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Abstract. Mission-critical systems, such as navigational spacecraft and drone
surveillance systems, play a crucial role in a nation’s infrastructure. Since these
systems are prone to attacks, we must design resilient systems that can withstand
attacks. Thus, we need to specify, analyze, and understand where such attacks
are possible and how to mitigate them while a mission-critical system is being
designed. This paper specifies the mission-critical system as a workflow consist-
ing of atomic tasks connected using various operators. Real-world workflows can
be large and complex. Towards this end, we propose using Coloured Petri Nets
(CPN), which has tool support for automated analysis. We use a drone surveil-
lance mission example to illustrate our approach. Such an automated approach is
practical for verifying and analyzing the resiliency of mission-critical systems.
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1 Introduction

A mission-critical system is one whose failure significantly impacts the mission [8,16].
Examples of mission-critical systems include navigational systems for a spacecraft and
drone surveillance systems for military purposes. These systems are prone to attacks
because they can cripple a nation [6]. Mission-critical systems must fulfill survivabil-
ity requirements so that a mission continues in the face of attacks. Thus, this requires
specifying and analyzing a mission before deployment to assess its resilience and gauge
what failures can be tolerated.

A mission can be described in the form of a workflow consisting of various tasks
connected via different types of control-flow operators. Researchers have addressed
workflow resiliency in the context of assigning users to tasks [7,12–15,19,21]. How-
ever, active attackers can compromise the capabilities of various entities. The destruc-
tion of the capabilities may cause the mission to abort or fulfill only a subset of its
objectives. Analyzing resiliency considering attacker actions for mission-critical sys-
tems is yet to be explored.

Our work aims to fill this gap. We formally specify a mission in the form of a
workflow, the definition of which is adapted from an earlier work [20]. A mission is
often complex, and manually analyzing the workflow is tedious and error-prone. We
demonstrate how such a workflow can be transformed into a Coloured Petri Net (CPN).
CPN has automated tool support [17] that can be used for formal analysis.

Formal analysis may reveal deficiencies in the mission specification. Addressing
such deficiencies improves the cyber-resiliency posture of the mission. We demonstrate
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our approach using a mission-critical drone surveillance system. We provide a divide-
and-conquer approach that helps decompose a complex workflow and shows how to
analyze the sub-parts and obtain the analysis results for the total workflow.

The rest of the paper is organized as follows. Section 2 provides the formal defini-
tions for workflow and Coloured Petri Nets. Section 3 describes a motivating example
and formally represents the workflow for mission-critical systems. Section 4 defines the
transformation rules from workflow to CPN along with the development of the CPN
hierarchy model. Section 5 focuses on verifying the CPN so-generated and analyzing
resiliency. Section 6 enumerates some related work. Section 7 concludes the paper and
points to future directions.

2 Background

2.1 Workflow Definition

Typically, a workflow consists of tasks connected through operators [1–5,20]. The syn-
tax of the workflow adapted from [20] is defined as follows.

Definition 1 (Workflow). A workflow is defined recursively as follows.
W = ti ⊗ (t|W1 ⊗W2|W1#W2|W1&W2|i f{C}W1 elseW2|while{C}{W1}W2)⊗ t f
where

– t is a user-defined atomic task.
– ti and t f are a unique initial task and a unique final tasks respectively.
– ⊗ denotes the sequence operator. W1 ⊗W2 specifies W2 is executed after W1 com-

pletes.
– # denotes the exclusive choice operator. W1#W2 specifies that either W1 executes or
W2 executes but not both.

– & denotes the and operator. W1&W2 specifies that both W1 and W2 must finish exe-
cuting before the next task can start.

– i f{C}W1 elseW2 denotes the conditioning operator. C is a Boolean valued expres-
sion. Either W1 or W2 execute based on the result of evaluating C but not both.

– while{C}{W1} denotes iteration operator. If C evaluates to trueW1 executes repeat-
edly until the expression C evaluates to false.

Definition 2 (Simple and Complex Operators). A simple operator is an operator
that imposes one single direct precedence constraint between two tasks. The only sim-
ple operator is the sequence operator. All other operators are referred to as complex
operators.

Definition 3 (Simple and Compound Workflows). A simple workflow is a workflow
that consists of at most one single complex operator and finitely many simple oper-
ators. All other workflows are compound workflows. A compound workflow can be
decomposed into component workflows, each of which may be a simple or a compound
one.

Definition 4 (Entities). The tasks of a workflow are executed by active entities, referred
to as subjects. The entities on which we perform tasks are referred to as objects. An
entity has a set of typed variables that represents its attributes.
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Definition 5 (State of an Entity). The values of the attributes of an entity constitute its
state. The state of a subject determines whether it can execute a given task. The state of
an object determines whether some task can be performed on it.

In the remainder of this paper we abstract from objects and only consider critical sys-
tems specified as subjects.

Definition 6 (Mission). A mission is expressed as a workflow with a control-flow, a
set of subjects, a subject to task assignment relation, and some initial conditions and
objectives. Formally,M = (W,S ,ST ,I ,O) whereW is the control-flow corresponding
to the mission, S is a set of subjects, ST ⊆ S×Tasks(W ) is the set of subject to task
assignments, I is the set initial conditions, and O is the set of mission objectives. The
subject to task assignment should satisfy the access control policies of the mission. The
conditions and objectives are expressed in predicate logic.

2.2 Coloured Petri Nets (CPN)

A Colored Petri Net (CPN) is a directed bipartite graph, where nodes correspond to
places P and transitions T . Arcs A are directed edges from a place to a transition or a
transition to a place. The input place of transition is a place for which a directed arc
exists between the place and the transition. The set of all input places of a transition
r ∈ T is denoted as •r. An output place of transition is a place for which a directed arc
exists between the transition and the place. The set of all output places of a transition
r ∈ T is denoted as r•. Note that we distinguish between tasks and transitions by using
the label r for transitions. CPNs operate on multisets of typed objects called tokens.
Places are assigned tokens at initialization. Transitions consume tokens from their input
places, perform some action, and output tokens on their output places. Transitions may
create and destroy tokens through their executions. The distribution of tokens over the
places of the CPN defines the state, referred to as marking, of the CPN. Formally, a
Non-Hierarchical CPN is defined [9,10] as CPN = (P,T,A,Σ,V,C,G,E, I), where P,
T , A, Σ, and V , are sets of places, transitions, arcs, colors, variables, respectively. C,
G, E, I are functions that assign colors to places, guard expressions to transitions, arc
expressions to arcs, tokens at initialization expression respectively.

Definition 7 (Simple Workflow CPN). A simple workflow CPN is a CPN that models
a simple workflow. A simple workflow CPN has a unique input place i and a unique
output place o.

Definition 8 (CPN Module). A CPN Module consists of a CPN, a set of substitution
transitions, a set of port places, and a port type assignment function. The set of port
places defines the interface through which a module exchanges tokens with other mod-
ules. Formally a CPN module is defined as in [10] as: CPNM = (CPN,Tsub,Pport ,PT )
where (i) CPN is a Colored Petri Net (ii) Tsub ⊆ T is a set of substitution transitions (iii)
Pport ⊆ P is a set of port places (iv) PT : Pport → {IN,OUT, IN\OUT}

Definition 9 (Simple CPNModule). A Simple CPNModule is a CPN module in which
the CPN is a Simple Workflow CPN and the interface of the module is defined by a single
input port place i′ and a single output port place o′.
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Definition 10. Hierarchical CPN AHierarchical CPN is defined by the authors in [10]
as: CPNH = (S,SM,PS,FS) where (i) S is a finite set of modules. ces and transitions
must be disjoint from all other modules’ places and transitions. For a module s ∈ S we
use the notation Ps to denote the set of places of the module s. Similarly, for each of the
other elements of the module s. (ii) SM ⊆ Tsub ×S is a relation that maps each substitu-
tion transition to a sub- module. Note that [9,10] defines SM : Tsub → S as a function.
However, it is easier to compute SM if defined as a set. (iii) PS(t) ⊆ Psock(t)×PSM(t)

port is
a port-socket relation function that assigns a port-socket relation to each substitution
transition. (iv) FS ⊆ 2p is a set of non-empty fusion sets. A fusion set is a set of places
that are functionally equivalent. (v) We additionally define global sets of places, tran-
sitions, arcs, colors, and variables as the union of the places, transitions, arcs, colors,
and variables of each module. Furthermore, we define global initialization, arc expres-
sion, guard expression functions to be consistent with the functions defined for each
module. We refer to these global elements by omitting the superscript in the notation.

Definition 11 (Module Hierarchy). A Module Hierarchy is a directed graph where
each module s ∈ S is a node; and for any two modules s1,s2 ∈ S, there exists a directed
arc from s1 to s2 if and only if there is a substitution transition in s1 that is mapped
to the module s2. As represented in [10], the module hierarchy is formally defined as:
MH = (NMH ,AMH) where (i) NMH = S is the set of nodes, and (ii) AMH = {(s1,r,s2) ∈
NMH ×Tsub ×NMH | r ∈ T s1

sub ∧ s2 = SM(r)}
A module with no incoming arcs in the module hierarchy is refereed to as a prime
module.

3 Motivating Example

We shall refer to the surveillance drone mission example to illustrate the transforma-
tion framework. Let Mdrone be a mission specification that models a drone performing
some data collection tasks over a region of interest. The drone has a camera that can
take pictures at high and low altitudes and sensors capturing heat signals and radiation
levels. The sensors are only accurate at low altitudes. There are three regions of interest:
Regions A, B, and C. Region A is where the drone is regularly scheduled to perform
surveillance; this region is large but close to the deployment point. Regions B and C
are smaller but are further away from the deployment point. The drone is likely to be
detected at low altitudes when it is in Region A. Therefore, the drone can only fly at
high altitudes from where it can only use its camera. The drone may fly over regions
B or C at high or low altitudes. However, due to the lack of visibility over the regions,
only the heat and radiation sensors can capture meaningful data. Therefore, the drone
can only collect data with its sensors over regions B and C. The mission succeeds if
the drone collects data and returns to the deployment point. The control-flow of this
mission is described by the task graph in Fig. 1 and given as control-flow expression
below:

W = Init⊗Check_Status⊗Deploy⊗ i f (instruction){(Fly_to_RegionB # Fly_to_RegionC)⊗
(Measure_Radiation_level #Measure_Heat_Signal)}else{Fly_to_RegionA⊗while{battery_level > 1}
{Scan_Vehicles&Scan_Construction}}⊗Return_to_Base⊗Final
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Fig. 1.Workflow of Surveillance Drone Mission.

This mission has a single entity called drone1 of type Drone, that is, S =
{drone1 : Drone}. The attributes of type Drone, denoted as Drone.Attributes,
are given as: Drone.Attributes = {type : string; location : string; f ly_enabled :
bool; battery_level ∈ {1,2,3,4}; instruction_issued : bool; camera_enabled : bool;
sensors_enabled : bool; data_collected : bool}

We define functions that return the values of various attributes. For example,
location(drone1) returns the location of drone1. Every task can be performed by
drone1. Therefore, the subject task assignment function assigns drone1 to each task.
ST = {(drone1, transition) |t ∈ Tasks(W )}. Let I be a predicate logic formula giving
the initialization conditions as:

I = ∃ s ∈ S | (type(s) = Drone)∧ (location(s) = “base”)
∧( f ly_enabled(s) = true)∧ (battery_level(s) = 4)∧ (instruction_issued(s) = f alse)∧
(camera_enabled(s) = true)∧ (sensors_enabled(s) = true)∧ (data_collected = f alse)

Let O be a predicate logic formula that defines the mission objectives as:
O = ∃ s ∈ S | (type(s) =Drone)∧ (location(s) = “base”)∧ (data_collected(s) = true)
If an attribute of the subject s is not explicitly constrained by the initial conditions or the
objective, then that attribute can take on any value in its domain. Mission specification
is as follows:Mdrone = (W,S ,ST ,I ,O).

4 Workflow to CPN Transformation Rules

Our approach maps a Mission-Specification M = (W,S ,ST ,I ,O) to a Hierarchical
Colored Petri Net CPNH = (S,SM,PS,FS). The approach follows six processes as
shown in Fig. 2. The first two processes deal with the decomposition and simplifica-
tion of the control-flow. The decomposition procedure partitions the control-flow into
a set of disjoint expressions that each model a workflow component. Each component
is either a simple or compound workflow. The simplification procedure then iterates
each component substituting any nested components with tasks. A task substituting a
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nested workflow in another workflow is substitution task. A workflow that has had all of
its components substituted for tasks is said to be simplified. The simplification process
outputs a set of simple workflows, a set of substitution tasks for each component, and
a substitution relation that tracks which component was substituted by which task. The
formalization process extracts from the simple workflow the sets of workflow tasks,
substitution tasks, begin and end tasks, and precedence constraints over all tasks. These
sets are collectively called a formalized component.

Fig. 2.Workflow to CPN Transformation Framework

The fourth process applies 7 rules to each component that, together with the remain-
ing elements of the mission, are mapped to a Non-Hierarchical Colored Petri Net. The
structure of each Non-Hierarchical CPN (places, transitions, and arcs) is semantically
equivalent to the component. The fifth process generates a CPN module by adding an
interface to each Non-Hierarchical CPN. The sixth process relates each module through
relationships between substitution transitions, sub-modules, and port and socket places.
The final output is a Hierarchical CPN representing a complete model of the original
mission. Table 1 illustrates the notation used to decompose, simplify and formalize the
control-flow. Note that the sets Task(W ), TaskS(W ), and TaskU (W ) are disjoint subsets
of the set of all tasks TasksW . i.e. Task(W )∩TaskS(W )∩TaskU (W ) = /0

Table 1. Control-flow Notation Table

Symbol Description

TasksW Set of all tasks in a workflow

Tasks(W ) ⊆ TasksW Set of all workflow tasks inW

Components Set of component workflows

TasksS(W ) ⊆ TasksW Set of substitution tasks ofW

TasksU (W ) ⊆ TasksW Set of support tasks ofW

TasksB(W ) ⊆ TasksW Set of begin tasks ofW

TasksE (W ) ⊆ TasksW Set of end tasks ofW

Prec(W ) The set of precedence constraints inW

Substitutions Relation between component workflows and substitution tasks ofW

Transformation Rules. The structure of the Non-Hierarchical CPN is made up of the
places P′, transitions T ′, and arcs A′. We define the structure of Non-Hierarchically
CPNs in a similar manner as a workflow-net or process net [1,2,18]. A workflow-net is
a Petri Net with a unique input place i and a unique output place o. A workflow-net has
the additional property that when the output place o is connected to the input place i by
a transition r′, the resulting extended net is strongly connected.
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Rule 1: Transition Set Generation: Tasks are modeled as transitions in the Non-
Hierarchical CPN. Our algorithm maps each task tk ∈ TasksW ′ to a unique transition
rk ∈ T ′. Let T ′

map be a relation between the set of tasks and the set of transitions. The
pair (tk,rk) ∈ T ′

map indicates that the transition rk is mapped from the task tk. Through
the remainder of the paper, we maintain this indexing convention. That is, rk denotes
the transition mapped from the task tk. Let T ′

sub, T
′
U , T

′
B and T ′

E be subsets of T ′. The
set T ′

sub is the set of substitution transitions such that T ′
sub = {rs | (ts,rs) ∈ T ′

map ∧ ts ∈
TasksS(W ′)}. The sets of support transitions T ′

U , begin transitions T ′
B, and end transi-

tions T ′
E are constructed similarly from the respective subsets of tasks. Consider our

running example, the sets of transitions for CPN′ are mapped from the sets of tasks of
W ′ as follows:
Tasks′W → T ′ = {r1,rs1,rs5,r5,rc}, TasksU (W ′) → T ′

U = {rc}, TasksS(W ′) → T ′
S =

{rs1,rs5}, TasksB(W ′) → T ′
B = {r1}, and TasksE(W ′) → T ′

E = {r5}. The relation
between tasks and transitions is T ′

map = {(t1,r1),(ts1,rs1),(ts5rs5),(t5,r5),(tc,rc)}.

Rule 2: Place and Arc Set Generation: The set of places P′ is initialized with a unique
input place i and a unique output place o. The set of arcs is initialized to the empty set.
For each begin transition rb ∈ T ′

B the algorithm adds a directed arc connecting the input
place i and the transition rb to A′, i.e. A′ ← (i,rb). Similarly, for each end transition
re ∈ T ′

E , the algorithm adds a directed arc connecting the transition rb and the input place
i to A′, i.e. A′ ← (re,o). Consider our running example, r1 ∈ T ′

B implies that A′ ← (i,r1)
and r5 ∈ T ′

E implies A′ ← (r5,o). For each (tk, t j) in Prec(W ′), we create a new place
m and add the arcs (rk,m) and (m,r j) to A′. That is, P′ ← m, and A′ ← (tk,m),(m, t j).
If one task has two direct successors i.e. (tq, t j),(tq, tk) ∈ Prec(W ′), then this denotes a
point at which a split occurs. If a task has two direct predecessors, i.e. (t j, tq),(tk, tq) ∈
Prec(W ′), then this denotes a point at which a join occurs. There are two types of splits
and joins. There are or-splits/joins and there are and-splits/joins [18]. Or-splits should
always be joined by an or-join. Similarly, an and-split should always be joined by an
and-join. The or-split/join only occurs in control-flows that contain the exclusive-or
operator or the conditioning operator. When an or-split is imposed by the exclusive-
or operator and there is task tq that directly precedes t j#tk, such as tq ⊗ (t j#tk), the
transition rq should output to a single place m that is the input to both r j and rk. Then
the either transition r j or rk will execute by consuming the output of rq, but not both.
We thus leverage the fact that given a place m that is input to two transitions, then
either transition may consume the token in the place m. When an or-split is imposed
by the conditioning operator, then the split is modeled by the support transition rc-
where rc routs the execution based on the evaluation of a Boolean expression. Therefore,
(tq, t j),(tq, tk)∈ A′ and an exclusive-or operator in the control-flow implies that P′ ←m,
P′ ← m′, and A′ ← (rq,m),(rq,m′),(m,r j),(m′,rk)), however, m= m′. Similarly, when
an or-join is imposed by the exclusive-or operator or the conditioning operator, and
there is task tq that directly succeeds t j#tk, such as (t j#tk)⊗ tq, then the output place of
r j and rk should be a single place that is the input to rq. Therefore, (t j, tq),(tk, tq) ∈ A′

and the conditioning operator or exclusive-or is in the control-flow implies that P′ ← m
and P′ ← m′, and A′ ← (r j,m),(rk,m′),(m,rq),(m′,r1), however, m = m′. The and-
split/join only occurs in control-flows that contain the parallel-split operator. The and-
split is modeled by the support transition rg. The and-join is modeled by the support
transition rs. The structure of CPN′ is formally described as:
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P′ = {i,o, p1, p2, p3, p4}
T ′ = {r1,rs1,rs5,r5,rc}
A′ = {(i,r1),(r1, p1),(p1,rc),(rc, p2),(rc, p3),(p2,rs1),(p3,rs5),(rs1, p4),(rs5, p4),(p4,r5),(r5,o)}

Thus far we have addressed five of the six well-behaved building blocks proposed by
the Workflow Management Coalition [18] to model any control-flow. That is, the and-
split, and-join, or-split, or-join, and sequence. The final building block is iteration. In
the special case that the simple workflow contains the iteration operator, our algorithm
adds two additional arcs to the set of arcs. One directed arc going from the support
transition rc1 to the output place o models the iteration never executing. One directed
arc going from the support transition rc2 to the output place of rc1 models the iteration
continuing. One can see that our model can implement all six well-behaved building
blocks proposed by the Workflow Management Coalition [18] and can therefore model
any control-flow. Furthermore, we will later show that the manner in which we connect
our CPN modules forms well behaved control structures [18].

Rule 3: Colors and Variable Set Generation: The color set of a simple workflow
CPN consists of the different types of entities in the Simple CPN model. The types can
be primitive types such as Bool, Int, or String or more complex user-defined types. In
the drone surveillance example, there is only one subject of type Drone. The data type
Drone is mapped to a record color set labeled Drone. Each attribute of the type Drone
becomes a label in the record color set as:

colorDrone= record {type : String; location : String; f ly_enabled : Bool;

detected : bool;battery_level : Int ∈ {1,2,3,4}; instruction_issued : Bool;

sensors_enabled : Bool;camera_enabled : Bool;data_collected : Bool}

Set of colors Σ′ is constructed by adding any compound color sets and declaring
the primitives that compose them. Σ′ = {Bool,String, Int,Drone} Set of variables V
is declared such that there is variable for each color in Σ. V ′ = {instruction : Bool;y :
String, i : Int,drone : Drone}.
Rule 4: Assigning Colors to Places: Each task can be performed by a drone. Therefore,
each place p ∈ P′ is assigned the color Drone ∈ Σ′.

Rule 5: Assigning Guard Expressions: For each workflow task tk ∈ TasksW ′ , we
assign to the transition rk a guard expression G′(rk) equivalent to Pre(tk). In other
words, the guard expression evaluates to true if and only if the conjunction of the
preconditions of tk evaluates to true. The empty set of pre conditions is equivalent
to the pre condition that always evaluates to true. Support and substitution tasks
always have an empty set of pre conditions, therefore the guards of the respective
transitions always evaluate to true. The only tasks of W ′ that have non-empty sets of
pre conditions are t1 and t5 such that Pre(t1) = { f ly_enabled(drone1) = true} and
Pre(t5) = { f ly_enabled(drone1) = true,battery_level(drone1) ≥ 1}. Therefore, the
guard expression function is G′(r1) = g1 = f ly_enabled(drone) = true and G′(r5) =
g5 = f ly_enabled(drone) = true∧battery_level(drone) ≥ 1. Where drone ∈V ′ takes
on the value of the instance of drone1 when r1 and r2 are enabled. For all other cases in
CPN‘ the guard expression is always true.



506 M. Abdelgawad et al.

Rule 6: Assigning Arc Expressions: Each transition is assigned an input arc expres-
sion that evaluates to a token of the same color as the input place of the transition. Each
transition is assigned an output arc expression that updates the token received over the
input arc, such that the post conditions of the corresponding task evaluate to true. Substi-
tution transitions can neither be enabled nor occur. Therefore, the arc expressions over
their connected arcs have no semantic meaning. Support transitions route the execution
of the workflow. For sequential and parallel executions, the output arc expressions are
identical to the input arc expressions. For support transitions that evaluate a condition,
each output arc models a case of the condition. The output arc of these transitions,
should output the token received over the input arc only if the case evaluates to true.
Otherwise, they output the empty set.

For example, for the arc (rc, p2)∈ A′, is given the arc expression E ′((rc, p1)) = c1 =
i f (instruction_issued(drone) = true){drone}else{empty}. The arc (r5,o) is given
the arc expression E ′((r5,o)) = e5 = {(location(drone) = “deployment_point”) ∧
(battery_level(drone) = battery_level(drone)− 1)}. Note that the syntax we use for
the arc expressions is based on function notation that is easy to understand. CPN Tools
has its own modeling language which we avoid using for simplicity.

Rule 7: Initialization: The initialization function I′ sets the initial state of the model
by assigning a multiset of tokens to each place p ∈ P′. I must satisfy the initial
conditions of the mission. Recall, I calls for a subject s with the following valua-
tion: (type(s) = Drone)∧ (location(s) = “deployment_point”)∧ ( f ly_enabled(s) =
true)∧ (battery_level(s) = 4)∧ (instruction_issued(s) = f alse))∧
(camera_enabled(s) = true) ∧ (sensors_enabled(s) = true) ∧ (data_collected =
f alse)

Over the input place i, the initialization function I′(i) evaluates to a multiset of
size one that satisfies the initial conditions of the workflow. For every other place, the
initialization function evaluates to the empty set of tokens. It is important to note that for
our analysis we are considering a single drone in isolation. Therefore, the initialization
function of every other CPN in our final hierarchical model will evaluate to the empty
set for every place. The result of applying rules 1–7 to our example W ′ is CPN′ as
described by Fig. 3. We have omitted writing each arc expression explicitly into the
diagram to maintain readability.

We construct a hierarchical CPN (CPNH ) from the set of modules S and their
original relationships in the workflow. Recall that a Hierarchical Colored Petri Net
CPNH = (S,SM,PS,FS) consists of a set of modules S, an assignment of substitution
transitions to modules SM, a relation between port places and socket places PS -where
the pair (p, p′) ∈ PS signifies that p is a socket place of a substitution transition t that
has been mapped to a a sub module s such that p′ is a port place of the same type
as p; and a set of fusion places FS. We have already defined and computed the set of
modules S. The set of fusion places is empty e.g. FS = /0. Therefore, the task is now to
compute SM and PS. The module CPN′

M is the prime module (top level of the hierar-
chy) and every other module is a sub-module with respect toCPN′. The initial marking
M0 always evaluates to a non-empty set of tokens at the input port i′ ∈ P′; and every
other place is empty. The place i′ has a single output arc connected to the transition ri.
Thus, all execution sequences must begin at ri. The model has a single final transition r f
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Fig. 3. CPN Models of Surveillance Drone Mission.

with a single output place o′. Therefore, any execution sequence that is complete must
terminate with the transition r f and a token in the place o′. The initial transition ri ∈ T ′

and final transition r f ∈ T ′ model the begin and end tasks of the original workflow.

5 Resiliency Analysis

An attack is an action taken by an adversary that changes the state of a subject in a way
that renders it unable to perform a task it has been assigned. An attack scenario consists
of the target of the attack. The set of attributes of the target, which are attackable,
an attack task, and an integer limit on the number of times the attack may occur. A
mission workflow is resilient to an attack scenario if, after the attack occurs, there exists
a successful execution from the point at which the attack occurred.

There are various scenarios of workflow resilience, including static, decremental,
and dynamic resilience [19] (see Sect. 6). In this paper, we investigate static resilience.
Static resilience describes a situation where a subset of users become unavailable before
the execution of the workflow. Once a subset of users is made unavailable, no user of
this subset may become available again.

The analysis examines the state space of the CPN model with the attack scenario
where the drone’s camera fails while scanning region A since we know that it is the only
location where the drone uses its camera. Table 2 reports 57 nodes and 65 arcs that are
strongly connected components (SCC). It also reports that model transitions are fully
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executed. However, the state space report has two dead markings (42 and 57). The first
dead marking (42) has a drone in the output place and received instruction. The second
dead marking (57) has a drone in the output place and did not receive an instruction.
Therefore, the mission is guaranteed to terminate in success under an attack scenario.

Table 2. State Space Verification

State Space SCC Graph Status

#Nodes
57

#Arcs
65

#Nodes
57

#Arcs
65

Full

Dead Markings [42, 57] Dead Transition None Live Tran-
sition
None

We then write a program using the CPN-ML programming language [11] to analyze
the mission’s resilience. We then use the CPN State Space Analysis Tool to evaluate the
program functions and return an execution sequence for each outcome where the attack
succeeded. The program then backtracks through the shortest execution sequence and
finds the node in the state space representing the state where the attack occurred. From
that state, it searches for an execution sequence that results in a successful outcome
(attack failure). If it finds one, it returns the execution sequence. Otherwise, it returns
an empty list. The program also returns information about the set of dead markings and
partitions the set into three subsets. The dead markings represent outcomes where the
attack did not occur, the attack occurred, and the mission failed, and where the attack
occurred, and the mission succeeded.

Table 3 summarizes the resiliency analysis result. The first column describes the
scanning iteration of Region A. The first row shows 37 total dead markings (DM), 2
dead markings that represent outcomes where the attack did not occur (DNA), 10 dead
markings that represent outcomes where the attack occurred but failed (DAF), 25 dead
markings that represent outcomes where the attack occurred and succeeded (DAS). The
algorithm found paths that reach only 4 of the 25 DAS markings (RDAS).

Table 3. Static Resilience Analysis Results

Scan Iteration
Number

Dead Markings
(DM)

Attack Didn’t
Occur (DNA)

Attack Occurred
but Failed (DAF)

Attack Occurred
and Succeede
(DAS)

Reachable DAS
(RDAS)

1 37 2 10 25 4

2 33 2 10 21 0

3 16 2 9 5 0

4 12 2 10 0 0

The program inspects the set of DNA markings and returns that the mission is cor-
rect and valid. The DNA markings represent the original outcomes of the mission. The
size of this set should be the same as the original set of dead markings. For the 25
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failed outcomes, the program found a successful execution sequence for four outcomes.
We compare the successful execution sequence with the failed execution sequence for
each of these four outcomes. It leads us to find the state where the execution sequences
diverge and, from that state, ensure that the transition and binding element that leads
to success always occur. For instance, node 42 corresponds to a failed outcome where
the attack happened at node 3. From node 3, our program found a path to node 57 - a
successful outcome. We now compare the path from node 3 to node 57 and the path
from node 3 to node 42. We find that the execution sequences diverge at node 5. From
node 5, proceeding to node 10 or node 9 is possible. The change in state from node 5
to node 10 results from the transition with the variable instruction bound to the value
f alse. The change in state from node 5 to node 9 results from the transition with the
variable instruction bound to the value true. We now know that the attack succeeds if
the drone’s battery is less than 3 units in the state represented by node 5, where transi-
tion receiveinstruction is enabled. Transition receive instruction models the workflow
routing based on an instruction issued.

In Iteration 2, the state space is re-calculated, and the analysis is repeated. The sec-
ond row of Table 3 describes the statistics generated by the program’s second iteration.
The result is four fewer outcomes where the attack succeeded. The program returns a
set of nodes representing the states where the attack occurred, and no path to a success-
ful outcome exists. Note that these are not dead markings. From each of these nodes,
there is a path to a dead marking that represents the failure of the mission (success of
the attack).

In Iteration 3, the state space is re-calculated, and the analysis is repeated. The third
row of Table 3 summarizes the statistics generated by the program’s second iteration.
We expected the set of outcomes where the attack failed to remain at 10, now 9. The
reduced size of the failed attack set means the outcome is lost because the drone is
initialized with its instruction set to f alse. Thus the attack at node 3, which was found
to be resilient, never executes. We focus on the 5 markings where the attack occurred
and succeeded. After inspecting all five markings, we find the attack succeeds because
it is delivered when the drone has just enough battery to perform one additional pass
over Region A. We can eliminate these failed outcomes by increasing the requirement
on the loop over Region A from more than one unit of battery to more than two units of
battery. It turns out that the drone always has some reserve battery if it is attacked.

In Iteration 4, the state space is re-calculated, and the analysis is repeated. The third
row of Table 3 summarizes the statistics generated by the program’s second iteration.
Since the set of attack successes is empty, we can be confident that the attack can not
succeed under the restricted workflow.

In summary, we have shown how to assess a mission’s resilience and find the condi-
tions required for the mission to succeed. We have also shown how to restrict a workflow
to improve its resilience.

6 Related Work

The literature on workflow resiliency problems introduces solutions to address the
unavailability [13,15,19]. Our work argues that the workflow resiliency problem can
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sometimes be viewed as unavailability and degradation. In other words, attacks do not
permanently remove subjects from service; they decrease their capabilities. Consider
the drone surveillance example; a failure in the drone’s camera affects the termination
and success of the workflow. Regarding resilience based on availability, one can assume
whether the camera’s loss is critical enough to remove the drone from the workflow. The
drone should be kept since its other sensors can complete the workflow.

Wang et al. [19] introduce three types of resilience, static, decremental, and dynamic
resilience. Static resilience refers to a situation in which users become unavailable
before the workflow executes, and no users may become available during the execution.
Decremental resiliency expresses a situation where users become unavailable before or
during the execution of the workflow, and no previously unavailable users may become
available during execution, while dynamic resilience describes the situation where a
user may become unavailable at any time; a previously unavailable user may become
available at any time. The different types of resilience formulations capture various
types of attack scenarios.

Mace et al. [13,15] propose a quantitative measure of workflow resiliency. They
use a Markov Decision Process (MDP) to model workflow to provide a quantitative
measure of resilience. They refer to binary classification, such as returning an execu-
tion sequence if one exists and declaring the workflow resilient; or returning false and
declaring the workflow not resilient. The authors show that the MDP models give a
termination rate and an expected termination step.

7 Conclusion

This paper emphasizes the workflow resiliency of the task degradation problem, specifi-
cally for mission-critical cyber systems. We presented a set of rules that formally trans-
forms workflow represented by a mission into Coloured Petri Nets (CPNs). We then
solved various analysis problems related to the resiliency of mission-critical such as
cyber-attacks. We developed an approach based on formalization rules that address the
complexity of mission workflows, simplify them, and transform them into simple CPNs.
These simple CPNs are then modulated and combined as a hierarchy CPN model.

We applied the approach to a drone surveillance system as an illustrative example.
We used the CPN tools to run verification and reachability analysis. The results showed
that the workflow resiliency problem could sometimes be unavailability and degra-
dation. A workflow subject is not permanently removed from service when an attack
occurs; it decreases its capabilities. However, the mission can continue, and the work-
flow can be completed. We have shown how to assess a mission’s resilience and find
the conditions to succeed. We have also shown how to restrict a workflow to improve
its resilience.

Future work will focus on extending the generated model to account for multiple
subjects and investigating decremental and dynamic resilience. We will design a set of
algorithms corresponding to the transformation rules. Our end goal is to automate the
process of verification and resilience analysis of workflows.
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