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ABSTRACT
Today’s fully featured �lters (those that support deletion and merg-
ing) do not currently have a clear winner in terms of performance.
Vector quotient �lters are the most performant �lters by far in
insertion throughput, while cuckoo �lters edge out vector quotient
�lters in terms of both randomand successful query throughput. The
result is that tradeo�s have to be considered and time has to be spent
on deciding which particular �lter design best �ts an application.

In this paper, we present the partition quotient �lter (PQF). Its
design is similar to that of the vector quotient �lter and pre�x
(quotient) �lter (all ultimately based on the quotient �lter). Similar
to the pre�x �lter, it uses a two-level hierarchy to store quotients:
most keys are sent to the frontyard and over�ows go into the
backyard. In the frontyard, there is only a single bucket (cache line)
where a quotient can end up, which is responsible for the increased
performance over other dynamic �lter designs that have to access
two cache lines for each operation. Keys are sent to the backyard
using a two choice mechanism (similar to the vector quotient �lter),
and the innovation that enables us to support deletions is that the
backyard locations are dependent purely on the frontyard location,
with no rehashing of the quotient performed.

We show that the partition quotient �lter is faster than all other
fully dynamic �lter designs. Additionally, in some scenarios it even
approaches the performance of insert-only �lters, showing the
potential for a single uni�ed �lter design that could remove any
tradeo�s between supporting merges and deletions and speed.

CCS CONCEPTS
• Theory of computation → Data structures design and
analysis; Bloom �lters and hashing.
KEYWORDS
Dictionary data structure; �lters; membership query
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1 INTRODUCTION
Filters, such as Bloom [7], quotient [39], and cuckoo �lters [28],
maintain compact representations of sets. They tolerate a small
false-positive rate Y: a membership query to a �lter for set ( returns
present for any G 2( , and returns absentwith probability at least
1�Y for any G 8( . A �lter for a set of size = uses space that depends
on Y and = but is much smaller than explicitly storing all items of ( .

Filterso�erperformanceadvantageswhen they�t in cachebut the
underlying data does not. Filters are widely used in networks, stor-
age systems, machine learning, computational biology, and other ar-
eas [4, 9, 12, 17, 18, 22, 23, 26, 31, 33, 42, 46, 48–50, 52]. For example, in
storage systems,�lters are used to summarize the contents of on-disk
data [5, 14, 19–21, 45, 47, 50]. Innetworks, theyareused to summarize
cachecontents, implementnetwork routing, andmaintainprobabilis-
ticmeasurements [12]. In computational biology, theyareused to rep-
resent huge genomic data sets compactly [2, 3, 17, 37, 38, 40, 42, 48].

In these applications, �lter performance—i.e., space usage, query
speed, and update speed—is often the bottleneck. In fact it is often
the case that most of the working set of an application is from �lters,
and the application is impractically slow unless the �lters �t in
DRAM. Often systems are designed around the constraint that they
do not have enough space for their �lters [21, 45, 51]. For example,
Monkey [21] uses an optimized allocation scheme to minimize the
size of �lters in-memory. PebblesDB [45] uses over 2/3rds of its
working memory for constructing and storing �lters. Furthermore,
storage devices, such as NVMe SSDs, are fast enough that CPU
bottlenecks are common [20].

Modern �lters, such as quotient, cuckoo, and Morton [11] �lters,
are all bumping up against the lower bound on space usage for a
dynamic �lter, which is=log(1/Y)+⌦(=) bits [15]. As Table 1 shows,
these �lters di�er by less than 1 bit per element, which is less than
a 10% di�erence for typical values of Y (e.g. 1%).

These �lters have converged on a common overall design—they
encode �ngerprints into hash tables. Quotient �lters and counting

https://doi.org/10.1145/3448016.3452841
https://doi.org/10.1145/3448016.3452841


�8;C4A Num bits for = items
Bloom �lter [7] 1.44=log(1/Y)
Quotient �lter [39] 1.053(=log(1/Y)+2.125=+> (=))
Cuckoo �lter⇤ [28] 1.053(=log(1/Y)+3=+> (=))
Morton �lter [11] 1.053(=log(1/Y)+2.5=+> (=))
Vector quotient �lter 1.0753(=log(1/Y)+2.914=+> (=))

Table 1: The space usage of di�erent �lters in terms of
number of items n and false-positive rate 9. Moderns �lters
use essentially the same space. Quotient, cuckoo, andMorton
�lters support amaximum load factor of 0.95 and hence face
amultiplicative overhead of 1.053. The vector quotient �lter
supports a load factor of 0.93, for amultiplicative overhead
of 1.0753. The di�erent additive overheads (e.g. 2.125 vs. 2.5)
come from the di�erent collision-resolution schemes used
by the �lters. ⇤The cuckoo �lter referred throughout the
paper has 4 slots per block and 3 bits of space overhead.We
picked the standard version as it o�ers superior performance
compared to the semi-sorting variant.

quotient �lters [39] are based on Robin Hood hashing [16], and
cuckoo andMorton �lters are based on cuckoo hashing [36].

All these �lters slow down as they are �lled, because they
experience more collisions. This shows up clearly in Figure 5a,
which shows instantaneous insertion throughput as a function of
load factor. Even at moderate load factors (e.g., 50%-75% occupancy),
their performance degrades nontrivially.1 For example, the insertion
throughput in the cuckoo �lter drops 16⇥ when going from 10%
occupancy to 90% occupancy and in the quotient �lter it drops
4⇥. The Morton �lter is arguably the fastest and most robust of
existing �lters, and, impressively, its insert throughout does not
really degrade substantially until 70% occupancy, at which point
it slows down by 2⇥ by the time it reaches 95% occupancy.

As these observations show, the costs of collision resolution have
become one of the main roadblocks to further advances in �lter
performance.

This paper. We present a new �lter, the vector quotient �lter,
that overcomes the collision-resolution roadblock to improving
�lter update performance. The vector quotient �lter shows that
it is possible to build a �lter that o�ers high performance and
does not slow down across load factors. The vector quotient �lter
shows how to combine power-of-two-choice hashing with new
vector-instruction hardware to build a �lter with $ (1) insertion
time, independent of load factor. Furthermore, these improvements
come at no cost to query performance. Empirically,
Insertions: • Insertions in the vector quotient �lter have constant

high performance from empty to full. We also describe an
optimization that further improves insertion performance
at low load factors without sacri�cing performance at higher
load factors. • The vector quotient �lter is 10⇥, 4.5⇥, and 2⇥
faster at insertions than the cuckoo �lter, quotient �lter, and
Morton �lter at 90% load factor. • The vector quotient �lter

1All of these �lters de�ne “full” to be somewhat less than 100% occupancy. The quotient
�lter suggests limiting occupancy to 95% in order to limit collision-resolution costs. The
cuckoo andMorton �lter limit occupancy to 95% because their failure probabilty shoots
up above 95%. This is why all these �lters have a 1.053⇥ space overhead, as shown
in Table 1.

supports aggregate insertions (i.e., from empty to full) over
2⇥ faster than the next fastest �lter (the Morton �lter).

Deletions: •Vector quotient�lter deletions are roughly as fast as in
the cuckoo �lter, roughly 2⇥ faster than theMorton �lter, and
4⇥ faster than thequotient�lter.•Athigh load factors, thevec-
tor quotient�lter is the clearwinner for deletion performance.

Queries: • Queries in the vector quotient �lter are roughly 80%
as fast as in the cuckoo �lter, 50% faster than in the Morton
�lter, and over twice as fast as in the quotient �lter.

Space: The vector quotient �lter is nearly as space-e�cient as other
modern �lters (see Table 1). In practice, the vector quotient
�lter uses around 1 to 2%more space than the cuckoo �lter.

Concurrency: • Insertion throughput on a machine with 4
physical cores scales over 3⇥ with 4 threads compared to
single-threaded insertion performance in the vector quotient
�lter, demonstrating nearly linear scaling.

Limitations. While the vector quotient�lter is substantially faster
than other �lters for insertions, it is slightly slower than the fastest
�lter (i.e. the cuckoo �lter) for queries and deletes. Query-intensive
applications might be better served by the cuckoo �lter. The vector
quotient �lter uses similar space as the cuckoo �lter and is about
10 to 12% larger than the quotient �lter. If space is at an absolute
premium, then applications might consider the quotient �lter. The
vector quotient �lter also lacks some of the advanced features of
the quotient �lter, such as resizability.

The vector quotient �lter uses the same xor trick as the cuckoo
�lter in order to support deletion. Thus, like the cuckoo �lter,
the probability of failure increases as the �lter becomes larger.
However, because the vector quotient �lter never kicks items from
one block to another, it needs the xor trick only in order to support
deletions. The cuckoo �lter, on the other hand, always needs to
use the xor trick, so that it can �nd an item’s alternate block during
kicks. Thus, if deletions are not needed, the vector quotient �lter can
use independent hash functions, and hence the failure probability
can be made independent of the �lter size.

Where performance comes from. Vector quotient �lters achieve
these performance gains in three steps.

First, they use power-of-two-choice hashing instead of cuckooing,
which avoids the need to perform kicking in order to achieve high
load factors.

In power-of-two-choice hashing, items are hashed to two blocks
and placed in the emptier block. However, unlike cuckoo hashing,
blocks are sized so that they never over�ow, so items never need to
be kicked from one block to another. Power-of-two-choice hashing
ensures that the variance in block occupancies is low, so that all
blocksget�lled tohighoccupancybefore anyblockover�ows,which
means we can get good space e�ciency.

Power-of-two-choice hashing makes operations on the vector
quotient �lter cache e�cient. Insertions and lookups access at most
two cache lines, and insertions modify at most a single cache line,
regardless of the load factor. Insertions into cuckoo and Morton
�lters, however, perform kicking, and hence access and modify
multiple cache lines, and this increases as the �lter becomes fuller.
This also compares favorably to standard quotient �lters where, at
high load factors, a single insert may need to touch dozens of cache
lines. See Figure 5a, which shows that most modern �lters exhibit



di�erent amounts of performance degradation as they �ll up; and
this is due, in a largepart, to the increasing cost of collision resolution.
We expect that vector quotient �lters should perform well on
non-volatilememories, wherewrites aremore expensive than reads.

Power-of-two-choice hashing also makes it easy to support con-
current updates, since each updates examines at most two cache
lines and modi�es at most one. Simple locks on each block or even
hardware transactional memory are all that is needed to support
concurrent updates. Cuckoo andMorton �lters, on the other hand,
are di�cult tomake concurrent, since each updatemay touch a large
number of locations, in essentially random order.

Second, vector quotient �lters use a quotient-�lter-like metadata
scheme to keep the false-positive rate from increasing aswe increase
the block size. (In cuckoo andMorton �lters, the false-positive rate
increases with the block size, which is why they keep blocks small
and use kicking to achieve high load factors.)

2 RELATEDWORK
For decades, the Bloom �lter [7] was essentially the only game in
town, but Bloom �lters are suboptimal in terms of space usage,
running time, and data locality, and they support a bare-bones set
of operations (insert and lookup).

In particular, Bloom �lters consume log(4) = log(1/Y) space,
which is roughly log(4) ⇡ 1.44 times more than the lower bound
of = log(1/Y) + ⌦(=) bits [15]. Bloom �lters also incur log(1/Y)
cache-line misses on inserts and positive queries, giving them poor
insertion and query performance.

The Bloom �lter has inspired numerous vari-
ants [1, 8, 13, 22, 29, 34, 43, 44]. The counting Bloom �lter (CBF) [29]
replaces each bit in the Bloom �lter with a 2-bit saturating counter.
This enables the CBF to support deletes, but increases the space by
a factor of 2 . The blocked Bloom �lter [43] provides better cache
locality than the standard Bloom�lter but does not support deletion.

The quotient�lter (QF) [6, 24, 25, 35] uses a new, non-Bloom-�lter
design. It is built on the idea of storing small �ngerprints via Robin
Hood hashing [16]. It supports insertion, deletion, lookups, resizing,
and merging. The counting quotient �lter (CQF) [39], improves
upon the performance of the quotient �lter and adds variable-sized
counters to count items using asymptotically optimal space, even
in large and skewed datasets.

The quotient �lter uses 1.053(2.125+ log21/Y) bits per element,
which is less than the Bloom �lter whenever Y 1/64, which is the
case in almost all applications. Quotient �lters are also much faster
than Bloom �lters, since most operations access only one or two
cache lines. Geil et al. accelerated the QF by porting it to GPUs [32].

The cuckoo �lter [28] uses the idea from quotient �lters of
hashing small �ngerprints but uses cuckoo hashing instead of Robin
Hood hashing. Cuckoo �lters use 1.053(3+ log21/Y) bits per item,
that is, somewhat more than a quotient �lter.

The Morton �lter [11] is a variant of the cuckoo �lter that is
designed to speed up insertion using optimizations designed for
hierarchical systems. The Morton �lter biases insertions towards
the primary hash slot and uses an over�ow tracking array to
speed up negative queries. In addition, the Morton �lter employs
a compression-based physical representation to store �ngerprints
in blocks and achieves better space utilization than the cuckoo

�lter. The Morton �lter o�ers faster insertion throughput compared
to the cuckoo �lter and also less throughput degradation at high
occupancy. TheMorton �lter o�ers even faster insertion throughput
for bulk insertion scenarios which are often seen in practice.
The Morton �lter space usage depends on several con�guration
parameters, but the version benchmarked in the original Morton
�lter uses approximately 1.053(2.5+log21/Y).

From the above summary, we can see that the quotient, cuckoo,
andMorton �lters all use 1.053( +log21/Y) bits per element, where
 is 2.125, 3, or 2.5, respectively. The main remaining challenge is
speed, especially at higher load factors.

3 PARTITIONQUOTIENT FILTER
The following is an overview of the partition quotient �lter:

• The �lters is organized into a frontyard and a backyard.
• In the frontyard, single-choice hashing is employed to reduce
the number of operations and cache misses necessary.

• Using the frontyard location only, two locations are selected
in the backyard to beused for two choicehashing. Remainders
remain the same when forwarded to the backyard to support
deletion.

• Mini-�lters, as in vector quotient �lter, are used to e�ciently
store several remainders in one cache line.

• Remainders in mini-�lters are sorted by their “mini-bucket.”
This is done to be able to e�cienty tell whether a key needs
to be forwarded to the backyard (for an insertion or query,
as it were). Only keys with the largest mini bucket are sent
to the backyard.

Themain sourceofhigher throughput compared to thevectorquo-
tient�lter andotherdeletiononly�lters comes fromthe fact thatonly
one cache line is accessed for themajority of operations, particularly
for queries. Only roughly one tenth of keys end up in the backyard.

The frontyard causes no failures, as over�ows are sent to the
backyard. As the backyard is implemented using two-choice
hashing, it would normally be necessary to simply have an extra
⌦(loglog=) in each backyard bucket versus the expected capacity
to ensure that the �lter does not fail with high probability..

However, the main issue with this approach comes from the
fact that potentially many keys are hashed to the same backyard
location from the frontyard. However, empirically, this does not
cause issues, at the very least when su�ciently many keys can �t in
a single bucket. Notably, one of the most common sources of failures
is from a single bucket over�owing to the extent that it �lls both
possible backyard buckets. Since the maximum expected over�ow is
$ (;>6# ) (and in practice with a small constant value), this is mainly
an issue for the 32 byte version of the �lter, where backyard buckets
have pretty low capacity for remainders.

However, as discussed later, this appears to simply reduce the
maximum possible load factor by a little bit, which is a tradeo�
many would take. If a higher load factor is necessary, then using the
full 64 bytes for each bucket empirically shows very good scaling of
maximumload factorwith# . Clearly, forvery largevaluesof# (such
as, for example # =248), even these larger buckets would begin to
causeproblems, but it is reasonable toexpect that cache line sizesmay
increase by the time such large �lters would become necessary. To
give further evidence, GPUs alreadymake use of 128 byte cache lines.



3.1 Frontyard to Backyard Rehashing
(or lack thereof) to Support Deletions

The pre�x�lter takes a simple approach to speeding up performance,
essentially treating the �lter as two di�erent �lters. When an item
is inserted, it is inserted into the frontyard, and, if there is over�ow,
it is inserted into the backyard as if the backyard were the only
�lter there. That is, the backyard can be implemented as any �lter,
and an inserted item is simply rehashed and treated as any other
key. However, this approach does not support deletions and greatly
limits the usefulness of the �lter.

In order to support deletions,whenakey is sent from thebackyard
to the frontyard, the hash of the backyard key used in generating
quotients and remainders must be identical (or at the very least
bijective with the original hash). Otherwise, unless the backyard
is implemented as single-choice, it is impossible to know which
remainder to delete. If you rehash to two locations, and in each of the
locations there is a match to the remainder, then it is impossible to
knowwhich of the two remainders to delete. There may have been
another key that only hashed to one of the locations, and, by deleting
the remainder at that location, false negatives are created for that key.

Additionally, even if there is a single choice in the backyard, there
is the question of what to do with backyard buckets that need to
be brought back. If some frontyard elements are removed from the
�lter, then backyard elements need to be brought back in order to
maintain the invariant that the frontyard stores the smallest items
by mini bucket location. Otherwise, it may happen that an element
is removed from the frontyard bucket, and then another element is
inserted into the same bucket with a mini bucket index higher than
that of an element in the backyard. Thus the rule for knowing when
to go to the backyard breaks down, as it is impossible to tell if going
to the backyard is necessary. Even if the other problem were not
there, this would kill any practical attempt to make such a two-tier
�lter work, as the backyard would always need to be checked and
the time savings of this approach would be nulli�ed.

Therefore, we use a simple function that, when combined with a
few extra bits we store in the backyard, is bijective. This means that,
upon deletion or reinsertion into the frontyard, we can simply invert
the function to then put the remainder back into the frontyard. The
function is parametrized by one variable: the ratio' of buckets in the
backyard to the frontyard. A frontyard location is converted to one
backyard location simply by chopping o� the least signi�cant few
(dlog'e) bits and then storing them along with the remainder in the
backyard bucket. The other backyard location is chosen by splicing
out the next least signi�cant bits. The least signi�cant bits are then
moved to the front of the key. This step is important, as just splicing
out one of the two groups of least signi�cant bits of the number will
mean that range of frontyard buckets corresponding to a backyard
bucket would be very small. That is, taking the graph⌧ created by
treating backyard buckets as nodes and creating an edge between a
pairof themif theycorrespond to the same frontyardbucketwouldbe
disconnected: there would be connected components corresponding
to each group of frontyard buckets with the same pre�x and di�eren-
ing least signi�cantdigits.Moving thebits,⌧ is averysimilargraphto
aDeBrujin graph.Of note, it is important that the less signi�cant bits
aremoved rather than just, for example, splicing out themost signi�-
cant bits, as the upper bits can signi�cantly deviate fromuniformly at

Algorithm 1 FrontyardToBackyardHash (5 ) -> ((11,12),(A1,A2))

1: 11 
j
5
⇠

k
2: G1 (; �11⇤⇠ )
3: A1 2G1
4: 12 

j
11
⇠

k
5: G2 (; �11⇤⇠ )
6: A2 2G2+1
7: 12 12+'G1

random. Assuming that the hash function for the frontyard is good,
these two sets of bits that are spliced out should be uncorrelated.

Speci�cally, the following is the pseudocode for obtaining the
backyard locations from the frontyard (s corresponds to whether
this is the second possible location), where 5 is the frontyard
location, ' is (slightly larger than) the range of possible backyard
buckets, ⇠ is the ratio of the number of backyard buckets to the
number of frontyard buckets (consolidation factor), (11, 12) are
the two backyard locations returned, and (A1,A2) are the several
bits that need to be stored along with the remainders in order
to uniquely identify the original frontyard location (5 ) from the
backyard locations. One additional bit needs to be stored as part
of A2 to indicate whether this was the �rst or second choice, which
here is done as the least signi�cant bit to simplify the expression:

3.2 Correctness of this HashingMethod
Due to the nature of the partition quotient �lter, it is di�cult to ana-
lyze the failureprobability.Asmentioned, assuming thatall keyscom-
ingout of the frontyard are rehashed independently from theoriginal
key, there areno issues and correctness follows fromtwochoicehash-
ing. Even if full (quotient, remainder) pairs are hashed to new values
for whatever �lter the backyard uses, correctness does not appear to
be amajor issue, as very few (quotient, remainder) pairs appearmulti-
ple times in the frontyard (assuming no duplicate keys are inserted).

However, when there are two �xed locations for an entire bucket
(not even quotient, but bucket, which is quotient minus the few bits
that identify themini bucket), analysis is more di�cult. Additionally,
the two hashes used in partition quotient �lter are not independent,
which potentially causes further issues. However, we give some
intuition to our claim that our choice of hash function actually
improves the potential of the �lter over two functions that randomly
hash the bucket index:

Consider the �lter if there are no frontyard buckets (#5 = 0).
Then keys are hashed to (backyard1, remainder) and (backyard2,
remainder) pairs at once, where backyard2 is generated from
backyard1 and some extra bits (corresponding to the snipped out
bits of the frontyard bucket that would be simply stored in the
backyard). Considering that these bits are (pseudo)independent
and (pseudo)random (assuming a good hash function), this version
of two choice greatly resembles that of vector quotient �lters and
cuckoo �lters—in both, the alternate bucket is chosen as 12=11�A ,
using the (psuedo)randomness of the bits of the remainder for the
second bucket. While not exactly the same, the second location
in partition quotient �lters here is chosen in a similar manner and
should have very similar performance. However, two issues still
remain: the ratio of the number of frontyard buckets to the number
of backyard buckets is relatively small (8 for all implementations



tested), meaning the number of “extra (psuedo)random bits” used
in the second hash is very small, and the frontyard exists.

In fact, using the cuckoo or vector quotient �lter hash is
insu�cient. Taking A 0 to be the 3 bits corresponding to the frontyard
identi�er for the �rst backyard hash, assuming that A 0 is random
means that removing the �rst 3 bits out of the last 6(without
moving them to the front) for the second backyard bucekt should
be equivalent to taking 12=11�A 0, as the bits are random. In either
case, this is to few bits to create a good �lter design (see analysis
given by cuckoo �lter on failures). In fact, by accident this was used
in the initial implementation of the partition quotient �lter, and they
failed at a signi�cantly lower load factor (data was not collected at
this stage, so exact numbers are unavailable).

Essentially, in this case (still ignoring the frontyard) the graph
created by connecting two buckets associated with the same
key/frontyard bucket is a disjoint union of many small connected
components, giving very little opportunity for the e�ects of an
unusually full bucket to “spread out” (see �gure). Since only the
last few bits of the hash are a�ected (in this case, just the last 3), the
only possible other keys hashed to a backyard bucket di�er in just
the last few bits in the backyard bucket. No matter howmany steps
are taken, keys only interact with other keys with the same pre�x
(excluding the last few bits).

However, in the scheme used here, where these extra bits are (con-
ceptually) shu�ed to thebeginning for the secondhash, thegraph is a
De Brujin graph, except using a di�erent base. In this case, over�ows
can “trickle” down to further away parts of the graph,whichmatches
the intuition of why two-choice hashingworks in the �rst place. Em-
pirically, as will be seen in the evaluation section, this results in very
good load factors. This graph has as high as possible a branching
factor, which similarlymeans that over�ows trickle awaymaximally.

Finally, the fact that there are frontyard buckets should have only
a minor e�ect on the quality of the �lter. The one issue is that the
distribution of keys kicked from the frontyard is di�erent to that of
keys in general.Whereas keys in general follow a uniformly random
distribution, keys that are kicked from the backyard follow a tail nor-
mal distribution. Roughly speaking, a frontyard bucket is expected to
have: keys with roughly

p
: standard deviation following a roughly

normal distribution (assuming the buckets are large enough, which
is not exactly the case). Thus, the over�ow is expected to have$ (

p
:)

keys in the over�ow with a
p
: standard deviation, a signi�cantly

less well behaved distribution. This should mainly serve to make
it so that there are larger clumps of keys with the same two choices
than in the previous case. As it is possible to reduce the relative
e�ect of these clump sizes by making larger backyard buckets with
more frontyard buckets mapping to a single backyard bucket, this
has the e�ect of reducing the e�ective ratio between frontyard and
backyard buckets. Additionally, it means that backyard buckets
need to have a minimum size in order to have two backyard buckets
even be able to store the largest over�ow of any frontyard bucket
(a limit which the 32 byte buckets ride dangerously close to).

It may be surprising that it is possible to get such good perfor-
manceoutof so fewbitsused to choose the twobackyardbuckets, but,
as this hash disperses keys far and evenly, it appears to be su�cient.

Figure 1: An example of how the cuckoo style two choice hash
wouldwork versus the systemused in partition quotient�lter
usingabackyard to frontyard ratioof 2 for simplicity.Observe
that the cuckoo system results in disconnected components,
which would signi�cantly decreasemaximum load factor.

Algorithm 2 Insert (x)
1: (5 ,<,A ) ⌘ (G ) ù

retrieving remainder A to store in minibucket< in frontyard bucket 5
2: over,(<0,A 0 ) InsertFrontBucket(5 ,<,A ) ù

returns if bucket over�owed; (A 0,<0 ) is the over�ow
3: if over then
4: ( (11,12 ),(A1,A2 ) ) FrontyardToBackyardHash(5 )
5: A1 A1A 0

6: A2 A2A 0

7: if full(11) and full(12) then
8: return False
9: end if
10: if count(11) < count(12) then ù If11 is emptier, insert into11
11: InsertBackBucket(11,<0,A1 )
12: else
13: InsertBackBucket(12,<0,A2 )
14: end if
15: end if

4 PARTITION
QUOTIENT FILTEROPERATIONS

This section describes the algorithms used to implement the
insert, lookup and delete operations on a partition quotient �lter.
Bucket operations are as described in vector quotient �lter with
the exception of queries in the frontyard and removals from the
backyard. Note that the bucket operations in vector quotient �lters
already sort the elements by their mini bucket index, as this is
required for the structure to function at all, meaning that there
needs to be no additional structure to implement this (with the slight
exception of backyard removals). Frontyard bucket operations are
generally distinguished from backyard bucket operations due to
the fact that backyard buckets need to store larger remainders (for
example, frontyard buckets may use 8 bit remainder operations,
while backyard buckets use 12 bit operations).

Insert. Algorithm2 shows the pseudocode for the insert operation.
To perform an insert, the key is �rst hashed to determine the
remainder A and quotient @. As in other �lters that use the mini
�lter structure originating with vector quotient �lter, this quotient
is split into a (frontyard) bucket index 5 and mini bucket index<.
< is (conceptually) compared to the other mini bucket indices in the



Algorithm 3 Lookup (x)
1: (5 ,<,A ) ⌘ (G ) ù retrieving remainder A , minibucket<, frontyard bucket 5
2: status QueryBucket(5 ,<,A )
3: if status == Present then
4: return True
5: else if status == PotentialBackyard and full(f) then ù

minibucket was at least as large as the largest minibucket of a remainder in the
frontyard, meaning need to search backyard

6: ( (11,12 ),(A1,A2 ) ) FrontyardToBackyardHash(5 )
7: A1 A1A ùConcatenate A 0 with A1 (A2) to get �rst (second) backyard remainder
8: A2 A2A
9: return (QueryBucket(11,<,A1 ) == Present) || (QueryBucket(12,<,A2 ) ==

Present)
10: end if
11: return False

Algorithm 4 Remove (x)
1: (5 ,<,A ) ⌘ (G ) ù retrieving remainder A , minibucket<, frontyard bucket 5
2: if full(5 ) then ù If f is full,

G may be in the backyard or may need to retrieve an element from the backyard
3: 4 RemoveFromFrontBucket(5 ,<,A ) ù

e stands for key was eliminated (true) or not present (false)
4: ( (11,12 ),(A1,A2 ) ) FrontyardToBackyardHash(5 )
5: ( (11,12 ),(A1,A2 ) ) FrontyardToBackyardHash(5 )
6: if e then ù (<,A ) was removed from frontyard
7: (<1,A 01 ) minElem(11,A1 ) ù Grab element with the

smallest minibucket index coming from the frontyard bucket determined by A1
8: (<2,A 02 ) minElem(12,A2 )
9: if<1<<2 then
10: RemoveFromBackBucket(11,<1,A1A 01 )
11: InsertFrontBucket(5 ,<1,A 01 )
12: else
13: RemoveFromBackBucket(12,<2,A2A 02 )
14: InsertFrontBucket(5 ,<2,A 02 )
15: end if
16: return True
17: else ù (<,A ) not found in frontyard
18: if RemoveFromBackBucket(11,A1A 0 ) then
19: return True
20: else if RemoveFromBackBucket(12,A2A 0 ) then
21: return True
22: else
23: return False ù Key was not found anywhere
24: end if
25: end if
26: else
27: return RemoveFromBucket(5 ,<,A ) ù Simply remove G from the bucket
28: end if

remainder store to determine where remainder A should be stored. A
is inserted (using AVX512) into the remainders portion of the bucket
using the order of< in the metadata as an index.

If the bucket over�ows, then we keep track of which mini bucket
index<0 (possibly equal to<) and remainder A 0 over�owed (so<0
is the max of the highest mini bucket index previously in the bucket
and <). The frontyard bucket index 5 is then hashed to (11, A1)
and (12, A2) as given previously. Then (<0, A8A 0) is inserted into
whichever bucket at index 18 is emptier, with a failure occuring if
both buckets are full. A8A 0 is simply a concatenation of the two pieces
of data needed to identify a remainer in the backyard—the frontyard
remainder, the bits chopped o� and which bits were chopped o� (A8 ).

Lookup. Algorithm 3 shows the pseudocode for the lookup or
query operation. Lookup proceeds by obtaining (5 ,<,A ) as in inserts
andchecking if the remainder ispresent in the frontyardbucket. If the

remainder is found, then the query is done and returns true. Other-
wise, itmay be necessary to check the backyardwhen the status spec-
i�es PotentialBackyard. This check is a slightmodi�cation of the typ-
ical bucket query operation:when the frontyard bucket is full and the
minibucket index of the queried key is at least as large as the largest
minibucket indexof a remainder in the frontyardbucket, it is possible
that the key is in the backyard, as the backyard stores keys with the
same or larger mini bucket indices as the largest in the frontyard.

Remove. As in the other operations, removal �rst attempts to
remove the key from the frontyard. If the frontyard bucket was not
full, then the removal is �nshed whether or not the key was found
in the bucket, as there is guaranteed to be nothing in the backyard.

If the key was in fact present in the frontyard bucket and the
frontyard bucket is full (meaning there may have been keys sent
to the backyard from this bucket), then a key with the smallest mini
bucket index in the backyard is moved back to the frontyard. This is
done for a single bucket by querying which elements in the bucket
match the pre�x given by A1 (or A2 for 12) and then using one ctzll
instruction to see what is the index of the smallest matching key
in the remainders. This index is then used to identify which mini
bucket thematching key belongs to. After obtaining the keywith the
smallestminibucket index in the two backyard buckets, it is removed
from its corresponding bucket and inserted into to the frontyard.

If the key was not present, then it is �rst attempted to be removed
from the �rst backyard bucket, and, if not found, then it is attempted
to be removed from the second backyard bucket. If it is still not
found, the removal fails (the key was either removed twice or never
inserted).

5 SPACEANALYSIS
We now do a quick analysis of the space usage of the partition
quotient �lter and compare it to other �lters, after which we present
the space usage of the �lters in practice. Note that the space usage
of all these �lters is relatively similar.

The main factor in determining space usage is the ratio of the
size of the frontyard to the size of the backyard. Call this ratio ⇠ .
Estimating the asympotics of this ratio is nontrivial in the case of this
�lter, so we just note that empirically the best performing (in terms
of maximum load factor supported) �lters we implemented set⇠ =8
for both the 32 byte bucket and the 64 byte bucket con�gurations.
It is reasonable to assume that larger buckets would enable larger
values of ⇠ , if only because the number of keys that over�ow a
frontyard bucket scales as the square root the size of the bucket
(for larger bucket sizes), meaning that the ratio of the over�ow to
the size of the bucket is inverse square root (and thus⇠ should be
roughly on the order of the square root of the bucket size).

Optimally, the frontyard should use on the order of roughly
1.914 + log (1/Y) bits per key (the 1.914 coming from the optimal
con�guration of the mini �lter). The backyard needs to store an
additional 1 +

l
log

⇣
1
⇠

⌘m
bits per key, in order to store whether it

is the �rst choice bucket and what the bits that were cut from the
frontyard location were. For our con�gurations with ⇠ = 8, this
expression simpli�es to 4. Therefore, the optimal average bits per
key is 1.914+log(1/Y)+ 4

8 =2.414+log(1/Y). In our implementations,
we use con�gurations that yeild around 2+log(1/Y) bits for the mini



�lters in the frontyard, so the average space consumption per key
is just slightly higher at 2.5+log(1/Y).

The �lter using a bucket size of 32 achieves a load factor of
75�85% (for reasonable values of # ), and, taking the lower �gure,
we get that it uses 4

3 (2.5+log(1/Y)). At log(1/Y) =8, this is a space
usage of 14 bits per key, although, due to the lower �ll of the �lter,
the actual space e�ciency is a little better than 8

14 ⇡0.571 at 0.591.
The �lter using a bucket size of 64 achieves a load factor of over 0.9
for all ranges of# tested, which leaves a space usage of 11.67 bits per
key, so this �lter should be used when space is at a premium. This
space usage is very comparable to other �lter designs. Once again,
the �lter is slightly under�lled here, and the real space e�ciency of
it is 0.718 at 90% �ll, rather than the 8

11.67 ⇡0.686 this would predict.

6 IMPLEMENTATIONANDOPTIMIZATION
Themain constraint on the buckets/mini�lters in both the frontyard
and the backyard is that they need to �t within a single cache line to
enable fast operation. The two main components of The mini�lters
are the array of remainders and the metadata. The metadata uses
one bit per remainder and one bit per minibucket to separate out the
remainders with. Therefore, letting the number of remainders in a
bucket be #5 for the frontyard and #1 for the backyard, the number
of minibuckets be ⌫, and the number of bits used in a remainder
(roughly corresponding to the log false positive rate) be '. Then
the space usage of a frontyard bucket is ⌫+#5 ('+1).

Additionally, the backyard buckets need to store which frontyard
bucket the remainder came from out of the posssibilities. In the case
of our �lter con�gurations, there are always at most 16 possiblities,
so this uses four bits. Therefore, the space usage of a backyard
bucket is ⌫+#1 ('+5).

One further constraint that could lead to faster �lters would be to
use just one machine word for the metadata. As the metadata uses
the LZCNT instruction, thismaximumsize is 64 bits. This is naturally
the case when the size of the remainders is 16 bits—in the frontyard,
we set #5 = 28 and ⌫ = 36, which uses precisely 64 bits, using the
other 56 bytes of a cacheline for the remainders. In the backyard,
#1 =22. This �lter will be known as %&�16 in the evaluations.

In the case when the size of the remainders is 8 bits, there is a
tradeo� to consider: do we use 64 byte buckets, leading to a better
load factor and space usage, or do we use 32 byte buckets, which
then have the metadata �t in a single machine word? In the �rst
option, some possible con�gurations are#5 =53, ⌫=51, and#1 =35
(%&�8�53); and #5 =62, ⌫ =50, #1 =34 (%&�8�62) (which o�ers
a somewhat lower false positive rate and higher space e�ciency
but very slightly lower capacity).

In the second option, the seemingly fastest con�guration is to
use #5 = 22, ⌫ = 26, #1 = 18 (%&�8 � 22), with similar tradeo�s
with having more minibuckets per bucket possible. In addition, it is
possible to alleviate the load factor issues bymaking buckets 64 bytes
while frontyard buckets are 32 bytes (an example con�guration
tested is same as %&�8�22 but with #1 =37), but this means that a
larger fraction of the remainders will be in the backyard, alleviating
the advantage of partition quotient �lters.

7 EVALUATION
In this section, we evaluate our implemention of the partition
quotient �lters (PQF) in di�erent com�gurations. We compare them
primarily against two similar �lter data structures: vector quotient
�lters (VQF) and pre�x �lters (PF).

We evaluate each data structure on three fundamental operations:
insertions, lookups, and removals. We evaluate lookups both for
items that are present and for items that are not present in the �lter.

This section tries to address the following questions about how
�lters perform in RAM and L3 cache:

(1) How does the vector quotient �lter (VQF) compare to the
cuckoo �lter (CF), Morton �lter (MF), and quotient �lter (QF)
when the �lters are in RAM?

(2) How does the vector quotient �lter (VQF) compare to the
cuckoo �lter (CF), Morton �lter (MF), and quotient �lter (QF)
when the �lters �t in L3 cache?

(3) How does the vector quotient �lter (VQF) compare to the
cuckoo �lter (CF) and Morton �lter (MF) when running a
mixed workload at high occupancy?

(4) How does the insertion throughput of the vector quotient
�lter (VQF) scales with multiple threads?

7.1 Experimental setup
In order to see the impact of collision resolution, we report the
performance on all operations as a function of the data structures’
load factor. This also eases comparison with prior work, which uses
the same methodology [6, 11, 28, 39]. We also report the aggregate
throughput performance which is the performance of the �lter
going from scratch to 95% (or 90%) load factor.

One challenge we face is that the �lters do not all support the
same false-positive rates. For example, the cuckoo �lter implemen-
tation [27] supports only 2, 4, 8, 12, 16, and 32-bit �ngerprints. The
false-positive rate can further be tweaked by a small amount by
adjusting the block size, but making the blocks too small increases
the failure probability, and making them too large decreases perfor-
mance. This is why the cuckoo �lter authors recommend a block size
of 4. The Morton �lter implementation [10] has similar limitations.

Thus we pick two target false positive rates and con�gure each
�lter to get as close as possible to those false-positive rates without
sacri�cing performance. Our target false-positive rates are 2�8 and
2�16. We con�gure the vector quotient �lter with 8 and 16-bit �nger-
prints, respectively and slots and buckets as described in Section 6.
We use 8- and 16-bit �ngerprints in the quotient �lter. We use 12-
and 16-bit �ngerprints and blocks of size 4 in the cuckoo �lter. We
use 8- and 16-bit �ngerprints and blocks of size 3 in theMorton �lter.

Table 2 shows the empirical space usage and false-positive rate of
di�erent �lters in these experiments. In the 8-bit experiments, all the
�lters are within roughly a factor of two in terms of false-positive
rate. In the 16-bit experiments, the cuckoo �lter false-positive rate
is signi�cantly higher than the other �lters due to limitations of the
implementation.

To compare these�lters space and false-positive rate, we compute
each �lter’s space e�ciency in Table 2, which is de�ned to be

=log1/Y
(

,
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(a) Insertion (Higher is better.)
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(b) Deletion throughput (Higher is better.)
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(c) Successful lookup (Higher is better.)
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Figure 2: Insertion, deletion, and lookup performance of di�erent �lters in RAM for di�erent load factors. Averaged over 5 runs.
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where = is the number of items in a full �lter (i.e. at the maximum
supported occupancy), Y is the false-positive rate achieved by the
�lter, and ( is the total number of bits used by the �lter. As Table 2
shows, the quotient �lter is the most space e�cient, followed by the
Morton�lter. The cuckoo�lter ismore space e�cient than the vector
quotient �lter for our 8-bit experiments, but the vector quotient
�lter is more e�cient than the cuckoo �lter for 16-bit experiments.
Nonetheless, the di�erences are relatively small across the board.

The con�gurations used in our experiments are consistent with
the author’s recommendations and show these �lters at or near
their best performance. For example, all other con�gurations that
we tried for the Morton �lter were slower. The cuckoo �lter is ⇡20%
faster with 8-bit �ngerprints, but this gives a false-positive rate of
1/32, which is too high for many applications.

We evaluate the performance of the data structures in RAM
as well as in L3 cache. This is because applications use �lters in
multiple di�erent scenarios and �lters are often small enough to
completely �t in L3 cache. We perform two sets of benchmarks.
For the in-RAM benchmark, we create the data structures with 228
(268M) slots which makes all the data structures substantially larger
than the L3 cache. For the in-cache benchmark, we create the data
structures with 222 (4M) slots (and 221 slots for 16-bit �ngerprints)
which keeps themwell smaller than the size of the L3 cache (8MB).

All the experiments were run on an Intel Ice Lake CPU (Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30GHz with 4 cores and 8MB L3
cache) with 15 GB of RAM running Ubuntu 19.10 (Linux kernel
5.3.0-26-generic).

Microbenchmarks.Wemeasure performance on raw inserts,
removals, and lookups which are performed as follows.We generate
64-bit hashvalues fromauniform-randomdistribution to be inserted,
removed or queried in the data structure. Items are inserted into an



Target log(FPR) 8 16
Filter log(FPR) Space (MB) E�ciency log(FPR) Space (MB) E�ciency
Quotient �lter 8.16 324.20 0.76 16.44 580.35 0.76
Cuckoo �lter⇤ 9.15 384.00 0.72 13.17 512.00 0.70
Morton �lter 8.50 356.19 0.73 16.96 606.88 0.72
Vector quotient �lter 7.84 341.34 0.68 15.15 585.14 0.72

Table 2: Empirical space usage and false-positive rate of �lters used in the benchmarks. All �lters were created with 228 slots
(in-RAM experiments). Space is given inMB. ⇤In our 8-bit experiments, we con�gure the cuckoo �lter with 12-bit �ngerprints so
that its false-positive rate roughlymatches the other �lters. In our 16-bit experiments, there is no practical way to con�gure the
cuckoo �lter for amatching false-positive rate, so we just use 16-bit �ngerprints, which gives amuch higher false-positive rate.

empty �lter until it reaches its maximum recommended load factor
(e.g., 95%). The workload is divided into slices, each of which is 5% of
the load factor. The time required to insert each slice is recorded, and
after each slice, the lookup performance for that load factor is mea-
sured.Once the data structure is 95% full, items thatwere inserted are
removed—again in slices of 5% of the load factor—until the data struc-
ture is empty andmeasure the performance after removing each slice.

Wemeasure thequeryperformance for items that exist (successful
lookups) and items that do not exist in the �lter (random lookups).
For successful lookups, we query items that are already inserted and
for random lookups we generate a di�erent set of 64-bit hashes than
the set used for insertion. The random lookup set contains almost
entirely non-existent hashes because the hash space is much bigger
than thenumberof items in the�lter. Empirically, 99.9989%ofhashes
in the random lookup query set were non-existent in the input set.

The vector quotient �lter supports up to only 93% load factor for
in-RAM experiments and was able to support up to 95% load factor
for in-cache experiments due to the di�erence in the number of items
inserted in the data structure. Therefore, for in-RAM experiments,
the vector quotient �lter plots do not show the throughput at 95%
load factor.

In order to isolate the performance di�erences between the
data structures, we do not count the time required to generate the
random inputs to the �lters.

7.2 In-RAMperformance
Figure 2 shows the in-RAM performance of data structures.

Our performance results for the Morton �lter are worse than
the main experimental results from the Morton �lter paper [11].
This is because the Morton �lter implementation is optimized for
AMD CPUs, but we evaluate it on an Intel CPU, where performance
is known to be worse. For example, Figure 17 in the Morton �lter
paper [11] shows that the Morton �lter speed on a Skylake-X CPU
is similar or worse than the CF. Our results are consistent with that.

7.3 In-cache performance
Figure4 shows the in-cacheperformanceofdata structures.Through-
put for all operations when the �lters are in-cache operation is
much higher compared to their corresponding throughput in RAM.
The relative performance of di�erent operations in-cache across
data structures shows similar trend as the in-RAM performance.
The vector quotient �lter has the highest insertion and removal
throughput and o�ers lookup performance similar to the cuckoo
�lter. Aggregate throughput of di�erent operations are shown in ??.

Filter Throughput (Million/sec)
vector quotient �lter 20.268

cuckoo �lter 3.147
Morton �lter 11.958

Table 3: Aggregate throughput for application workload.
Workload includes 100M operations (equally divided into
insertions, deletions, and queries) at 90% load factor of
di�erent �lters in RAM. All �lters were con�gured for a
target false-positive rate of 2�8, as described in Table 2.

Num threads Throughput (Million/sec)
1 16.059
2 31.154
3 43.737
4 54.282

Table 4: Insertion throughput with increasing number of
threads in RAM. All �lters were con�gured for a target
false-positive rate of 2�8, as described in Table 2.
7.4 Filter Failures
We ran some experiments to test whether the �lter design is indeed
correct empirically. To do that, we inserted into di�erent �lter
con�gurations and designs until each failed, and recorded the
load factor at which this failure occured. This was done over 1000
runs. Figure 5 shows the trend over di�erent �lter capacities of
the load factor at which failure occurs, comparing several di�erent
con�gurations versus the vector quotient �lter.

As can be seen, PQF52 outperforms the default con�guration of
VQF (which has more failures due to the shortcut done to improve
insertion throughput) in failures, and has a very �at graph. PQF22
has failures a lot earlier in exchange for its faster query performance,
which is to be expected due to the signi�cantly smaller bucket sizes.

8 CONCLUSION
This paper shows that it is possible to build a �lter that is
space-e�cient and o�ers consistently high insertion and deletion
throughput even at very high load factors.

The vector quotient �lter o�ers superior insertion performance
compared to the state-of-the-art�lters, especially athigh load factors,
where vector quotient �lter insertions are over 2⇥ faster other mod-
ern �lters. Vector quotient �lter queries are slightly slower than in
the cuckoo �lter, but faster than the other �lters in our experiments.

We attribute the high throughput and space-e�ciency of the
vector quotient �lter to two things, the power-of-two-choice
hashing and SIMD instructions. Power-of-two-choice hashing
reduces themini�lter occupancy variance, enabling high occupancy.
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(b) Deletion throughput (Higher is better.)
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Figure 4: Insertion, deletion, and lookup performance of di�erent �lters in L3 cache. Averaged over 5 runs.

The SIMD instructions enable the vector quotient �lter to perform
constant-time operations in mini �lters.

Like the quotient �lter, the vector quotient �lter also has the
ability to associate a small value with each item. Applications often
use the value bits to store some extra information with each item
in the �lter [19, 30, 41]. We believe the ability to associate a value
with each key makes the vector quotient �lter a go-to data structure
in every application builder’s toolbox.
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