Modern Hashing Made Simple

Michael A. Bender* Martin Farach-Colton’ John Kuszmaul? William Kuszmaul®

Abstract

Modern work on hashing has led to hash tables with extraordinary guarantees. However, these data
structures are too complex to be taught in (even an advanced) data structures course. In this paper, we show
that this need not be the case: using standard machinery that we already teach, one can construct a simple
hash table that offers guarantees much stronger than what are classically taught:

e Operations are O(1)-time with high probability;

e The hash table stores n k-bit items in nk + O(nloglogn) bits of space;

e The hash table is dynamically resized, so the space bound holds with respect to the current size n at
each time step.

1 Introduction

Since hash tables were introduced in 1953, there has been a vast literature on the question of how to design
space- and time-efficient hash tables |12,/6-8L|12,/141|14}/16,20}21},[24L25,|28}32,/34H361/38]. Most hash tables that
students are taught offer the following basic type of guarantee: to store n keys, each of k bits, the hash table
uses space (1+¢)kn bits and supports insertions/deletions/queries in poly(¢)~! expected time. Even in advanced
data structures courses, the most sophisticated hash tables that are taught (typically versions of either FKS
hashing [15}/16}/21,22] or Cuckoo hashing [33,/34]) improve on this guarantee only in terms of query time, which
becomes worst-case rather than expected
However, state-of-the-art hash tables [2[6H8] offer much stronger of guarantees:

e Time efficiency: Queries/insertions/deletions run in constant time with high probability,
e Space efficiency: The space that the hash table uses to store n items, each of k bits, is (1 + o(1))nk bitsE
e Dynamic Resizing: The time/space guarantees are maintained even as n changes dynamically over time.

It is worth appreciating how strong these guarantees are. Even though the hash table is using space (14 ¢)nk bits
for some & = o(1), the operations are still constant time. In fact, they are constant time not just in expectation,
but with high probability 1 — 1/poly(n). As for resizing, the standard approach to keeping a hash table at space
(1 — e)nk bits, as n changes over time, is to perform Q(n)-time rebuilds every ©(en) operations. So not only is
the hash table avoiding the costs typically associated with insertions/deletions/queries in a fixed-capacity hash
table, it is even avoiding the costs typically associated with resizing.

So why aren’t students taught about these incredible data structures? The issue is that they are too
complicated. The only hash tables in the literature to achieve the full set of guarantees |2,|6H§] are viewed
as technical powerhouses. And even the hash tables that come part of the way (e.g., [12,/14L/28,36]) can be quite
involved.

" *Stony Brook University, bender@cs.stonybrook.edu

fRutgers University, martin@farach-colton.com

#Yale University, john.kuszmaul@gmail.com

$Harvard University, william.kuszmaul@gmail.com

I Moreover, at least as they are typically taught, these data structures also give up on ¢, settling instead for space O(nk) bits.
Cuckoo hashing can be optimized to support an €, by either using d > 2 hash functions |20] or by using bins of some size h > 1 18|,
and then once again the time per operation becomes a function of e~ 1.

2In fact, an even stronger guarantee can be achieved: there are constant-time hash tables with space within a 1 + o(1) factor of
the information-theoretic optimum [2,6-8,28//36]|. Indeed, it is now even known what the optimal time/space tradeoff curve is for the
o(1) term |[7,27].

Copyright (© 2024
Copyright for this paper is retained by authors

In this paper, we show how to construct a modern hash table using nothing but the standard machinery that is
often already taught in an advanced data structures course. The resulting data structure, which we call partition
hashing, achieves the full guarantee described above: each operation is constant time, with high probability, and
the space usage is nk + O(nloglogn) bits, even as n changes over time. The construction is modular so that each
technique can be introduced as its own miniature lesson. And, critically, we believe that the construction is fun
(who would have thought that a B-tree would show up in a constant-time hash table?). The goal is to have a
modern hash table that can easily be integrated into a modern data-structures course.

We emphasize that this paper does not introduce any new techniques. Rather, we extract techniques that
have already appeared as components of much more sophisticated data structures |1}2,|7,/14,128|, and show how
to simplify /combine them in order to get a single, simple hash table with strong guarantees.

In the rest of the paper, we introduce partition hashing, and prove the following theorem:

THEOREM 1.1. Let w be the machine word size, and consider hash tables storing w-bit keys, where the number n
of keys stored satisfies w = ©(logn). There is such a hash table that uses nw + O(nloglogn) bits of space, even
as n changes over time, while supporting queries in O(1) worst-case time and insertions/deletions in O(1) time
with probability 1 — 1/poly(n).

We remark that, for simplicity, we assume fully random hash functions throughout. However, there is also
a rich literature [13}17,/19,130,[31,[37] on how to simulate fully random hash functions in hash tables that we will
not be covering here.

The rest of the paper is structured as followed. Section [2| reviews the background that will be necessary
in our data structure. Sections and [6] then present the partition hash table, starting with a very weak
set of guarantees and adding stronger ones one at a time. Finally, Section [7] provides historical context for the
techniques used in the paper.

In our experience, partition hashing can be taught in 1-3 lectures, depending on what subset one wishes to
cover. Sections 3| and 4] can be covered in a single lecture and already give a hash table with much stronger
guarantees than what is typically taught. From there, each of Sections |5[and |§| can be added optionally (as the
techniques are independent).

2 Preliminaries

We present some basic machinery that will be used in our construction. This is machinery that is often already
taught in an advanced data structures course: it includes basic balls-and-bins analysis [23}26], exhaustive
subtabulation (a.k.a., the method of four Russians) [3], and two basic types of search trees [4}5,/10}/11].

2.1 Notation

A hash table is a data structure that maintains a set S under operations INSERT(S, z), which adds z to S,
DELETE(S, z), which removes x from S, and QUERY(S, x), which answers TRUE if € § and otherwise answers
FALSE.

When discussing fixed-capacity hash table, we will use n to denote the maximum capacity. When discussing
resizable hash tables, it will sometimes be helpful to distinguish between the table’s (current) capacity versus the
number of elements that it contains—in this case, we will typically use n for current capacity and n for current
number of elements.

We assume that S C U = [2%], where w = (1 4+ O(1))logn is the word size of the machine, meaning that
operations on the bits of a word of size w take constant time. We call a hash table space efficient if it uses
(1 + o(1))nw bits of space.

We define with high probability (w.h.p.) to mean with probability at least 1 — 1/poly(n). In some cases,
the probability guarantees of a data structure may depend on the constants used in the construction. Formally, a
guarantee holds w.h.p if, for every positive constant c, it is possible to instantiate the constants in the construction
so that the guarantee holds with probability at least 1 — O(1/n°).

Our ultimate goal will be hash tables that support constant-time operations w.h.p. but along the way it will be
helpful to have several intermediate notions of constant time-ness for insertions/deletions. A data structure is said
to support insertions/deletion in constant amortized expected time if, for any ¢, the first ¢ insertions/deletions
take total expected time O(t). A data structure is said to support insertions/deletions in constant expected
time if, for any ¢, the t-th operation takes expected time O(1). Of the three constant-time guarantees (amortized

Copyright (© 2024
Copyright for this paper is retained by authors

expected, expected, and w.h.p.), the weakest guarantee is amortized expected, the next weakest is expected, and
the strongest is w.h.p.

All of the data structures in this paper can be implemented either as key dictionaries (i.e., store a set of keys)
or as key/value dictionaries (i.e., store a set of key/value pairs, so that queries recover the value associated with a
given key). For simplicity, we will typically focus on the key-dictionary version of the problem, but in some cases
(for example, our application of B-trees) we will also use the fact that the data structures can be augmented to
support values as well.

Finally, as noted earlier, we will assume that the hash tables we are constructing have access to fully random
hash functions. This means that the hash table can pick a domain U and a range R, and have a function h that
maps each element from U to an independent uniformly random (but fixed) element of R. One can think of the
hash table as having constant-time oracle access to h, so it can invoke h whenever it wishes, but it does not pay
any space to store h.

2.2 Basic Machinery
Chernoff Bounds. The partition hash table will make use of the following basic Chernoff bound in several
places.

LEMMA 2.1. Consider a sum of independent [0, 1]-valued random variables X =Y. | X; with mean pu = E[X] >
logn. Then X < p+ O(+/ulogn) with high probability in n.

COROLLARY 2.1. Consider throwing n balls randomly into m bins, where h = n/m > logn. Then the fullest bin
has at most h + O(y/(logn)h) balls with high probability in n.

Exhaustive subtabulation. Here, we give a brief introduction to exhasutive subtabulation (a.k.a. the Method
of Four Russians) 3], which can be used to reduce the space or time of certain data structures. The basic idea is
that, if there is a function f that has a relatively small range of inputs—say, the input is specified by (logn)/2
bits—then we can pre-compute f on all 2(°8m)/2 — \/n possible inputs, we can store those computations in a
lookup table, and then in the future we can use the lookup table to evaluate f in constant-time. We will use this
technique to implement edits to data structures where the portion that we are editing is O(logn) bits.
B-Trees. A B-tree [4,5,/10] on n p-bit keys is a balanced search where each node has up to B + 1 children, and
where the depth of the tree is O(logz, | n). (So, when B = 1, the B-tree becomes a balanced binary search tree.)
The B-tree is designed for block-transfer memory, where a transfer of a block of size ©(Bu) bits takes constant
time. Note that, so long as the tree consists of 2°(*) nodes (so that pointers between the nodes require O(z) bits),
then each node in the tree can be stored in 1 block. There are a variety of schemes to keep such a tree balanced—in
short, insertions, deletions, and queries can be implemented in time O(logp ;1) (in the block-transfer model).
k-Tries. For any power-of-two k, a k-trie [11] on n w-bit keys is a k-ary search tree where the pivots are evenly
spaced in the universe of possible keys. For any key z € [2¥] in the tree, the root-to-leaf path for x can be
computed by: using the first (i.e., highest-order) log k bits to navigate the root node, using the next log k bits to
navigate the level-2 node, using the next log k bits to navigate the level-3 node, and so on, for a total of w/logk
levels. The depth of a k-trie is therefore w/ log k.

LEMMA 2.2. A k-trie on n w-bit keys takes time O(w/logk) per operation and takes space O(nkw?/logk) bits.
Here, we assume that the arrays used to allocate nodes are already pre-allocated and initialized to zero.

Proof. Operations in each node are constant time, so insertions, deletions and queries take time proportional to
the depth, which is O(w/log k). We can overestimate the size of the k-trie by charging each of the n items the
full cost of its root-to-leaf path. Each node is O(k) machine words (i.e., O(kw) bits), and the depth is w/logk,
so the total space is O(nkw?/logk) bits. ad

Resizable Arrays. Finally, it will be helpful to know the following folklore trick for how to implement space-
efficient resizable arrays:

LEMMA 2.3. Consider an array A that grows and shrinks over time, supporting both an extension operation (grow
the array by 1) and a shrink operation (shrink the array by 1). If i is the maximum size that the array is allowed
to be, and n is the current size at any given moment, then the array A can be implemented to use n + O(y/n)
machine words while supporting constant-time operations.

Copyright (© 2024
Copyright for this paper is retained by authors

Proof. We break A into slabs A, ... ’AM IV of size v/7 each. These slabs are dynamically allocated and freed

so that there are only [n/v/n] at a time. We also keep a smaller array B of size v/fi whose i-th entry stores a
pointer to slab A; for each i < [n/\/f].

The only wasted space is the space consumed by B plus the unused space in slab A[n /A Thus the total
space usage is n+ O(y/7i) machine words, as desired. Array operations are trivially implemented in constant time,

since each slab can be accessed through B, and since each growth/shrinkage of the array requires at most one
slab to be allocated/freed. |

3 Slow Partition Hash Tables

We begin by constructing a very simple fixed-capacity hash table that has small space, that supports constant-time
insertions (w.h.p.), but that incurs polylogarithmic time per query/deletion.

Define a bucket to be an array of length log® n + clog? n slots, for a constant ¢ > 0. Define a bucket array
to be an array of n/log® n buckets. The total size of a bucket array is thus n + en/logn slots.

Our first attempt at a hash table is simply the following: when an item arrives, it is hashed to a random
bucket in the bucket array, and it is placed in an arbitrary empty slot in that bucket. If the bucket is full on
insertion, the entire hash table is rebuilt. When a query is made, it is hashed to a bucket and every slot in the
bucket is examined.

When an insertion is hashed to a bucket, all it needs to do is to find an empty slot. To make this efficient, we
keep the items in a bucket left justified, i.e., if there are k items in a bucket, they are kept in the first &k slots
of the bucket. We can achieve this invariant by maintaining an O(loglogn)-bit counter in each bucket that keeps
track of k. Insertions place the item in position k£ 4+ 1 and increment the counter. Deletions must also keep the
bucket left justified—when an item is deleted from an arbitrary location in a bucket other than k, the rightmost
item is moved to that location, and then the counter k is decremented.

The slow partition hash table can be analyzed with the following lemma.

LEMMA 3.1. The slow partition hash table takes O(1) time for insertions, with high probability, and O(log®n)
worst-case time for deletions and queries. It takes space nw + O(n) bits.

Proof. Recall that w = O(logn), so the n + O(n/logn) slots in the bucket array take nw + O(n) bits.
Queries/deletions are always O(log®n) time since they look at a single bucket. Insertions take O(1) time
unless a rebuild is performed. Thus it remains to analyze the probability of rebuilding during a given insertion.
Since there are n/ log® n buckets and (up to) n elements, the expected number of elements per bucket is at
most log®n. Corollary bounds the probability that any bucket has more than log®n + clog®n keys to be
1/poly(n). The probability of a bucket overflowing (causing a rebuild) is therefore also 1/poly(n). O

Of course, the only reason that slow partition hash tables are able to support constant-time insertions w.h.p.
is because they are completely neglecting queries/deletions. Next, we will see how to improve the hash table so
that insertions take constant expected time and deletions/queries take worst-case constant time.

4 Constant-Time Queries/Deletions and Constant Expected-Time Insertions

The indexed partition hash table is an extension of the slow partition hash table that supports insertions
in constant expected time and queries/deletions in worst-case constant time. The indexed partition hash table
will be very space efficient, using (1 4 o(1))nw bits, so already we will be achieving a set of guarantees that are
not typically covered in an advanced data structures course. With that said, we will see in later sections how to
improve on such hash tables (adding high-probability guarantees for insertions and dynamic resizing of n).

We will describe the indexed partition hash table in three pieces: first, we describe how to assign all of the
keys x within a given bucket to distinct ©(loglogn)-bit fingerprints f(z); then we describe a simple per-bucket
data structure, called the query mapper, that maps each fingerprint f(x) to the position k where the key resides
in the bucket; and finally describe how the query mapper is used to implement operations within the bucket.

Our first step is to map the keys within each bucket to distinct fingerprints. We do this with a hash function f
mapping keys to random O(loglogn)-bit integers. We will prove that, with probability at least 1 — 1/polylog(n),
all fingerprints within a bucket are different. In the event that the fingerprints in a bucket are not all different,
we reconstruct the fingerprints from scratch using a different hash function (and so on, until we get distinct
fingerprints).

Copyright (© 2024
Copyright for this paper is retained by authors

LEMMA 4.1. Consider a set B of O(log®n) keys, and consider a random hash function f : B — [log” n]. With
probability at least 1 — O(1/log®n), the hashes f(x) are distinct across x € B.

Proof. For a given pair of items z,y € B, the probability of a collision f(z) = f(y) is 1/ log® n. By a union bound
the probability of any collisions occurring is at most

S Prlfe) = fy) < 2 fO(:)

=79 3
viges log” n log” n

d

Having mapped the keys within each bucket to distinct fingerprints, our next step is to add what we call a
query mapper to each bucket. The query mapper in each bucket is a data structure that maps each fingerprint
f(x) to the corresponding position i € [O(log® n)] where the item z is stored in the bucket. Note that both the
fingerprint f(z) and the position ¢ are ©(loglogn) bits each.

The query mapper might seem like a difficult data structure to implement. After all, the query mapper, itself,
is a dynamic data structure mapping keys to values (isn’t this the problem we are trying to solve in the first
place?). However, the fact that the keys and values are small turns out to be important, allowing us to make use
of a somewhat unexpected tool: the B-tree!

LEMMA 4.2. One can implement a query mapper, mapping ©(loglogn)-bit keys to ©(loglogn)-bit values, so
that it supports queries/insertions/deletions in worst-case time O(1) and uses space O(mloglogn) bits to store
m = polylog(n) key/value pairs.

Proof. We implement the query mapper as a B-tree with B = y/logn. This B-tree is quite unusual: each node
stores up to y/logn keys/values of size ©(loglogn) bits each, along with up to v/logn + 1 pointers to children
nodes. Notice that the pointers are also O(loglogn) bits each, since the total number of nodes in the tree is
polylog(n).

Thus each node has total size only O(+/lognloglogn) bits. The fact that each node fits in o(logn) bits means
that we can use exhaustive subtabulation in order to implement node-level operations (queries, modifications,
insertions, deletions) in O(1) time.

Moreover, since the tree contains at most O(log” n) leaves and has fanout ©(y/Togn), the depth of the tree is
guaranteed to be O(1). Thus, in this context, the B-tree is actually an O(1)-time data structure. O

Having constructed the query mapper within each bucket, we can now describe how the query mapper interacts
with operations in the bucket: To insert an item z, a fingerprint f(z) is computed, and then that fingerprint is
queried in the B-tree query-mapper; if the fingerprint is already present, then the index is rebuilt from scratch
using a new fingerprint function; otherwise, the key is placed in the first empty position k& and the pair (f(x), k)
is added to the query mapper. To query an item z, we simply use the query mapper to obtain a position 7. If
the query mapper fails to find f(z), or if a different item 2’ is in position 4, then z is not in the hash table. To
delete an item x, we first perform a query for it, then we remove the item and possibly move one other item z’
in order to keep the bucket left aligned; finally, we update the query mapper to remove x, and to update the
position stored for z’.

Notice that, out of the three operations, the only one that is at risk of taking super-constant time is the
insertion, which may need to rebuild the query-mapper in the event of a fingerprint collision. Thus, we can
complete the analysis of the indexed partition hash table as follows:

LEMMA 4.3. An indexed partition hash table supports O(1)-time queries and deletions and O(1) expected-time
insertions. It takes nw + O(nloglogn) bits of space.

Proof. To establish the time guarantees, it suffices to show that the expected time per insertion spent rebuilding
the query mapper is O(1). We know from Lemma that the probability of a fingerprint collision (and thus a
rebuild) occurring is at most O(1/ log® n). If a rebuild occurs, it will take O(log® n) time to reconstruct the bucket
using new fingerprints. These fingerprints could also have a collision (with probability at most O(1/ log® n)),

Copyright (© 2024
Copyright for this paper is retained by authors

causing yet another rebuild, and so on. For all ¢ > 0, the probability of an ¢-th rebuild being performed is at most
O(log® n)~*, and the time to perform the rebuild is O(log®n). So the expected time spent on rebuilds is

O(log® n) B
; Ollog™ny ~ O

Finally, notice that the space consumed by the query mappers is collectively O(nloglogn) bits, since each
item uses O(loglogn) bits in some query mapper. This establishes the desired space guarantee. 0

5 Constant-Time Queries and Consant-Time Insertions/Deletions w.h.p.

So far, we have constructed a hash table that supports constant-time queries/deletions and constant expected-
time insertions, with nw 4+ O(nloglogn) bits of space. We now show how to improve the insertion time to O(1)
with high probability. In fact, the technique used here, which can be viewed as a simplification of an approach
used in past works |1L|2,|14], can actually be extended to apply to any hash table (see Appendix , a result that
to the best of our knowledge has not previously appeared in the literature.

Our new data structure will make use of two /n-tries, each storing up to n w-bit keys. Since
w = O(logn), the depth of such a /n-trie is O(w/logy/n) = O(1); and the space for such a y/n-trie is
O(n** - \/n-w?/log/n) = O(n®™ logn) bits.

The two tries have different roles. The growing trie receives new insertion/deletion operations. The
shrinking trie has items removed as they are implemented. For every insertion/deletion operation that is
added to the growing tree, a constant ¢ > 1 amount of time is spent implementing operations from the shrinking
tree in the actual hash table. We will guarantee that, whenever the growing tree reaches size n'/4, the shrinking
tree will have shrunk to size 0—at this point, the two tries swap roles.

The key technical claim that we must prove is that: Any set of n'/4 insertion/deletions can be implemented in
the hash table in O(n'/4) total time, with high probability. If we can prove this, then our approach of performing
O(1) work per operation on the shrinking trie will be sufficient to empty the trie out within n'/* operations, as
desired.

1/4

LEMMA 5.1. Any batch Q of n'/* insertions/deletions can be implemented in total time O(n'/*) with high
probability.

Proof. We assume without loss of generality that the deletions in @) are on different keys than the insertions, since
otherwise, they cancel each other.
Define Ay, ..., A, 1043, S0 that A; is the number of insertions/deletions from @ that get mapped to the i-th

bucket. With high probability, every A; satisfies A; < O(log3 n) (as this is true even if we consider all of the
items in the hash table, rather than just the ones in (). Condition on any fixed outcome of the A;s satisfying
A; < O(log3 n) for each i, and define random variables X1,..., X,0.9 so that X; is the amount of time needed to
implement the operations from A; on the i-th bucket.

We begin by bounding the worst-case value that X; could take (with high probability). With high probability,
none of the operations in A; overflow the bucket, so they do not trigger any rebuilds of the entire data structure.
On the other hand, some insertions may take super-constant time, as they may cause fingerprint collisions that
require the bucket to be rebuilt. Observe, however, that each rebuild takes O(log3 n) time, and that the number
of rebuilds triggered by a given insertion is a geometric random variable (each attempt fails with probability
< 1/2). Tt follows that, with high probability, there will be O(logn) rebuild attempts per insertion, and thus
that each insertion takes O(log" n) time. Summing over the O(log®n) insertions in A;, we can guarantee that
X,; < O(log” n) with high probability.

Next, we consider the expected value of X;. This is easy, since each of the | 4;| operations takes O(1) expected
time, so by linearity of expectation we have E[X;] < O(]A;]).

Finally, we can complete the proof with a simple Chernoff bound. The X;s are independent since X;’s
randomness comes from the i-th sub-hash-table, and since we are already conditioning on fixed outcomes for
the A;s, so they are not providing any randomness. Each X; has expected value E[X;] = O(A;) and worst-case
value at most O(log7 n). Thus X = ", X; is the sum of independent random variables with total expected value
O(Y, A;) = O(n'/*), and where each X; is at most O(log” n). This means that the quantity X/0(log” n) is a

Copyright (© 2024
Copyright for this paper is retained by authors

sum of independent [0, 1] random variables with total mean O(n'/*/log” n), which by a Chernoff bound (Lemma
implies that X/©(log” n) exceeds its mean p = n'/*4/log” n by at most O(u+/Iogn) with high probability.
Unfolding the bound, we get that X exceeds its mean by at most O(n'/®log®n) = o(n'/*). Thus X < O(n'/*),
as desired. |

6 Resizing Without Hurting Space or Time

Finally, we will show how to add dynamic resizing so that the space-bound becomes nw + O(nloglogn) bits,
where n is the current number of items.

We begin by focusing on the case where n stays in the range [71/2,7] for some parameter 7. In this regime,
there is a very simple trick that we can use for resizing.

The trick is that, rather than trying to resize the hash table as a single unit, we focus on resizing each of
the buckets. The only modification that we need to make is to allow the size of each bucket to grow/shrink over
time as n grows/shrinks. We can do this by directly applying Lemma to each bucket in the hash table: the
bucket, whose capacity is O(log®71), can store k items for any k < O(log® i) using only k + O(log'® 2) machine
words. Collectively over all ©(7/log® @) buckets, the buckets waste less than O(#/log'® 72) machine words of
space, which sums to O(7/ log”® 1) < O(7) bits.

This brings us to the following lemma.

LEMMA 6.1. If there are only n < n items stored in a resizable partition hash table, the space used is
nw + O(nloglogn) bits. If n € [f/2,7], then this becomes nw + O(nloglogn) bits.

Proof. As was the case for non-resizable partition hash tables, the per-bucket query mappers combine to use space
O(nloglog i) bits. The buckets themselves then use nw + O(7n) bits of space, as argued above. 0

Finally, we extend our construction to be space efficient even if n changes dramatically. Now, the only
constraint on n will be the machine-word size requirement: that the machine word size should be logarithmic in
n, that is, logn = ©(log w). This constraint is necessary so that (1) the definition of w.h.p. in n stays the same
over time; and (2) so that the lookup tables used in exhaustive tabulation take a negligible amount of space.

Our approach for allowing n to change dramatically over time will be the standard one: whenever n changes
by a constant factor, we rebuild the hash table according to Lemma from scratch using a new i = ©(n). We
spread the rebuild over O(n) operations so that each operation spends only O(1) time on it.

We must be careful about space efficiency, however. As we are migrating elements from the old version of
the hash table to the new one, we must consider the total space consumed by both hash tables. This is where
Lemma [6.T] comes to the rescue:

COROLLARY 6.1. (COROLLARY OF LEMMA Consider hash tables Hy and Hs that are each implemented with
Lemma [6.1 using capacities iy and na. Suppose that the hash tables contain ny and ny elements, respectively.
Then, collectively, they use space

(n1 + no)w + O(7ig log log 71y + 7ig log log ig)
bits.

As we are performing a given resize (spread over O(n) operations), the elements are spread across two tables
(a new and old one, with capacities 2; and 75 that are both ©(n) but that differ by constant factors). Collectively,
the hash tables contain all n elements, but each element is in at most one of the hash tables. Thus, by Corollary
the space usage at any given moment is nw + O(7; loglog i1) + O(fig loglog 7iz) = nw + O(nloglogn) bits.

To summarize, by rebuilding the hash table every time that n changes by a constant factor, and by spreading
the time spent for the rebuild across ©(n) operations, we arrive at the following:

LEMMA 6.2. A partition hash can be resized dynamically so that if it has n € [25%¥,2%] items, where € is a constant
in (0,1), it uses space nw + O(nloglogn) bits. Its time complexity remains constant time per query and constant
time w.h.p. for insertions and deletions.

Putting the pieces together, we have arrived at our main theorem, restated below:

Copyright (© 2024
Copyright for this paper is retained by authors

THEOREM 6.1. Let w be the machine word size, and consider hash tables storing w-bit keys, where the number n
of keys stored satisfies w = ©(logn). There is such a hash table that uses nw + O(nloglogn) bits of space, even
as n changes over time, while supporting queries in O(1) worst-case time and insertions/deletions in O(1) time
with probability 1 — 1/poly(n).

7 Historical Notes

The basic idea of hashing keys to buckets, and then using an indexing data structure to perform queries, appears
in almost all modern work on space-efficient hashing [2,/6}(7}291/36]. Historically, a major obstacle here was how to
design a space- and time-efficient query-mapping structure [24|6/29,36]. The idea of using exhaustive tabulation
to help implement the query mapper was due to Blelloch and Golovin in their work on history-independent hash
tables [9]. The insight that the query mapper can be implemented using a B-tree [4,[5,/10] is much more recent,
due to Bender et al. |7], although their query mappers are necessarily far more complex than the ones here as
they seek to optimize even the low-order terms in the space usage.

The basic idea of achieving w.h.p. bounds for insertions/deletions in a hash table by (a) queuing
insertions/deletions in an auxiliary buffer, and (b) spending constant work per operation on emptying that buffer,
can be attributed to a 1990 paper by Dietzfelbinger and Meyer auf der Heide |14]. Variations on the idea have also
been introduced and analyzed in the context of cuckoo hashing [1,2]. The idea ends up being especially simple
to describe in the context of partition hash tables because the hash table naturally decomposes into buckets that
can be analyzed individually. Another simplification that we make here is to implement the buffer directly as a
trie—this means that, unlike in past work, the buffer itself does not require any novel randomized data structures.
Finally, the observation that the technique can be generalized to apply to arbitrary hash tables appears to be a
new contribution to the literature.

The question of how to perform space-efficient resizing was left open [2] until relatively recently [6],7,[28]. The
local-bin-resizing approach that we take here can be viewed as a variation on the approach that was introduced by
Liu et al. |28] in the context of incremental (i.e., insertion-only) hash tables. Practically speaking, one downside
of this approach is that it adds an extra layer of indirection to the hash table. For an indirection-free approach
to resizing, see waterfall addressing [6].

All of the techniques used in this paper can be viewed as descendants of techniques that have appeared in
past work as components of far more sophisticated data structures. The contribution of this paper is therefore not
to invent new techniques (although we do simplify them), but rather to present a single, simple data structure,
that allows for each of the techniques to be presented with as little extraneous baggage as possible.

8 Acknowledgements

The authors are grateful to Keith Schwarz for his extensive feedback on earlier versions of this manuscript. His
suggestions significantly improved the final paper.

The authors would like to thank the NSF for support through grants CCF 2106999, CCF 2247576, CCF
2247577, and CCF 2106827.

Finally, William Kuszmaul is funded by the Rabin Postdoctoral Fellowship in Theoretical Computer Science
at Harvard University. Large parts of this research were completed while William was a PhD student at MIT,
where he was funded by a Fannie and John Hertz Fellowship and an NSF GRFP Fellowship. William Kuszmaul
was also partially sponsored by the United States Air Force Research Laboratory and the United States Air
Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-
19-2-1000. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air Force or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

References

[1] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing: Provable worst-case performance and
experimental results. In Proceedings of the 36th International Colloguium on Automata, Languages and
Programming (ICALP), volume 5555 of Lecture Notes in Computer Science, pages 107-118, 2009.

Copyright (© 2024
Copyright for this paper is retained by authors

2l

3l

(4]
(5]
(6]

(7l

(8]
(9]
[10]
(1]
(12]
(13]

(14]

(15]

[16]

(17]
(18]
(19]

20]

21]

Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case operations with a
succinct representation. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS), pages
787-796. IEEE, 2010.

V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. FaradZev. On economical construction of the transitive
closure of an oriented graph. Soviet Mathematics Doklady, 11:1209-1210, 1970. URL: http://cr.yp.to/bib/
entries.html#1970/arlazarov.

Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered indexes. In Edgar F.
Codd, editor, Record of the 1970 ACM SIGFIDET Workshop on Data Description and Access, pages 107-141, 1970.
Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered indices. Acta Informatica,
1:173-189, 1972.

Michael A Bender, Alex Conway, Martin Farach-Colton, William Kuszmaul, and Guido Tagliavini. All-purpose
hashing. arXiv preprint arXiv:2109.04548, 2021.

Michael A. Bender, Martin Farach-Colton, John Kuszmaul, William Kuszmaul, and Mingmou Liu. On the optimal
time/space tradeoff for hash tables. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1284-1297, June 2022.

Toana O Bercea and Guy Even. Dynamic dictionaries for multisets and counting filters with constant time
operations. Algorithmica, 85(6):1786-1804, 2023.

Guy E. Blelloch and Daniel Golovin. Strongly history-independent hashing with applications. In Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pages 272-282, Providence,
Rhode Island, USA, 21-23 October 2007.

Douglas Comer. The ubiquitous B-tree. ACM Comput. Surv., 11(2):121-137, 1979.

Rene De La Briandais. File searching using variable length keys. In Papers presented at the the March 3-5, 1959,
Western Joint Computer Conference, pages 295-298, 1959.

Erik D Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai Patragcu. De dictionariis dynamicis
pauco spatio utentibus. In Latin American Symposium on Theoretical Informatics, pages 349-361. Springer, 2006.
Martin Dietzfelbinger. Design strategies for minimal perfect hash functions. In International Symposium on
Stochastic Algorithms, pages 2—17. Springer, 2007.

Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash functions and dynamic
hashing in real time. In International Colloquium on Automata, Languages, and Programming, pages 6—19.
Springer, 1990.

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, Hans Rohnert, and Robert E
Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal on Computing, 23(4):738-761, 1994.
Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert, and
Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower bounds. In Proceedings 29th Annual Symposium
on Foundations of Computer Science (FOCS), pages 524-531, October 1988.

Martin Dietzfelbinger and Michael Rink. Applications of a splitting trick. In International Colloquium on
Automata, Languages, and Programming, pages 354-365. Springer, 2009.

Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with tightly packed constant
size bins. Theoretical Computer Science, 380(1-2):47-68, 2007.

Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple hash functions. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC), pages 629-638, 2003.

Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G Spirakis. Space efficient hash tables with worst case
constant access time. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science
(STOC), pages 271-282, 2003.

Michael L. Fredman, Jdnos Komlds, and Endre Szemerédi. Storing a sparse table with O(1) worst case access time.
In Proceedings of the 28rd Annual Symposium on Foundations of Computer Science (FOCS’82), pages 165-169,
3-5 November 1982.

Michael L. Fredman, Jdnos Komlds, and Endre Szemerédi. Storing a sparse table with 0(1) worst case access time.
J. ACM, 31(3):538-544, 1984.

Norman Lloyd Johnson and Samuel Kotz. Urn models and their application: An approach to modern discrete
probability theory. Wiley, New York, NY, 1977.

Don Knuth. Notes on “open” addressing, 1963.

Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, 1973.
Valentin F. Kolchin. Random Allocations. Scripta Series in Mathematics. VH Winston, 1978.

Tianxiao Li, Jingxun Liang, Huacheng Yu, and Renfei Zhou. Tight cell-probe lower bounds for dynamic succinct
dictionaries. In FOCS, 2023.

Mingmou Liu, Yitong Yin, and Huacheng Yu. Succinct filters for sets of unknown sizes. In 47th International
Colloquium on Automata, Languages, and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum fiir

Copyright (© 2024
Copyright for this paper is retained by authors

Informatik, 2020.

[29] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: efficient deterministic multithreading. In
Proceedings of the ACM Symposium on Operating Systems Principles, pages 327-336, 2011.

[30] Anna Ostlin and Rasmus Pagh. Uniform hashing in constant time and linear space. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC), pages 622-628, 2003.

[31] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space. SIAM Journal on Computing,
38(1):85-96, 2008.

[32] Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM Journal on Computing,
31(2):353-363, 2001.

[33] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proceedings of the 9th European Symposium on
Algorithms (ESA 2001), volume 2161 of Lecture Notes in Computer Science, pages 121-133, University of Aaarhus,
Denmark, 28-31 August 2001. Springer.

[34] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122-144, May 2004.

[35] Mihai Patrascu. Succincter. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 305-313, 2008.

[36] Rajeev Raman and Satti Srinivasa Rao. Succinct dynamic dictionaries and trees. In Proceedings of the 30th
International Colloquium on Automata, Languages and Programming (ICALP), pages 357-368, 2003.

[37] A Siegel. On universal classes of fast high performance hash functions, their time-space tradeoff, and their
applications. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pages
20-25, 1989.

[38] Huacheng Yu. Nearly optimal static Las Vegas succinct dictionary. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 1389-1401, 2020.

A Deamortizing Insertions in Arbitrary Hash Tables

In this section, we show how to deamortize insertions/deletions in any hash table, so that if they formerly
required O(1) expected time, they now require O(1) worst-case time with high probability.

We begin by considering non-blocking hash tables, defined to be a hash table with the property that queries
can be performed even when insertions or deletions are in the process of executing.

PROPOSITION A.1. A non-blocking hash table with constant worst-case queries and constant expected-time
insertions/deletions can be modified so that it performs queries in worst-case constant time and insertions and
deletions in constant time w.h.p. The total space overhead is o(n) bits.

Our data structure makes use of two /n-tries, exactly as in Section @ As before, what we need to prove is that:
Any set of n'/4 insertion/deletions can be implemented in the hash table in O(n'/4) total time, with high
probability.

However, in general, this claim may not be true. To make it so, we need to make one more algorithmic
modification to how we use the non-blocking hash table. Rather than storing a single hash table, we keep n’:
sub-hash-tables, and we hash each key to a random sub-hash-table where it resides. By Corollary each
sub-hash-table will have at most n%! + O(y/n%1logn) keys at a time, w.h.p.. Since each sub-hash-table can be
implemented to have capacity n%! + O(y/n%!logn), the sum of the capacities is n + O(n"%/logn), and the
excess capacity (beyond n) contributes a space overhead of only o(n) bits.

Now we can analyze the total time needed to implement n'/* insertions/deletions. This, in turn implies
Proposition [A.1

9

LEMMA A.1. Any batch Q of n'/* insertions/deletions can be implemented in total time O(n'/*) with high
probability.

Proof. Our proof will be very similar to that of Lemma [5.1] The difference is that now the sub-hash-tables of
size O(n®') will serve the role that formerly was served by the buckets of size O(log® n).

Without loss of generality, the deletions are on different keys than the insertions, since otherwise they cancel.
Define Ay, ..., A,o9 so that A; is the number of insertions/deletions from @ that get mapped to the i-th
sub-hash-table. Fix any outcome of the A;s (with A4; < O(n®1) for each 4), and define random variables
X1,..., X009 so that X; is the amount of time needed to implement the A; operations on the i-th
sub-hash-table. We will show that we can apply a Chernoff bound to the total work >, X;.

Copyright (© 2024
Copyright for this paper is retained by authors

A key observation is that no X; can be more than O(n®!logn). This is because, if the operations on the i-th
sub-table take more than O(n%!) time, then we can simply rebuild that hash table from scratch (using a new
hash function). With high probability, we will not need to do so more than O(logn) times (since, each time that
we do it, we have at least a, say, 50% chance of succeeding in less than O(n°!) time). Thus we have

X; <0(n®logn) for each i, w.h.p..

We can now complete our proof with a Chernoff bound (Lemma . The X;s are independent, since X;’s
randomness comes from the i-th sub-hash-table, and since we are already conditioning on fixed outcomes for the
A;s, so they are not providing any randomness. Each X; has expected value E[X;] = A;. Thus X =", X is the
sum of independent random variables with total expected value O(3"; 4;) = O(n'/#), and where each X; is at
most O(n%!logn). This means that the quantity X/©(n°!logn) is a sum of independent [0, 1] random
variables with total mean n% !5 which by a Chernoff bound implies that X/0(n%!logn) exceeds its mean by at
most O(y/(logn)n01%) w.h.p.. Unfolding the bound, we get that X exceeds its mean by at most

O(log"® n01+:075) — o(p'/4). Thus X < O(n'/*), as desired. 0

We now deal with hash tables that can block queries during insertions and deletion. The question that we must
answer is: how can we gradually implement the shrinking buffer, while still allowing queries to run?

As an insertion/deletion is being performed, there are modifications that it would like to make to the hash
table. To shield the modifications from queries (until the insertion/deletion is complete), we keep a diff-buffer
that records the differences between what the insertion/deletion thinks the hash table looks like and what
queries think it looks like—that is, the diff-buffer records edits that the insertion/deletion plans to make. We
keep these in a /n-trie, just like the insertion buffer. Thus, the queries that happen during the
insertion/deletion can read the old hash table, and the insertion/deletion can read bytes by consulting both the
old hash table and the diff buffer.

Once the insertion/deletion has recorded all its changes, the hash table enters a new state, in which all queries
now consult the hash table and the diff buffer (so they see the insertion/deletion as having been implemented).
During this phase, changes are removed incrementally from the diff buffer and applied to the hash table. Once
the diff buffer is empty, queries can go back to accessing just the hash table, and we are ready to process
another insertion/deletion from the insertion buffer.

At each point in time, queries see a well-formed hash table, and any currently active insertion/deletion sees the
hash table as it is being incrementally modified. We conclude that:

THEOREM A.l. Any hash table that has constant time queries and constant expected time insertions and
deletions can be deamortized to yield constant time queries and constant time insertions/deletion w.h.p. by using
an extra o(n) bits.

Copyright (© 2024
Copyright for this paper is retained by authors

	Introduction
	Preliminaries
	Notation
	Basic Machinery

	Slow Partition Hash Tables
	Constant-Time Queries/Deletions and Constant Expected-Time Insertions
	Constant-Time Queries and Consant-Time Insertions/Deletions w.h.p.
	Resizing Without Hurting Space or Time
	Historical Notes
	Acknowledgements
	Deamortizing Insertions in Arbitrary Hash Tables

