
A Detailed Historical and Statistical Analysis of the

Influence of Hardware Artifacts on SPEC Integer

Benchmark Performance

Yueyao Wang1, Samuel Furman2, Nicolas Hardy2, Margaret Ellis2,
Godmar Back2, Yili Hong3, and Kirk Cameron2

1School of Statistics and Mathematics, Zhejiang Gongshang University,

Hangzhou, Zhejiang, China 310018

2Department of Computer Science, Virginia Tech, Blacksburg, VA 24061

3Department of Statistics, Virginia Tech, Blacksburg, VA 24061

Abstract

The Standard Performance Evaluation Corporation (SPEC) CPU benchmark has

been widely used as a measure of computing performance for decades. The SPEC is an

industry-standardized, CPU-intensive benchmark suite and the collective data provide a

proxy for the history of worldwide CPU and system performance. Past efforts have not

provided or enabled answers to questions such as, how has the SPEC benchmark suite

evolved empirically over time and what micro-architecture artifacts have had the most

influence on performance?—have any micro-benchmarks within the suite had undue in-

fluence on the results and comparisons among the codes?—can the answers to these

questions provide insights to the future of computer system performance? To answer

these questions, we detail our historical and statistical analysis of specific hardware arti-

facts (clock frequencies, core counts, etc.) on the performance of the SPEC benchmarks

since 1995. We discuss in detail several methods to normalize across benchmark evolu-

tions. We perform both isolated and collective sensitivity analyses for various hardware

artifacts and we identify one benchmark (libquantum) that had somewhat undue influ-

ence on performance outcomes. We also present the use of SPEC data to predict future

performance.

Keywords: CPU Benchmark; Data Visualization; Libquantum; Regression Analy-

sis, Sensitivity Analysis; SPEC Normalization.

1

ar
X

iv
:2

40
1.

16
69

0v
1 

 [
cs

.C
Y

] 
 3

0 
Ja

n 
20

24



1 Introduction

1.1 Background and Motivation

For more than 30 years, computing has pushed the boundaries of performance. From adher-

ence to Moore’s Law to the adoption and widespread use of high clock rates and parallelism in

systems and micro-architecture, performance has continued to increase substantially. As per-

formance has increased, so have the capabilities of our computing devices. From e-commerce

to streaming services, we now watch videos on our pocket-sized devices in nearly any location

while emergent immersible augmented reality technologies promise the demand for perfor-

mance will not ebb for the foreseeable future.

The Standard Performance Evaluation Corporation (SPEC) CPU benchmark has been

widely used as a measure of computing performance. The SPEC is an industry-standardized,

CPU-intensive benchmark suite, stressing a system’s processor, memory subsystem and com-

piler. The SPEC benchmark has grown and diversified since its inception in the late 1980’s

and the collective data is a proxy for the history of worldwide CPU and system performance.

While many have studied the intricacies and influence of the SPEC benchmarks, such

studies tend to focus on historical perspective ([1]), the likelihood of benchmark suites being

representative of real workloads ([2]), and similarity among benchmark suite codes ([3], [4],

[5], and [6]).

To the best of our knowledge, none of these past efforts provide or enable answers to the

following questions: a) How has the SPEC benchmark suite evolved empirically over time

and what micro-architecture artifacts have had the most influence on performance? b) Have

any micro-benchmarks within the suite had undue influence on the results and comparisons

among the codes? and c) Can the answers to these questions provide insights to the future of

computer system performance?

In our survey of the prevailing literature, the closest work to ours is the Stanford CPU

database (CPUdb) [7]. In their work, the authors assembled CPU information from a variety

of sources and created an online repository for researchers to explore. A number of analysis

and visualization tools resulted from this effort. However, while the database captures CPU

details going back to the 1970’s, the performance studies only go back to the 2006 data. In our

work, we not only extend our analyses to pre-2006 data, we also leverage a lineage database

[8] that builds off the CPUdb and other sources and adds entity relationships that capture the

evolution of microprocessors over time. With this additional information, we can conduct more

detailed statistical studies of the implications of hardware artifacts on performance outcomes

dating back to the late 1990s.

In this paper, we detail our historical and statistical analysis of specific hardware artifacts

2



(clock frequencies, core counts, etc.) on the performance of the SPEC benchmarks since 1995.

We discuss several methods in detail to normalize across benchmark iterations. We perform

both isolated and collective sensitivity analyses for various hardware artifacts and we identify

one benchmark (libquantum) that had somewhat undue influence on performance outcomes.

We also discuss the use of SPEC data to predict future performance. Due to page limit, we

chose one of the SPEC benchmarks, the SPEC base integer speed, to present the analysis

results because it is widely used. However, our scope is not limited to the SPEC integer

benchmark. The analysis framework can be inherited in other benchmarks on the CPU and

system level to understand the evolution trend.

1.2 Literature Review and Related Work

As an important benchmark in the microprocessor industry, many efforts have been made

to better understand the SPEC CPU benchmarks [9]. Of particular interest is the influence

of various hardware components on performance outcomes. As the main metric for per-

formance in this study, it is important that we understand the history of the SPEC CPU

benchmarks in more detail. The information on SPEC design and how the SPEC benchmark

changed over time can be found in [1], [2], and [10]. Each SPEC benchmark release (SPEC95,

SPEC2000, SPEC2006, SPEC2017) contains multiple suites of microbenchmarks that provide

overall benchmark scores [9]. Some details on the SPEC workload characteristics subsetting

(e.g., instruction counts, memory footprints) are available in [3], [4], [5], and [6]. Regarding

the previous data collection efforts, Danowitz et al. [7] used SPEC to discuss a wide variety

of CPU performance metrics over time. Furman [8] used SPEC to track the performance of

processors that follow particular lineages. Hardy [11] provided further details on gathering

SPEC CPU information and discussed some differences between SPEC and other benchmarks.

Compared to [7], this work differentiates and focuses more on in-depth analyses (e.g.,

expanding on libquantum and on normalization methodology). The major contributions of

this paper are as follows.

• We first compare two approaches, the regression approach and the constant approach,

to normalize the benchmark score across different SPECs. Although the R2 of the regression

method to normalize the score is slightly higher for some situations, we found that the constant

approach is much simpler.

• Then a sensitivity analysis of system factors and the overall benchmark score is conducted

to understand how the systems’ configuration and hardware factors impact performance qual-

itatively and quantitatively. These allow us to understand the impact of system factors such

as core counts, frequency, and auto-parallel.

• We also conduct a deeper analysis of the libquantum microbenchmark and provide

3



insights into why it was discontinued after 2006. The analysis reveals that libquantum has a

tremendous influence on the benchmark; no other microbenchmarks are comparable.

• We build statistical models to predict the performance score in the future and quantify

the associated uncertainty. We provide statistical inference on both the mean trend as well

as the individual computer’s performance in the future.

1.3 Overview

The rest of this paper is organized as follows. Section 2 introduces the methodology we use

to construct the datasets and analysis. Section 3 presents the results. Section 4 contains the

prediction of future performance, and Section 5 provides concluding remarks.

2 Methodology

2.1 SPEC Data Collection

To conduct our analysis, we pull from the CSGenome project’s (csgenome.org/about) key

artifact, the iLORE database [8]. iLORE is the first known attempt to use publicly available

data to capture a lineage of computer system performance over time. iLORE is constructed

using computer system, benchmark, and computer component attribute data collected using

Python scripts that leverage the popular Beautiful Soup [12] and Pandas libraries [13] in

concert with manual efforts.

We refer to records that integrate measures of computer performance with system spec-

ifications as computer system and benchmark data. A handful of organizations maintain

repositories of computer system and benchmark data ([9] and [14]). These repositories target

different market segments of computing and contain varied attributes depending on the goals

and focus of the maintaining organization. To illustrate, TOP500 [14] and Green500 [15] lists

target the world’s fastest super computers while the SPEC CPU suites focus on individual

enterprise machines.

Hardware manufacturers and independent curators maintain publicly available repositories

of computer component attribute data. We gather processor attribute data from three key

sources. The first two are online repositories of product specifications maintained by the

microprocessor manufacturers Intel and AMD ([16], and [17]). The final source is a previous

effort made by [7] to construct a database of microprocessors that is useful for investigating

trends in the history of microprocessors [18].

TOP500 and Green500 publish their biannual lists on their websites in several download-

able formats including XML and EXCEL files. SPEC provides full access to all results for

4



suites dating back to SPEC CPU95. SPECCPU data is available as HTML, CSV, and text

files. Intel maintains a web page for each modern processor that contains commonly-tracked

attributes such as clock frequencies and core counts and supplemental information including

integrated graphics details. AMD provides data on their processor offerings from the past five

years. The attributes maintained here are comparable to Intel’s repository. AMD offers its

data in bulk in the form of a CSV file. Danowitz et al. [7] expose their CPU DB as a collection

of CSV files.

Data collection across all sources occurs in two steps. First, we download the relevant

files from each source to a local storage device. Top500, Green500, AMD, and the CPU

DB natively support downloading and creating a copy. Data from Intel and SPEC is stored

in a hierarchical structure across many pages. Starting from SPEC and Intel’s root pages,

we crawl benchmark and product specifications and download the HTML source file of each

processor page to disk. Second, we extract relevant information from local copies using the

xlrd, BeautifulSoup, and Pandas Python libraries.

Newly extracted data is not yet amenable to insertion into the iLORE data model. We

use a pipe-and-filter architecture to resolve data issues within and across sources. Embedded

attributes represent a class of intra-source data issues. Before populating the iLORE data

model, we cleaned the systems and benchmarking data with the computer component data.

The goal is to accurately identify a full processor record among several thousand that matches

with the incomplete set of processor information included in each benchmark record. After

preparing the component and benchmark data and establishing our data model, we populate

the database. To ensure the presence of the processor records to which benchmark data were

manually linked, we build the processor tables before building the systems and benchmark

tables.

From the systems dump table, we use SQLAlchemy to normalize categorical variables like

country, application, and interconnect, to their look-up tables. Next, we extract information

for individual benchmarks. Common data like information sources are aggregated in a joint

benchmark table that links to individual benchmarks. Third, we construct the system table

using both the system dump and look-up tables. Finally, we link together each benchmark

with a system and system hardware configuration.

2.2 Data Summary

We focus on integer benchmarks in this paper. Integer performance has been of interest to

the research community and industry. Table 1 visualizes how the microbenchmarks change

over the years for the integer benchmark. Table 2 provides the mean values of system factors

of records in SPEC suites. We can see that the average number of cores increases along the

5



Table 1: SPEC2017 integer programs and the evolution of the SPEC benchmarks over time.

The benchmark descriptions on the left are for SPEC2017 only and do not apply to earlier

versions. Programs in the same row from different generations of SPEC are generally not

related. Here, “XML to HTML” means XML to HTML conversion via XSLT, “AI1” means

alpha-beta tree search (chess), “AI2” means Monte Carlo tree search (Go), and “AI3” means

recursive solution generator (Sudoku).

SPEC
2017 2006 2000 1995

GNU C Compiler ←− gcc
Perl Interpreter ←− perl
Route Planning ←− mfc

General Data Compression XZ bzip2
Discrete Event Simulation ←− omnetpp vortex

XML to HTML ←− xalancbmk gzip
Video Compression X264 h264ref eon

AI1 deepsjeng xjeng twolf
AI2 leela gobmk vortex
AI3 exchange2 astar vtr

hmmer carfty
libquantum parser

Table 2: The average values of system factors across SPEC suites. “ATPC” means average

threads per core.

SPEC
average average average

ATPC
cores freq (MHz) cache (kB)

1995 1.00 319.25 4840.73 1.02
2000 2.44 2219.51 11777.41 1.19
2006 8.30 2519.37 19422.78 1.72
2017 16.49 2571.18 30763.64 1.94

SPEC suites. The increase in frequency is obvious between SPEC 1995 and 2000. However,

after SPEC 2006, the averaged frequency is almost unchanged. L3 cache size increases 2.4

times between SPEC 1995 and 2000 and around 1.5 times between later SPEC suites. The

average threads per core are around 1 at SPEC 1995 and gradually increase to around 2 at

SPEC 2017. Table 3 summarizes the values of base integer speed and rate across SPEC suites.

Table 3 shows that the ranges of scores vary widely for each SPEC suite. For example, the

base integer speed score range is [1.06, 46.6] at SPEC 1995 but changes to [93.7, 3108] at SPEC

2000, indicating that scores across SPEC suites can not be compared directly. Therefore, it

is necessary to normalize scores across SPEC suites to make the scores comparable.

6



Table 3: Summary of base integer speed and rate across SPEC suites.

SPEC
Base Integer Speed

max average min # records
1995 46.60 12.16 1.06 548
2000 3108.00 1320.62 93.70 1374
2006 84.10 44.67 1.00 9285
2017 12.40 8.93 1.00 4144

Base Integer Rate
1995 17239.00 750.25 13.30 773
2000 4236.00 84.38 2.30 2481
2006 50200.00 693.35 1.00 15039
2017 7100.00 222.08 1.00 5376

2.3 Normalization of SPEC Score Across Years

Understanding the evolution of processor performance requires a mechanism to compare across

the SPEC benchmark releases: SPEC95, SPEC2000, SPEC2006, and SPEC2017. The adop-

tion of a new release of SPEC benchmark suites can take some time, thus there is a transition

period when, for example, both SPEC2000 and SPEC2006 are in use. Danowitz et al. [7]

used the geometric mean of score ratios between the overlap sets of two SPEC suites as the

conversion factor. The early SPEC suite score is converted to the new suite by multiplying

the conversion factor. In this study, we also tried to use linear regression models to compute

the score ratio. After obtaining the overlap set between two SPEC suites, we predict the log

of the score ratio as a linear combination of the log old scores as well as a set of system factors,

such as frequency, the number of cores, and threads per core, which is represented as,

log

(
scorenew
scoreold

)
= β0 + β1 log(scoreold) + β2 system factor.

For different SPEC suites, we may include different sets of system factors in the linear model.

For these two approaches, we use the converted new score to predict the true new score.

For example, the R2 computed from cross-validation is summarized in Table 4 for base integer

speed, which we see that the linear regression approach has higher R2. This finding indicates

that when updating a benchmark to the next generation, making use of the previous suite score

can be informative for normalization. Figure 1 also shows the two approaches to normalize

base integer speed across years. However, such improvement is relatively small compared to

the effort we need to build the linear regression model. Therefore, for the normalization, we

choose to use the approach proposed in [7] for the following analysis in this paper.

7



0

2

4

6

8

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Time

Lo
g 

S
co

re

overlap

FALSE

TRUE

spec

1995

2000

2006

2017

(a) Original

−5.0

−2.5

0.0

2.5

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Time

Lo
g 

S
co

re

overlap

FALSE

TRUE

spec

1995

2000

2006

2017

(b) Constant

−1

0

1

2

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Time

Lo
g 

S
co

re

overlap

FALSE

TRUE

spec

1995

2000

2006

2017

(c) Regression

Figure 1: Two approaches to normalize base integer speed across years. The resolution of the

time scale is one month and the time origin is set to 1995-08-01.

8



Table 4: The R2 of two types of conversion for base integer speed.

SPEC Suites Regression Constant
1995-2000 0.889 0.782
2000-2006 0.738 0.697
2006-2017 0.802 0.825

2.4 Methods for Statistical Analysis

The approaches that we used for sensitivity analysis fall within two categories, graphical visu-

alization and quantitative modeling. For the visualization approach, we design a graph that

can simultaneously visualize the effect of four variables on the benchmark scores. In particu-

lar, we did sensitivity analysis of time, core count, L3 cache size, frequency, transistor count,

and auto-parallel (i.e., compiler flags for either automatic or explicit parallelism [11]). Using

graphs, we can see how the time trends of benchmark scores differ from different variables.

The second approach is based on statistical regression models. The regression approach

provides a quantitative description of the relationship between benchmark scores and system

variables, beyond the visualization approach. We consider both linear regression and nonlinear

regression, depending on the specific functional relationship. Using the regression, we can see

the quantitative effects of different variables on the benchmark scores, through the estimated

regression model parameters.

With the comprehensive SPEC data in the CSGenome database and the use of statistical

tools, we are able to do the following analysis for the integer benchmark performance.

• We study the relationship between the overall scores and microbenchmark scores.

• We study the effect of system factors on benchmark scores.

• We perform sensitivity analyses of microbenchmark scores and identify reasons why the

libquantum microbenchmark is particularly influential.

• We perform analyses to separate the effect of system factors.

The detailed results and findings are presented in Section 3.

3 Data Analysis Results

3.1 Overall Score and Microbenchmarks

To understand the relationship between microbenchmarks and the overall score (i.e., base

integer speed), first, we want to understand how the microbenchmarks contribute to the

overall score computing for each SPEC suite.

9



According to the SPEC documentation, after the benchmarks are run on the system under

test (SUT), a ratio for each of them is calculated using the run time on the SUT and a SPEC-

determined reference time. The base integer speed (rate) is computed by the geometric mean of

normalized (throughput) ratios when the benchmarks are compiled with base tuning. Suppose

we have p microbenchmarks in a SPEC suite, then the calculation can be expressed as,

Base integer score =

(
microbenchmark1
reference time1

) 1
p

× · · · ×
(
microbenchmarkp
reference timep

) 1
p

. (1)

If we take log on both sides of (1), we can obtain,

log (Base integer score) =
1

p

p∑
i=1

log(microbenchmarki) + c, (2)

where c is constant. Note that equation (2) indicates that the log (Base integer score) and

the log (microbenchmarks) should be linearly correlated for each SPEC suite. We include the

visualization of base integer speed versus gcc and perl for each SPEC suite in Figure 13.

With the normalization we discussed above, we are able to analyze the microbenchmark

effects on the overall score across the SPEC suites, instead of focusing on a single SPEC suite.

However, as presented in Table 1, not all microbenchmarks survive during the evolution. Only

gcc and perl exist for all suites. Therefore, we normalized these two microbenchmarks using

the same methodology for the overall score and visualized their relationship with base integer

speed. Figure 2 shows the normalization of gcc and perl benchmarks for base integer speed

calculation across years. Figure 3 (on page 6 for double-column figure) presents the gcc and

perl versus base integer speed before and after normalization. We can see that normalization

makes the micro and overall benchmarks follow a straight line.

3.2 System Factors

System factors such as core counts, clock speed, and transistor counts often play important

roles in computer performance. With the normalization method, we are able to analyze the

impact of system factors on the normalized score across years. Figure 4 visualizes the impacts

of frequency, core counts, and auto parallel to the normalized base scores across years. For

base integer scores, we select all machines with base integer speed scores and normalize their

scores based on the constant conversion mentioned in Section 2. For each machine record,

we visualize their scores versus year in Figure 4, in which we use dot size to show the core

counts of the machine, dot color to present the machine’s frequency, and dot shape to visualize

whether the machine has auto parallel. For base integer speed in Figure 4, we can see that

as time passes, machines with auto parallel tend to gain higher scores. Both frequency and

core counts increase as time passes. For more recent years, machines with higher core counts

10



−2.5

0.0

2.5

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Time

Lo
g 

S
co

re

spec

1995

2000

2006

2017

(a) GCC

−4

−2

0

2

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Time

Lo
g 

S
co

re

spec

1995

2000

2006

2017

(b) Perl

Figure 2: The normalized gcc and perl benchmarks for speed.

11



0

2

4

6

8

0 2 4 6 8
Log Gcc

Lo
g 

S
co

re

SPEC

1995

2000

2006

2017

−5.0

−2.5

0.0

2.5

−2.5 0.0 2.5
Log Gcc

Lo
g 

S
co

re

SPEC

1995

2000

2006

2017

(a) GCC w/o normalization (b) GCC with normalization

0

2

4

6

8

0 2 4 6 8
Log Perl

Lo
g 

S
co

re

SPEC

1995

2000

2006

2017

−5.0

−2.5

0.0

2.5

−4 −2 0 2
Log Perl

Lo
g 

S
co

re

SPEC

1995

2000

2006

2017

(c) Perl w/o normalization (d) Perl with normalization

Figure 3: The normalized gcc and perl benchmarks versus normalized base integer speed.

12



1995 2000 2005 2010 2015 2020

−5

−4

−3

−2

−1

0

1

2

3 parallel
0
1
average score
average number cores

1000

2000

3000

4000

Frequency

year

N
or

m
al

iz
ed

 S
co

re

Figure 4: Normalized base integer speed score across years.

tend to have higher scores while the contribution of frequency is less influential. Both high

and low score machines can have a high frequency.

System factors also play an important role when understanding the relationship between

the overall score and microbenchmarks. For SPEC 2006, we can take the microbenchmark

“astar 473” as an example and look at its relationship with the overall score when the number

of cores, frequency, transistor counts, and L3 cache size change. Figure 5 (on page 7 for double-

column figure) shows the relationship between astar and the overall score under different

system factor settings. We can see that when the number of cores and threads are large, the

records tend to have higher scores and move to the top right on the plots. For machines with

the same astar score, larger L3 cache sizes correlate with larger overall scores.

3.3 Libquantum

Among all the microbenchmarks, we notice that libquantum in SPEC 2006 is a leading factor

in the base integer speed but does not influence the score ranking greatly. That means the

13



0 10 20 30 40
base_astar_473

0

20

40

60

80

ba
se

_in
te

ge
r_

sp
ee

d

clock_speed
500
1000
1500
2000
2500
3000
3500
4000
4500

0 10 20 30 40
base_astar_473

0

20

40

60

80

ba
se

_in
te

ge
r_

sp
ee

d

number_cores
2
4
6
8
10
12
14
16

(a) Frequency (MHz) (b) Number of Cores

5 10 15 20 25 30 35 40 45
base_astar_473

10

20

30

40

50

60

70

80

ba
se

_in
te

ge
r_

sp
ee

d

l3_shared
6000
12000
18000
24000
30000
36000
42000
48000
54000
60000

0 10 20 30 40
base_astar_473

0

20

40

60

80

ba
se

_in
te

ge
r_

sp
ee

d

threads_per_core
1
2

(c) L3 Cache Size (KB) (d) Threads per Core

Figure 5: The system factors’s impact on the relationship between base integer speed and

astar. For machines with the same astar score, larger L3 cache sizes correlate with larger

overall scores.

14



0 2000 4000 6000 8000 10000 12000
base_libquantum_462

0

20

40

60

80

ba
se

_in
te

ge
r_

sp
ee

d

clock_speed
500
1000
1500
2000
2500
3000
3500
4000
4500

0 2000 4000 6000 8000 10000
base_libquantum_462

0

20

40

60

80

ba
se

_in
te

ge
r_

sp
ee

d

number_cores
2
4
6
8
10
12
14
16

(a) Frequency (MHz) (b) Number of Cores

0 2000 4000 6000 8000 10000 12000
base_libquantum_462

10

20

30

40

50

60

70

80

ba
se

_in
te

ge
r_

sp
ee

d

l3_shared
6000
12000
18000
24000
30000
36000
42000
48000
54000
60000

0 2000 4000 6000 8000 10000 12000
base_libquantum_462

0

20

40

60

80

ba
se

_in
te

ge
r_

sp
ee

d

threads_per_core
1
2

(c) L3 Cache Size (KB) (d) Threads per Core

Figure 6: The system factors impact on the relationship between base integer speed and

libquantum.

changes in libquantum can have a great impact on the overall score but machines with large

libquantum scores do not necessarily have top ranks. From visualizations, we observe that

libquantum has higher variability than other microbenchmarks and is more sensitive to the

number of cores. The microbenchmark libquantum has a very different pattern compared to

other microbenchmarks. This microbenchmark has an inner for loop that can be optimized [7].

The removal of libquantum in SPEC 2017 indicates that it is desirable to let the score range

and variability of microbenchmark scores be consistent when constructing benchmarks. As we

can see from Figure 6 (on page 8 for double-column figure), its relationship with base integer

speed has a higher variance compared with astar in Figure 5. Its absolute score range is also

much larger. In Figure 6, it shows that with a larger frequency, the increase in libquantum

has a larger increase in base integer speed. Records with two threads per core have a larger

variance compared to one thread per core. More visualizations are included in Figure 14. This

analysis also shows that it is desirable to let the score range and variability of microbenchmarks

be consistent.

15



Table 5: Summary of regression for base integer speed versus system factors.

Parameter Coef. SE t-val p-val 95% CI
Intercept −0.6959 0.013 −54.814 0.000 −0.721 −0.671
No. of cores 0.0281 0.001 47.184 0.000 0.027 0.029
Auto-parallel 2.1994 0.015 151.380 0.000 2.171 2.228

3.4 Separate the Effect of System Factors

Besides visualizing the impact of system factors, we also quantify and separate the effect of

system factors on the overall speed score. We construct a linear regression to quantify the

impact of core counts and the auto parallel on base integer speed. We assume there is a linear

relationship between the normalized overall score on log scale and system factors. To reduce

the co-linearity in the model, we did not include frequency in the model. In particular, the

regression model is,

Log Base Integer Speed = β0 + β1 core counts + β2 auto parallel.

From Table 5, we can see that with the auto parallel flag on, the expectation of log base

integer speed is 2.20 higher than without auto parallel system setting.

3.5 Exploration on Lineage

In the CSGenome repository, besides the benchmarks related information, we also have the

lineage information [8] about the processors. Processors’ ancestors generations are gathered

back to their commercial introduction. This information helps us to understand the relation-

ships between processors and build a family tree of them. We are interested in whether the

performance of different generations of processors that have the same origin are related.

We pick 5 represented processors in SPEC 2017 and use the lineage API to collect their

ancestors’ genus information up to 3 generations. A genus contains one or more processor

models and one or more genera fall under a single microarchitecture. Then for each processor’s

genus and its ancestor genus, we compute their averaged performance scores and visualize

these scores versus time. Figure 7 shows the averaged scores for each of the 5 representative

genus and their ancestor branches in SPEC 2017. We can see that for each branch, recent

generations have higher averaged performance. Among different branches, higher ancestor

performance tends to have higher current generation performance. Besides, the correlations

of lag-1 averaged performance score is 0.978. This indicates that lineage information is useful

for us to understand future generations’ performance.

16



0.0

0.2

0.4

0.6

0.8

2010 2015
Year

Lo
g 

S
co

re

Genus

Intel 6140 Xeon:Skylake−SP (Skylake)

Intel 6240 Xeon:Cascade Lake−SP (Cascade Lake)

Intel E−2174G Xeon:Coffee Lake−S WS (Coffee Lake)

Intel E5−1620 v3 Xeon:Haswell−EP (Haswell)

Intel E5−2630V2 Xeon:Ivy Bridge−EP (Ivy Bridge EP)

Figure 7: Log base integer score for 4 genus in SPEC 2017.

17



4 Prediction of Future Performance

Another goal of this study is to predict future machine performance based on our data analysis

results in Section 3. We provide both mean trend and individual computers’ score predictions.

4.1 Prediction for Mean Trend

Many statistical and machine learning approaches can be adopted for mean trend prediction.

For example, the ESTIMA tool presented in [19] provides a flexible way to predict application

performance trends. In this paper, we propose a nonlinear regression to capture the benchmark

mean trend based on the observation in Figure 1.

4.1.1 Nonlinear Regression and Normal Approximation

Denote the overall performance score as yt and the time from baseline as t. The time unit is

in months. Suppose the baseline score is y0, as we observed in Figure 1, the log of the overall

score appears to be a power function of time, indicating the period of performance doubling

increases. Therefore, in this paper, we model the log of the overall score as

log(yt) = f(t;θ) + ϵt = αtβ + γ + ϵt, (3)

where ϵt follows a normal distribution N(0, σ2). Denote θ = (α, β, γ)′ as the parameter vector.

We use the maximum likelihood estimates (MLE) to conduct the parameter estimation in (3).

Then with the estimated parameters, we can make predictions of the performance score in the

following years as well as provide prediction interval.

The variance of the log overall score is computed as, Var[log(ŷt)] = fθ(t; θ̂)
′Var(θ̂)fθ(t; θ̂),

where fθ(t;θ) denotes the derivatives of f(t;θ) with respect to θ. Then for a future time t,

the point prediction is log(ŷt) = α̂tβ̂ + γ̂, and the 95% prediction interval is

log(ŷ)± z0.025
√

Var[log(ŷ)] + σ̂2 .

4.1.2 Mean Trend Prediction Results

For the integer speed, we obtain the estimates as θ̂ = (2.69, 0.25,−9.14)′. By plugging in the

MLE of the parameters in (3), the fitted mean trend is

log(y) = 2.69t0.25 − 9.14. (4)

The fitted mean trend and the prediction of the overall score for the future 100 months are

shown in Figure 8. The dashed line presents the 95% prediction interval for the future predic-

tion. As shown in Table 6, we can see that for base integer speed, doubling the performance

18



−5.0

−2.5

0.0

2.5

19
95

19
98

20
01

20
04

20
07

20
10

20
13

20
16

20
19

20
22

20
25

20
28

20
31

20
34

Time

Lo
g 

S
co

re

SPEC

1995

2000

2006

2017

PI

Figure 8: Mean trend fitting and prediction for base integer speed, together with individual

predictions at a future time. The solid black curve represents the fitted mean trend and the

dashed black lines are 95% prediction bounds at future time. The black dots are predictions

for the future score at 2022-06-01 based on (7).

score needs to take a longer period. The baseline time is set to 1995-08-01, when the records

start.

4.2 Benchmark Prediction for Individual Computers

Section 4.1 provides fitting and prediction of the performance for the mean curve. That is the

averaged performance over the years. That is because when we make predictions for the future,

we usually do not know about the computers’ hardware setting, so we can only make use of

Table 6: Doubling time (in months) for the integer speed.

Date Time Date Time Date Time
1996-04-01 0 1999-12-01 17 2010-11-01 45
1996-10-01 6 2001-10-01 23 2015-05-01 55
1997-07-01 9 2004-03-01 29 2020-10-01 66
1998-08-01 13 2007-03-01 36 2027-04-01 78

19



the time point as a predictor to provide predictions for scores on average. However, with the

CSGenome database, we can also make predictions on individual computers with the system

factors. Denote the system settings for a computer as x, we assume the performance score of

this computer at time t can be modeled by two components: one is the average performance

at time t and the other is the fluctuation caused by this computer’s system setting. So the

performance score can be modeled as:

log[yt(x)] = f(t; θ̂) + ϵt(x) = α̂tβ̂ + γ̂ + ϵt(x), (5)

where the first component is the fitted mean trend as obtained in Section 4.1 and the second

component is a random fluctuation that depends on x. Note that the difference between

models (3) and (5) is that (3) assumes a constant noise variance for all different machines

at time t, while (5) assumes the noise term changes with different machine’s system settings.

Since the fitted mean trend is already obtained in Section 4.1, the main goal of this section

is to build a predictive model for ϵt(x). Based on the sensitivity analysis in Section 3.2, we

use the hardware factors core counts, frequency, L3 cache size, and threads in SPEC 2017

as predictors to predict future ϵt(x). Although auto-parallel is also an important factor as

shown in Section 3.4, in SPEC 2017 records, 99.93% of the machines consider auto-parallel

when running SPEC speed benchmarks. So auto-parallel can be considered as a common

feature for recent machines and becomes a constant variable if included in the model. Thus,

we do not use it as a predictor for the future.

Before constructing the predictive models for ϵt(x), there are a few preparation steps.

First, we need to predict future hardware systems. Secondly, we need to exclude impossible

hardware configurations based on reasonable extrapolation of existing processor data. Then

based on the remaining reasonable configurations, we can build predictive models to predict

the SPEC score.

4.2.1 Quantile Regression for Hardware Prediction

We want to present some hardware scenarios in the future and make predictions of the corre-

sponding machine’s performance score. One key step is to obtain reasonable hardware settings

for future computers. As shown in Figure 9, starting around 2000, the trend of core counts,

frequency, and L3 cache size versus time is not obvious and the variance becomes large. There-

fore, when we make predictions for the future hardware settings, we want to capture both the

trend and the dispersion of data. Quantile regression can model the quantile of hardware set-

ting given the time, which allows us to understand both the variance and trend of hardware

settings over time.

20



20
00

20
05

20
10

20
15

20
20

20
25

0

1

2

3

4

5

6

lo
g 2

(C
or

e 
C

ou
nt

s)

20
00

20
05

20
10

20
15

20
20

20
25

0

1000

2000

3000

4000

5000
F

re
qu

en
cy

20
00

20
05

20
10

20
15

20
20

20
25

0

20

40

60

80

L3
 C

ac
he

 S
iz

e

q = 0.05 q = 0.25 q = 0.5 q = 0.75 q = 0.95

Figure 9: Plot of hardware factors over years and fitted quantile regression line and predictions

of 0.05, 0.25, 0.5, 0.75, 0.95 quantile of core counts, frequency (MHz), and L3 cache size (MB)

in three future time points (2021-12-01, 2022-06-01, and 2022-12-01). The core counts is on

the log2 scale.

21



4.2.2 Feasible Hardware Configurations

In our CSGenome data repository, we collected all related processor’s information, which

allows us to understand what configurations are feasible. From our processor data, since we

are interested in the pattern between system factors, we focus on a subset with non-missing

system factors. Within this subset, threads per core has two possible values, 1 and 2. So

we only focus on the remaining three system factors, core counts, frequency, and L3 cache

size. Figure 10 also presents the pairwise scatter plots of these three factors. We can see

that for frequency and core counts, the region that has the most processor’s data is roughly a

triangular shape. That means as the core counts increase, the processors tend to have middle

range of frequency. A similar pattern is found for the relationship between frequency and

L3 cache size. For the relationship between the L3 cache size and core counts, based on the

historical data, we found that the minimum ratio between them is 0.5 MB per core. So we

consider those future processors with L3 cache size and core count ratio smaller than 0.5 MB

per core are unlikely to appear.

Based on the above patterns, we make an extrapolation of the future possible regions of

hardware configurations, which is shown in Figure 10. In this figure, the shaded areas are

the possible regions. The black points are historical data. The grey area represents the years

between 2000-2015. The blue area represents the years 2016-2020. The purple is the predicted

area for 2021-2025.

4.2.3 Models for SPEC Score Prediction

With these predicted reasonable future system factors, we can build a predictive model to

forecast individual computer’s benchmark scores. In this paper, we use the Gaussian process

(GP) model to predict the normalized performance score for individual computers.

Suppose at time t there is an individual computer with system factors x, we can denote

our response, the “observed” noise as yϵt = ϵt(x) = log(yt) − f(t; θ̂). Let yϵ = {yϵ1, . . . , yϵn}
be the n observations at the system factors collections X = {x1, . . . ,xn}. The GP model

assumes every finite linear combination of the observed data follow a multivariate normal

(MVN) distribution. The mean function and the covariance function together determine a

unique GP model. The mean function µ(x) in the GP model provides the location parameter

information depending on x. The covariance function C(x,x′), which is also referred to as the

kernel function, describes the correlations between the performance of machines with system

factors x and x′ respectively. The Gaussian kernel C(x,x′) = exp[−(x− x′)2/θ] and Matérn

kernels are common kernel functions.

In the GP model, the n observed response is considered to follow MVN, that is yϵ ∼
Nn(0, τ

2Cn), where τ
2 is the scale parameter and C = [C(xi,xj)]n×n is the covariance matrix.

22



0 10 20 30 40 50 60 70

0
20

40
60

80

Core Counts

L3
 C

ac
he

 S
iz

e 
(M

B
)

0 20 40 60 80 100 140

0
10

00
20

00
30

00
40

00
50

00

Core Counts

F
re

qu
en

cy
 (

M
H

z)

0 20 40 60 80 100 120

0
10

00
20

00
30

00
40

00
50

00

L3 Cache Size (MB)

F
re

qu
en

cy
 (

M
H

z)

Figure 10: Extrapolation of the possible hardware regions in the future. The black points are

historical data. In the left panel, the pink region represents the possible region of L3 cache

size and core counts based on all historical data. In the middle and right panels, the grey area

represents the year between 2000-2015. The blue area represents the year 2016-2020. The

purple is the predicted area for 2021-2025.

23



Then for a new system configuration x, the prediction of its performance score yϵ(x) can be

obtained by the conditional distribution yϵt(x)| {yϵ,X}. Based on the conditional distribution

of MVN, we have

yϵt(x)| {yϵ,X} ∼ N[µ(x), σ2(x)]. (6)

The mean is µ(x) = C(x,X)C−1yϵ and variance is

σ2(x) = τ̂ 2[C(x,x)− C(x,X)C−1C(X,x)],

where, C(x,Xn) is a 1×n matrix with elements C(x,x1), . . . , C(x,xn). The R package laGP

[20] is used to estimate parameters and construct GP models. To validate the GP model’s

ability to predict future, we use past data to predict the known future in SPEC 2017. The

early 20% computers (2016-09-01 to 2018-01-01) are used to predict the scores of the later

80% computers (2018-02-01 to 2020-04-01). The root mean squared error is 0.19 and the

predictions versus observations is shown in Figure 11.

4.3 Prediction for Future Scenarios

Considering the system configurations as well as the time in the benchmark score prediction,

now the score of a machine with configuration x at time t is predicted as

log[ŷt(x)] = f(t; θ̂) + ŷϵt(x) = α̂tβ̂ + γ̂ + ϵ̂t(x). (7)

And the prediction’s corresponding variance is

Var{log[ŷt(x)]} = Var[f(t; θ̂)] + σ̂2(x),

where Var[f(t; θ̂)] is in Section 4.1 and σ̂2(x) is obtained from the GP model. With this

model, we can predict for future computers’ performance score, and also construct prediction

intervals for future computers’ performance.

Based on Sections 4.2.1 and 4.2.2, we can obtain various possible hardware configurations

future time point t. What we are interested in is the performance of top, middle and low rank

computers. Therefore, we construct prediction bounds for the computers with qth quantile (q

= 0.25, 0.5, 0.75, and 0.95) performance scores at time t using Algorithm 1 as follows.

Algorithm 1:

1. At a future time point t, predict the 0.25, 0.5, 0.75, 0.95 quantiles of core counts,

frequency, L3 cache size as xcores, xcache, and xfreq separately;

2. Generate future potential configurations at t by enumerating all combinations of xcores, xcache,

and xfreq;

24



1.4 1.6 1.8 2.0 2.2 2.4

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

Observation

P
re
di
ct
io
n

Figure 11: The GP predicted score versus observed score of the later 80% SPEC 2017 machines.

The red line is the 45 degree diagonal line.

25



3. Exclude impossible configurations based on the plot shown in Figure 10 and denote

remaining possible configurations as X t;

4. Predict the future score for each configuration in X t using (7) and denote the prediction

as log (yt);

5. Find the qth quantile of log(yt) as well as its corresponding configuration xq
t ∈ X t;

6. For configuration xq
t , denote its prediction as log[ŷt(x

q
t )] and compute its variance

Var{log[ŷt(xq
t )]}.

7. The 95% prediction interval for a future qth quantile performance score at time t is

log[ŷt(x
q
t )]± z0.025

√
Var{log[ŷt(xq

t )]}.

Repeat Algorithm 1 for a sequence of future time points t, we can obtain a prediction

bound for the future qth quantile performance scores. The prediction bound of various future

scenarios is shown in Figure 12. The black dots are the real SPEC 2017 base integer speed

that we used to build the GP model and the red line is fitted mean trend. In each subplot, the

dotted black line presents the average 25%, 50%, 75%, and 95% percentile of the score among

all feasible future computers. The grey shaded bounds show the corresponding prediction

bounds, respectively.

The predictive techniques developed in this paper can be used to answer the following

questions in practice.

• For example, what characteristics will future systems need to keep up with previous

trends? Our predicted mean trend depends on the model in (4), although in a diminishing

pattern as the doubling time increases as shown in Table 6. The factors we measured, for

example, the number of cores, clock frequency, or combination, need to maintain the trajectory

we have enjoyed in the measurable past, as we modeled in Figure 9.

• The prediction results in Figure 12 provide insights on what kind of raw performance

scores we should expect in the coming years. For example, using the mean and interval

prediction for the 0.95 panel of Figure 12 (based on an optimistic prediction for technology

development), we can see that the mean score (on log scale) will be around 3.37 (29.07 in

original scale) in five years (2028-01-01) with a 95% of interval from 3.20 to 3.59 (from 24.53

to 36.23 on the original scale) depending on how the technologies scale.

• Based on a pessimistic prediction for technology development, the results in the 0.25

panel of Figure 12 show that the performance gains will not likely continue with the mean

trend. To get us back on track, consistent hardware improvements are needed, for example, on

the number of cores and clock frequency. The 0.75 panel of Figure 12 gives us a clue as to the

kind of technology improvement needed to continue with the current pattern on performance.

26



0.75 0.95

0.25 0.5

300 350 400 450 300 350 400 450

0

1

2

3

4

0

1

2

3

4

time

sc
or

e

fitted mean mean prediction bound

Figure 12: Prediction intervals for different future scenarios. The red solid line represents the

mean trend fitting. The dotted black line represents the mean of each scenarios and the grey

shaded areas are the 95% prediction bounds for the corresponding scenario.

27



Although we present the prediction procedure using the SPEC base integer speed as an

example, the framework of parameter estimation, uncertainty quantification, and predictions

can be applied to new benchmark exploration. If the performance trend has a different pattern

in the new benchmark datasets, the proposed method can be adapted by changing the function

form in the model in (3).

5 Concluding Remarks

In this paper, we have considered how best to track and analyze historical SPEC data rep-

resented by SPEC CPU integer speed. We selected this specific benchmark since it is one

of the most widely used and historically thorough benchmarks for computer systems. This

focus does limit the scope of our conclusions, but the methodology regarding normalizing

benchmark scores, sensitivity analysis, and prediction framework could be applied to other

benchmarks and computing performance datasets. We overcame several challenges along the

way including determining the best available methods for normalization as the benchmark

evolves. Additionally, we isolated the effects of individual codes and determined one code in

particular (libquantum) had outsized influence over benchmark scores – a fact that likely led

to its removal as its use could have allowed participants to exploit the code for their own gain

in rankings.

We used a growing, open-source database of computer specifications and lineage to study

the impact of design decisions (e.g., core count, cache size) on performance over time. We

confirmed some expectations: 1) multi-core processors begin to dominate as the effect of

individual processor speed diminish; 2) SPEC CPU integer speed performance tracks with

Moore’s Law mostly; and 3) after 2000, the influence of several hardware traits (e.g., L3

size, core count) on performance becomes more murky and more difficult to point to a single

contributor.

As for future designs, we discussed a methodology that determines how the base technolo-

gies studies will need to evolve to continue to track with Moore’s Law. In the future, L3 cache

sizes and core counts will likely have the most influence over future designs without disruptive

change.

We want to point out that disruptive changes in hardware, such as AMD’s 3D V-cache

can impact our prediction potentially. At the moment that new technology advances emerge,

precisely predicting the performance score is challenging if new data are too far from all other

historical data. However, there have been other inflection points in past years, such as bigger

caches, faster processors, and on-core GPUs that are already captured in the data and our

prediction methodology is constructed with such evolved hardware data. As the database

28



grows, the changes with new hardware will be captured eventually and the predictions will

adapt modestly as well by re-applying the framework.

There are a few limitations in our work. In the analysis, we mainly focused on the hard-

ware effect and integrated software effect into the results. However, software and compiler’s

development also contribute to the system’s performance. In future studies, it is interesting to

isolate and quantify software effects to further understand computers’ performance evolution

trend as well as Proebsting’s Law. Besides, the analysis scope focuses on benchmark evolution

on the system level. If the focus is extended to a broader scope of benchmarks not limited to

CPU or system level and the trend of interest is too complicated to describe, other tools that

automatically select function forms, like ESTIMA [19] can be considered.

Acknowledgments

The authors thank the editor, associate editor, and three referees, for their valuable comments

that helped improve the paper significantly. The authors acknowledge Advanced Research

Computing at Virginia Tech for providing computational resources. The work was supported

by NSF CNS-1838271 and CNS-1939076 to Virginia Tech.

A Overall Score and Microbenchmarks

Figure 13 visualizes base integer speed versus two microbenchmarks: gcc and perl for each

SPEC suite, respectively. We can see that after log transformation, the log overall score and

log microbenchmark scores are highly linearly correlated.

B More Visualizations on Libquantum

Figure 14 visualizes the frequency and core counts influence to the ratio between libquantum

and base integer speed. When the number of cores is small, libquantum changes a lot relatively

(ratio of base integer speed to libquantum) and when the number of cores is small (with slow

clock speed), libquantum (with clock speed) will affect overall metric more.

References

[1] J. L. Henning, “SPEC CPU suite growth: an historical perspective,” ACM SIGARCH

Computer Architecture News, vol. 35, no. 1, pp. 65–68, 2007.

29



0 1 2 3

0
1

2
3

Lo
g 

S
co

re

Log Gcc

SPEC 1995

0 1 2 3

0
1

2
3

4
Lo

g 
S

co
re

Log Perl

4.5 5.5 6.5 7.5

5
6

7
8

Log Gcc

SPEC 2000

4.5 5.5 6.5 7.5

5
6

7
8

Log Perl

0 1 2 3 4

0
1

2
3

4

Log Gcc

SPEC 2006

0 1 2 3 4

0
1

2
3

4

Log Perl

0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Log Gcc

SPEC 2017

0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Log Perl

Figure 13: Base integer speed versus gcc and perl for each SPEC suite with log transformation.

30



clock speed

1000
2000

3000
4000

nu
mbe

r c
ore

s

0
5

10
15

20
25

0

2000

4000

6000

8000

10000

base_libquantum_462

2000

4000

6000

8000

10000

clock speed

1000
2000

3000
4000

nu
mbe

r c
ore

s

0
5

10
15

20
25

0

2

4

6

8

logbase_libquantum_462

0

2

4

6

8

Figure 14: Frequency (MHz) and core counts impact on the libquantum (left) and log libquan-

tum (right).

[2] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade: Did SPEC CPU 2017

broaden the performance horizon?” in 2018 IEEE International Symposium on High

Performance Computer Architecture, ser. HPCA ’18. Washington, DC: IEEE Computer

Society, 2018, pp. 271–282.

[3] H. Vandierendonck and K. De Bosschere, “Many benchmarks stress the same bottle-

necks,” inWorkshop on Computer Architecture Evaluation Using Commercial Workloads,

ser. CAECW ’04. Washington, DC: IEEE Computer Society, 2004, pp. 57–64.

[4] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring program similarity:

Experiments with SPEC CPU benchmark suites,” in IEEE International Symposium on

Performance Analysis of Systems and Software, 2005, ser. ISPASS ’05. Washington,

DC: IEEE Computer Society, 2005, pp. 10–20.

[5] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and application balance

in the SPEC CPU2006 benchmark suite,” in Proceedings of the 34th Annual International

Symposium on Computer Architecture, ser. ISCA ’07. New York, NY: Association for

Computing Machinery, 2007, pp. 412–423.

[6] ——, “Subsetting the SPEC CPU2006 benchmark suite,” SIGARCH Comput. Archit.

News, vol. 35, no. 1, pp. 69—-76, 2007.

31



[7] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “CPU DB: Recording

microprocessor history: With this open database, you can mine microprocessor trends

over the past 40 years.” ACM Queue, vol. 10, p. 10–27, 2012.

[8] S. L. Furman, “iLORE: Discovering a lineage of microprocessors,” 2021, Master’s Thesis,

Virginia Tech. [Online]. Available: http://hdl.handle.net/10919/104071

[9] SPEC, “speccpu benchmarks,” https://www.spec.org/benchmarks.html, 2021.

[10] J. J. Dujmovic and I. Dujmovic, “Evolution and evaluation of SPEC benchmarks,” SIG-

METRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 2—-9, 1998.

[11] N. R. Hardy, “A data schema for aggregating disparate sources of computer system

and benchmark information,” 2021, Master’s Thesis, Virginia Tech. [Online]. Available:

http://hdl.handle.net/10919/103707

[12] B. Soup, “Beautiful Soup,” https://www.crummy.com/software/BeautifulSoup/bs4/

doc/, 2021.

[13] Pandas, “Pandas,” https://pandas.pydata.org/, 2021.

[14] TOP500, “Top500 lists,” https://www.top500.org/, 2021.

[15] Green500, “Green500 lists,” https://www.top500.org/lists/green500/, 2023.

[16] AMD, “AMD product specifications,” https://www.amd.com/en/products/

specifications/processors, 2021.

[17] Intel, “Intel product specifications,” https://ark.intel.com/content/www/us/en/ark.

html.

[18] A. Danowitz, “Stanford CPU DB,” http://cpudb.stanford.edu/, 2014.

[19] G. Chatzopoulos, A. Dragojević, and R. Guerraoui, “Estima: Extrapolating scalability

of in-memory applications,” in Proceedings of the 21st ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2016, pp. 1–11.

[20] R. B. Gramacy, “laGP: Large-scale spatial modeling via local approximate Gaussian

processes in R,” Journal of Statistical Software, vol. 72, no. 1, pp. 1–46, 2016, doi:

10.18637/jss.v072.i01.

32

http://hdl.handle.net/10919/104071
https://www.spec.org/benchmarks.html
http://hdl.handle.net/10919/103707
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pandas.pydata.org/
https://www.top500.org/
https://www.top500.org/lists/green500/
https://www.amd.com/en/products/specifications/processors
https://www.amd.com/en/products/specifications/processors
https://ark.intel.com/content/www/us/en/ark.html
https://ark.intel.com/content/www/us/en/ark.html
http://cpudb.stanford.edu/

	Introduction
	Background and Motivation
	Literature Review and Related Work
	Overview

	Methodology
	SPEC Data Collection
	Data Summary
	Normalization of SPEC Score Across Years
	Methods for Statistical Analysis

	Data Analysis Results
	Overall Score and Microbenchmarks
	System Factors
	Libquantum
	Separate the Effect of System Factors
	Exploration on Lineage

	Prediction of Future Performance
	Prediction for Mean Trend
	Nonlinear Regression and Normal Approximation
	Mean Trend Prediction Results

	Benchmark Prediction for Individual Computers
	Quantile Regression for Hardware Prediction
	Feasible Hardware Configurations
	Models for SPEC Score Prediction

	Prediction for Future Scenarios

	Concluding Remarks
	Overall Score and Microbenchmarks
	More Visualizations on Libquantum

