arXiv:2401.16690v1 [cs.CY] 30 Jan 2024

A Detailed Historical and Statistical Analysis of the

Influence of Hardware Artifacts on SPEC Integer

Benchmark Performance

Yueyao Wang!, Samuel Furman?, Nicolas Hardy?, Margaret Ellis?,
Godmar Back?, Yili Hong?, and Kirk Cameron?

1School of Statistics and Mathematics, Zhejiang Gongshang University,
Hangzhou, Zhejiang, China 310018
2Department of Computer Science, Virginia Tech, Blacksburg, VA 24061

3Department of Statistics, Virginia Tech, Blacksburg, VA 24061

Abstract

The Standard Performance Evaluation Corporation (SPEC) CPU benchmark has
been widely used as a measure of computing performance for decades. The SPEC is an
industry-standardized, CPU-intensive benchmark suite and the collective data provide a
proxy for the history of worldwide CPU and system performance. Past efforts have not
provided or enabled answers to questions such as, how has the SPEC benchmark suite
evolved empirically over time and what micro-architecture artifacts have had the most
influence on performance?—have any micro-benchmarks within the suite had undue in-
fluence on the results and comparisons among the codes?’—can the answers to these
questions provide insights to the future of computer system performance? To answer
these questions, we detail our historical and statistical analysis of specific hardware arti-
facts (clock frequencies, core counts, etc.) on the performance of the SPEC benchmarks
since 1995. We discuss in detail several methods to normalize across benchmark evolu-
tions. We perform both isolated and collective sensitivity analyses for various hardware
artifacts and we identify one benchmark (libquantum) that had somewhat undue influ-
ence on performance outcomes. We also present the use of SPEC data to predict future
performance.

Keywords: CPU Benchmark; Data Visualization; Libquantum; Regression Analy-
sis, Sensitivity Analysis; SPEC Normalization.

1 Introduction

1.1 Background and Motivation

For more than 30 years, computing has pushed the boundaries of performance. From adher-
ence to Moore’s Law to the adoption and widespread use of high clock rates and parallelism in
systems and micro-architecture, performance has continued to increase substantially. As per-
formance has increased, so have the capabilities of our computing devices. From e-commerce
to streaming services, we now watch videos on our pocket-sized devices in nearly any location
while emergent immersible augmented reality technologies promise the demand for perfor-
mance will not ebb for the foreseeable future.

The Standard Performance Evaluation Corporation (SPEC) CPU benchmark has been
widely used as a measure of computing performance. The SPEC is an industry-standardized,
CPU-intensive benchmark suite, stressing a system’s processor, memory subsystem and com-
piler. The SPEC benchmark has grown and diversified since its inception in the late 1980’s
and the collective data is a proxy for the history of worldwide CPU and system performance.

While many have studied the intricacies and influence of the SPEC benchmarks, such
studies tend to focus on historical perspective ([I]), the likelihood of benchmark suites being
representative of real workloads ([2]), and similarity among benchmark suite codes ([3], [4],
[5], and [6]).

To the best of our knowledge, none of these past efforts provide or enable answers to the
following questions: a) How has the SPEC benchmark suite evolved empirically over time
and what micro-architecture artifacts have had the most influence on performance? b) Have
any micro-benchmarks within the suite had undue influence on the results and comparisons
among the codes? and ¢) Can the answers to these questions provide insights to the future of
computer system performance?

In our survey of the prevailing literature, the closest work to ours is the Stanford CPU
database (CPUdb) [7]. In their work, the authors assembled CPU information from a variety
of sources and created an online repository for researchers to explore. A number of analysis
and visualization tools resulted from this effort. However, while the database captures CPU
details going back to the 1970’s, the performance studies only go back to the 2006 data. In our
work, we not only extend our analyses to pre-2006 data, we also leverage a lineage database
[8] that builds off the CPUdb and other sources and adds entity relationships that capture the
evolution of microprocessors over time. With this additional information, we can conduct more
detailed statistical studies of the implications of hardware artifacts on performance outcomes
dating back to the late 1990s.

In this paper, we detail our historical and statistical analysis of specific hardware artifacts

(clock frequencies, core counts, etc.) on the performance of the SPEC benchmarks since 1995.
We discuss several methods in detail to normalize across benchmark iterations. We perform
both isolated and collective sensitivity analyses for various hardware artifacts and we identify
one benchmark (libquantum) that had somewhat undue influence on performance outcomes.
We also discuss the use of SPEC data to predict future performance. Due to page limit, we
chose one of the SPEC benchmarks, the SPEC base integer speed, to present the analysis
results because it is widely used. However, our scope is not limited to the SPEC integer
benchmark. The analysis framework can be inherited in other benchmarks on the CPU and

system level to understand the evolution trend.

1.2 Literature Review and Related Work

As an important benchmark in the microprocessor industry, many efforts have been made
to better understand the SPEC CPU benchmarks [9]. Of particular interest is the influence
of various hardware components on performance outcomes. As the main metric for per-
formance in this study, it is important that we understand the history of the SPEC CPU
benchmarks in more detail. The information on SPEC design and how the SPEC benchmark
changed over time can be found in [1], [2], and [I0]. Each SPEC benchmark release (SPEC95,
SPEC2000, SPEC2006, SPEC2017) contains multiple suites of microbenchmarks that provide
overall benchmark scores [9]. Some details on the SPEC workload characteristics subsetting
(e.g., instruction counts, memory footprints) are available in [3], [4], [5], and [6]. Regarding
the previous data collection efforts, Danowitz et al. [7] used SPEC to discuss a wide variety
of CPU performance metrics over time. Furman [8] used SPEC to track the performance of
processors that follow particular lineages. Hardy [I1] provided further details on gathering
SPEC CPU information and discussed some differences between SPEC and other benchmarks.

Compared to [7], this work differentiates and focuses more on in-depth analyses (e.g.,
expanding on libquantum and on normalization methodology). The major contributions of
this paper are as follows.

e We first compare two approaches, the regression approach and the constant approach,
to normalize the benchmark score across different SPECs. Although the R? of the regression
method to normalize the score is slightly higher for some situations, we found that the constant
approach is much simpler.

e Then a sensitivity analysis of system factors and the overall benchmark score is conducted
to understand how the systems’ configuration and hardware factors impact performance qual-
itatively and quantitatively. These allow us to understand the impact of system factors such
as core counts, frequency, and auto-parallel.

e We also conduct a deeper analysis of the libquantum microbenchmark and provide

insights into why it was discontinued after 2006. The analysis reveals that libquantum has a
tremendous influence on the benchmark; no other microbenchmarks are comparable.

e We build statistical models to predict the performance score in the future and quantify
the associated uncertainty. We provide statistical inference on both the mean trend as well

as the individual computer’s performance in the future.

1.3 Overview

The rest of this paper is organized as follows. Section [2] introduces the methodology we use
to construct the datasets and analysis. Section |3| presents the results. Section [4| contains the

prediction of future performance, and Section |5 provides concluding remarks.

2 Methodology

2.1 SPEC Data Collection

To conduct our analysis, we pull from the CSGenome project’s (csgenome.org/about) key
artifact, the iLORE database [§]. iLORE is the first known attempt to use publicly available
data to capture a lineage of computer system performance over time. iLORE is constructed
using computer system, benchmark, and computer component attribute data collected using
Python scripts that leverage the popular Beautiful Soup [12] and Pandas libraries [13] in
concert with manual efforts.

We refer to records that integrate measures of computer performance with system spec-
ifications as computer system and benchmark data. A handful of organizations maintain
repositories of computer system and benchmark data ([9] and [14]). These repositories target
different market segments of computing and contain varied attributes depending on the goals
and focus of the maintaining organization. To illustrate, TOP500 [14] and Green500 [15] lists
target the world’s fastest super computers while the SPEC CPU suites focus on individual
enterprise machines.

Hardware manufacturers and independent curators maintain publicly available repositories
of computer component attribute data. We gather processor attribute data from three key
sources. The first two are online repositories of product specifications maintained by the
microprocessor manufacturers Intel and AMD ([16], and [I7]). The final source is a previous
effort made by [7] to construct a database of microprocessors that is useful for investigating
trends in the history of microprocessors [18].

TOP500 and Green500 publish their biannual lists on their websites in several download-
able formats including XML and EXCEL files. SPEC provides full access to all results for

suites dating back to SPEC CPU95. SPECCPU data is available as HTML, CSV, and text
files. Intel maintains a web page for each modern processor that contains commonly-tracked
attributes such as clock frequencies and core counts and supplemental information including
integrated graphics details. AMD provides data on their processor offerings from the past five
years. The attributes maintained here are comparable to Intel’s repository. AMD offers its
data in bulk in the form of a CSV file. Danowitz et al. [7] expose their CPU DB as a collection
of CSV files.

Data collection across all sources occurs in two steps. First, we download the relevant
files from each source to a local storage device. Top500, Green500, AMD, and the CPU
DB natively support downloading and creating a copy. Data from Intel and SPEC is stored
in a hierarchical structure across many pages. Starting from SPEC and Intel’s root pages,
we crawl benchmark and product specifications and download the HTML source file of each
processor page to disk. Second, we extract relevant information from local copies using the
xlrd, BeautifulSoup, and Pandas Python libraries.

Newly extracted data is not yet amenable to insertion into the iLORE data model. We
use a pipe-and-filter architecture to resolve data issues within and across sources. Embedded
attributes represent a class of intra-source data issues. Before populating the iLORE data
model, we cleaned the systems and benchmarking data with the computer component data.
The goal is to accurately identify a full processor record among several thousand that matches
with the incomplete set of processor information included in each benchmark record. After
preparing the component and benchmark data and establishing our data model, we populate
the database. To ensure the presence of the processor records to which benchmark data were
manually linked, we build the processor tables before building the systems and benchmark
tables.

From the systems dump table, we use SQLAlchemy to normalize categorical variables like
country, application, and interconnect, to their look-up tables. Next, we extract information
for individual benchmarks. Common data like information sources are aggregated in a joint
benchmark table that links to individual benchmarks. Third, we construct the system table
using both the system dump and look-up tables. Finally, we link together each benchmark

with a system and system hardware configuration.

2.2 Data Summary

We focus on integer benchmarks in this paper. Integer performance has been of interest to
the research community and industry. Table [1| visualizes how the microbenchmarks change
over the years for the integer benchmark. Table [2| provides the mean values of system factors

of records in SPEC suites. We can see that the average number of cores increases along the

Table 1: SPEC2017 integer programs and the evolution of the SPEC benchmarks over time.
The benchmark descriptions on the left are for SPEC2017 only and do not apply to earlier
versions. Programs in the same row from different generations of SPEC are generally not
related. Here, “XML to HTML” means XML to HTML conversion via XSLT, “AI1” means
alpha-beta tree search (chess), “AI2” means Monte Carlo tree search (Go), and “AI3” means

recursive solution generator (Sudoku).

SPEC
2017 [2006 [2000 [1995
GNU C Compiler — gce
Perl Interpreter — perl
Route Planning — mfc
General Data Compression XZ bzip2
Discrete Event Simulation — omnetpp vortex
XML to HTML — xalancbmk gzip
Video Compression X264 h264ref eon
All deepsjeng xjeng twolf
AI2 leela gobmk vortex
AI3 exchange2 astar vtr
hmmer carfty
libquantum | parser

Table 2: The average values of system factors across SPEC suites. “ATPC” means average

threads per core.

average average average
SPEC cores freq (MHz) cache (kB) ATPC
1995 1.00 319.25 4840.73 1.02

2000 2.44 2219.51 11777.41 1.19
2006 8.30 2519.37 19422.78 1.72
2017 16.49 2571.18 30763.64 1.94

SPEC suites. The increase in frequency is obvious between SPEC 1995 and 2000. However,
after SPEC 2006, the averaged frequency is almost unchanged. L3 cache size increases 2.4
times between SPEC 1995 and 2000 and around 1.5 times between later SPEC suites. The
average threads per core are around 1 at SPEC 1995 and gradually increase to around 2 at
SPEC 2017. Table [3|summarizes the values of base integer speed and rate across SPEC suites.
Table 3] shows that the ranges of scores vary widely for each SPEC suite. For example, the
base integer speed score range is [1.06,46.6] at SPEC 1995 but changes to [93.7,3108] at SPEC
2000, indicating that scores across SPEC suites can not be compared directly. Therefore, it

is necessary to normalize scores across SPEC suites to make the scores comparable.

Table 3: Summary of base integer speed and rate across SPEC suites.

SPEC Base Integer Speed
max average min # records
1995 46.60 12.16 1.06 548
2000 | 3108.00 1320.62 93.70 1374
2006 84.10 44.67 1.00 9285
2017 12.40 8.93 1.00 4144
Base Integer Rate
1995 | 17239.00 750.25 13.30 773
2000 | 4236.00 84.38 2.30 2481
2006 | 50200.00 693.35 1.00 15039
2017 | 7100.00 222.08 1.00 5376

2.3 Normalization of SPEC Score Across Years

Understanding the evolution of processor performance requires a mechanism to compare across
the SPEC benchmark releases: SPEC95, SPEC2000, SPEC2006, and SPEC2017. The adop-
tion of a new release of SPEC benchmark suites can take some time, thus there is a transition
period when, for example, both SPEC2000 and SPEC2006 are in use. Danowitz et al. [7]
used the geometric mean of score ratios between the overlap sets of two SPEC suites as the
conversion factor. The early SPEC suite score is converted to the new suite by multiplying
the conversion factor. In this study, we also tried to use linear regression models to compute
the score ratio. After obtaining the overlap set between two SPEC suites, we predict the log
of the score ratio as a linear combination of the log old scores as well as a set of system factors,

such as frequency, the number of cores, and threads per core, which is represented as,

10g (W) = BO —+ 61 log(SCOI‘eald) + /32 system factor.
SCOre€yq

For different SPEC suites, we may include different sets of system factors in the linear model.

For these two approaches, we use the converted new score to predict the true new score.
For example, the R? computed from cross-validation is summarized in Table [4| for base integer
speed, which we see that the linear regression approach has higher R2. This finding indicates
that when updating a benchmark to the next generation, making use of the previous suite score
can be informative for normalization. Figure (1| also shows the two approaches to normalize
base integer speed across years. However, such improvement is relatively small compared to
the effort we need to build the linear regression model. Therefore, for the normalization, we

choose to use the approach proposed in [7] for the following analysis in this paper.

How
=) 0w O © N~ w i
o 7z & 8 8 S * % 0w o © N~ 2] % 0w o © ~
T L - & & & o = D O O = o = N O 9O =
= 1%} < X > © © o < X » © & o
o) ® O w - o T 8 &« S w - o T 8 &«
3 * 2 e e o o > ® o ol
> o <« O o e o o > e <« Q e e o o
o 0 o 7]

-1¢0¢
-0¢0c
-610¢C
-81L0¢
-/110¢
-91l0¢
-Gl0c
-¥10¢
-€L0¢
-¢l0c
-110¢
-0lL0¢C
-600¢

- V]
woow.m

Original

)

(

(b) Constant

S

©
aloog 6o D

2100g 607 a10og 6o

¢) Regression

(

Figure 1: Two approaches to normalize base integer speed across years. The resolution of the

time scale is one month and the time origin is set to 1995-08-01.

Table 4: The R? of two types of conversion for base integer speed.

SPEC Suites Regression Constant

1995-2000 0.889 0.782
2000-2006 0.738 0.697
2006-2017 0.802 0.825

2.4 Methods for Statistical Analysis

The approaches that we used for sensitivity analysis fall within two categories, graphical visu-
alization and quantitative modeling. For the visualization approach, we design a graph that
can simultaneously visualize the effect of four variables on the benchmark scores. In particu-
lar, we did sensitivity analysis of time, core count, L3 cache size, frequency, transistor count,
and auto-parallel (i.e., compiler flags for either automatic or explicit parallelism [11]). Using
graphs, we can see how the time trends of benchmark scores differ from different variables.

The second approach is based on statistical regression models. The regression approach
provides a quantitative description of the relationship between benchmark scores and system
variables, beyond the visualization approach. We consider both linear regression and nonlinear
regression, depending on the specific functional relationship. Using the regression, we can see
the quantitative effects of different variables on the benchmark scores, through the estimated
regression model parameters.

With the comprehensive SPEC data in the CSGenome database and the use of statistical
tools, we are able to do the following analysis for the integer benchmark performance.

e We study the relationship between the overall scores and microbenchmark scores.

e We study the effect of system factors on benchmark scores.

e We perform sensitivity analyses of microbenchmark scores and identify reasons why the
libquantum microbenchmark is particularly influential.

e We perform analyses to separate the effect of system factors.

The detailed results and findings are presented in Section [3]

3 Data Analysis Results

3.1 Overall Score and Microbenchmarks

To understand the relationship between microbenchmarks and the overall score (i.e., base
integer speed), first, we want to understand how the microbenchmarks contribute to the

overall score computing for each SPEC suite.

According to the SPEC documentation, after the benchmarks are run on the system under
test (SUT), a ratio for each of them is calculated using the run time on the SUT and a SPEC-
determined reference time. The base integer speed (rate) is computed by the geometric mean of
normalized (throughput) ratios when the benchmarks are compiled with base tuning. Suppose

we have p microbenchmarks in a SPEC suite, then the calculation can be expressed as,

microbenchmark; v microbenchmark,, v
X e X . (1)

Base integer score = -
reference time;

reference time,

If we take log on both sides of , we can obtain,

p
log (Base integer score) = lz log(microbenchmark;) + ¢, (2)
i=1

where c is constant. Note that equation indicates that the log (Base integer score) and
the log (microbenchmarks) should be linearly correlated for each SPEC suite. We include the

visualization of base integer speed versus gcc and perl for each SPEC suite in Figure [13]
With the normalization we discussed above, we are able to analyze the microbenchmark
effects on the overall score across the SPEC suites, instead of focusing on a single SPEC suite.
However, as presented in Table[I] not all microbenchmarks survive during the evolution. Only
gce and perl exist for all suites. Therefore, we normalized these two microbenchmarks using
the same methodology for the overall score and visualized their relationship with base integer
speed. Figure [2| shows the normalization of gcc and perl benchmarks for base integer speed
calculation across years. Figure |3 (on page 6 for double-column figure) presents the gee and
perl versus base integer speed before and after normalization. We can see that normalization

makes the micro and overall benchmarks follow a straight line.

3.2 System Factors

System factors such as core counts, clock speed, and transistor counts often play important
roles in computer performance. With the normalization method, we are able to analyze the
impact of system factors on the normalized score across years. Figure[d] visualizes the impacts
of frequency, core counts, and auto parallel to the normalized base scores across years. For
base integer scores, we select all machines with base integer speed scores and normalize their
scores based on the constant conversion mentioned in Section For each machine record,
we visualize their scores versus year in Figure [4 in which we use dot size to show the core
counts of the machine, dot color to present the machine’s frequency, and dot shape to visualize
whether the machine has auto parallel. For base integer speed in Figure {4, we can see that
as time passes, machines with auto parallel tend to gain higher scores. Both frequency and

core counts increase as time passes. For more recent years, machines with higher core counts

10

1
L
N

spec

1995
® 2000
2006
2017

o

81005 607

_2.5-

(a) GCC

(&}
(0]
Q.
7]

1995
2000
2006

81005 b0

2017

- 1202
- 0202
-6102
-8102
- 1102
-9102
-GL0Z
- 7102
-€102
-Z102
-1102
-0102
- 6002
-800Z @
- 1002 i=
-9002
-5002
- 7002
- €002
-2002
- 1002
-0002
- 6661
- 8661
- 1661

oa *® 9661

- G661
- ¥661

(b) Perl
Figure 2: The normalized gcc and perl benchmarks for speed.

11

. SPEC SPEC
® °
g o 1095 H 1995
@ 4- © 2000 @ 2000
g o 2008 g 2006
o 2017 2017
26
22
L
¢
0- &
so-
o H 4 6 8 25 oo 25
Log Gee Log Gee

(a) GCC w/o normalization (b) GCC with normalization

25

SPEC SPEC
5. .8 - o
2 ‘
v
g
b : Log;erl ¢ . N :chgPerl b :
(c) Perl w/o normalization (d) Perl with normalization

Figure 3: The normalized gcc and perl benchmarks versus normalized base integer speed.

12

3 parallel

A ® 0
2 | 2 5,588 OV ¢ !
. :‘/.,3;’3 : ; Y KOS === gverage score
1 Fiyiyd araa? . ® average number cores
/v |2 \
2 4
95) 0 _/-,,;/ @ - e Frequency
S e B3 : .
0 ®n/i: . 4000
- it -
0 il] 3000
S 4 2000
E -2 s 2 :/: P .
5 . ;/5 i 1000
z AREPES IO
-3 2 5/: g
(Tt
4 i
— o I A ...000000000...‘.
1995 2000 2005 2010 2015 2020
year

Figure 4: Normalized base integer speed score across years.

tend to have higher scores while the contribution of frequency is less influential. Both high
and low score machines can have a high frequency.

System factors also play an important role when understanding the relationship between
the overall score and microbenchmarks. For SPEC 2006, we can take the microbenchmark
“astar_473” as an example and look at its relationship with the overall score when the number
of cores, frequency, transistor counts, and L3 cache size change. Figure (on page 7 for double-
column figure) shows the relationship between astar and the overall score under different
system factor settings. We can see that when the number of cores and threads are large, the
records tend to have higher scores and move to the top right on the plots. For machines with

the same astar score, larger L3 cache sizes correlate with larger overall scores.

3.3 Libquantum

Among all the microbenchmarks, we notice that libquantum in SPEC 2006 is a leading factor

in the base integer speed but does not influence the score ranking greatly. That means the

13

clock_speed number_cores
2

w | S0 b w0 . &
o 1000 7 . o
® 1500 2 . Pl
o 2000 .

o 2500 .
o 3000 .
o 3500
60 4000 60
- a500 -
a0 Fao
20 20
L
o o
0 10 2 o 10 a0

20 30 20 30
base_astar_473 base_astar_473

(a) Frequency (MHz) (b) Number of Cores

13_shared threads_per_core
o1

o 12000 2
o 18000
o 24000
70 e 30000
o 36000
o 42000 w©
0 48000
- 54000 -
g 60000 g
%150 %
£ £a0
€140 5
30
20
20
10 -
0
s 1 15 2 5 a0 6 o 10 W

25 3 20 3
base_astar_473 base_astar_473

(¢) L3 Cache Size (KB) (d) Threads per Core

Figure 5: The system factors’s impact on the relationship between base integer speed and
astar. For machines with the same astar score, larger L3 cache sizes correlate with larger

overall scores.

14

80 80

2
g
o
8

ger_speed

&
=
8

base_integer_speed

base_intex

clock_speed
e 500
e 1000
e 1500 20

number_cores
2

4
e 2000
e 2500
® 3000
' ® 3500 ! 12

1 4000 I 14
o 4500 o " 16

6
8
10

seccee

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000
base_libquantum_462 base_libquantum_462

(a) Frequency (MHz) (b) Number of Cores

8000 10000

RNt e O
80 - = 2 i e bt 80

g
ger_speed

5
&

base_integer_speed

base_inte:

13_shared
e 6000

e 12000

e 18000

e 24000 20

® 30000

® 36000

® 42000
48000 i threads_per_core
54000 1 o 1
60000 o " 2

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
base_libquantum_462 base_libquantum_462

(c) L3 Cache Size (KB) (d) Threads per Core

Figure 6: The system factors impact on the relationship between base integer speed and

libquantum.

changes in libquantum can have a great impact on the overall score but machines with large
libquantum scores do not necessarily have top ranks. From visualizations, we observe that
libquantum has higher variability than other microbenchmarks and is more sensitive to the
number of cores. The microbenchmark libquantum has a very different pattern compared to
other microbenchmarks. This microbenchmark has an inner for loop that can be optimized [7].
The removal of libquantum in SPEC 2017 indicates that it is desirable to let the score range
and variability of microbenchmark scores be consistent when constructing benchmarks. As we
can see from Figure |§| (on page 8 for double-column figure), its relationship with base integer
speed has a higher variance compared with astar in Figure [5| Its absolute score range is also
much larger. In Figure [6] it shows that with a larger frequency, the increase in libquantum
has a larger increase in base integer speed. Records with two threads per core have a larger
variance compared to one thread per core. More visualizations are included in Figure This
analysis also shows that it is desirable to let the score range and variability of microbenchmarks

be consistent.

15

Table 5: Summary of regression for base integer speed versus system factors.

Parameter Coef. SE t-val p-val 95% CI

Intercept —0.6959 0.013 —54.814 0.000 | —0.721 —0.671
No. of cores 0.0281 0.001 47.184 0.000 0.027 0.029
Auto-parallel 2.1994 0.015 151.380 0.000 2.171 2.228

3.4 Separate the Effect of System Factors

Besides visualizing the impact of system factors, we also quantify and separate the effect of
system factors on the overall speed score. We construct a linear regression to quantify the
impact of core counts and the auto parallel on base integer speed. We assume there is a linear
relationship between the normalized overall score on log scale and system factors. To reduce
the co-linearity in the model, we did not include frequency in the model. In particular, the

regression model is,
Log Base Integer Speed = 3y + (1 core counts + (3 auto_parallel.

From Table [5| we can see that with the auto parallel flag on, the expectation of log base
integer speed is 2.20 higher than without auto parallel system setting.

3.5 Exploration on Lineage

In the CSGenome repository, besides the benchmarks related information, we also have the
lineage information [§] about the processors. Processors’ ancestors generations are gathered
back to their commercial introduction. This information helps us to understand the relation-
ships between processors and build a family tree of them. We are interested in whether the
performance of different generations of processors that have the same origin are related.

We pick 5 represented processors in SPEC 2017 and use the lineage API to collect their
ancestors’ genus information up to 3 generations. A genus contains one or more processor
models and one or more genera fall under a single microarchitecture. Then for each processor’s
genus and its ancestor genus, we compute their averaged performance scores and visualize
these scores versus time. Figure [7| shows the averaged scores for each of the 5 representative
genus and their ancestor branches in SPEC 2017. We can see that for each branch, recent
generations have higher averaged performance. Among different branches, higher ancestor
performance tends to have higher current generation performance. Besides, the correlations
of lag-1 averaged performance score is 0.978. This indicates that lineage information is useful

for us to understand future generations’ performance.

16

Log Score

0.8~

0.6-

(=4
~
'

0.2-

Genus
Intel 6140 Xeon:Skylake-SP (Skylake)
—=— Intel 6240 Xeon:Cascade Lake-SP (Cascade Lake)
—— Intel E-2174G Xeon:Coffee Lake-S WS (Coffee Lake)
0.0- Intel E5-1620 v3 Xeon:Haswell-EP (Haswell)
Intel E5-2630V2 Xeon:lvy Bridge-EP (lvy Bridge EP)

2010 2015
Year

Figure 7: Log base integer score for 4 genus in SPEC 2017.

17

4 Prediction of Future Performance

Another goal of this study is to predict future machine performance based on our data analysis

results in Section [3] We provide both mean trend and individual computers’ score predictions.

4.1 Prediction for Mean Trend

Many statistical and machine learning approaches can be adopted for mean trend prediction.
For example, the ESTIMA tool presented in [19] provides a flexible way to predict application
performance trends. In this paper, we propose a nonlinear regression to capture the benchmark

mean trend based on the observation in Figure [I}

4.1.1 Nonlinear Regression and Normal Approximation

Denote the overall performance score as y; and the time from baseline as ¢t. The time unit is
in months. Suppose the baseline score is o, as we observed in Figure [T} the log of the overall
score appears to be a power function of time, indicating the period of performance doubling

increases. Therefore, in this paper, we model the log of the overall score as
log(y,) = f(t;0) + ¢, = at® + v + ¢, (3)

where ¢ follows a normal distribution N(0, 0?). Denote 8 = («, 3,7)" as the parameter vector.
We use the maximum likelihood estimates (MLE) to conduct the parameter estimation in (3)).
Then with the estimated parameters, we can make predictions of the performance score in the
following years as well as provide prediction interval.

The variance of the log overall score is computed as, Var[log(7,)] = fa(t: 8)' Var(8) fa(t; 6),
where fg(t; @) denotes the derivatives of f(¢;0) with respect to 8. Then for a future time ¢,
the point prediction is log(y;) = at? + ~, and the 95% prediction interval is

log(y) £ z0.025 \/Var[log(g/j)] + 2.

4.1.2 Mean Trend Prediction Results

For the integer speed, we obtain the estimates as 6 = (2.69,0.25, —9.14)". By plugging in the
MLE of the parameters in , the fitted mean trend is

log(y) = 2.69t"%° — 9.14. (4)

The fitted mean trend and the prediction of the overall score for the future 100 months are
shown in Figure[8, The dashed line presents the 95% prediction interval for the future predic-

tion. As shown in Table [0, we can see that for base integer speed, doubling the performance

18

2.5-

SPEC
1995
2000
© 00-
<(/)(3 2006
> 2017
o
|
-25
-- Pl
5.0

2016
2019
2022
2025~
2028
2031
2034

1995
1998 -
2001
2004 -
2007
2010

—
="2013-
3
(0]

Figure 8: Mean trend fitting and prediction for base integer speed, together with individual
predictions at a future time. The solid black curve represents the fitted mean trend and the
dashed black lines are 95% prediction bounds at future time. The black dots are predictions
for the future score at 2022-06-01 based on ([7)).

score needs to take a longer period. The baseline time is set to 1995-08-01, when the records

start.

4.2 Benchmark Prediction for Individual Computers

Section [4.1| provides fitting and prediction of the performance for the mean curve. That is the
averaged performance over the years. That is because when we make predictions for the future,

we usually do not know about the computers’ hardware setting, so we can only make use of

Table 6: Doubling time (in months) for the integer speed.

Date Time Date Time Date Time
1996-04-01 0 1999-12-01 17 2010-11-01 45
1996-10-01 6 2001-10-01 23 2015-05-01 55
1997-07-01 9 2004-03-01 29 2020-10-01 66
1998-08-01 13 2007-03-01 36 2027-04-01 78

19

the time point as a predictor to provide predictions for scores on average. However, with the
CSGenome database, we can also make predictions on individual computers with the system
factors. Denote the system settings for a computer as , we assume the performance score of
this computer at time ¢ can be modeled by two components: one is the average performance
at time ¢ and the other is the fluctuation caused by this computer’s system setting. So the

performance score can be modeled as:

loglys(@)] = f(1:0) + ei(2) = at” +7 + ei(a), (5)
where the first component is the fitted mean trend as obtained in Section and the second
component is a random fluctuation that depends on . Note that the difference between
models (3) and is that assumes a constant noise variance for all different machines
at time ¢, while assumes the noise term changes with different machine’s system settings.
Since the fitted mean trend is already obtained in Section the main goal of this section
is to build a predictive model for €;(x). Based on the sensitivity analysis in Section , we
use the hardware factors core counts, frequency, L3 cache size, and threads in SPEC 2017
as predictors to predict future €(x). Although auto-parallel is also an important factor as
shown in Section [3.4] in SPEC 2017 records, 99.93% of the machines consider auto-parallel
when running SPEC speed benchmarks. So auto-parallel can be considered as a common
feature for recent machines and becomes a constant variable if included in the model. Thus,
we do not use it as a predictor for the future.

Before constructing the predictive models for €,(x), there are a few preparation steps.
First, we need to predict future hardware systems. Secondly, we need to exclude impossible
hardware configurations based on reasonable extrapolation of existing processor data. Then
based on the remaining reasonable configurations, we can build predictive models to predict
the SPEC score.

4.2.1 Quantile Regression for Hardware Prediction

We want to present some hardware scenarios in the future and make predictions of the corre-
sponding machine’s performance score. One key step is to obtain reasonable hardware settings
for future computers. As shown in Figure [J] starting around 2000, the trend of core counts,
frequency, and L3 cache size versus time is not obvious and the variance becomes large. There-
fore, when we make predictions for the future hardware settings, we want to capture both the
trend and the dispersion of data. Quantile regression can model the quantile of hardware set-
ting given the time, which allows us to understand both the variance and trend of hardware

settings over time.

20

80
5000
6 —
5]
4000 60 .
,;
7 4 . -/
€ 3000 - N 7
3 : - > Loy
o o Seornn & com L S ® /
0] g : > < 40 DA
g 3 © e e yeemedh m— P z e Vo L S PARRS
e B A— i R R © N
& K) 2000 < cmsmece o o @ 0o "] J /.
8 / . .. LT S
2 R S— : Bib e v } S et n
J o . ‘. e 22
J . P v, : 20 " e edmeem o Th
/ . : . .
B . /// 1000 — epeee = . R R N
1 - ; .«/—-—-—-——:—— [s . . A
y B I -
v / 4 /// . -
/ a ks .
O —,r_-—’n,‘--—.- - 0 — -
T T T T T T T T T T T T
o Yol o wn o ‘el o w0 o v o 'e)
1= 1= = - N N S o - — I I
o o o o o o o o o o o o
N N N N N N N N N N N N
--- q=0.05 q=025 --- =05 q=0.75 -—

Figure 9: Plot of hardware factors over years and fitted quantile regression line and predictions
of 0.05, 0.25, 0.5, 0.75, 0.95 quantile of core counts, frequency (MHz), and L3 cache size (MB)
in three future time points (2021-12-01, 2022-06-01, and 2022-12-01). The core counts is on

the log, scale.

21

4.2.2 Feasible Hardware Configurations

In our CSGenome data repository, we collected all related processor’s information, which
allows us to understand what configurations are feasible. From our processor data, since we
are interested in the pattern between system factors, we focus on a subset with non-missing
system factors. Within this subset, threads per core has two possible values, 1 and 2. So
we only focus on the remaining three system factors, core counts, frequency, and L3 cache
size. Figure also presents the pairwise scatter plots of these three factors. We can see
that for frequency and core counts, the region that has the most processor’s data is roughly a
triangular shape. That means as the core counts increase, the processors tend to have middle
range of frequency. A similar pattern is found for the relationship between frequency and
L3 cache size. For the relationship between the L3 cache size and core counts, based on the
historical data, we found that the minimum ratio between them is 0.5 MB per core. So we
consider those future processors with L3 cache size and core count ratio smaller than 0.5 MB
per core are unlikely to appear.

Based on the above patterns, we make an extrapolation of the future possible regions of
hardware configurations, which is shown in Figure [10] In this figure, the shaded areas are
the possible regions. The black points are historical data. The grey area represents the years
between 2000-2015. The blue area represents the years 2016-2020. The purple is the predicted
area for 2021-2025.

4.2.3 Models for SPEC Score Prediction

With these predicted reasonable future system factors, we can build a predictive model to
forecast individual computer’s benchmark scores. In this paper, we use the Gaussian process
(GP) model to predict the normalized performance score for individual computers.

Suppose at time ¢ there is an individual computer with system factors @, we can denote
our response, the “observed” noise as y; = ¢(x) = log(y;) — f(t;@). Let y© = {v$, ..., 95}
be the n observations at the system factors collections X = {@1,...,@,}. The GP model
assumes every finite linear combination of the observed data follow a multivariate normal
(MVN) distribution. The mean function and the covariance function together determine a
unique GP model. The mean function u(x) in the GP model provides the location parameter
information depending on @. The covariance function C'(x, '), which is also referred to as the
kernel function, describes the correlations between the performance of machines with system
factors & and ' respectively. The Gaussian kernel C(x, ') = exp[—(x — x’)?/6] and Matérn
kernels are common kernel functions.

In the GP model, the n observed response is considered to follow MVN, that is y© ~

N,.(0,72C,,), where 72 is the scale parameter and C = [C(z;, €;)]nxn is the covariance matrix.

22

o o
S g - .
['?) ['?)
.
o o
S | S
o o
< <
o = =
=3 L= ¥ a
g s s : s
(2 g g
Q c c
< Q Q
[3 3
© o o o o
o L 8 4 L 8 4
S [~N [~N
o o
S | S]
2 2
o - o -
T T
0 10 20 30 40 50 60 70 0 20 40 60 80 100 140 0 20 40 60 80 100 120
Core Counts Core Counts L3 Cache Size (MB)

Figure 10: Extrapolation of the possible hardware regions in the future. The black points are
historical data. In the left panel, the pink region represents the possible region of L3 cache
size and core counts based on all historical data. In the middle and right panels, the grey area
represents the year between 2000-2015. The blue area represents the year 2016-2020. The
purple is the predicted area for 2021-2025.

23

Then for a new system configuration @, the prediction of its performance score y“(x) can be
obtained by the conditional distribution y§(x)| {y¢, X }. Based on the conditional distribution
of MVN, we have

vi (@) {y", X} ~ N[u(z), 0" (2)]. (6)

The mean is p(z) = O(x, X)C 'y and variance is
o*(z) = 7[C(x,z) — C(z, X)C7'C(X, z)],

where, C(x, X,,) is a 1 X n matrix with elements C(x, x),...,C(x,x,). The R package laGP
[20] is used to estimate parameters and construct GP models. To validate the GP model’s
ability to predict future, we use past data to predict the known future in SPEC 2017. The
early 20% computers (2016-09-01 to 2018-01-01) are used to predict the scores of the later
80% computers (2018-02-01 to 2020-04-01). The root mean squared error is 0.19 and the

predictions versus observations is shown in Figure

4.3 Prediction for Future Scenarios

Considering the system configurations as well as the time in the benchmark score prediction,

now the score of a machine with configuration & at time t is predicted as
log[gi(@)] = f(t:) + i (@) = at” +7 +&(x). (7)
And the prediction’s corresponding variance is
Var{log(fi(z)]} = Var(f(t; 0)] + 5°(=),

where Var[f (t,a)] is in Section and 6%(x) is obtained from the GP model. With this
model, we can predict for future computers’ performance score, and also construct prediction

intervals for future computers’ performance.

Based on Sections [4.2.1] and 4.2.2] we can obtain various possible hardware configurations

future time point . What we are interested in is the performance of top, middle and low rank
computers. Therefore, we construct prediction bounds for the computers with gth quantile (g

= 0.25, 0.5, 0.75, and 0.95) performance scores at time ¢ using Algorithm 1 as follows.

Algorithm 1:

1. At a future time point ¢, predict the 0.25, 0.5, 0.75, 0.95 quantiles of core counts,

frequency, L3 cache size as Zcores; Teache, aNd Teq Separately;

2. Generate future potential configurations at ¢ by enumerating all combinations of Z¢ores, Teache,

and Tfreq;

24

© ® .
C\i - '...u
<
(\i —]
N
s o
°
©
o o
a o 7
«© _|
. .
@ 4. . L tivmggg,
og *Yogmg . ':u: g '.o: oo 00 ‘bun o’
< | . . . e o
o | | | | | |
14 1.6 1.8 2.0 2.2 2.4
Observation

Figure 11: The GP predicted score versus observed score of the later 80% SPEC 2017 machines.
The red line is the 45 degree diagonal line.

25

3. Exclude impossible configurations based on the plot shown in Figure and denote

remaining possible configurations as X;

4. Predict the future score for each configuration in X, using and denote the prediction
as log (y,);

5. Find the gth quantile of log(y,) as well as its corresponding configuration xf € X;

6. For configuration xf, denote its prediction as log[y;(xf)] and compute its variance
Var{log[y:(xf)]}-

7. The 95% prediction interval for a future gth quantile performance score at time ¢ is
log g (2{)] £ 20.025\/ Var{log[g:(z{)]}.

Repeat Algorithm 1 for a sequence of future time points ¢, we can obtain a prediction
bound for the future gth quantile performance scores. The prediction bound of various future
scenarios is shown in Figure 12 The black dots are the real SPEC 2017 base integer speed
that we used to build the GP model and the red line is fitted mean trend. In each subplot, the
dotted black line presents the average 25%, 50%, 75%, and 95% percentile of the score among
all feasible future computers. The grey shaded bounds show the corresponding prediction
bounds, respectively.

The predictive techniques developed in this paper can be used to answer the following
questions in practice.

e For example, what characteristics will future systems need to keep up with previous
trends? Our predicted mean trend depends on the model in (4], although in a diminishing
pattern as the doubling time increases as shown in Table [f] The factors we measured, for
example, the number of cores, clock frequency, or combination, need to maintain the trajectory
we have enjoyed in the measurable past, as we modeled in Figure [9]

e The prediction results in Figure [12| provide insights on what kind of raw performance
scores we should expect in the coming years. For example, using the mean and interval
prediction for the 0.95 panel of Figure (based on an optimistic prediction for technology
development), we can see that the mean score (on log scale) will be around 3.37 (29.07 in
original scale) in five years (2028-01-01) with a 95% of interval from 3.20 to 3.59 (from 24.53
to 36.23 on the original scale) depending on how the technologies scale.

e Based on a pessimistic prediction for technology development, the results in the 0.25
panel of Figure show that the performance gains will not likely continue with the mean
trend. To get us back on track, consistent hardware improvements are needed, for example, on
the number of cores and clock frequency. The 0.75 panel of Figure [12] gives us a clue as to the

kind of technology improvement needed to continue with the current pattern on performance.

26

0.25 0.5

0.75 0.95

score

300 350 400 450 300 350 400 45
time

— fitted mean *+++ mean prediction bound

Figure 12: Prediction intervals for different future scenarios. The red solid line represents the
mean trend fitting. The dotted black line represents the mean of each scenarios and the grey

shaded areas are the 95% prediction bounds for the corresponding scenario.

27

Although we present the prediction procedure using the SPEC base integer speed as an
example, the framework of parameter estimation, uncertainty quantification, and predictions
can be applied to new benchmark exploration. If the performance trend has a different pattern
in the new benchmark datasets, the proposed method can be adapted by changing the function
form in the model in (3)).

5 Concluding Remarks

In this paper, we have considered how best to track and analyze historical SPEC data rep-
resented by SPEC CPU integer speed. We selected this specific benchmark since it is one
of the most widely used and historically thorough benchmarks for computer systems. This
focus does limit the scope of our conclusions, but the methodology regarding normalizing
benchmark scores, sensitivity analysis, and prediction framework could be applied to other
benchmarks and computing performance datasets. We overcame several challenges along the
way including determining the best available methods for normalization as the benchmark
evolves. Additionally, we isolated the effects of individual codes and determined one code in
particular (libquantum) had outsized influence over benchmark scores — a fact that likely led
to its removal as its use could have allowed participants to exploit the code for their own gain
in rankings.

We used a growing, open-source database of computer specifications and lineage to study
the impact of design decisions (e.g., core count, cache size) on performance over time. We
confirmed some expectations: 1) multi-core processors begin to dominate as the effect of
individual processor speed diminish; 2) SPEC CPU integer speed performance tracks with
Moore’s Law mostly; and 3) after 2000, the influence of several hardware traits (e.g., L3
size, core count) on performance becomes more murky and more difficult to point to a single
contributor.

As for future designs, we discussed a methodology that determines how the base technolo-
gies studies will need to evolve to continue to track with Moore’s Law. In the future, L.3 cache
sizes and core counts will likely have the most influence over future designs without disruptive
change.

We want to point out that disruptive changes in hardware, such as AMD’s 3D V-cache
can impact our prediction potentially. At the moment that new technology advances emerge,
precisely predicting the performance score is challenging if new data are too far from all other
historical data. However, there have been other inflection points in past years, such as bigger
caches, faster processors, and on-core GPUs that are already captured in the data and our

prediction methodology is constructed with such evolved hardware data. As the database

28

grows, the changes with new hardware will be captured eventually and the predictions will
adapt modestly as well by re-applying the framework.

There are a few limitations in our work. In the analysis, we mainly focused on the hard-
ware effect and integrated software effect into the results. However, software and compiler’s
development also contribute to the system’s performance. In future studies, it is interesting to
isolate and quantify software effects to further understand computers’ performance evolution
trend as well as Proebsting’s Law. Besides, the analysis scope focuses on benchmark evolution
on the system level. If the focus is extended to a broader scope of benchmarks not limited to
CPU or system level and the trend of interest is too complicated to describe, other tools that

automatically select function forms, like ESTIMA [19] can be considered.

Acknowledgments

The authors thank the editor, associate editor, and three referees, for their valuable comments
that helped improve the paper significantly. The authors acknowledge Advanced Research
Computing at Virginia Tech for providing computational resources. The work was supported

by NSF CNS-1838271 and CNS-1939076 to Virginia Tech.

A Overall Score and Microbenchmarks

Figure visualizes base integer speed versus two microbenchmarks: gcc and perl for each
SPEC suite, respectively. We can see that after log transformation, the log overall score and

log microbenchmark scores are highly linearly correlated.

B More Visualizations on Libquantum

Figure [14] visualizes the frequency and core counts influence to the ratio between libquantum
and base integer speed. When the number of cores is small, libquantum changes a lot relatively
(ratio of base integer speed to libquantum) and when the number of cores is small (with slow

clock speed), libquantum (with clock speed) will affect overall metric more.

References

[1] J. L. Henning, “SPEC CPU suite growth: an historical perspective,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 1, pp. 6568, 2007.

29

SPEC 1995 SPEC 2000 SPEC 2006 SPEC 2017

Log Score

Log Score
2

1

0.0

0o 1 2 3 45 55 65 75 0o 1 2 3 4 0.0 1.0 2.0
Log Perl Log Perl Log Perl Log Perl

Figure 13: Base integer speed versus gcc and perl for each SPEC suite with log transformation.

30

10000

base_libquantum_462 logbase_libquantum_462

8000

6000

© N~ o

4000

2000

Figure 14: Frequency (MHz) and core counts impact on the libquantum (left) and log libquan-
tum (right).

2]

R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade: Did SPEC CPU 2017
broaden the performance horizon?” in 2018 IEFE International Symposium on High
Performance Computer Architecture, ser. HPCA ’18. Washington, DC: IEEE Computer
Society, 2018, pp. 271-282.

H. Vandierendonck and K. De Bosschere, “Many benchmarks stress the same bottle-

necks,” in Workshop on Computer Architecture Evaluation Using Commercial Workloads,
ser. CAECW ’04. Washington, DC: IEEE Computer Society, 2004, pp. 57—64.

A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring program similarity:
Experiments with SPEC CPU benchmark suites,” in IEEE International Symposium on
Performance Analysis of Systems and Software, 2005, ser. ISPASS '05. Washington,
DC: IEEE Computer Society, 2005, pp. 10-20.

A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and application balance
in the SPEC CPU2006 benchmark suite,” in Proceedings of the 34th Annual International
Symposium on Computer Architecture, ser. ISCA ’07. New York, NY: Association for
Computing Machinery, 2007, pp. 412-423.

——, “Subsetting the SPEC CPU2006 benchmark suite,” SIGARCH Comput. Archit.

News, vol. 35, no. 1, pp. 69—-76, 2007.

31

[7]

A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “CPU DB: Recording
microprocessor history: With this open database, you can mine microprocessor trends
over the past 40 years.” ACM Queue, vol. 10, p. 10-27, 2012.

S. L. Furman, “iILORE: Discovering a lineage of microprocessors,” 2021, Master’s Thesis,
Virginia Tech. [Online]. Available: http://hdl.handle.net/10919/104071

SPEC, “speccpu benchmarks,” https://www.spec.org/benchmarks.html, 2021.

J. J. Dujmovic and I. Dujmovic, “Evolution and evaluation of SPEC benchmarks,” SIG-
METRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 2—-9, 1998.

N. R. Hardy, “A data schema for aggregating disparate sources of computer system
and benchmark information,” 2021, Master’s Thesis, Virginia Tech. [Online]. Available:
http://hdl.handle.net/10919/103707

B. Soup, “Beautiful Soup,” https://www.crummy.com/software/BeautifulSoup/bs4/
doc/, 2021.

Pandas, “Pandas,” https://pandas.pydata.org/, 2021.
TOP500, “Top500 lists,” https://www.top500.org/, 2021.
Green500, “Green500 lists,” https://www.top500.org/lists/green500/, 2023.

AMD, “AMD product specifications,” https://www.amd.com/en/products/

specifications/processors, 2021.

Intel, “Intel product specifications,” https://ark.intel.com/content/www/us/en/ark.
html.

A. Danowitz, “Stanford CPU DB,” http://cpudb.stanford.edu/, 2014.

G. Chatzopoulos, A. Dragojevi¢, and R. Guerraoui, “Estima: Extrapolating scalability
of in-memory applications,” in Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2016, pp. 1-11.

R. B. Gramacy, “laGP: Large-scale spatial modeling via local approximate Gaussian
processes in R,” Journal of Statistical Software, vol. 72, no. 1, pp. 1-46, 2016, doi:
10.18637 /jss.v072.i01.

32

http://hdl.handle.net/10919/104071
https://www.spec.org/benchmarks.html
http://hdl.handle.net/10919/103707
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pandas.pydata.org/
https://www.top500.org/
https://www.top500.org/lists/green500/
https://www.amd.com/en/products/specifications/processors
https://www.amd.com/en/products/specifications/processors
https://ark.intel.com/content/www/us/en/ark.html
https://ark.intel.com/content/www/us/en/ark.html
http://cpudb.stanford.edu/

	Introduction
	Background and Motivation
	Literature Review and Related Work
	Overview

	Methodology
	SPEC Data Collection
	Data Summary
	Normalization of SPEC Score Across Years
	Methods for Statistical Analysis

	Data Analysis Results
	Overall Score and Microbenchmarks
	System Factors
	Libquantum
	Separate the Effect of System Factors
	Exploration on Lineage

	Prediction of Future Performance
	Prediction for Mean Trend
	Nonlinear Regression and Normal Approximation
	Mean Trend Prediction Results

	Benchmark Prediction for Individual Computers
	Quantile Regression for Hardware Prediction
	Feasible Hardware Configurations
	Models for SPEC Score Prediction

	Prediction for Future Scenarios

	Concluding Remarks
	Overall Score and Microbenchmarks
	More Visualizations on Libquantum

