit is received by all parties. Otherwise (if all parties were

silent or if at least two parties broadcast), a special ⊥ symbol is received by all3. While the

above description of the channel does not Ąt our deĄnition of an f -channel, as the channelŠs

inputs and output are non-binary, a simple time-sharing argument shows that it is equivalent

to the f -channel for f(m) = 1[m = 1], and we denote this channel cas for short4.

The cas vs. beeping problem

It is easy to see that cas is at least as strong as beeping, as a beeping round can be

simulated by a cas round: Parties broadcast in the cas round if they broadcast in the

beeping round, but there is an additional ŞdummyŤ party that broadcasts with them.5

Observe that the output of the cas round is 1 iff the dummy is the only one to broadcast,

which happens iff the value of the beeping round is 0. What about the other direction?

1 In the original deĄnition of beeping by [13], the parties are woken up by an adversary. In this paper
we use a relaxed deĄnition where all parties are woken up at the beginning of the protocol. Since we
show impossibility results, this relaxation of the model only strengthens our results.

2 For example, cells communicating by secreting proteins and other chemical markers that are diffused
and sensed by neighboring cells, or ĄreĆies reacting to Ćashes of light from nearby ĄreĆies. Also see,
e.g., [1, 33].

3 The collision-as-silence model is, perhaps, the most common single-hop radio networks model in the
literature. Another very popular model is the collision detection model, where collision and silence are
perceived as different symbols. Our results are stated for the collision-as-silence model, but apply to the
collision detection model as well.

4 To see the equivalence, simulate a round of the original non-binary channel with three cas rounds: In
the Ąrst cas round, parties broadcast (i.e., their xi is 1) if they broadcast a 0 or a 1 in the original
round. In the second round, parties broadcast only if they broadcast 0 in the original round. In the
third round, parties broadcast only if they broadcast 1 in the original round. A simulation in the other
direction is also possible.

5 Even without an extra dummy party, a beeping round can be simulated by constantly many cas

rounds.
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▶ Problem 1. Is cas strictly stronger than beeping?

The noisy cas problem

So far in our discussion of the cas model, we made the strong assumption that the parties

utilizing the channel receive the correct output bit in every round. We now switch gears and

consider the noisy version of this channel, where this assumption is relaxed. For a function

f and ϵ > 0, the parties utilizing the (correlated) ϵ-noisy f-channel, received the correct

output bit f(wt(x)) with probability 1− ϵ, and with probability ϵ they receive the opposite

bit. It is easy to see that cas is at least as strong as noisy cas. A natural question is again

about the reverse direction:

▶ Problem 2. Is cas strictly stronger than noisy cas?

1.1 Our Results

We settle both of the above problems in the affirmative. While seemingly very different,

we show that Problem 1 and Problem 2 are actually tightly connected, and exploit this

connection.

1.1.1 No f -channel is Weaker than beeping

Theorem 3 (see formal statement in Theorem 5) shows that no non-trivial f -channel is weaker

than beeping.6 A positive answer for Problem 1 is obtained from Theorem 3 as a special

case.

▶ Theorem 3 (Informal). Let f : N ∪ ¶0♢ → ¶0, 1♢ be a function such that f is not constant

on N. Then, for all n > 0, there exists an n-party protocol Π over the f-channel, such

that any protocol Π′ that computes the same function as Π over the beeping model has

Ω(♣Π♣ log n) communication rounds.

Here, ♣Π♣ denotes the worst-case number of rounds of Π. We mention that the Ω(log n)

blowup in the number of rounds suggested by Theorem 3 is tight, as for many f -channels (e.g.,

cas), O(log n) beeping rounds suffice in order to compute f (see Section 1.1.3)7. We also

mention that the condition that f is not constant on N cannot be replaced by the condition

that f is a non-constant function. The reason is that, as remarked before, the beeping

channel is the threshold[1]-channel, but threshold[1] is not a constant function (note

that it is constant on N).

Technique

Proving Theorem 3 requires proving a lower bound in the beeping model. Our lower bound

proof is inspired by the classical fooling set technique for proving deterministic, two-party

communication complexity lower bounds. We mention though that the fooling set technique

completely breaks when applied to the beeping model, as this technique crucially assumes

6 We note that, as the f -channelŠs output is only a function of the number of broadcasting parties (and is
oblivious to the number of silent parties), some channels, like the and channel, cannot be represented
as f -channels.

7 There are, however, speciĄc f -channels that require a substantially greater overhead when simulated
by beeping. For example, in [5], it is shown that the parity function, parity(m) = m mod 2, requires

Ω(n1/6) beeping rounds. Clearly, parity requires only 1 round over the parity-channel.

ITCS 2023
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that, at any point in the execution of the protocol, the set of possible inputs constitutes a

combinatorial rectangle. While this is not the case for the beeping model, we show that

a ŞlocalŤ version of this method can be made to work for this model (and even handle

randomized protocols8), in a sense made precise in Section 2. We believe that our new

technique will Ąnd other applications. A detailed overview of our technique can be found in

Section 2.

1.1.2 Noisy cas is Strictly Weaker than cas

While Theorem 3 implies that cas is strictly stronger than beeping, we observe that beeping

is at least as strong as noisy cas (we sketch this argument in Section 1.1.3 and prove it in

Theorem 8). A direct corollary of the above is the following Theorem 4 (see formal statement

in Theorem 7) that shows that cas is strictly stronger than noisy cas, answering Problem 2

(which was the original motivation for this paper) in the positive.

▶ Theorem 4 (Main, Informal). Let ϵ ≥ 0. For all n > 0, there exists an n-party protocol Π

over the cas channel, such that any n-party protocol Π′ that computes the same function

as Π over the ϵ-noisy cas channel has Ω(♣Π♣ log n) rounds.

We mention that understanding whether cas protocols can be converted to noise resilient

ones with small overhead, was the original motivation for this work. As is typically the case

for (classical or interactive) error correcting codes, a cas protocol Π can be made resilient

by simply repeating every round O(log n) times and taking majority (at least as long as Π is

not too long, say, ♣Π♣ ≤ poly(n)). This shows that the Ω(log n) round blowup in Theorem 4

is tight.

We mention that our argument showing that beeping is at least as strong as noisy cas
9,

generalizes to other noisy f -channels (e.g., to all noisy threshold[k]-channels with k ≥ 2).

For such fs, a separation of the f -channel and the noisy f -channel, analogue to the one in

Theorem 4, is also implied by Theorem 3. We remark however that there may be functions

f that satisfy the condition of Theorem 3 for which the noisy f -channel is strictly stronger

than beeping and the analogue of Theorem 4 may not hold10. Characterizing the set of

functions f for which the analogue of Theorem 4 holds is an intriguing problem.

1.1.3 beeping is At Least As Strong as Noisy cas

We next sketch an easy argument showing that a noisy cas round can be simulated by

constantly many beeping rounds, showing that Theorem 4 can be obtained as a corollary of

Theorem 3: Randomly partition the parties into two roughly equal sets [n] = S1 ∪ S2. For

i ∈ ¶1, 2♢, in the ith
beeping round, the only beeping parties are parties in Si that broadcast

in the noisy cas round. Now, if no party broadcasts in the noisy cas round, then no beep

is heard in either of the beeping rounds. If exactly one party broadcasts in the noisy cas

round, then a beep is heard in exactly one of the two beeping rounds. Else, if two or more

parties broadcast in the noisy cas round, then with probability at least 1/2 a beep is heard

in both beeping rounds (as the probability that all broadcasting parties beep in the same

round is at most 1/2).

8 See [32] for another (unrelated) randomized lower bound using the fooling set technique.
9 We mention that cas is equivalent to the threshold[2]-channel (see Theorem 9).
10 A good candidate for such a function is the parity function. Owing to the existence of good linear

error correcting codes, the noisy parity-channel may be as strong as the parity-channel.
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By simply repeating the above simulation, we can simulate an ϵ-noisy cas round using

O(log(1/ϵ)) beeping rounds. Additionally, by repeating the above simulation in a Şbinary

searchŤ-like manner, we can also simulate one round of noiseless cas (ϵ = 0) using O(log n)

beeping rounds11. This implies that the Ω(log n) blowup in the number of rounds in

Theorem 3 is tight for the cas channel. We mention that similar simulation protocols can

be obtained for channels other than cas (e.g., threshold channels).

1.2 Related Work

1.2.1 Interactive Coding

Interactive error correcting codes encode interactive communication protocols designed to

work over noiseless channels to protocols that also work over noisy channels. The study

of interactive codes was initiated by a seminal paper of Schulman [36] that considered

two-party protocols, and these were also studied by many follow-up works. Interactive codes

for multi-party distributed channels received quite a bit of attention over the last few years.

These include codes for peer-to-peer channels [35, 25, 24, 2, 4, 20, 21] and codes for various

wireless channels [8, 16, 9, 17, 18, 3, 14, 15].

We next compare Theorem 4 to the most relevant prior work on interactive coding over

wireless channels.

1.2.1.1 Relation to [16] (interactive coding over cas)

[16] shows that any ŞsimpleŤ protocol Π over cas can be compiled to a protocol Π′ that

works over ϵ-noisy cas, while only incurring a constant multiplicative overhead in the number

of rounds. Here, ŞsimpleŤ means that the protocol is non-adaptive (a.k.a, oblivious or static).

That is, in every round of Π exactly one party broadcasts and, moreover, the identity of this

party is Ąxed in advance (thus, it is independent of the received transcript, channel noise,

and inputs)12.

As adaptivity can hugely boost the power of wireless channels and is widely used, in this

paper we revisit the [16] result for general (possibly adaptive) protocols. Theorem 4 proves

that the simulation scheme of [16] cannot be extended to work for general protocols.

We point out that the [16] protocol works for both the correlated noise model, like the

one assumed by this paper, and the independent noise model, where each party gets a noisy

bit with probability ϵ, independently from the others. The correlated and independent noise

models abstract different phenomena Ű the correlated noise model describes the situation

where there is global interference (e.g., global network problems due to weather, contaminated

environment, etc.), while independent noise is better suited to describe situations where the

noise source is local. We also mention that the interactive coding problems over these two

noise models are incomparable: On the one hand, with correlated noise all parties have the

same received transcript, but on the other hand, if a symbol is corrupted by noise, none of the

parties receive the correct symbol and can warn the others. Whether or not an impossibility

result similar to our Theorem 4 can be proved for independent noise is a great open problem.

11 In more detail, if exactly one of the Ąrst two beeping rounds beeps, say, round i ∈ {1, 2}, we wish
to know if at least two of the parties in Si broadcast in the cas round. To do that, we repeat the
simulation with only the parties in Si participating.

12 Note that while Π is assumed to be non-adaptive, the simulation protocol Π′ constructed by [16] is
adaptive. However, Π′ also works in the model where if it is not the case that exactly one party
broadcasts, an adversary is controlling the received symbols.

ITCS 2023
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1.2.1.2 Relation to [18] (interactive coding over beeping)

[18] studies the beeping channel under correlated noise and shows that an Ω(log n) overhead

is required to convert a protocol to a noise resilient one. In other words, it shows that

Theorem 4 also holds for beeping vs. ϵ-noisy beeping. To this end, [18] shows a lower

bound in the noisy beeping model. In contrast, in this paper we prove a lower bound for

the noiseless beeping model, which is a harder task.

We note however, that our work does not reproduce the main result of [18], as the protocol

that we show is costly over the noiseless beeping channel is not known to be more expensive

over the noisy beeping channel. Rather, we view the result of [18] as complementing ours:

Recall that beeping is the threshold[1]-channel, and that, as mention in Section 1.1.2,

our proof shows that Theorem 4 holds for every threshold[k] channel for k ≥ 2. Thus,

putting these results together, we get an interactive coding impossibility result for all

threshold[k]-channels.

We remark that while cas is at least as strong as beeping, the interactive coding

questions for these models are incomparable. The reason is that the additional power of

cas can be used by both the noisy and noiseless cas channels. More generally, given two

communication models, even if the Ąrst is at least as strong as the second, the interactive

coding questions for these models are incomparable.

Finally, we mention the result of [23], that also studies the beeping model under correlated

noise and shows that the Consensus problem can be made noise resilient. Note however, that

in their model, the noise may only corrupt beeps to be received as silence, but not vice-versa.

1.2.1.3 Relation to [17] and [3] (interactive coding over general networks)

[17] and [3] study noisy wireless multi-hop networks (general graph topologies as opposed to

the single-hop clique topology). [17] gives an impossibility result for interactive coding over

cas with independent noise, and [3] (see also [11]) has an impossibility result for interactive

coding over beeping with independent noise (although their main result is an upper bound).

While lower bounds are harder to prove for the single-hop networks than for arbitrary

topology of our choice, our result is incomparable to [17], as the noise model is different.

Characterizing the set of topologies for which Theorem 4 holds is an interesting problem.

Theorem 3 gives a lower bound for the noiseless beeping channel. We next compare it

to the related result of [5]:

1.2.1.4 Relation to [5] (noiseless beeping lower bounds)

[5] uses circuit lower bound techniques to show that protocols over the beeping model

(and other related models) must have at least Ω(nα) rounds, for a constant α > 0, to

compute certain boolean functions (e.g., the parity function). This result is incomparable

to Theorem 3. As cas is the 1[m = 1]-channel and since [5] does not give lower bounds for

the 1[m = 1] function, it cannot be used to derive Theorem 4. Furthermore, the technique

of [5] is not ŞĄne enoughŤ to prove Theorem 3 for cas (recall from Section 1.1.3 that the

Ω(log n) overhead in Theorem 3 is tight for cas).

1.2.2 Broadcast Lower Bounds

Our work is also related to prior work proving lower bounds for (noiseless) broadcast channels.
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1.2.2.1 Lower bounds for noiseless network channels

In this work we consider single-hop topologies (in particular, the topology and the number of

parties is known to everyone). We also allow the parties to have unique ids, and assume that

the parties are always available to carry out the protocol (e.g., no wake-ups or Byzantine

failures). Since this setting is easier from an algorithm design perspective, our (noiseless)

lower bounds carry over to the harder settings for which prior work in distributed computing

showed lower bounds (see, e.g., [12, 34]).

1.2.2.2 Multiple access channels

We mention that our deĄnition of f -channels is a special case of multiple access channels in

information theory (for a great survey see [22]). A general multiple access channel allows

each party i ∈ [n] to communicate a symbol from the input alphabet Ii. The output of the

channel is a symbol from a, possibly different, output alphabet O, that is computed from

the n communicated symbols via a probabilistic function. Our (noiseless) f -channels have

I1 = · · · = In = O = ¶0, 1♢ and the function for computing the output is deterministic and

only depends on the number of 1 bits sent by the parties.

We also mention that there are known connections between coding over multiple access

channels and counterfeit coin problems (a.k.a., weighing problems) [7, 37, 19, 28, 29, 30, 27,

6, 31, 26, to cite a few]. In the basic counterfeit coin problem, we are given n coins, some of

which are heavy (defective), while the remaining are light (legal). We know the weight of

both the legal and the defective coins and have access to a spring scale that can be used to

weigh any subset of the coins. It can be shown that any weighing scheme for the counterfeit

coin problem can be converted to a signature coding scheme for the multiple access adder

channel, see, e.g., Section 7.1 in [22].

2 Overview

We now provide a detailed overview of the proof of Theorem 3. For this, we have to

show that the beeping channel is strictly weaker than the f -channel, for any function

f : N ∪ ¶0♢ → ¶0, 1♢ that is not constant on N. As f is not constant on N, there exist

a < b ∈ N such that f(a) ̸= f(b). Using these, we deĄne the following problem that can be

solved easily over the f -channel and show later that solving it over the beeping channel

takes many more rounds.

The hard function

We divide the n players into k sets of n/k players each. For concreteness, the reader may

assume n = k2 although we shall not heavily rely on this relation and only use the fact that

k is some polynomial in n. Our hard function is the (a, b)-weight problem where each of

the n players has an input bit and the goal is to Ąnd out for each group j, whether group j

has exactly a players with input 1 (in which case the output for this group should be 0) or

exactly b players with input 1 (in which case the output for this group should be 1). The

parties can output anything for a group where the number of players with input 1 is different

from a and b.

Note that there exists a k round protocol for the (a, b)-weight problem over the f -channel:

Simply go over all j ∈ [k] and have people in group j broadcast in round j. To Ąnish the

proof, we are going to argue an Ω(k · log(n/k)) lower bound for any protocol solving this

problem over the beeping channel. For the purposes of this overview, we restrict attention

to the case a = 1 and b = 2 as a similar proof works for other values of a and b.

ITCS 2023
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2.1 Fooling Sets

Consider a deterministic two-party communication protocol. A transcript π of the protocol

is the concatenation of the messages sent by the parties in all rounds of the protocol. We

say that a transcript π is realized on the input (x, y), if, when Alice has the input x and

Bob has the input y, the transcript of the protocol is π. It is well known that the set of

inputs on which π is realized is a combinatorial rectangle: If π is realized on (x, y) and on

(x′, y′), then it is also realized on (x′, y) and (x, y′). If the protocol has a short output, it

can be assumed that its output is a function of its transcript. It follows that if the protocol

correctly computes a function f with a short output, and f(x, y) = f(x′, y′), then either the

transcript realized on input (x, y) is different from that realized on input (x′, y′), or we also

have f(x, y) = f(x′, y) = f(x, y′).

This simple fact can be used to get lower bounds on the length of deterministic com-

munication protocols computing a function as follows: Consider for example a protocol for

computing the equality function f(x, y) = 1[x = y]. By deĄnition, we have f(x, x) = f(x′, x′)

for all x, x′ but f(x, x) ̸= f(x, x′) for all x ̸= x′. Thus, from our conclusion in the previous

paragraph, it must be the case that the transcript realized when the inputs for the parties

are (x, x) is different from that realized when the inputs are (x′, x′) for all x ≠ x′. This

means that there must be many different transcripts, implying the protocol must be long.

The above technique for proving lower bounds on the length of deterministic protocols

computing a function f is called the fooling set technique. It works by proving that f has a

large fooling set, where a fooling set for f is a subset of the inputs with the same f value,

such that for every two different inputs (x, y) and (x′, y′) in the set, at least one of (x′, y)

and (x, y′) has a different f value. In the above example for the equality function, the set of

all inputs of the form (x, x) forms a fooling set.

Even though we presented the technique for two party communication protocols, the

same arguments can also be extended to multi-party protocols with a Ąxed order of speaking.

In this context, if there are n parties, we get that if a protocol correctly computes a function

f , and f(x1, x2, · · · , xn) = f(x′
1
, x′

2
, · · · , x′

n), then either the transcript realized when the

inputs to the parties are (x1, · · · , xn) is different from that realized when the inputs are

(x′
1
, · · · , x′

n), or we have f(x1, · · · , xn) = f(x′′
1
, · · · , x′′

n) for all i ∈ [n] and x′′
i ∈ ¶xi, x′

i♢. We

shall call such inputs x′′ hybrids.

The reason these arguments work for the above channels is that for all these channels, the

set of inputs that lead to any given transcript is a combinatorial rectangle (like in the case of

the two-party channel). However, for the beeping channel this is not the case. For example,

if we consider a one round protocol where the parties simply beep the Ąrst bit of their input,

then the set of inputs that lead to the transcript 0 is a combinatorial rectangle, but the set

of inputs that lead to the transcript 1 is the complement of this rectangle, and may not itself

be a rectangle. Thus, fooling set arguments in general do not work for the beeping channel.

Despite the fact that these fooling set arguments do not hold for the beeping channel,

we shall assume for now that they do (that is, that it suffices to demonstrate a large fooling

set), and present our lower bound under this assumption. We additionally mention that

these arguments, and also the lower bound for the equality function above, hold only for

deterministic protocols. Later, we shall extend them to randomized protocols.

2.2 Lower Bounds Assuming Fooling Sets

In this subsection, we present a proof of our lower bound using fooling sets. Even though

arguments based on fooling sets do not work for the beeping channel, the ideas present will

be instructive and will form an important part of the proof.
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2.2.1 Lower Bound Against Deterministic Protocols

We now present a fooling set for the (1, 2)-weight problem. Assuming the arguments above,

this implies a lower bound on the length of a protocol over the beeping channel that solve

the (1, 2)-weight problem. Our fooling set has all the inputs (x1, · · · , xn) that have exactly

1 player with the input 1 in each of the k groups. To see why any two such inputs must

have a different transcript (equivalently, why these inputs form a fooling set), note that

f(x1, · · · , xn) is the same for all such inputs and also, for any two distinct inputs (x1, · · · , xn)

and (x′
1
, · · · , x′

n), there must exist one group (out of the k groups) such that these two inputs,

when restricted to this group, are different.

Without loss of generality, let this group be the Ąrst group (the group of players [k]), and,

as the other cases are similar, assume that:

(x1, · · · , xk) = (1, 0, 0, · · · , 0
︸ ︷︷ ︸

k−1 times

) (x′
1
, · · · , x′

k) = (0, 1, 0, · · · , 0
︸ ︷︷ ︸

k−2 times

). (1)

DeĄning:

(x′′
1
, · · · , x′′

k) = (1, 1, 0, · · · , 0
︸ ︷︷ ︸

k−2 times

), (2)

we see that it is a hybrid as described in the previous section but the correct output on the

hybrid input (x′′
1
, · · · , x′′

n) is different from that on (x1, · · · , xn). This Ąnishes the proof that

any two such inputs must have different transcripts. Thus, the number
(

n
k

)k
of such inputs

is also a lower bound on the number of distinct transcripts. As these many transcripts need

a protocol of length at least k · log n
k , we are done.

2.2.2 Lower Bound Against Randomized Protocols

We now describe how to extend the lower bound to work against general randomized protocols

while continuing our assumption that fooling sets based arguments work for the beeping

channel. For this, we Ąrst use YaoŠs minimax theorem to get that it is enough to deĄne a

ŞhardŤ distribution D over the inputs for the (1, 2)-weight problem such that any deterministic

protocol for this problem fails on a large fraction of inputs from D.

2.2.2.1 The hard distribution D

We work with the following hard distribution: First, for each group j ∈ [k], we sample a

uniformly and independently random bit to decide whether this group will have one or two

players with input 1. Then, based on the output of this bit, we uniformly and independently

sample a subset of players in this group of size 1 or 2 and give them the input 1. All the

remaining players in the group get the input 0.

2.2.2.2 The proof

Recall that we need to show that any deterministic protocol is incorrect on a set of inputs

that has a high probability according to D. Also recall that, if any two inputs in a fooling

set give rise to the same transcript, then the protocol is incorrect on at least one of the

possible hybrids formed by those inputs. Thus, if we can show that, unless a protocol has

Ω(k · log(n/k)) rounds, the number of inputs in a fooling set (to be speciĄed later) that give

rise to the same transcript is so large that the probability of incorrect hybrids generated by

these inputs is a constant, we will have our randomized lower bound. We show this next in

the following two steps:

ITCS 2023



46:10 Noisy Radio Network LBs via Noiseless Beeping LBs

1. Showing that the number of incorrect hybrids is large: Fix a short, correct

protocol and let π be a typical transcript. DeĄne the set Xall to be the set of all inputs

for which the output induced by π is correct, regardless of whether or not they realize π.

Also, deĄne Xtrue ⊆ Xall to be the set of all inputs in Xall that also realize the transcript

π. Observe that all inputs in Xall are equally likely under our hard distribution D.

Next, observe that as π is a typical transcript of a correct protocol that has length

o(k · log(n/k)), Xtrue has at least a
(

n
k

)−o(k)

fraction of the inputs in Xall and the output

of π says that at least Ω(k) of the groups have only one player with the input 1. Let

Ones ⊆ [k] be this set of groups. As for all j ∈ Ones, there are at most n
k choices for the

inputs of players in group j in Xall, the above conditions imply that for at least Ω(k) of

the groups in Ones, the number of possible inputs for the players in this group amongst

all the inputs in Xtrue is at least M =
(

n
k

)1−o(1)

.

For any such input x ∈ Xtrue and any such group, one can take any of the at least M − 1

possible choices of the inputs of the players in this group that are different from x on this

group, and deĄne a hybrid as in Equations (1) and (2),13 that has the same transcript but

for which the output is incorrect. Moreover, as Equation (2) has exactly two players with

input 1, it can be formed in exactly two ways. Conclude that the number of incorrect

hybrids is at least Ω(k ·M · ♣Xtrue♣).

2. Showing that the probability of incorrect hybrids is large: We now use the

lower bound on the number of incorrect hybrids to get a lower bound on the probability

of incorrect hybrids. For this, note from the deĄnition of the distribution D that the

probability of an input x is proportional to
(
O

(
n
k

))♣Ones(x)♣
, where Ones(x) is the set of

groups that have exactly one player with the input 1 in x. As the number of such groups

is one smaller in each hybrid, we get that the probability of incorrect hybrids relative to

the probability of correct inputs is at least Ω
(

kM
n

)
≫ 1 by our choice of k and M . Thus,

the protocol errs with high probability.

2.3 Removing the Fooling Set Assumption

The only problem with the argument above is that the fooling set argument does not work

for the beeping channel, i.e., it is not true that if (x1, · · · , xn) and (x′
1
, · · · , x′

n) give rise to

the same transcript, then any hybrid input (x′′
1
, · · · , x′′

n), where x′′
i ∈ ¶xi, x′

i♢ for all i ∈ [n]

will also give rise to the same transcript. However, note from the foregoing subsection that

we never actually use the full power of the fooling set argument, restricting attention only

to hybrids that differ in the inputs of exactly one of the n players from one of the original

inputs (Equations (1) and (2)). SpeciĄcally, each hybrid only differs on one coordinate from

the input x ∈ Xtrue it was obtained from.

Such a strong condition on the types of hybrids that we use in our argument allow us

to use the following trick to remove the fooling set assumption: Recall that the beeping

channel, in every round, computes and sends the logical OR of the bits sent by the players in

this round. As the hybrids we work with differ in exactly one player, say player i, from one

of the original inputs, the only way this hybrid can lead to a different transcript is if there

exists a round such that player i is the only player beeping (broadcasting a 1) in that round.

13 In the hybrid, the inputs of the players that are not in the chosen group are the same as their inputs in
x. As for players in the chosen group, the player that has a 1 input in x has a 1 input in the hybrid,
but there is an additional player with a 1 input.
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This means that, unless the protocol has more than Ω(k · log(n/k)) rounds, there are at

most O(k · log(n/k)) players i such that changing the input of player i while taking a hybrid

can affect the transcript. Thus, we can simply remove these ŞbadŤ players from the O(k ·M)

players we take hybrids over and make the argument work.

Geometrical interpretation

We Ąnish by also explaining this weaker form of the fooling set arguments in terms of

combinatorial rectangles. Recall that the general fooling set argument works when the set of

inputs X that lead to any given transcript is a combinatorial rectangle. An equivalent way to

express the fact that X is a combinatorial rectangle is that for any x = (x1, · · · , xn) ∈ X and

i ∈ [n], the single-dimensional projection of X on to coordinate i is equal to the intersection

of X with the line ∀j ̸= i : Xj = xj .14 What our weaker fooling set argument shows is that

for any x ∈ X, this holds for most of the coordinates i. Precisely, we show that it holds for

all but O(k · log(n/k)) values of i.

Put another way, even if we do not get combinatorial rectangles exactly, we do get a

ŞlocalŤ version of them, that allows us to take hybrids as long as we do not change a lot of

coordinates, and do not change coordinates corresponding to ŞbadŤ players. Our fooling set

argument is strong enough to work with this weaker guarantee.

3 Models

Notation

We use 1[E] to denote the indicator random variable for the event E. For a string s, we use

♣s♣ to denote the length of s. For i ∈ [♣s♣], let si denote the ith coordinate of s and s<i, s≤i

denote the preĄx of the Ąrst i− 1 and i coordinates of s, respectively. For x ∈ ¶0, 1♢∗, we

denote the Hamming weight of x by wt(x) = ♣¶i ∈ [♣x♣] : xi = 1♢♣.

f -channels

The symmetric boolean-valued channel f with noise rate ϵ (ϵ-noisy f-channel, for short) is

speciĄed by a constant ϵ ≥ 0 and a function f : N∪¶0♢ → ¶0, 1♢. Let n ∈ N. A (deterministic)

n-party protocol over the ϵ-noisy f -channel is given by a tuple

Π =


T,
{
X i

}

i∈[n]
,Y,

{
gi

t

}

i∈[n],t∈[T ]
, out

)

.

Here, T = ♣Π♣ is the number of rounds (or the length) of the protocol, X i is the input space

for player i, Y is the output space of the protocol, gi
t : X i×¶0, 1♢t−1 → ¶0, 1♢ is the function

player i uses to determine what message to broadcast in round t, and out : ¶0, 1♢T → Y is

the function used to determine the output from the received transcript. As usual, we deĄne

a randomized protocol to be a distribution over (deterministic) protocols.

14 More precisely, if y =



0, · · · , 0
︸ ︷︷ ︸
i−1 times

, yi, 0, · · · , 0
︸ ︷︷ ︸
n−i times

)

is in the former set,

then y′ = (x1, · · · , xi−1, yi, xi+1, · · · , xn) is in the latter set.
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Execution of a protocol

The protocol Π starts with all players i ∈ [n] having an input xi ∈ X i and proceeds in T

rounds, maintaining the invariant that before round t, for all t ∈ [T ], all players know a

transcript π<t ∈ ¶0, 1♢t−1. In round t, player i broadcasts the bit bi
t = gi

t

(
xi, π<t

)
. Then, in

round t, if bt denotes the string bt = b1

t · · · b
n
t , all the players receive the bit πt which equals

f(wt(bt)) with probability 1− ϵt, and equals 1− f(wt(bt)) with probability ϵt, where ϵt ≤ ϵ

is adversarially chosen. All players append πt to π<t to get a transcript π≤t and continue

the execution of the protocol. After T rounds, all players output Π(x) = out(π≤T ) ∈ Y.

Noiseless channels

Let f : N ∪ ¶0♢ → ¶0, 1♢. The f -channel is the ϵ-noisy f -channel for ϵ = 0. Let Π be a

deterministic n-party protocol over the f -channel as above. Observe that the transcript π of

the protocol Π is a deterministic function of the input x, and denote it by transΠ(x). Denote

transΠ,t(x) = (transΠ(x))t, transΠ,≤t(x) = (transΠ(x))≤t, and transΠ,<t(x) = (transΠ(x))<t.

Let F : X 1×· · ·×Xn → Y be a (partial) function and x ∈ X 1×· · ·×Xn. We say that Π

is correct on x with respect to F if Π(x) = F (x). Let π ∈ ¶0, 1♢T be a candidate transcript

for Π. We say that π is correct on x with respect to F if out(π) = F (x). When F is clear

from the context, we sometimes simply say that Π (or π) is correct on x. Finally, for p > 0

we say that Π solves/computes F with success probability p, if for all x such that F (x) is

well deĄned, it holds that Π(x) = F (x) with probability at least p regardless of the choices

of ϵt made by the adversary (in case Π is over an ϵ-noisy channel).

Special channels

We deĄne the following channels: For ϵ ≥ 0 and k ≥ 0,

1. ϵ-noisy threshold[k] is the ϵ-noisy f -channel for f(m) = 1[m ≥ k]. In addition,

threshold[k] is ϵ-noisy threshold[k] with ϵ = 0.

2. beeping = threshold[1].

3. ϵ-noisy cas is the ϵ-noisy f -channel for f(m) = 1[m = 1]. In addition, cas is ϵ-noisy cas

with ϵ = 0.

For the beeping channel, we will sometimes use special terminology. Let Π be an n-party

protocol over beeping. For t ∈ [♣Π♣], denote by beep
Π,t(x) = ¶i ∈ [n] : bi

t = 1♢ the set of all

players who beep (i.e., broadcast a 1) in round t. Note that transΠ,t(x) = 1 if and only if

beep
Π,t(x) ̸= ∅.

Channel equivalence

Let f, g : N ∪ ¶0♢ → ¶0, 1♢. We say that the f -channel can simulate the g-channel if for

every (deterministic) n-party protocol Π over the g-channel, there is a (deterministic) n-party

protocol Π′ over the f -channel with ♣Π′♣ = O(♣Π♣) and a function h, such that for every

input x for Π, h(transΠ′(x)) = transΠ(x). We say that the f -channel and the g-channel are

equivalent if the f -channel can simulate the g-channel and vice-versa.

4 BEEPING Lower Bound

In this section we prove Theorem 3. Fix a function f satisfying the condition of Theorem 3,

and let 0 < a < b ∈ N be such f(a) ̸= f(b). We prove that the following problem is hard for

beeping but easy for the f -channel.
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In the (a, b)-weight problem with n players and k groups, n parties, each holding a private

input bit, are partitioned into k sets of n/k parties each. The goal is for the Ąrst party to

output a string v ∈ ¶0, 1♢k such that if exactly a parties in group j ∈ [k] have input 1 then

vj = 0, and if exactly b parties in group i have input 1 then vj = 1.

Observe that the (a, b)-weight problem can be computed by a k-round protocol over the

f -channel, by having parties from group j holding a 1 input broadcasting in round j. Thus,

the following Theorem 5 will suffice in order to prove Theorem 3. The rest of this section is

devoted to proving Theorem 5.

▶ Theorem 5. Let b > a ≥ 1 and k > (100b)(100b)
100

be integers. Let n = k(k + a− 1). Then,

every (randomized) protocol over beeping that solves the (a, b)-weight problem with n players

and k groups with success probability greater than 1/n1/300, requires at least Ωa,b(k log(n/k))

rounds.

We will next prove a restricted version of Theorem 5, where a = 1:

▶ Theorem 6. Let b > 1 and k > (100b)(100b)
100

be integers. Let n = k2. Then, every

(randomized) protocol over beeping that solves the (1, b)-weight problem with n players and k

groups with success probability greater than 1/n1/250, requires at least Ωb(k log(n/k)) rounds.

We now show that Theorem 6 implies Theorem 5. The proof of Theorem 6 can be found

in the full version.

Proof of Theorem 5. Suppose for contradiction that there existed some protocol Π over the

beeping model which solves the (a, b)-weight problem with k groups and k + a− 1 parties

in each group, with success probability greater than 1/n1/300 running in oa,b(k log(n/k)).

Let c = b − a + 1. We construct a protocol Π′ for the (1, c)-weight problem where

there are k groups with k players in each group (k2 parties in total). We will Ąrst add

k · (a− 1) ŞdummyŤ parties, a− 1 dummy parties in each group, such that all dummy parties

are assumed to have the input 1. To run Π′, the k2 parties will run Π with player 1 also

simulating all the extra k · (a− 1) dummy parties. Note that player 1 can indeed simulate

all these extra parties: Player 1 can compute the bit that each such dummy party would

have sent (as each player hears the same transcript and player 1 knows the inputs of the

dummy parties), and will compute and send the logical OR of all these bits and the bit that

he himself wishes to send.

If a group has only 1 player with a 1 input before the dummy players were added, the

dummy players ensure that this group now has a players with a 1 input. Likewise, if there

were c players with a 1 input in a group, the dummy players ensure that the group now has

b such players. Thus, if Π outputs the correct answer for the inputs with the dummy players,

then Π′ will output the correct answer.

However, this leads to a contradiction: The protocol Π′ only runs Π, which, by assumption

takes oa,b(k log(n/k)) rounds of communication, and it gets the correct answer for the (1, c)-

weight problem on any input with probability greater than 1/n1/300. This success probability

is greater than 1/(n′)1/250, where n′ = n− k(a− 1) is the number of parties participating in

Π′, contradicting Theorem 6. ◀

5 Hardness of Interactive Coding

In this section, we prove the following Theorem 7, which implies Theorem 4.
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▶ Theorem 7. Let ϵ ≥ 0 and k1, k2 ≥ 2. For all n > 0, there exists a (deterministic)

n-party protocol Π over the threshold[k1] channel, such that any (possibly randomized)

n-party protocol Π′ that computes the same function as Π with success probability greater

than 1/n1/300 over the ϵ-noisy threshold[k2] channel requires Ω(♣Π♣ log n) rounds.

The same holds true if the threshold[k1] channel is replaced by the cas channel, or if

the ϵ-noisy threshold[k2] channel is replaced by the ϵ-noisy cas channel, or both.

To prove Theorem 7, we use the following Theorem 8 that shows that for all k ≥ 2 every

noisy threshold[k] round can be simulated by constantly many rounds of the beeping

channel.

▶ Theorem 8. Let ϵ ≥ 0 and k ≥ 2, n > 0 be integers. There exists an Ok,ϵ(1) length n-party

protocol over beeping such that if patry i ∈ [n] has the input bit xi ∈ ¶0, 1♢, then at the end

of the protocol all the parties output a bit b that equals 1[wt(x) ≥ k] with probability least

1− ϵ.

Proof of Theorem 7. For the case of threshold[k1] channel, deĄne b = k1. Otherwise, for

the cas channel, deĄne b = 2. Assume without loss of generality that that there exists a

k > (100b)(100b)
100

such that n = k2, and observe that there exists a deterministic k round

protocol over the channel concerned that solves the (1, b)-weight problem with n players and

k groups. Additionally, we have from Theorem 6 that every (randomized) protocol over the

beeping model that solves this problem with success probability greater than 1/n1/300 has

at least Ωb(k log(n/k)) rounds.

To Ąnish the proof, we argue that if there is such a protocol over the ϵ-noisy threshold[k2]

channel, or over the ϵ-noisy cas channel, then there also exists such a protocol over the

beeping channel, a contradiction. In the case of the ϵ-noisy threshold[k2], this follows

directly by simulating the protocol round by round and using Theorem 8 with k = k2, while

in the case of the ϵ-noisy cas channel, this follows similarly from Theorem 8 using k = 2

and the identity 1[wt(x) = 1] = 1[wt(x) ≥ 1] − 1[wt(x) ≥ 2] for all x ∈ ¶0, 1♢n. Note that

the Ąrst term can be computed exactly in one round over the beeping channel. ◀

Proof of Theorem 8. We claim that Algorithm 1 below outputs 0 if wt(x) < k and outputs

1, except with probability at most ϵ, if wt(x) ≥ k.

Let us consider just one iteration of the loop at Algorithm 1. To begin with, note that the

only players who ever broadcast during the algorithm are those with xi = 1, as can be seen

at Algorithm 1. As such, we can restrict our analysis to just those players, as the remaining

players do not inĆuence the execution of the algorithm in any way. Let this group of players

be S.

We can now partition S into k2 sets S1, . . . , Sk2 . In particular, Sj consists of the players

i ∈ [n] such that ni = j. It is clear that this partitions S. We also note that at Algorithm 1,

exactly the players in Sj broadcast. Thus, zj is 1 if and only if Sj is non-empty. Furthermore,

we thus get that
∑

j∈[k2]
zj is exactly the number of non-empty Sj sets.

Now, we can consider two cases, depending on if wt(x) ≥ k or if wt(x) < k. Let us

analyze the latter case. It is evident that wt(x) = ♣S♣. Furthermore, as S = S1 ∪ · · · ∪ Sk2

and these sets are disjoint, we get that the number of non-empty Sj is at most the size of

♣S♣. Thus, the sum at Algorithm 1 will be strictly less than k, so the algorithm will never

return 1. As such, the algorithm returns 0 with probability 1, as desired.
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Algorithm 1 An algorithm computing 1[wt(x) ≥ k] over beeping.

Input: Each player i ∈ [n] has an input xi ∈ ¶0, 1♢.

Output: Each player i ∈ [n] outputs a bit b (supposedly, b = 1 if wt(x) ≥ k and b = 0

otherwise).

1: for 3 log(1/ϵ) times do

2: Each player i ∈ [n] randomly chooses a number ni ∈ [k2].

3: for j ∈ [k2] do

4: Each player sets bi
j = xi ∧ 1[ni = j].

5: In one beeping round: Each player i beeps bi
j . All parties receive the bit zj from

the channel.

6: end for

7: if
∑

j∈[k2]
zj ≥ k then

8: return 1

9: end if

10: end for

11: return 0

Now, suppose that wt(x) ≥ k. Thus, ♣S♣ ≥ k. Fix k elements of S. We can now analyze

the probability that these k elements each fall into different Sj . Let this event be A.

Pr[A] =

(
k2

k2

)(
k2 − 1

k2

)

· · ·

(
k2 − k + 1

k2

)

≥

(
k2 − k

k2

)k

=

(

1−
1

k

)k

≥
1

4
.

Thus, with probability at least 1

4
, each of the k elements are in a different Sj , so there are

at least k non-empty Sj . Thus, the sum at Algorithm 1 will be at least k, so the algorithm

will return 1. In other words, the probability that the algorithm doesnŠt return 1 during this

iteration of the loop at Algorithm 1 is at most 3

4
. By independence of the iterations, the

probability that the algorithm doesnŠt return 1 during any of the iterations of the loop is

thus at most

(
3

4

)3 log(1/ϵ)

≤

(
1

2

)log(1/ϵ)

= ϵ.

Thus, the algorithm will return 1, except with probability at most ϵ, as desired. ◀

5.1 CAS is THRESHOLD[2]

In this subsection, we formally show the claim made in Section 1 that the cas channel is

equivalent to the threshold[2] channel.

▶ Theorem 9. The cas channel and the threshold[2]-channel are equivalent.

To show this, we Ąrst show a simpler claim about threshold channels, which shall be used

throughout this paper.

▶ Theorem 10. For all integers r1 ≤ r2 ∈ N, for all n > 0, there exists an n-party protocol

over threshold[r2] which solves the function f(x) = 1[wt(x) ≥ r1] with success probability

1 in Or1,r2
(1) rounds.

Proof. We can assume 1 ≤ r1 < r2 without loss of generality. We begin by analysing the

algorithm find-zeros
r2

ℓ0,ℓ1
, shown in Algorithm 2. We claim that for all ℓ0, ℓ1 ≥ 1, when

find-zeros
r2

ℓ0,ℓ1
is run over threshold[r2], it has each player output a tuple (b, S) such

that b ∈ ¶0, 1♢, S ⊆ [n], xi = b for all i ∈ S, and such that ♣S♣ = ℓb.
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Algorithm 2 Algorithm find-zeros
r2

ℓ0,ℓ1
. This algorithm is used to Ąnd a set of players with the

same input.

Input: Each player i ∈ [n] has an input xi ∈ ¶0, 1♢.

Output: Each player i ∈ [n] outputs a pair (b, S).

1: Each player initializes two sets S0 = ∅ and S1 = ∅.

2: for j ∈ [ℓ0 + ℓ1 − 1] do

3: Each player i ∈ [n] sets bi
j according to

bi
j =







xi, i− j = 0

1, i− j ∈ [r2 − 1]

0, otherwise

4: Players broadcast with bi
j to get zj .

5: Szj
← Szj

∪ ¶j♢

6: if S0 ≥ ℓ0 then

7: return (0, S0)

8: end if

9: if S1 ≥ ℓ1 then

10: return (1, S1)

11: end if

12: end for

Note that during an execution of Algorithm 2, each player receives the same zj at

Algorithm 2. As the values of S0 and S1 that each player maintains depend only on the

values of zj that they receive, this means that each player outputs the same result once the

algorithm outputs. As such, we can look at the algorithm from an outside perspective.

We claim that during an execution of Algorithm 2 zj = xj for all j considered during the

loop. For this, note that for exactly r2−1 other players, bi
j = 1. Thus,

∑

i∈[n]
bi

j = r2−1+xj .

As such, the threshold[r2] channel sets

zj = 1




∑

i∈[n]

bi
j ≥ r2



 = 1[r2 − 1 + xj ≥ r2] = 1[xj ≥ 1] = xj .

Then, at Algorithm 2, each player adds j to the set Szj
= Sxj

. As such, in each iteration,

one of S0 or S1 increases by 1, and ensures that for each j ∈ S0, xj = 0 and for each j ∈ S1,

xj = 1. Furthermore, after ℓ0 + ℓ1−1 repetitions of Algorithm 2, either ♣S0♣ ≥ ℓ0 or ♣S1♣ ≥ ℓ1.

Thus, at that point, each player outputs either (0, S0) or (1, S1), which ensures that the

output of find-zeros
r2

ℓ0,ℓ1
is as desired.

Using this result, we now demonstrate Algorithm 3, which we claim computes 1[wt(x) ≥ r1]

when run over threshold[r2].

The Ąrst thing Algorithm 3 does is run find-zeros
r2

r2−r1,r1
at Algorithm 3. This takes

O(r2) broadcasts, and returns some pair (b, S). If b = 1, then S is a subset of [n] satisfying

♣S♣ = r1 such that xi′ = 1 for all i′ ∈ S, which implies that

1[wt(x) ≥ r1] ≥ 1


∑

i∈S

xi ≥ r1

]

= 1[♣S♣ ≥ r1] = 1,

which means that returning 1 at Algorithm 3 actually gives the correct result.
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Algorithm 3 An algorithm for calculating 1[wt(x) ≥ r1] over threshold[r2].

Input: Each player i ∈ [n] has an input xi ∈ ¶0, 1♢.

Output: Each player i ∈ [n] outputs whether or not wt(x) ≥ r1.

13: The players run find-zeros
r2

r2−r1,r1
on their inputs xi to obtain (b, S).

14: if b = 1 then

15: return 1

16: end if

17: Set bi for players i ∈ [n] according to

bi =







1, xi = 1

1, i ∈ S

0, otherwise

18: Players broadcast with bi to get z.

19: return z

In the alternative case that b = 0, then we know that S is a subset of [n] satisfying

♣S♣ = r2 − r1 such that xi′ = 0 for all i′ ∈ S. Thus, due to Algorithm 3, we know that the bi

values satisfy

1




∑

i∈[n]

bi ≥ r2



 = 1




∑

i∈[n],xi=1

1 +
∑

i∈S

1 ≥ r2



 = 1[wt(x) + ♣S♣ ≥ r2]

= 1[wt(x) + r2 − r1 ≥ r2] = 1[wt(x) ≥ r1].

Thus, the value of z that is returned at the end of Algorithm 3 is exactly the desired value,

concluding the proof. ◀

We also get a direct consequence from this.

▶ Corollary 11. For all integers r1 ≤ r2 ∈ N, if there exists a protocol computing some

function F over threshold[r1] in T rounds, then there exists a protocol computing F over

threshold[r2] in Or1,r2
(T ) rounds.

This follows via simulating each round of the original protocol using the above result.

Anyway, we now return to the proof of Theorem 9.

Proof of Theorem 9. To show the desired result, it suffices to show that there exist protocols

solving 1[wt(x) ≥ 2] over cas and solving 1[wt(x) = 1] over threshold[2] in O(1) rounds

of communication (with success probability 1).

First, note that Theorem 10 shows that there exists a O(1) round protocol over

threshold[2] computing 1[wt(x) ≥ 1]. Furthermore, there exists a trivial one-round protocol

over threshold[2] computing 1[wt(x) ≥ 2]. Finally, as

1[wt(x) = 1] = 1[wt(x) ≥ 1]− 1[wt(x) ≥ 2],

we get that there exist an O(1) round protocol computing 1[wt(x) = 1] over threshold[2].

Thus, any protocol over cas can be simulated over threshold[2] with only O(1) blow-up

in the number of rounds.
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Algorithm 4 An algorithm computing 1[wt(x) ≥ 2] over cas.

Input: Each player i ∈ [n] has an input xi ∈ ¶0, 1♢.

Output: Each player i ∈ [n] outputs whether or not wt(x) ≥ 2.

20: Players broadcast with xi ∨ 1[i = 1] to get z1.

21: Players broadcast xi to get z2.

22: return ¬(z1 ∨ z2)

Now, consider Algorithm 4. We claim that this computes 1[wt(x) ≥ 2] over cas in O(1)

rounds, which would complete the proof. To show this, it suffices to consider three possible

cases for wt(x):

If wt(x) = 0: In this case, xi = 0 for all i ∈ [n]. Thus, z1 = 1 and z2 = 0, and the

algorithm will return 0 = 1[wt(x) ≥ 2].

If wt(x) = 1: In this case, z2 = 1[wt(x) = 1] = 1, so the algorithm will return

0 = 1[wt(x) ≥ 2].

If wt(x) ≥ 2: In this case, z1 = z2 = 0, and the algorithm returns 1 = 1[wt(x) ≥ 2].

Thus, this algorithm computes 1[wt(x) ≥ 2], using only 2 broadcasts, which concludes

the proof. ◀
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