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ABSTRACT

Today’s fully featured filters (those that support deletion and merg-
ing) do not currently have a clear winner in terms of performance.
Vector quotient filters are the most performant filters by far in
insertion throughput, while cuckoo filters edge out vector quotient
filters in terms of both random and successful query throughput. The
result is that tradeoffs have to be considered and time has to be spent
on deciding which particular filter design best fits an application.

In this paper, we present the partition quotient filter (PQF). Its
design is similar to that of the vector quotient filter and prefix
(quotient) filter (all ultimately based on the quotient filter). Similar
to the prefix filter, it uses a two-level hierarchy to store quotients:
most keys are sent to the frontyard and overflows go into the
backyard. In the frontyard, there is only a single bucket (cache line)
where a quotient can end up, which is responsible for the increased
performance over other dynamic filter designs that have to access
two cache lines for each operation. Keys are sent to the backyard
using a two choice mechanism (similar to the vector quotient filter),
and the innovation that enables us to support deletions is that the
backyard locations are dependent purely on the frontyard location,
with no rehashing of the quotient performed.

We show that the partition quotient filter is faster than all other
fully dynamic filter designs. Additionally, in some scenarios it even
approaches the performance of insert-only filters, showing the
potential for a single unified filter design that could remove any
tradeoffs between supporting merges and deletions and speed.
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1 INTRODUCTION

Filters, such as Bloom [7], quotient [39], and cuckoo filters [28],
maintain compact representations of sets. They tolerate a small
false-positive rate : a membership query to a filter for set S returns
present for any x €5, and returns absent with probability at least
1—¢forany x ¢S. A filter for a set of size n uses space that depends
on ¢ and n but is much smaller than explicitly storing all items of S.

Filters offer performance advantages when they fitin cache but the
underlying data does not. Filters are widely used in networks, stor-
age systems, machine learning, computational biology, and other ar-
eas[4,9,12,17,18, 22,23, 26,31, 33,42, 46,48-50, 52]. For example, in
storage systems, filters are used to summarize the contents of on-disk
data [5, 14,19-21,45,47,50]. In networks, they are used to summarize
cache contents, implement network routing, and maintain probabilis-
tic measurements [12].In computational biology, they are used to rep-
resent huge genomic data sets compactly [2, 3, 17, 37, 38, 40, 42, 48].

In these applications, filter performance—i.e., space usage, query
speed, and update speed—is often the bottleneck. In fact it is often
the case that most of the working set of an application is from filters,
and the application is impractically slow unless the filters fit in
DRAM. Often systems are designed around the constraint that they
do not have enough space for their filters [21, 45, 51]. For example,
Monkey [21] uses an optimized allocation scheme to minimize the
size of filters in-memory. PebblesDB [45] uses over 2/3rds of its
working memory for constructing and storing filters. Furthermore,
storage devices, such as NVMe SSDs, are fast enough that CPU
bottlenecks are common [20].

Modern filters, such as quotient, cuckoo, and Morton [11] filters,
are all bumping up against the lower bound on space usage for a
dynamic filter, which is nlog(1/¢)+Q(n) bits [15]. As Table 1 shows,
these filters differ by less than 1 bit per element, which is less than
a 10% difference for typical values of ¢ (e.g. 1%).

These filters have converged on a common overall design—they
encode fingerprints into hash tables. Quotient filters and counting
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Filter Num bits for n items

Bloom filter [7] 1.44nlog(1/¢)

Quotient filter [39] 1.053(nlog(1/¢)+2.125n+0(n))

Cuckoo filter* [28] 1.053(nlog(1/¢e)+3n+o(n))

Morton filter [11] 1.053(nlog(1/¢)+2.5n+0(n))

Vector quotient filter 1.0753(nlog(1/¢)+2.914n+0(n))
Table 1: The space usage of different filters in terms of
number of items n and false-positive rate . Moderns filters
use essentially the same space. Quotient, cuckoo, and Morton
filters support a maximum load factor of 0.95 and hence face
amultiplicative overhead of 1.053. The vector quotient filter
supports a load factor of 0.93, for a multiplicative overhead
of 1.0753. The different additive overheads (e.g. 2.125 vs. 2.5)
come from the different collision-resolution schemes used
by the filters. *The cuckoo filter referred throughout the
paper has 4 slots per block and 3 bits of space overhead. We
picked the standard version as it offers superior performance
compared to the semi-sorting variant.

quotient filters [39] are based on Robin Hood hashing [16], and
cuckoo and Morton filters are based on cuckoo hashing [36].

All these filters slow down as they are filled, because they
experience more collisions. This shows up clearly in Figure 5a,
which shows instantaneous insertion throughput as a function of
load factor. Even at moderate load factors (e.g., 50%-75% occupancy),
their performance degrades nontrivially.! For example, the insertion
throughput in the cuckoo filter drops 16X when going from 10%
occupancy to 90% occupancy and in the quotient filter it drops
4X. The Morton filter is arguably the fastest and most robust of
existing filters, and, impressively, its insert throughout does not
really degrade substantially until 70% occupancy, at which point
it slows down by 2x by the time it reaches 95% occupancy.

As these observations show, the costs of collision resolution have
become one of the main roadblocks to further advances in filter
performance.

This paper. We present a new filter, the vector quotient filter,
that overcomes the collision-resolution roadblock to improving
filter update performance. The vector quotient filter shows that
it is possible to build a filter that offers high performance and
does not slow down across load factors. The vector quotient filter
shows how to combine power-of-two-choice hashing with new
vector-instruction hardware to build a filter with O(1) insertion
time, independent of load factor. Furthermore, these improvements
come at no cost to query performance. Empirically,

Insertions: e Insertions in the vector quotient filter have constant
high performance from empty to full. We also describe an
optimization that further improves insertion performance
at low load factors without sacrificing performance at higher
load factors. e The vector quotient filter is 10X, 4.5%, and 2X
faster at insertions than the cuckoo filter, quotient filter, and
Morton filter at 90% load factor. e The vector quotient filter

1All of these filters define “full” to be somewhat less than 100% occupancy. The quotient
filter suggests limiting occupancy to 95% in order to limit collision-resolution costs. The
cuckoo and Morton filter limit occupancy to 95% because their failure probabilty shoots
up above 95%. This is why all these filters have a 1.053X space overhead, as shown
in Table 1.

supports aggregate insertions (i.e., from empty to full) over
2X faster than the next fastest filter (the Morton filter).

Deletions: e Vector quotient filter deletions are roughly as fast as in
the cuckoo filter, roughly 2x faster than the Morton filter, and
4x faster than the quotient filter.  Athigh load factors, the vec-
tor quotient filter is the clear winner for deletion performance.

Queries: o Queries in the vector quotient filter are roughly 80%
as fast as in the cuckoo filter, 50% faster than in the Morton
filter, and over twice as fast as in the quotient filter.

Space: The vector quotient filter is nearly as space-efficient as other
modern filters (see Table 1). In practice, the vector quotient
filter uses around 1 to 2% more space than the cuckoo filter.

Concurrency: e Insertion throughput on a machine with 4
physical cores scales over 3x with 4 threads compared to
single-threaded insertion performance in the vector quotient
filter, demonstrating nearly linear scaling.

Limitations. While the vector quotient filter is substantially faster
than other filters for insertions, it is slightly slower than the fastest
filter (i.e. the cuckoo filter) for queries and deletes. Query-intensive
applications might be better served by the cuckoo filter. The vector
quotient filter uses similar space as the cuckoo filter and is about
10 to 12% larger than the quotient filter. If space is at an absolute
premium, then applications might consider the quotient filter. The
vector quotient filter also lacks some of the advanced features of
the quotient filter, such as resizability.

The vector quotient filter uses the same xor trick as the cuckoo
filter in order to support deletion. Thus, like the cuckoo filter,
the probability of failure increases as the filter becomes larger.
However, because the vector quotient filter never kicks items from
one block to another, it needs the xor trick only in order to support
deletions. The cuckoo filter, on the other hand, always needs to
use the xor trick, so that it can find an item’s alternate block during
kicks. Thus, if deletions are not needed, the vector quotient filter can
use independent hash functions, and hence the failure probability
can be made independent of the filter size.

Where performance comes from. Vector quotient filters achieve
these performance gains in three steps.

First, they use power-of-two-choice hashing instead of cuckooing,
which avoids the need to perform kicking in order to achieve high
load factors.

In power-of-two-choice hashing, items are hashed to two blocks
and placed in the emptier block. However, unlike cuckoo hashing,
blocks are sized so that they never overflow, so items never need to
be kicked from one block to another. Power-of-two-choice hashing
ensures that the variance in block occupancies is low, so that all
blocks get filled to high occupancy before any block overflows, which
means we can get good space efficiency.

Power-of-two-choice hashing makes operations on the vector
quotient filter cache efficient. Insertions and lookups access at most
two cache lines, and insertions modify at most a single cache line,
regardless of the load factor. Insertions into cuckoo and Morton
filters, however, perform kicking, and hence access and modify
multiple cache lines, and this increases as the filter becomes fuller.
This also compares favorably to standard quotient filters where, at
high load factors, a single insert may need to touch dozens of cache
lines. See Figure 5a, which shows that most modern filters exhibit



different amounts of performance degradation as they fill up; and
thisis due, in alarge part, to the increasing cost of collision resolution.
We expect that vector quotient filters should perform well on
non-volatile memories, where writes are more expensive than reads.

Power-of-two-choice hashing also makes it easy to support con-
current updates, since each updates examines at most two cache
lines and modifies at most one. Simple locks on each block or even
hardware transactional memory are all that is needed to support
concurrent updates. Cuckoo and Morton filters, on the other hand,
are difficult to make concurrent, since each update may touch a large
number of locations, in essentially random order.

Second, vector quotient filters use a quotient-filter-like metadata
scheme to keep the false-positive rate from increasing as we increase
the block size. (In cuckoo and Morton filters, the false-positive rate
increases with the block size, which is why they keep blocks small
and use kicking to achieve high load factors.)

2 RELATED WORK

For decades, the Bloom filter [7] was essentially the only game in
town, but Bloom filters are suboptimal in terms of space usage,
running time, and data locality, and they support a bare-bones set
of operations (insert and lookup).

In particular, Bloom filters consume log(e) nlog(1/¢) space,
which is roughly log(e) ~ 1.44 times more than the lower bound
of nlog(1/e) + Q(n) bits [15]. Bloom filters also incur log(1/¢)
cache-line misses on inserts and positive queries, giving them poor
insertion and query performance.

The Bloom filter has inspired numerous vari-
ants [1, 8, 13, 22, 29, 34, 43, 44]. The counting Bloom filter (CBF) [29]
replaces each bit in the Bloom filter with a c-bit saturating counter.
This enables the CBF to support deletes, but increases the space by
a factor of c. The blocked Bloom filter [43] provides better cache
locality than the standard Bloom filter but does not support deletion.

The quotient filter (QF) [6, 24, 25, 35] uses a new, non-Bloom-filter
design. It is built on the idea of storing small fingerprints via Robin
Hood hashing [16]. It supports insertion, deletion, lookups, resizing,
and merging. The counting quotient filter (CQF) [39], improves
upon the performance of the quotient filter and adds variable-sized
counters to count items using asymptotically optimal space, even
in large and skewed datasets.

The quotient filter uses 1.053(2.125+1log,1/¢) bits per element,
which is less than the Bloom filter whenever ¢ < 1/64, which is the
case in almost all applications. Quotient filters are also much faster
than Bloom filters, since most operations access only one or two
cache lines. Geil et al. accelerated the QF by porting it to GPUs [32].

The cuckoo filter [28] uses the idea from quotient filters of
hashing small fingerprints but uses cuckoo hashing instead of Robin
Hood hashing. Cuckoo filters use 1.053(3+log,1/¢) bits per item,
that is, somewhat more than a quotient filter.

The Morton filter [11] is a variant of the cuckoo filter that is
designed to speed up insertion using optimizations designed for
hierarchical systems. The Morton filter biases insertions towards
the primary hash slot and uses an overflow tracking array to
speed up negative queries. In addition, the Morton filter employs
a compression-based physical representation to store fingerprints
in blocks and achieves better space utilization than the cuckoo

filter. The Morton filter offers faster insertion throughput compared
to the cuckoo filter and also less throughput degradation at high
occupancy. The Morton filter offers even faster insertion throughput
for bulk insertion scenarios which are often seen in practice.
The Morton filter space usage depends on several configuration
parameters, but the version benchmarked in the original Morton
filter uses approximately 1.053(2.5+log,1/¢).

From the above summary, we can see that the quotient, cuckoo,
and Morton filters all use 1.053(K+log,1/¢) bits per element, where
K is 2.125, 3, or 2.5, respectively. The main remaining challenge is
speed, especially at higher load factors.

3 PARTITION QUOTIENT FILTER
The following is an overview of the partition quotient filter:

o The filters is organized into a frontyard and a backyard.

e In the frontyard, single-choice hashing is employed to reduce
the number of operations and cache misses necessary.

o Using the frontyard location only, two locations are selected
in the backyard to be used for two choice hashing. Remainders
remain the same when forwarded to the backyard to support
deletion.

e Mini-filters, as in vector quotient filter, are used to efficiently
store several remainders in one cache line.

e Remainders in mini-filters are sorted by their “mini-bucket.”
This is done to be able to efficienty tell whether a key needs
to be forwarded to the backyard (for an insertion or query,
as it were). Only keys with the largest mini bucket are sent
to the backyard.

The main source of higher throughput compared to the vector quo-
tient filter and other deletion only filters comes from the fact that only
one cache line is accessed for the majority of operations, particularly
for queries. Only roughly one tenth of keys end up in the backyard.

The frontyard causes no failures, as overflows are sent to the
backyard. As the backyard is implemented using two-choice
hashing, it would normally be necessary to simply have an extra
Q(loglogn) in each backyard bucket versus the expected capacity
to ensure that the filter does not fail with high probability..

However, the main issue with this approach comes from the
fact that potentially many keys are hashed to the same backyard
location from the frontyard. However, empirically, this does not
cause issues, at the very least when sufficiently many keys can fit in
a single bucket. Notably, one of the most common sources of failures
is from a single bucket overflowing to the extent that it fills both
possible backyard buckets. Since the maximum expected overflow is
O(logN) (and in practice with a small constant value), this is mainly
an issue for the 32 byte version of the filter, where backyard buckets
have pretty low capacity for remainders.

However, as discussed later, this appears to simply reduce the
maximum possible load factor by a little bit, which is a tradeoff
many would take. If a higher load factor is necessary, then using the
full 64 bytes for each bucket empirically shows very good scaling of
maximum load factor with N. Clearly, for very large values of N (such
as, for example N =248), even these larger buckets would begin to
cause problems, but it is reasonable to expect that cache line sizes may
increase by the time such large filters would become necessary. To
give further evidence, GPUs already make use of 128 byte cache lines.



3.1 Frontyard to Backyard Rehashing
(or lack thereof) to Support Deletions

The prefix filter takes a simple approach to speeding up performance,
essentially treating the filter as two different filters. When an item
is inserted, it is inserted into the frontyard, and, if there is overflow,
it is inserted into the backyard as if the backyard were the only
filter there. That is, the backyard can be implemented as any filter,
and an inserted item is simply rehashed and treated as any other
key. However, this approach does not support deletions and greatly
limits the usefulness of the filter.

In order to support deletions, when a key is sent from the backyard
to the frontyard, the hash of the backyard key used in generating
quotients and remainders must be identical (or at the very least
bijective with the original hash). Otherwise, unless the backyard
is implemented as single-choice, it is impossible to know which
remainder to delete. If you rehash to two locations, and in each of the
locations there is a match to the remainder, then it is impossible to
know which of the two remainders to delete. There may have been
another key that only hashed to one of the locations, and, by deleting
the remainder at that location, false negatives are created for that key.

Additionally, even if there is a single choice in the backyard, there
is the question of what to do with backyard buckets that need to
be brought back. If some frontyard elements are removed from the
filter, then backyard elements need to be brought back in order to
maintain the invariant that the frontyard stores the smallest items
by mini bucket location. Otherwise, it may happen that an element
is removed from the frontyard bucket, and then another element is
inserted into the same bucket with a mini bucket index higher than
that of an element in the backyard. Thus the rule for knowing when
to go to the backyard breaks down, as it is impossible to tell if going
to the backyard is necessary. Even if the other problem were not
there, this would kill any practical attempt to make such a two-tier
filter work, as the backyard would always need to be checked and
the time savings of this approach would be nullified.

Therefore, we use a simple function that, when combined with a
few extra bits we store in the backyard, is bijective. This means that,
upon deletion or reinsertion into the frontyard, we can simply invert
the function to then put the remainder back into the frontyard. The
function is parametrized by one variable: the ratio R of buckets in the
backyard to the frontyard. A frontyard location is converted to one
backyard location simply by chopping off the least significant few
([MogR]) bits and then storing them along with the remainder in the
backyard bucket. The other backyard location is chosen by splicing
out the next least significant bits. The least significant bits are then
moved to the front of the key. This step is important, as just splicing
out one of the two groups of least significant bits of the number will
mean that range of frontyard buckets corresponding to a backyard
bucket would be very small. That is, taking the graph G created by
treating backyard buckets as nodes and creating an edge between a
pair of themifthey correspond to the same frontyard bucket would be
disconnected: there would be connected components corresponding
to each group of frontyard buckets with the same prefix and differen-
ingleastsignificant digits. Moving the bits, G isa very similar graph to
aDe Brujin graph. Of note, it is important that the less significant bits
are moved rather than just, for example, splicing out the most signifi-
cant bits, as the upper bits can significantly deviate from uniformly at

Algorithm 1 FrontyardToBackyardHash (f) -> ((b1,b2),(r1,r2))

: b](—ng
: xp ¢ (I=byxC)
T e2x

b | 2
thy— | E
1 xp¢ (I=by1xC)
T rpe—2x2+1
: by —by+Rx;

N U s W =

random. Assuming that the hash function for the frontyard is good,
these two sets of bits that are spliced out should be uncorrelated.
Specifically, the following is the pseudocode for obtaining the
backyard locations from the frontyard (s corresponds to whether
this is the second possible location), where f is the frontyard
location, R is (slightly larger than) the range of possible backyard
buckets, C is the ratio of the number of backyard buckets to the
number of frontyard buckets (consolidation factor), (b1, by) are
the two backyard locations returned, and (rq,r2) are the several
bits that need to be stored along with the remainders in order
to uniquely identify the original frontyard location (f) from the
backyard locations. One additional bit needs to be stored as part
of ry to indicate whether this was the first or second choice, which
here is done as the least significant bit to simplify the expression:

3.2 Correctness of this Hashing Method

Due to the nature of the partition quotient filter, it is difficult to ana-
lyze the failure probability. As mentioned, assuming that all keys com-
ing out of the frontyard are rehashed independently from the original
key, there are no issues and correctness follows from two choice hash-
ing. Even if full (quotient, remainder) pairs are hashed to new values
for whatever filter the backyard uses, correctness does not appear to
be amajorissue, as very few (quotient, remainder) pairs appear multi-
ple times in the frontyard (assuming no duplicate keys are inserted).

However, when there are two fixed locations for an entire bucket
(not even quotient, but bucket, which is quotient minus the few bits
that identify the mini bucket), analysis is more difficult. Additionally,
the two hashes used in partition quotient filter are not independent,
which potentially causes further issues. However, we give some
intuition to our claim that our choice of hash function actually
improves the potential of the filter over two functions that randomly
hash the bucket index:

Consider the filter if there are no frontyard buckets (Ny = 0).
Then keys are hashed to (backyard1, remainder) and (backyard2,
remainder) pairs at once, where backyard2 is generated from
backyard1 and some extra bits (corresponding to the snipped out
bits of the frontyard bucket that would be simply stored in the
backyard). Considering that these bits are (pseudo)independent
and (pseudo)random (assuming a good hash function), this version
of two choice greatly resembles that of vector quotient filters and
cuckoo filters—in both, the alternate bucket is chosen as by =b; ®r,
using the (psuedo)randomness of the bits of the remainder for the
second bucket. While not exactly the same, the second location
in partition quotient filters here is chosen in a similar manner and
should have very similar performance. However, two issues still
remain: the ratio of the number of frontyard buckets to the number
of backyard buckets is relatively small (8 for all implementations



tested), meaning the number of “extra (psuedo)random bits” used
in the second hash is very small, and the frontyard exists.

In fact, using the cuckoo or vector quotient filter hash is
insufficient. Taking r’ to be the 3 bits corresponding to the frontyard
identifier for the first backyard hash, assuming that r’ is random
means that removing the first 3 bits out of the last 6(without
moving them to the front) for the second backyard bucekt should
be equivalent to taking by =b; ®r’, as the bits are random. In either
case, this is to few bits to create a good filter design (see analysis
given by cuckoo filter on failures). In fact, by accident this was used
in the initial implementation of the partition quotient filter, and they
failed at a significantly lower load factor (data was not collected at
this stage, so exact numbers are unavailable).

Essentially, in this case (still ignoring the frontyard) the graph
created by connecting two buckets associated with the same
key/frontyard bucket is a disjoint union of many small connected
components, giving very little opportunity for the effects of an
unusually full bucket to “spread out” (see figure). Since only the
last few bits of the hash are affected (in this case, just the last 3), the
only possible other keys hashed to a backyard bucket differ in just
the last few bits in the backyard bucket. No matter how many steps
are taken, keys only interact with other keys with the same prefix
(excluding the last few bits).

However, in the scheme used here, where these extra bits are (con-
ceptually) shuffled to the beginning for the second hash, the graphisa
De Brujin graph, except using a different base. In this case, overflows
can “trickle” down to further away parts of the graph, which matches
the intuition of why two-choice hashing works in the first place. Em-
pirically, as will be seen in the evaluation section, this results in very
good load factors. This graph has as high as possible a branching
factor, which similarly means that overflows trickle away maximally.

Finally, the fact that there are frontyard buckets should have only
a minor effect on the quality of the filter. The one issue is that the
distribution of keys kicked from the frontyard is different to that of
keys in general. Whereas keys in general follow a uniformly random
distribution, keys that are kicked from the backyard follow a tail nor-
mal distribution. Roughly speaking, a frontyard bucket is expected to
have k keys with roughly Vk standard deviation following a roughly
normal distribution (assuming the buckets are large enough, which
is not exactly the case). Thus, the overflow is expected to have O(\/E)
keys in the overflow with a Vk standard deviation, a significantly
less well behaved distribution. This should mainly serve to make
it so that there are larger clumps of keys with the same two choices
than in the previous case. As it is possible to reduce the relative
effect of these clump sizes by making larger backyard buckets with
more frontyard buckets mapping to a single backyard bucket, this
has the effect of reducing the effective ratio between frontyard and
backyard buckets. Additionally, it means that backyard buckets
need to have a minimum size in order to have two backyard buckets
even be able to store the largest overflow of any frontyard bucket
(a limit which the 32 byte buckets ride dangerously close to).

It may be surprising that it is possible to get such good perfor-
mance out of so few bits used to choose the two backyard buckets, but,
as this hash disperses keys far and evenly, it appears to be sufficient.

"

%;
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Figure 1: An example of how the cuckoo style two choice hash
would work versus the system used in partition quotient filter
using abackyard to frontyard ratio of 2 for simplicity. Observe
that the cuckoo system results in disconnected components,
which would significantly decrease maximum load factor.

Algorithm 2 Insert (x)
1: (f,mr)«—h(x) >
retrieving remainder r to store in minibucket m in frontyard bucket f
2: over,(m’,r") «InsertFrontBucket(f,m,r) >

returns if bucket overflowed; (r’,m’) is the overflow

3: if over then
4: ((b1,b2),(ry,r2)) «FrontyardToBackyardHash(f)
5: ry—rir’
6: ry—ror’
7 if full(b;) and full(b,) then
8: return False
9: end if
10: if count(b;) < count(b,) then > If by is emptier, insert into by
11: InsertBackBucket(by,m’,r;)
12: else
13: InsertBackBucket(b2,m’,ry)
14: end if
15: endif

4 PARTITION
QUOTIENT FILTER OPERATIONS

This section describes the algorithms used to implement the
insert, lookup and delete operations on a partition quotient filter.
Bucket operations are as described in vector quotient filter with
the exception of queries in the frontyard and removals from the
backyard. Note that the bucket operations in vector quotient filters
already sort the elements by their mini bucket index, as this is
required for the structure to function at all, meaning that there
needs to be no additional structure to implement this (with the slight
exception of backyard removals). Frontyard bucket operations are
generally distinguished from backyard bucket operations due to
the fact that backyard buckets need to store larger remainders (for
example, frontyard buckets may use 8 bit remainder operations,
while backyard buckets use 12 bit operations).

Insert. Algorithm 2 shows the pseudocode for the insert operation.
To perform an insert, the key is first hashed to determine the
remainder r and quotient g. As in other filters that use the mini
filter structure originating with vector quotient filter, this quotient
is split into a (frontyard) bucket index f and mini bucket index m.
m is (conceptually) compared to the other mini bucket indices in the



Algorithm 3 Lookup (x)

1: (f.mr)e—h(x)

2: status < QueryBucket(f,m,r)
3: if status == Present then
4
5

> retrieving remainder r, minibucket m, frontyard bucket f

return True
: else if status == PotentialBackyard and full(f) then >
minibucket was at least as large as the largest minibucket of a remainder in the
frontyard, meaning need to search backyard

6: ((b1,b2),(ry,r2)) «FrontyardToBackyardHash(f)
7: ry «—ryr>Concatenate r’ with ry (r;) to get first (second) backyard remainder
8: Ty «—ror
9: return (QueryBucket(b;,m,r;) == Present) || (QueryBucket(by,m,ry) ==
Present)
10: endif

11: return False

Algorithm 4 Remove (x)

1: (f,mr)«h(x) > retrieving remainder r, minibucket m, frontyard bucket f
2: if full(f) then > If fis full,
x may be in the backyard or may need to retrieve an element from the backyard
3: e « RemoveFromFrontBucket(f,m,r) >
e stands for key was eliminated (true) or not present (false)
4 ((b1,b2),(ry,r2)) «FrontyardToBackyardHash(f)
5: ((b1,b3),(r1,r2)) «FrontyardToBackyardHash(f)
6
7

if e then > (m,r) was removed from frontyard
(my,r]) < minElem(b,,ry) > Grab element with the
smallest minibucket index coming from the frontyard bucket determined by r4

8: (mz,ré) «— minElem(by,ry)
9: if m; <m; then
10: RemoveFromBackBucket (by,my,r177)
11: InsertFrontBucket ( f,m;,r])
12: else
13: RemoveFromBackBucket(by,my,r217)
14: InsertFrontBucket( f,mz,r;)
15: end if
16: return True
17: else > (m,r) not found in frontyard
18: if RemoveFromBackBucket(by,r;r") then
19: return True
20: else if RemoveFromBackBucket(by,r;r") then
21: return True
22: else
23: return False > Key was not found anywhere
24: end if
25: end if
26: else
27: return RemoveFromBucket( f,m,r) > Simply remove x from the bucket
28: endif

remainder store to determine where remainder r should be stored. r
is inserted (using AVX512) into the remainders portion of the bucket
using the order of m in the metadata as an index.

If the bucket overflows, then we keep track of which mini bucket
index m’ (possibly equal to m) and remainder r’ overflowed (so m’
is the max of the highest mini bucket index previously in the bucket
and m). The frontyard bucket index f is then hashed to (b1, r1)
and (by, r2) as given previously. Then (m’,r;r’) is inserted into
whichever bucket at index b; is emptier, with a failure occuring if
both buckets are full. r;7” is simply a concatenation of the two pieces
of data needed to identify a remainer in the backyard—the frontyard
remainder, the bits chopped off and which bits were chopped off (r;).

Lookup. Algorithm 3 shows the pseudocode for the lookup or
query operation. Lookup proceeds by obtaining (f,m,r) as in inserts
and checkingif the remainder is present in the frontyard bucket. If the

remainder is found, then the query is done and returns true. Other-
wise, it may be necessary to check the backyard when the status spec-
ifies PotentialBackyard. This check is a slight modification of the typ-
ical bucket query operation: when the frontyard bucket is full and the
minibucket index of the queried key is at least as large as the largest
minibucket index of a remainder in the frontyard bucket, it is possible
that the key is in the backyard, as the backyard stores keys with the
same or larger mini bucket indices as the largest in the frontyard.

Remove. As in the other operations, removal first attempts to
remove the key from the frontyard. If the frontyard bucket was not
full, then the removal is finshed whether or not the key was found
in the bucket, as there is guaranteed to be nothing in the backyard.

If the key was in fact present in the frontyard bucket and the
frontyard bucket is full (meaning there may have been keys sent
to the backyard from this bucket), then a key with the smallest mini
bucket index in the backyard is moved back to the frontyard. This is
done for a single bucket by querying which elements in the bucket
match the prefix given by ry (or r for by) and then using one ctzll
instruction to see what is the index of the smallest matching key
in the remainders. This index is then used to identify which mini
bucket the matching key belongs to. After obtaining the key with the
smallest minibucket index in the two backyard buckets, it is removed
from its corresponding bucket and inserted into to the frontyard.

If the key was not present, then it is first attempted to be removed
from the first backyard bucket, and, if not found, then it is attempted
to be removed from the second backyard bucket. If it is still not
found, the removal fails (the key was either removed twice or never
inserted).

5 SPACE ANALYSIS

We now do a quick analysis of the space usage of the partition
quotient filter and compare it to other filters, after which we present
the space usage of the filters in practice. Note that the space usage
of all these filters is relatively similar.

The main factor in determining space usage is the ratio of the
size of the frontyard to the size of the backyard. Call this ratio C.
Estimating the asympotics of this ratio is nontrivial in the case of this
filter, so we just note that empirically the best performing (in terms
of maximum load factor supported) filters we implemented set C=8
for both the 32 byte bucket and the 64 byte bucket configurations.
It is reasonable to assume that larger buckets would enable larger
values of C, if only because the number of keys that overflow a
frontyard bucket scales as the square root the size of the bucket
(for larger bucket sizes), meaning that the ratio of the overflow to
the size of the bucket is inverse square root (and thus C should be
roughly on the order of the square root of the bucket size).

Optimally, the frontyard should use on the order of roughly
1.914 +log (1/¢) bits per key (the 1.914 coming from the optimal
configuration of the mini filter). The backyard needs to store an
additional 1+ [log(é)-‘ bits per key, in order to store whether it
is the first choice bucket and what the bits that were cut from the
frontyard location were. For our configurations with C = 8, this
expression simplifies to 4. Therefore, the optimal average bits per
key is 1.914+log(1/6)+§ =2.414+log(1/¢). In our implementations,
we use configurations that yeild around 2+log(1/¢) bits for the mini



filters in the frontyard, so the average space consumption per key
is just slightly higher at 2.5+log(1/¢).

The filter using a bucket size of 32 achieves a load factor of
75—-85% (for reasonable values of N), and, taking the lower figure,
we get that it uses %(2.5+log(1/8)). Atlog(1/¢) =38, this is a space
usage of 14 bits per key, although, due to the lower fill of the filter,
the actual space efficiency is a little better than % ~0.571 at 0.591.
The filter using a bucket size of 64 achieves a load factor of over 0.9
for all ranges of N tested, which leaves a space usage of 11.67 bits per
key, so this filter should be used when space is at a premium. This
space usage is very comparable to other filter designs. Once again,
the filter is slightly underfilled here, and the real space efficiency of
itis 0.718 at 90% fill, rather than the %67 ~0.686 this would predict.

6 IMPLEMENTATION AND OPTIMIZATION

The main constraint on the buckets/minifilters in both the frontyard
and the backyard is that they need to fit within a single cache line to
enable fast operation. The two main components of The minifilters
are the array of remainders and the metadata. The metadata uses
one bit per remainder and one bit per minibucket to separate out the
remainders with. Therefore, letting the number of remainders in a
bucket be N for the frontyard and Nj, for the backyard, the number
of minibuckets be B, and the number of bits used in a remainder
(roughly corresponding to the log false positive rate) be R. Then
the space usage of a frontyard bucket is B+ Ny (R+1).

Additionally, the backyard buckets need to store which frontyard
bucket the remainder came from out of the posssibilities. In the case
of our filter configurations, there are always at most 16 possiblities,
so this uses four bits. Therefore, the space usage of a backyard
bucket is B+ Ny, (R+5).

One further constraint that could lead to faster filters would be to
use just one machine word for the metadata. As the metadata uses
the LZCNT instruction, this maximum size is 64 bits. This is naturally
the case when the size of the remainders is 16 bits—in the frontyard,
we set Ny =28 and B =36, which uses precisely 64 bits, using the
other 56 bytes of a cacheline for the remainders. In the backyard,
N, =22. This filter will be known as PQF16 in the evaluations.

In the case when the size of the remainders is 8 bits, there is a
tradeoff to consider: do we use 64 byte buckets, leading to a better
load factor and space usage, or do we use 32 byte buckets, which
then have the metadata fit in a single machine word? In the first
option, some possible configurations are Ny =53, B=51, and N}, =35
(PQF8-53); and N =62, B=50, Nj =34 (PQF8—62) (which offers
a somewhat lower false positive rate and higher space efficiency
but very slightly lower capacity).

In the second option, the seemingly fastest configuration is to
use Nf =22, B =26, N, = 18 (PQF8 — 22), with similar tradeoffs
with having more minibuckets per bucket possible. In addition, it is
possible to alleviate the load factor issues by making buckets 64 bytes
while frontyard buckets are 32 bytes (an example configuration
tested is same as PQF8—22 but with N, =37), but this means that a
larger fraction of the remainders will be in the backyard, alleviating
the advantage of partition quotient filters.

7 EVALUATION

In this section, we evaluate our implemention of the partition
quotient filters (PQF) in different comfigurations. We compare them
primarily against two similar filter data structures: vector quotient
filters (VQF) and prefix filters (PF).

We evaluate each data structure on three fundamental operations:
insertions, lookups, and removals. We evaluate lookups both for
items that are present and for items that are not present in the filter.

This section tries to address the following questions about how
filters perform in RAM and L3 cache:

(1) How does the vector quotient filter (VQF) compare to the
cuckoo filter (CF), Morton filter (MF), and quotient filter (QF)
when the filters are in RAM?

(2) How does the vector quotient filter (VQF) compare to the
cuckoo filter (CF), Morton filter (MF), and quotient filter (QF)
when the filters fit in L3 cache?

(3) How does the vector quotient filter (VQF) compare to the
cuckoo filter (CF) and Morton filter (MF) when running a
mixed workload at high occupancy?

(4) How does the insertion throughput of the vector quotient
filter (VQF) scales with multiple threads?

7.1 Experimental setup

In order to see the impact of collision resolution, we report the
performance on all operations as a function of the data structures’
load factor. This also eases comparison with prior work, which uses
the same methodology [6, 11, 28, 39]. We also report the aggregate
throughput performance which is the performance of the filter
going from scratch to 95% (or 90%) load factor.

One challenge we face is that the filters do not all support the
same false-positive rates. For example, the cuckoo filter implemen-
tation [27] supports only 2, 4, 8, 12, 16, and 32-bit fingerprints. The
false-positive rate can further be tweaked by a small amount by
adjusting the block size, but making the blocks too small increases
the failure probability, and making them too large decreases perfor-
mance. This is why the cuckoo filter authors recommend a block size
of 4. The Morton filter implementation [10] has similar limitations.

Thus we pick two target false positive rates and configure each
filter to get as close as possible to those false-positive rates without
sacrificing performance. Our target false-positive rates are 278 and
2716, We configure the vector quotient filter with 8 and 16-bit finger-
prints, respectively and slots and buckets as described in Section 6.
We use 8- and 16-bit fingerprints in the quotient filter. We use 12-
and 16-bit fingerprints and blocks of size 4 in the cuckoo filter. We
use 8- and 16-bit fingerprints and blocks of size 3 in the Morton filter.

Table 2 shows the empirical space usage and false-positive rate of
different filters in these experiments. In the 8-bit experiments, all the
filters are within roughly a factor of two in terms of false-positive
rate. In the 16-bit experiments, the cuckoo filter false-positive rate
is significantly higher than the other filters due to limitations of the
implementation.

To compare these filters space and false-positive rate, we compute
each filter’s space efficiency in Table 2, which is defined to be

nlogl/e
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where n is the number of items in a full filter (i.e. at the maximum
supported occupancy), ¢ is the false-positive rate achieved by the
filter, and S is the total number of bits used by the filter. As Table 2
shows, the quotient filter is the most space efficient, followed by the
Morton filter. The cuckoo filter is more space efficient than the vector
quotient filter for our 8-bit experiments, but the vector quotient

filter is more efficient than the cuckoo filter for 16-bit experiments.

Nonetheless, the differences are relatively small across the board.

The configurations used in our experiments are consistent with
the author’s recommendations and show these filters at or near
their best performance. For example, all other configurations that
we tried for the Morton filter were slower. The cuckoo filter is ~ 20%
faster with 8-bit fingerprints, but this gives a false-positive rate of
1/32, which is too high for many applications.

We evaluate the performance of the data structures in RAM
as well as in L3 cache. This is because applications use filters in
multiple different scenarios and filters are often small enough to
completely fit in L3 cache. We perform two sets of benchmarks.
For the in-RAM benchmark, we create the data structures with 228
(268M) slots which makes all the data structures substantially larger
than the L3 cache. For the in-cache benchmark, we create the data
structures with 222 (4M) slots (and 22! slots for 16-bit fingerprints)
which keeps them well smaller than the size of the L3 cache (8MB).

All the experiments were run on an Intel Ice Lake CPU (Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30GHz with 4 cores and 8MB L3
cache) with 15 GB of RAM running Ubuntu 19.10 (Linux kernel
5.3.0-26-generic).

Microbenchmarks. We measure performance on raw inserts,
removals, and lookups which are performed as follows. We generate
64-bit hash values from a uniform-random distribution to be inserted,
removed or queried in the data structure. Items are inserted into an



Target log(FPR) 8 16

Filter log(FPR) Space (MB) Efficiency log(FPR) Space (MB) Efficiency
Quotient filter 8.16 324.20 0.76 16.44 580.35 0.76
Cuckoo filter* 9.15 384.00 0.72 13.17 512.00 0.70
Morton filter 8.50 356.19 0.73 16.96 606.88 0.72
Vector quotient filter  7.84 341.34 0.68 15.15 585.14 0.72

Table 2: Empirical space usage and false-positive rate of filters used in the benchmarks. All filters were created with

228 slots

(in-RAM experiments). Space is given in MB. *In our 8-bit experiments, we configure the cuckoo filter with 12-bit fingerprints so
that its false-positive rate roughly matches the other filters. In our 16-bit experiments, there is no practical way to configure the
cuckoo filter for a matching false-positive rate, so we just use 16-bit fingerprints, which gives a much higher false-positive rate.

empty filter until it reaches its maximum recommended load factor
(e.g., 95%). The workload is divided into slices, each of which is 5% of
the load factor. The time required to insert each slice is recorded, and
after each slice, the lookup performance for that load factor is mea-
sured. Once the data structure is 95% full, items that were inserted are
removed—again in slices of 5% of the load factor—until the data struc-
ture is empty and measure the performance after removing each slice.

We measure the query performance for items that exist (successful
lookups) and items that do not exist in the filter (random lookups).
For successful lookups, we query items that are already inserted and
for random lookups we generate a different set of 64-bit hashes than
the set used for insertion. The random lookup set contains almost
entirely non-existent hashes because the hash space is much bigger
than the number of items in the filter. Empirically, 99.9989% of hashes
in the random lookup query set were non-existent in the input set.

The vector quotient filter supports up to only 93% load factor for
in-RAM experiments and was able to support up to 95% load factor
for in-cache experiments due to the difference in the number of items
inserted in the data structure. Therefore, for in-RAM experiments,
the vector quotient filter plots do not show the throughput at 95%
load factor.

In order to isolate the performance differences between the
data structures, we do not count the time required to generate the
random inputs to the filters.

7.2 In-RAM performance

Figure 2 shows the in-RAM performance of data structures.

Our performance results for the Morton filter are worse than
the main experimental results from the Morton filter paper [11].
This is because the Morton filter implementation is optimized for
AMD CPUs, but we evaluate it on an Intel CPU, where performance
is known to be worse. For example, Figure 17 in the Morton filter
paper [11] shows that the Morton filter speed on a Skylake-X CPU
is similar or worse than the CF. Our results are consistent with that.

7.3 In-cache performance

Figure 4 shows the in-cache performance of data structures. Through-
put for all operations when the filters are in-cache operation is
much higher compared to their corresponding throughput in RAM.
The relative performance of different operations in-cache across
data structures shows similar trend as the in-RAM performance.
The vector quotient filter has the highest insertion and removal
throughput and offers lookup performance similar to the cuckoo
filter. Aggregate throughput of different operations are shown in ??.

Filter Throughput (Million/sec)
vector quotient filter 20.268
cuckoo filter 3.147
Morton filter 11.958

Table 3: Aggregate throughput for application workload.
Workload includes 100M operations (equally divided into
insertions, deletions, and queries) at 90% load factor of
different filters in RAM. All filters were configured for a
target false-positive rate of 278, as described in Table 2.

Num threads Throughput (Million/sec)
1 16.059
2 31.154
3 43.737
4 54.282

Table 4: Insertion throughput with increasing number of
threads in RAM. All filters were configured for a target
false-positive rate of 275, as described in Table 2.

7.4 Filter Failures

We ran some experiments to test whether the filter design is indeed
correct empirically. To do that, we inserted into different filter
configurations and designs until each failed, and recorded the
load factor at which this failure occured. This was done over 1000
runs. Figure 5 shows the trend over different filter capacities of
the load factor at which failure occurs, comparing several different
configurations versus the vector quotient filter.

As can be seen, PQF52 outperforms the default configuration of
VQF (which has more failures due to the shortcut done to improve
insertion throughput) in failures, and has a very flat graph. PQF22
has failures a lot earlier in exchange for its faster query performance,
which is to be expected due to the significantly smaller bucket sizes.

8 CONCLUSION

This paper shows that it is possible to build a filter that is
space-efficient and offers consistently high insertion and deletion
throughput even at very high load factors.

The vector quotient filter offers superior insertion performance
compared to the state-of-the-art filters, especially at high load factors,
where vector quotient filter insertions are over 2X faster other mod-
ern filters. Vector quotient filter queries are slightly slower than in
the cuckoo filter, but faster than the other filters in our experiments.

We attribute the high throughput and space-efficiency of the
vector quotient filter to two things, the power-of-two-choice
hashing and SIMD instructions. Power-of-two-choice hashing
reduces the mini filter occupancy variance, enabling high occupancy.
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Figure 4: Insertion, deletion, and lookup performance of different filters in L3 cache. Averaged over 5 runs.

The SIMD instructions enable the vector quotient filter to perform
constant-time operations in mini filters.

Like the quotient filter, the vector quotient filter also has the
ability to associate a small value with each item. Applications often
use the value bits to store some extra information with each item
in the filter [19, 30, 41]. We believe the ability to associate a value
with each key makes the vector quotient filter a go-to data structure
in every application builder’s toolbox.
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