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—— Abstract

Much of today’s communication is carried out over large wireless systems with different input-output

behaviors. In this work, we compare the power of central abstractions of wireless communication
through the general notion of boolean symmetric f-channels: In every round of the f-channel, each
of its n parties decides to either broadcast or not, and the channel outputs f(m), where m is the
number of broadcasting parties.

Our first result is that the well studied beeping channel, where f is the threshold-1 function, is
not stronger than any other f-channel. To this end, we design a protocol over the f-channel and
prove that any protocol that simulates it over the beeping channel blows up the round complexity
by a factor of Q(logn). Our lower bound technique may be of independent interest, as it essentially
generalizes the popular fooling set technique by exploiting a “local” relaxation of combinatorial
rectangles.

Curiously, while this result shows the limitations of a noiseless channel, namely, the beeping
channel, we are able to use it to show the limitations of the noisy version of many other channels.
This includes the extensively studied single-hop radio network model with collisions-as-silence (CAS),
which is equivalent to the f-channel with f(m) =1 iff m = 1.

In particular, our second and main result, obtained from the first, shows that converting CAS
protocols to noise resilient ones may incur a large performance overhead, i.e., no constant rate
interactive code exists. To this end, we design a CAS protocol and prove that any protocol that
simulates it over the noisy CAS model with correlated stochastic noise, blows up the round complexity
by a factor of Q(logn). We mention that the Q(logn) overhead in both our results is tight.
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1 Introduction

As wireless systems have become massively popular, theoretical models for such systems have
become the topic of numerous works. In this paper we study the relative power of central
models abstracting broadcast communication. To this end, we use the notion of symmetric
boolean-valued f-channels.

For a function f : NU{0} — {0,1}, the f-channel is a synchronous channel that, in every
round, allows any number of parties to broadcast a bit. The round ends with all participants
receiving the bit f(wt(z)), where x; is the bit broadcast by party i, and wt(z) is the Hamming
weight of z € {0,1}*. Tt is useful to think of parties with x; = 1 as broadcasting, and of
parties with z; = 0 as silent. The output of the channel is then a function of the number of
broadcasting parties.
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Given two such channels f and g, we say that the f-channel is at least as strong as (or
stronger than) the g-channel if any protocol over the g-channel can be simulated by a protocol
over the f-channel with only a constant multiplicative blowup in the number of rounds. The
f-channel is strictly stronger than the g-channel if it is stronger, but not vice-versa. The two
channels are equivalent if each is at least as strong as the other. We note that two channels
may be incomparable, meaning that neither is stronger than the other.

Of special interest to us are binary versions of two well-studied channels, the single-hop
radio networks model and the beeping model:

The beeping model

In an n-party protocol over the binary beeping model [13], denoted here BEEPING, the parties
interact in synchronous rounds. In every round, each party can decide to either beep (emit
a signal) or not to beep (stay silent). If at least one party beeps, all parties hear a beep,
otherwise, all parties hear silence!. The BEEPING model received a lot of attention in recent
years, largely as it captures the simplest possible communication primitive, a detectable
burst of “energy”, making it very well suited for describing certain wireless networks as well
as signal-driven biological systems?. It is easy to see that the BEEPING model is essentially
the f-channel for f(m) = 1[m > 1] (the THRESHOLD[1] function).

The cas model

In a round of an n-party protocol over the binary collision-as-silence single-hop radio networks
model [10], each party can choose to either broadcasts a bit or stay silent. In rounds where
exactly one party broadcasts, his bit is received by all parties. Otherwise (if all parties were
silent or if at least two parties broadcast), a special | symbol is received by all®>. While the
above description of the channel does not fit our definition of an f-channel, as the channel’s
inputs and output are non-binary, a simple time-sharing argument shows that it is equivalent
to the f-channel for f(m) = 1[m = 1], and we denote this channel cas for short*.

The cas vs. beeping problem

It is easy to see that CAs is at least as strong as BEEPING, as a BEEPING round can be
simulated by a CAS round: Parties broadcast in the CAS round if they broadcast in the
BEEPING round, but there is an additional “dummy” party that broadcasts with them.’
Observe that the output of the CAS round is 1 iff the dummy is the only one to broadcast,
which happens iff the value of the BEEPING round is 0. What about the other direction?

In the original definition of BEEPING by [13], the parties are woken up by an adversary. In this paper
we use a relaxed definition where all parties are woken up at the beginning of the protocol. Since we
show impossibility results, this relaxation of the model only strengthens our results.

For example, cells communicating by secreting proteins and other chemical markers that are diffused
and sensed by neighboring cells, or fireflies reacting to flashes of light from nearby fireflies. Also see,
e.g., [1, 33].

The collision-as-silence model is, perhaps, the most common single-hop radio networks model in the
literature. Another very popular model is the collision detection model, where collision and silence are
perceived as different symbols. Our results are stated for the collision-as-silence model, but apply to the
collision detection model as well.

To see the equivalence, simulate a round of the original non-binary channel with three CAS rounds: In
the first CAs round, parties broadcast (i.e., their z; is 1) if they broadcast a 0 or a 1 in the original
round. In the second round, parties broadcast only if they broadcast 0 in the original round. In the
third round, parties broadcast only if they broadcast 1 in the original round. A simulation in the other
direction is also possible.

Even without an extra dummy party, a BEEPING round can be simulated by constantly many CAS
rounds.
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» Problem 1. [s cAs strictly stronger than BEEPING?

The noisy cas problem

So far in our discussion of the CAS model, we made the strong assumption that the parties
utilizing the channel receive the correct output bit in every round. We now switch gears and
consider the noisy version of this channel, where this assumption is relaxed. For a function
f and € > 0, the parties utilizing the (correlated) e-noisy f-channel, received the correct
output bit f(wt(z)) with probability 1 — ¢, and with probability € they receive the opposite
bit. It is easy to see that CAS is at least as strong as noisy CAS. A natural question is again
about the reverse direction:

» Problem 2. [s CAS strictly stronger than noisy CAS?

1.1 Our Results

We settle both of the above problems in the affirmative. While seemingly very different,
we show that Problem 1 and Problem 2 are actually tightly connected, and exploit this
connection.

1.1.1 No f-channel is Weaker than beeping

Theorem 3 (see formal statement in Theorem 5) shows that no non-trivial f-channel is weaker
than BEEPING.® A positive answer for Problem 1 is obtained from Theorem 3 as a special
case.

» Theorem 3 (Informal). Let f: NU {0} — {0,1} be a function such that f is not constant
on N. Then, for all n > 0, there exists an n-party protocol I1 over the f-channel, such
that any protocol II' that computes the same function as II over the BEEPING model has
Q|| logn) communication rounds.

Here, |II| denotes the worst-case number of rounds of II. We mention that the Q(logn)
blowup in the number of rounds suggested by Theorem 3 is tight, as for many f-channels (e.g.,
cAs), O(logn) BEEPING rounds suffice in order to compute f (see Section 1.1.3)7. We also
mention that the condition that f is not constant on N cannot be replaced by the condition
that f is a non-constant function. The reason is that, as remarked before, the BEEPING
channel is the THRESHOLD[1]-channel, but THRESHOLD[1] is not a constant function (note
that it is constant on N).

Technique

Proving Theorem 3 requires proving a lower bound in the BEEPING model. Our lower bound
proof is inspired by the classical fooling set technique for proving deterministic, two-party
communication complexity lower bounds. We mention though that the fooling set technique
completely breaks when applied to the beeping model, as this technique crucially assumes

We note that, as the f-channel’s output is only a function of the number of broadcasting parties (and is
oblivious to the number of silent parties), some channels, like the AND channel, cannot be represented
as f-channels.

There are, however, specific f-channels that require a substantially greater overhead when simulated
by BEEPING. For example, in [5], it is shown that the parity function, PARITY(m) = m mod 2, requires

Q(nl/ 6) BEEPING rounds. Clearly, PARITY requires only 1 round over the PARITY-channel.
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that, at any point in the execution of the protocol, the set of possible inputs constitutes a
combinatorial rectangle. While this is not the case for the BEEPING model, we show that
a “local” version of this method can be made to work for this model (and even handle
randomized protocols®), in a sense made precise in Section 2. We believe that our new
technique will find other applications. A detailed overview of our technique can be found in
Section 2.

1.1.2 Noisy cas is Strictly Weaker than cas

While Theorem 3 implies that CAS is strictly stronger than BEEPING, we observe that BEEPING
is at least as strong as noisy CAS (we sketch this argument in Section 1.1.3 and prove it in
Theorem 8). A direct corollary of the above is the following Theorem 4 (see formal statement
in Theorem 7) that shows that CAS is strictly stronger than noisy CAS, answering Problem 2
(which was the original motivation for this paper) in the positive.

» Theorem 4 (Main, Informal). Let ¢ > 0. For all n > 0, there exists an n-party protocol I1
over the CAS channel, such that any n-party protocol II' that computes the same function
as I over the e-noisy CAS channel has Q(|II]logn) rounds.

We mention that understanding whether CAS protocols can be converted to noise resilient
ones with small overhead, was the original motivation for this work. As is typically the case
for (classical or interactive) error correcting codes, a CAS protocol II can be made resilient
by simply repeating every round O(logn) times and taking majority (at least as long as II is
not too long, say, |II| < poly(n)). This shows that the Q(logn) round blowup in Theorem 4
is tight.

We mention that our argument showing that BEEPING is at least as strong as noisy CAs?,
generalizes to other noisy f-channels (e.g., to all noisy THRESHOLD|k]-channels with k > 2).
For such fs, a separation of the f-channel and the noisy f-channel, analogue to the one in
Theorem 4, is also implied by Theorem 3. We remark however that there may be functions
f that satisfy the condition of Theorem 3 for which the noisy f-channel is strictly stronger
than BEEPING and the analogue of Theorem 4 may not hold!'®. Characterizing the set of
functions f for which the analogue of Theorem 4 holds is an intriguing problem.

1.1.3 beeping is At Least As Strong as Noisy cas

We next sketch an easy argument showing that a noisy CAS round can be simulated by
constantly many BEEPING rounds, showing that Theorem 4 can be obtained as a corollary of
Theorem 3: Randomly partition the parties into two roughly equal sets [n] = S; U S3. For
i € {1,2}, in the 7*® BEEPING round, the only beeping parties are parties in S; that broadcast
in the noisy CAS round. Now, if no party broadcasts in the noisy CAS round, then no beep
is heard in either of the BEEPING rounds. If exactly one party broadcasts in the noisy CAS
round, then a beep is heard in exactly one of the two BEEPING rounds. Else, if two or more
parties broadcast in the noisy CAS round, then with probability at least 1/2 a beep is heard
in both BEEPING rounds (as the probability that all broadcasting parties beep in the same
round is at most 1/2).

8 See [32] for another (unrelated) randomized lower bound using the fooling set technique.

9 We mention that CAS is equivalent to the THRESHOLD[2]-channel (see Theorem 9).

10A good candidate for such a function is the PARITY function. Owing to the existence of good linear
error correcting codes, the noisy PARITY-channel may be as strong as the PARITY-channel.
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By simply repeating the above simulation, we can simulate an e-noisy CAS round using
O(log(1/¢)) BEEPING rounds. Additionally, by repeating the above simulation in a “binary
search”-like manner, we can also simulate one round of noiseless CAs (e = 0) using O(logn)
BEEPING rounds'!. This implies that the Q(logn) blowup in the number of rounds in
Theorem 3 is tight for the CAS channel. We mention that similar simulation protocols can
be obtained for channels other than CAS (e.g., THRESHOLD channels).

1.2 Related Work
1.2.1 Interactive Coding

Interactive error correcting codes encode interactive communication protocols designed to
work over noiseless channels to protocols that also work over noisy channels. The study
of interactive codes was initiated by a seminal paper of Schulman [36] that considered
two-party protocols, and these were also studied by many follow-up works. Interactive codes

for multi-party distributed channels received quite a bit of attention over the last few years.

These include codes for peer-to-peer channels [35, 25, 24, 2, 4, 20, 21] and codes for various
wireless channels [8, 16, 9, 17, 18, 3, 14, 15].

We next compare Theorem 4 to the most relevant prior work on interactive coding over
wireless channels.

1.2.1.1 Relation to [16] (interactive coding over cas)

[16] shows that any “simple” protocol II over CAS can be compiled to a protocol II' that
works over e-noisy CAs, while only incurring a constant multiplicative overhead in the number

of rounds. Here, “simple” means that the protocol is non-adaptive (a.k.a, oblivious or static).

That is, in every round of II exactly one party broadcasts and, moreover, the identity of this
party is fixed in advance (thus, it is independent of the received transcript, channel noise,
and inputs)'2.

As adaptivity can hugely boost the power of wireless channels and is widely used, in this
paper we revisit the [16] result for general (possibly adaptive) protocols. Theorem 4 proves
that the simulation scheme of [16] cannot be extended to work for general protocols.

We point out that the [16] protocol works for both the correlated noise model, like the
one assumed by this paper, and the independent noise model, where each party gets a noisy
bit with probability €, independently from the others. The correlated and independent noise
models abstract different phenomena — the correlated noise model describes the situation
where there is global interference (e.g., global network problems due to weather, contaminated
environment, etc.), while independent noise is better suited to describe situations where the
noise source is local. We also mention that the interactive coding problems over these two
noise models are incomparable: On the one hand, with correlated noise all parties have the
same received transcript, but on the other hand, if a symbol is corrupted by noise, none of the
parties receive the correct symbol and can warn the others. Whether or not an impossibility

result similar to our Theorem 4 can be proved for independent noise is a great open problem.

' In more detail, if exactly one of the first two BEEPING rounds beeps, say, round i € {1,2}, we wish
to know if at least two of the parties in S; broadcast in the cAs round. To do that, we repeat the
simulation with only the parties in S; participating.

12 Note that while IT is assumed to be non-adaptive, the simulation protocol I constructed by (16] is
adaptive. However, II' also works in the model where if it is not the case that exactly one party
broadcasts, an adversary is controlling the received symbols.
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1.2.1.2 Relation to [18] (interactive coding over beeping)

[18] studies the beeping channel under correlated noise and shows that an 2(logn) overhead
is required to convert a protocol to a noise resilient one. In other words, it shows that
Theorem 4 also holds for BEEPING vs. e-noisy BEEPING. To this end, [18] shows a lower
bound in the noisy BEEPING model. In contrast, in this paper we prove a lower bound for
the noiseless BEEPING model, which is a harder task.

We note however, that our work does not reproduce the main result of [18], as the protocol
that we show is costly over the noiseless BEEPING channel is not known to be more expensive
over the noisy BEEPING channel. Rather, we view the result of [18] as complementing ours:
Recall that BEEPING is the THRESHOLD[1]-channel, and that, as mention in Section 1.1.2,
our proof shows that Theorem 4 holds for every THRESHOLD[k] channel for k¥ > 2. Thus,
putting these results together, we get an interactive coding impossibility result for all
THRESHOLD|[k]-channels.

We remark that while CAS is at least as strong as BEEPING, the interactive coding
questions for these models are incomparable. The reason is that the additional power of
CAS can be used by both the noisy and noiseless CAs channels. More generally, given two
communication models, even if the first is at least as strong as the second, the interactive
coding questions for these models are incomparable.

Finally, we mention the result of [23], that also studies the beeping model under correlated
noise and shows that the Consensus problem can be made noise resilient. Note however, that
in their model, the noise may only corrupt beeps to be received as silence, but not vice-versa.

1.2.1.3 Relation to [17] and [3] (interactive coding over general networks)

[17] and [3] study noisy wireless multi-hop networks (general graph topologies as opposed to
the single-hop clique topology). [17] gives an impossibility result for interactive coding over
CAs with independent noise, and [3] (see also [11]) has an impossibility result for interactive
coding over BEEPING with independent noise (although their main result is an upper bound).
While lower bounds are harder to prove for the single-hop networks than for arbitrary
topology of our choice, our result is incomparable to [17], as the noise model is different.
Characterizing the set of topologies for which Theorem 4 holds is an interesting problem.

Theorem 3 gives a lower bound for the noiseless BEEPING channel. We next compare it
to the related result of [5]:

1.2.1.4 Relation to [5] (noiseless beeping lower bounds)

[5] uses circuit lower bound techniques to show that protocols over the BEEPING model
(and other related models) must have at least Q(n®) rounds, for a constant o > 0, to
compute certain boolean functions (e.g., the PARITY function). This result is incomparable
to Theorem 3. As CAS is the 1[m = 1]-channel and since [5] does not give lower bounds for
the 1[m = 1] function, it cannot be used to derive Theorem 4. Furthermore, the technique
of [5] is not “fine enough” to prove Theorem 3 for cAS (recall from Section 1.1.3 that the
Q(log n) overhead in Theorem 3 is tight for CAS).

1.2.2 Broadcast Lower Bounds

Our work is also related to prior work proving lower bounds for (noiseless) broadcast channels.
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1.2.2.1 Lower bounds for noiseless network channels

In this work we consider single-hop topologies (in particular, the topology and the number of
parties is known to everyone). We also allow the parties to have unique ids, and assume that
the parties are always available to carry out the protocol (e.g., no wake-ups or Byzantine
failures). Since this setting is easier from an algorithm design perspective, our (noiseless)
lower bounds carry over to the harder settings for which prior work in distributed computing
showed lower bounds (see, e.g., [12, 34]).

1.2.2.2 Multiple access channels

We mention that our definition of f-channels is a special case of multiple access channels in
information theory (for a great survey see [22]). A general multiple access channel allows
each party ¢ € [n] to communicate a symbol from the input alphabet Z;. The output of the
channel is a symbol from a, possibly different, output alphabet O, that is computed from
the n communicated symbols via a probabilistic function. Our (noiseless) f-channels have
Iy =---=17Z, =0 ={0,1} and the function for computing the output is deterministic and
only depends on the number of 1 bits sent by the parties.

We also mention that there are known connections between coding over multiple access
channels and counterfeit coin problems (a.k.a., weighing problems) [7, 37, 19, 28, 29, 30, 27,
6, 31, 26, to cite a few]. In the basic counterfeit coin problem, we are given n coins, some of
which are heavy (defective), while the remaining are light (legal). We know the weight of
both the legal and the defective coins and have access to a spring scale that can be used to
weigh any subset of the coins. It can be shown that any weighing scheme for the counterfeit
coin problem can be converted to a signature coding scheme for the multiple access adder
channel, see, e.g., Section 7.1 in [22].

2 Overview

We now provide a detailed overview of the proof of Theorem 3. For this, we have to
show that the BEEPING channel is strictly weaker than the f-channel, for any function
f: NU{0} — {0,1} that is not constant on N. As f is not constant on N, there exist
a < b € N such that f(a) # f(b). Using these, we define the following problem that can be
solved easily over the f-channel and show later that solving it over the BEEPING channel
takes many more rounds.

The hard function

We divide the n players into k sets of n/k players each. For concreteness, the reader may
assume n = k2 although we shall not heavily rely on this relation and only use the fact that
k is some polynomial in n. Our hard function is the (a,b)-weight problem where each of
the n players has an input bit and the goal is to find out for each group j, whether group j
has exactly a players with input 1 (in which case the output for this group should be 0) or
exactly b players with input 1 (in which case the output for this group should be 1). The
parties can output anything for a group where the number of players with input 1 is different
from a and b.

Note that there exists a k round protocol for the (a, b)-weight problem over the f-channel:
Simply go over all j € [k] and have people in group j broadcast in round j. To finish the
proof, we are going to argue an Q(k - log(n/k)) lower bound for any protocol solving this
problem over the BEEPING channel. For the purposes of this overview, we restrict attention
to the case a = 1 and b = 2 as a similar proof works for other values of a and b.
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2.1 Fooling Sets

Consider a deterministic two-party communication protocol. A transcript 7 of the protocol
is the concatenation of the messages sent by the parties in all rounds of the protocol. We
say that a transcript 7 is realized on the input (z,y), if, when Alice has the input  and
Bob has the input y, the transcript of the protocol is 7. It is well known that the set of
inputs on which 7 is realized is a combinatorial rectangle: If 7 is realized on (x,y) and on
(2',y"), then it is also realized on (z/,y) and (x,y’). If the protocol has a short output, it
can be assumed that its output is a function of its transcript. It follows that if the protocol
correctly computes a function f with a short output, and f(z,y) = f(2’,y’), then either the
transcript realized on input (z,y) is different from that realized on input (z’,y’), or we also
have f(x,y) - f(x/ay) = f(xay,)'

This simple fact can be used to get lower bounds on the length of deterministic com-
munication protocols computing a function as follows: Consider for example a protocol for
computing the equality function f(z,y) = 1[z = y]. By definition, we have f(z,z) = f(2’,2’)
for all z, 2’ but f(z,z) # f(x,2') for all x # z’. Thus, from our conclusion in the previous
paragraph, it must be the case that the transcript realized when the inputs for the parties
are (z,z) is different from that realized when the inputs are (2/,2’) for all z # z’. This
means that there must be many different transcripts, implying the protocol must be long.

The above technique for proving lower bounds on the length of deterministic protocols
computing a function f is called the fooling set technique. It works by proving that f has a
large fooling set, where a fooling set for f is a subset of the inputs with the same f value,
such that for every two different inputs (z,y) and (2/,y') in the set, at least one of (2, y)
and (x,y’) has a different f value. In the above example for the equality function, the set of
all inputs of the form (z, z) forms a fooling set.

Even though we presented the technique for two party communication protocols, the
same arguments can also be extended to multi-party protocols with a fixed order of speaking.
In this context, if there are n parties, we get that if a protocol correctly computes a function

f,and f(x1,20, -+ ,x,) = f(2),2h, -+ ,}), then either the transcript realized when the
inputs to the parties are (x1,--- ,x,) is different from that realized when the inputs are
(@}, ,ah), or we have f(x1, -+ ,zpn) = f(zf, -+ ,2)) for all i € [n] and =} € {x;,2}}. We

shall call such inputs x” hybrids.

The reason these arguments work for the above channels is that for all these channels, the
set of inputs that lead to any given transcript is a combinatorial rectangle (like in the case of
the two-party channel). However, for the BEEPING channel this is not the case. For example,
if we consider a one round protocol where the parties simply beep the first bit of their input,
then the set of inputs that lead to the transcript 0 is a combinatorial rectangle, but the set
of inputs that lead to the transcript 1 is the complement of this rectangle, and may not itself
be a rectangle. Thus, fooling set arguments in general do not work for the BEEPING channel.

Despite the fact that these fooling set arguments do not hold for the BEEPING channel,
we shall assume for now that they do (that is, that it suffices to demonstrate a large fooling
set), and present our lower bound under this assumption. We additionally mention that
these arguments, and also the lower bound for the equality function above, hold only for
deterministic protocols. Later, we shall extend them to randomized protocols.

2.2 Lower Bounds Assuming Fooling Sets

In this subsection, we present a proof of our lower bound using fooling sets. Even though
arguments based on fooling sets do not work for the BEEPING channel, the ideas present will
be instructive and will form an important part of the proof.
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2.2.1 Lower Bound Against Deterministic Protocols

We now present a fooling set for the (1,2)-weight problem. Assuming the arguments above,
this implies a lower bound on the length of a protocol over the BEEPING channel that solve
the (1,2)-weight problem. Our fooling set has all the inputs (z1,- - ,z,) that have exactly
1 player with the input 1 in each of the k groups. To see why any two such inputs must
have a different transcript (equivalently, why these inputs form a fooling set), note that
f(xy, -, x,) is the same for all such inputs and also, for any two distinct inputs (1, , x,)
and (2, -+, z),), there must exist one group (out of the k groups) such that these two inputs,
when restricted to this group, are different.

Without loss of generality, let this group be the first group (the group of players [k]), and,
as the other cases are similar, assume that:

(x1a7xk):(170a0a70) (x/1a7x;c):(07170,70) (1)
—_——— ———
k—1 times k—2 times
Defining;:
(x/ll,~-~,xg):(1,1,0,~~-70), (2)
k—2 times

we see that it is a hybrid as described in the previous section but the correct output on the
hybrid input («f,--- ,2) is different from that on (xy,--- ,x,). This finishes the proof that
any two such inputs must have different transcripts. Thus, the number (%)k of such inputs
is also a lower bound on the number of distinct transcripts. As these many transcripts need

a protocol of length at least k - log 7, we are done.

2.2.2 Lower Bound Against Randomized Protocols

We now describe how to extend the lower bound to work against general randomized protocols
while continuing our assumption that fooling sets based arguments work for the BEEPING
channel. For this, we first use Yao’s minimax theorem to get that it is enough to define a
“hard” distribution D over the inputs for the (1, 2)-weight problem such that any deterministic
protocol for this problem fails on a large fraction of inputs from D.

2.2.2.1 The hard distribution D

We work with the following hard distribution: First, for each group j € [k], we sample a
uniformly and independently random bit to decide whether this group will have one or two
players with input 1. Then, based on the output of this bit, we uniformly and independently
sample a subset of players in this group of size 1 or 2 and give them the input 1. All the
remaining players in the group get the input 0.

2.2.2.2 The proof

Recall that we need to show that any deterministic protocol is incorrect on a set of inputs
that has a high probability according to D. Also recall that, if any two inputs in a fooling
set give rise to the same transcript, then the protocol is incorrect on at least one of the
possible hybrids formed by those inputs. Thus, if we can show that, unless a protocol has
Q(k - log(n/k)) rounds, the number of inputs in a fooling set (to be specified later) that give
rise to the same transcript is so large that the probability of incorrect hybrids generated by
these inputs is a constant, we will have our randomized lower bound. We show this next in
the following two steps:
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1. Showing that the number of incorrect hybrids is large: Fix a short, correct

protocol and let 7w be a typical transcript. Define the set X' to be the set of all inputs
for which the output induced by 7 is correct, regardless of whether or not they realize .
Also, define Xt C X2 to be the set of all inputs in X' that also realize the transcript
7. Observe that all inputs in X' are equally likely under our hard distribution D.
Next, observe that as 7 is a typical transcript of a correct protocol that has length
o(k -log(n/k)), X" has at least a (%)70(@ fraction of the inputs in X" and the output
of m says that at least (k) of the groups have only one player with the input 1. Let
Ones C [k] be this set of groups. As for all j € Ones, there are at most % choices for the
inputs of players in group j in X' the above conditions imply that for at least Q(k) of
the groups in Ones, the number of possible inputs for the players in this group amongst
all the inputs in X is at least M = (%)170(1).
For any such input x € X' and any such group, one can take any of the at least M — 1
possible choices of the inputs of the players in this group that are different from z on this
group, and define a hybrid as in Equations (1) and (2),'? that has the same transcript but
for which the output is incorrect. Moreover, as Equation (2) has exactly two players with
input 1, it can be formed in exactly two ways. Conclude that the number of incorrect
hybrids is at least Q(k - M - | Xue]).

2. Showing that the probability of incorrect hybrids is large: We now use the
lower bound on the number of incorrect hybrids to get a lower bound on the probability
of incorrect hybrids. For this, note from the definition of the distribution D that the
probability of an input x is proportional to ((9(%)) |Ones(z)]

groups that have exactly one player with the input 1 in z. As the number of such groups

is one smaller in each hybrid, we get that the probability of incorrect hybrids relative to
the probability of correct inputs is at least Q(%) > 1 by our choice of k£ and M. Thus,
the protocol errs with high probability.

, where Ones(x) is the set of

2.3 Removing the Fooling Set Assumption

The only problem with the argument above is that the fooling set argument does not work
for the BEEPING channel, i.e., it is not true that if (z1,---,z,) and (z},--- ,z,) give rise to
the same transcript, then any hybrid input (zf,--- ,z)), where x/ € {z;,2;} for all i € [n]
will also give rise to the same transcript. However, note from the foregoing subsection that
we never actually use the full power of the fooling set argument, restricting attention only
to hybrids that differ in the inputs of exactly one of the n players from one of the original
inputs (Equations (1) and (2)). Specifically, each hybrid only differs on one coordinate from
the input z € X" it was obtained from.

Such a strong condition on the types of hybrids that we use in our argument allow us
to use the following trick to remove the fooling set assumption: Recall that the BEEPING
channel, in every round, computes and sends the logical OR of the bits sent by the players in
this round. As the hybrids we work with differ in exactly one player, say player i, from one
of the original inputs, the only way this hybrid can lead to a different transcript is if there
exists a round such that player ¢ is the only player beeping (broadcasting a 1) in that round.

13 In the hybrid, the inputs of the players that are not in the chosen group are the same as their inputs in
z. As for players in the chosen group, the player that has a 1 input in z has a 1 input in the hybrid,
but there is an additional player with a 1 input.
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This means that, unless the protocol has more than Q(k - log(n/k)) rounds, there are at
most O(k - log(n/k)) players ¢ such that changing the input of player ¢ while taking a hybrid
can affect the transcript. Thus, we can simply remove these “bad” players from the O(k - M)
players we take hybrids over and make the argument work.

Geometrical interpretation

We finish by also explaining this weaker form of the fooling set arguments in terms of
combinatorial rectangles. Recall that the general fooling set argument works when the set of
inputs X that lead to any given transcript is a combinatorial rectangle. An equivalent way to
express the fact that X is a combinatorial rectangle is that for any = (x1,--- ,2,) € X and
i € [n], the single-dimensional projection of X on to coordinate 4 is equal to the intersection
of X with the line Vj # i : X; = ;.1 What our weaker fooling set argument shows is that
for any x € X, this holds for most of the coordinates i. Precisely, we show that it holds for
all but O(k - log(n/k)) values of i.

Put another way, even if we do not get combinatorial rectangles exactly, we do get a
“local” version of them, that allows us to take hybrids as long as we do not change a lot of
coordinates, and do not change coordinates corresponding to “bad” players. Our fooling set
argument is strong enough to work with this weaker guarantee.

3 Models

Notation

We use 1[E] to denote the indicator random variable for the event E. For a string s, we use
|s| to denote the length of s. For i € [|s|], let s; denote the i*" coordinate of s and s—;, s<;
denote the prefix of the first ¢ — 1 and ¢ coordinates of s, respectively. For « € {0,1}*, we
denote the Hamming weight of x by wt(z) = |{i € [|z|] : z; = 1}|.

f-channels

The symmetric boolean-valued channel f with noise rate € (e-noisy f-channel, for short) is
specified by a constant € > 0 and a function f : NU{0} — {0,1}. Let n € N. A (deterministic)
n-party protocol over the e-noisy f-channel is given by a tuple

II = <T7 {Xl}ze[n]’y7 {gz}iE[n],tE[T]’OUt)'

Here, T' = |I1] is the number of rounds (or the length) of the protocol, X* is the input space
for player i, ) is the output space of the protocol, gi : X% x {0,1}*=1 — {0, 1} is the function
player i uses to determine what message to broadcast in round ¢, and out : {0,1}* — Y is
the function used to determine the output from the received transcript. As usual, we define
a randomized protocol to be a distribution over (deterministic) protocols.

14 More precisely, if y = <07 coe 0,1y, 0,00 ,0) is in the former set,
—— ~——

i—1 times n—1 times
then y' = (w1, -+, Zi—1,Yi, Tit1, -+ ,Tn) is in the latter set.
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Execution of a protocol

The protocol II starts with all players i € [n] having an input ' € X and proceeds in T
rounds, maintaining the invariant that before round ¢, for all ¢t € [T, all players know a
transcript 7<; € {0,1}'~1. In round ¢, player i broadcasts the bit b} = gi (%, 7<¢). Then, in
round ¢, if b; denotes the string by = b} - - - b, all the players receive the bit 7, which equals
f(wt(b)) with probability 1 — €;, and equals 1 — f(wt(b;)) with probability €;, where ¢; < ¢
is adversarially chosen. All players append 7; to m<; to get a transcript m<; and continue
the execution of the protocol. After T rounds, all players output II(z) = out(r<r) € V.

Noiseless channels

Let f: NU{0} — {0,1}. The f-channel is the e-noisy f-channel for ¢ = 0. Let II be a
deterministic n-party protocol over the f-channel as above. Observe that the transcript 7 of
the protocol II is a deterministic function of the input x, and denote it by transp(z). Denote
transm ¢(z) = (trans(x))s, transg < (x) = (transp(z))<y, and transy, < (x) = (transp(z)) <.

Let F: X1 x---x X" — Y be a (partial) function and x € X! x --- x X™. We say that II
is correct on x with respect to F if II(z) = F(z). Let 7 € {0,1}* be a candidate transcript
for II. We say that 7 is correct on x with respect to F' if out(r) = F'(x). When F is clear
from the context, we sometimes simply say that II (or 7) is correct on z. Finally, for p > 0
we say that II solves/computes F with success probability p, if for all z such that F(z) is
well defined, it holds that II(z) = F'(z) with probability at least p regardless of the choices
of ¢, made by the adversary (in case II is over an e-noisy channel).

Special channels

We define the following channels: For € > 0 and k > 0,

1. e-noisy THRESHOLDIK] is the e-noisy f-channel for f(m) = 1[m > k]. In addition,
THRESHOLD|k]| is e-noisy THRESHOLD[k] with ¢ = 0.

2. BEEPING = THRESHOLD[1].

3. e-noisy CAS is the e-noisy f-channel for f(m) = 1[m = 1]. In addition, CAS is e-noisy CAS
with € = 0.

For the BEEPING channel, we will sometimes use special terminology. Let II be an n-party
protocol over BEEPING. For ¢ € [|II|], denote by beepy; ,(x) = {i € [n] : bj = 1} the set of all
players who beep (i.e., broadcast a 1) in round ¢. Note that transy:(x) = 1 if and only if

beepyy () # 0.

Channel equivalence

Let f,g : NU{0} — {0,1}. We say that the f-channel can simulate the g-channel if for
every (deterministic) n-party protocol II over the g-channel, there is a (deterministic) n-party
protocol II' over the f-channel with |II'| = O(|II|) and a function h, such that for every
input « for II, h(trans(x)) = transp(x). We say that the f-channel and the g-channel are
equivalent if the f-channel can simulate the g-channel and vice-versa.

4 BEEPING Lower Bound

In this section we prove Theorem 3. Fix a function f satisfying the condition of Theorem 3,
and let 0 < a < b € N be such f(a) # f(b). We prove that the following problem is hard for
BEEPING but easy for the f-channel.
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In the (a, b)-weight problem with n players and k groups, n parties, each holding a private
input bit, are partitioned into k sets of n/k parties each. The goal is for the first party to
output a string v € {0, 1}* such that if exactly a parties in group j € [k] have input 1 then
v; = 0, and if exactly b parties in group ¢ have input 1 then v; = 1.

Observe that the (a, b)-weight problem can be computed by a k-round protocol over the
f-channel, by having parties from group j holding a 1 input broadcasting in round j. Thus,
the following Theorem 5 will suffice in order to prove Theorem 3. The rest of this section is
devoted to proving Theorem 5.

)100

» Theorem 5. Let b > a > 1 and k > (1000)(19%)" be integers. Let n = k(k+a—1). Then,
every (randomized) protocol over BEEPING that solves the (a,b)-weight problem with n players
and k groups with success probability greater than 1/n'/3% requires at least Q, ,(klog(n/k))
rounds.

We will next prove a restricted version of Theorem 5, where a = 1:

» Theorem 6. Let b > 1 and k > (1006)10)™ be integers. Let n = k2. Then, every
(randomized) protocol over BEEPING that solves the (1,b)-weight problem with n players and k
groups with success probability greater than 1/n'/?° requires at least Qy(klog(n/k)) rounds.

We now show that Theorem 6 implies Theorem 5. The proof of Theorem 6 can be found
in the full version.

Proof of Theorem 5. Suppose for contradiction that there existed some protocol II over the
BEEPING model which solves the (a, b)-weight problem with k groups and k 4+ a — 1 parties

1/390 yunning in o044 (klog(n/k)).

in each group, with success probability greater than 1/n

Let ¢ = b—a+ 1. We construct a protocol II' for the (1, c¢)-weight problem where
there are k groups with k players in each group (k2 parties in total). We will first add
k-(a—1) “dummy” parties, a — 1 dummy parties in each group, such that all dummy parties
are assumed to have the input 1. To run II’, the k2 parties will run II with player 1 also
simulating all the extra k- (¢ — 1) dummy parties. Note that player 1 can indeed simulate
all these extra parties: Player 1 can compute the bit that each such dummy party would
have sent (as each player hears the same transcript and player 1 knows the inputs of the
dummy parties), and will compute and send the logical OR, of all these bits and the bit that
he himself wishes to send.

If a group has only 1 player with a 1 input before the dummy players were added, the
dummy players ensure that this group now has a players with a 1 input. Likewise, if there
were ¢ players with a 1 input in a group, the dummy players ensure that the group now has
b such players. Thus, if IT outputs the correct answer for the inputs with the dummy players,
then II’ will output the correct answer.

However, this leads to a contradiction: The protocol I’ only runs II, which, by assumption
takes 04 (klog(n/k)) rounds of communication, and it gets the correct answer for the (1, ¢)-
weight problem on any input with probability greater than 1/ n!/390 This success probability
is greater than 1/(n’)'/?%° where n’ = n — k(a — 1) is the number of parties participating in
IT', contradicting Theorem 6. |

5 Hardness of Interactive Coding

In this section, we prove the following Theorem 7, which implies Theorem 4.
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» Theorem 7. Let € > 0 and ki, ks > 2. For all n > 0, there exists a (deterministic)
n-party protocol I1 over the THRESHOLD|k1] channel, such that any (possibly randomized)
n-party protocol II' that computes the same function as II with success probability greater
than 1/n'/3%0 over the e-noisy THRESHOLD[ks] channel requires Q(|TI|logn) rounds.

The same holds true if the THRESHOLD[k1] channel is replaced by the CAS channel, or if
the e-noisy THRESHOLD[ks] channel is replaced by the e-noisy CAS channel, or both.

To prove Theorem 7, we use the following Theorem 8 that shows that for all k£ > 2 every
noisy THRESHOLD[k] round can be simulated by constantly many rounds of the BEEPING
channel.

» Theorem 8. Let € > 0 and k > 2,n > 0 be integers. There exists an Oy (1) length n-party
protocol over BEEPING such that if patry ¢ € [n] has the input bit x; € {0,1}, then at the end
of the protocol all the parties output a bit b that equals 1|wt(x) > k| with probability least
1—e

Proof of Theorem 7. For the case of THRESHOLD[k;| channel, define b = k;. Otherwise, for
the CAS channel, define b = 2. Assume without loss of generality that that there exists a
k> (100[))(1001’)100 such that n = k2, and observe that there exists a deterministic k round
protocol over the channel concerned that solves the (1,b)-weight problem with n players and
k groups. Additionally, we have from Theorem 6 that every (randomized) protocol over the
BEEPING model that solves this problem with success probability greater than 1/n'/3% has
at least p(klog(n/k)) rounds.

To finish the proof, we argue that if there is such a protocol over the e-noisy THRESHOLD [k:5]
channel, or over the e-noisy CAs channel, then there also exists such a protocol over the
BEEPING channel, a contradiction. In the case of the e-noisy THRESHOLD[ks], this follows
directly by simulating the protocol round by round and using Theorem 8 with k = ko, while
in the case of the e-noisy CAS channel, this follows similarly from Theorem 8 using k = 2
and the identity 1[wt(z) = 1] = L{wt(z) > 1] — L{wt(z) > 2] for all € {0,1}". Note that
the first term can be computed exactly in one round over the BEEPING channel. |

Proof of Theorem 8. We claim that Algorithm 1 below outputs 0 if wt(z) < k and outputs
1, except with probability at most e, if wt(z) > k.

Let us consider just one iteration of the loop at Algorithm 1. To begin with, note that the
only players who ever broadcast during the algorithm are those with x; = 1, as can be seen
at Algorithm 1. As such, we can restrict our analysis to just those players, as the remaining
players do not influence the execution of the algorithm in any way. Let this group of players
be S.

We can now partition S into k2 sets Si,...,Sy2. In particular, S, consists of the players
i € [n] such that n; = j. It is clear that this partitions S. We also note that at Algorithm 1,
exactly the players in S; broadcast. Thus, z; is 1 if and only if S; is non-empty. Furthermore,
we thus get that jelk?) % is exactly the number of non-empty S; sets.

Now, we can consider two cases, depending on if wt(xz) > k or if wt(z) < k. Let us
analyze the latter case. It is evident that wt(z) = |S|. Furthermore, as S = S; U---U S
and these sets are disjoint, we get that the number of non-empty S; is at most the size of
|S]. Thus, the sum at Algorithm 1 will be strictly less than &, so the algorithm will never
return 1. As such, the algorithm returns 0 with probability 1, as desired.
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Algorithm 1 An algorithm computing 1{wt(z) > k] over BEEPING.

Input: Each player ¢ € [n] has an input z; € {0, 1}.
Output: Each player ¢ € [n] outputs a bit b (supposedly, b = 1 if wt(z) > k and b = 0
otherwise).

1: for 3log(1/e) times do

2: Each player i € [n] randomly chooses a number n; € [k?].

3:  for j € [k?] do

4: Each player sets 0% = z; A 1[n; = j].

5: In one beeping round: Each player i beeps b;. All parties receive the bit z; from
the channel.

6: end for

7: if > cr2) 25 = k then

8: return 1

9: end if

10: end for

11: return 0

Now, suppose that wt(xz) > k. Thus, |S| > k. Fix k elements of S. We can now analyze
the probability that these k elements each fall into different S;. Let this event be A.

Pr[A] = (Zz) (ka; 1) (k2 _kIQH 1) - (ka;kY - (1 - ;)’“ - i‘

Thus, with probability at least %, each of the £ elements are in a different S;, so there are
at least k£ non-empty S;. Thus, the sum at Algorithm 1 will be at least k, so the algorithm
will return 1. In other words, the probability that the algorithm doesn’t return 1 during this
iteration of the loop at Algorithm 1 is at most %. By independence of the iterations, the

probability that the algorithm doesn’t return 1 during any of the iterations of the loop is
thus at most

3 3log(1/e€) 1 log(1/¢€)
() =) -

Thus, the algorithm will return 1, except with probability at most €, as desired. <

5.1 CAS is THRESHOLD|[2]

In this subsection, we formally show the claim made in Section 1 that the CAS channel is
equivalent to the THRESHOLD|2] channel.

» Theorem 9. The CAS channel and the THRESHOLD|2]-channel are equivalent.

To show this, we first show a simpler claim about threshold channels, which shall be used
throughout this paper.

» Theorem 10. For all integers r1 < ro € N, for all n > 0, there exists an n-party protocol
over THRESHOLD|rs] which solves the function f(x) = 1|wt(x) > r1] with success probability
1 in Oy r, (1) Tounds.

Proof. We can assume 1 < r; < ry without loss of generality. We begin by analysing the
algorithm find—zerosz(f&, shown in Algorithm 2. We claim that for all ¢y, ¢; > 1, when
find-zeros; , is run over THRESHOLD[rz], it has each player output a tuple (b, S) such
that b € {0,1}, S C [n], x; = b for all i € S, and such that |S| = .
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Algorithm 2 Algorithm find—zerosz(f,el. This algorithm is used to find a set of players with the
same input.

Input: Each player ¢ € [n] has an input z; € {0, 1}.
Output: Each player i € [n] outputs a pair (b, .5).
1: Each player initializes two sets So = ) and S; = 0.
2: for j € [ty + ¢, — 1] do
3: Each player i € [n] sets b} according to

s, Z—]:O
Wi=1<1, i—j€ra—1]

0, otherwise

4 Players broadcast with bé to get z;.
5: S., < S., U{j}

6: if Sy > ¢y then

7 return (0, Sy)

8

9

end if
: if Sl Z €1 then
10: return (1,.57)
11: end if
12: end for

Note that during an execution of Algorithm 2, each player receives the same z; at
Algorithm 2. As the values of Sy and S; that each player maintains depend only on the
values of z; that they receive, this means that each player outputs the same result once the
algorithm outputs. As such, we can look at the algorithm from an outside perspective.

We claim that during an execution of Algorithm 2 z; = z; for all j considered during the
loop. For this, note that for exactly 2 — 1 other players, b% = 1. Thus, Yicin] by =1y —1+u;.
As such, the THRESHOLD[rs] channel sets

Zj::ﬂ Zb;Z’I"Q :]l[TQ—1+CUjZTQ]::U.[.’E]'Z].]:(EJ'.
i€[n]

Then, at Algorithm 2, each player adds j to the set S., = S,,. As such, in each iteration,
one of Sy or S; increases by 1, and ensures that for each j € Sy, ; = 0 and for each j € 5y,
xj = 1. Furthermore, after ¢y +¢; — 1 repetitions of Algorithm 2, either |Sy| > ¢ or |S1| > ¢5.
Thus, at that point, each player outputs either (0,Sy) or (1,S7), which ensures that the
output of find—zeroszaé1 is as desired.

Using this result, we now demonstrate Algorithm 3, which we claim computes 1[wt(x) > 1]
when run over THRESHOLD|r2].

The first thing Algorithm 3 does is run find-zeros,?_, . at Algorithm 3. This takes
O(r2) broadcasts, and returns some pair (b, S). If b =1, then S is a subset of [n] satistying
|S| = r1 such that z = 1 for all ' € S, which implies that

T[wt(z) > ] >1 [Zm, >r| =1[|S| >r]=1,

€S

which means that returning 1 at Algorithm 3 actually gives the correct result.
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Algorithm 3 An algorithm for calculating 1[wt(z) > r1] over THRESHOLD|rz].

Input: Each player ¢ € [n] has an input z; € {0, 1}.
Output: Each player i € [n] outputs whether or not wt(z) > r;.

13: The players run find-zeros,’ , , on their inputs x; to obtain (b, S).
14: if b =1 then

15: return 1

16: end if

17: Set b’ for players i € [n] according to
17 Ty = 1
V=<1, ieS
0, otherwise

18: Players broadcast with b° to get 2.
19: return z

In the alternative case that b = 0, then we know that S is a subset of [n] satisfying
|S| = ro — 71 such that x;; = 0 for all i € S. Thus, due to Algorithm 3, we know that the b’
values satisfy

1 Zbizrg =1 Z 1+212T2 :1[Wt(1')+|5‘2’l"2]

1€[n] i€[n],z;=1 €S

= Nwt(z) +ro —r1 > o] = Lwt(z) > rq].

Thus, the value of z that is returned at the end of Algorithm 3 is exactly the desired value,
concluding the proof. |

We also get a direct consequence from this.

» Corollary 11. For all integers 11 < ro € N, if there exists a protocol computing some
function F' over THRESHOLD|r1] in T rounds, then there exists a protocol computing F over
THRESHOLD[r3] in Oy, r,(T) rounds.

This follows via simulating each round of the original protocol using the above result.
Anyway, we now return to the proof of Theorem 9.

Proof of Theorem 9. To show the desired result, it suffices to show that there exist protocols
solving 1[wt(x) > 2] over cAs and solving 1{wt(z) = 1] over THRESHOLD[2] in O(1) rounds
of communication (with success probability 1).

First, note that Theorem 10 shows that there exists a O(1) round protocol over
THRESHOLD[2] computing 1[wt(x) > 1]. Furthermore, there exists a trivial one-round protocol
over THRESHOLD[2] computing 1[wt(x) > 2]. Finally, as

1wt(z) = 1] = Ljwt(z) > 1] — Ljwt(z) > 2],

we get that there exist an O(1) round protocol computing 1[wt(z) = 1] over THRESHOLD|2].

Thus, any protocol over CAS can be simulated over THRESHOLD[2] with only O(1) blow-up
in the number of rounds.
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Algorithm 4 An algorithm computing 1[wt(z) > 2] over CASs.

Input: Each player ¢ € [n] has an input z; € {0, 1}.

Output: Each player i € [n] outputs whether or not wt(z) > 2.
20: Players broadcast with a; V 1[i = 1] to get z;.

21: Players broadcast x; to get z».

22: return —(z1 V 29)

Now, consider Algorithm 4. We claim that this computes 1{wt(z) > 2] over CAs in O(1)

rounds, which would complete the proof. To show this, it suffices to consider three possible
cases for wt(z):

If wt(xz) = 0: In this case, x; = 0 for all ¢ € [n]. Thus, z; = 1 and 22 = 0, and the
algorithm will return 0 = 1[wt(z) > 2].

If wt(x) = 1: In this case, zo = Lwt(z) =1] = 1, so the algorithm will return
0= 1[wt(z) > 2].

If wt(xz) > 2: In this case, 21 = 22 = 0, and the algorithm returns 1 = L{wt(x) > 2].

Thus, this algorithm computes 1[wt(z) > 2], using only 2 broadcasts, which concludes

the proof. |
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