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Abstract
Adversarial training is well-known to produce
high-quality neural network models that are em-
pirically robust against adversarial perturbations.
Nevertheless, once a model has been adversari-
ally trained, one often desires a certification that
the model is truly robust against all future at-
tacks. Unfortunately, when faced with adversari-
ally trained models, all existing approaches have
significant trouble making certifications that are
strong enough to be practically useful. Linear
programming (LP) techniques in particular face
a “convex relaxation barrier” that prevent them
from making high-quality certifications, even af-
ter refinement with mixed-integer linear pro-
gramming (MILP) and branch-and-bound (BnB)
techniques. In this paper, we propose a non-
convex certification technique, based on a low-
rank restriction of a semidefinite programming
(SDP) relaxation. The nonconvex relaxation
makes strong certifications comparable to much
more expensive SDP methods, while optimizing
over dramatically fewer variables comparable to
much weaker LP methods. Despite nonconvex-
ity, we show how off-the-shelf local optimization
algorithms can be used to achieve and to certify
global optimality in polynomial time. Our exper-
iments find that the nonconvex relaxation almost
completely closes the gap towards exact certifi-
cation of adversarially trained models.

1. Introduction
To make neural network models robust to adversarial per-
turbation attacks, one popular strategy, known as adversar-
ial training (Kurakin et al., 2016; Goodfellow et al., 2015;
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Figure 1: Certified adversarial training vs. ℓ2 attacks. While
PGD attacks indicate an empirical upper-bound of 77.4% (red),
state-of-the-art LP-based verifiers face a “convex relaxation bar-
rier” (pink shading) that prevent them from certifying lower-
bounds better than 20.9% (blue). Even an award-winning state-of-
the-art branch-and-bound verifier like α, β-CROWN cannot sig-
nificantly improve past 67.2% in reasonable time. Our noncon-
vex relaxation overcomes the convex relaxation barrier, certifying
a lower-bound of 76.2% that almost fully closes the empirical-
certified gap. (See Section 5 for details.)

Madry et al., 2018; Shafahi et al., 2019; Wong et al., 2019),
is to attack a pre-trained model, and then to re-train the
model with the training set augmented or replaced by the
attack. Despite its simplicity, adversarial training works re-
markably well in practice. For example, the robust mod-
els adversarially trained by Madry et al. (2018) back in
2017 remain essentially unbroken in 2022, after more than
four years of white-box penetration testing by researchers
world-wide. Later, Shafahi et al. (2019); Wong et al. (2019)
have extended the idea to train robust ImageNet classifiers,
that achieve a similar level of accuracy, and within a com-
parable amount of training time, to nonrobust classifiers.

Nevertheless, adversarial training is an empirical strategy
that does not promise a truly robust model. Given a model
that has been made empirically robust through adversarial
training, one often desires a formal mathematical proof or
certification that the model is truly robust against all fu-
ture attacks. Unfortunately, when faced with an adversari-
ally trained model, all existing approaches have significant
trouble making certifications that are strong enough to be
practically useful. A model that achieves 77.4% test accu-
racy on adversarial inputs might only have a certified robust
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accuracy of 20.9%, using state-of-the-art methods (Weng
et al., 2018a; Zhang et al., 2018b; Salman et al., 2019)
based on a linear programming (LP) relaxation (Wong &
Kolter, 2018) of the ReLU activation (see Figure 1).

In fact, recent work by Salman et al. (2019) suggest that it is
fundamentally impossible for any method based on the LP
relaxation to make substantially better certifications for ad-
versarially trained models. Even mixed-integer linear pro-
gramming (MILP) techniques like branch-and-bound and
cutting planes (Tjeng et al., 2019; Xu et al., 2021; Wang
et al., 2021), which in theory are capable of exact certifica-
tion given unlimited time, cannot in practice significantly
close the gap left by the LP relaxation within reasonable
time. Applying α, β-CROWN (Zhang et al., 2018a; Wang
et al., 2021; Xu et al., 2021; Zhang et al., 2022), the win-
ning entry in the International Verification of Neural Net-
works Competition (VNN-COMP) competitions of 2021
and 2022, only improves the certified robust accuracy to
67.2% before timing out, still leaving an unsatisfactory op-
timality gap of 10.2%. There appears to be an insurmount-
able “convex relaxation barrier”, between the high degree
of robustness that is empirically observed for adversarially
trained models, and the low degree of robustness that can
be rigorously certified via the LP relaxation, and mixed-
integer programming methods based on the LP relaxation.

One promising direction for overcoming the barrier faced
by the LP relaxation is to develop methods based on
the semidefinite programming (SDP) relaxation of Raghu-
nathan et al. (2018b). Indeed, early experiments (Raghu-
nathan et al., 2018a;b; Zhang, 2020; Dathathri et al., 2020;
Batten et al., 2021) all suggest that the SDP relaxation can
make significantly stronger certifications than the LP relax-
ation. However, the cost of solving the SDP relaxation—
while technically still polynomial time—is so high as to be
completely inaccessible. At its core, the SDP relaxation re-
quires optimizing over an n × n matrix variable, where n
is equal to the total number of ReLU activations, plus the
dimension of the input layer. The fundamental difficulty is
the need to store and to optimize over n2 variables: even
a single-layer MNIST classifier with 200 ReLU activations
requires storing and optimizing over the ≈ 106 elements
of a 986 × 986 matrix, which is already nearing the limit
of state-of-the-art SDP solvers like MOSEK (2019), whose
worst-case runtime scales as O(n6). Despite widespread
speculation, it is currently unknown whether SDP-based
methods will truly be able to provide tight certification for
adversarially trained models.

Contributions This paper proposes a nonconvex certi-
fication technique, based on a low-rank restriction of the
usual convex SDP relaxation of the ReLU activation. Rig-
orously, we show that the nonconvex relaxation is always
at least as tight as the SDP relaxation, but that it optimizes

over the nr elements of an n × r rectangular matrix. If a
small value of r can be used (we later validate this experi-
mentally), then the nonconvex relaxation can make strong
certifications comparable to the SDP relaxation, while op-
timizing over a dramatically smaller number of variables
comparable to the LP relaxation.

The nonconvexity of the relaxation poses a serious issue.
The correctness of our certification hinges critically on
our ability to solve a nonconvex verification problem to
global optimality, and then to certify this global optimality,
but large-scale optimization algorithms are only capable of
achieving and certifying local optimality. In this paper, we
establish that if a local minimum for the verification prob-
lem is also global, then under a mild constraint qualifica-
tion, the Lagrange multipliers that certify its local optimal-
ity are also guaranteed to certify its global optimality via
Lagrangian duality (see Proposition 3.1 and Theorem 4.3).
Conversely, if the local minimum is non-global, then un-
der the same mild constraint qualification, the Lagrange
multipliers generate a direction of global improvement (see
Theorem 4.4), thereby ensuring that local optimization will
eventually achieve certified global optimality.

Our experiments provide empirical confirmation of our the-
oretical claims. We re-examine the models originally used
by Salman et al. (2019) to demonstrate the existence of a
“convex relaxation barrier” for the LP relaxation. Using a
relaxation rank r of no more than 10, we re-certify these
models using our nonconvex relaxation, in time compara-
ble to that of the best-possible LP relaxation. Our results
find that even a basic nonconvex relaxation offers a sig-
nificant reduction in conservatism. Augmenting the non-
convex relaxation by bound propagation (as is commonly
done for the LP relaxation) allows us to almost fully close
the gap towards exact certification (see Figure 1).

Related work Robustness certification methods can be
broadly divided into exact and conservative methods. Ex-
act methods based on mixed-integer linear programming
(MILP) (Tjeng et al., 2019; Xu et al., 2021) and Satisfiabil-
ity Modulo Theories (SMT) (Katz et al., 2017) can make
necessary and sufficient certifications of robustness, but
have worst-case runtimes that scale exponentially with the
number of activations. Conservative methods can decline
to certify a robust model, but have polynomial worst-case
runtime, and therefore tend to be much more scalable in
practice. Today, most state-of-the-art certification methods
are conservative methods based on a triangle-shaped LP
relaxation of the ReLU activation function introduced by
Wong & Kolter (2018). In particular, (Weng et al., 2018b;a;
Zhang et al., 2018a) proposed techniques for strength-
ening these LP-based relaxations, by propagating tighter
layer-wise upper- and lower-bounds on the ReLU activa-
tion function. Later work by Wang et al. (2021) and Xu

2



Tight Certification of Adversarially Trained Neural Networks via Nonconvex Low-Rank Semidefinite Relaxations

et al. (2021) progressively refine these bounds using MILP
and BnB techniques. Salman et al. (2019) proposed an
optimal LP relaxation that unifies all the existing bound-
propagating LP-based relaxation methods. This last paper
pointed out that even the optimal LP relaxation has a gap
cannot be improved; they refer to this inherent looseness as
the “convex relaxation barrier”. Another line of conserva-
tive methods are based on SDP relaxationof the ReLU gate
(Raghunathan et al., 2018b; Dathathri et al., 2020). Later
work by Batten et al. (2021) further tighten the SDP relax-
ation using linear cut constraints.

Our proposed approach can be interpreted as an application
of the Burer–Monteiro approach (Burer et al., 2002; Burer
& Monteiro, 2005) and the Riemannian staircase (Boumal
et al., 2016; 2020) for solving the SDP relaxation of Raghu-
nathan et al. (2018b). Here, we emphasize that the rigorous
applicability of these prior techniques hinges critically on
the linear independence constraint qualification (LICQ), a
highly restrictive condition that is difficult to verify in prac-
tice. If LICQ does not hold, then the Riemannian stair-
case can become get stuck at a non-LICQ point, so rigor-
ous global guarantees are lost. In the existing literature,
LICQ is often taken as a strong blanket assumption (Rosen
et al., 2014; Carlone et al., 2015; Cohen et al., 2019; Rosen
et al., 2019), but this reduces the Riemannian staircase from
a provable algorithm to an empirical heuristic. In this pa-
per, we formally establish LICQ for the verification prob-
lem in Lemma 4.2. Assuming that local optimization does
not get stuck at the “corner” of the ReLU (this is the same
assumption that allows ReLU models to be trained via gra-
dient descent), it immediately follows that our nonconvex
relaxation can be globally optimized in polynomial time.

2. Background
Notations We use (x1, . . . , xℓ) to denote the vertical con-
catenation of x1, . . . , xℓ, with xk stacking on top of xk+1.
We use ({xk}ℓk=1) as a shorthand notation for (x1, . . . , xℓ).
We use the square bracket x[i] and X[i, j] to denote index-
ing. The size-n identity matrix is written as In; we sup-
press the subscript n whenever it can be inferred from con-
text. We write ei to denote the i-th canonical basis, i.e. the
i-th column of the appropriate identity matrix. We write
diag(X) to extract the diagonal from the matrix X , and
diag(x) to convert length-n vector into an n × n diagonal
matrix. The i-th largest eigenvalue of a matrixX is denoted
λi(X). We use ⊙ to denote the elementwise product.

Consider the task of classifying a data point x̂ ∈ Rp as
belonging to the ĉ-th of q classes. The standard approach
is to train a classifier model f : Rp → Rq such that the
prediction vector f(x̂) takes on its maximum value at the
ĉ-th element, as in f(x̂)[ĉ] > f(x̂)[c] for all incorrect labels
c ̸= ĉ. In this paper, we focus our attention on ℓ-layer feed-

forward ReLU-based neural networks, defined recursively

f(x) ≡Wℓxℓ + bℓ, xk+1 = max{0,Wkxk + bk}

for k ∈ {1, 2, . . . , ℓ}, where x1 ≡ x is the input. Through-
out the paper, we will use nk to denote the number of neu-
rons at the k-th layer, and n =

∑ℓ
k=1 nk to denote the total

number of neurons. Note that our convention includes the
neurons at the input layer, i.e. x1 ≡ x, but excludes those
at the output layer, i.e. f(x) ≡Wℓxℓ + bℓ.

To compute an adversarial example x ≈ x̂, the standard
approach is to apply projected gradient descent (PGD) to
the following semi-targeted attack problem, which was first
introduced by (Carlini & Wagner, 2017):

ϕ[c] = min
x=(x1,...,xℓ)∈Rn

wT
ℓ xℓ + w0x0 (A)

s.t. xk+1 = max{0,Wkxk + bk},
∥x1 − x̂∥ ≤ ρ,

for all k ∈ {1, 2, . . . , ℓ − 1}, where wℓ = (eĉ − ec)
TWℓ

and w0 = (eĉ − ec)
T bℓ. 1Robustness to adversarial per-

turbations can be certified by verifying that (A) achieves a
positive global minimum ϕ[c] > 0 for every incorrect class
c ̸= ĉ. The numerical value of the minimum global min-
imum, written ϕ⋆ = minc̸=ĉ ϕ[c], is a robustness margin
that measures how robust the model is to adversarial per-
turbations. The more positive is the robustness margin ϕ⋆,
the more the model is able to resist misclassification.

3. Rank-constrained SDP relaxation
Our goal in this paper is to develop better lower-bounds
on the semi-targeted attack problem (A). Following ex-
isting work on the SDP relaxation, we begin by substi-
tuting the rank-1 SDP reformulation of the ReLU activa-
tion in (Raghunathan et al., 2018b; Zhang, 2020) to (A).
But instead of deleting the rank-1 constraint altogether, we
propose to slightly relax it to a rank-r constraint with a
bounded trace, where 1 ≤ r ≤ n + 1, to result in a family
of nonconvex relaxations

ϕr[c] = min
X∈Sn+1

wT
ℓ xℓ (SDP-r)

subject to

tr(X1,1)− 2xT1 x̂1 + ∥x̂1∥2x0 ≤ ρ2x0, (y0)

xk+1 ≥ 0, xk+1 ≥Wkxk + bkx0, (yk,1, yk,2)

diag(Xk+1,k+1 −WkXk,k+1 − bkxTk+1) = 0, (zk)

x0 = 1, tr(X) ≤ R2 (z0, µ)

1To simplify presentation, we focus our attention on the ℓ2
norm, and assume w0 = 0 without loss of generality. Our results
can be extended for the ℓ∞ norm and are included in the appendix.
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for all k ∈ {1, 2, . . . , ℓ − 1}, whose optimization variable
X is an (n + 1) × (n + 1) rank-r constrained symmetric
positive semidefinite matrix

X =


x0 xT1 · · · xTℓ
x1 X1,1 · · · X1,ℓ

...
...

. . .
...

xℓ XT
1,ℓ · · · Xℓ,ℓ

 ⪰ 0, rank(X) ≤ r.

Here we assign the dual variable associated with each con-
straint in the parenthesis. We will assume throughout the
paper that the trace bound R has been chosen large enough
so that tr(X⋆) < R2, or equivalently µ⋆ = 0, holds at op-
timality. It follows from (Zhang, 2020) that r = 1 instance
of (SDP-r) coincides with (A) exactly. Due to our use of a
rank upper-bound, every subsequent instance then provides
a lower-bound on its previous relaxation:

ϕ[c] = ϕ1[c] ≥ ϕ2[c] ≥ · · · ≥ ϕn+1[c].

Finally, setting r = n + 1 has the same effect as deleting
the rank constraint. Therefore, the r = n+1 instance coin-
cides with the convex semidefinite relaxation as originally
proposed by (Raghunathan et al., 2018b).

For relaxation ranks of r < n + 1, the corresponding
nonconvex instances of (SDP-r) are NP-hard in general to
solve to global optimality. Even if we are provided with a
globally optimal solution X⋆, there is generally no way to
(rigorously) tell that X⋆ is indeed globally optimal. The
most we can say is that X⋆ provides an upper-bound on
the global minimum of (SDP-r). Unfortunately, this upper-
bound is not helpful in our goal of lower-bounding (A).

Instead, we will derive a lower-bound on (SDP-r) via La-
grangian duality, which will also serve as a valid lower-
bound on (A). Our motivating insight is that all instances
of (SDP-r), including those nonconvex instances with r <
n + 1, have the same convex Lagrangian dual. Define
dual variables y = (y0, {yk,1, yk,2}ℓ−1

k=1) ≥ 0, z =

(y0, {zk}ℓ−1
k=1) and µ ≤ 0 to correspond to the linear con-

straints in (SDP-r) as shown in parentheses. Then, the dual
problem of (SDP-r) is written:

max
y≥0, z, µ≤0

z0 +R2µ s.t. S(y, z) ⪰ µI, (SDD)

in which the components of the slack matrix

S(y, z) ≡ 1

2



s0 sT1 sT2 · · · sTℓ
s1 S1,1 S1,2

s2 ST
1,2 S2,2

. . .
...

. . . . . . Sℓ−1,ℓ

sℓ ST
ℓ−1,ℓ Sℓ,ℓ



are written

s0 = 2

[
y0(∥x̂∥2 − ρ2) +

ℓ−1∑
k=1

bTk yk,2 − z0

]
,

s1 =WT
1 y1,2 − 2x̂y0,

sk+1 =WT
k+1yk+1,2 − (Zkbk + yk,1 + yk,2) ,

sℓ = wℓ − [Zℓ−1bℓ−1 + yℓ−1,1 + yℓ−1,2] ,

S1,1 = 2y0I, Sk,k+1 = −WT
k Zk, Sk+1,k+1 = 2Zk,

where Zk = diag(zk). Here, sk+1 is defined for all k ∈
{1, . . . ℓ− 2}, and Sk,k+1 and Sk+1,k+1 are defined for all
k ∈ {1, . . . ℓ−1}. We therefore obtain the following lower-
bound on the semi-targeted attack problem in (A), which is
valid for any choice of multipliers (y, z).

Proposition 3.1 (Dual lower-bound). Let X⋆ denote the
global solution of (SDP-r) with rank r ≥ 1 and tr(X⋆) <
R2. Then, any dual multipliers y = (y0, {yk,1, yk,2}ℓ−1

k=1)

and z = (z0, {zk}ℓ−1
k=1) that satisfy y ≥ 0 provide the fol-

lowing lower-bound

ϕ[c] ≥ ϕr[c] ≥ z0 +R2 ·min{0, λmin[S(y, z)]}.

Let X⋆ denote the globally optimal solution for the convex
instance of (SDP-r) with r = n+1. It turns out that strong
duality is satisfied in this convex case, meaning that there
exists optimal multipliers y⋆, z⋆ that exactly satisfy

ϕ[c] ≥ ϕn+1[c] = z⋆0 +R2 ·min{0, λmin[S(y
⋆, z⋆)]}

and therefore certify the global optimality X⋆ via Propo-
sition 3.1. Now, suppose that the convex solution X⋆ is
in fact low-rank, as in r⋆ = rank(X⋆) ≪ n. The state-
ment below says that the nonconvex instance of (SDP-r)
with r = r⋆ also admits optimal multipliers y⋆, z⋆ that cer-
tify global optimality.

Theorem 3.2 (Existence of global optimality certificate).
Let r⋆ = rank(X⋆) and tr(X⋆) < R2, where X⋆ denotes
the maximum-rank solution to the convex instance of (SDP-
r) with r = n + 1. Then, there exists optimal multipliers
y⋆ = (y⋆0 , {y⋆k,1, y⋆k,2}

ℓ−1
k=1) and z⋆ = (z⋆0 , {z⋆k}

ℓ−1
k=1) that

satisfy y⋆ ≥ 0 and the following

ϕ[c] ≥ ϕr⋆ [c] = z⋆0 +R2 ·min{0, λmin[S(y
⋆, z⋆)]}.

In the following section, we use an approach of Burer &
Monteiro (2003) and (Boumal et al., 2016; 2020) to con-
structively compute the optimal multipliers y⋆, z⋆ that have
been asserted to exist by Theorem 3.2. In turn, plugging
y⋆, z⋆ into Proposition 3.1 produces a tight lower-bound
on the semi-targeted attack problem (A), thereby achieving
the original goal of this section.
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4. Solution via Nonlinear Programming
In order to expose the underlying degrees of freedom in
the rank-r matrix X , we reformulate problem (SDP-r) into
a low-rank factorization form first proposed by (Burer &
Monteiro, 2003):

ϕr[c] = min
u0,u,V

u0 · (wT
ℓ uℓ) (BM-r)

subject to

∥u1 − u0x̂∥2 + ∥V1∥2 ≤ ρ2, u20 = 1, (y0, z0)

u0 · uk+1 ≥ 0, (yk,1)

u0 · (uk+1 −Wkuk − bku0) ≥ 0, (yk,2)

diag[(uk+1 −Wkuk − bku0)uTk+1

+ (Vk+1 −WkVk)V
T
k+1] = 0,

(zk)

u20 +
ℓ−1∑
k=1

(∥uk∥2 + ∥Vk∥2) ≤ R2, (µ)

for all k ∈ {1, . . . , ℓ − 1}, and over optimization vari-
ables are u0 ∈ R and u = (u1, . . . , uℓ) ∈ Rn and
V = (V1, . . . , Vℓ) ∈ Rn×(r−1). Problem (BM-r) is ob-
tained by substituting the following into (SDP-r)

X =


u0 0

u1 V1
...

...
uℓ Vℓ



u0 0

u1 V1
...

...
uℓ Vℓ


T

= UUT . (1)

The equivalence between these two problems follows be-
cause every (n + 1) × (n + 1) matrix X of rank r can be
factored as X = LLT into a low-rank Cholesky factor L
that is both lower-triangular and of dimensions (n+1)×r.
The advantage of the formulation (BM-r) is that it reduces
the number of explicit variables from the 1

2n(n+1) ≈ 1
2n

2

in the original matrixX to nr+1 ≈ nr in the factor matrix
U , while also allowing the positive semidefinite constraint
X ⪰ 0 to be enforced for free. For moderate values of
r ≪ n, the resulting instance of (BM-r) contains justO(n)
variables and constraints.

We propose solving (BM-r) as an instance of the standard-
form nonlinear program,

min
∥x∥≤R

f(x) s.t. g(x) ≤ 0, h(x) = 0, (NLP)

using a high-performance general-purpose solver like
fmincon or knitro. These are primal-dual solvers, and
are designed to output a primal point x = (u0, u, vec(V ))
that is first-order optimal, and dual multipliers y =
(y0, {yk,1, yk,2}ℓ−1

k=1) and z = (z0, {zk}ℓ−1
k=1) that certify the

first-order optimality of x. Below, the notion of first-order
optimality is taken from (Nocedal & Wright, 2006, Theo-
rem 12.3), and the notion of certifiability follows from the
proof of (Nocedal & Wright, 2006, Theorem 12.1).

Definition 4.1 (Certifiably first-order optimal). The point x
is said to be first-order optimal if it satisfies the constraints
g(x) ≤ 0 and h(x) = 0, and there exists no escape path
x(t) that begins at x(0) = x and makes a first-order im-
provement to the objective while satisfying all constraints,
as in

f(x(t)) ≤ f(x)− δt, g(x(t)) ≤ 0, h(x(t)) = 0,

for all t ∈ [0, ϵ) with sufficiently small δ > 0 and ϵ > 0.
Additionally, x is said to be certifiably first-order optimal if
there exist dual multipliers y and z that satisfy the Karush–
Kuhn–Tucker (KKT) equations:

∇f(x) +∇g(x)y +∇h(x)z = 0, y ⊙ g(x) = 0, y ≥ 0.

Our main idea is to simply take the dual multipliers y, z
computed by the nonlinear programming solver, round
them y ← max{0, y} to ensure that y ≥ 0, and then to plug
them back into Proposition 3.1. Our main result is that, if x
is globally optimal and satisfies a mild constraint qualifica-
tion, then the corresponding dual multipliers y, z exist and
are unique. Therefore, if x is indeed globally optimal, then
the dual multipliers y, z that certify the local optimality of x
must also coincide with the optimal multipliers y⋆, z⋆ that
were asserted to existed earlier in Theorem 3.2.

Lemma 4.2 (Nonzero preactivation). Suppose we have
x = (u0, u1, . . . , uℓ, vec(V1), . . . , vec(Vℓ)) that satisfies:

eTi (Wkuk + bku0) ̸= 0, eTi WkVk ̸= 0, (NPCQ)

for all k ∈ {1, . . . , ℓ − 1} and i ∈ {1, . . . , nk+1}. Then,
x is first-order optimal if and only if there exist dual mul-
tipliers y and z to certify x as being first-order optimal.
Moreover, the choice of dual multipliers y, z is unique.

Theorem 4.3 (Zero duality gap). Let r ≥ r⋆ where r⋆ is
defined in Theorem 3.2. If x is globally optimal and satis-
fies (NPCQ), then the dual multipliers y and z that certify
x to be first-order optimal must also certify x to be globally
optimal, as in

ϕr[c] = u0 · (wT
ℓ uℓ) = z0 +R2 ·max{0, λmin[S(y, z)]}.

Conversely, if a first-order optimal point x satisfies the con-
straint qualification but is not globally optimal, then the
dual multipliers y, z generate a direction of global improve-
ment towards the global minimum. The key idea is to lift
to a higher relaxation rank r+ = r + 1, in order to make
x a saddle point. The statement below gives a direction to
escape the saddle-point and make a decrement.

Theorem 4.4 (Escape lifted saddle point). Let x be certi-
fiably first-order optimal for (BM-r) with dual multipliers
(y, z). If x satisfies γ = −λmin[S(y, z)] > 0, (NPCQ) and
∥x∥ < R, then the eigenvector ξ = (ξ0, ξ1, ξ2, . . . , ξℓ) that
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satisfies ξTS(y, z)ξ = −γ∥ξ∥2 implicitly defines an es-
cape path x+(t) = (u0, {uk,+(t)}ℓk=1, {Vk,+(t)}ℓk=1) with

uk,+(t) = uk +O(t2),

Vk,+(t) = [Vk, 0] + t · [0, ukξ0/u0 + ξk] +O(t2)

that makes a second-order improvement to the objective
while satisfying all constraints, as in

f(x+(t)) = f(x)− t2γ, g(x+(t)) ≤ 0, h(x+(t)) = 0

for all t ∈ [0, ϵ) with sufficiently small but nonzero ϵ > 0.

In practice, it suffices to move along the straight path
ũk,+(t) = uk and Ṽk,+(t) = [Vk, 0]+ t · [0, ukξ0/u0 + ξk]
then solve for feasibility g(x) ≤ 0 and h(x) = 0. Con-
cretely, after computing a first-order optimal x, we incre-
ment the relaxation rank r+ = r + 1, and initialize the
nonlinear programming solver using the lifted point x̃+(ϵ)
as the initial primal point, and the old multipliers y, z as
the initial dual multipliers. If this arrives at the global op-
timum, then the corresponding y, z must certify x as being
so. Otherwise, we repeat the rank lifting procedure.

Progressively lifting the relaxation rank r, in our experi-
ence it takes no more than r ≤ 10 to reduce the duality gap
to values of 10−8. To rigorously guarantee a zero duality
gap, however, can require a relaxation rank on the order of
r = O(

√
n) (Boumal et al., 2020), irrespective of the value

of r⋆. Indeed, counterexamples with ϵfeas > 0 exist for
relaxation ranks r that are even slightly smaller than this
threshold (Waldspurger & Waters, 2020; O’Carroll et al.,
2022; Zhang, 2022). As a purely theoretical result, the
ability to achieve a zero duality gap implies that the non-
convex relaxation (with r ≥ r⋆) can be solved in poly-
nomial time (and is therefore not NP-hard). Of course,
setting r = O(

√
n) would also force us to optimize over

O(n3/2) variables, thereby offsetting much of our compu-
tational advantage against the usual convex SDP relaxation
in practice.

Algorithm 1 summarizes our proposed approach in pseu-
docode form, and introduces a number of small practical
refinements.

5. Experiments
We identically reproduce three models from Salman et al.
(2019), two of which were trained to be robust against an
ℓ∞ adversary. We compare the performance of our pro-
posed verifier BM, which is based on solving (BM-r), and
BM-Full, which is an extension of BM with the addition
of layer-wise preactivation bounds (see Appendix A for de-
tails), against state-of-the-art LP-based verifiers for certify-
ing robustness against an ℓ2 adversary. Our experiments for
certifying the robustness of the same models against an ℓ∞
adversary are deferred to the appendix.

Algorithm 1 Summary of proposed algorithm
Input: Initial relaxation rank r ≥ 2. Weights W1, . . . ,Wℓ

and biases b1, . . . , bℓ. Original input x̂, true label ĉ, target
label c, and perturbation size ρ. Variable radius bound R.
Output: Lower-bound ϕlb[c] ≤ ϕ[c] on the optimal value
of the semi-targeted attack problem (A).
Algorithm:

1. (Solve rank-r relaxation) Use a nonlinear program-
ming solver to solve the following

min
∥x∥≤R

f(x) ≡ (ec − eĉ)
T (Wℓuℓu0 + bℓ)

subject to

g0(x) ≡ ∥u1 − u0x̂∥2 + ∥V1∥2 − ρ2 ≤ 0, (y0)

h0(x) ≡ 1− u20 = 0, (z0)

gk(x) ≡

[
−u0uk+1

u0(Wkuk + bku0 − uk+1)

]
≤ 0,

(yk,1)

(yk,2)

hk(x) ≡ diag[(uk+1 −Wkuk − bku0)uTk+1

+ (Vk+1 −WkVk)V
T
k+1] = 0,

(zk)

for all k and over x = (u0, {uk}ℓk=1, {vec(Vk)}ℓk=1).
Retrieve the corresponding dual multipliers
y = (y0, {yk,1, yk,2}ℓ−1

k=1) and z = (z0, {zk}ℓ−1
k=1).

2. (Check certifiable first-order optimality) If ∥∇f(x) +
∇g(x)y+∇h(x)z∥ is sufficiently small, and if g(x) ≤
0 and h(x) = 0 and ∥x∥ < R hold to sufficient tol-
erance, then continue. Otherwise, return error due to
solver’s inability to achieve first-order optimality.

3. (Check dual feasibility) If ϵfeas = −λmin[S(y, z)] is
sufficiently small, where the slack matrix S(y, z) is
defined in (SDD), then return ϕlb[c] = z0− ϵfeas ·R2.
Otherwise, continue.

4. (Escape lifted saddle point) Compute the eigenvec-
tor ξ = (ξ0, ξ1, . . . , ξℓ) satisfying ∥ξ∥ = 1 and
ξTS(y, z)ξ = −ϵfeas. Set up new primal initial point
x+ = (u0, {uk}ℓk=1, {vec(V+,k)}ℓk=1) where

V+,k = [Vk, 0] + ϵ · [0, ukξ0/u0 + ξk].

Increment r ← r+1 and repeat Step 1 with (x+, y, z)
as the initial point.

Methods. BM and BM-Full denote the proposed
method without and with preactivation bounds respectively.
The source code for BM and BM-Full are available at
https://github.com/Hong-Ming/BM-r. PGD
denotes the projected gradient descent algorithm for find-
ing the upper bound on (A). We compare BM and BM-Full
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to three state-of-the-art LP-based verifiers: CROWN-Ada
of Zhang et al. (2018b), Fast-Lip of Weng et al. (2018a),
and LP-Full of Salman et al. (2019). CROWN-Ada
and Fast-Lip are both large-scale LP verifiers that have
linear complexity with respect to the number of activa-
tions; the implementations that we used were taken di-
rectly from the authors’ project page2. LP-Full is the
optimal LP verifier that uses the tightest possible preac-
tivation bounds by solving LP problems for each hidden
neuron; its complexity is cubic with respect to the number
of activations. We reimplemented this algorithm to work
with ℓ2 adversaries, and then validated our implementation
against that of the authors3 on ℓ∞ adversaries. The preac-
tivation bounds in BM-Full are set to coincide with those
used in LP-Full. We also compare our methods against
the state-of-the-art branch-and-bound verifier α, β-CROWN
(Zhang et al., 2018a; Wang et al., 2021; Xu et al., 2021;
Zhang et al., 2022). The implementation of α, β-CROWN
are taken from authors’ project page 4. We set the timeout
of α, β-CROWN to be 300s.

Setup. We use an Apple laptop, running a silicon M1 pro
chip with 10-core CPU, 16-core GPU, and 32GB of RAM.
We implemented BM and BM-Full in MATLAB. The non-
convex problem (BM-r) is solved using the trust-region
interior-point solver knitro (Byrd et al., 2006) with a
warm-start strategy.

Models. We perform simulation on three models: NOR-
MNIST, ADV-MNIST and LPD-MNIST. All three mod-

2
https://github.com/IBM/CROWN-Robustness-Certification

3
https://github.com/Hadisalman/robust-verify-benchmark

4
https://github.com/Verified-Intelligence/alpha-beta-CROWN

els are trained by Salman et al. (2019) and are taken di-
rectly from the authors’ project page3. In particular, the
architecture and the numerical values of the weights for
NOR-MNIST, ADV-MNIST and LPD-MNIST are identi-
cal to NOR-MLP-B, ADV-MLP-B and LPD-MLP-B re-
spectively in Salman et al. (2019). All three models are
fully-connected feedforward neural network models with
2 hidden layers of 100 neurons each, and were trained
on the MNIST dataset with different training procedures.
NOR-MNIST was trained normally using the cross-entropy
loss and used as a control. ADV-MNIST was adversarially
trained against the PGD attack using the method of Madry
et al. (2018), with ℓ∞ radius of 0.1. LPD-MNIST was
robustly trained via the adversarial polytope perturbation
of Wong & Kolter (2018), with the size of the adversarial
polytope also set to 0.1.

5.1. Robustness verification on neural network inputs.

We certify the robustness of our three models against an
ℓ2 adversary using our proposed method, and compare
their performance against the existing state-of-the-art. In
each trial, we fix an attack radius ρ, and mark a correctly-
classified image x̂ as robust if the lower bound on (A)
is positive with respect to all incorrect classes, i.e. 0 <
ϕlb[c] ≤ ϕ[c] for all c ̸= ĉ, and mark an image x̂ as not
robust if an attack is found by PGD, i.e. ϕ[c] ≤ ϕub[c] < 0
for some c ̸= ĉ. We mark the image as status unknown if a
determination cannot be made either way. The lower bound
for BM and BM-Full is obtained by Proposition 3.1.

Results and discussions. Table 1 shows the number of
images that are certified robust within the first 1000 cor-
rectly classified images using BM-Full, BM, α, β-CROWN,

Table 1: Robustness verification for neural networks. We compare the number of images certified as robust by BM-Full, BM, α, β-
CROWN, LP-Full, CROWN-Ada and Fast-Lip within the first 1000 images for normally and robustly trained networks. The upper
bound (denoted as UB in the table) on the true number of robust images is obtained by PGD.

Network ℓ2 Radius PGD BM-Full BM α, β-CROWN LP-Full CROWN-Ada Fast-Lip

UB Robust Time Robust Time Robust Time Robust Time Robust Time Robust Time

ADV-MNIST 1.0 774 762 47s 757 28s 672 24s 209 8s 45 12ms 30 13ms
ADV-MNIST 1.3 614 569 38s 559 28s 399 94s 25 10s 7 9ms 2 12ms
ADV-MNIST 1.5 471 411 56s 392 20s 248 138s 11 11s 1 9ms 1 13ms

LPD-MNIST 1.0 755 730 218s 708 29s 641 10s 411 16s 120 10ms 66 13ms
LPD-MNIST 1.3 612 514 129s 474 26s 430 33s 61 19s 16 10ms 8 13ms
LPD-MNIST 1.5 505 391 98s 350 23s 316 64s 23 20s 5 10ms 2 14ms

NOR-MNIST 0.3 916 911 128s 866 21s 797 23s 728 8s 420 9ms 348 12ms
NOR-MNIST 0.5 732 696 127s 534 27s 424 159s 232 16s 46 7ms 27 13ms
NOR-MNIST 0.7 485 381 156s 187 30s 124 253s 37 19s 0 13ms 0 17ms
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Figure 2: Lower bounds on the robustness margin. We take BM-Full, BM, LP-Full, CROWN-Ada and Fast-Lip to compute
their average lower bound on (A), and then compare them to the average PGD upper bound on (A) over a wide range of ℓ2 perturbation
radius. (Left.) NOR-MNIST. (Middle.) ADV-MNIST. (Right.) LPD-MNIST.

LP-Full, CROWN-Ada and Fast-Lip. The average
computation time per image for each verifier are also
shown. In addition, to gauge the efficacy of our verifiers,
we benchmark our results against the upper bound on the
true number of robust images (denoted as UB in the table),
which is the number of images that does not get marked as
not robust by PGD. From the table, we see that our non-
convex verifiers are able to consistently outperform all the
other verifiers under all cases, with time complexity only
5 to 10 times higher than LP-Full. Despite higher time
complexity, our verifiers are the only verifiers that can still
verify reasonable amount of images under larger perturba-
tion radius. Notably, for small perturbation, our verifiers
can nearly certify all images that cannot be attacked by
PGD, leaving very few images as status unknown.

5.2. Tightness of our lower bound

Since robust verification is an NP-hard problem, all relax-
ation methods must become loose for sufficiently large ra-
dius. Fortunately, robust verification is only needed when
the PGD upper bound of (A) is positive; therefore, we only
need the relaxation to be tight when the PGD upper bound
is still positive. In this experiment, we analyze the gap
between our lower bound in Proposition 3.1 and the PGD
upper bound over a wide range of perturbation radius. To
accurately measure the gap between our lower bound and
the PGD upper bound, we average each bound over all 9
incorrect classes of the first 10 correctly classified images
in the test set, in total 90 samples are considered.

Results and discussions. Figures 2 shows the average
PGD upper bound, and the average lower bound on (A)

computed from BM, BM-Full, LP-Full, CROWN-Ada
and Fast-Lip. Our lower bounds are significantly tighter
than all the other verifiers across a wide range of ℓ2 pertur-
bation radius. Most importantly, our lower bounds are able
to remain tight in regions where the PGD upper bound is
still positive. We reiterate that it is not possible for our
nonconvex verifiers to be exact with a large perturbation
radius, because exact verification is NP-hard and our algo-
rithm is polynomial-time. Nonetheless, so long as we can
remain tight as the upper-bound crosses the zero line, our
certification methods will be very close to exact.

6. Conclusion
In this work, we presented a neural network certification
technique based on a nonconvex low-rank restricted SDP
relaxation. Our experiments find that the method is able
to overcome the convex relaxation barrier (Salman et al.,
2019) with runtime only a small constant factor (5-10×)
worse than the existing state-of-the-art. Our results showed
that even a basic nonconvex relaxation, BM, offers a signif-
icant reduction in relaxation gap, while augmenting with
bound propagation, BM-Full, allows us to almost fully
close the gap towards exact certification.
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A. Implementation details for BM and BM-Full
In this section, we present the implementation detail for our two proposed methods: BM, the nonconvex relaxation (BM-r)
proposed in the main paper; and BM-Full, an extension of BM obtained by adding preactivation bounds on each hidden
neuron in (BM-r). We focus our attention on how to efficiently implement both methods to verify ℓ2 and ℓ∞ adversaries
for neural networks trained on MNIST dataset.

This section consists of three parts. First, we describe the valid input set constraint that we need to add into (BM-r) in
order to certify MNIST images, and a few constraints in (BM-r) that can be simplified for improving efficiency. Second,
in Appendix A.1 to A.4, we summarized the practical and efficient formulation for BM and BM-Full with respect to both
ℓ2 and ℓ∞ perturbation. Third, in Appendix A.5, we present more details on how to efficiently solve BM and BM-Full
using the procedure described in Algorithm 1.

Valid input set constraints For model train on MNIST dataset, we add an extra constraint 0 ≤ u0 · u1 ≤ 1 into (BM-
r) because MNIST images are normalized to between 0 and 1 during training and testing. Notice that adding an extra
inequality constraint 0 ≤ u0 · u1 ≤ 1 does not alter any theoretical results in this paper as it only add an extra term to s1 in
the slack matrix S(y, z).

Simplify constraints in (BM-r) In our practical implementation, we fix u0 to 1 in (BM-r). The reason is twofold. First,
by fixing u0 = 1, most constraints in (BM-r) become linear, and hence reduces the time complexity of our algorithm
significantly. Second, the dual variable z0, which is associated with the constraint u0 = 1, can be solved via the KKT
condition S(x, y)U = 0.

A.1. Efficient formulation of BM for ℓ2 norm

We now turn to the practical aspect of implementing our proposed method BM. In particular, to verify ℓ2 adversaries of
neural networks trained on MNIST dataset, we solve (BM-r) in the following form

ϕr[c] = min
u,V

wT
ℓ uℓ (BM-ℓ2)

s.t. ∥u1 − x̂∥2 + ∥V1∥2 ≤ ρ2, (y0)

u1 ≥ 0, u1 ≤ 1 (y0,1, y0,2)

uk+1 ≥ 0, uk+1 −Wkuk − bk ≥ 0, (yk,1, yk,2)

diag
[
(uk+1 −Wkuk − bk)uTk+1 + (Vk+1 −WkVk)V

T
k+1

]
= 0, (zk)

1 +
ℓ−1∑
k=1

(∥uk∥2 + ∥Vk∥2) ≤ R2, (µ)

for k ∈ {1, . . . , ℓ − 1}. Notice that we have substituted u0 = 1, added the valid input set constraints u1 ≥ 0 and u1 ≤ 1,
and assigned their associated dual variable y0,1 and y0,2. In Definition A.1, we summarized how to evaluate the slack
matrices S(y, z) and the dual variable z0 in (SDD) using the primal and dual solution of (BM-ℓ2) in order to calculate the
bound in Proposition 3.1.

Definition A.1. Let y = (y0, {yk,1, yk,2}ℓ−1
k=0) , z = ({zk}ℓ−1

k=1), u = (u1, . . . , uℓ) and V = (V1, . . . , Vℓ) be any certifiably
first-order optimal point of (BM-ℓ2). Each component in the slack matrices S(y, z) and the dual variable z0 in (SDD) can
be evaluated as

s0 = −
ℓ∑

k=1

sTk uk, z0 = y0(∥x̂∥2 − ρ2)− 1T y0,2 +
ℓ−1∑
k=1

bTk yk,2 −
1

2
s0,

s1 =WT
1 y1,2 − 2x̂y0 − y0,1 + y0,2, sℓ = wℓ − [Zℓ−1bℓ−1 + yℓ−1,1 + yℓ−1,2] ,

sk+1 =WT
k+1yk+1,2 − (Zkbk + yk,1 + yk,2) for k ∈ {1, . . . , ℓ− 2},

S1,1 = 2y0I, Sk,k+1 = −WT
k Zk, Sk+1,k+1 = 2Zk for k ∈ {1, . . . , ℓ− 1},

where Zk = diag(zk) for all k.
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A.2. Efficient formulation of BM-Full for ℓ2 norm

We now describe the practical formulation for BM-Full. Let lbk and ubk denote the lower bound and the upper bound
on preactivation neurons in the k-th layer. lbk and ubk gives us the postactivation bound constraints max{lbk, 0} ≤ xk ≤
max{ubk, 0} for each postactivation neuron xk in (SDP-r) . To incorporate these bound constraints into (BM-r), we
first rewrite each of them into an elementwise ℓ2 constraint for which eTi xk is restricted in a ℓ2 norm ball centered at
1
2e

T
i (max{ubk, 0}+max{lbk, 0}) with radius 1

2e
T
i (max{ubk, 0} −max{lbk, 0}) as in

max{lbk, 0} ≤ xk ≤ max{ubk, 0} ⇐⇒ ∥eTi xk − eTi x̂k∥2 ≤ ρ2k for all i ∈ {1, . . . , nk}

where x̂k = 1
2 (max{ubk, 0} + max{lbk, 0}) and ρk = 1

2 (max{ubk, 0} − max{lbk, 0}). The above elementwise ℓ2
constraint has the following Burer-Monteiro formulation

diag
[
(uk+1 − x̂k+1) (uk+1 − x̂k+1)

T
+ Vk+1V

T
k+1

]
≤ ρ2k+1

for k ∈ {1, . . . , ℓ − 1}. In turn, to verify neural networks trained on MNIST dataset with respect to ℓ2 perturbation, we
add the above bound constraints into (BM-r) and solve the following

ϕr[c] = min
u,V

wT
ℓ uℓ (BM-Full-ℓ2)

s.t. ∥u1 − x̂∥2 + ∥V1∥2 ≤ ρ2, (y0)

u1 ≥ 0, u1 ≤ 1 (y0,1, y0,2)

diag
[
(uk+1 − x̂k+1) (uk+1 − x̂k+1)

T
+ Vk+1V

T
k+1

]
≤ ρ2k+1 (yk)

uk+1 −Wkuk − bk ≥ 0, (yk,2)

diag
[
(uk+1 −Wkuk − bk)uTk+1 + (Vk+1 −WkVk)V

T
k+1

]
= 0, (zk)

1 +

ℓ−1∑
k=1

(∥uk∥2 + ∥Vk∥2) ≤ R2, (µ)

for k ∈ {1, . . . , ℓ − 1}. Notice that we delete the constraints uk ≥ 0 because they overlap with the bound constraints
max{lbk, 0} ≤ uk. In Definition A.2, we summarized how to evaluate the slack matrices S(y, z) and the dual variable z0
in (SDD) using the primal and dual solution of (BM-Full-ℓ2) in order to calculate the bound in Proposition 3.1.

Definition A.2. Let y = (y0, y0,1, y0,2, {yk, yk,2}ℓ−1
k=1) , z = ({zk}ℓ−1

k=1), u = (u1, . . . , uℓ) and V = (V1, . . . , Vℓ) be any
certifiably first-order optimal point of (BM-Full-ℓ2). Each component in the slack matrices S(y, z) and the dual variable
z0 in (SDD) can be evaluated as

s0 = −
ℓ∑

k=1

sTk uk, z0 = y0(∥x̂∥2 − ρ2) +
ℓ−1∑
k=1

yTk (x̂
2
(k+1) − ρ

2
(k+1))− 1T y0,2 +

ℓ−1∑
k=1

bTk yk,2 −
1

2
s0,

s1 =WT
1 y1,2 − 2x̂y0 − y0,1 + y0,2, sℓ = wℓ −

[
Zℓ−1bℓ−1 + 2X̂ℓyℓ−1 + yℓ−1,2

]
,

sk+1 =WT
k+1yk+1,2 −

(
Zkbk + 2X̂k+1yk + yk,2

)
for k ∈ {1, . . . , ℓ− 2},

S1,1 = 2y0I, Sk,k+1 = −WT
k Zk, Sk+1,k+1 = 2(Zk + X̂k) for k ∈ {1, . . . , ℓ− 1},

where Zk = diag(zk) and X̂k = diag(x̂k) for all k.

A.3. Efficient formulation of BM for ℓ∞ norm

We now describe how to implement BM for verifying ℓ∞ adversaries. In the case of MNIST image, the ℓ∞ norm ball
constraint on the input x1, i.e. ∥x1 − x̂∥∞ ≤ ρ, can be combined with the valid input set constraints 0 ≤ x1 ≤ 1.
Specifically, combining the two constraints yields: max{0, x̂ − ρ} ≤ x1 ≤ min{1, x̂ + ρ}. Similar to the postactivation
bound constraints in BM-Full, this constraint can be written as an elementwise ℓ2 norm constraint as in

max{0, x̂− ρ} ≤ x1 ≤ min{1, x̂+ ρ} ⇐⇒ ∥eTi x1 − eTi x̂1∥2 ≤ ρ21 for all i ∈ {1, . . . , n1}
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where x̂1 = 1
2 (min{1, x̂ + ρ} + max{0, x̂ − ρ}) and ρ1 = 1

2 (min{1, x̂ + ρ} − max{0, x̂ − ρ}). The above constraint
yields the following Burer-Monteiro formulation

diag
[
(u1 − x̂1) (u1 − x̂1)T + V1V

T
1

]
≤ ρ21

In turn, to verify neural networks train on MNIST with respect to ℓ∞ perturbation, we solve (BM-r) in the following form

ϕr[c] = min
u,V

wT
ℓ uℓ (BM-ℓ∞)

s.t. diag
[
(u1 − x̂1) (u1 − x̂1)T + V1V

T
1

]
≤ ρ21, (y0)

uk+1 ≥ 0, uk+1 −Wkuk − bk ≥ 0, (yk,1, yk,2)

diag
[
(uk+1 −Wkuk − bk)uTk+1 + (Vk+1 −WkVk)V

T
k+1

]
= 0, (zk)

1 +
ℓ−1∑
k=1

(∥uk∥2 + ∥Vk∥2) ≤ R2, (µ)

for k ∈ {1, . . . , ℓ − 1}. Notice that the ℓ∞ norm constraint, i.e. ∥u1 − x̂∥∞ ≤ ρ, has been combined with the valid input
set constraint, i.e. 0 ≤ u1 ≤ 1. In Definition A.3, we summarized how to evaluate the slack matrices S(y, z) and the dual
variable z0 in (SDD) using the primal and dual solution of (BM-ℓ∞) in order to calculate the bound in Proposition 3.1.

Definition A.3. Let y = (y0, {yk,1, yk,2}ℓ−1
k=1) , z = ({zk}ℓ−1

k=1), u = (u1, . . . , uℓ) and V = (V1, . . . , Vℓ) be any certifiably
first-order optimal point of (BM-ℓ∞). Each component in the slack matrices S(y, z) and the dual variable z0 in (SDD) can
be evaluated as

s0 = −
ℓ∑

k=1

sTk uk, z0 = yT0 (x̂
2
1 − ρ21) +

ℓ−1∑
k=1

bTk yk,2 −
1

2
s0,

s1 =WT
1 y1,2 − 2Y0x̂, sℓ = wℓ − [Zℓ−1bℓ−1 + yℓ−1,1 + yℓ−1,2] ,

sk+1 =WT
k+1yk+1,2 − (Zkbk + yk,1 + yk,2) for k ∈ {1, . . . , ℓ− 2},

S1,1 = 2Y0, Sk,k+1 = −WT
k Zk, Sk+1,k+1 = 2Zk for k ∈ {1, . . . , ℓ− 1},

where Zk = diag(zk) for all k. Y0 = diag(y0).

A.4. Efficient formulation of BM-Full for ℓ∞ norm

Combine the results in A.2 and A.3, to verify ℓ∞ adversaries via BM-Full, we solve (BM-r) in the following form

ϕr[c] = min
u,V

wT
ℓ uℓ (BM-Full-ℓ∞)

s.t. diag
[
(u1 − x̂1) (u1 − x̂1)T + V1V

T
1

]
≤ ρ21, (y0)

diag
[
(uk+1 − x̂k+1) (uk+1 − x̂k+1)

T
+ Vk+1V

T
k+1

]
≤ ρ2k+1 (yk)

uk+1 −Wkuk − bk ≥ 0, (yk,2)

diag
[
(uk+1 −Wkuk − bk)uTk+1 + (Vk+1 −WkVk)V

T
k+1

]
= 0, (zk)

1 +
ℓ−1∑
k=1

(∥uk∥2 + ∥Vk∥2) ≤ R2, (µ)

for k ∈ {1, . . . , ℓ − 1}, where x̂1 and ρ1 are defined in Appendix A.3. x̂k and ρk for k ∈ {2, . . . , ℓ − 1} are defined
in Appendix A.2. Notice that we also delete the constraints uk ≥ 0 because they overlap with the bound constraints
max{lbk, 0} ≤ uk. In Definition A.4, we summarized how to evaluate the slack matrices S(y, z) and the dual variable z0
in (SDD) using the primal and dual solution of (BM-Full-ℓ∞) in order to calculate the bound in Proposition 3.1.

Definition A.4. Let y = (y0, {yk, yk,2}ℓ−1
k=1) , z = ({zk}ℓ−1

k=1), u = (u1, . . . , uℓ) and V = (V1, . . . , Vℓ) be any certifiably
first-order optimal point of (BM-Full-ℓ∞). Each component in the slack matrices S(y, z) and the dual variable z0 in (SDD)
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can be evaluated as

s0 = −
ℓ∑

k=1

sTk uk, z0 =
ℓ−1∑
k=0

yTk (x̂
2
(k+1) − ρ

2
(k+1)) +

ℓ−1∑
k=1

bTk yk,2 −
1

2
s0,

s1 =WT
1 y1,2 − 2Y0x̂, sℓ = wℓ −

[
Z(ℓ−1)b(ℓ−1) + 2X̂ℓyℓ−1 + y(ℓ−1),2

]
,

sk+1 =WT
k+1y(k+1),2 −

(
Zkbk + 2X̂k+1yk + yk,2

)
for k ∈ {1, . . . , ℓ− 2},

S1,1 = 2Y0, Sk,(k+1) = −WT
k Zk, S(k+1),(k+1) = 2(Zk + X̂k) for k ∈ {1, . . . , ℓ− 1},

where Zk = diag(zk) and X̂k = diag(x̂k) for all k. Y0 = diag(y0).

A.5. Efficient algorithm for solving BM and BM-Full

The efficient formulations described in Appendix A.1 to A.4 can be efficiently solved using a similar procedure described
in Algorithm 1. In this section, we focus our attention on the practical and efficient algorithm for solving (BM-ℓ2). We
start by describing the initialization scheme for the primal variables uk and Vk in (BM-ℓ2), and then we summarize the
efficient procedure for solving (BM-ℓ2) in Algorithm 2. Notice that Algorithm 2 can be easily extended for (BM-Full-ℓ2),
(BM-ℓ∞) and (BM-Full-ℓ∞).

Initialize the primal variables. We initialize each uk and Vk in (BM-ℓ2) as close to their optimal as possible, which can
be done as follows. First, apply PGD to estimate x1, . . . , xℓ in the following semi-targeted attack problem (A-ℓ2), which is
the original semi-targeted attack problem (A) with the valid input set constraint

ϕ[c] = min
x1,...,xℓ

wT
ℓ xℓ s.t. xk+1 = max{0,Wkxk + bk}, 0 ≤ x1 ≤ 1, ∥x1 − x̂∥ ≤ ρ. (A-ℓ2)

Second, initialize each uk to xk; notice that since (BM-ℓ2) is a nonconvex relaxation of (A-ℓ2), xk would usually be a good
initialization for uk. Finally, initialize each Vk to a random matrix that has small elements. The reason for applying small
initialization to each Vk is to reduce the degree of constraint violation at the initial point.

Algorithm 2 Efficient algorithm for (BM-ℓ2)
Input: Initial relaxation rank r ≥ 2. Weights W1, . . . ,Wℓ and biases b1, . . . , bℓ. Original input x̂, true label ĉ, target label
c, and perturbation size ρ. Variable radius bound R.
Output: Lower-bound ϕlb[c] ≤ ϕ[c] on the optimal value of the semi-targeted attack problem (A-ℓ2).
Initialization: Initialize primal variable x+ = ({xk}ℓk=1, {vec(Mk)}ℓk=1) where x1, . . . , xℓ are estimated by solving (A-
ℓ2) via PGD, and each Mk is a random matrix of small elements that has the same shape as Vk. Initialize dual variables
y = (y0, {yk,1, yk,2}ℓ−1

k=0) = 0 and z = ({zk}ℓ−1
k=1) = 0.

Algorithm:

1. (Solve rank-r relaxation) Warm-start the nonlinear solver with the initial point (x+, y, z), and then use the solver
to solve (BM-ℓ2) over x = ({uk}ℓk=1, {vec(Vk)}ℓk=1). After the solver converges, retrieve the corresponding dual
multipliers y and z. We choose knitro (Byrd et al., 2006) as the nonlinear solver in our experiment.

2. (Check certifiable first-order optimality) Let f(x), g(x), and h(x) denote the objective, the inequality constraints
associated with y, and the equality constraints associated with z in (BM-ℓ2), respectively. If ∥∇f(x) + ∇g(x)y +
∇h(x)z∥ is sufficiently small, and if g(x) ≤ 0, h(x) = 0 and 1+∥x∥ < R hold to sufficient tolerance, then continue.
Otherwise, return error due to solver’s inability to achieve certifiable first-order optimality.

3. (Check dual feasibility) Compute S(y, z) and z0 using the formula in Definition A.1. If ϵfeas = −λmin[S(y, z)] is
sufficiently small, then return ϕlb[c] = z0 − ϵfeas ·R2. Otherwise, continue.

4. (Escape lifted saddle point) Compute the eigenvector ξ = (0, ξ1, . . . , ξℓ) satisfying ∥ξ∥ = 1 and ξTS(y, z)ξ = −ϵfeas.
Set up new primal initial point x+ = ({uk}ℓk=1, {vec(V+,k)}ℓk=1) where V+,k = [Vk, 0] + ϵ · [0, ξk]. Increment
r ← r + 1 and repeat Step 1 with (x+, y, z) as the initial point.
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B. Additional experiment for ℓ2 norm
Model architectures In this experiment, we consider three deepter feedforward ReLU networks trained on MNIST
dataset: MLP-4×100, MLP-6×100 and MLP-9×100. All three networks are adversarially trained using (Madry et al.,
2018) with ℓ∞ radius equals to 0.15. MLP-4×100 has 4 hidden layers of 100 neurons each. MLP-6×100 has 6 hidden
layers of 100 neurons each. MLP-9×100 has 9 hidden layers of 100 neurons each.

B.1. Tightness plots for deeper neural networks

It is known that the relaxation gap generally increases along with the number of layers in the neural network. To demon-
strate the performance of our proposed methods in deeper networks, in this experiment, we measure the relaxation gap of
BM-Full and BM with respect to models of three different depths.

Results and discussions. Figure 3 plots the average bounds against ℓ2 perturbation radius for three MNIST networks with
4, 6, 9 hidden layers of 100 neurons each. Notably, BM become loose for MLP-6×100 and become looser than LP-Full
for MLP-9×100. This result is expected and is consistent with Zhang (2020); in particular, the SDP relaxation for ReLU
gate, without any bound constrains on preactivations, does become loose for multiple layers. On the other hand, BM-Full
remain significantly tighter than LP-Full for all cases. Furthermore, since the preactivation bounds used in BM-Full
and LP-Full are the same in this experiment, Figure 2 and Figure 3 suggest that with the same quality of preactivation
bounds, BM-Full would yield a tighter relaxation than LP-Full. Based on this finding, we note that the preactivation
bounds for BM-Full can also be computed via nonconvex relaxation methods, which should yield a tighter bound on
the preactivations and hence further reduces the relaxation gap for BM-Full; one example would be recursively apply
BM-Full to compute the upper and lower bound on each neuron, however, such method can be extremely computational
expensive for small to medium size networks. We leave BM-Full with better preactivation bounds to our future work.

Figure 3: Lower bound on (A) with different network depth (ℓ2 norm). We compute the average lower bound on (A)
for three models with 4, 6, 9 hidden layers of 100 neurons each, respectively. The upper bound on robustness margin is
estimated via PGD. Observe that the gap between the PGD upper bound and lower bound from BM-Full are significantly
smaller than that from LP-Full. We note that without bound propagations, BM does get loose when the number of hidden
layers is more than 6. (Left.) MLP-4×100. (Middle.) MLP-6×100. (Right.) MLP-9×100.

B.2. Visualizing adversarial attacks and robustness verification

To illustrate why robustness verification is important in image classification, in this experiment, we perform a case study
based on an image in the test set using the model ADV-MNIST. In particular, we focus on showing how would the ℓ2

5We train all three models using the code available at https://github.com/locuslab/convex_adversarial/blob/
master/examples/mnist.py
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adversaries look like in practice for four perturbation radius ρ ∈ {0.5, 1.0, 1.7, 2.0}, as well as their corresponding lower
bound on (A) computed from our nonconvex and LP-based verifiers. We choose ℓ2 norm over ℓ∞ norm for this experiment
because ℓ2 norm allows perturbations to be concentrated on a small group of pixels, which produces adversaries that are
more perceptually consistent to the original dataset when the perturbation radius is large.

Results and discussions. Figure 4 shows: the adversarial attacks targeting the second most probable class of a MNIST
image of class "1"; the probability of the top-2 classes for the attacked image (calculated using the softmax function); the
PGD upper bound; and the lower bounds from different verifiers. For the MNIST image shown in the figure, the second
most probable class is "7", and its adversarial attacks are computed via PGD.

The first and second column of Figure 4 correspond to attacks within two small ℓ2 perturbation radius ρ ∈ {0.5, 1.0}.
We see that every verifiers is able to verify robustness for ρ = 0.5, however, only BM-Full and BM are able to verify
robustness for ρ = 1.0, all the other verifiers fail because their corresponding lower bounds become loose. In both cases,
the adversaries look really similar to the original image.

The third and fourth column of Figure 4 correspond to attack within two large ℓ2 perturbation radius ρ ∈ {1.7, 2.0}. Notice
that BM-Full and BM can still verify robustness for ρ = 1.7 even though the image is at the boundary of becoming not
robust. In addition, the image is not robust for ρ = 2.0 as the PGD upper bound is negative. Notably, both images start
gaining features of the digit "7".

Figure 4: Visualizing ℓ2 adversarial examples for ADV-MNIST. We take an image in the test set to compare the capability
of different verifiers for certifying robustness within four different ℓ2 radius ρ ∈ {0.5, 1.0, 1.7, 2.0}. Each column in the
figure shows (left to right): (Column 1.) The image is robust for ρ = 0.5, and it can be certified by all verifiers. (Column
2.) The image is robust for ρ = 1.0, but it can only be certified by our verifiers, BM-Full and BM. (Column 3.) The
image is closed to become not robust for ρ = 1.7, but it can still be certified by our verifiers. (Column 4.) The image is
not robust for ρ = 2.0.
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C. Additional experiment for ℓ∞ norm
In this section, we apply BM and BM-Full to perform the same experiments in Section 5 and Appendix B.1 with respect to
ℓ∞ perturbation. Similar to the experimental results for ℓ2 perturbation, we set the preactivation bounds in BM-Full to be
the same as those in LP-Full. The neural network models used in this section are defined in Section 5 and Appendix B.

C.1. Robust verification for ℓ∞ adversaries

We apply BM and BM-Full to verify robustness of the first 1000 correctly classified images. The simulation settings in
this experiment are the same as those in Table 1.

Results and discussions. Table 2 shows the number of images certified as robust within the first 1000 correctly classified
images. We see that BM-Full is able to consistently outperform LP-based verifiers in all cases. BM outperforms LP-Full
in ADV-MNIST and NOR-MNIST but achieves similar performance in LPD-MNIST. This is because LPD-MNIST is
robustly trained by maximizing dual lower bound of LP relaxation over a convex outer polytope (Wong & Kolter, 2018);
therefore, LP-based verifiers tend to work well for models that are robustly trained using this method. However, we note
that even though models that are trained using Wong & Kolter (2018) may be efficiently verified via LP-based verifiers, the
robust training method of Wong & Kolter (2018) is generally more conservative than the method of Madry et al. (2018) as
it is optimized over a convex outer polytope, which results in lower test accuracy in the final model. In this experiment,
LPD-MNIST, the model that is trained using Wong & Kolter (2018), has test accuracy 95.91%, and ADV-MNIST, the
model that is trained using Madry et al. (2018) has accuracy 96.67%. The performance of our verifiers, BM-Full and BM,
is invariant to both robust training methods and achieve similar level of tightness with respect to all three model in Table 2.
We provide a thorough analysis on the tightness of BM-Full and BM in the next experiment.

Table 2: Robustness verification for neural networks. We compare the number of images certified as robust by
BM-Full, BM, α, β-CROWN, LP-Full, CROWN-Ada and Fast-Lip within the first 1000 images for normally and
robustly trained networks. The upper bound (denoted as UB) on the true number of robust images is obtained by PGD.

Network ℓ∞ Radius PGD BM-Full BM α, β-CROWN LP-Full CROWN-Ada Fast-Lip

UB Robust Time Robust Time Robust Time Robust Time Robust Time Robust Time

ADV-MNIST 0.10 831 791 87s 760 124s 791 2s 314 16s 8 10ms 4 13ms
ADV-MNIST 0.13 731 632 102s 574 144s 673 11s 46 17s 1 9ms 0 13ms
ADV-MNIST 0.15 626 484 127s 366 125s 535 22s 11 15s 0 9ms 0 14ms

LPD-MNIST 0.10 868 855 125s 828 163s 818 0.2s 829 13s 589 12ms 540 10ms
LPD-MNIST 0.13 791 768 104s 713 126s 743 0.2s 689 13s 154 10ms 120 11ms
LPD-MNIST 0.15 727 672 120s 597 132s 672 0.3s 545 12s 43 9ms 32 12ms

NOR-MNIST 0.02 910 898 99s 859 116s 881 1.4s 686 3s 130 9ms 88 12ms
NOR-MNIST 0.03 775 729 143s 617 107s 713 16s 278 4s 8 8ms 3 12ms
NOR-MNIST 0.05 401 267 229s 127 154s 238 43s 10 5s 0 12ms 0 17ms

C.2. Tightness plots

We apply BM-Full and BM to compute the average lower bound on (A) with respect to ℓ∞ perturbation radius. The
simulation settings in this experiment are the same as those in Figure 2.

Results and discussions. As demonstrated in Figure 5, both BM-Full and BM achieve tighter lower bound than the LP-
based verifiers for all three models, across a wide range of ℓ∞ perturbation radius. However, the gap between BM (green
line) and LP-Full (blue line) is a lot smaller in LPD-MNIST compared to NOR-MNIST and ADV-MNIST, especially
within the interval of 0.1 to 0.15. This explains why BM and LP-Full achieve similar performance for LPD-MNIST in
Table 2.
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Figure 5: Lower bounds on the robustness margin. We take BM-Full, BM, LP-Full, CROWN-Ada and Fast-Lip
to compute their average lower bound on (A), and then compare them to the average PGD upper bound on (A) over a wide
range of ℓ∞ perturbation radius. (Left.) NOR-MNIST. (Middle.) ADV-MNIST. (Right.) LPD-MNIST.

C.3. Tightness plots for deeper neural networks

We apply BM-Full and BM to compute the average lower bound on (A) for three robustly trained MNIST models of
different depths. The simulation settings in this experiment are the same as those in Figure 3.

Results and discussions. We plot the average lower bound on (A) for three MNIST models of different depths. Similar
to the results in Figure 3, we see that BM becomes loose when the network has more than 6 layers; this is expected as SDP
relaxation, without any bound propagation, does become loose for multiple layers (Zhang, 2020). Though BM becomes
loose in deeper networks, BM-Full remains significantly tighter than LP-Full in all cases. We again emphasize that the
preactivation bounds used in BM-Full are the same as those in LP-Full in this experiment, and those bounds could be
tighten by using the nonconvex relaxation techniques proposed in this paper. We defer it to our future work.

Figure 6: Lower bound on (A) with different network depth (ℓ∞ norm). We compute the average lower bound on
(A) for three models with 4, 6, 9 hidden layers of 100 neurons each, respectively. Observe that BM-Full is significantly
tighter than LP-Full in all cases. We note that without bound propagations, BM does become loose when the number of
hidden layers is more than 6. (Left.) MLP-4×100. (Middle.) MLP-6×100. (Right.) MLP-9×100.
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D. Derivation of the dual problem (SDD)
Recall that primal problem (SDP-r) is written (with the corresponding Lagrange multipliers given in parantheses) as the
following

ϕr[c] = min
X∈Sn+1

wT
ℓ xℓ + w0x0 (SDP-r)

s.t. tr(X1,1)− 2xT1 x̂+ x0∥x̂1∥2 ≤ x0ρ2, x0 = 1 (y0, z0)

xk+1 ≥ 0, xk+1 ≥Wkxk + bkx0, (yk,1, yk,2)

diag(Xk+1,k+1 −WkXk,k+1 − bkxTk+1) = 0 (zk)

tr(X) ≤ R2, (µ)

X =


x0 xT1 · · · xTℓ
x1 X1,1 · · · X1,ℓ

...
...

. . .
...

xℓ XT
1,ℓ · · · Xℓ,ℓ

 ⪰ 0, rank(X) ≤ r. (S)

for all k ∈ {1, . . . , ℓ− 1}. This problem can be viewed as a generic instance of the following primal problem

min
X⪰0, rank(X)≤r

⟨F,X⟩ s.t. G0(X) ≤ 0, Gk(X) ≤ 0, H0(X) + 1 = 0, Hk(X) = 0, tr(X) ≤ R2

for all k ∈ {1, . . . , ℓ − 1}. Here, we implicitly define F to satisfy ⟨F,X⟩ = wT
ℓ xℓ + w0x0 and the linear constraint

operators are respectively

G0(X) = tr(X1,1)− 2xT1 x̂+ (∥x̂∥2 − ρ2)x0, Gk(X) =

[
−xk+1

Wkxk + bkx0 − xk+1

]
,

H0(X) = −x0, Hk(X) = diag(Xk+1,k+1 −WkXk,k+1 − bkxTk+1).

Notice that S is the dual variable associated with constraint X ⪰ 0 that satisfies S ⪰ 0 and rank(X) + rank(S) ≤ n+ 1
at optimality. Setting y = (y0, {yk,1, yk,2}ℓ−1

k=1) > 0, z = ({zk}ℓ−1
k=1) and µ ≤ 0, the Lagrangian of (SDP-r) reads

L (X, y, z, µ, S) = ⟨F,X⟩+ ⟨z0,H0(X) + 1⟩+ ⟨y0,G0(X)⟩+
ℓ−1∑
k=1

[〈[
yk,1

yk,2

]
,Gk(X)

〉
+ ⟨zk,Hk(X)⟩

]
− µ(trX −R2)− ⟨S,X⟩

= z0 +R2µ+

〈
F + GT0 (y0) +HT

0 (z0) +
ℓ−1∑
k=1

[
GTk (yk,1, yk,2) +HT

k (zk)
]
− S − µI,X

〉
= z0 +R2µ+ ⟨S(x, y)− S − µI,X⟩

where we use the superscript “T ” to indicate the adjoint operators. Setting S = S(x, y)− µI ⪰ 0 yields the dual problem

max
y≥0, z, µ≤0

z0 +R2µ s.t. S(y, z) ⪰ µI. (SDD)

Finally, we derive an explicit expression for the slack matrix

S(y, z) ≡ 1

2



s0 sT1 sT2 · · · sTℓ
s1 S1,1 S1,2

s2 ST
1,2 S2,2

. . .
...

. . . . . . Sℓ−1,ℓ

sℓ ST
ℓ−1,ℓ Sℓ,ℓ


= F + GT0 (y0) +HT

0 (z0) +
ℓ−1∑
k=1

[
GTk (yk,1, yk,2) +HT

k (zk)
]
.
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Here, we write out the adjoint operators in terms of the scalar, vector, and matrix components of X:

⟨X,F ⟩ = x0 · w0 + ⟨xℓ, wℓ⟩〈
X,HT

0 (z0)
〉
= x0 · (−z0)〈

X,GT0 (y0)
〉
= x0 · y0(∥x̂∥2 − ρ2) + ⟨x1,−2y0x̂⟩ + ⟨X1,1, y0I⟩〈

X,GTk (yk,1, yk,2)
〉
= x0 · yTk,2bk +

〈[
xk

xk+1

]
,

[
WT

k yk,2

−(yk,1 + yk,2)

]〉
〈
X,HT

k (zk)
〉
= + ⟨xk+1,−Zkbk⟩ +

〈[
Xk,(k+1)

X(k+1),(k+1)

]
,

[
−WT

k Zk

Zk

]〉

where Zk = diag(zk). Isolating the scalar terms x0, we obtain the expression for s0

s0 = 2

[
w0 + y0(∥x̂∥2 − ρ2) +

ℓ−1∑
k=1

bTk yk,2 − z0

]

Isolating the vector terms x1, x2, . . . , xℓ, we see that the following indeed holds for s1, . . . , sℓ

s1 =WT
1 y1,2 − 2x̂y0, sℓ = wℓ −

[
Z(ℓ−1)b(ℓ−1) + y(ℓ−1),1 + y(ℓ−1),2

]
,

sk+1 =WT
k+1y(k+1),2 − (Zkbk + yk,1 + yk,2) for k ∈ {1, . . . , ℓ− 2}.

Finally, isolating the matrix terms Xi,j for i, j ∈ {1, . . . , ℓ}, we have

S1,1 = 2y0I, Sk,k+1 = −WT
k Zk, Sk+1,k+1 = 2Zk for k ∈ {1, . . . , ℓ− 1}.

E. Proof of the Main Results
E.1. Proof of Proposition 3.1: the dual lower bounds for (SDP-r)

Recall from the previous section, we have rewritten (SDP-r) into the following generic form

min
X⪰0, rank(X)≤r

⟨F,X⟩ s.t. G0(X) ≤ 0, Gk(X) ≤ 0, H0(X) + 1 = 0, Hk(X) = 0, tr(X) ≤ R2

Now we are ready to prove Proposition 3.1.

Proof. Let X⋆ denote the global solution of (SDP-r) with rank r ≥ 1 and tr(X) ≤ R2. Then, for any dual multipliers
y = (y0, {yk,1, yk,2}ℓ−1

k=1) and z = (z0, {zk}ℓ−1
k=1) that satisfy y ≥ 0, we have

ϕ[c] ≥ ϕr[c] = ⟨F,X⋆⟩

=

〈
S(x, y)− GT0 (y0)−HT

0 (z0)−
ℓ−1∑
k=1

[
GTk (yk,1, yk,2) +HT

k (zk)
]
, X⋆

〉

= ⟨S(x, y), X⋆⟩ −

〈
G0(X⋆)

...
Gℓ−1(X

⋆)

 , y
〉

︸ ︷︷ ︸
≤0

−

〈
H0(X

⋆)
...

Hℓ−1(X
⋆)

 , z
〉

︸ ︷︷ ︸
=−z0

≥ z0 + ⟨S(x, y), X⋆⟩
≥ z0 +R2 ·min{0, λmin[S(y, z)]}.
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E.2. Proof of the dual lower bound for (BM-r)

we start by putting (BM-r) into the standard-form of nonlinear program (NLP). In the previous section, we have rewritten
the original SDP problem (SDP-r) in the following generic form

min
X⪰0, rank(X)≤r

⟨F,X⟩ s.t. G0(X) ≤ 0, Gk(X) ≤ 0, H0(X) + 1 = 0, Hk(X) = 0, tr(X) ≤ R2

Since every (n+1)× (n+1) positive semidefinite matrix X of rank at most r admits an (n+1)×n+1 lower-triangular
Cholesky factorization U that satisfies X = UUT . Substituting

X =

[
u20 u0 · uT

u0 · u uuT + V V T

]
=


u0 0

u1 V1
...

...
uℓ Vℓ



u0 0

u1 V1
...

...
uℓ Vℓ


T

= UUT ,

as in (1), we obtain the generic form of our proposed Burer–Monteiro formulation (BM-r)

min
∥U∥≤R

〈
F,UUT

〉
s.t. G0(UUT ) ≤ 0, Gk(UUT ) ≤ 0, H0(UU

T ) + 1 = 0, Hk(UU
T ) = 0.

To solve (BM-r) as an instance of the standard-form nonlinear program (NLP). Define

x ≡



u0

u1
...
uℓ

vec(V1)
...

vec(Vℓ)


, f(x) ≡

〈
F,UUT

〉
, g(x) ≡


G0(UUT )

G1(UUT )
...

Gℓ−1(UU
T )


︸ ︷︷ ︸

G(UUT )

, h(x) ≡


H0(UU

T )

H1(UU
T )

...
Hℓ−1(UU

T )


︸ ︷︷ ︸

H(UUT )

+


1

0
...
0


︸︷︷︸
h0

we obtain the standard-form of nonlinear program (NLP)

min
∥x∥≤R

f(x) s.t. g(x) ≤ 0, h(x) = 0.

Similar to the previous section, let y ≥ 0, z and µ ≤ 0 denote the Lagrangian multiplier associated with g(x) ≤ 0,
h(x) = 0 and ∥x∥2 ≤ R2, respectively. The corresponding Lagrangian function reads

L (x, y, z, µ) = f(x) + yT g(x) + zTh(x)− µ(∥x∥2 −R2) = z0 + µR2 +
〈
S(x, y)− µI, U(x)U(x)T

〉
(2)

where S(y, z) = F + GT (y) +HT (z) and U(x) is a matricization operator

U(x) ≡ U(u0, u, vec(V )) =

[
u0 0

u V

]
.

General-purpose nonlinear programming solvers work by computing a feasible primal point x and dual multipliers y, z, µ
that satisfy the first-order optimality condition (known as the Karush–Kuhn–Tucker (KKT) conditions)

∇xL (x, y, z, µ) = 0, y ≥ 0, y ⊙ g(x) = 0, µ ≤ 0, µ · (∥x∥2 −R2) = 0, (FOC)

and also attempt to achieve the second-order optimality condition (known as the projected Hessian condition)

ẋT∇2
xxL (x, y, z, µ)ẋ ≥ 0 for all ẋ ∈ C(x, y) (SOC)
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in which the critical cone is defined

C(x, y) =


ẋ :

∇gi(x)T ẋ ≥ 0 for all i with gi(x) = 0,

∇gi(x)T ẋ = 0 for all i with yi > 0,

∇hi(x)T ẋ = 0 for all j,
2xT ẋ ≥ 0 if ∥x∥2 = R2,

2xT ẋ = 0 if µ < 0.


(3)

However, in the constrained optimization setting, a local minimum x⋆ does not need to satisfy (FOC) and (SOC)6. Solvers
tend to fail catastrophically when converging towards a point that does not satisfy (FOC) and (SOC), either by diverging
to infinity or cycling through nonsensical solutions. Instead, a notion of constraint qualification is required to ensure
convergence. Of all possibilities, the LICQ is one of the stronger conditions that allow strong guarantees to be made.
Definition E.1 (LICQ). We say that a given x satisfies the linear independence constraint qualification (LICQ) if the
following holds

∇g(x)y+∇h(x)z + 2µ · x = 0, g(x)⊙ y = 0, µ · (∥x∥2 −R2) = 0 ⇐⇒ y = 0, z = 0, µ = 0. (LICQ)

One of our main theoretical contribution in this paper is to state the conditions for a point x to satisfy (LICQ).
Lemma E.2 (LICQ for (BM-r)). If x satisfy the nonzero preactivation condition (NPCQ). Then, x satisfies (LICQ).

We defer the proof of Lemma E.2 to the Appendix F. Lemma E.2 implies that for every local minimum x⋆, there exists a
unique set of dual variables (y⋆, z⋆, µ⋆) such that (x⋆, y⋆, z⋆µ⋆) is guaranteed to satisfy (FOC) and (SOC); therefore, the
nonlinear programming solvers are guaranteed to work.
Corollary E.3 (Dual lower bound of (BM-r)). Let x⋆ = (u0, {uk}ℓ−1

k=1, {vec(Vk)}
ℓ−1
k=1) denote a local minimum for the

Burer–Monteiro problem (BM-r) that satisfy nonzero activation (NPCQ). Then, there exists an unique dual multipliers
y = (y0, {yk,1, yk,2}ℓ−1

k=1) and z = (z0, {zk}ℓ−1
k=1) that satisfy y ≥ 0 provide the following lower-bound

ϕ[c] ≥ ϕr[c] ≥ z0 +R2 ·min{0, λmin[S(y, z)]}.

Proof. If x⋆ is a local minimum for (BM-r) that satisfy nonzero activation (NPCQ). Then, it follows from Lemma E.2
that the point x is first-order optimal, and the corresponding KKT equations (FOC) yields a unique set of dual multipliers
(y, z, µ) that certify the above lower-bound on the global minimum.

E.3. Proof for Theorem 4.4: Escape lifted saddle point.

Now, let us explain how LICQ leads to our desired results in Theorem 4.4. We start by proving two technique lemmas
regarding the first- and second-optimality of (BM-r).
Lemma E.4 (First-order optimality). Let x = (u0, {uk}ℓ−1

k=1, {vec(Vk)}
ℓ−1
k=1) and y, z, µ satisfy ∇xL (x, y, z, µ) = 0.

Then, the slack matrix S(y, z) = F + GT (y) +HT (z) satisfies the following:

• S(y, z)U(x) = 0.

• S(y, z)− µI =

[
uT /u0

−I

]
(S2 − µI)

[
uT /u0

−I

]T

for some matrix S2.

Proof. Let S(y, z) =

[
s0 sT1
s1 S2

]
, the Lagrangian (2) can be written as the following

L (x, y, z, µ) = z0 + µR2 +

〈[
u0 0

u V

][
u0 0

u V

]T

,

[
s0 − µ sT1
s1 S2 − µI

]〉
= z0 + µ(R2 − u20) + u20s0 + 2u0s

T
1 u+

〈
uuT + V V T , S2 − µI

〉
.

6For an explicit counterexample, consider f(x) = x and g(x) = x2 and h(x) = 0.
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The condition∇xL (x, y, z, µ) = 0 is equivalent to setting the following three Jacobians to zero:

∂L

∂u0
= 2(u0(s0 − µ) + sT1 u),

∂L

∂u
= 2(u0s

T
1 + uT (S2 − µI)),

∂L

∂V
= 2V T (S2 − µI).

It follows by substituting the above into the equation below that

S(y, z)U(x) =

[
s0 − µ sT1
s1 S2 − µI

][
u0 0

u V

]
=

[
u0(s0 − µ) + sT1 u sT1 V

s1u0 + (S2 − µI)u (S2 − µI)V

]
= 0,

where sT1 V = 0 because sT1 = −uT (S2 − µI)/u0 and (S2 − µI)V = 0.

Similarly, substituting s0 = −sT1 u/u0 + µ and s1 = −(S2 − µI)u/u0 yields

S(x, y) =

[
s0 sT1
s1 S2

]
=

[
uT (S2 − µI)u/u20 + µ −uT (S2 − µI)/u0
−(S2 − µI)u/u0 S2

]
=

[
uT /u0

−I

]
(S2 − µI)

[
uT /u0

−I

]T

+ µI.

Lemma E.5 (Rank-deficient second-order optimality). Given y, z, let x = (u0, {uk}ℓ−1
k=1, {vec(Vk)}

ℓ−1
k=1) satisfy

∇xL (x, y, z, µ) = 0. If there exists unit vectors ψ ∈ Rr, ∥ψ∥ = 1 and (ξ0, ξ1) ∈ R × Rn, ∥(ξ0, ξ1)∥ = 1 such
that

V ψ = 0, 2

[
ξ0

ξ1

]T

(S(y, z)− µI)

[
ξ0

ξ1

]
= −γ < 0

where S(y, z) = F +GT (y)+HT (z), then the vector ẋ = (0, 0n, {vec(V̇k)}ℓ−1
k=1) with V̇k = [(uk/u0)ξ0− ξ1]ψT satisfies

∇g(x)T ẋ = 0, ∇h(x)T ẋ = 0, ẋT∇2
xxL (x, y, z)ẋ = −γ.

Proof. Note that in general, a function of the form f(x) =
〈
F,UUT

〉
with U(x) =

[
u0 0

u V

]
has directional derivatives

∇f(x)T ẋ =
〈
F,U(x)U(ẋ)

T
+ U(ẋ)U(x)T

〉
, ẋT∇2f(x)ẋ = 2

〈
F,U(ẋ)U(ẋ)T

〉
.

For our specific choice of ẋ, we can verify that

U(x)U(ẋ)T =

[
u0 0

u V

][
0 0

0 [(u/u0)ξ0 − ξ1]ψT

]T

=

[
0 0

0 V ψ[(u/u0)ξ0 − ξ1]T

]
= 0.

Since gi(x) =
〈
Gi, UU

T
〉

and hj(x) = h0,j +
〈
Hj , UU

T
〉

for some matrix Gi, Hj and scalar h0,j , it then follows that
∇gi(x)T ẋ = 0 and ∇hj(x)T ẋ = 0 for all i and j.

Next, given that the Lagrangian (2) is written

L (x, y, z, µ) = ⟨h0, z⟩+ µR2 +
〈
S(x, y)− µI, U(x)U(x)T

〉
,

For our specific choice of ẋ, the second-order directional derivative reads

ẋT∇2
xxL (x, y, z, µ)ẋ = 2

〈
S(x, y)− µI, U(ẋ)U(ẋ)T

〉
= 2

[
0

ξ2

]T

(S(x, y)− µI)

[
0

ξ2

]
.
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where ξ2 = (u/u0)ξ0 − ξ1. It follows from Lemma E.4 that for∇xL (x, y, z, µ) = 0, the slack matrix satisfies

S(x, y)− µI =

[
uT /u0

−I

]
(S2 − µI)

[
uT /u0

−I

]T

and therefore

2

[
0

ξ2

]T

(S(x, y)− µI)

[
0

ξ2

]
= 2

[
0

ξ2

]T [
uT /u0

−I

]
(S2 − µI)

[
uT /u0

−I

]T [
0

ξ2

]

= 2

[
ξ0

ξ1

]T [
uT /u0

−I

]
(S2 − µI)

[
uT /u0

−I

]T [
ξ0

ξ1

]

= 2

[
ξ0

ξ1

]T

(S(x, y)− µI)

[
ξ0

ξ1

]
= −γ.

Lemma E.6 (Critical cone). Let Ω denote a set of feasible points of (BM-r) where (LICQ) hold. If x ∈ Ω, and (y, z, µ)
satisfy (FOC), then there exists a continuously differentiable path x(t) with initial position x(0) = x that satisfies

f(x(t)) = L (x(t), y, z), x(t) ∈ Ω for all t ∈ [0, ϵ)

if and only if ẋ(0) ∈ C(x, y). Moreover, if g(x) and h(x) are k-times continuously differentiable, then x(t) is also k-times
continuously differentiable.

We are now ready to prove the escape result.

Proof. Let x be first-order optimal for (BM-r) with dual multipliers (y, z, µ). If x satisfies nonzero activation, and γ =
−λmin[S(y, z)− µI] > 0, then the eigenvector ξ = (ξ0, ξ1) that satisfies ξT (S(y, z)− µI)ξ = −γ∥ξ∥2 implicitly defines
an escape path

uk,+(t) = uk +O(t2), Vk,+(t) = [Vk, 0] + t · [0, (uk/u0)ξ0 − ξk] +O(t2)

so that x+(t) = (u0, u(t), V (t)) is feasible with sufficiently small t ≥ 0, and for which the objective makes a decrement
as follows

wT
ℓ uℓ,+(t) = wT

ℓ uℓ − 2t2γ +O(t3) for all t ∈ [0, ϵ).

F. Proof of Constraint Qualification
In this section, we provide the proof for Lemma E.2. Specifically, we show that the (LICQ) holds for (BM-r) under the
assumption of nonzero preactivation (NPCQ). Throughout this section, we assume R is chosen large enough such that
∥x∥ > R holds at optimality with a strict inequality, which in turn implies the corresponding dual variable µ = 0.

We start by showing that (LICQ) holds for single neuron and single layer ReLU networks.

Lemma F.1 (Single neuron). Define α0, α, α ∈ R and β, β,∈ Rr−1. Let x = (α0, α, α, β, β) satisfy g1(x) ≥ 0, g2(x) ≥ 0
and h1(x) = 0, where

g1(x) = α0α, g2(x) = α0(α− α− γα0), h1(x) = α(α− α− γα0) +
〈
β, β − β

〉
.

Suppose that α2
0 ̸= 1, α+ γα0 ̸= 0 and β ̸= 0. Then, the following holds

∇g1(x)y1 +∇g2(x)y2 +∇h1(x)z1 = 0, (4a)
g1(x)⊙ y1 = g2(x)⊙ y2 = 0, (4b)

if and only if y1 = y2 = z1 = 0.
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Proof. Explicitly computing the gradient terms in (4a), we can write (4a) and (4b) as the following

α α− α− 2γα0 −αγ
0 −α0 −α
α0 α0 2α− α− γα0

0 0 −β
0 0 2β − β
α0α 0 0

0 α0(α− α− γα0) 0



y1y2
z1

 = 0

The goal is to show that the above matrix has full column rank. To simplify our proof, we delete the first, the second and
the fourth row as these rows are obviously dependent to the the rest of the rows. Deleting those three rows reveals the
desired claim as equivalent to the following

α0 α0 2α− α− γα0

0 0 2β − β
α0α 0 0

0 α0(α− α− γα0) 0


y1y2
z1

 = 0 ⇐⇒

y1y2
z1

 = 0. (5)

Next, completing the square h1(x) = α(α− α− γα0) +
〈
β, β − β

〉
= ∥(α, β)− 1

2 (α+ γα0, β)∥2 − ∥ 12 (α+ γα0, β)∥2
reveals that

h1(x) = 0 =⇒ ∥(2α− α− γα0, 2β − β)∥ = ∥(α+ γα0, β)∥ (6)

If additionally α0α = max{0, α0(α+ γα0)}, i.e. when g1(x) = 0 or g2(x) = 0, or g1(x) = g2(x) = 0, then substituting
g1(x)g2(x) = α2

0α(α− α− γα0) = α(α− α− γα0) = 0 into (6) further yields

α0α = max{0, α0(α+ γα0)}, h1(x) = 0 =⇒ ∥2β − β∥ = ∥β∥. (7)

Finally, from |g1(x) − g2(x)| = |α0(α + γα0)| = |α + γα0| > 0, it follows that we cannot jointly have both g1(x) = 0
and g2(x) = 0 at the same time. We proceed by analyzing that (5) holds true for the other three cases one at a time:

• If g1(x) = 0 and g2(x) > 0, then y2 = 0. Substituting y2 = 0 into (5), it follows from ∥2β − β∥ = ∥β∥ > 0 via (7)
and α2

0 = 1 that  α0 2α− α− γα0

0 2β − β
α0α 0

[
y1

z1

]
= 0 ⇐⇒

[
y1

z1

]
= 0.

• If g1(x) > 0 and g2(x) = 0, then y1 = 0. Substituting y1 = 0 into (5), it again follows from ∥2β − β∥ = ∥β∥ > 0
via (7) and α2

0 = 1 that the following holds α0 2α− α− γα0

0 2β − β
α0(α− α− γα0) 0

[
y2

z1

]
= 0 ⇐⇒

[
y2

z1

]
= 0.

• Finally, if g1(x) > 0 and g2(x) > 0, then both y1 = y2 = 0. Substituting y1 = y2 = 0 into (5), it follows from
∥(2α− α− γα0, 2β − β)∥ = ∥(α+ γα0, β)∥ > 0 via (6) and α2

0 = 1 that[
2α− α− γα0

2β − β

]
z1 = 0 ⇐⇒ z1 = 0.
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Lemma F.2 (Single layer). Define u0 ∈ R, u ∈ Rn, u ∈ Rn, V ∈ Rn×(r−1) and V ∈ Rn×(r−1). Let
x = (u0, u, u, vec(V ), vec(V )) satisfy g1(x) ≥ 0, g2(x) ≥ 0 and h1(x) = 0, where

g1(x) = u0 · u, g2(x) = u0 · (u−Wu− bu0), h(x) = diag[(u−Wu− bu0)uT + (V −WV )V
T
].

Suppose that u20 = 1, eTi (Wu+ bu0) ̸= 0 and eTi WV ̸= 0 hold for all i ∈ {1, 2, . . . , n}. Then, the following holds

∇g1(x)y1 +∇g2(x)y2 +∇h1(x)z1 = 0, (8a)
g1(x)⊙ y1 = g2(x)⊙ y2 = 0, (8b)

if and only if y1 = y2 = z1 = 0.

Proof. Let V =
[
v1 · · · vr−1

]
and V =

[
v1 · · · vr−1

]
. Explicitly write out the gradient terms in (8a) and stack it

together with (8b), we have

uT (u−Wu− 2bu0)
T −uT diag(b)

0 −u0 ·WT −WT diag(u)

u0 · I u0 · I diag(2u−Wu− bu0)
0 0 −WT diag(v1)
...

...
...

0 0 −WT diag(vr−1)

0 0 diag(2v1 −Wv1)
...

...
...

0 0 diag(2vr−1 −Wvr−1)

u0 · diag(u) 0 0

0 u0 · diag(u−Wu− bu0) 0



y1y2
z1

 = 0

Similar to Lemma F.1, deleting dependent rows allows us to restate the desired claim as the following

u0 · I u0 · I diag(2u−Wu− bu0)
0 0 diag(2v1 −Wv1)
...

...
...

0 0 diag(2vr−1 −Wvr−1)

u0 · diag(u) 0 0

0 u0 · diag(u−Wu− bu0) 0



y1y2
z1

 = 0 ⇐⇒

y1y2
z1

 = 0. (9)

Collecting rows correspond to each (eTi y1, e
T
i y2, e

T
i z1) = (y1,i, y2,i, z1,i), we see that (9) holds true if and only if the

following holds true for all i ∈ {1, 2, . . . , n}:
α0 α0 2αi − αi − γiα0

0 0 2βi − βi
α0αi 0 0

0 α0(αi − αi − γiα0) 0


y1,iy2,i

z1,i

 = 0 ⇐⇒

y1,iy2,i

z1,i

 = 0. (10)

where
α0 = u0, αi = eTi Wu, αi = eTi u, βT

i = eTi WV, β
T

i = eTi V , γi = eTi b.

By hypothesis, u20 = α2
0 = 1, eTi (Wu + bu0) = αi + γiα0 ̸= 0 and eTi WV = βT

i ̸= 0, it then follows from Lemma F.1
that (10) holds true for all i. This proves the lemma.

The results from Lemma F.1 and Lemma F.2 can be easily extended to the multiple layers case.
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Lemma F.3 (Multiple layers). Define u0 ∈ R, u = (u1, . . . , uℓ) ∈ Rn, V = (V1, . . . , Vℓ) ∈ Rn×(r−1). Let x =
(u0, {uk}ℓ−1

k=1, {vec(Vk)}ℓk=1) satisfy gk,1(x) ≥ 0, gk,2(x) ≥ 0 and hk(x) = 0 for all k ∈ {1, . . . , ℓ− 1}, where

gk,1(x) = u0 · uk+1, gk,2(x) = u0 · (uk+1 −Wkuk − bku0),
hk(x) = diag[(uk+1 −Wkuk − bku0)uTk+1 + (Vk+1 −WVk)V

T
k+1].

Suppose that u20 = 1, eTi (Wkuk + bku0) ̸= 0 and eTi WkVk ̸= 0 hold for all k ∈ {1, . . . , ℓ− 1} and i ∈ {1, 2, . . . , nk+1}.
Then, the following holds

ℓ−1∑
k=1

[∇gk,1(x)yk,1 +∇gk,2(x)yk,2 +∇hk(x)zk] = 0, (11a)

gk,1(x)⊙ yk,1 = gk,2(x)⊙ yk,2 = 0 for all k ∈ {1, 2, . . . , ℓ− 1}, (11b)

if and only if yk,1 = yk,2 = zk = 0 for all k ∈ {1, 2, . . . , ℓ− 1}.

Proof. Let us assume r = 2 without loss of generality. Similar to the proof in Lemma F.2, we start by writing (11a)
and (11b) into a matrix-vector product. Let ∂f(x)

∂y denote the gradient of f(x) with respect to variable y and let xk =

(u0, uk, uk+1, vec(Vk), vec(Vk+1)). Analogous to the one layer case, for each k ∈ {1, . . . , ℓ− 1}, we define the following
block matrix 

∂g1,k(x)

∂xk

∂g2,k(x)

∂xk

∂hk(x)

∂xk

diag(g1,k(x)) 0 0

0 diag(g2,k(x)) 0

 =



aTk
Bk

Ck

Dk

Ek

Fk


, Mk =

Ck

Ek

Fk

 .

Notice that Mk has the same structure as in (9). Each block above is assigned as the following

aTk =
∂(gk,1, gk,2, hk)

∂u0
=
[

uTk+1 (uk+1 −Wuk − 2bku0)
T −uTk+1 diag(b)

]
,

Bk =
∂(gk,1, gk,2, hk)

∂uk
=
[

0 −u0 ·WT
k −WT

k diag(uk+1)
]
,

Ck =
∂(gk,1, gk,2, hk)

∂uk+1
=
[

u0 · I u0 · I diag(2uk+1 −Wkuk − bku0)
]
,

Dk =
∂(gk,1, gk,2, hk)

∂ vec(Vk)
=


0 0 −WT

k diag(vk+1,1)
...

...
...

0 0 −WT
k diag(vk+1,r−1)

 ,

Ek =
∂(gk,1, gk,2, hk)

∂ vec(Vk+1)
=


0 0 diag(2vk+1,1 −Wkvk,1)
...

...
...

0 0 diag(2vk+1,r−1 −Wkvk,r−1)

 ,
Fk =

[
u0 · diag(uk+1) 0 0

0 u0·diag(uk+1−Wkuk−bku0) 0

]
.

Since each gk,1(x), gk,2(x), hk(x) depends only on xk. It follows that (11a) and (11b) can be written as a matrix-vector
product in which the corresponding matrix admit a block tri-diagonal structure. This allows us to restated the desire claim
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as the following 

aT1 aT2 · · · aTℓ−1

B1

C1 B2

C2
. . .
. . . Bℓ−1

Cℓ−1

D1

E1 D2

E2
. . .
. . . Dℓ−1

Eℓ−1

F1

F2

. . .

Fℓ−1




λ1

λ2
...

λℓ−1

 = 0 ⇐⇒


λ1

λ2
...

λℓ−1

 = 0, (12)

where λk = (yk,1, yk,2, zk).

We now process to show that (12) is true. Focusing our attention on the (ℓ−1)-th block-row. Observe that the blocks Cℓ−1,
Eℓ−1 and Fℓ−1 are the only nonzero blocks in their row; therefore, the left-hand side of (12) implies Mℓ−1λℓ−1 = 0.
Given that eTi (Wℓ−1uℓ−1 + bℓ−1u0) ̸= 0 and eTi Wℓ−1Vℓ−1 ̸= 0 hold for all i ∈ {1, 2, . . . , nℓ} by hypothesis, it then
follows from Lemma F.2 that Mℓ−1λℓ−1 = 0 ⇐⇒ λℓ−1 = 0.

Next, substituting λℓ−1 = 0 back to the left-hand side of (12) to eliminate the (ℓ − 1)-th block-row. Repeat the same
process for the (ℓ − 2)-th block-row all the way down to the first block-row to show that Mℓ−2λℓ−2 = 0 ⇐⇒ λℓ−2 =
0, Mℓ−3λℓ−3 = 0 ⇐⇒ λℓ−3 = 0, . . . , M1λ1 = 0 ⇐⇒ λ1 = 0. This proves that the left-hand side of (12) does
indeed imply the right-hand side under our stated hypotheses, as desired.

Theorem F.4 (LICQ for (BM-r)). Define u0 ∈ R, u = (u1, . . . , uℓ) ∈ Rn, V = (V1, . . . , Vℓ) ∈ Rn×(r−1). Let
x = (u0, {uk}ℓ−1

k=1, {vec(Vk)}ℓk=1) satisfy constraints in (BM-r), g0(x) ≥ 0, gk,1(x) ≥ 0, gk,2(x) ≥ 0, h0(x) = 0 and
hk(x) = 0 for all k ∈ {1, . . . , ℓ− 1}, where

g0(x) = ρ2 − ∥u1 − x̂u0∥2 − ∥V1∥2, h0(x) = u20 − 1,

gk,1(x) = u0 · uk+1, gk,2(x) = u0 · (uk+1 −Wkuk − bku0) ,
hk(x) = diag[(uk+1 −Wkuk − bku0)uTk+1 + (Vk+1 −WVk)V

T
k+1].

Suppose that x satisfies (NPCQ), i.e. eTi (Wkuk + bku0) ̸= 0 and eTi WkVk ̸= 0 hold for all k ∈ {1, 2, . . . , ℓ − 1} and
i ∈ {1, 2, . . . , nk+1}. Then, x satisfies (LICQ) stated as the following:

∇g0(x)y0 +∇h0(x)z0 +
ℓ−1∑
k=1

[∇gk,1(x)yk,1 +∇gk,2(x)yk,2] = 0, (LICQ-a)

g0 ⊙ y0 = 0, gk,1(x)⊙ yk,1 = g2(x)⊙ yk,2 = 0 for all k ∈ {1, . . . , ℓ− 1}, (LICQ-b)

if and only if y0 = z0 = 0 and yk,1 = yk,2 = zk = 0 for all k ∈ {0, 1, . . . , ℓ− 1}.

Proof. Let us assume r = 2 and ρ > 0 without loss of generality. Similar to Lemma F.3, (LICQ-a) and (LICQ-b) admits a
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tri-diagonal structure which allows us to restate the desired claim as the following

2u0 a0 aT1 aT2 · · · aTℓ−1

b0 B1

C1 B2

C2
. . .
. . . Bℓ−1

Cℓ−1

d0 D1

E1 D2

E2
. . .
. . . Dℓ−1

Eℓ−1

f0

F1

F2

. . .

Fℓ−1





z0

y0

λ1

λ2
...

λℓ−1


= 0 ⇐⇒



z0

y0

λ1

λ2
...

λℓ−1


= 0, (13)

in which λk = (yk,1, yk,2, zk). The blocks (ak, Bk, Ck, Dk, Ek) for all k ∈ {1, . . . , ℓ− 1} are defined in Lemma F.3, and
the blocks (a0, b0, d0, f0) are written

a0 =
∂g0
∂u0

= 2(x̂Tu1 − ∥x̂∥2u0), b0 =
∂g0
∂u1

= 2(u1 − x̂u0), d0 =
∂g0

∂ vec(V1)
= 2 vec(V1), f0 = g0(x).

Under the stated assumptions, we can verify the matrix at the left-hand side of (13) indeed has full column rank. First, we
apply Lemma F.3 to show that

Mℓ−1λℓ−1 = 0 ⇐⇒ λℓ−1 = 0, Mℓ−2λℓ−2 = 0 ⇐⇒ λℓ−2 = 0, . . . ,M1λ1 = 0 ⇐⇒ λ1 = 0.

Substituting λℓ−1 = λℓ−2 = · · · = λ1 = 0 allows us to simplify (13) as
2u0 a0

b0

d0

f0


[
z0

y0

]
= 0 ⇐⇒

[
z0

y0

]
= 0. (14)

To show that the matrix at the left-hand side of (14) has full column rank. We consider two cases:

• If g0(x) = 0. It follows from ∥u1− x̂u0∥2+ ∥V1∥2 = ∥(u1− x̂u0, vec(V1))∥2 = ∥ 12 (b0, d0)∥
2 = ρ2 > 0 and u20 = 1

that 
2u0 a0

b0

d0

f0


[
z0

y0

]
= 0 ⇐⇒

[
z0

y0

]
= 0

• If g0(x) > 0, then y0 = 0. Substituting y0 = 0 into (14), it then follows from u20 = 1 that

2u0z0 = 0 ⇐⇒ z0 = 0.
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We can now extend Theorem F.4 to show that (BM-ℓ2) satisfies LICQ under an extra mild assumption, ∥V1∥ ̸= 0. The
proof is summarized in the following corollary.

Corollary F.5 (LICQ for (BM-ℓ2)). Define u0, u and V as in Theorem F.4. Let x = (u0, {uk}ℓ−1
k=1, {vec(Vk)}ℓk=1) satisfy

constraints in (BM-ℓ2), g0(x) ≥ 0, gk,1(x) ≥ 0, gk,2(x) ≥ 0 and hk(x) = 0 for all k ∈ {0, . . . , ℓ− 1}, where

g0(x) = ρ2 − ∥u1 − x̂u0∥2 − ∥V1∥2, h0(x) = u20 − 1,

g0,1(x) = u0 · u1, g0,2(x) = u0 · (u0 − u1) ,
gk,1(x) = u0 · uk+1, gk,2(x) = u0 · (uk+1 −Wkuk − bku0) for all k ∈ {1, . . . , ℓ− 1},
hk(x) = diag[(uk+1 −Wkuk − bku0)uTk+1 + (Vk+1 −WVk)V

T
k+1] for all k ∈ {1, . . . , ℓ− 1}.

Suppose that x satisfies (NPCQ), and ∥V1∥ ̸= 0. Then, x satisfies (LICQ)

Proof. From Theorem F.4, to prove this corollary, it is suffice to show the following

2u0 a0 uT1 2u0 − uT1
b0 u0I −u0I
d0

f0

g0,1(x)

g0,2(x)




z0

y0

y0,1

y0,2

 = 0 ⇐⇒


z0

y0

y0,1

y0,2

 = 0

where (a0, b0, d0, f0) are defined in Theorem F.4. By hypothesis, ∥ 12d0∥ = ∥V1∥ ̸= 0. This allows us to restate the desired
claim as the following 

2u0 uT1 2u0 − uT1
u0I −u0I

g0,1(x)

g0,2(x)


 z0

y0,1

y0,2

 = 0 ⇐⇒

 z0

y0,1

y0,2

 = 0. (15)

Notice that we cannot jointly have eTi g0,1(x) = eTi g0,2(x) = 0 for all i ∈ {1, . . . , n1}. Hence, each pair of
(eTi y0,1, e

T
i y0,2) has only three possible cases: eTi g0,1(x) = 0, eTi g0,2(x) ̸= 0; eTi g0,1(x) ̸= 0, eTi g0,2(x) = 0; and

eTi g0,1(x) ̸= 0, eTi g0,2(x) ̸= 0. Of all three cases, it is clear that (15) is true because u20 = 1.
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