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Abstract

We provide an algorithm which, with high probability, maintains a (1 — €)-approximate maximum flow
on an undirected graph undergoing m-edge additions in amortized m°Me=3 time per update. To obtain this
result, we provide a more general algorithm that solves what we call the incremental, thresholded, p-norm
flow problem that asks to determine the first edge-insertion in an undirected graph that causes the minimum
£,-norm flow to decrease below a given threshold in value. Since we solve this thresholded problem, our data
structure succeeds against an adaptive adversary that can only see the data structure’s output. Furthermore,
since our algorithm holds for p = 2, we obtain improved algorithms for dynamically maintaining the effective
resistance between a pair of vertices in an undirected graph undergoing edge insertions.

Our algorithm builds upon previous dynamic algorithms for approximately solving the minimum-ratio
cycle problem that underlie previous advances on the maximum flow problem [Chen-Kyng-Liu-Peng-Probst
Gutenberg-Sachdeva, FOCS 22| as well as recent dynamic maximum flow algorithms [v.d.Brand-Liu-Sidford,
STOC ’23|. Instead of using interior point methods, which were a key component of these recent advances, our
algorithm uses an optimization method based on /,-norm iterative refinement and the multiplicative weight
update method. This ensures a monotonicity property in the minimum-ratio cycle subproblems that allows us
to apply known data structures and bypass issues arising from adaptive queries.

1 Introduction

The design and analysis of dynamic graph algorithms is a rich, well-studied research area. Researchers have
studied dynamic variations of fundamental graph problems such as minimum spanning tree, shortest path, and
bipartite matching. Recent progress on dynamic matching has been widely celebrated [10] 23], and dynamic
graph algorithms play a key role in recent advances in static graph algorithms, yielding the first nearly-linear time
algorithms for bipartite matching and maximum flow (maxflow) in dense graphs |30} 29] and almost-linear time
algorithm for maxflow [36]. (See Section for additional related work.)

Despite the many successes of dynamic graph algorithms, dynamic maxflow, another class of core problems, has
seen relatively little progress. This is perhaps due in part to strong conditional hardness results. In the incremental
and decremental settings, where, respectively, edges are only added or only removed, exactly maintaining the s-t
flow value requires £2(n) time per update, even in directed unit capacity graphs, assuming the Online-Matrix-vector
(OMv)-conjecture. This was shown by [40], building on earlier work by [60] that introduced the OMv-conjecture
and showed a O(y/m) time per update lower bound for the same problems.
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Moving to approximate solutions opens the possibility of faster algorithms. Recently, [53] gave an (1 — €)-
approximation algorithm for incremental unit capacity maxflow with amortized update time O 12 /m )I, an
improvement for sparse graphs in the low accuracy regime. Addltlonally7 [91] recently gave an (1 e) -approximation
algorithm for incremental maxflow and minimum-cost ﬂo with amortized update time O( L/n) by dynamizing
and building upon the recent almost-linear time algorithm for maxflow of [36]. For constant e, this runtime is
faster than the conditional lower bound for exact incremental maxflow.

In this work, we ask whether we can build upon this recent progress and give a subpolynomial amortized
update time algorithm for the dynamic maxflow problem? We answer this in the affirmative by developing such
an algorithm for approximate incremental undirected maxflow.

Dynamizing Static Maxflow. To obtain our result, we build upon the recent advance of [91] and the work
that underlies it, as well as distinct lines of research related to approximate undirected maxflow. [91] essentially
dynamizes the almost linear-time algorithm for maxflow [36]. [36] came at the end of a long line of research
that focused on solving flow problems by combining graph theoretic tools with interior point methods (IPMs), a
class of continuous optimization methods which obtain high-accuracy solutions to convex optimization problems
[411 [78] [75] [79] [39], [77], 68}, [7, [30L [29], [52], 8], 46, 28] [36]. The [36] IPM relies on solving an ¢; flow update problem
known as “(undirected) min-ratio cycle.’ This problem is solved m!t°(!) times using a data structure with
amortized m°") time per update. [91], showed how to dynamize this IPM, but obtained an nt/2+0() amortized
time per update due to the cost of adapting the min-ratio cycle data structures to this setting.

There are two key ideas in [91]. The first is that the ¢;-IPM of [36] can be naturally extended to the
incremental setting. In particular, they showed how the IPM can be used to solve a threshold variant of the
incremental maximum flow problem, i.e., detecting the first update that causes the maximum flow value to
increase above a threshold. However, this extension creates a challenge: The [36] data structure for min-ratio
cycle does not work against an adaptive adversary. Instead, [36] crucially leverages stability properties of their
{1 TIPM that ultimately determines the update problems, and uses these stability properties to guarantee that
while their data structure may occasionally fail, this will occur infrequently. In the incremental setting, [91]
cannot leverage this guarantee to ensure their data structure works. This leads to the second central idea of [91].
They develop a new version of the [36] data structure that works against adaptive adversaries, at the expense of
increasing the amortized time per update from m°™M) to n!/2+e(1),

At a high level, our approach is motivated by [91], but ultimately we develop a fundamentally different
optimization approach, which yields more tractable update problems. A key observation enabling our algorithms,
is that the min-ratio cycle problem succeeds against adaptive adversaries provided that there is a particular
monotonicity in the updates. We change the optimization framework to yield subproblems which can be solved
by such monotonic updates. Because of this, we manage to show that in our setting, the data structure of [36]
can directly solve the update problems in the incremental setting, with only m°") amortized time per update.

It is worth mentioning that the authors of this work recently gave a deterministic min-cost flow algorithm
[27]. However, [27] still uses a version of the data structure of [36] that does not work against adaptive adversaries,
and critically still uses stability properties of the update sequence to argue correctness.

{,-norm Flow and Approximate Undirected Maxflow. To leverage that the min-ratio cycle data structure
succeeds against monotonic adversaries, we turn to an approach motivated by lines of research on algorithms for
(static) £p,-norm flow and approximate undirected maxflow. One important line of research yielded undirected
approximate maxflow in 5(6’1m) time [37] 184 [69] [81] [85]. This sequence of works combined first-order continuous
optimization methods with graph theoretic tools. A second line of work focused on a broader class of flow problems,
namely £,-norm flows |2} 4] 13 (73] [1], and developed iterative optimization methods tailored to £,-norm objectives.
The problem of ¢,-norm flows asks for a flow f that routes a given demand and minimizes its ¢,-norm, ||f||,.
This problem is maxflow for p = co and setting p = O(e~!logm) yields (1 — ¢)-approximate undirected maxflow.

Our Approach to Incremental Flow Problems. We show that the desired monotonicity properties for the
subproblems can be achieved in the setting of £,-norm flows by adapting the optimization framework. Even

n this paper, we use 6() to suppress subpolynomial n°() factors.

2In both cases, this is assuming polynomially bounded capacities; we make this assumption throughout the paper.

3In this paper we refer to this problem as min-ratio cycle, omitting the term “undirected.” Elsewhere in the literature, but never
in this paper, min-ratio cycle may refer to a variant with edge-direction constraints.
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though ¢,-norm flow is less general than directed maxflow, it has interesting consequences including approximate
undirected maxflow and effective resistances |37, [87].

Switching to £,-norm flows allows us to use the ¢, iterative refinement framework developed in [2, 4] 3], and
study the smoothed ¢,-norm flow problems of [73]. The iterative refinement framework shows that smoothed
£,-norm flow computation can be accomplished by a small number of iterations of a refinement step. In our
context O(p) steps suffice.

To solve each refinement step problem, we use a ¢; multiplicative weight update method (MWU). Our method
lets us solve smoothed ¢,-norm flow to m°1) accuracy by solving a min-ratio cycle problem roughly m!*°(1) times.
Crucially, we show that our MWU induces a monotonicity property in our min-ratio cycle problems. Concretely,
our sequence of approximate min-ratio cycle problems only change by (1) edge insertions and (2) edge lengths
increases (see problem . In this way, we create a more tractable data structure problem than those in [91],
and we show that this problem can be solved using data structures from [36] with m°1) amortized update time.

Finally, combining our monotonic ¢1-MWU for computing refinement steps with iterative refinement, we
obtain an incremental algorithm for (a decision version of) smoothed ¢,-norm flows. From this, we derive
an algorithm for approximate incremental undirected maxflow and for incremental electrical flow. Using the
incremental electrical flow algorithm, for a fixed pair of vertices s, ¢, we can detect in an incremental graph the
first time the effective resistance between s and ¢ drops below a given threshold.

If we were only focusing on approximate incremental maxflow instead of the more general ¢,-norm flows, a
similar monotonic data structure problem could also be obtained by using an ¢;-oracle MWU to compute each
update step of a first-order optimization method such as one used by [84] [69] [R1] [85]. Wrapping this inside a
first-order £, optimization approach would then yield a similar algorithm for approximate incremental maxflow.

1.1 Results Here we present the main results of the paper. This section leverages a variety of notation, in
particular graph theory conventions, all provided later in section

A central result of this paper is an algorithm with subpolynomial update time for the following undirected
incremental approzimate maxflow problem (which we abbreviate as incremental mazflow in the remainder of the
paper). Incremental maxflow is the dynamic data structure problem of maintaining a (1 + €)-(multiplicative)
approximate maximum flow in an undirected graph undergoing edge additions (hence the term incremental).

PROBLEM 1.1. (UNDIRECTED INCREMENTAL APPROXIMATE MAXFLOW PROBLEM) In the undirected incre-
mental approximate maxflow problem (incremental maxflow) we are given a finite set of n vertices V', a distinct
pair of elements s and t, and a parameter ¢ > 0. There are then a sequence of m < poly(n) edge insertions where
starting from E = 0 an undirected edge e is added to E with integral capacity u, € [1,U]. The algorithm must
maintain o (1 + €)-approzimate maximum flow in the capacitated graph G = (V, E,u) before and after each edge
addition.

The main result of this paper is a randomized algorithm for the incremental maxflow problem that succeeds
with high probability in n (whp.) and implements each update in amortized n®Me=3 time. This is the first
subpolynomial update time for an incremental maxflow problem which achieves even constant approximation.

Before stating our result, we comment on the adversary model. In our algorithms, we assume that the
adversary can see the output flow, but not the internal randomness or information stored in the data structure.
We call this an adaptive adversary. We refer to the stronger adversary which can also see the internal randomness
as a non-oblivious adversary.

THEOREM 1.1. (INCREMENTAL MAXFLOW) There is an algorithm which solves incremental mazflow (Prob-
lem|1.1) whp. in amortized n°Ve=3 time per update against adaptive adversaries.

To obtain this result, we develop dynamic algorithms for the problem of computing smoothed ¢,-norm flows
[(3] for p > 2. The smoothed ¢,-norm flow problem asks to find a flow routing given vertex demands while
minimizing a linear plus quadratic plus p*® power objective on the flow. This problem generalizes both the popular
and prevalent problems of computing electric flows (and therefore solving Laplacian systems) [88] [71] 38 [66] as
well as computing approximate maximum flows on undirected graphs [37] 184} 169] 81, [85].
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PROBLEM 1.2. (SMOOTHED /,-NORM FLOW) Given an undirected graph G = (V, E), gradient vector g¢ € RE,
edge resistances and weights 1%, w® € Rf, and demand vector d € RV the smoothed {p-norm flow problem asks
to solve the following optimization problem

(1.1) OPT = min &(f) for ()= (g f)+[[ROF]+ [WOS -

f € RE is said to be feasible or routes the demands if BT f = d, £(f) is called the energy or smoothed objective
value of f, and a solution to (1.1) is called a smoothed ¢,-norm flow.

For short, we refer to smoothed ¢,-norm flows as simply ¢,-norm flows throughout. Throughout we also
assume that there is a feasible flow f(®) on the initial graph. This can be ensured by determining the first
instance that d is feasible using a simple union-data data structure. This incurs only an additive O(1) cost in our
data structures.

Our main technical result is a high-accuracy algorithm with subpolynomial update time for the following
incremental thresholded £,-norm flow problem, or incremental £,-norm flow for short. The incremental £,-norm
flow data structure detects the earliest moment when the optimal value to drops below a given threshold F.

PROBLEM 1.3. (INCREMENTAL THRESHOLDED ¢,-NORM FLOW) Consider a dynamic instance of a £,-Norm
Flow (G, g%, 7%, w%,d) that is subject to edge insertion. Let m be the final number of edges in G. Given an
objective threshold F' € R, and an error parameter € > 0, the problem of Incremental Threshold ¢,-Norm Flow
asks, after the initialization or each edge insertion, to either

1. correctly certify that OPT > F, or
2. oulput a feasible flow f with E(f) < F +e.

Combining an ¢;-MWU with the dynamic min-ratio data structure of [36], we can solve problem in almost
linear time whp. against an adaptive adversary.

THEOREM 1.2. There is a randomized algorithm for problem @ that given an initial flow f© and inputs

~ 0y _ .
6,9%, 7% w and d with sizes bounded by O(1) in fized point arithmetic., runs in p>m!+ot) log(w) time
and succeeds whp. against adaptive adversaries.
As a result, taking p = 2 yields an algorithm for (1 + ¢)-approximate incremental electrical flow with

subpolynomial update time. This is the first subpolynomial time algorithm for constant accuracy incremental
electrical flows.
We show how theorem [[.2] leads to the incremental maxflow algorithm.

Proof. [Proof of Theorem The algorithm proceeds in about 6(6_1) phases. In each phase, we determine when
the congestion of the optimal flow has decreased by at least a (1 — €) factor. At the start of such a phase, we
find the optimal maxflow f using the almost-linear time algorithm of [36]. Let C be the congestion of f. We
wish to determine when the optimal congestion is smaller than e “C. From the previous discussion, any flow of
congestion less than e™“C must have its £,-norm at most m(e~“C)P. Our flow f, on the other hand, has p-norm at
most mC?. So we apply theorem with threshold F' = m(e~¢C)P and error m(e~“C)P as well. When the data
structure certifies that every flow has £,-norm at least m(e~“C)?, we know that f is still a (1 — ¢)-approximate
maxflow. When the data structure outputs a new feasible flow f’ s.t. £(f) < F +m(e <C)? = 2m(e C)P, we
know the congestion of f’ is at most (2m(e~¢C)?)'/P < e~¢/2C. This means that the optimal congestion drops
at least by a factor of (1 + €/2) and we restart the whole algorithm with a newly computed maximum flow. It

restarts at most O(1/¢) times because the congestion is between [exp(—O(1)), exp(O(1))]. O

Bit Complexity. The number of exact arithmetic operations performed in the algorithm for theorem [1.2]is only
pmitod) 1@%). The additional p dependency arises as our algorithms manipulate numbers of size 6(]))
due to the p-th power taken in the objective and we are using fixed point arithmetic. A potential way to
improve the dependency on p is via floating point arithmetic and crude approximations. That is, during the course
of the algorithm for theorem we only use (1 + exp(—O(1)))-multiplicative approximation to the numbers we
encountered and use an additional 5(;0) bits to represent their scales. This way, the numbers encountered would
be of size 6(1) and we could shave one factor of p from the runtime in theorem This could also improve the
amortized update time for incremental approximate maximum flow to n°e=2,
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1.2 Additional Related Work Dynamic Flows and Matching. Exact dynamic maxflow on unit capacity
graphs can be maintained in O(m) time per update by performing one augmentation per update, or in O(n)
amortized time in the incremental setting [58] [72]. On planar graphs, it can be maintained in the fully dynamic
setting in 6(712/ 3) update and query time [64] and in the incremental setting with 5(\/5) update and query
time [42]. Beyond that, there is more recent work on the approximate setting, with (1 — €)-approximate
incremental algorithms [53] [91], as discussed earlier. Finally, in the fully dynamic setting, algorithms with
super-constant (i.e. polylog or subpolynomial) approximation ratios and sublinear amortized update time [35]
and for uncapacitated graphs with subpolynomial worst-case update time [55] are known.

Dynamic bipartite matching (which is a special case of directed maxflow) has also received significant attention
in the approximate setting |59, [57, 26l [17], [18], [91 (801, [861, [19}, 5], 33, [14] [16], 24} 111 [34) (921 15} [13] 201 [70L [12] [74] [56]
]2 6] 23], 21), [25]. In the (1 — €)-approximate regime, the current state-of-the-art is poly(1/e) update time for the
incremental setting [25], poly(log(n)/e) for the decremental setting [22], and O(\/ﬁlfﬂe(l)) for the fully dynamic
setting [21]. For fully dynamic exact bipartite matching, the fastest update time is O(n!-49¢) |83} [31].

Finally, it is worth mentioning that recent works have leveraged numerical optimization methods based on
entropy-regularized optimal transport and MWU to design dynamic algorithms for partially dynamic bipartite
matching and positive linear programs [65} 22].

Edge Connectivity. The k-edge connectivity between two vertices s,t can be seen as a maxflow of
value up to k. Dynamic k-edge st-connectivity has been studied for small constant values of £ < 5
[50, 511 1491 (93] 43| [44] [61), 48], [45] [89] [62] [63]. For super-constant k, [67] presents a fully dynamic algorithm
with n°(") update time for k = (logn)°™M). [32] give an offline fully dynamic algorithm with O(kO®) query time.
These results all require small k to be efficient, whereas our result has no such restrictions. We also point out
the work in [90] which gives an algorithm to dynamically maintain the (value of) the global min-cut with O(y/n)
worst-case update time.

Dynamic Electric Flows. For p = 2, our incremental ¢,-norm flow algorithm can maintain a (1—e¢)-approximate
electric flow between two fixed vertices s,t € V subject to edge insertions. Dynamic electric flows have previously
been studied in [54] [47]. Such dynamic electric flow algorithms were also studied for the purpose of accelerating
static maxflow and mincost flow algorithms [52] 28]. The closely related concept of dynamic effective resistances
has also been studied in the online dynamic [35] and offline dynamic setting [76].

1.3 Paper Organization In the remainder of the paper, we provide preliminaries in section [2| and then give
a more technical overview of our approach in section We then we prove our main result, theorem [1.2] via
iterative refinement in section 4] The incremental algorithm for the £,-norm residual problem is then presented in
section [5} Finally, we argue that the approximate data structure [36] can be used to implement the incremental
multiplicative weight method in section [6]

2 Preliminaries

In this section, we introduce notations we use throughout the paper.

General notation. We denote vectors by boldface lowercase letters. We use uppercase boldface to denote
matrices. Often, we use uppercase matrices to denote the diagonal matrices corresponding to lowercase vectors,
such as L = diag(£). For vectors &,y we define the vector x oy as the entrywise product, i.e., (€ o y); = x;y;.
We also define the entrywise absolute value of a vector |x| as |x|; = |z;|. We use (-, -) as the vector inner product:
(x,y) =x'y = > xiy;. We elect to use this notation when a,y have superscripts (such as time indices) to
avoid cluttering. For positive real numbers a,b we write a ~, b for some o > 1 if a='b < a < ab. For positive

vectors @,y € R[f], we say & R, Y if x; =, y; for all i € [n].

Graphs. In this paper, we consider multi-graphs G with edge set E(G) and vertex set V(G). When the graph is
clear from context, we use the shorthands E for E(G), V for V(G), m = |E|, and n = |V|. We assume that each
edge e € E has an implicit direction, used to define its edge-vertex incidence matrix B € RP*V ie., B, , = —1,
B. ., = +1, and zero elsewhere for the row corresponding to the edge e = (u,v). Abusing notation slightly, we
often write e = (u,v) € E where e is an edge in E and « and v are the tail and head of e respectively (note that
technically multi-graphs do not allow for edges to be specified by their endpoints).

A vector d € RY is a demand vector if it is orthogonal to the all-ones vector, i.e., Y vey dv = 0. We say
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a flow f € R routes a demand d € RV if BT f = d. We say a flow f is a circulation if it routes an all-zeros
demand, i.e., each vertex has zero net flow. For an edge e = (u,v) € G we let b, € RV denote the demand vector
of routing one unit from u to v.

Dynamic Algorithms. We say G is a dynamic graph, if it undergoes batches UM U3 ... of updates consisting
of edge insertions/deletions that are applied to G. We use |[U®| to denote the number of updates contained in
the batch U®. The results on dynamic graphs in this article often only consider a subset of the update types and
we therefore often state for each dynamic graph which updates are allowed. We say that a dynamic graph G is
incremental (and decremental) if it only undergoes edge insertions (and edge deletions respectively). Additionally,
we say that the graph G, after applying the first ¢ update batches UM U®) ... U® is at stage t and denote
the graph at this stage by G(*). Additionally, when G is clear, we often denote the value of a variable z at the
end of stage t of G by z®, or a vector x at the end of stage ¢ of G by x®).

3 Technical Overview

Here we provide a technical overview of the approach we take to obtain the results outlined in Section In
Section we briefly review a variety of previous tools which we leverage and obstacles that we overcome to
obtain our results. In Section we then elaborate on our central insight about dynamic data structures for
the minimum ratio cycle problem that fuels our results. In Section we then discuss the dynamic optimization
frameworks we use to leverage this data structure. Finally, in Section we discuss how we put these pieces
together to obtain our results.

3.1 Previous Tools and Obstacles. We begin by describing the key tools of [36] and [91] which solved
maximum flow in almost linear time and obtained an 5(6’1\/5) time incremental algorithm for directed maximum
flow. We elaborate on these tools and the obstacles for using them to achieve n°Me=9(M) update time for
undirected maximum flow.

Minimum Ratio Cycle. Both [36] and [91] are built upon efficient data structures for approximately solving
the min-ratio cycle problem on a fully-dynamic graph, i.e., finding a cycle that approximately minimizes

(g.c)
ceRE is a cycle HLCHl

(3.2)

where g € R and £ € Rf are called edge gradients and lengths respectively.

Both data structures are based on similar ideas. They maintain a d-level hierarchy of vertex and edge
sparsification data structures. For vertex sparsification, they use dynamic low stretch decompositions which is
studied in the context of dynamic shortest paths [35]. For edge sparsification, [36] proposed a data structure that
maintains graph spanners, which are sparse graphs that preserves all-pairs distances, under edge updates as well
as vertex splits. The original min-ratio cycle data structure has m°1) update time and outputs m°*)-approximate
solutions against oblivious adversaries. Additionally, the data structure succeeds against adaptive adversaries, as
long as the inputs satisfy some additional “stability properties”. We elaborate on this later in section @ In [91],
they make the data structure adaptive at a higher update time of n'/2+o(1).

Interior Point Methods. The static algorithm of [36] uses an IPM potential ®(f) to find the maximum
flow. It starts at some initial flow where ®(f) = 5(m) and iteratively makes progress until the potential is
O(f) < fé(m) At that point, an optimal flow is obtained by standard rounding techniques. When the current
flow is f, the algorithm finds a m°(M-approximate cycle ¢ to an instance of min-ratio cycle with g = VO(f)
and £ ~ \/V2®(f). One can show that augmenting f with a multiple of ¢ decreases the potential by at least
m~—°W)_ After m't°(1) iterations, the algorithm reaches a flow f whose potential value is at most —6(m).

The incremental maximum flow algorithm of [91] dynamizes the potential reduction procedure of [36]. To
handle an edge insertions, [91] keeps augmenting the current flow with an m°(M-approximate min-ratio cycle until
the output cycle cannot make enough, m=°") | progress. The analysis of this leverages that adding an edge does
not affect the feasibility of the current flow and only increases the potential by a constant amount. Additionally,
once a flow of cost at most the given threshold appears in the graph, any m°M-approximate min-ratio cycle
decreases the potential by at least m—°M) as long as our current flow has its cost larger than the threshold by
exp(—O(1)). Since the potential value starts at O(m), over the course of the incremental algorithm, there are at
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most m!T°() approximate min-ratio cycle queries. This yields a n'/2t°(\)_update time using their adaptive data
structure for answering min-ratio cycle queries.

Obstacles. In the static case, [36] manages to apply an oblivious data structure for iteratively minimizing the
IPM potential due to (a) the existance an optimal flow before initializing the data structure and (b) the stability
of the gradient and Hessian of the IPM potential (which are the inputs to the min-ratio cycle data structure).
Consequently, whenever the data structure fails to find a cycle good enough to make progress, it must be the
case that some part of the data structure is broken, and we need to fix it actively. However, (a) does not hold
in the incremental case. That is, whenever the oblivious data structure fails, we cannot distinguish between the
case that (1) the data structure fails due to the obliviousness, or (2) the graph does not support the optimal flow
because every feasible flow has a large cost. The issue occurs even when all incremental updates come from an
oblivious adversary.

Our Approach. To obtain our results we depart from prior work in both how we reason about adaptive
adversaries in the minimum ratio cycle problem and in what optimization method we use for this dynamic data
structure. We elaborate on each of these in the next section and section and then discuss how they are
put together to obtain our results in section [3.4

3.2 Adaptive Adversaries and Monotonic Dynamic Min-Ratio Cycle. We manage to use the oblivious
min-ratio cycle data structure by ensuring that edge lengths are mostly increasing. That is, with a different
numerical method, we can divide the entire incremental algorithm into m°") phases and within each phase,
we solve a sequence of slowly changing min-ratio cycle problems with the same gradient g and monotonically
increasing lengths £. In section [6] which presents the min-ratio cycle data structure, we work with an adversary
where we can assume that all incremental updates are determined before the initialization. That is, the adversary
does not have access to the internal state of our algorithm when deciding which edges to insert next. Using these
facts, we show, in section [6] that the updates to the dynamic min-ratio cycle data structure satisfy a weaker form
of the hidden stable-flow chasing property, which was the critical property that [36] leveraged to show correctness
of their min-ratio cycle data structure. While [36] had to periodically rebuild layers of their data structure
when the “lengths" of flows at those layers may have decreased, and this prevented its application to incremental
directed maxflow in [91], our monotonicity property allows us to avoid this issue. In particular, whenever the
data structure fails to output a good cycle, we know for certain that every feasible flow has large congestion.

3.3 From IPMs to Iterative Refinement and MWU This paper focuses on solving incremental thresholded
Ly-norm flow for p > 2. This immediately gives an incremental (1 + ¢)-approximate maximum flow due to the
choice of p. Unlike IPM-based maxflow algorithms, £,-norm flows can be reduced to approximately solving me®)
smoothed ¢,-norm flow residual problems to m°M-approximation factors. To approximately solve each residual
problem, we use a multiplicative weight update method (MWU) to reduce the problem to a sequence of mitol)
slowly changing ¢;-regression sub-problems, which are equivalent to min-ratio cycles in our case. The nature of
MWU ensures that the ¢; weights are non-decreasing. These constraints on how the sequence of min-ratio cycle
instances change enable us to use the data structure of [36] to achieve the almost-linear runtime.

The reduction to residual problem is achieved via the iterative refinement framework of [2]. Each residual
problem asks to find a circulation A such that

(3.3) IRA[, <m®®, [WA], <m°®), and (g,A) = —1

where r,w € Rf are edge weights derived from the current solution to problem and we are guaranteed the
existence of a circulation whose both norms are at most 1.

To find a feasible residual solution to Problem eq. , we use a MWU to reduce the problem to a sequence
of m*t°(M) ¢, sub-problems of finding a circulation ¢ such that

(3.4) Lell, <m”W e, and {g,c) = ~1.

This is equivalent to finding a min-ratio cycle (3.2)) up to scaling the solution so that (g, c) = —1. If we can solve
each £, sub-problem to m°")-approximation, we obtain a feasible residual solution. Furthermore, MWU ensures
that the ¢; weights are non-decreasing across all m!'*t°(1) instances.
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3.4 Putting it Altogether To dynamize the approach mentioned in section we make the following
observation:

If OPT < F, there is a feasible solution A* to (3.3) with |RA[2, |[WA||, < 1 that satisfies (3.4)),
ie., [|[LA*||; < ||£||; for any £ encountered in the algorithm.

We leverage that A* is fixed with respect to r,w and g. Thus, whenever the m°M)-approximate min-ratio cycle
data structure cannot find a solution to , we certify that OPT > F. Otherwise, if OPT < F, the MWU
method, as well as the iterative refinement procedure, would proceed as desired and output a flow f of ¢,-norm
energy at most £(f) < F + € in p?>m! (M) log(1/e)-time.

4 Incremental p-Norm Iterative Refinement

In this section, we discuss the iterative refinement approach to solving p-norm flows and how reduce them to
incremental MWUs. The iterative refinement framework of [2] reduces p-norm flows to approximately solving a
small number of residual problems. The original framework requires an estimate on the optimal residual value,
which is obtained via binary search. In our setting, a target objective value is given and we can directly use it
to estimate the residual value. This requires a slight modification to the convergence analysis via measuring the
progress towards the target value.

The goal of this section is to prove the following theorem:

THEOREM 4.1. There is a randomized algorithm for problem @ that given an initial flow f© and inputs

- ©)y_
€,9%, 7% wC and d with sizes bounded by O(1) in fized point arithmetic., runs in p>m* o) log(g(fo#) time

and succeeds whp. against adaptive adversaries.

We first define the residual problem, Ry (), that we consider to approximate E(f +x) — £(f) (Problem
and provide a known lemma about its approximation quality (Lemma [4.2)).

PROBLEM 4.1. (RESIDUAL PROBLEM) For feasible flow f in p-Norm flow instance (G, g%, v w%, d), we define
its residual problem, Ry (x), (that approzimates ) as follows:

Re(z) = (g,z) + |R|; + [Wz|”,

where g = g% + 2(RO)2f + p(WEP|fP=2f,r <= \/(rG)2 + 2p2(WE)P| f[P—2, w0 = pw©.
We often ignore the subscript f when it is clear from the context.

LEMMA 4.2. (ITERATIVE REFINEMENT, [2, 3} [4]) For any f and x, we have

E(f+x)—E(f) <Ry(x), and
E(f+rx)—E(f) > ARs(x), for some A = O(p)

Using lemma we can relate the optimal residual objective value to the gap between the current feasible
flow f and the target threshold F.

LEMMA 4.3. (THRESHOLD CERTIFICATION BY RESIDUAL VALUE) If feasible flow f in a p-Norm flow instance
(G, g%, r% wY d) satisfies OPT < F, then there is a circulation c* with R(c*) < (F — E(f))/ .

Proof. Let f* be any feasible flow such that £(f*) < F. lemmayields that

sz ) - ez r (L),

The conclusion follows because f* — f is a circulation. 0

Let R < (E(f) — F)/A > 0 be the residual threshold. Our goal now is to find a circulation ¢ such that
R(c) < —R/K for some K = m°M). We show that we can compute this by solving the following incremental
residual problem.
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PROBLEM 4.4. (INCREMENTAL K-APPROXIMATE RESIDUAL PROBLEM) Consider an incremental graph G =
(V, E) with at most m edges, a gradient vector g € R¥, f5 and L, edge weights v, w € Rf and a approximation
factor K > 0. The Incremental K-Approximate Residual Problem asks, after the initialization or each edge
insertion, to either

1. certify that there is no circulation c* with (g,c*) = —1, |[Rc*||2 < 1, and |Wc*|, <1, or

2. output a circulation ¢ such that (g,c) = —1, ||Rell2 < K, and |[Wc|, < K.

In section [5] we will present an almost-linear time algorithm for problem

LEMMA 4.5. For some K = m°®Y) | there is a randomized algorithm for pmblem@ denoted as A, that runs
in m* W time and succeeds with high probability against an adaptive adversary.

Here, recall that the adversary is only adaptive against the yes/no output of the algorithm, and cannot see
the internal randomness, including the flow that is being stored internally. Obviously, our algorithm can output
a flow when we get a “no" output, by computing a high-accuracy p-norm minimizing flow, but this is different
from the flow being stored internally.

At first glance, the solution guarantee of problemhas nothing to do with the residual problem (problem [4.1))
and R. However, since we only need a solution whose objective is better than m=°M (F —&(f))/\, we can reduce
incremental p-norm regression to the form of problem using the following pair of lemmas. The first is a
straightforward scaling argument.

LEMMA 4.6. If there’s some ¢* such that R(c*) < —R for some threshold R > 0 then,

<g,C > < _2@ and <g,C > < _R(p—l)/p
[Re* |, [We],

Proof. From the bound that R(c*) < —R, we know
(g.¢’) + IRe’|l; < —R
Thus we know that

g.c) . R
[Rexfl, = [[Re*[l,

by the AM-GM inequality. Similarly,

—|Re"|l, < —2VR,

(g, c”) + [Welly < -R,

and hence
(g,c*) R 1 p=1
<- Wt < —RF
[We], [Wel, P
where we used the (weighted) AM-GM inequality again. a

The second, given below, is used to argue that the solution quality of problem translates to a bound on
the residual objective value.

LEMMA 4.7. Given a residual threshold R > 0 and the current residual problem R(c) with gradient g and {2 and ¢,
edge weights T and w, consider a circulation ¢ such that (g,c) = —1, |2V RRe||2 < K, and |R?~V/PW¢|, < K
for some K > 1. We have R((R/(2K?))e) < —R/(6K?).

Proof. From the assumptions of the lemma, we know that

K
(g.c) =1, |Re|, < m, and ||WC||p < KR~(=1/p
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Plugging these into the definition of the residual problem yields

R R R’ . RP )
R (51e¢) = 57z 9:€) + gy IRell + s, [Wel

R R? K? RP
< 4 KPR~ (p—1)
S Tor? T iRt AR T wker R
_ R N R N R - -R
T 9K?2?2  16K2  2PKP — 5K2°

d

Now, we are ready to state algorithm 1| which we use to prove theorem

Algorithm 1: Incremental Thresholded p-Norm Flow

1
2
3
4

5
6

10
11

12
13
14

15

16

17

18

global variables
p: the norm considered in problem
A < O(p): the scaling factor in lemma

| K« m°1): the approximation factor in lemma

procedure INCREMENTALPNORM(G, d, g%, 7% w®, F,¢)

Initialize f(o) to be the optimal p-norm flow on G.

S & O(pK? log(ELD=L))

for stept =0,1,...,5 do

Construct residual problem (g, 7® w®) with respect to f®.
Define residual threshold R = (£(f®)) — F)/\.

Initialize and run the incremental approximate residual algorithm

while AED cannot find a circulation satisfying Lemma@ item 2 do
Claim that OPT > F.

Wait for a new edge e.

Insert the new edge e to AED) with

g0 % g, 50 = 5/ or, and wld = RO-V/rep0

A finds a circulation ¢ such that

(g® . e)=—-1,|2VRRW¢|]y < K, and |RP~V/PWW¢|, < K.

| return £

To show correctness, we first prove that each step makes an exponential progress. Leveraging this lemma we

then prove theorem

LEMMA 4.8. (ITERATIVE REFINEMENT CONVERGENCE RATE) At the end of any step t in algorithm E,

Proof. At the end of step ¢, lemma [4.7| ensures that R(

e ) - F < (1= gy ) (£ - )

zc) < —

. lemma M then yields

E(FH) —e(fP) <R (2§2 ) < (sr®) - F)
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Thus, we have

EFUD) = F=E(fUD) = (f) +E(F) — F
= (1 a 61;2/\) (g(f(t)) _F)

|

Proof. [Proof of theorem We first show that whenever the algorithm outputs that OPT > F', this is indeed the
case. Let ¢ be an arbitrary step in which the algorithm outputs that OPT > F, let f(*) be the flow maintained at
that step, and let R(x) be the corresponding residual problem instance (problem [4.1)). Correctness of lemma
ensures that no circulation ¢* satisfies

(g, c*) = —1,[2VRRWe*|| < 1, [RPD/PWWer|, < 1

This fact and lemma then implies that every circulation ¢* must have R(c*) > —R = (F — E(f®))/.
lemma [4.3] implies that OPT > F.
Now, we analyze the quality of the output, £(°). Applying lemma inductively on steps t yields that

s
1
SN_p<(1-— ((0>_)<
E(F)) F_(l 6K2)\> E(fPY—F) <e
by definitions of S and A (lemma [4.2).

Finally, the runtime comes directly from S = mo(l)plog(%) applications of lemma (Recall that there is
an extra factor of p due to bit complexity.) ]

5 Incremental Multiplicative Weight Updates

In this section, we present a MWU-based algorithm that solves problem and proves lemma [4.5] We use
algorithm [2| to prove lemma At a high level, the algorithm outputs the final circulation as an average of
T = O(m) circulations. At each iteration ¢, we compute a set of ¢; edge weights £ € ]Rf and compute an
approximate min ratio cycle that minimizes (g, ¢)/||Lel|1. As is too costly to compute each cycle from scratc, we
instead apply a dynamic data structure simplified from [36] to compute such cycle efficiently.

PROBLEM 5.1. (APPROXIMATE MONOTONIC MIN RATIO CyCLE (MRC)) Consider a target ratio o > 0 and a
dynamic graph G = (V, E) with edge gradients g € R¥, and lengths £ € Rf under edge insertions and length
increases. In addition, there is a hidden circulation c¢* not necessarily supported on G, i.e., there is possibly some
edge not in G with ¢} # 0. The problem of k-approximate monotonic min ratio cycle asks, after the initialization
and each edge update,

1. If ¢* is not supported on G: output any circulation.

2. If c* is supported on G: output a circulation ¢ such that

(g,c)
||LCH1

—a
< —
K

9

(g.c”) <
Lexll, —

given that —a.
We can solve problem in almost-linear time by using a data structure from [36]. The guarantee of this
data structure is stated below and the lemma is proved in Section [6]

LEMMA 5.2. (APPROXIMATE MONOTONIC MRC DATA STRUCTURE) For some k = m°Y) | there is a random-
ized algorithm, denoted A, that maintains a collection of s = m°Y) spanning trees Ty, Ty, ..., Ts and solves
the k-approximate monotonic MRC problem (pmblem@ in (m+ Q)mo(l)—time where Q) is the total number of
updates. In particular, it always output a cycle A represented by m°™) off-tree edges and paths on a spanning
tree T; for some i € [s].
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We now state algorithm [2] which shows lemma [4.5f The algorithm runs a MWU algorithm with ¢;-norm
subproblems for O(m) iterations. This is motivated by the ¢1-IPM of [36] for solving min-cost flow, and contrasts
with fo-norm MWUs of [37] [2] for approximate maxflow and p-norm regression. These ¢1-norm subproblems are
min-ratio cycle problems, which we solve by calling a min-ratio cycle data structure. If the output has sufficiently
good ratio, the algorithm proceeds to the next iteration. Otherwise, we conclude that G does not support a valid

circulation yet, and ask for the next edge insertion.

Algorithm 2: Incremental K-Approximate Residual Algorithm

global variables
p: the norm considered in problem
q + min{log, m, p}: the norm which the algorithm handles.
& < m°M): the approximation factor in lemma
K < 100gk: the approximation factor of this algorithm.
a < K179/(10q): the target ratio given in lemma

procedure INCREMENTALMWU(G, g, r, w)

8 Initialize ¢ =0, a(® = Km~=2¢~1 and b©) = Km~Yaw1.

9 | Initialize edge lengths £(0) = K9-292q(0) 4 4p9(b(0))a—1,
10 Initialize a k-approximate MRC algorithm AB2 op (G, g,2) and target ratio a.
11 Set T' + 100gm

[=2 N1 BNV VR

~

12 for iteration i1 =0,1,...,T do

13 Define the edge length £() % K972p2q() 4 qp7((1)a-1,
14 Maintain an estimation £ € [£(), 2],

15 Feed updates to the estimation £to AB2).

16 while AE2) outputs a cycle of ratio > —a/k do

17 Claim that there’s no circulation ¢* s.t.

(9,¢") = —1, [Re™|l; < 1, and [[Wer[, <1

18 Wait for a new edge e.
19 Set al’) = Km~1/2p=1 and b = Km~Y9w_ 1.
20 Insert the new edge e to AE2) with gradient g. and length
0. =00 = K ’2r§ag) + wg(béi))qﬂ.
21 AEBD outputs a cycle A st (g, ADY/|ILAD |, < —a/k.
22 Scale A® such that (g, A®) = —1 and |[LA®D||; < k/a < K1,
23 Update (it = () 4 AW gli+D) = al) 4 A, and b+ = p) 4 1 A®)]
24 | return ¢

To analyze algorithm [2] we keep track of the following two potentials:

2

(5.5) 3™ < |Ra®

2
q

(5.6) o) = Iwp®

q
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where a and b are defined as

i—1
K 1 .
(3) def 1+ -1 - A(J)
(5.7) a f\/ﬁr + jE:O| |

(5.8) pi s K1 i IAU)]
' ml/a T 4 ‘
=

Because of the definition of a(” and b, we know a®,b® > |c()| after any iteration i and thus both
90 < [Re 3 and W) < [[Wel |7

LEMMA 5.3. (INITIAL POTENTIAL) Initially, ®©) = K2 and ¥(©) = K9.
LEMMA 5.4. (INCREASE IN ®) At any iteration i, we have ®(+1) < &) 4+ 3K2/T.

Proof. For simplicity in the presentation, we ignore superscripts (¢) in the proof. Let A be the cycle output in
; def

line [21|such that |[LA|; < K9 and @' be the new potential values after updating a’ % a + +|Al. For any edge
e, we know

Kq72T3a6|Ae| <L|A < LA, < ”f‘A”l < K*
Rearrangement and the monotonicity of a yields

KA _ oAl

€a€

m @ a,

and therefore |A.| < ma. < Ta./3. Applying the definition of ®’ yields

1
¥ = riac + 7|Ad)’

=r?a. A < K?

3 3
<D orial+ macAd) =@+ ) rlacAl

3 3K?
<P+ K> LA <D+ =
<@+ KO LAIL < &+

where we use (1+ )% <1+ 3z for x € [0,1]. d
LEMMA 5.5. (INCREASE IN W) At any iteration i, we have WOTY < W0 4 49K9/T.

Proof. For simplicity in the presentation, we ignore superscripts (¢) in the proof. Let A be the cycle output in
def

line a such that |[LA|; < K9 and ¥’ be the new potential values after updating b’ % b + 7|Al. For any edge
e, we know

wib A < L|A| < |ILA], < |LAJ| < K

Rearrangement and the monotonicity of b yields

a
£|A€| < wgbg@ — wgbg_l\Ae| < K1
m b, b,
and therefore |A,| < mb, < Lb=  Applying the definition of ¥’ yields

100q
1

v = (b, + —|A.])

Ee wi(be + 7| Ac])

4q .4 4q Z -1
< § q(p4 _1he — ) ) )
— . we(be + Tbe |A€|) \II—’_ T . webe |A€|

4q 4qK1
< — < -
7\II+THLAH17\I!+ T

where we use (1 + x)? <14 4qx for 2 € [0,1/100g]. 0

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



LEMMA 5.6. (FINAL POTENTIAL) When Algorithm @ returns ¢, we have ®T) < 4K? and 1) < 5¢K4.
Therefore, we have |Re™) |y < 2K and [[We™)|, <[[WeD)|, < 2K.

Proof. This follows directly from lemma lemma [5.4] and lemma [5.5 0
LEMMA 5.7. (EXISTENCE OF A GOOD {1 SOLUTION) If there is a circulation ¢* such that (g, c*) = —1, ||Rc*||2 <

1, and |[We|, < 1, we have |L&e*||y < 20gK9™! at any iteration i.

Proof. In this proof, we consider an arbitrary iteration ¢ and ignore the superscripts (z) for simplicity. By definition
and the bounds on ® and ¥ (lemma [5.6)), we have by the Cauchy-Schwarz inequality and Hoélder inquality that,

el = K972 riaclel| + ) wibd el
e e

< K77 |Rally [[Re* ||, + [W= b7 ) 'well,

q/(g—1
_ " -1 *
= K% ||[Ral, [Re*||, + [[WB]I " [[We*,

< K7 2(2K) + (5qK9)a~D/a. 2
< 2Kt 4 10gKT! < 20¢K 77!

where the second inequality comes from [|[We*||, < m!'/9=1/P||We*||, < m!/logam = 2, O

Proof. [Proof of Lemma We first show that if line 16| of Algorithm (1| occurs, then the claim about ¢* in the
following line [17|is true. The correctness of lemma says that there’s no circulation ¢* such that (g,c*) = —1
and |[Le*||l; < 1/a = 20gK71. Correctness then follows from lemma
Next, the quality of the output ¢(™) is established by lemma _
Finally, the runtime follows from lemma and the standard technique of maintaining a,b and £ using
dynamic tree data structures such as link-cut trees. In particular, £ is monotone and bounded by m©® on each
edge, so we can maintain a £ ~z5 £ with O(p) changes per change. ]

6 Dynamic Min-Ratio Cycle Data Structures

In this section, we prove lemma We use the oblivious min-ratio cycle data structure from [36]. In particular,
the data structure can handle adversaries stronger than oblivious ones as long as the update sequence satisfies
what is called the hidden stable-flow chasing property. In the problem of approximate monotonic min-ratio cycles,
we show that the update sequences satisfy this property and the monotonicity in edge lengths allows us to use a
special case of the data structure in [36].

DEFINITION 6.1. (HIDDEN STABLE-FLOW CHASING UPDATES, DEFINITION 6.1 [36]) Consider a  dynamic
graph G undergoing batches of updates UM ... UM ... consisting of edge insertions and deletions. We say
the sequences g €1 and U® satisfy the hidden stable-flow chasing property if there are hidden dynamic
circulations ¢ and hidden dynamic upper bounds w'® such that the following holds at all stages t:

1. e® is a circulation: Bgmc(t) =0.

2. w® upper bounds the length of c¢®): |£§t)c£f)| < wl for all e € E(GW).

3. For any edge e in the current graph G, and any stage t' < t, if the edge e was already present in G(t/),
ie. e € GO\, U, then w) < 2w,

THEOREM 6.1. (SIMPLER VERSION OF [36, THEOREM 7.1]|) Let G = (V, E) be a dynamic graph undergoing T
batches of updates UV, ... U™ containing only edge insertions and deletions with edge gradient g® and length
29 such that the update sequence satisfies the hidden stable-flow chasing property (definition with hidden
dynamic circulation ¢ and width w®. In addition, |w®|| is non-decreasing in t, i.c., [|[w®||; < [[w* V||, for
all steps t.

There is an algorithm on G that for d = (logm)'/® maintains a collection of s = O(logm)? spanning trees
T1,Ts,...,Ts and after each update outputs a circulation A represented by
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eXp(O(log7/8mloglogm)) off-tree edges and paths on some T;,i € [s]. The output circulation A satisfies
BTA =0 and for some k = exp(—O(log”® mloglogm))

(9".a) _ (g
K
lLOA|, = (@d+1)w? ],

The algorithm succeeds whp. with total runtime (m + Q)m°M) for Q = S°7_, |U®] < poly(n).

This follows from |36, Theorem 7.1] because the terms ||’w(p'e"§t))||1 < lw®|; by the increasing property, and
(®)
prev,” < t.

Proof. [Proof of lemma We apply the dynamic algorithm of theorem [6.1|to prove the lemma. In order to do
so, we need to show that there is a hidden circulation ¢(® and width w® that satisfies the hidden stable-flow
chasing property (definition . At any stage t, if the monotonic MRC problem instance (problem inserts
a new edge e with gradient g. and length £., we create an update batch U® consists of a single edge insertion
(e, ge, £e). Otherwise, if the problem instance increases the length of an edge from £, to £, we create an update
batch U® consists of an edge deletion e followed by an edge insertion (e, g., £.).

At any stage ¢ (including stage 0, the moment after the initialization), we define the hidden circulation c®
to be ¢* if every edge in the circulation ¢* appears in G®). Otherwise, we set ¢ to be the all zero circulation.
We also define the hidden width w(®) on each edge e as

Eg)c: , if e € supp(c*)

wlt)
0 , otherwise.

Now, we verify each condition of definition [6.I] one at a time. item [I| holds at any stage ¢ because both c*

and 0 are circulations. For any edge e € supp(c*), et is either 0 or ¢ and w!) > |£(t)c§t)| holds. For any other
edge e ¢ supp(c*), both cg) and 'wét) are always 0 and itemfollows. itemfollows from the fact that c* is fixed
beforehand and that an edge is updated when its length doubles. Also, ||w®||; is non-decreasing in ¢ because
edge lengths are non-decreasing.

Finally, we need to show that the output after each update is always valid. At stage t, if supp(c*) ¢ G®,
problem does not care what we output. If supp(c*) € G, we know g¥) = g, ¢V = ¢* and ||[w®|; =

|[L®¢*||1, and the output circulation A satisfies

(g.4) _ (g k(g
ILOA|, = @+ D)[w®],  d+1[L®e |,

from theorem The conclusion follows because d = (logm)'/8. 0
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