
Computing an Optimal Pitching Strategy in a Baseball At-Bat

Connor Douglas

New York University
cpd8405@stern.nyu.edu

Everett Witt

Periwinkle Trading
everett.witt@wustl.edu

Mia Bendy

Capital One
mia.bendy@wustl.edu

Yevgeniy Vorobeychik

Washington University in St. Louis
yvorobeychik@wustl.edu

Abstract

The field of quantitative analytics has transformed the world
of sports over the last decade. To date, these analytic ap-
proaches are statistical at their core, characterizing what is
and what was, while using this information to drive decisions
about what to do in the future. However, as we often view
team sports, such as soccer, hockey, and baseball, as pairwise
win-lose encounters, it seems natural to model these as zero-
sum games. We propose such a model for a baseball at-bat,
which is a matchup between a pitcher and a batter. Specifi-
cally, we propose a novel model of this encounter as a zero-
sum stochastic game, in which the goal of the batter is to get
on base, an outcome the pitcher aims to prevent. The value
of this game is the on-base percentage (i.e., the probability
that the batter gets on base). In principle, this stochastic game
can be solved using classical approaches. The main techni-
cal challenges lie in predicting the distribution of pitch loca-
tions as a function of pitcher intention, predicting the distri-
bution of outcomes if the batter decides to swing at a pitch,
and characterizing the level of patience of a particular batter.
We address these challenges by proposing novel pitcher and
batter representations as well as a novel deep neural network
architecture for outcome prediction. Our experiments using
Kaggle data from the 2015 to 2018 Major League Baseball
seasons demonstrate the efficacy of the proposed approach.

Introduction

Baseball is one of the most popular team sports in the U.S.,
with Major League Baseball (MLB) bringing in over $10
billion in revenue in 2019 (Statista, 2020), and has con-
siderable global popularity as well. With such a large mar-
ket, teams look to gain a competitive edge, and to this end
they leverage complex statistical models generated from in-
creasingly abundant baseball data. Yet, the scope of baseball
analytics has been limited primarily to statistical and ma-
chine learning approaches, rather than game-theoretic rea-
soning (Alcorn, 2017; Koseler and Stephan, 2017).

We present the first (to our knowledge) game-theoretic
model of strategic interactions in a baseball game. Our fo-
cus is a baseball at-bat, an encounter between a pitcher and
a batter. In an at-bat, a pitcher throws a series of pitches to a
batter. Every at-bat ends in one of two ways: 1) the batter is
out (and, in our model, the pitcher wins), for example, after

Copyright © 2023 by the authors. All rights reserved.

receiving the third strike, or 2) the batter gets on-base, for
example, by hitting a home run. In modeling an at-bat, we
assume that the goal of the batter is solely to get on base,
while the pitcher aims to get the batter out. This focus on
the on-base-percentage (OBP) is clearly restrictive (in not
accounting, say, for the difference between walks and home
runs), but is nevertheless a crucial element of baseball ana-
lytics (Albert, 2002; Lewis, 2004).

We model an at-bat as a stochastic game in which the
count (of balls and strikes) serves as the state, the pitcher’s
actions amount to which pitch to throw and where, while the
batter decides whether to swing or take (not swing at) the
pitch. This model introduces two principal conceptual and
technical challenges. The first is that the pitcher and batter
decisions are not, in fact, concurrent: the batter does get to
observe the pitch as it leaves the pitcher’s hand and as it
travels towards home plate. On the other hand, the relevant
observation window is so short (usually less than half a sec-
ond) that the batter has little ability to deliberate upon their
decision. The particularly salient issue here is that no bat-
ter will swing if the pitch is far outside of the strike zone,
while when pitches are close, batters vary significantly in
their swing propensity (what is often called a batter’s “pa-
tience” or “eye”). The second challenge is that our model
governs the pitcher’s intent about where the pitch is thrown.
However, pitching data documents only where the pitches
ended up; we observe nothing explicit about intent.

One way to deal with the challenge of observability is to
model the problem as a partially-observable stochastic game
(POSG). However, POSGs are notoriously difficult to solve.
We propose instead to add an explicit element to our model
that allows us to both capture the most salient nature of
this partial observability while keeping the main stochastic
game structure. Specifically, we use data to learn a batter-
specific probability that a batter swings at (relatively) bor-
derline pitches outside the strike zone, and when this is suf-
ficiently high, “override” a batter’s decision to swing pre-
scribed by the model by modifying the associated transition
to always result in a ball.

We address the second challenge by first decomposing the
distribution of outcomes given the pitcher’s actions, condi-
tional on the batter swinging, into two parts: 1) distribution
of actual locations given intended locations, and 2) distri-
bution of outcomes based on actual locations. We learn the

former by assuming that the error distribution of the pitcher
is Gaussian and by taking advantage of counts in which most
pitchers aim to throw a strike most of the time. For the latter,
we propose a novel tensor representation of the pitcher and
batter, along with a novel deep neural network architecture,
and use historical baseball data to learn the outcome distri-
bution for given pitcher-batter pairs. With all the pieces in
place, we can solve the resulting stochastic game using stan-
dard methods (Filar and Vrieze, 2012; Littman, 1994).

We evaluate the parts of our approach, as well as the
game theoretic equilibrium pitch distribution, using 2015-
2018 Kaggle data for Major League Baseball. We show that
our deep neural network models can successfully capture
distributions of outcomes as well as batters’ patience, and
demonstrate that the proposed approach yields significantly
lower predicted OBP for the batters (i.e., higher utility for
the pitcher) than the empirical OBP in most counts.
Related Work Several approaches to game-theoretic mod-
eling of sports activities have been previously proposed.
In the context of baseball, approaches have tended con-
sider very abstract player strategies Flanagan (1998); Tur-
ocy (2008); Weinstein-Gould (2009). For tennis, Walker and
Wooders (2001) studied empirically whether top players at
Wimbledon play each point according to a mixed-strategy
equilibrium. In a later more theoretical effort, Walker,
Wooders, and Amir (2011) propose a stochastic game model
of win-lose encounters in which the pivotal quantity is a
score, which determines the nature of each stage game, and
stage games have only two possible outcomes determined by
which of the two players win. This stochastic game model is
related to ours, but our model has four possible outcomes
in each state, violating one central assumptions of Walker,
Wooders, and Amir (2011); more fundamentally, our model
of a baseball at-bat does not fit their general assumed struc-
ture of the stochastic game as transitioning through a series
of “point games”. Moreover, our goals are different: while
Walker, Wooders, and Amir (2011) focus on characterizing
the structure of equilibria in this game, our goal is to solve
it, and infer the structure of the game from data.

Azar and Bar-Eli (2011) study whether penalty kick inter-
actions between the kicker and the goalie in soccer are rep-
resentative of mixed-strategy Nash equilibrium play. In this
setting, however, there are no environment dynamics, and
the game is straightforward to empirically represent. Beal et
al. (2020) and Beal et al. (2021) study strategic and tacti-
cal decision making in a soccer game. Their models are a
blend of Bayesian and stochastic games, but the ultimate ap-
proaches do not investigate solutions to these games as such,
but focus on a best response to a given opponent strategy.

The increasing importance of sports analytics, partic-
ularly in baseball, has given rise to a number of ma-
chine learning approaches surveyed by Koseler and Stephan
(2017). However, the classes of problems investigated in
such approaches have been typically limited to predicting
which pitch will be thrown (Ganeshapillai and Guttag, 2012;
Hoang et al., 2015), a player’s batting average or other of-
fensive statistics (Jiang and Zhang, 2010; Lyle, 2007), likeli-
hood of catching a baseball (Das and Das, 1994), likelihood
of winning (Yang and Swartz, 2004), and the like. There are

no prior approaches to predict the outcomes for a pair of
pitcher and batter at the level of resolution of a single pitch.

Background: the Basics of Baseball

A (U.S. major league) baseball game is an encounter be-
tween two teams and proceeds through a series of nine in-

nings. Each inning is comprised of two half-innings: the top

half and the bottom half. In the top half-inning, the away
team bats, while the home team pitches and defends, and
the roles reverse in the bottom half-inning. Each half-inning
consists of three outs, that is, an inning proceeds until three
players on the batting team have registered an out.

The most basic interaction in baseball is an at-bat, which
is a faceoff between a pitcher, who throws a baseball towards
the home plate area, and a batter standing near this area with
the aim to “get on base”. A central concept in an at-bat is
a strike zone (see Figure 1). The vertical range of the strike
zone is roughly from the batter’s knees to their shoulders,
while the horizontal range is the width of the home plate—a
white pentagon drawn on the ground. While the strike zone
depends on the batter, we’ll treat it as a fixed entity for sim-
plicity. Any pitch that is in the strike zone when it crosses
the home plate is considered a strike, and when the batter ob-
serves, or swings through, strike 3, he is automatically out.
Conversely, a pitch that is outside the strike zone is called a
ball, and the batter is automatically on base whenever they
observe a fourth ball. A count keeps track of the number of
balls and strikes in an at-bat, starting at 0-0 (balls-strikes).

At any point, if a batter swings at a pitch, one of four
things can happen: 1) a hit, which happens whenever the
ball lands in the field of play, or is a home run (leaves the
stadium within the field of play), and cannot be reached by
a defensive fielder before the batter reaches first base; 2) an
out, which happens whenever the a fielder either catches a
hit ball on the fly, or can throw it to first base (i.e., to the
defender standing with one foot on first base) prior to the
batter stepping on it; 3) a strike, if the batter does not make
contact with the baseball; and 4) a foul, if the batter makes
contact, but the ball lands behind the field of play.

A Baseball At-Bat as a Stochastic Game

Consider an at-bat, an encounter between a pitcher and a
batter. We start with a 0-0 count (0 balls, 0 strikes). The
pitcher throws a pitch, and we anticipate a number of pos-
sible outcomes. A home run, a base hit, or a walk, all end
an at-bat, as does a strikeout. However, a ball, a strike, and
a foul ball may (in the latter case, will always) continue the
at-bat, potentially changing the count. For example, a strike
or a foul ball in a 0-0 count will always progress the count to
0-1, and if a ball follows, the count progresses again to 1-1.
On a 3-2 count, a foul ball returns us to the same 3-2 count,
while a ball necessarily results in a walk.

Since there is no evident private information in an at-bat,
it is natural to model it as a zero-sum stochastic game. How-
ever, a good model is not obvious. First, what are the action
sets for the players? For example, the batter does observe the
pitch as it traverses the airspace between the pitcher’s mound
and the catcher’s glove, and could use this information (e.g.,

spin, location, speed of the pitch) to decide whether, and
how, to swing. Aside from the considerable complexity this
introduces, none of this information is available in public
baseball data at the level of necessary detail.

We propose a novel model of a baseball at-bat as the fol-
lowing stochastic game involving two players, a pitcher and
a batter. First, we consider only two types of outcomes of
at-bats: on-base (a hit or a walk) and out. Second, we define
the actions of the two players as follows. For the pitcher, let
P be the set of all pitch types they can throw, and L the set
of possible locations (both in the strike zone, and outside),
which we assume to be finite (discretizing the strike zone,
and the “non-strike” zone). Let Zs ⇢ L be the strike zone,
and Zb ⇢ L be locations outside the strike zone (see Fig-
ure 1 for a particular discretization of both Zs and Zb). The
pitcher’s action space is then Ap = P ⇥ L. Note that in

Figure 1: Pitch zone model from the pitcher’s point of view:
the orange center is the strike zone, while the blue periphery
is outside the strike zone. The numbers are numerical labels
for associated discrete zone segments.

this context, locations l 2 L are intended locations: that is,
locations that the pitcher is aiming for; of course, the pitch
may often end up elsewhere, and we will come back to this
below. For the batter, we define actions as binary: whether
to swing at the pitch (denoted by �), or to take (not swing;
⌧), that is, Ab = {�, ⌧}. There is an important complication
here: clearly, sometimes the pitch will be so far out of the
zone that no batter would plausibly swing; we come back to
this below as well. We use a = (ap, ab) 2 Ap⇥Ab to denote
the action profile (joint actions) of both players.

We define the state space S as follows. Let u 2 U ⌘
{0, 1, 2, 3} be the number of balls and v 2 V ⌘ {0, 1, 2}
the number of strikes, and let b represent the terminal state
in which the batter is on-base, while o is the state with the
batter being out. The state space is then S = U ⇥ V [b[o.
We denote states by s 2 S.

Since the game is zero-sum, it suffices to define the util-
ity function u(s, a), where s 2 S and a 2 Ap ⇥ Ab just
for the batter. Moreover, since we only care about on-base
or outs, u(s, a) = 0 for any s 2 U ⇥ V (active at-bat), and
u(b, a) = 1 while u(o, a) = 0. Therefore, the expected util-
ity (i.e., probability the batter gets on base) has the natural
interpretation as on-base percentage (OBP).

Our final task is to define the transition distribution T a
ss0

in this stochastic game. Central to this are two sources of
uncertainty conditional on the action choices a of both play-
ers: 1) uncertainty about where the chosen pitch p 2 P ends

up given its intended location l, and 2) uncertainty about
the outcome if the batter chooses to swing, i.e., ab = �.
Let’s start with pitch location uncertainty. Let Dl(p, l) be
the distribution over locations l0 2 L where the pitch ends

up, given that a pitch p 2 P was aimed at location l 2 L.
To deal with outcome uncertainty, first note that if the batter
takes, the outcome is fully determined by pitch location: ei-
ther the pitch is in the strike zone, in which case it’s a strike,
or not, and it’s a ball (we ignore here the additional com-
plication of umpire mistakes). If the batter swings, there are
four possibilities: 1) the batter swings-and-misses (a strike),
2) foul ball, 3) hit, and 4) out after putting the ball in play.
Let ⌦ = {!s,!f ,!h,!o} be the set of these four outcomes,
respectively. Let D!(p, l, s) be the probability distribution
over ⌦ conditional on the batter swinging, if the pitch is
p and the actual (not necessarily intended) location of the
pitch is l (it also in general depends on count; hence the ex-
plicit dependence on state s).

With Dl and D! in hand, we can now completely define
the transition distribution T a

ss0 . If ab = ⌧ , then transition is
deterministic and only depends on the count and Dl: 1) if
the actual location l 2 Zs, the pitch is a strike; then if v = 2,
s0 = o, and otherwise v0 = v + 1; 2) if l 2 Zb (the pitch is a
ball), then if u = 3, s0 = b, and otherwise u0 = u+ 1. If the
batter swings, transitions are now determined by D! . Thus,
if the (stochastic) outcome ! = !s, the transition is exactly
the same as if the batter took the strike. If ! = !f , then if
v = 2, v0 = 2, and otherwise, v0 = v + 1. If ! = !h, then
s0 = b (if it’s a hit, the batter ends up on base), and, finally,
if ! = !o, then s0 = o (the batter is out).

If we are given all of the information above, including
Dl and D! , we can solve this game using the combined
value iteration and linear programming approach proposed
by Littman (1994), which we review below. The challenge is
that not only are these not given explicitly, but Dl is pitcher-
specific, and D! depends on the particular matchup between
the pitcher and batter.

An additional challenge is that in our model above, we
effectively assumed that the batter decides whether to swing
or take at the same time as the pitch is thrown. In practice,
batters can partially detect where the pitch will end up, a
characteristic commonly referred to as a batter’s patience

(their propensity to swing at pitches outside the strike zone).
This ability to discern varies with batter ability. We model
this feature by introducing a binary patience function G(l)
for l 2 Zb, where G(l) = 0 means that the batter will in fact
take that pitch even if they intended to swing initially, while
G(l) = 1 means that the batter will proceed with swinging.
Of course, this, too, is not give a priori.

Next, we describe in detail how we can use baseball data
to arrive at estimates of Dl, D! , and G. We then put every-
thing together in solving the resulting stochastic game.

Solution Approach

We now describe our approach to computing an equilibrium
of the stochastic game representing a baseball at-bat, given
a specific pair of pitcher and batter. We start by describing
in detail how we learn the aspects of the game model that
determine the state transition distribution from past data of

baseball at-bats. Subsequently, we describe how we solve
the stochastic game using the well-known solution approach
that combines linear programming with value iteration.

Predicting Outcomes

The first missing piece of the game model that must be in-
ferred from data is the distribution D!(p, l, s) that predicts
outcomes for a pitch p that is thrown (whether intended to
or not) at location l in state (count) s. One of the central as-
pects of the game model is that this distribution also clearly
depends on who is pitching, and who is batting. Let xp and
xb represent the pitcher and batter, respectively; our goal,
more precisely, is to learn D!(p, l, s;xp, xb).

A naive idea is to represent players by some 1-
dimensional attributes, say batting average for the batter and
earned-run average for the pitcher. However, such simplistic
representations lose a great deal of information. For exam-
ple, it is often conventional to talk about some batters as, say,
“good low-ball hitters”, others as “good fastball hitters”, and
so on—clearly capturing information that is not simply re-
flected in simple aggregate statistics. We therefore propose
a novel representation of both batters and pitchers, aiming
to capture as much readily available information about their
past experience as possible, thereby avoiding making spe-
cific assumptions about them a priori.

Let’s start with batters. We represent batters using a 3D
tensor in which 2 dimensions correspond to the orientation
of the (strike and ball) zone Z (height and width; see Fig-
ure 1, but with zones 10, 12, 13, 15 split up into 3 each to
correspond to a matrix, but with associated matrix entries
taking on identical values) from the pitcher’s perspective.
We then associate each pitch with a pair of slices in the third
dimension: one for the relatively frequency of swinging at
that pitch, and another for batting average if that pitch was
thrown in the associated location. Thus, across the x zones,
y zones, and 2 values for each of 6 pitch types, we arrive at
tensor shape of (5x5x12).

Now, the pitchers. We represent pitchers, just as batters,
using a 3D tensor with 2 dimensions corresponding to the
zone. We then associate each pitch with a pair of slices in the
third dimension: one for the relative frequency of throwing
that pitch in the particular location in the zone; consequently,
the sum of the entries over the zone and all pitches is 1; and
the second for the average velocity of the associated pitch.

Input pitch type and location are represented by tensors
with a similar shape, (5,5,6), to pitchers and batters, but use
a one-hot encoding, with a 1 in the position corresponding
to the pitch and its location, and 0s elsewhere. Finally, we
represent count s by two integers, one for the number of
balls, and the other for the number of strikes.

Next, we propose a novel deep convolutional neural net-
work architecture for predicting outcomes shown in Fig-
ure 2. While the primary innovation is in our representation
of batter and pitcher as inputs which we described above,
it is not a priori self-evident how to combine them into a
single neural network architecture. This problem is reminis-
cent of sensor fusion (Feng et al., 2021), where the archi-
tecture is often intricate, and the ideas do not necessarily
transfer here. What we opt for is essentially a late fusion

pitcher

batter
||

pitch

count

Fc+softmax

Figure 2: Deep neural network architecture for predicting
at-bat outcomes. Input tensors are in blue, conv layers in
yellow, max-pooling in red, and fully-connected layers in
purple. The circle concatenates the fully connected “embed-
ding” layers. Final softmax layer is in dark purple. All con-
volutional layer activations are ReLU, while activations in
Fc (fully-connected) layers are sigmoid.

architecture. Specifically, as illustrated in Figure 2, we first
create separate convolutional architectures separately for the
pitcher, batter, and pitch, which (after convolutional layers)
ultimately embed each into real vectors. These are then con-
catenated with the pitch vector z and the count representa-
tion s, with the resulting vector passed through several fully
connected layers and, eventually, through the softmax layer
to obtain the probability distribution over the four outcomes.

Learning Pitcher Control

A typical dataset of baseball at-bats consists of pitches
thrown and documentation about where they ended up upon
crossing the home plate, whether the batter swung, and the
outcome. What is conspicuously missing from such data is
the intended location of the pitch. Given this state of af-
fairs, it appears at first hopeless to get any handle on the
distribution Dl of actual pitch locations, given expected lo-
cations. However, we now leverage some baseball conven-
tional wisdom—imperfect, to be sure, but generally quite
reasonable—that in certain counts the pitcher just wants to
throw a strike. In particular, suppose that we have a 3-0
count. If the pitcher fails to throw a strike, and the batter
does not swing, the batter is automatically on base. It is,
therefore, generally expected that a pitcher intends to throw
a strike. Now, where in the strike zone the strike would be
thrown remains uncertain, but here we add another reason-
able assumption: if the pitcher aims to throw a strike, they
will typically aim at the same part of the zone. The final
crucial assumption we make is that the spatial distribution
of the error (in 2 vertical dimensions of the strike zone) is
zero-mean Gaussian, and only depends on the pitch type.

With the assumptions above, if we aggregate pitches
thrown on 3-0 count for a particular pitcher, we can esti-
mate a mean and the co-variance matrix Gaussian distribu-
tion, which in this case consists of 5 parameters for each
pitch type p: (µp

x, µ
p
y,�

p
x,�

p
y ,�

p
xy)p2P , where x is the hori-

zontal and y the vertical dimension of the strike zone viewed
from the pitcher’s perspective, with the origin in its center.

The challenge with the approach above is that we do not
necessarily have sufficient data for all pitchers on 3-0 counts
for every pitch type to effectively estimate the Gaussian dis-
tribution. To address this issue, we use a deep neural network
regression to estimate the Gaussian error model parameters
for each pitcher and pitch type. For this, we use the same
pitcher representation as described in Section as input.

Representing and Learning Batter Patience

We represent the problem of batter “patience” as the task of
learning the probability that the batter swings on a pitch in
a particular area outside of the zone. For this purpose, we
first split our zones outside the strike zone further, with the
presumption that when the pitch is far outside the zone, most
batters will not swing, and the variation among batters stems
primarily when pitches are relatively close to the strike zone.
For each such borderline location l 2 Zb and pitch p 2 P ,
we learn a binary classifier to predict whether a given batter
xb, represented exactly as described above, will swing. We
use the same neural network architecture as the “batter” por-
tion of the network in Figure 2 for this purpose, and learn a
separate neural network for each pitch and location.

Solving the At-Bat Game

Littman (1994) presented a general approach for solving fi-
nite zero-sum stochastic games which blends value iteration
with linear programming. We provide it here for complete-
ness. Note that in general, an equilibrium in a stochastic
game entails randomization (mixed strategies), and a mixed-
strategy equilibrium in which policies depend only on cur-
rent state, always exists Filar and Vrieze (2012). For our
purposes, it suffices to introduce notation for the pitcher’s
mixed strategies. Let �(Ap) denote the set of mixed strate-
gies for the pitcher. We denote a particular mixed strategy
(probability distribution) by rp 2 �(Ap).

The value function Vi(s), which is initialized arbitrarily
at iteration i = 0, is updated as follows in iteration i > 0:

Vi(s) = min
rp2�(Ap)

max
ab2Ab

X

ap2Ap

rp(ap)Ui(s, ap, ab), (1)

where rp(ap) denotes the probability of choosing ap under
the distribution rp and

Ui(s, ap, ab) =

"
u(s, ap, ab) +

X

s02S

T
ap,ab

ss0 Vi�1(s
0)

#
.

Now, we can observe that in any iteration i, Ui(s, ap, ab)
is fixed for every state, and therefore Equation (1) defines
a zero-sum game, which can be solved for the equilibrium
mixed strategy for the pitcher, rp, using linear program-
ming Shoham and Leyton-Brown (2008).

Experiments

Experiment Setup To train and test our models, we use a
Kaggle dataset comprised of at-bats from 2015-2018 MLB
seasons (Kaggle, 2018). For each at-bat, the dataset includes

the pitcher and batter, the pitch thrown, along with its fi-
nal coordinates as it crosses the home plate, count, and out-
come (hit, foul, ball, etc). Our total dataset includes 2696132
pitches thrown over 730585 at-bats. Our training/test splits
for each model ensured no overlap in pitchers or batters be-
tween the two. Experiments were run on a Macbook Air
2020 (1.1 GHz dual-core i3, 8 GB RAM) running macOS
10.15.5. Neural networks were built in TensorFlow 2.5.0,
and all source code was written in Python.

Throughout, we evaluate our approaches using batches of
at-bats involving pitchers and batters that we categorize as
strong (well above average), average (around average), and
weak (well below average). The categorization is based on
ranking either pitchers or batters in terms of empirical OBP
(for pitchers, this would be OBP against). We present results
for two such pairing groups: 1) strong pitchers vs. weak bat-
ters and 2) weak pitchers vs. strong batters.
Outcome Predictions We begin by evaluating the efficacy
of our neural network model for predicting outcomes of
thrown pitches conditional on the batter swinging. Our test
set of these outcomes comprised 147799 pitches. Since pre-
dictions are distributions, we compare the average predicted
probabilities of the four outcomes (strike, foul, out, and hit)
for two large batches of at-bats: one pairing a strong pitcher
with a weak batter, and another pairing a weak pitcher and
a strong batter. Both the predicted probabilities and empiri-
cal observations, are averaged over all corresponding counts
and at-bats from test data.

Figure 3: Average predicted probabilities and empirical ob-
servations of the four outcomes of swinging at a pitch
(strike, foul, out, and hit).

The results are shown in Figure 3. First, we can observe
that the predicted outcome distribution tracks empirical val-
ues very closely. Of particular importance to us is that the
relative probabilities are closely preserved: for example, foul
balls are the most common whatever the matchup, and a
strong pitcher facing a weak batter is far more likely to get
a swing-and-miss strike than if the relative pitcher-batter
strength is reversed. Figure 4 offers additional demonstra-
tions of the prediction efficacy in terms of tracking relative
probabilities for different settings. Comparing 3-0 and 0-2
counts, for example, one would expect a higher likelihood
of a hit in the former than the latter, which we indeed ob-
serve (for both predicted and empirical distributions). Simi-
larly, we observe a significantly higher likelihood of a strike
in an 0-2 than a 3-0 count, and we again observe this. Analo-
gously, contrasting outcomes when the pitch thrown ends up
outside the zone (a ball) vs. in the zone (a strike), we see a

Figure 4: Average predicted probabilities and empirical ob-
servations of the four outcomes of swinging at a pitch
(strike, foul, out, and hit).

far greater likelihood of a swing-and-miss in the former case
than the latter, but lower likelihood of a hit.
Control Predictions We evaluate our model of control in
two ways: first quantitatively, and then qualitatively, using
118 pitchers observed in 3-0 counts. First, we consider the
accuracy of predicted Gaussian model covariance matrix pa-
rameters in terms of mean-squared error (MSE). The MSE
in the x-dimension is 0.036, in the y-dimension it is 0.053,
and the MSE for the covariance of x and y is 0.025. These
are quite small compared to empirically observed variances
in either the x (0.45-0.55) and y (0.55-0.67) dimensions for
the 4-seam fastball (these are higher for other pitch types).

We also see predicted variances and empirical variances
drop in both the x and y dimensions with improving pitcher
quality. That our model captures this trend suggests that our
tensor representations of pitchers do indeed reflect the innate
skill of players.
Patience Predictions Next, we evaluate the efficacy of
our approach of batter patience prediction over 126145 test
pitches thrown outside of the strike zone, but sufficiently
close for batters to swing at them. The results are shown

Figure 5: Average predicted probabilities and empirical ob-
servations of the outcomes of swinging at a pitch.

in Figure 5, where we consider variation by counts (left),
and by batters with differing degrees of success (right).
First, note that predictions are remarkably close to empiri-
cal swing probabilities. Second, we can observe qualitative
trends for both empirical and predicted swing propensities
that are consistent with common baseball intuition. For ex-
ample, batters very rarely swing at pitches outside the zone
on a 3-0 count, and very frequently on 2-strike counts. Sec-
ond, the top batters (those in our strong category) are indeed
noteworthy in that they tend to be more patient.

Overall Effectiveness Finally, we compare the effective-
ness of the proposed stochastic game (SG) approach in terms
of on-based percentage (OBP) in equilibrium with empirical
OBP. Our first observation is that, overall, SG significantly
reduces OBP: over 3600 matchups on test data, the empir-
ical OBP is 0.329, whereas the OBP in SG equilibrium is
0.242, more than a 25% reduction!

Figure 6: Stochastic game (SG) OBP vs. empirical OBP, for
different matchups and counts.

In Figure 6, we delve deeper by comparing SG and em-
pirical OBP for different counts, and contrasting, in particu-
lar, two classes of matchups: 1) strong pitchers paired with
weak batters, and 2) weak pitchers paired with strong bat-
ters. First, note that we see expected variation for different
counts: for both SG and empirical OBP, counts that favor the
batter (2-0, 3-0, and 3-1) have dramatically higher OBP than
those that favor the pitcher (0-2, 1-2). What is especially in-
teresting, however, is that SG does not exhibit much advan-
tage in batter-favored counts. However, SG offers a consid-
erably greater advantage when the count is roughly even, or
the pitcher is ahead. Furthermore, SG holds a far greater ad-
vantage for weaker pitchers: for example, on 0-0 count, em-
pirical OBP in these matchups is, on average, 0.412, while
SG yields an OBP of 0.276. Indeed, we see this in a number
of counts, with an advantage of SG in a 1-0 and 1-1 counts
particularly significant.

Conclusion

We proposed a novel game-theoretic model of a baseball at-
bat as a stochastic game, and showed that it yields signifi-
cantly lower OBP in nearly every count. The key challenge
of this model is deriving the transition probability from em-
pirical at-bat data for an arbitrary pitcher-batter pair. We
present a novel approach for doing so which is based on first
decomposing the transition distribution into several parts,
and propose deep neural network approaches for learning
the key parts from data. Our experiments demonstrate the
efficacy of the proposed approach, showing, in particular,
that the distribution of pitches and locations we compute in
the resulting stochastic game yields significantly higher util-
ity for the pitcher (lower on-base percentage for the batter)
in nearly every count. Moreover, we show that the proposed
approach is particularly beneficial for average and below-
average pitchers.
Acknowledgments This work was partially supported
by the NSF (IIS-1905558, IIS-2214141) and ARO
(W911NF1910241, W911NF1810208).

References

Albert, J. 2002. A baseball statistics course. Journal of

Statistics Education 10(2).

Alcorn, M. A. 2017. (batter/pitcher)2vec: Statistic-free tal-
ent modeling with neural player embeddings. In MIT

Baseball Analytics Conference.

Azar, O. H., and Bar-Eli, M. 2011. Do soccer players play
the mixed-strategy nash equilibrium? Applied Economics

43(25):3591–3601.

Beal, R.; Chalkiadakis, G.; Norman, T. J.; and Ramchurn,
S. D. 2020. Optimising game tactics for football. In
Seghrouchni, A. E. F.; Sukthankar, G.; An, B.; and Yorke-
Smith, N., eds., International Conference on Autonomous

Agents and Multiagent Systems, 141–149.

Beal, R.; Chalkiadakis, G.; Norman, T. J.; and Ramchurn,
S. D. 2021. Optimising long-term outcomes using real-
world fluent objectives: An application to football. In
Dignum, F.; Lomuscio, A.; Endriss, U.; and Nowé, A.,
eds., International Conference on Autonomous Agents

and Multiagent Systems, 196–204.

Das, R., and Das, S. 1994. Catching a baseball: a rein-
forcement learning perspective using a neural network. In
AAAI Conference on Artificial Intelligence, 688–693.

Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.;
Gläser, C.; Timm, F.; Wiesbeck, W.; and Dietmayer, K.
2021. Deep multi-modal object detection and semantic
segmentation for autonomous driving: Datasets, methods,
and challenges. Transactions on Intelligent Transporta-

tion Systems 22(3):1341–1360.

Filar, J., and Vrieze, K. 2012. Competitive Markov decision

processes. Springer Science & Business Media.

Flanagan, T. 1998. Game theory and professional base-
ball: mixed-strategy models. Journal of sport behavior

21(2):121.

Ganeshapillai, G., and Guttag, J. 2012. Predicting the next
pitch. In Sloan Sports Analytics Conference.

Hoang, P.; Hamilton, M.; Murray, J.; Stafford, C.; and Tran,
H. 2015. A dynamic feature selection based lda approach
to baseball pitch prediction. In Trends and Applications

in Knowledge Discovery and Data Mining. 125–137.

Jiang, W., and Zhang, C.-H. 2010. Empirical bayes in-
season prediction of baseball batting averages. In Borrow-

ing Strength: Theory Powering Applications–A Festschrift

for Lawrence D. Brown. 263–273.

Kaggle. 2018. Mlb pitch data 2015-2018.
https://www.kaggle.com/pschale/mlb-pitch-data-
20152018.

Koseler, K., and Stephan, M. 2017. Machine learning ap-
plications in baseball: A systematic literature review. Ap-

plied Artificial Intelligence 31(9-10):745–763.

Lewis, M. 2004. Moneyball: The art of winning an unfair

game. WW Norton & Company.

Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In International Con-

ference on Machine Learning, 157–163.
Lyle, A. 2007. Baseball prediction using ensemble learning.

Ph.D. Dissertation, University of Georgia.
Shoham, Y., and Leyton-Brown, K. 2008. Multiagent sys-

tems: Algorithmic, game-theoretic, and logical founda-

tions. Cambridge University Press.
Statista. 2020. Major league baseball to-

tal league revenue from 2001 to 2020.
https://www.statista.com/statistics/193466/total-league-
revenue-of-the-mlb-since-2005/.

Turocy, T. L. 2008. In search of the” last-ups” advantage in
baseball: A game-theoretic approach. Journal of Quanti-

tative Analysis in Sports 4(2).
Walker, M., and Wooders, J. 2001. Minimax play at wim-

bledon. American Economic Review 91(5):1521–1538.
Walker, M.; Wooders, J.; and Amir, R. 2011. Equilibrium

play in matches: Binary markov games. Games and Eco-

nomic Behavior 71(2):487–502.
Weinstein-Gould, J. 2009. Keeping the hitter off balance:

Mixed strategies in baseball. Journal of Quantitative

Analysis in Sports 5(2).
Yang, T. Y., and Swartz, T. 2004. A two-stage bayesian

model for predicting winners in major league baseball.
Journal of Data Science 2(1):61–73.

