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ABSTRACT

Coverage conditions—which assert that the data logging distribution adequately
covers the state space—play a fundamental role in determining the sample complex-
ity of offline reinforcement learning. While such conditions might seem irrelevant
to online reinforcement learning at first glance, we establish a new connection by
showing—somewhat surprisingly—that the mere existence of a data distribution
with good coverage can enable sample-efficient online RL. Concretely, we show that
coverability—that is, existence of a data distribution that satisfies a ubiquitous cover-
age condition called concentrability—can be viewed as a structural property of the
underlying MDP, and can be exploited by standard algorithms for sample-efficient
exploration, even when the agent does not know said distribution. We complement
this result by proving that several weaker notions of coverage, despite being sufficient
for offline RL, are insufficient for online RL. We also show that existing complexity
measures for online RL, including Bellman rank and Bellman-Eluder dimension,
fail to optimally capture coverability, and propose a new complexity measure, the
sequential extrapolation coefficient, to provide a unification.

1 INTRODUCTION

The last decade has seen development of reinforcement learning algorithms with strong empirical per-
formance in domains including robotics (Kober et al., 2013; Lillicrap et al., 2015), dialogue systems (Li
et al., 2016), and personalization (Agarwal et al., 2016; Tewari and Murphy, 2017). While there is great
interest in applying these techniques to real-world decision making applications, the number of samples
(steps of interaction) required to do so is often prohibitive, with state-of-the-art algorithms requiring mil-
lions of samples to reach human-level performance in challenging domains. Developing algorithms with
improved sample efficiency, which entails efficiently generalizing across high-dimensional states and ac-
tions while taking advantage of problem structure as modeled practitioners, remains a major challenge.

Investigation into design and analysis of algorithms for sample-efficient reinforcement learning has
largely focused on two distinct problem formulations:

• Online reinforcement learning, where the learner can repeatedly interact with the environment by
executing a policy and observing the resulting trajectory.

• Offline reinforcement learning, where the learner has access to logged transitions and rewards
gathered from a fixed behavioral policy (e.g., historical data or expert demonstrations), but cannot
directly interact with the underlying environment.

While these formulations share a common goal (learning a near-optimal policy), the algorithms used to
achieve this goal and conditions under which it can be achieved are seemingly quite different. Focusing
on value function approximation, sample-efficient algorithms for online reinforcement learning require
both (a) representation conditions, which assert that the function approximator is flexible enough to
represent value functions for the underlying MDP (optimal or otherwise), and (b) exploration conditions
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(or, structural conditions) which limit the amount of exploration required to learn a near-optimal policy—
typically by enabling extrapolation across states or limiting the number of effective state distributions
(Russo and Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020b; Du et al., 2021;
Jin et al., 2021a; Foster et al., 2021). Algorithms for offline reinforcement learning typically require
similar representation conditions. However, since data is collected passively from a fixed logging
policy/distribution rather than actively, the exploration conditions used in online RL are replaced with
coverage conditions, which assert that the data collection distribution provides sufficient coverage over
the state space (Antos et al., 2008; Chen and Jiang, 2019; Xie and Jiang, 2020; 2021; Jin et al., 2021b;
Rashidinejad et al., 2021; Foster et al., 2022; Zhan et al., 2022). The aim for both lines of research (online
and offline) is to identify the weakest possible conditions under which learning is possible, and design
algorithms that take advantage of these conditions. The two lines have largely evolved in parallel, and
it is natural to wonder whether there are deeper connections. Since the conditions for sample-efficient
online RL and offline RL mainly differ via exploration versus coverage, this leads us to ask:

If an MDP admits a data distribution with favorable coverage for offline RL, what
does this imply about our ability to perform online RL efficiently?

Beyond intrinsic theoretical value, this question is motivated by the observation that many real-
world applications lie on a spectrum between online and offline. It is common for the learner to
have access to logged/offline data, yet also have the ability to actively interact with the underlying
environment, possibly subject to limitations such as an exploration budget (Kalashnikov et al., 2018).
Building a theory of real-world RL that can lead to algorithm design insights for such settings requires
understanding the interplay between online and offline RL.

1.1 OUR RESULTS

We investigate connections between coverage conditions in offline RL and exploration in online RL
by focusing on the concentrability coefficient, the most ubiquitous notion of coverage in offline RL.
Concentrability quantifies the extent to which the data collection distribution uniformly covers the
state-action distribution induced by any policy. We introduce a new structural property, coverability,
which reflects the best concentrability coefficient that can be achieved by any data distribution,
possibly designed by an oracle with knowledge of the underlying MDP. Our main results are as follows:

1. We show (Section 3) that coverability (that is, mere existence of a distribution with good concen-
trability) is sufficient for sample-efficient online exploration, even when the learner has no prior
knowledge of this distribution. This result requires no additional assumptions on the underly-
ing MDP beyond standard Bellman completeness, and—perhaps surprisingly—is achieved using
standard algorithms (Jin et al., 2021a), albeit with analysis ideas that go beyond existing techniques.

2. We show (Section 4) that several weaker notions of coverage in offline RL, including single-policy
concentrability (Jin et al., 2021b; Rashidinejad et al., 2021) and conditions based on Bellman
residuals (Chen and Jiang, 2019; Xie et al., 2021a), are insufficient for sample-efficient online
exploration. This shows that in general, coverage in offline reinforcement learning and exploration
in online RL not compatible, and highlights the need for additional investigation going forward.

Our results serve as a starting point for systematic study of connections between online and offline
learnability in RL. To this end, we provide several secondary results:

1. We show (Section 5) that existing complexity measures for online RL, including Bellman rank and
Bellman-Eluder dimension, do not optimally capture coverability, and provide a new complexity
measure, the sequential extrapolation coefficient, which unifies these notions.

2. We establish (Appendix C) connections between coverability and reinforcement learning with
exogenous noise, with applications to learning in exogenous block MDPs (Efroni et al., 2021; 2022a).

3. We give algorithms for reward-free exploration (Jin et al., 2020a; Chen et al., 2022) under
coverability (Appendix G).

While our results primarily concern analysis of existing algorithms rather than algorithm design, they
highlight a number of exciting directions for future research, and we are optimistic that the notion
of coverability can guide the design of practical algorithms going forward.

Notation. For an integer n∈N, we let [n] denote the set {1,...,n}. For a setX , we let ∆(X ) denote the
set of all probability distributions overX . We adopt standard big-oh notation, and write f=Õ(g) to
denote that f=O(g ·max{1,polylog(g)}) and a≲b as shorthand for a=O(b).
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2 BACKGROUND: ONLINE/OFFLINE RL, COVERAGE, AND COVERABILITY

Markov decision processes. We consider an episodic reinforcement learning setting. Formally,
a Markov decision process M = (X ,A,P,R,H,x1) consists of a (potentially large) state space X ,
action spaceA, horizonH , probability transition function P ={Ph}Hh=1, where Ph :X×A→∆(X ),
reward functionR={Rh}Hh=1, whereRh :X×A→ [0,1], and deterministic initial state x1∈X .1 A
(randomized) policy is a sequence of per-timestep functions π= {πh :X →∆(A)}Hh=1. The policy
induces a distribution over trajectories (x1,a1,r1),...,(xH ,aH ,rH) via the following process. For
h=1,...,H : ah∼π(· |xh), rh=Rh(xh,ah), and xh+1∼Ph(· |xh,ah). For notational convenience,
we use xH+1 to denote a deterministic terminal state with zero reward. We let Eπ[·] and Pπ[·] denote
expectation and probability under this process, respectively.

The Q-function for policy π is Qπh(x,a) := Eπ
[∑H

h′=h rh′ | xh = x,ah = a
]
, the value function

for π is V πh (x) := Ea∼πh(·|x)[Qπh(x,a)], and the expected reward for π is J(π) := V π1 (x1). We
let π⋆ denote the optimal (deterministic) policy, which maximizes Qπh(x,a) for all (x,a) ∈ X ×A
simultaneously; we define V ⋆h =V π

⋆

h andQ⋆h=Q
π⋆

h . We define the occupancy measure for policy π
via dπh(x,a) :=Pπ[xh=x,ah=a] and dπh(x) :=Pπ[xh=x]. We let Th denote the Bellman operator for
layer h, defined via [Thf ](x,a)=Rh(x,a)+Ex′∼Ph(x,a)[maxa′f(x

′,a′)] for f :X×A→R. We also
assume that rewards are normalized such that

∑
h∈[H]rh∈ [0,1] . To simplify technical presentation,

we assume thatX andA are countable; we anticipate that this assumption can be removed.

Online Reinforcement Learning. Our main results concern online reinforcement learning in an
episodic framework, where the learner repeatedly interacts with an unknown MDP by executing a
policy and observing the resulting trajectory, with the goal of maximizing total reward.
Formally, the protocol proceeds in T rounds, where at each round t=1,...,T , the learner: i) Selects a
policy π(t)=

{
π(t)

h

}
h∈[H]

to execute in the (unknown) underlying MDPM⋆; ii) Observe the resulting

trajectory (x(t)

1 ,a
(t)

1 ,r
(t)

1 ),...,(x(t)

H ,a
(t)

H ,r
(t)

H ). The learner’s goal is to minimize their cumulative regret,
defined via Reg :=

∑
t∈[T ]J(π

⋆)−J(π(t)).

To achieve sample-efficient online reinforcement learning guarantees that do not depend on the size of
the state space, one typically appeals to value function approximation methods that take advantage of a
function classF⊂ (X×A→R) that attempts to model the value functions for the underlying MDP
M⋆ (optimal or otherwise). An active line of research provides structural conditions under which such
approaches succeed (Russo and Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020b;
Du et al., 2021; Jin et al., 2021a; Foster et al., 2021), based on assumptions that control the interplay
between the function approximator F and the dynamics of the MDP M⋆. These results require (i)
representation conditions, which require thatF is flexible enough to model value functions of interest
(e.g.,Q⋆∈F or ThFh+1⊆Fh) and (ii) exploration conditions, which either explicitly or implicitly
limit the amount of exploration required for a deliberate algorithm to learn a near-optimal policy. This
is typically accomplished by either enabling extrapolation from states already visited, or by limiting
the number of effective state distributions that can be encountered.

Offline Reinforcement Learning and Coverage Conditions. Our aim is to investigate parallels
between online and offline reinforcement learning. In offline reinforcement learning, the learner cannot
actively execute policies in the underlying MDPM⋆. Instead, for each layer h, they receive a dataset
Dh of n tuples (xh,ah,rh,xh+1) with rh=Rh(xh,ah), xh+1∼Ph(· |xh,ah), and (xh,ah)∼µh i.i.d.,
where µh∈∆(X×A) is the data collection distribution; we define µ={µh}h∈[H]. The goal of the
learner is to use this data to learn an ε-optimal policy π̂, that is: J(π⋆)−J(π̂)≤ε.
Algorithms for offline reinforcement learning require representation conditions similar to those re-
quired for online RL. However, since it is not possible to actively explore the underlying MDP, one
dispenses with exploration conditions and instead considers coverage conditions, which require that
each data distribution µh sufficiently covers the state space. As an example, consider Fitted Q-Iteration
(FQI), one of the most well-studied offline reinforcement learning algorithms (Munos, 2007; Munos
and Szepesvári, 2008; Chen and Jiang, 2019). The algorithm, which uses least-squares to approxi-
mate Bellman backups, is known to succeed under (i) a representation condition known as Bellman
completeness (or “completeness”), which requires that Thf ∈Fh for all f ∈Fh+1, and (ii) a coverage
condition called concentrability. To state, the result, recall that ∥x∥∞ :=maxi|xi| for x∈Rd.

1While our results assume that the initial state is fixed for simplicity, this assumption is straightforward to relax.

3



Published as a conference paper at ICLR 2023

Definition 1 (Concentrability). The concentrability coefficient for a data distribution µ={µh}Hh=1
and policy class Π is given byCconc(µ) :=supπ∈Π,h∈[H]∥dπh/µh∥∞.

Concentrability requires that the data distribution uniformly covers all possible induced state dis-
tributions. With concentrability2 and completeness, FQI can learn an ε-optimal policy using
poly(Cconc(µ),log|F|,H,ε−1) samples. Importantly, this result scales only with the concentrability
coefficientCconc(µ) and the capacity log|F| for the function class, and has no explicit dependence on
the size of the state space. There is a vast literature which provides algorithms with similar, often more
refined guarantees (Chen and Jiang, 2019; Xie and Jiang, 2020; 2021; Jin et al., 2021b; Rashidinejad
et al., 2021; Foster et al., 2022; Zhan et al., 2022).

The Coverability Coefficient. Having seen that access to a data distribution µ with low concen-
trability Cconc(µ) is sufficient for sample-efficient offline RL, we now ask what existence of such a
distribution implies about our ability to perform online RL. To this end, we introduce a new structural
parameter, the coverability coefficient, whose value reflects the best concentrability coefficient that can
be achieved with oracle knowledge of the underlying MDPM⋆.
Definition 2 (Coverability). The coverability coefficient Ccov > 0 for a policy class Π is given by
Ccov :=infµ1,...,µH∈∆(X×A){Cconc(µ)} .

Coverability is an intrinsic structural property of the MDPM⋆ which implicitly restricts the complexity
of the set of possible state distributions. While it is always the case thatCcov≤|X |·|A|, the coefficient
can be significantly smaller (in particular, independent of |X |) for benign MDPs such as block MDPs
and MDPs with low-rank structure (Chen and Jiang, 2019, Prop 5); see Appendix C for details.

With this definition in mind, we ask: If the MDP M⋆ satisfies low coverability, is sample-efficient
online reinforcement learning possible? Note that if the learner were given access to data from the
distribution µ that achieves the value of Ccov, it would be possible to simply appeal to offline RL
methods such as FQI, but since the learner has no prior knowledge of µ, this question is non-trivial,
and requires deliberate exploration.

3 COVERABILITY IMPLIES SAMPLE-EFFICIENT ONLINE EXPLORATION

We now present our main result, which shows that low coverability is sufficient for sample-efficient
online exploration. We first describe the algorithm and regret bound, then sketch the proof and give intu-
ition (Section 3.1). We conclude (Section 3.2) by applying the main result to give regret bounds for learn-
ing in exogenous block MDPs (Efroni et al., 2021), highlighting structural properties of coverability.

Function approximation. We work with a value function class F = F1 × ··· × FH , where
Fh ⊂ (X ×A → [0,1]), with the goal of modeling value functions for the underlying MDP. We
adopt the convention that fH+1 = 0, and for each f ∈ F , we let πf denote the greedy policy with
πf,h(x) :=argmaxa∈Afh(x,a), and we use fh(x,πh) :=Ea∼πh(·|x)[fh(x,a)] for any πh. We take our
policy class to be the induced class Π:={πf |f ∈F} for the remainder of the paper unless otherwise
stated. We make the following standard completeness assumption, which requires that the value
function class is closed under Bellman backups (Wang et al., 2020b; Jin et al., 2020b; Wang et al.,
2021b; Jin et al., 2021a).
Assumption 1 (Completeness). For all h∈ [H], we have Thfh+1∈Fh for all fh+1∈Fh+1.

Completeness implies that F is realizable (that is,Q⋆∈F), but is a stronger assumption in general.
We assume for simplicity that |F|<∞, and our results scale with log|F|; this can be extended to
infinite classes via covering numbers using a standard analysis.

Algorithm and main result. Our result is based on a new analysis of the GOLF algorithm of Jin et al.
(2021a), which is presented in Algorithm 1 of Appendix D for completeness. GOLF is based on the
principle of optimism in the face of uncertainty. At each round, the algorithm restricts to a confidence
set F (t)⊆F with the property that Q⋆ ∈F (t), and chooses π(t) = πf(t) based on the value function
f (t)∈F (t) with the most optimistic estimate f1(x1,πf,1(x1)) for the total reward. The confidence sets
F (t) are based on an empirical proxy to squared Bellman error, and are constructed in a global fashion
that entails optimizing over fh for all layers h∈ [H] simultaneously (Zanette et al., 2020a).

2Specifically, FQI requires concentrability withΠ chosen to be the set of all admissible policies (see, e.g., Chen
and Jiang, 2019). Other algorithms (Xie and Jiang, 2020) can leverage concentrability w.r.t smaller policy classes.
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Note that while GOLF was originally introduced to provide regret bounds based on the notion of
Bellman-Eluder dimension, we show (Section 5) that coverability cannot be (optimally) captured by
this complexity measure, necessitating a new analysis. Our main result, Theorem 1, shows that GOLF
attains low regret for online reinforcement learning whenever the coverability coefficient is small.
Theorem 1 (Coverability implies sample-efficient online RL). Under Assumption 1, there exists an
absolute constant c such that for any δ ∈ (0,1] and T ∈ N+, if we choose β = c · log(TH|F|/δ) in
Algorithm 1, then with probability at least 1−δ, we have Reg≤O(H

√
CcovT log(TH|F|/δ)log(T )),

whereCcov is the coverability coefficient (Definition 2).

Beyond the coverability parameter Ccov, the regret bound in Theorem 1 depends only on standard
problem parameters (the horizonH and function class capacity log|F|). Hence, this result shows that
coverability, along with completeness, is sufficient for sample-efficient online RL. Additional features
of Theorem 1 are as follows.

• While coverability implies that there exists a distribution µ for which the concentrability coefficient
Cconc is bounded, Algorithm 1 has no prior knowledge of this distribution. We find the fact that the
GOLF algorithm—which does not involve explicitly searching such a distribution—succeeds under
this condition to be somewhat surprising (recall that given sample access toµ, one can simply run FQI).
Our proof shows that despite the fact that GOLF does not explicitly reason aboutµ, coverability implic-
itly restricts the set of possible state distributions, and limits the extent to which the algorithm can be
“surprised” by substantially new distributions. We anticipate that this analysis will find broader use.

• Ignoring factors logarithmic in T , H , and δ−1, the regret bound in Theorem 1 scales as
H
√
CcovT log|F|, which is optimal for contextual bandits (where Ccov = |A| and H = 2),3 and

hence cannot be improved in general (Agarwal et al., 2012). The dependence on H matches the
regret bound for GOLF based on Bellman-Eluder dimension (Jin et al., 2021a).

• GOLF uses confidence sets based on squared Bellman error, but there are similar algorithms which
instead work with average Bellman error (Jiang et al., 2017; Du et al., 2021) and, as a result, require
only realizability rather than completeness (Assumption 1). While existing complexity measures such
as Bellman rank and Bellman-Eluder dimension can be used to analyze both types of algorithm, and
our results critically use the non-negativity of squared Bellman error, which facilitates certain “change-
of-measure” arguments. Consequently, it is unclear whether the completeness assumption can be
removed (i.e., whether coverability and realizability alone suffice for sample-efficient online RL).

On the algorithmic side, our results give guarantees for PAC RL via online-to-batch conversion, which
we state here for completeness. We also provide an extension to reward-free exploration in Appendix G.
Corollary 2. Under Assumption 1, there exists an absolute constant c such that for any δ∈(0,1] and
T ∈N+, if we choose β=c·log(TH|F|/δ) in Algorithm 1, then with probability at least 1−δ, the policy
π̄ output by Algorithm 1 has4 J(π⋆)−J(π̄)≤O

(
H
√
Ccovlog(TH|F|/δ)log(T )/T

)
.

3.1 PROOF SKETCH FOR THEOREM 1: WHY IS COVERABILITY SUFFICIENT?

We now sketch the main ideas behind the proof of Theorem 1, highlighting the role of coverability in
limiting the complexity of exploration.

Regret decomposition and change of measure. For each t, we define δ(t)

h (·, ·) := f (t)

h (·, ·) −
(Thf (t)

h+1)(·,·), which may be viewed as a “test function” at level h induced by f (t)∈F . We adopt the

shorthand d(t)

h ≡dπ
(t)

h , and we define d̃(t)

h (x,a) :=
∑t−1
i=1d

(i)

h (x,a) as the cumulative historical visitation
for rounds prior to step t.

A standard regret decomposition for optimistic algorithms (Lemma 13) allows us to relate regret to the
average Bellman error under the learner’s sequence of policies:

Reg≤
∑
t∈[T ]

(
f (t)

1 (x1,πf(t)
1 ,1

(x1))−J(π(t))
)
=
∑
t∈[T ]

∑
h∈[H]

E
d
(t)
h

[
f (t)

h (x,a)−(Thf (t)

h+1)(x,a)︸ ︷︷ ︸
=:δ

(t)
h (x,a)

]
. (1)

3We require H=2 to apply the result to contextual bandits due to assuming the deterministic starting state.
4π̄ is the non-Markov policy obtained by sampling t∼ [T ] and playing π(t).
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Fix h∈ [H]. We use a change-of-measure argument to relate the on-policy average Bellman error
E
(x,a)∼d(t)h

[δ(t)

h (x,a)] to the in-sample squared Bellman error under d̃(t)

h , writing Eq. (1) as

∑
t∈[T ]

∑
x,a

d(t)

h (x,a)

(
d̃(t)

h (x,a)

d̃(t)

h (x,a)

)1/2

δ(t)

h (x,a)≤

√√√√∑
t∈[T ]

∑
x,a

(
d(t)

h (x,a)
)2

d̃(t)

h (x,a)︸ ︷︷ ︸
(I): extrapolation error

·
√∑
t∈[T ]

∑
x,a

d̃(t)

h (x,a)
(
δ(t)

h (x,a)
)2

︸ ︷︷ ︸
(II): in-sample squared Bellman error

,

where the inequality is an application of Cauchy-Schwarz. As an immediate consequence of
the confidence set construction in Eq. (3), completeness, and a standard concentration argument
(Lemma 12 in Appendix D), we can bound the in-sample error by (II)≤O

(√
βT
)
.

Bounding the extrapolation error using coverability. To proceed, we show that the extrapolation
error (I) is controlled by coverability. We have:

∑
t∈[T ]

∑
x,a

(
d(t)

h (x,a)
)2

d̃(t)

h (x,a)
≤
∑
t∈[T ]

∑
x,a

max
t′∈[T ]

d(t′)
h (x,a)·

d(t)

h (x,a)

d̃(t)

h (x,a)
≤
(
max
x,a

∑
t∈[T ]

d(t)

h (x,a)

d̃(t)

h (x,a)

)
︸ ︷︷ ︸
(a)

≲O(log(T )) by Lemma 15

·
(∑
x,a

max
t∈[T ]

d(t)

h (x,a)

)
︸ ︷︷ ︸

(b)

≤Ccov by Lemma 14

.

Figure 1: An example of coverability
⇐⇒ cumulative reachability (which is
equal to the total area of the shaded re-
gion without double-counting overlaps.
Π={π1,π2,π3,π4}, dashed curves isdπ).

Here, the inequality (a) uses a scalar variant of the elliptic
potential lemma (Lemma 15; cf. Lattimore and Szepesvári
(2020)), which we apply on a per-state basis.5 The inequality
(b) uses a key result (Lemma 14 in Appendix D), which shows
that coverability is equivalent to a quantity we term cumulative
reachability, defined via

∑
(x,a)∈X×A supπ∈Π dπh(x, a).

Cumulative reachability reflects the variation in visitation
probabilities for policies in the class Π, and boundedness of
this quantity (which occurs when state-action pairs visited by
policies in Π have large overlap) implies that the contributions
from potentials for different state-action pairs average out.
See Figure 1 for an illustration.

To conclude, we substitute the preceding bounds into the term (I), which gives Reg ≤∑H
h=1E(x,a)∼d(t)h

[
δ(t)

h (x,a)
]
≤O

(
H
√
Ccov ·βT log(T )

)
.

Note that to obtain the expression in term (I), our proof critically uses that the confidence set construc-
tion provides a bound on the squared Bellman error E

(x,a)∼d̃(t)h
[δ(t)

h (x,a)2] in the change of measure
argument. This contrasts with existing works on online RL with general function approximation (e.g.,
Jiang et al., 2017; Jin et al., 2021a; Du et al., 2021), which typically move from average Bellman error
to squared Bellman error as a lossy step, and only work with squared Bellman error because it permits
simpler construction of confidence sets. Confidence sets based on average Bellman error will lead
to a larger notion of extrapolation error which cannot be controlled using coverability (cf. Section 5).

3.2 RICH OBSERVATIONS AND EXOGENOUS NOISE: APPLICATION TO BLOCK MDPS

As an application of Theorem 1, we consider the problem of reinforcement learning in Exogenous
Block MDPs (Ex-BMDPs), a problem which has received extensive recent interest (Efroni et al., 2021;
2022a;b; Lamb et al., 2022). Recall that the block MDP (Jiang et al., 2017; Du et al., 2019; Misra
et al., 2020) is a model in which the (“observed”) state space X is large/high-dimensional, but can
be mapped by an (unknown) decoder ϕ⋆ to a small latent state space which governs the dynamics.
Exogenous block MDPs generalize this model further by factorizing the latent state space into small
controllable (“endogenous”) component S and a large irrelevant (“exogenous”) component Ξ, which
may be temporally correlated.

The main challenge of learning in block MDPs is that the decoder ϕ⋆ is not known to the learner in
advance. Indeed, given access to the decoder, one can obtain regret poly(H,|S|,|A|)·

√
T by applying

5Applying this result formally requires a separate argument to handle early rounds in which pairs (x,a) have
been visited very little; this is given in Appendix D.
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tabular reinforcement learning algorithms to the latent state space. In light of this, the aim of the
Ex-BMDP setting is to obtain sample complexity guarantees that are independent of the size of the
observed state space |X | and exogenous state space |Ξ|, and scale as poly(|S|,|A|,H,log|F|), where
F is an appropriate class of function approximators (typically either a value function classF or a class
of decoders Φ that attempts to model ϕ⋆ directly).

We show (Proposition 8 in Appendix C) that for any Ex-BMDP, one has Ccov ≤ |S| · |A|,
which—through Theorem 1—implies that GOLF attains Reg≤O

(
H
√
|S||A|T log(TH|F|/δ)log(T )

)
whenever Assumption 1 holds; critically, this result scales only with the cardinality |S| for the
endogenous latent state space, and with the capacity log|F| for the value function class. It is the first
result for this setting that allows for stochastic latent dynamics and emission process, albeit with
the extra assumption of completeness. Existing algorithms either require that the endogenous latent
dynamics P endo are deterministic (Efroni et al., 2021) or allow for stochastic dynamics but heavily
restrict the observation process (Efroni et al., 2022a), and existing complexity measures such as
Bellman Rank and Bellman-Eluder dimension can be arbitrarily large for this setting (see discussion
in Section 5). See Appendix C for details and discussion.

4 ARE WEAKER NOTIONS OF COVERAGE SUFFICIENT?
In Section 3, we showed that existence of a distribution with good concentrability (coverability)
is sufficient for sample-efficient online RL. However, while concentrability is the most ubiquitous
coverage condition in offline RL, there are several weaker notions of coverage which also lead to
sample-efficient offline RL algorithms. In this section, we show that analogues of coverability based on
these conditions, single-policy concentrability and generalized concentrability for Bellman residuals,
do not suffice for sample-efficient online RL. This indicates that in general, the interplay between
offline coverage and online exploration is nuanced.

Single-policy concentrability. Single-policy concentrability is a widely used coverage assumption
in offline RL which weakens concentrability by requiring only that the state distribution induced by π⋆
is covered by the offline data distribution µ, as opposed to requiring coverage for all policies (Jin et al.,
2021b; Rashidinejad et al., 2021).
Definition 3 (Single-policy concentrability). The single-policy concentrability coefficient for a data
distribution µ={µh}Hh=1 is given by C⋆conc(µ) :=

∥∥dπ⋆h /µh
∥∥
∞.

For offline RL, algorithms based on pessimism provide sample guarantee complexity guarantees that
scale withC⋆conc(µ) (Jin et al., 2021b; Rashidinejad et al., 2021). However, for the online setting, it is
trivial to show that an analogous notion of “single-policy coverability” (i.e., existence of a distribution
with good single-policy coverability) is not sufficient for sample-efficient learning, since for any MDP,
one can take µ= dπ

⋆

to attain C⋆conc(µ)=1. This suggests that any notion of coverage that suffices
for online RL must be more uniform in nature.

Generalized concentrability for Bellman residuals. Another approach to weaker coverage in
offline RL is to relax concentrability by only requiring coverage with respect to the Bellman residuals
for value functions inF (Chen and Jiang, 2019; Xie et al., 2021a; Cheng et al., 2022); the following
definition adapts this notion to the finite-horizon setting.
Definition 4 (Generalized concentrability). We define the generalized concentrability coefficient
Cconc(µ,F) for a policy class Π and value function classF as the least constantC>0 such that the
offline data distribution µ={µh}Hh=1 satisfies that for all f ∈F and π∈Π,

∑
h∈[H]Edπh

[
(fh(sh,ah)−

(Thfh+1)(sh,ah))
2
]
≤C ·

∑
h∈[H]Eµh

[(
fh(sh,ah)−(Thfh+1)(sh,ah)

)2]
.

Note that Cconc(µ,F)≤ Cconc(µ) (in particular, they coincide if one chooses F to be the set of all
functions over X ×A) but in general Cconc(µ,F) can be much smaller. For example, in the linear
Bellman-complete setting, it is possible to bound Cconc(µ,F) in terms of feature coverage conditions
(Wang et al., 2021a; Zanette et al., 2021). Using offline data from µ, sample complexity guarantees
that scale with Cconc(µ,F) can be obtained under Assumption 1 via MSBO (see, e.g., Xie and Jiang,
2020, Section 5) or by running a “one-step” variant of GOLF (Algorithm 1); we provide this result
(Proposition 16) in Appendix E for completeness. Given that this notion leads to positive results for
offline RL, it is natural to consider a generalized notion of coverability based upon it.
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Definition 5 (Generalized coverability). We define the generalized coverability coefficient for a policy
class Π value function classF and as Ccov(F)=infµ1,...,µH∈∆(X×A){Cconc(µ,F)}.

Unfortunately, we show that this condition does not suffice for sample-efficient online RL, even when
the number of actions is constant and Assumption 1 is satisfied.
Theorem 3. For anyX,H,C ∈N, there exists a family of MDPs with |X |=X , |A|=2 and horizon
H and a function class F with log|F| ≤H log(2|X |) such that: i) Assumption 1 (completeness) is
satisfied forF and we have Ccov(F)≤C and ii) Any online RL algorithm that returns a 0.1-optimal
policy with probability 0.9 requires at least Ω

(
min

{
X,2Ω(H),2Ω(C)

})
trajectories.

Theorem 3 highlights that in general, notions of coverage that suffice for offline RL—even those
that are uniform in nature—can fail to lead to useful structural conditions for online RL. Briefly,
the issue is that bounding regret for online RL entails controlling the extent to which a deliberate
algorithm that has observed state distributions d(1)

h ,...,d
(t−1)

h can be “surprised” by a substantially new
state distribution d(t)

h ; here, surprise is typically measure in terms of Bellman residual. The proof of
Theorem 3 shows that existence of a distribution with good coverage with respect to Bellman residuals
does suffice to provide meaningful control of distribution shift. We caution, however, that the lower
bound construction makes use of the fact that Definition 5 requires coverage only on average across
layers, and it is unclear whether a similar lower bound holds under uniform coverage across layers.
Developing a more unified and fine-grained understanding of what coverage conditions lead to efficient
exploration is an important question for future research.

5 A NEW STRUCTURAL CONDITION FOR SAMPLE-EFFICIENT ONLINE RL
Having shown that coverability facilitates sample-efficient online RL, an immediate question is
whether this structural condition is related to existing complexity measures such as Bellman-Eluder
dimension (Jin et al., 2021a) and Bellman/Bilinear rank (Jiang et al., 2017; Du et al., 2021), which
attempt to unify existing approaches to sample-efficient RL. We now show that these complexity
measures are insufficient to capture coverability, then provide a new complexity measure, the
Sequential Extrapolation Coefficient, which bridges the gap.

5.1 INSUFFICIENCY OF EXISTING COMPLEXITY MEASURES

Bellman-Eluder dimension (Jin et al., 2021a) and Bellman/Bilinear rank (Jiang et al., 2017; Du
et al., 2021) can fail to capture coverability for two reasons: (i) insufficiency of average Bellman
error (as opposed to squared Bellman error), and (ii) incorrect dependence on scale. To highlight
these issues, we focus on Q-type Bellman-Eluder dimension (Jin et al., 2021a), which subsumes
Bellman rank.6 See Appendix F for discussion of other complexity measures. Let DΠ

h :={dπh :π∈Π}
and Fh−ThFh+1 := {fh−Thfh+1 : f ∈ F}. Following Jin et al. (2021a), we define the (Q-type)
Bellman-Eluder dimension as follows.
Definition 6 (Bellman-Eluder dimension). The Bellman-Eluder dimension dimBE(F ,Π,ε,h) for the
layerh is the largest d∈N, such that there exist sequences {d(1)

h ,d
(2)

h ,...,d
(d)

h }⊆DΠ
h and {δ(1)

h ,...,δ(d)

h }⊆
Fh−ThFh+1 such that for all t ∈ [d], |E

d
(t)
h

[δ(t)

h ]|> ε(t), and
√∑t−1

i=1

(
E
d
(i)
h

[δ(t)

h ]
)2 ≤ ε(t), for

ε(1),...,ε(d)≥ε. We define dimBE(F ,Π,ε)=maxh∈[H]dimBE(F ,Π,ε,h).

Issue #1: Insufficiency of average (vs. squared) Bellman error. The Bellman-Eluder dimension
reflects the length of the longest consecutive sequence of value function pairs for which we can be
“surprised” by a large Bellman residual for a new policy if the value function has low Bellman residual
on all preceding policies. Note that via Definition 6, the Bellman-Eluder dimension measures the size
of the surprise and the error on preceding points via average Bellman error (e.g., E

d
(i)
h

[δ(t)

h ]). On the

other hand, the proof of Theorem 1 critically uses squared Bellman error E
d
(i)
h

[(δ(t)

h )2] bound regret
by coverability; this is because the (point-wise) nonnegativity of squared Bellman error facilitates
change-of-measure in a similar fashion to offline reinforcement learning. The following result shows
that this issue is fundamental, and Bellman-Eluder dimension can be exponential large relative to the
regret bound in Theorem 1.
Proposition 4. For any d∈N, there exists an MDPM withH=2 and |A|=2, policy class Π with
|Π|=d, and value function classF with |F|=d satisfying completeness, such thatCcov=O(1), but
the Bellman-Eluder dimension has dimBE(F ,Π,ε)=Ω(min{|F|,|Π|})=Ω(d) for any ε≤1/2.

6Q-type and V -type are similar, but define the Bellman residual with respect to different action distributions.
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The lower bound in Proposition 4 is realized by an exogenous block MDP (Appendix C), with d
representing the number of exogenous states. The result gives an exponential separation between
what can be achieved using Bellman-Eluder dimension and coverability, because GOLF attains Reg≤
Õ
(√

T log(d)
)

(cf. Corollary 9), yet we have dimBE(F ,Π,1/2)=Ω(d). The construction, which is
based on Efroni et al. (2022b, Section B.1), critically leverages cancellations in the average Bellman
error; these cancellations are ruled out by squared Bellman error, which is why Theorem 1 gives a
regret bound that scales only logarithmically in d. Bilinear rank (Du et al., 2021) and V -type Bellman
rank suffer from similar drawbacks; see Appendix F for further discussion.

Issue #2: Incorrect dependence on scale. In light of the previous example, a seemingly reasonable
fix is to adapt the Bellman-Eluder dimension to consider squared Bellman error rather than average Bell-
man error (i.e., use

√∑t−1
i=1

(
E
d
(i)
h

[(δ(t)

h )2]
)
≤ε(t) in Definition 6). We show (Appendix F.1) that while

it is possible to bound this modified Bellman-Eluder dimension in terms of the coverability parameter,
the dependence on the scale parameter ε is polynomial, and it is not possible to derive regret bounds
better thanT 2/3 under coverability with this approach. Informally, the issue is scale: Bellman-eluder di-
mension only checks whether the average Bellman error violates the threshold ε, and does not consider
how far the error violates the threshold (e.g., |E

d
(t)
h

[δ(t)

h ]|>ε and |E
d
(t)
h

[δ(t)

h ]|>1 are counted the same).

5.2 THE SEQUENTIAL EXTRAPOLATION COEFFICIENT

To address the issues above, we introduce a new complexity measure, the Sequential Extrapolation
Coefficient (SEC), which i) leads to regret bounds via GOLF and ii) subsumes both coverability and the
Bellman-Eluder dimension. Conceptually, the Sequential Extrapolation Coefficient should be thought
of as a minimal abstraction of the main ingredient in regret bounds based on GOLF and other optimistic
algorithms: extrapolation from in-sample error to on-policy error. We begin by stating a variant of the
Sequential Extrapolation Coefficient for abstract function classes, then specialize it to RL.
Definition 7 (Sequential Extrapolation Coefficient). LetZ be an abstract set. Given a test function
class Ψ⊂(Z→R) and distribution class D⊂∆(Z), the sequential extrapolation coefficient for length
T is given by

SEC(Ψ,D,T ) := sup
ψ(1),...,ψ(T )∈Ψ

sup
d(1),...,d(T )∈D

{∑
t∈[T ]

Ed(t) [ψ(t)]2

1∨
∑t−1
i=1Ed(i) [(ψ(t))2]

}
.

To apply the Sequential Extrapolation Coefficient to RL, we use Bellman residuals for F as test
functions and consider state-action distributions induced by policies in Π.
Definition 8 (SEC for RL). We define SECRL(F ,Π,T ) :=maxh∈[H]SEC(Fh−ThFh+1,D

Π
h ,T ).

The following result, which is a near-immediate consequence of the definition, shows that the Sequential
Extrapolation Coefficient leads to regret bounds via GOLF; recall that Π={πf |f ∈F} is the set of
greedy policies induced byF .
Theorem 5. Under Assumption 1, there exists an absolute constant c such that for any δ∈(0,1] and
T ∈N+, if we choose β=c·log(TH|F|/δ) in Algorithm 1, then with probability at least 1−δ, we have
Reg≤O

(
H
√
SECRL(F ,Π,T )·T ·log(TH|F|/δ)

)
.

We defer the proof of Theorem 5 to Appendix F, and conclude by showing that the Sequential
Extrapolation Coefficient subsumes coverabilityCcov (Definition 2) and Bellman-Eluder dimension.
Proposition 6 (Coverability =⇒ SEC). SECRL(F ,Π,T )≤O(Ccov ·log(T )).
Proposition 7 (Bellman-Eluder dim. =⇒ SEC). SECRL(F ,Π,T )≤O(dimBE(F ,Π,

√
1/T)·log(T )).

The Sequential Extrapolation Coefficient can likely be generalized further along many directions (e.g.,
by allowing for different test functions in the vein of Du et al. (2021)). Further unifying these notions is
an interesting question for future research; see Appendix F.3 for further discussion.

6 CONCLUSION

This paper initiates the systematic study of parallels between online and offline learnability in rein-
forcement learning and uncovers surprising new connections. The possible future directions include
general theories under weaker notions of coverability or approximation conditions (see Appendix A
for open problems) as well as the connection to the practical algorithm design.
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A DISCUSSION AND OPEN PROBLEMS

Toward a general theory beyond this paper, we highlight some exciting and challenging open problems
for future research.

• Linear feature coverage. Our results in Section 4 show that the generalized coverability condition
(Definition 4), which exploits the structure of the value function classF , is not sufficient for online
exploration. For the special case of linear functions (F =

{
(x,a) 7→⟨ϕ(x,a),θ⟩ |θ∈Θ⊂Rd

}
)

a natural strengthening of this condition (Wang et al., 2021a; Zanette et al., 2021) is to as-
sert the existence of a data distribution µ = {µh}Hh=1 such that Edπh

[
ϕ(xh,ah)ϕ(xh,ah)

⊤] ⪯
C · Eµh

[
ϕ(xh,ah)ϕ(xh,ah)

⊤] for some coverage parameter C. Is this condition (or a variant)
sufficient for sample-efficient online exploration?

• Further conditions from offline RL. There are many conditions used to provide sample-efficient
learning guarantees in offline RL beyond those considered in this paper, including (i) pushforward
concentrability (Munos, 2003; Xie and Jiang, 2021), (ii)Lp variants of concentrability (Farahmand
et al., 2010; Xie and Jiang, 2020), and (iii) weight function realizability (Xie and Jiang, 2020;
Jiang and Huang, 2020; Zhan et al., 2022). Which of these conditions can be adapted for online
exploration, and to what extent?
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B ADDITIONAL RELATED WORK

In this section we briefly highlight some relevant related work not otherwise discussed.

Online RL with access to offline data. A separate line of work develops algorithms for online
reinforcement learning that assume additional access to offline data gathered with a known data
distribution µ or known exploratory policy (Abbasi-Yadkori et al., 2019; Xie et al., 2021b). These
results are complementary to our own, since we assume only that a good exploratory distribution exists,
but do not assume that such a distribution is known to the learner.

Further structural conditions for online RL. While we have already discussed connections to
Bellman Rank, Bilinear Classes, and Bellman-Eluder Dimension, another more general complexity
measure is the Decision-Estimation Coefficient (Foster et al., 2021). One can show that the Decision-
Estimation Coefficient is bounded by coverability, but to apply the algorithm in Foster et al. (2021),
one must assume access to a realizable model classM, which leads to regret bounds that scale with
log|M| rather than log|F|.

Instance-dependent algorithms. Wagenmaker et al. (2022) provide instance-dependent guarantees
for tabular PAC-RL which scale with a quantity called gap-visitation complexity. It is possible to bound
the gap-visitation complexity in terms of coverability, but the lower-order sample complexity terms in
this result have explicit dependence on the number of states, which our results avoid. For future work,
it would be interesting to understand deeper connections between coverability and instance-dependent
complexity measures (Wagenmaker et al., 2022; Wagenmaker and Jamieson, 2022; Dong and Ma,
2022). See also Wagenmaker and Jamieson (2022), which provides similar guarantees for linear MDPs.

C APPLICATION TO EXOGENOUS BLOCK MDPS

As an application of Theorem 1, we consider the problem of reinforcement learning in Exogenous
Block MDPs (Ex-BMDPs). Following Efroni et al. (2021), an Ex-BMDP M = (X ,A,P,R,H,x1)
is defined by an (unobserved) latent state space, which consists of an endogenous state sh ∈S and
exogenous state ξh∈Ξ, and an observation process which generates the observed state xh. We first
describe the dynamics for the latent space. Given initial endogenous and exogenous states s1∈S and
ξ1∈Ξ, the latent states evolve via

sh+1∼P endo
h (sh,ah), and ξh+1∼P exo

h (ξh);

that is while both states evolve in a temporally correlated fashion, only the endogenous state sh evolves
as a function of the agent’s action. The latent state (sh,ξh) is not observed. Instead, we observe

xh∼qh(sh,ξh),

where qh : S × Ξ → ∆(X ) is an emission distribution with the property that supp(qh(s, ξ)) ∩
supp(qh(s

′,ξ′))=∅ if (s,ξ) ̸=(s′,ξ′). This property (decodability) ensures that there exists a unique
mapping ϕ⋆h :X →S that maps the observed state xh to the corresponding endogenous latent state sh.
We assume thatRh(x,a)=Rh(ϕ⋆h(x),a), which implies that optimal policy π⋆ depends only on the
endogenous latent state, i.e. π⋆h(x)=π

⋆
h(ϕ

⋆
h(x)).

The main challenge of learning in block MDPs is that the decoder ϕ⋆ is not known to the learner in
advance. Indeed, given access to the decoder, one can obtain regret poly(H,|S|,|A|)·

√
T by applying

tabular reinforcement learning algorithms to the latent state space. In light of this, the aim of the
Ex-BMDP setting is to obtain sample complexity guarantees that are independent of the size of the
observed state space |X | and exogenous state space |Ξ|, and scale as poly(|S|,|A|,H,log|F|), where
F is an appropriate class of function approximators (typically either a value function classF or a class
of decoders Φ that attempts to model ϕ⋆ directly).

Ex-BMDPs present substantial additional difficulties compared to classical block MDPs because
we aim to avoid dependence on the size |Ξ| of the exogenous latent state space. Here, the main
challenge is that executing policies π whose actions depend on ξh can lead to spurious correlations
between endogenous exogenous states. In spite of this apparent difficulty, we show that the coverability
coefficient for this setting is always bounded by the number of endogenous states.
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Proposition 8. For any Ex-BMDP,Ccov≤|S|·|A|.

This bound is a consequence of a structural result from Efroni et al. (2021), which shows that for any
(s,a) ∈ S×A, all x ∈X with ϕ⋆(x) = s admit a common policy that maximizes dπh(x,a), and this
policy is endogenous, i.e., only depends on the endogenous state sh = ϕ⋆h(xh). As a corollary, we
obtain the following regret bound.
Corollary 9. For the Ex-BMDP setting, under Assumption 1, Algorithm 1 ensures that with probability
at least 1−δ,

Reg≤O
(
H
√
|S||A|T log(TH|F|/δ)log(T )

)
.

Critically, this result scales only with the cardinality |S| for the endogenous latent state space, and with
the capacity log|F| for the value function class.

Let us briefly compare to prior work. For general Ex-BMDPs, existing complexity measures such as
Bellman Rank and Bellman-Eluder dimension can be arbitrarily large (see discussion in Section 5).
Existing algorithms either require that the endogenous latent dynamics P endo are deterministic (Efroni
et al., 2021) or allow for stochastic dynamics but heavily restrict the observation process (Efroni et al.,
2022a). Corollary 9 is the first result for this setting that allows for stochastic latent dynamics and
emission process, albeit with the extra assumption of completeness. This result is best thought of as
a “luckiness” guarantee in the sense that it is unclear how to construct a value function class that is
complete for every problem instance,7 but the algorithm will succeed whenever F does happen to
be complete for a given instance. Understanding whether general Ex-BMDPs are learnable without
completeness is an interesting question for future work, and we are hopeful that the perspective of
coverability will lead to further insights for this setting.

C.1 INVARIANCE OF COVERABILITY

Proposition 8 is a consequence of two general invariance properties of coverability, which show
that Ccov is unaffected by the following augmentations to the underlying MDP: (i) addition of rich
observations, and (ii) addition of exogenous noise.

The first property shows that for a given MDPM , creating a new block MDPM ′ by equippingM with
a decodable emission process (so thatM acts as a latent MDP), does not increase coverability.
Proposition 10 (Invariance to rich observations). Let an MDP M = (S,A,P,R,H,s1). Let M ′ =
(X ,A,P ′,R′,H,x1) be the MDP defined implicitly by the following process. For each h∈ [H]:

• sh+1∼Ph(sh,ah) and rh=Rh(sh,ah). Here, sh is unobserved, and may be thought of as a latent
state.

• xh∼qh(sh), where qh :S→∆(X ) is an emission distribution with the property that supp(qh(s))∩
supp(qh(s

′))=∅ for s ̸=s′.
Then, writingCcov(M) to make the dependence onM explicit, we have

Ccov(M
′)≤Ccov(M).

The second result shows that coverability is also preserved if we expand the state space to include
temporally correlated exogenous state whose evolution does not depend on the agent’s actions.
Proposition 11 (Invariance to exogenous noise). Let an MDP M =(S,A,P,R,H,s1), conditional
distribution P exo : Ξ→∆(Ξ), and ξ1 ∈Ξ be given, where Ξ is an abstract set. Let X :=S×Ξ, and
letM ′=(X ,A,P ′,R′,H,x1) be the MDP with state xh=(sh,ξh) defined implicitly by the following
process. For each h∈ [H]:

• sh+1∼Ph(sh,ah), rh=Rh(sh,ah).

• ξh+1∼P exo
h (ξh).

Then we have
Ccov(M

′)≤Ccov(M).

7For example, it is not clear how to construct a complete value function class given access to a class of decoders
Φ that contains ϕ⋆.
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This result is non-trivial because policies that act based on the endogenous state sh and ξh can cause
these processes to become coupled (Efroni et al., 2021), but holds nonetheless.

Proposition 8 can be deduced by combining Propositions 10 and 11 with the observation that any
tabular (finite-state/action) MDP with S states andA actions hasCcov≤SA. However, Propositions 10
and 11 yield more general results, since they imply that starting with any (potentially non-tabular)
class of MDPsMwith low coverability and augmenting it with rich observations and exogenous noise
preserves coverability.

C.2 PROOFS

Proof of Proposition 8. Let h ∈ [H] be fixed. Let zh := (sh,ξh). For each z = (s,ξ) ∈ S×Ξ, let
dπh(z) :=Pπ(zh= z). Proposition 4 of Efroni et al. (2021) shows that for all z=(s,ξ), if we define
πs=argmaxπ∈ΠPπ(sh=s), then

max
π∈Π

dπh(z)=d
πs
h (z). (2)

That is, πs maximizes Pπ(zh=(s,ξ)) for all ξ∈Ξ simultaneously. With this in mind, let us define

µh(x,a)=
1

|S||A|
∑
s∈S

dπsh (x).

We proceed to bound the concentrability coefficient forµ. Fixπ∈Π andx∈X , and let z=(s,ξ)∈S×Ξ
be the unique latent state such that x∈supp(qh(s,ξ)). We first observe that

dπh(x,a)

µh(x,a)
≤|S||A|· d

π
h(x)

dπsh (x)
.

Next, since xh∼qh(zh), we have

dπh(x)

dπsh (x)
=
qh(x |z)dπh(z)
qh(x |z)dπsh (z)

=
dπh(z)

dπsh (z)
.

Finally, by Eq. (2), we have

dπh(z)

dπsh (z)
≤maxπd

π
h(z)

dπsh (z)
=
dπsh (z)

dπsh (z)
=1.

Since this holds for all x∈X simultaneously, this choice for µh certifies that thatCcov≤|S||A|.

Proof of Proposition 10. Let Π denote the space of all randomized policies acting on the latent state
space S, and let Π′ denote the space of all randomized policies acting on the observed state spaceX .
Let Pπ denote distribution over trajectories inM induced by π∈Π, and let Qπ′

denote the distribution
over trajectories inM induced by π′∈Π′.

Fix h∈ [H], and let µh∈∆(S×A) witness the coverability coefficient forM . Define

µ′
h(x,a)=qh(x |ϕ⋆(x))µh(ϕ⋆(x),a),

where ϕ⋆h :X →S is the decoder that maps x∈X to the unique state s∈S such that x∈supp(qh(s)).
For any π′∈Π′ and (x,a)∈X×A, letting s=ϕ⋆h(x), we have

dπ
′

h (x,a)

µ′
h(x,a)

=
qh(x |s)Qπ

′
(sh=s,ah=a)

qh(x |s)µh(s,a)
=

Qπ′
(sh=s,ah=a)

µh(s,a)
≤maxπ′∈ΠQπ

′
(sh=s,ah=a)

µh(s,a)
.

Finally, because the observation process is decodable, we have maxπ′∈ΠQπ′
(sh = s,ah = a) =

maxπ∈ΠPπ(sh=s,ah=a), and

maxπ∈ΠPπ(sh=s,ah=a)
µh(s,a)

≤Ccov(M).
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Proof of Proposition 11. Let Π denote the space of all randomized policies acting on the latent state
space S, and let Π′ denote the space of all randomized policies acting on the observed state spaceX .
Let Pπ denote distribution over trajectories inM induced by π∈Π, and let Qπ′

denote the distribution
over trajectories inM induced by π′∈Π′.

Fix h∈ [H], and let µh∈∆(S×A) witness the coverability coefficient forM . For x=(s,ξ)∈S×Ξ,
let

µ′
h(x,a)=Q(ξh=ξ)µh(s,a),

where Q(ξh=ξ) is the marginal probability of the event that ξh=ξ inM ′, which does not depend on
the policy under consideration.

For any π′∈Π and (s,ξ,a)∈S×Ξ×A, we have

dπ
′

h (x,a)

µ′
h(x,a)

=
Qπ′

(sh=s,ξh=ξ,ah=a)

Q(ξh=ξ)µh(s,a)
≤maxπ′∈Π′Qπ′

(sh=s,ξh=ξ,ah=a)

Q(ξh=ξ)µh(s,a)
.

From Propositions 3 and 4 of Efroni et al. (2021), we have maxπ′∈Π′Qπ′
(sh= s,ξh= ξ,ah= a)=

Q(ξh=ξ)·maxπ′∈Π′Qπ′
(sh=s,ah=a)=Q(ξh=ξ)·maxπ∈ΠPπ(sh=s,ah=a), so that

maxπ′∈Π′Qπ′
(sh=s,ξh=ξ,ah=a)

Q(ξh=ξ)µh(s,a)
=

Q(ξh=ξ)maxπ∈ΠPπ(sh=s,ah=a)
Q(ξh=ξ)µh(s,a)

=
maxπ∈ΠPπ(sh=s,ah=a)

µh(s,a)
≤Ccov(M).

D PROOFS AND ADDITIONAL DETAILS FROM SECTION 3

D.1 GOLF ALGORITHM AND PROOFS FROM SECTION 3

Algorithm 1 GOLF (Jin et al., 2021a)
input: Function classF , confidence width β>0.
initialize: F (0)←F ,D(0)

h ←∅ ∀h∈ [H].
1: for episode t=1,2,...,T do
2: Select policy π(t)←πf(t) , where f (t) :=argmaxf∈F(t−1)f(x1,πf,1(x1)).
3: Execute π(t) for one episode and obtain trajectory (x(t)

1 ,a
(t)

1 ,r
(t)

1 ),...,(x(t)

H ,a
(t)

H ,r
(t)

H ).
4: Update dataset: D(t)

h ←D
(t−1)

h ∪
{(
x(t)

h ,a
(t)

h ,x
(t)

h+1

)}
∀h∈ [H].

5: Compute confidence set:

F (t)←
{
f ∈F :L(t)

h (fh,fh+1)− min
f ′
h∈Fh

L(t)

h (f ′h,fh+1)≤β ∀h∈ [H]

}
, (3)

where L(t)

h (f,f ′) :=
∑

(x,a,r,x′)∈D(t)
h

(
f(x,a)−r−max

a′∈A
f ′(x′,a′)

)2
, ∀f,f ′∈F .

6: Output π̄=unif(π(1:T )). // For PAC guarantee only.

Lemma 12 (Jin et al. (2021a, Lemmas 39 and 40)). Suppose Assumption 1 holds. Then if β > 0 is
selected as in Theorem 1, then with probability at least 1−δ, for all t∈ [T ], Algorithm 1 satisfies

1. Q⋆∈F (t).

2.
∑
i<tE(x,a)∼d(i)h

[
(fh(x,a)−[Thfh+1](x,a))

2]≤O(β) for all f ∈F (t).

Lemma 13 (Jiang et al. (2017, Lemma 1)). For any value function f=(f1,...,fH),

f1(x1,πf1,1(x1))−J(πf )=
H∑
h=1

E
(x,a)∼d

πf
h

[fh(x,a)−(Thfh+1)(x,a)].
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Lemma 14 (Equivalence of coverability and cumulative reachability). The following definition is
equivalent to Definition 2:

Ccov := max
h∈[H]

∑
(x,a)∈X×A

sup
π∈Π

dπh(x,a).

Proof of Lemma 14. We relate coverability and cumulative reachability for each choice for h∈ [H].

Coverability bounds cumulative reachability. It follows immediately from the definition of coverability
that if µh∈∆(X×A) realizes the value ofCcov, then∑

(x,a)∈X×A

max
π∈Π

dπh(x,a)=
∑

(x,a)∈X×A

maxπ∈Πd
π
h(x,a)

µh(x,a)
µh(x,a)

≤
∑

(x,a)∈X×A

Ccov ·µh(x,a) (by Definition 2)

=Ccov.

Cumulative reachability bounds coverability. Define µh(x,a)∝maxπ∈Πd
π
h(x,a). Then for any π∈Π

and any (x,a)∈X×A, we have

dπh(x,a)

µh(x,a)
=

dπh(x,a)

maxπ′′∈Πd
π′′
h (x,a)/

∑
(x′,a′)∈X×Amaxπ′∈Πd

π′
h (x′,a′)

≤
∑

(x′,a′)∈X×A

max
π′∈Π

dπ
′

h (x′,a′).

This completes the proof.

Proof of Theorem 1. Equipped with Lemma 14, we prove Theorem 1.

Preliminaries. For each t, we define δ(t)

h (·,·) :=f (t)

h (·,·)−(Thf (t)

h+1)(·,·), which may be viewed as a

“test function” at level h induced by f (t)∈F . We adopt the shorthand d(t)

h ≡dπ
(t)

h , and we define

d̃(t)

h (x,a) :=
t−1∑
i=1

d(i)

h (x,a), and µ⋆h := argmin
µh∈∆(X×A)

sup
π∈Π

∥∥∥∥dπhµh
∥∥∥∥
∞
. (4)

That is, d̃(t)

h unnormalized average of all state visitations encountered prior to step t, and µ⋆h is the
distribution that attains the value ofCcov for layer h.8 Throughout the proof, we perform a slight abuse
of notation and write E

d̃
(t)
h

[f ] :=
∑t−1
i=1Ed(i)h [f ] for any function f :X×A→R.

Regret decomposition. As a consequence of completeness (Assumption 1) and the construction of
F (t), a standard concentration argument (Lemma 12) guarantees that with probability at least 1−δ, for
all t∈ [T ]:

(i)Q⋆∈F (t), and (ii)
∑
x,a

d̃(t)

h (x,a)
(
δ(t)

h (x,a)
)2≤O(β). (5)

We condition on this event going forward. SinceQ⋆∈F (t), we are guaranteed that f (t) is optimistic
(i.e., f (t)

1 (x1,πf(t),1(x1))≥Q⋆1(x1,πf⋆,1(x1))), and a regret decomposition for optimistic algorithms
(Lemma 13) allows us to relate regret to the average Bellman error under the learner’s sequence of
policies:

Reg≤
T∑
t=1

(
f (t)

1 (x1,πf(t)
1 ,1

(x1))−J(π(t))
)
=

T∑
t=1

H∑
h=1

E
(x,a)∼d(t)h

[
f (t)

h (x,a)−(Thf (t)

h+1)(x,a)︸ ︷︷ ︸
=:δ

(t)
h (x,a)

]
.

8If the minimum in Eq. (4) is not obtained, we can repeat the argument that follows for each element of a limit
sequence attaining the infimum.
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To proceed, we use a change of measure argument to relate the on-policy average Bellman error
E
(x,a)∼d(t)h

[δ(t)

h (x,a)] appearing above to the in-sample squared Bellman error E
(x,a)∼d̃(t)h

[δ(t)

h (x,a)2];
the latter is small as a consequence of Eq. (5). Unfortunately, naive attempts at applying change-of-
measure fail because during the initial rounds of exploration, the on-policy and in-sample visitation
probabilities can be very different, making it impossible to relate the two quantities (i.e., any natural
notion of extrapolation error will be arbitrarily large).

To address this issue, we introduce the notion of a “burn-in” phase for each state-action pair (x,a)∈
X×A by defining

τh(x,a)=min
{
t | d̃(t)

h (x,a)≥Ccov ·µ⋆h(x,a)
}
,

which captures the earliest time at which (x,a) has been explored sufficiently; we refer to t<τh(x,a)
as the burn-in phase for (x,a).

Going forward, let h∈ [H] be fixed. We decompose regret into contributions from the burn-in phase for
each state-action pair, and contributions from pairs which have been explored sufficiently and reached
a stable phase “stable phase”.
T∑
t=1

E
(x,a)∼d(t)h

[
δ(t)

h (x,a)
]

︸ ︷︷ ︸
on-policy average Bellman error

=

T∑
t=1

E
(x,a)∼d(t)h

[
δ(t)

h (x,a)1[t<τh(x,a)]
]

︸ ︷︷ ︸
burn-in phase

+

T∑
t=1

E
(x,a)∼d(t)h

[
δ(t)

h (x,a)1[t≥τh(x,a)]
]

︸ ︷︷ ︸
stable phase

.

We will not show that every state-action pair leaves the burn-in phase. Instead, we use coverability to
argue that the contribution from pairs that have not left this phase is small on average. In particular, we
use that |δ(t)

h |≤1 to bound
T∑
t=1

E
(x,a)∼d(t)h

[
δ(t)

h (x,a)1[t<τh(x,a)]
]
≤
∑
x,a

∑
t<τh(x,a)

d(t)

h (x,a)=
∑
x,a

d̃
(τh(x,a))

h (x,a)≤2Ccov

∑
x,a

µ⋆h(x,a)=2Ccov,

where the last inequality holds because

d̃
(τh(x,a))

h (x,a)= d̃
(τh(x,a)−1)

h (x,a)+d
(τh(x,a)−1)

h (x,a)≤2Ccov ·µ⋆h(x,a),
which follows from Eq. (4) and the definition of τh.

For the stable phase, we apply change-of-measure as follows:
T∑
t=1

E
(x,a)∼d(t)h

[
δ(t)

h (x,a)1[t≥τh(x,a)]
]

=
T∑
t=1

∑
x,a

d(t)

h (x,a)

(
d̃(t)

h (x,a)

d̃(t)

h (x,a)

)1/2

δ(t)

h (x,a)1[t≥τh(x,a)]

≤

√√√√ T∑
t=1

∑
x,a

(
1[t≥τh(x,a)]d(t)

h (x,a)
)2

d̃(t)

h (x,a)︸ ︷︷ ︸
(I): extrapolation error

·

√√√√ T∑
t=1

∑
x,a

d̃(t)

h (x,a)
(
δ(t)

h (x,a)
)2

︸ ︷︷ ︸
(II): in-sample squared Bellman error

, (6)

where the last inequality is an application of Cauchy-Schwarz. Using part (II) of Eq. (5), we bound
the in-sample error above by

(II)≤O
(√

βT
)
. (7)

Bounding the extrapolation error using coverability. To proceed, we show that the extrapolation
error (I) is controlled by coverability. We begin with a scalar variant of the standard elliptic potential
lemma (Lattimore and Szepesvári, 2020); this result is proven in the sequel.
Lemma 15 (Per-state-action elliptic potential lemma). Let d(1),d(2),...,d(T ) be an arbitrary sequence
of distributions over a set Z (e.g., Z = X × A), and let µ ∈ ∆(Z) be a distribution such that
d(t)(z)/µ(z)≤C for all (z,t)∈Z×[T ]. Then for all z∈Z , we have

T∑
t=1

d(t)(z)∑
i<td

(i)(z)+C ·µ(z)
≤O(log(T )).
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We bound the extrapolation error(I) by applying Lemma 15 on a per-state basis, then using coverability
(and the equivalence to cumulative reachability) to argue that the potentials from different state-
action pairs average out. Observe that by the definition of τh, we have that for all t ≥ τh(s, a),
d̃(t)

h (x,a)≥Ccovµ
⋆
h(x,a)⇒ d̃(t)

h (x,a)≥ 1
2 (d̃

(t)

h (x,a)+Ccovµ
⋆
h(x,a)), which allows us to bound term

(I) of extrapolation error by
T∑
t=1

∑
x,a

(
1[t≥τh(x,a)]d(t)

h (x,a)
)2

d̃(t)

h (x,a)
≤ 2

T∑
t=1

∑
x,a

d(t)

h (x,a)·d(t)

h (x,a)

d̃(t)

h (x,a)+Ccov ·µ⋆h(x,a)

≤ 2
T∑
t=1

∑
x,a

max
t′∈[T ]

d(t′)
h (x,a)·

d(t)

h (x,a)

d̃(t)

h (x,a)+Ccov ·µ⋆h(x,a)

≤ 2

(∑
x,a

max
t∈[T ]

d(t)

h (x,a)

)
︸ ︷︷ ︸

≤Ccov by Lemma 14

·

(
max

(s,a)∈S×A

T∑
t=1

d(t)

h (x,a)

d̃(t)

h (x,a)+Ccov ·µ⋆h(x,a)

)
︸ ︷︷ ︸

≤O(log(T )) by Lemma 15

≤O(Ccovlog(T )). (8)

To conclude, we substitute Eqs. (7) and (8) into Eq. (6), which gives

Reg≤
H∑
h=1

E
(x,a)∼d(t)h

[
δ(t)

h (x,a)
]
≤O

(
H
√
Ccov ·βT log(T )

)
.

Proof of Lemma 15. Using the fact for any u∈ [0,1], u≤2log(1+u), we have
T∑
t=1

d(t)(z)∑
i<td

(i)(z)+C ·µ(x,a)
≤ 2

T∑
t=1

log

(
1+

d(t)(x,a)∑
i<td

(i)(z)+C ·µ(x,a)

)
(since d(t)(x,a)/µ(x,a)≤C ∀t∈ [T ])

= 2
T∑
t=1

log

(∑
i<t+1d

(i)(z)+C ·µ(x,a)∑
i<td

(i)(z)+C ·µ(x,a)

)

= 2log

(
T∏
t=1

∑
i<t+1d

(i)(z)+C ·µ(x,a)∑
i<td

(i)(z)+C ·µ(x,a)

)

= 2log

(∑T
i=1d

(i)(z)+C ·µ(x,a)
C ·µ(x,a)

)
≤ 2log(T+1). (since d(t)(x,a)/µ(x,a)≤C ∀t∈ [T ])

This completes the proof.

E PROOFS AND ADDITIONAL DETAILS FROM SECTION 4

E.1 ADDITIONAL DETAILS: OFFLINE RL

Proposition 16 (Generalized concentrability is sufficient for offline RL). Given access to an offline
data distribution µ satisfying generalized concentrability (Definition 4), ifF satisfies Assumption 1,
one can find an ε-optimal policy using poly(Cconc(µ,F),H,log|F|,ε−1) samples.

Proof of Proposition 16. Given an offline datasetD={Dh}Hh=1 with n samples for each layer h∈ [H]
under the distribution µh, the MSBO algorithm (e.g., Xie and Jiang, 2020) produces a value function
f̂ ∈F of the form

f̂←argmin
f∈F

H∑
h=1

(
Lh(fh,fh+1)− min

f ′
h∈Fh

Lh(f ′h,fh+1)

)
,
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where Lh(f,f ′) :=
∑

(x,a,r,x′)∈Dh

(
f(x,a)−r−max

a′∈A
f ′(x′,a′)

)2
, ∀f,f ′∈F .

By adapting the proof of Theorem 5 of Xie and Jiang (2020) (or Lemma 12), one can show that under
Assumption 1, with probability at least 1−δ, f̂ satisfies

H∑
h=1

E(x,a)∼µh

[(
(f̂h(x,a)−Thf̂h+1)(x,a)

)2]
≤H · log(

|F|/δ)

n
.

The result now follows by applying an adaptation of Xie and Jiang (2020, Corollary 4), which shows
that for any f ∈F ,

J(π⋆)−J(πf )≤ 2max
π∈Π

H∑
h=1

E(x,a)∼dπh [|fh(x,a)−(Thfh+1)(x,a)|]

≤ 2

√√√√Hmax
π∈Π

H∑
h=1

E(x,a)∼µh [(fh(x,a)−(Thfh+1)(x,a))2]

≤ 2

√√√√HCconc(µ,F)
H∑
h=1

E(x,a)∼µh [(fh(x,a)−(Thfh+1)(x,a))2] (by Definition 4)

≤ 2H

√
Cconc(µ,F)log(|F|/δ)

n
.

E.2 PROOFS FROM SECTION 4

Proof of Theorem 3. Assume without loss of generality thatH≤min{log2(X),C}; if this does not
hold, the result is obtained by applying the argument that follows withH ′=min{H,⌊log2(X)⌋,C}.
We consider a family of deterministic MDPs with horizon H . We use a layered state space X =
X1∪···∪XH , where only states inXh are reachable at layer h. The state space is a binary tree of depth
H−1, which has

∑log2(X)−1
h=0 2h=X−1 states. The are two actions, left and right, which determine

whether the next state is the left or right successor in the tree.
For each MDP in the family, we allow a single action at a single leaf at h=H to have reward rH=1,
give reward 0 to all actions in all other states. For each such MDP, we use (x⋆H ,a

⋆
H) to denote the single

state-action pair with r= 1. We also use (x⋆h,a
⋆
h) for h∈ [H] to denote the unique path from x1 to

(x⋆H ,a
⋆
H). Note that the optimal policy is to follow this path, i.e.

dπ
⋆

h (x,a)=1[(x,a)=(x⋆h,a
⋆
h)].

We chooseFh to be the set of all possible indicator functions for a single state-action pair:
Fh :={fh(x′,a′)=1(x′=x,a′=a) | ∀(x,a)∈Xh×A}.

We defineF=F1×···×FH . Note that for each h∈ [H],
Q⋆h(xh,ah)=1(xh=x

⋆
h,ah=a

⋆
h)∈Fh.

In addition, we have log|F|≤Hlog(2X).

Completeness. We first verify that the construction satisfies completeness. Fix fh ∈Fh, and let
fh(x,a) = 1(x = xf,h,a = af,h) for some (xf,h,af,h) ∈ Xh ×A. Then for any (xh−1,ah−1) ∈
Xh−1×A, we consider two cases. First, if xf,h is not the unique successor of (xh−1,ah−1), then
(Th−1fh)(xh−1,ah−1)=0. Otherwise,

(Th−1fh)(xh−1,ah−1)=
∑
xh

P(xh |xh−1,ah−1)max
ah

f(xh,ah)

= P(xf,h |xh−1,ah−1). (as maxahf(xh,ah)=1(xh=xf,h))
= 1.

This means Th−1fh ∈Fh−1, because there exists a single (xh−1,ah−1) pair in Xh−1×A such that
(Th−1fh)(xh−1,ah−1) ̸=0.
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Generalized coverability. We now show that the construction satisfies generalized coverability. Fix
an MDP in the family with optimal path {(x⋆h,a⋆h)}

H
h=1. We will show that for all f = f1:H ∈F , if

f1:H ̸=Q⋆1:H , then there exists h′∈ [H], such that

Edπ⋆
h′

[
(fh(xh′ ,ah′)−(Th′fh′+1)(xh′ ,ah′))

2
]
=(fh′(x⋆h′ ,a⋆h′)−(Th′fh′+1)(x

⋆
h′ ,a⋆h′))

2
=1. (9)

From here, the result will follow by choosing µh=dπ
⋆

h ∀h∈ [H]. Indeed, using the boundedness of
f1:H ∈F , we have

H∑
h=1

Edπh
[
(fh(xh,ah)−(Thfh+1)(xh,ah))

2
]
≤H,

for all π∈Π, meaning that Eq. (9) implies that Ccov(µ,F)≤H≤C in this problem instance.
We proceed to prove Eq. (9). Based on the definition of F , we know that
(fh(x

⋆
h,a

⋆
h)−(Thfh+1)(x

⋆
h,a

⋆
h))

2 ∈ {0, 1} for all h ∈ [H]. Therefore, if we assume by contra-
diction that f1:H ̸= Q⋆1:H and there does not exist an h′ ∈ [H] that satisfies Eq. (9), we must
have

fh(x
⋆
h,a

⋆
h)=(Thfh+1)(x

⋆
h,a

⋆
h), ∀h∈ [H]. (10)

By the condition Eq. (10), we have (THfH+1)(x
⋆
h, a

⋆
H) = RH(x⋆H , a

⋆
H) = 1, which implies that

fh(x
⋆
h,a

⋆
h)=1 for all h∈ [H]. From the construction ofF , we knowQ⋆1:H is the only function with

Q⋆h(x
⋆
h,a

⋆
h)=1 for all h∈ [H], which gives the desired contraction, and proves that such h′∈ [H] must

exist, establishing Eq. (9).

Lower bound on sample complexity. A lower bound of 2Ω(H) samples to learn a 0.1-optimal with
probability 0.9 follows from standard lower bounds for binary tree-structured MDPs (Krishnamurthy
et al., 2016; Jiang et al., 2017) (recall that since there are 2H/2 leaves at layer H , and only one has
non-zero reward, finding a policy with non-trivial regret is no easier than solving a multi-armed bandit
problem with 2H/2 actions and binary rewards).

F PROOFS AND ADDITIONAL RESULTS FROM SECTION 5

F.1 ADDITIONAL DETAILS: SEQUENTIAL EXTRAPOLATION COEFFICIENT VERSUS
BELLMAN-ELUDER DIMENSION

The discussion in Section 5 (in particular, Proposition 4 shows that Bellman-Eluder dimension and
Bellman rank fail to capture coverability as a result of only considering average Bellman error rather
than squared Bellman error. In light of this observation, a seemingly reasonable fix is to adapt the
Bellman-Eluder dimension to consider squared Bellman error rather than average Bellman error.
Consider the following variant.
Definition 9 (Squared Bellman-Eluder dimension). We define the Squared Bellman-Eluder dimension
dimsq

BE(F ,Π,ε,h) for layerh is the largestd∈N such that there exist sequences {d(1)

h ,d
(2)

h ,...,d
(d)

h }⊆DΠ
h

and {δ(1)

h ,...,δ(d)

h }⊆Fh−ThFh+1 such that for all t∈ [d],

|E
d
(t)
h

[δ(t)

h ]|>ε(t), and

√√√√t−1∑
i=1

E
d
(i)
h

[
(δ(t)

h )2
]
≤ε(t), (11)

for ε(1),...,ε(d)≥ε. We define dimsq
BE(F ,Π,ε)=maxh∈[H]dim

sq
BE(F ,Π,ε,h).

This definition is identical to Definition 6, except that the constraint
√∑t−1

i=1(Ed(i)h [δ(t)

h ])2≤ε(t) in Def-

inition 6 has been replaced by the constraint
√∑t−1

i=1Ed(i)h
[
(δ(t)

h )2
]
≤ε(t), which uses squared Bellman

error instead of average Bellman error. By adapting the analysis of Jin et al. (2021a) it is possible to
show that this definition yields Reg≤Õ

(
H
√
infε>0{ε2T+dimsq

BE(F ,Π,ε)}·T log|F|
)
. If one could

show that dimsq
BE(F ,Π,ε)≲Ccov ·polylog(ε−1), this would recover Theorem 1. Unfortunately, it turns

out that in general, one can have dimsq
BE(F ,Π,ε)=Ω(Ccov/ε), which leads to suboptimal T 2/3-type

regret using the result above. The following result shows that this guarantee cannot be improved
without changing the complexity measure under consideration.
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Proposition 17. Fix T ∈N, and let εT :=T−1/3. There exist MDP class/policy class/value function
class tuples (M1,Π1,F1) and (M2,Π2,F2) with the following properties.

1. All MDPs inM1 (resp. M2) satisfy Assumption 1 with respect to F1 (resp. F2). In addition,
log|F1|=log|F2|=Õ(1).

2. For all MDPs inM1, we have dimsq
BE(F1,Π1,εT )∝1/εT , and any algorithm must have E[Reg]≥

Ω(T 2/3) for some MDP in the class

3. For all MDPs inM2, we also have dimsq
BE(F2,Π2,εT )∝1/εT , yetCcov=O(1) and GOLF attains

E[Reg]≤Õ(
√
T ).

This result shows that there are two classes for which the optimal rate differs polynomially (Ω(T 2/3)

vs. Õ(
√
T )), yet the Bellman-Eluder dimension has the same size, and implies that the Bellman-

Eluder dimension cannot provide rates better than Ω(T 2/3) for classes with low coverability in general.
Informally, the reason why Bellman-Eluder dimension fails capture the optimal rates for the problem
instances in Proposition 17 is that the definition in Eq. (11) only checks whether the average Bellman
error violates the threshold ε, and does not consider how far the error violates the threshold (e.g.,
|E
d
(t)
h

[δ(t)

h ]|>ε and |E
d
(t)
h

[δ(t)

h ]|>1 are counted the same).

In spite of this counterexample, it is possible to show that the Bellman-Eluder dimension with squared
Bellman error is always bounded by the Sequential Extrapolation Coefficient up to a poly(ε−1) factor,
and hence can always be bounded by coverability, albeit suboptimally.
Proposition 18. Let F be a [0, 1]-valued function class. For all T ∈ N and ε > 0, we have
min{dimsq

BE(F ,Π,ε),T}≤
SECRL(F,Π,T )

ε2 .

F.1.1 PROOFS FROM ADDITIONAL DETAILS

Proof of Proposition 17. Let the time horizon T ∈N be fixed. We first construct the classM1 and
verify that it satisfies the properties in the statement of Proposition 17, then do the same forM2.

ClassM1. We chooseM1 to be a class of bandit problems withH=1. Let a parameter ε1∈ [0,1/2]
be fixed, and letA :=ε−1

1 . We defineM1={M (1),...,M (A)}, where for eachM (i):
• The action space isA={1,...,A}.
• The reward distribution for action a∈A in state x1 is Ber(1/2+ε11{a= i}).

For each i∈M(i), the mean reward function is f (i)

1 (x1,π)=1/2+ε11{a= i}. We defineF={f (i)}Ai=1
and Π={πf |f ∈F}. Note that sinceH=1, completeness ofF is immediate.
Lower bounding the Bellman-Eluder dimension. LetM (A) be the underlying instance. We will lower
bound the Bellman-Eluder dimension for layer h=1. Consider the sequence d(1)

1 ,...,d(A−1)

1 , where
d(t)

1 := d
π
f(t)

1 and δ(1)

1 ,...,δ(A−1)

1 , where δ(t)

1 := f (t)

1 −T1f
(t)

2 = f (t)

1 − f
(A)

1 (recall that we adopt the
convention fH+1=0). Observe that for each t∈ [A−1], we have

|E
d
(t)
1
[δ(t)

1 ](x1,a1)|= |f (t)

1 (x1,t)−f (A)

1 (x1,t)|=ε1,
yet ∑

i<t

E
d
(i)
1

[
(δ(t)

1 (x1,a1))
2
]
=ε1

∑
i<t

(f (t)

1 (x1,i)−f (A)

1 (x1,i))
2=0.

This certifies that dimsq
BE(F ,Π,ε)≥A−1≥ε

−1
1 /2 for all ε<ε1.

Lower bounding regret. A standard result (e.g., Lattimore and Szepesvári, 2020) is that for any family
of multi-armed bandit instances of the form {M (1),...,M (A)}, whereM (i) has Bernoulli rewards with
mean 1/2+∆1{a= i} for ∆≤1/4, any algorithm must have regret

E[Reg]≥Ω(1)·min

{
∆T,

A

∆

}
for some instance. We apply this result with the classM1, which has ∆=ε1 andA=ε−1

1 , which gives

E[Reg]≥Ω(1)·min

{
ε1T,

1

ε21

}
.

Choosing ε1=εT =T−1/3 yields E[Reg]≥Ω(T 2/3) whenever T is greater than an absolute constant.
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ClassM2. Let a parameter ε2 ∈ [0,1/2] be fixed, and let A := ε−1
2 (we assume without loss of

generality that ε−1
2 ∈ N). We defineM2 = {M (1),...,M (A)}, where each MDP M (i) is as defined

follows:

• We haveH=2, and there is a layered state spaceX =X1×X2, whereX1={x1} andX2={y,z}.
• The action space isA={1,...,A}.
• x1 is the deterministic initial state. Regardless of the action, we transition to z with probability 1−ε2

and y with probability ε2.

• For each MDPM (i) all actions have zero reward in states x1 and z. For state y, action i has reward 1
and all other actions have reward 0.

We let f (i) denote the optimalQ-function forM (i), which has:

• f (i)

1 (x1,·)=ε2 and f (i)

2 (z,·)=0.

• f (i)

2 (y,a)=1{a= i}.
We defineF={f (i)}i∈[A]; it is clear that this class satisfies completeness. We define Π={πf |f ∈F};
for states where there are multiple optimal actions (i.e., fh(x,a)=fh(x,a′)), we take πf,h(x) to be the
optimal with the least index, which implies that πf,1(x1)=πf,2(z)=1 for all f ∈F .

Verifying coverability. We choose µ1(x,a) = 1{x = x1,a = 1}. We choose µ2(z,1) =
1
2 and

µ2(y,a)=
1
2A for all a∈A. It is immediate that coverability is satisfied with constant 1 for h=1. For

h=2, we have that for all π∈Π,
dπ2 (z,1)

µ2(z,1)
=

1−ε2
1/2
≤2

and
dπ2 (y,a)

µ2(y,a)
≤ ε2
µ2(y,a)

≤2Aε2≤2.

Hence, we haveCcov≤2; note that this holds for any choice of ε2.

Lower bounding the Bellman-Eluder dimension. Let M (A) be the underlying MDP. We will lower
bound the Bellman-Eluder dimension for layer h=2. Consider the sequence d(1)

2 ,...,d(A−1)

2 , where
d(t)

2 := d
π
f(t)

2 and δ(1)

2 ,...,δ(A−1)

2 , where δ(t)

2 := f (t)

2 −T2f
(t)

3 = f (t)

2 − f
(A)

2 (recall that we adopt the
convention fH+1=0). Observe that for each t∈ [A−1], we have

|E
d
(t)
2
[δ(t)

2 ](x2,a2)|=ε2|f (t)

2 (y,t)−f (A)

2 (y,t)|=ε2,

yet ∑
i<t

E
d
(i)
2

[
(δ(t)

2 (x2,a2))
2
]
=ε2

∑
i<t

(f (t)

2 (y,i)−f (A)

2 (y,i))2=0.

This certifies that dimsq
BE(F ,Π,ε,2)≥A−1≥ε

−1
2 /2 for all ε<ε2.

Upper bound on regret. To conclude, we set ε2 = εT = 1/T−1/3. With this choice, we have
dimsq

BE(F2,Π2,εT )≥Ω(ε−1
T ). Since the construction satisfies completeness (Assumption 1) and has

Ccov≤2 andH=2, Theorem 1 yields

Reg≤O(
√
T log(|F|T/δ))=O(

√
T log(T/(ε2δ)))= Õ(

√
T log(1/δ)).

Proof of Proposition 18. Fix h ∈ [H], and n ∈N, and consider sequences {d(1)

h ,d
(2)

h ,...,d
(n)

h } and
{δ(1)

h ,δ(2)

h ,...,δ(n)

h } that satisfy Eq. (11) (that is, the sequences witness the value of dimBE(F ,Π,ε,h)).
Then

dimsq
BE(F ,Π,ε,h)≤

n∑
t=1

E
d
(t)
h

[
δ(t)

h

]2
(ε(t))

2
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≤
n∑
t=1

(
1+(ε(t))

2
)
·

E
d
(t)
h

[
δ(t)

h

]2
(ε(t))

2
(
1+
∑t−1
i=1Ed(i)h [δ(t)

h ]2
)

(by
∑t−1
i=1Ed(i)h [δ(t)

h ]2≤(ε(t))2)

≤
n∑
t=1

1+(ε(t))
2

(ε(t))
2

E
d
(t)
h

[
δ(t)

h

]2
1+
∑t−1
i=1Ed(i)h [δ(t)

h ]2

≤
n∑
t=1

2

(ε(t))
2

E
d
(t)
h

[
δ(t)

h

]2
1+
∑t−1
i=1Ed(i)h [δ(t)

h ]2
(by ε(t)< |E

d
(t)
h

[δ(t)

h ]|≤1)

≤ 1

ε2

n∑
t=1

E
d
(t)
h

[
δ(t)

h

]2
1∨
∑t−1
i=1Ed(i)h [δ(t)

h ]2
(by ε(t)≥ε)

≤ SECRL(F ,Π,n)
ε2

.

This implies for any T >0,

min{dimsq
BE(F ,Π,ε),T}≤

SECRL(F ,Π,T )
ε2

.

F.2 PROOFS FROM SECTION 5

Proof of Proposition 4. We present a counterexample for bothQ-type and V -type Bellman-Eluder
dimension. We recall that the V -type Bellman-Eluder dimension is defined by replacingFh−ThFh+1

with VFh−ThFh+1
and DΠ

h with DΠ
h,x in Definition 6, where VFh−ThFh+1

:={(fh−Thfh+1)(·,πf,h) :
f ∈F}⊂ (X →R) and DΠ

h,x :={dπh(·) :π∈Π}⊂∆(X ); see Appendix F.3.1 or Jin et al. (2021a) for
more background on V -type Bellman-Eluder dimension.

V -type Bellman-Eluder dimension. The hard instance for V -type Bellman-Eluder dimension is
based on the construction of Efroni et al. (2022a, Proposition B.1), which shows that for any d=2i

(i∈N), there exists an exogenous MDP (ExoMDP) with |S|=3 endogenous states, |A|=2,H=2,
and d exogenous factors, with the following properties:9

1. There exists a function classF such thatQ⋆∈F and |F|=d. In addition for all f ∈F with f ̸=Q⋆,
πf is 1/8-suboptimal.

2. For all f,f ′∈F\Q⋆, we have (note thatH=2)

E
x∼d

π
f′

2 ,a∼πf,2
[f2(x,a)−R2(x,a)]=

1

2
1{f=f ′}. (12)

3. Ccov≤6; this is a consequence of Proposition 8 and the fact that the ExoMDP model in Efroni et al.
(2022a) is a special case of the Ex-BMDP model in Section 3.2.

This means that if we take {f (1),f (2),...,f (d−1)} to be any ordering of the set of functions inF\{Q⋆},
then set δ(i)

h :=f (i)

h −Thf
(i)

h+1 and d(t)

h :=d
π
f(t)

h , we have that for all t∈ [d−1],∣∣∣∣Ex∼d(t)2 ,a∼π
f(t),2

[δ(t)

2 ]

∣∣∣∣= 1

2
, and

√√√√t−1∑
i=1

(
E
x∼d(i)2 ,a∼π

f(t),2

[δ(t)

2 ]
)2

=0.

This implies that the V -type Bellman-Eluder dimension dimBE-v(F ,ΠF ,ε) is at least d− 1 for all
ε≤1/2. It is straightforward to verify that this construction in Efroni et al. (2022a) satisfies Assumption
1 (completeness), because functions in the class have f1=T2f2 (that is, zero Bellman error at h=1).
As a result, sinceH=2, completeness for this construction is implied byQ⋆∈F .

9Technically, the construction in Efroni et al. (2022a) has a stochastic initial state with known distribution. This
can be embedded in our framework, which has a deterministic initial state, by lifting the horizon from 2 to 3.
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Q-type Bellman-Eluder dimension. The construction above immediately extends toQ-type. This
is because in the construction, the value ofR2(x,·) and f2(x,·) depends only on x (i.e., is independent
of the action) for all f ∈F (cf. Efroni et al., 2022a, Proposition B.1). Therefore, for any f,g∈F , we
have,

E
x∼d

πf
2 ,a∼πg,2

[g2(x,a)−R2(x,a)]=E
(x,a)∼d

πf
2
[g2(x,a)−R2(x,a)]. (13)

This implies that theQ-type Bellman residual matrix{
E
(x,a)∼d

π
f′

2

[f2(x,a)−R2(x,a)]
}
f,f ′∈F\{Q⋆}

embeds the scaled identity matrix and, via the same argument as for V -type above, immediately
implies that dimBE(F ,Π,ε)≥d−1 for all ε≤1/2. As before, we haveCcov≤6, andF is complete.

Proposition 19. For any d∈N, there exists an MDPM withH=2 and |A|=2, a policy class Π with
|Π|=d, and a value function classF with |F|=d satisfying completeness, such thatCcov=O(1), yet
OLIVE (Jiang et al., 2017) requires at least Ω(d) trajectories to return a 0.1-optimal policy.

Proof of Proposition 19. We now show that that OLIVE, a canonical average-Bellman-error-based
hypothesis elimination algorithm, also suffers from the lower bound in the construction from
Proposition 4. By Eq. (12) (V-type OLIVE) and Eq. (13) (Q-type OLIVE), we know that any
sub-optimal hypothesis f ∈F\Q⋆ cannot be eliminated until πf is executed. On the other hand, the
construction ensures E[maxaf(s1,a)]=7/8 whereas J(π⋆)=3/4. This means OLIVE will enumerate
overF\Q⋆ before finding a 0.1-optimal policy for this instance, and hence suffers from complexity of
Ω(d) (|F|=d).

Proof of Theorem 5. As in Theorem 1, as a consequence of completeness (Assumption 1), the
construction ofF (t), and Lemma 12, we have that with probability at least 1−δ, for all t∈ [T ]:

(i)Q⋆∈F (t), and (ii)
∑
x,a

d̃(t)

h (x,a)
(
δ(t)

h (x,a)
)2≤O(β),

and whenever this event holds,

Reg≤
T∑
t=1

(
f (t)

1 (x1,πf(t)
1 ,1

(x1))−J(π(t))
)
=

T∑
t=1

H∑
h=1

E
(x,a)∼d(t)h

[
f (t)

h (x,a)−(Thf (t)

h+1)(x,a)︸ ︷︷ ︸
=:δ

(t)
h (x,a)

]
.

To proceed, we have that for all h∈ [H],

T∑
t=1

E
d
(t)
h

[
δ(t)

h

]
=

T∑
t=1

(
E
d
(t)
h

[
δ(t)

h

])1∨
∑t−1
i=1Ed(i)h

[
(δ(t)

h )2
]

1∨
∑t−1
i=1Ed(i)h

[
(δ(t)

h )2
]
1/2

≤

√√√√√ T∑
t=1

E
d
(t)
h

[
δ(t)

h

]2
1∨
∑t−1
i=1Ed(i)h

[
(δ(t)

h )2
]
√√√√ T∑

t=1

(
1∨

t−1∑
i=1

E
d
(i)
h

[
(δ(t)

h )2
])

(by Cauchy-Schwarz inequality)

≤

√√√√√ T∑
t=1

E
d
(t)
h

[
δ(t)

h

]2
1∨
∑t−1
i=1Ed(i)h

[
(δ(t)

h )2
]√βT

≤
√

SECRL(F ,Π,T )·βT . (by Definition 13)

Therefore, we obtain

Reg≤H
√
SECRL(F ,Π,T )·βT .

Plugging in the choice for β completes the proof.

27



Published as a conference paper at ICLR 2023

Proof of Proposition 6. We prove a more general result. Consider a set of distributions D⊂∆(Z),
and a set of test functions Ψ⊂(Z→ [0,1]). We define a generalized form of coverability with respect
to D by

Ccov(D) := inf
µ∈∆(Z)

sup
d∈D

∥∥∥∥ dµ
∥∥∥∥
∞
. (14)

We will show that, for any T >0,

SEC(Ψ,D,T )≲Ccov(D)log(T ),

which is implies Proposition 6.

Going forward, we fix an arbitrary sequence {d(1),d(2),...,d(T )}⊂D as well as an arbitrary sequence of
{ψ(1),ψ(2),...,ψ(T )}⊂Ψ. Following Eq. (4), we define

µ⋆ := argmin
µ∈∆(Z)

sup
d∈D

∥∥∥∥ dµ
∥∥∥∥
∞
. (15)

In addition, define d̃(t)=
∑
i<td

(t).

For each z∈Z , let

τ(z) :=min

{
t

∣∣∣∣∣
t−1∑
i=1

d(i)(z)≥Ccovµ
⋆(z)

}
. (16)

We decompose Ed(t) [ψ(t)] as

Ed(t)
[
ψ(t)
]
=Ed(t)

[
ψ(t)(z)1[t<τ(z)]

]
+Ed(t)

[
ψ(t)(z)1[t≥τ(z)]

]
.

Then,
T∑
t=1

Ed(t)
[
ψ(t)
]2

1∨
∑t−1
i=1Ed(i)

[
(ψ(t))2

]
≲

T∑
t=1

Ed(t)
[
ψ(t)(z)1[t<τ(z)]

]2
1∨
∑t−1
i=1Ed(i)

[
(ψ(t))2

]︸ ︷︷ ︸
(I)

+
T∑
t=1

Ed(t)
[
ψ(t)(z)1[t≥τ(z)]

]2
1∨
∑t−1
i=1Ed(i)

[
(ψ(t))2

]︸ ︷︷ ︸
(II)

,
(17)

where we use a≲b as shorthand for a≤O(b).

We first bound the term (I),

(I)≤
T∑
t=1

Ed(t)
[
ψ(t)(z)1[t<τ(z)]

]2
≤

T∑
t=1

Ed(t)
[
1[t<τ(z)]

]2
(by ψ(·)∈ [0,1], ∀ψ∈Ψ)

≤
T∑
t=1

Ed(t)
[
1[t<τ(z)]

]
(by Ed(t)

[
1[t<τ(z)]

]
≤1)

=
∑
z∈Z

T∑
t=1

d(t)

h (z)1[t<τ(z)]

=
∑
z∈Z

(
d̃(τ(z)−1)(z)+d(τ(z)−1)(z)

)
(a)
≤
∑
z∈Z

2Ccov(D)µ⋆(z)

≤Ccov(D), (18)
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where (a) follows because d̃(τ(z)−1)(z),d(τ(z)−1)(z)≤Ccov(D)µ⋆(z), for all z∈Z , as a consequence of
Eqs. (15) and (16).

We now turn to the term (II). First, observe that∑
z∈Z

1[t≥τ(z)]d(t)(z)ψ(t)(z)

=
∑
z∈Z

1[t≥τ(z)]d(t)(z)

(∑t−1
i=1d

(i)(z)∑t−1
i=1d

(i)(z)

)1/2

ψ(t)(z)

≤

√√√√∑
z∈Z

1[t≥τ(z)](d(t)(z))
2∑t−1

i=1d
(i)(z)

√√√√t−1∑
i=1

Ed(i)
[
(ψ(t))2

]
. (by Cauchy-Schwarz inequality)

By rearranging this inequality, we have

(II)≤
T∑
t=1

∑
z∈Z

1[t≥τ(z)]
(
d(t)

h (z)
)2∑t−1

i=1d
(i)(z)

(defining 0/0=0)

≤ 2

T∑
t=1

∑
z∈Z

1[t≥τ(z)](d(t)(z))
2

Ccov ·µ⋆(z)+
∑t−1
i=1d

(i)(z)
(by Eq. (16))

≲
T∑
t=1

∑
z∈Z

(d(t)(z))
2

Ccov ·µ⋆(z)+
∑t−1
i=1d

(i)(z)

≤
T∑
t=1

∑
z∈Z

(
max
i≤T

d(i)(z)

)
d(t)(z)∑t−1

i=1d
(i)(z)+Ccov ·µ⋆(z)

≤Ccov(Dh)
∑
z∈Z

µ⋆(z)
T∑
t=1

d(t)(z)∑t−1
i=1d

(i)(z)+Ccov ·µ⋆(z)
(by Eq. (14))

≲Ccov(D)
∑
z∈Z

µ⋆(z)log(T ) (by Lemma 15)

=Ccov(D)log(T ). (19)

Substituting Eqs. (18) and (19) into Eq. (17), we obtain

SEC(Ψ,D,T )≲Ccov(D)log(T ).

Proof of Proposition 7. This proof provides a slightly more general result. Consider a set of
distributions D⊂∆(Z) and a set of test functions Ψ⊂(Z→ [0,1]) be given. We consider an abstract
version of the Bellman-Eluder dimension with respect to D and Ψ. We define dimBE(Ψ,D,ε) is the
largest d∈N such that there exist sequences {d(1),d(2),...,d(d)}⊂D and {ψ(1),ψ(2),...,ψ(d)}⊂Ψ such
that for all t∈ [d], 10

|Ed(t) [ψ(t)]|>ε(t), and

√√√√t−1∑
i=1

(
Ed(i) [ψ(t)]

)2≤ε(t), (20)

for ε(1),...,ε(d)≥ε. We will show that, for any all T ∈N,

SEC(Ψ,D,T )≲ inf
ε>0

{
ε2T+dimBE(Ψ,D,ε)

}
·log(T ),

which immediately implies Proposition 7.
10This definition coincides with distributional Eluder dimension (see, e.g., Jin et al., 2021a), which only differs

from Bellman-Eluder dimension on the notation of test function. We overload the notation for dimBE over this
proof for simplicity.
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A generalized definition of ε-dependent sequence. In what follows, we rely on a slightly different
notion of an ε-(in)dependent sequence from the one given in Jin et al. (2021a, Definition 6) and Russo
and Van Roy (2013). We provide background on both definitions below.
ε-(in)dependent sequence (e.g., Jin et al., 2021a, Definition 6). A distribution ν∈D is ε-dependent on
a sequence {ν(1),...,ν(k)}⊆D if: When |Eν [ψ]|>ε for some ψ∈Ψ, we also have

∑k
i=1(Eν(i) [ψ])2>

ε2. Otherwise, ν is ε-independent if this does not hold.
Generalized ε-(in)dependent sequence. A distribution ν ∈ D is (generalized) ε-dependent on
a sequence {ν(1), ... , ν(k)} ⊆ D if: for all ε′≥ε, if |Eν [ψ]| > ε′ for some ψ ∈ Ψ, we also have∑k
i=1(Eν(i) [ψ])2 > ε′2. We say that ν is (generalized) ε-independent if this does not hold, i.e., for

some ε′≥ε, it has |Eν [ψ]|>ε′ but
∑k
i=1(Eν(i) [ψ])2≤ε′2.

The generalized definition above naturally induces a new implication (which the original definition
may not have): If ε′ ≥ ε, then ε-dependent sequence⇒ ε′-dependent sequence, or in other words,
ε′-independent sequence⇒ ε-independent sequence.
The definition of the distributional Eluder dimension (see Eq. (20)) can be written in two equivalent
ways using original and generalized definition for a ε-independent sequence: dimBE(Ψ,D,ε) is the
largest d∈N such that there exists a sequence {d(1),d(2),...,d(d)}⊂D such that for all t∈ [d]:

(i) d(t) is ε′-independent of {d(1),d(2),...,d(t−1)} for some ε′≥ε.
(ii) d(t) is (generalized) ε-independent of {d(1),d(2),...,d(t−1)}⇐=[by the implication above]=⇒

d(t) is (generalized) ε′-independent of {d(1),d(2),...,d(t−1)} for some ε′≥ε.
This indicates that the distributional Eluder dimension can be equivalently written in terms of general-
ized independent sequences. Going forward, we only use the generalized ε-(in)dependent definition,
and omit the word generalized.

Setup. Let us use dimBE(ε) as shorthand for dimBE(Ψ,D,ε). By Eq. (20), we know dimBE(ε) also
upper bounds the length of sequences {d(1),d(2),...,d(d)}⊂D and {ψ(1),ψ(2),...,ψ(d)}⊂Ψ such that for
all t∈ [d],

|Ed(t) [δ(t)]|>ε(t), and

√√√√t−1∑
i=1

Ed(i) [(ψ(t))2]≤ε(t),

for ε(1),...,ε(d)≥ε (note that the square is inside the expectation which is different from Eq. (20)).
Now, for any {d(1), d(2), ... , d(T )} ⊂ D and {ψ(1), ψ(2), ... , ψ(T )} ⊂ Ψ, we define β(t) :=∑t−1
i=1Ed(i) [(ψ(t))2]. We will study the sequence{

Ed(1) [ψ(1)]2

1∨β(1)
,
Ed(2) [ψ(2)]2

1∨β(3)
,...,

Ed(T ) [ψ(T )]2

1∨β(T )

}
. (21)

Fix a parameter α>0, whose value will be specified later. For the remainder of the proof, we useL(t)

to denote the number of disjoint α
√
1∨β(t)

h -dependent subsequences of d(t) in {d(1),d(2),...,d(t−1)},
for each t∈ [T ].

Step 1. Suppose the t-th term of Eq. (21) is greater than α2, so that |Ed(t) [ψ(t)]|>α
√
1∨β(t). From

the definition ofL(t), we know there have at leastL(t) disjoint subsequences of {d(1),...,d(t−1)} (denoted
by S(1),...,S(L(t))), such that

L(t)∑
i=1

∑
ν∈S(i)

(Eν [ψ(t)])2≥(1∨β(t))α2. (22)

On the other hand, by the definition of β(t)

h , we have
L(t)∑
i=1

∑
ν∈S(i)

(Eν [ψ(t)])2≤
t−1∑
i=1

Ed(i) [(ψ(t))2]≤β(t). (23)

Therefore, combining Eqs. (22) and (23) we obtain that, if |Ed(t) [ψ(t)]|>α
√
1∨β(t) for some t∈ [T ],

β(t)≥L(t)(1∨β(t))α2=⇒L(t)≤ 1

α2
. (24)
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Step 2. On the other hand, let {i1,i2,...,iκ} be the longest subsequence of [T ], where

E
d(ij)

[δ(ij)]2

1∨β(ij)
>α2, ∀j∈ [κ].

For compactness, we use {ν(1),ν(2),...,ν(κ)} abbreviate {d(i1),d(i2),...,d(iκ)}. We now argue that there
exists j⋆∈ [κ], such that for ν(j⋆), there must exist at least

L⋆≥
⌊

κ

dimBE(α)+1

⌋
≥ κ

dimBE(α)+1
−1 (25)

α-dependent disjoint subsequences in {ν(1),ν(2), ... ,ν(j⋆−1)} (the actual number of disjoint subse-
quences is denoted by L⋆). This is because we can construct such disjoint subsequences by the
following procedure:

⟨1⟩ For j∈ [L⋆], S(j)←{ν(j)}. Then, set j←L⋆+1.
⟨2⟩ If ν(j) is α-dependent on S(1),...,S(L⋆), terminate the procedure (goal achieved).
⟨3⟩ Otherwise, we know ν(j) is α-independent on at least one of S(1), ... ,S(L⋆) (denoted by S⋆).

Update S⋆←S⋆
⋃
{ν(j)}, j←j+1, and go to ⟨2⟩.

From the definition of dimBE (α), we know if |S(i)| ≥ dimBE (α) + 1, any ν ∈ Dh must be α-
dependent on S(i) (for each i ∈ [L⋆]). Therefore, such a procedure must terminate before or on
j(max)=L⋆dimBE(α)+L

⋆. Thus, if j(max)≤κ, termination in ⟨2⟩must happen. This only requiresL⋆

to satisfy

L⋆dimBE(α)+L
⋆≤κ =⇒ L⋆≤ κ

dimBE(α)+1
.

That is, as long asL⋆≤
⌊

κ
dimBE(α)+1

⌋
, the termination in ⟨2⟩must happen for some j⋆≤κ.

Step 3. As we discussed at the beginning, α-dependence implies α′-dependence for all α′≥α. This
means theL⋆ in Step 2 lower bounds maxt∈[T ]L

(t) in Step 1, because {d(i1),d(i2),...,d(iκ)} is a subset
of {d(1),d(2),...,d(iκ)}. Thus, combining Eqs. (24) and (25), we can obtain that,

1

α2
≥max
t∈[T ]

L(t)≥L⋆≥ κ

dimBE(α)+1
−1.

This implies that

κ≤
(
1+

1

α2

)
(dimBE(α)+1)≤ 3dimBE(α)

α2
+1. (suppose α≤1)

As a consequence, for any ε∈(0,1], by setting α=
√
ε,

T∑
t=1

1

(
Ed(t) [ψ(t)]2

1∨β(t)
>ε

)
≤ 3dimBE(

√
ε)

ε
+1. (26)

Step 4. Let e(1)≥e(2)≥···≥e(T ) denote the sequence in Eq. (21) reordered in a decreasing fashion.
For any parameterw∈(0,1] to be specified later, we have

T∑
t=1

Ed(t) [ψ(t)]2

1∨
∑t−1
i=1Ed(i) [(ψ(t))2]

=

T∑
t=1

e(t)

≤Tw+
T∑
t=1

e(t)1(e(t)>w).

Observe that for any t∈ [T ] such that e(t)>w, if 2η≥e(t)>η≥w, we have

t≤
T∑
i=1

1(ei>η)
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≤ 3

η
dimBE(

√
η)+1 (by Eq. (26))

≤ 3

η
dimBE

(√
w
)
+1

=⇒η≤ 3d

t−1
(define d :=dimBE(

√
w))

=⇒e(t)≤min

(
6d

t−1
,1

)
. (2η≥e(t)>η)

Therefore,
T∑
t=1

e(t)1(e(t)>w)≤ d+
T∑

t=d+1

6d

t−1

≤ d+6dlog(T ).

=⇒
T∑
t=1

e(t)≤ Tw+dimBE

(√
w
)
+6dimBE

(√
w
)
log(T ).

Selectingw=ε2 implies

SEC(T )≲ inf
ε>0

{
ε2T+dimBE(ε)

}
·log(T ).

This completes the proof.

F.3 DISCUSSION: RELATIONSHIP TO ADDITIONAL COMPLEXITY MEASURES

F.3.1 SEQUENTIAL EXTRAPOLATION COEFFICIENT: Q-TYPE VERSUS V -TYPE

The Sequential Extrapolation Coefficient, as defined in Definition 8), can be thought of as a general-
ization of Q-type Bellman-Eluder dimension (Jin et al., 2021a). In this section we sketch how one
can adapt Sequential Extrapolation Coefficient so as to generalize V -type Bellman-Eluder dimension
instead. Note that V -type Bellman-Eluder dimension subsumes the original notion of Bellman rank
from Jiang et al. (2017).

We define the V -type Sequential Extrapolation Coefficient for RL as follows.
Definition 10 (Sequential Extrapolation Coefficient for RL, V -type). For each h∈ [H], let DΠ

h,x :=

{dπh(·) :π∈Π}⊂∆(X ) and VFh−ThFh+1
:= {(fh−Thfh+1)(·,πf,h) : f ∈F}⊂ (X →R). Then we

define,

SECRL-v(F ,Π,T ) := max
h∈[H]

SEC(VFh−ThFh+1
,DΠ

h,x,T ).

We recall that the V -type Bellman-Eluder dimension dimBE-v(F ,Π,ε) is defined analogously, by
replacingFh−ThFh+1→VFh−ThFh+1

and DΠ
h→DΠ

h,x in Definition 6.

Lastly, we give a V -type generalization of Definition 2 (i.e., coverability w.r.t. state only), for a policy
class Π as follows:

Ccov-v := inf
µ1,...,µH∈∆(X )

sup
π∈Π,h∈[H]

∥∥∥∥dπhµh
∥∥∥∥
∞
. (27)

As a simple implication, we haveCcov-v≤Ccov≤Ccov-v ·|A|.
Note that the V -type variants of sequential extrapolation coefficient, Bellman-Eluder dimension, and
coverability differ from their Q-type counterparts only in the choices for the distribution and test
function sets. Since our proofs for Propositions 6 and 7 hold for arbitrary distributions and test function
sets, we immediately obtain the following V -type extensions of Propositions 6 and 7.
Proposition 20 (Coverability =⇒ SEC, V -type). Let Ccov-v be the V -type coverability coeffi-
cient (Eq. (27)) with policy class Π. Then for any value function class F , SECRL-v(F ,Π, T ) ≤
O(Ccov-v ·log(T )).
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Proposition 21 (Bellman-Eluder dimension =⇒ SEC, V -type). Suppose dimBE-v(F ,Π,ε) be the
V -type Bellman-Eluder dimension with function classF and policy Π, then

SECRL-v(F ,Π,T )≤O
(
inf
ε>0

{
ε2T+dimBE-v(F ,Π,ε)

}
·log(T )

)
.

As shown in Jin et al. (2021a), GOLF (Algorithm 1) can be extended to V -type by simply replacing
Line 3 in Algorithm 1 with sampling (sh,ah,rh,sh+1)∼d(t)

h ×πunif (sh∼d(t)

h and ah∼unif(A)) each
h ∈ [H]. By slightly modifying the proof of Theorem 5 one can obtain similar sample complexity
guarantees based on the V -type Sequential Extrapolation Coefficient. We omit the details here, since
the only differences are 1) a V -type analog of Lemma 12 (provided by Jin et al., 2021a, Lemma 44); and
2) trivially upper bounding the quantityE

d
(i)
h ×π(t)

h

[(δ(t)

h )2] (used in SECRL-v) by |A|·E
d
(i)
h ×πunif

[(δ(t)

h )2]

(controlled by in-sample error). Note, however, that due to the uniform exploration, this algorithm
leads to a sample complexity guarantee of the form

J(π⋆)−J(π̄)≤O

(
H

√
SECRL-v(F ,Π,T )|A|log(TH|F|/δ)

T

)
,

but not a regret bound.

F.3.2 CONNECTION TO BILINEAR CLASSES

The Bilinear class framework (Du et al., 2021) generalizes the notion of Bellman rank (Jiang et al., 2017),
which captures various more structural conditions via an additional class of discrepancy functions. In
this section we sketch how one can generalize the sequential extrapolation coefficient (SEC) further by
allowing for the use of general discrepancy functions to form confidence sets and estimate Bellman
residuals, in the vein of Bilinear classes.
Definition 11 (Gen-SEC). Let Z be an abstract set. Let Ψ⊂ (Z →R) be a function class, and let
DΨ(:={dψ :ψ∈Ψ}),PΨ(:={pψ :ψ∈Ψ})⊂∆(Z) be two corresponding distribution classes, and
LΨ(:= {ℓψ :ψ∈Ψ})⊂ (Z→R) be a corresponding discrepancy function class. The Gen-SEC for
length T is given by

SECgen(Ψ,DΨ,PΨ,LΨ,T ) := sup
ψ(1),...,ψ(T )∈Ψ

{
T∑
t=1

Ed
ψ(t)

[ψ(t)]2

1∨
∑t−1
i=1Epψ(i)

[ℓ2
ψ(t) ]

}
. (28)

To apply the generalizedSEC to reinforcement learning, one can set (for each levelh)Ψ=Fh−ThFh+1,
DΨ={dπh(·,·) :π∈ΠF}, and PΨ={(dπh×πest,ψh)(·,·) :π∈ΠF}, where (d×π)(x,a) :=d(x)π(a |x)
(for any d∈∆(X ), π∈ (X →∆(A)) and (x,a)∈X ×A), and πest,ψh denotes the estimation policy
depending on ψh (e.g., greedy policy w.r.t. ψh or uniformly random policy overA). The discrepancy
function class LΨ can be selected according to the original Bilinear rank for covering various structural
conditions, and setting LΨ=Ψ recovers the original SEC.

By combining GOLF and Theorem 5 with the approach from Du et al. (2021), one can provide sample
complexity guarantees that scale with the Gen-SEC. We omit the details, but the basic idea is to form
the confidence set using the discrepancy function class LΨ rather than working with squared Bellman
error.

Bounding the generalized SEC by bilinear rank. In what follows, we show that the abstract version
of the Generalized SEC in Eq. (28) can be bounded by an abstract generalization of the notion of
Bilinear rank from Du et al. (2021).
Definition 12 (Bilinear rank, finite dimension (Du et al., 2021)). Let Z be an abstract set. Let
Ψ⊂ (Z →R) be a function class, and let DΨ(:= {dψ : ψ ∈Ψ}),PΨ(:= {pψ : ψ ∈Ψ})⊂∆(Z) be
two corresponding distribution classes, and LΨ(:= {ℓψ : ψ ∈Ψ})⊂ (Z →R) be a corresponding
discrepancy function class. The class Ψ is said to have Bilinear rank d if there exists ψ⋆ ∈Ψ and
functionsX,W ⊂(Ψ→Rd) such that 1)

∑
ψ∈Ψ∥X(ψ)∥2≤1 and

∑
ψ∈Ψ∥W (ψ)∥2≤BW , and 2)

Edψ [ψ]≤ |⟨W (ψ)−W (ψ⋆),X(ψ)⟩| ∀ψ∈Ψ,
Epψ [ℓψ′ ]= |⟨W (ψ′)−W (ψ⋆),X(ψ)⟩| ∀ψ,ψ′∈Ψ.

We define dimbi(Ψ,DΨ,PΨ,LΨ) as the least dimension d for which this property holds.
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Proposition 22 (Bilinear rank =⇒ Gen-SEC). Suppose SECgen(Ψ, DΨ, PΨ, LΨ, T ) and
dimbi(Ψ,DΨ,PΨ,LΨ) be the gen-SEC and Bilinear rank defined in Definitions 11 and 12 with
respect to function class Ψ, distribution classes DΨ and DΨ, and discrepancy function class LΨ. Then
we have,

SECgen(Ψ,DΨ,PΨ,LΨ,T )≲dimbi(Ψ,DΨ,PΨ,LΨ)log

(
1+

4B2
WT

d

)
.

Proof of Proposition 22. Throughout the proof, we use d(t), p(t) and ℓ(t) as the shorthands of dψ(t) ,
pψ(t) and ℓψ(t) . We study the quantity,

T∑
t=1

Ed(t) [ψ(t)]2

1∨
∑t−1
i=1Ep(i) [(ℓ(t))2]

≤2
T∑
t=1

Ed(t) [ψ(t)]2

1+
∑t−1
i=1Ep(i) [ℓ(t)]2

.

By Definition 12, we have

Ed(t) [ψ(t)]2≤ |⟨W (ψ(t))−W (ψ⋆),X(ψ(t))⟩|2,

and

1+
t−1∑
i=1

Ep(i) [ℓ(t)]2= 1+
t−1∑
i=1

|⟨W (ψ(t))−W (ψ⋆),X(ψ(i))⟩|2

≥ (W (ψ(t))−W (ψ⋆))
⊤
Σt(W (ψ(t))−W (ψ⋆))

= ∥W (ψ(t))−W (ψ⋆)∥2Σt ,

where Σt := 1
4B2

W
I+
∑t−1
i=1X(ψ(i))X(ψ(i))⊤.

We bound

Ed(t) [ψ(t)]2≤ |⟨W (ψ(t))−W (ψ⋆),X(ψ(t))⟩|2

≤ ∥W (ψ(t))−W (ψ⋆)∥2Σt ·∥X(ψ(t))∥2Σ−1
t
,

which implies

T∑
t=1

Ed(t) [ψ(t)]2

1+
∑t−1
i=1Ep(i) [ℓ(t)]2

≤
T∑
t=1

1∧∥X(ψ(t))∥2Σ−1
t

≤ 2log

(
det(ΣT )

det(Σ1)

)
≤ 2dimbi(Ψ,DΨ,PΨ,LΨ)log

(
1+

4B2
WT

d

)
,

where the last two inequalities follow from the elliptical potential lemma (Lattimore and Szepesvári,
2020, Lemma 19.4). Putting everything together, we obtain

SECgen(Ψ,DΨ,PΨ,LΨ,T )≤4dimbi(Ψ,DΨ,PΨ,LΨ)log

(
1+

4B2
WT

d

)
.

G EXTENSION: REWARD-FREE EXPLORATION

Reward-free exploration investigates is a problem where 1) the learning agent interacts with an
environment without rewards, aiming to gather information so that 2) in a subsequent offline phase, the
information collected can be used to learn near-optimal policies for a wide range of possible reward
functions (Jin et al., 2020a; Zhang et al., 2020; Wang et al., 2020a; Zanette et al., 2020b; Chen et al.,
2022). This section provides a reward-free extension of our main results, and gives sample complexity
bounds based on coverability for a reward-free extension of GOLF.
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Function approximation. We assume access to a value function classF , which is used for the offline
optimization, and a function class, G, which is used for the reward-free exploration phase. Following
the normalized reward assumption, we assume gh∈X×A→ [0,1], ∀(g,h)∈G×[H].

We definePh as be the “zero-reward” Bellman operator for horizon h∈ [H]. That is, for any gh∈Gh
and any h∈ [H],

(Phgh+1)(xh,ah) :=
∑
x′

Ph(xh+1 |xh,ah) max
ah+1∈A

gh+1(xh+1,ah+1).

We letR denote the target reward function used in the offline phase, which is not known to the algorithm
in the offline exploration phase. We make the following assumption.
Assumption 2 (Reward-free completeness). Let T1:H be the Bellman operator with the target reward
functionR, andF be the function class used to optimize the target reward function. Then for all h∈ [H]

(a) PhGh+1∈Gh for all gh+1∈Gh+1

(b) Fh−ThFh+1⊆Gh−PhGh+1.

Analogous to Assumption 1, Assumption 2(a) is used to control the squared Bellman error with zero
reward. Assumption 2(b) guarantees that the class of test functions of interest for the reward-free
exploration phase (Gh−PhGh+1 for layer h∈ [H], see Algorithm 2) is sufficiently rich relative to the
relevant class of test functions for the offline phase (Fh−ThFh+1 for layer h∈ [H], see Algorithm 3).
Without loss of generality, we assume that |G|=max{|F|,|G|}.

Reward-free Sequential Extrapolation Coefficient. The main guarantees for this section are stated
in terms of a reward-free variant of the sequential extrapolation coefficient, which we define as follows.
Definition 13 (Sequential Extrapolation Coefficient for Reward-Free RL). For each h ∈ [H], let
DΠG
h :={dπh :π∈ΠG} and Gh−PhGh+1 :={gh−Phgh+1 :g∈G}. Then we define,

SECRL,rf(G,ΠG ,T ) := max
h∈[H]

SEC(Gh−PhGh+1,D
ΠG
h ,T ).

Using the same arguments (and same proofs) as Section 5.2, the reward-free variant of sequential
extrapolation coefficient can be shown to subsume coverability (as well as reward-free counterpart of
the Bellman-Eluder dimension, which we omit).

G.1 ALGORITHM AND THEORETICAL ANALYSIS

Algorithm 2 Reward-Free Exploration with GOLF

input: Function class for reward-free exploration G.
initialize: D(0)

h,rf←∅, ∀h∈ [H]. G(0)←G.
1: for episode t=1,2,...,T do
2: Select policy π(t)←πg(t) , where g(t)=argmaxg∈G(t−1)g(x1,πg,1).
3: Execute π(t) for one episode and obtain

{
x(t)

1 ,a
(t)

1 ,x
(t)

2 ,...,x
(t)

H ,a
(t)

H ,x
(t)

H+1

}
.

4: Update historical dataD(t)

h,rf←D
(t−1)

h,rf

⋃{(
x(t)

h ,a
(t)

h ,x
(t)

h+1

)}
, ∀h∈ [H].

5: Compute confidence set:

G(t)←
{
g∈G :L(t)

h,rf(gh,gh+1)− min
g′h∈Gh

L(t)

h,rf(g
′
h,gh+1)≤βrf , ∀h∈ [H]

}
, (29)

where L(t)

h,rf(g,g
′) :=

∑
(x,a,x′)∈D(t)

h,rf

[(
g(x,a)−max

a′∈A
g′(x′,a′)

)2
]
, ∀g,g′∈G.

6: Select t⋆←argmint∈[T ]g
(t)

1 (x1,π
(t)

1 ).
7: Return dataD(t⋆−1)

h,rf , ∀h∈ [H].
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Algorithm 3 Offline GOLF with Exploration Data and Target Reward
input:
• Target reward function,R.
• Function classF for offline RL.
• Exploration data from Algorithm 2, denoted byDh,rf , ∀h∈ [H].

1: Compute confidence set:

F (off)←
{
f ∈F :L(off)

h (fh,fh+1)− min
f ′
h∈Fh

L(off)

h (f ′h,fh+1)≤βoff , ∀h∈ [H]

}
, (30)

where L(off)

h (f,f ′) :=
∑

(x,a,x′)∈Dh,rf

[(
f(x,a)−R(x,a)−max

a′∈A
f ′(x′,a′)

)2
]
, ∀f,f ′∈F .

2: Return π̂←πf̂ , where f̂=argmaxf∈F(off)f(x1,πf,1).

Recall that the key ideas in GOLF are: 1) using optimism to relate regret to on-policy average Bellman
error; 2) using squared Bellman error to construct a confidence set, which ensures optimism. In the
reward-free setting, one can apply these ideas by running GOLF (Algorithm 2) with rewards set to
zero. Intuitively, this strategy ensures exploration because the algorithm must explore to rule out test
functions in G. However, a-priori it is unclear whether running some standard offline RL algorithms on
the exploration data produced by this strategy should lead to a near-optimal policy, especially given
that the PAC guarantee of GOLF relies on outputting a uniform mixture of all historical policies (see,
e.g., Corollary 2).

To address such issues, one can imagine that, if we know which is the best over all historical policies
(say, π(t⋆) for some t⋆), could running one-step GOLF on the exploration data at t⋆ (Algorithm 3)
guarantee to find a good policy? Note that, for the original GOLF algorithm (in the known-reward case),
running so directly reproduces π(t⋆). Although knowing which is the best over all historical policies
seems impossible in the known-reward case, thanks to the reward-free nature, we will show that the
value of g(x1,πg,1) directly captures “how bad is g” (akin to the regret in the known-reward case),
which allow us to find the best step over the reward-free exploration phase.

The following result provides a sample complexity guarantee for this strategy.
Theorem 23. Under Assumptions 1 and 2, there exists an absolute constants c1 and c2 such that for
any δ ∈ (0,1] and T ∈N+, if we choose βoff = c1 · log(TH|G|/δ) and βrf = (c1+c2) · log(TH|G|/δ) in
Algorithms 2 and 3, then with probability at least 1−δ, the policy π̂ output by Algorithm 3 has

J(π⋆)−J(π̂)≤O

(
H

√
SECRL,rf(G,ΠG ,T )log(TH|G|/δ)

T

)
.

We defer the proof to Appendix G.2. We also introduce the following two lemmas, which are key to
adapting the known-reward results to the reward-free case.
Lemma 24 (Reward-free exploration overestimates regret). For any f ∈ F , let g be defined as
gh = fh−Thfh+1+Phgh+1, ∀h ∈ [H]. Then for any (x,a,h) ∈ X ×A× [H], we have gh(x,a)≥
fh(x,a)−Q

πf
h (x,a).

Since the Q-function for all policies in the zero-reward case are zero, Lemma 24 guarantees that, regret
in the reward-free exploration phase—(g1(x1,πg,1)−0) always upper bounds its counterpart of the
offline phase—(f1(x1,πf,1)−Q

πf
h (x,πf,1)). Equipped with the optimism argument, we can show that

if g1(x1,πg,1) is small, its corresponding πf (the f with fh−Thfh+1=gh−Phgh+1, ∀h∈ [H]) also
has small regret.
Lemma 25 (Reward-free exploration has larger confidence set). Suppose Assumption 2 holds and
under the same conditions as Theorem 23. For any f ∈F (off) (defined in Eq. (30)), there must exist
g∈G(t⋆−1) (defined in Eq. (29)), such that fh−Thfh+1=gh−Phgh+1, ∀h∈ [H].

Lemma 25 ensures that the reward-free version space G(t⋆−1) subsumes the offline version spaceF (off).
Thus, we can use the metrics during reward-free exploration to upper bound that of the offline phase.
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G.1.1 RELATED WORK

Our approach adapts techniques for reward-free exploration in nonlinear RL introduced in Chen et al.
(2022). In what follows, we discuss the connection to this work in greater detail. We focus on the
Q-type results of Chen et al. (2022), but similar arguments are likely apply to the V -type.

Briefly, Chen et al. (2022) extends the OLIVE algorithm to the reward-free setting by using the idea
of online exploration with zero rewards. The most important difference here is that, as discussed
in Section 5, since OLIVE only considers average Bellman residuals, it cannot capture coverability.
Beyond this difference, let us compare the completeness assumptions in Assumption 2 to those made
in Chen et al. (2022). We will show that the completeness assumption used by Chen et al. (2022,
Assumption 2) is a sufficient condition for ours (Assumptions 1 and 2). In our notation, Chen et al.
(2022), use F :=Ψ+R := {ψ1:H(·,·)+R1:H(·,·) :ψ ∈Ψ} for some function class Ψ during offline
phase, and select G :=Ψ−Ψ := {ψ1:H(·,·)−ψ′

1:H(·,·) :ψ,ψ′ ∈Ψ} for the reward-free exploration
phase. Thus for any h∈ [H], we have: For Assumption 1 and Assumption 2(a):

ThFh+1=Rh+Ph(Ψh+1+Rh+1)

⊆Rh+Ψh=Fh. (by Chen et al. (2022, Assumption 2))
PhGh+1=Ph(Ψh+1−Ψh+1)

⊆Ψh+1−Ψh+1=Gh. (by Chen et al. (2022, Assumption 2))

For Assumption 2(b):

Fh−ThFh+1=Ψh+Rh−Rh−Ph(Ψh+1+Rh+1)

=Ψh−Ph(Ψh+1+Rh+1)

⊆Ψh−Ψh. (by Chen et al. (2022, Assumption 2))
Gh−PhGh+1=Ψh−Ψh−Ph(Ψh+1−Ψh+1)

⊇Ψh−Ψh. (0∈Ψh+1−Ψh+1)
=⇒Fh−ThFh+1⊆Gh−PhGh+1.

G.2 PROOFS

We first present the following form of Freedman’s inequality for martingales (e.g., Agarwal et al.,
2014).
Lemma 26 (Freedman’s Inequality). Let {X(1),X(2),...,X (T )} be a real-valued martingale difference
sequence adapted to a filtration {F (1),F (2), ... ,F (T )} (i.e., E[X(t) | F (t−1)] = 0, ∀t ∈ [T ]). If
|X(t)|≤R almost surely for all t∈ [T ], then for any η∈(0,1/R), with probability at least 1−δ,

T∑
t=1

X(t)≤η
T∑
t=1

E
[
(X(t))2

∣∣F (t−1)
]
+
log(1/δ)

η
.

We now provide proofs from Appendix G.1.

Proof of Theorem 23. Over this section, the test function class is selected as

δ(t)

h,rf(xh,ah) :=g
(t)

h (xh,ah)−(Phg(t)

h+1)(xh,ah), ∀(h,t)∈ [H]×[T ].

By Theorem 5 (setting reward to be zero and replacing everything regardingF to G), we have
T∑
t=1

H∑
h=1

E
d
(t)
h

[
δ(t)

h,rf

]
≤H

√
TSECRL,rf(G,ΠG ,T )βrf . (31)

For any (h,t)∈ [H]×[T ], we have,

E
d
(t)
h

[
(Phg(t)

h+1)(xh,ah)
]
= E

d
(t)
h

[∑
x′

Ph(xh+1 |xh,ah) max
ah+1∈A

g(t)

h+1(xh+1,ah+1)

]

= E
d
(t)
h

[∑
x′

Ph(xh+1 |xh,ah)g(t)

h+1(xh+1,π
(t)

h )

]
(π(t) is the greedy policy of g(t))
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= E
d
(t)
h+1

[
g(t)

h+1(xh+1,ah+1)
]
. (32)

Therefore, we know
H∑
h=1

E
d
(t)
h

[
δ(t)

h,rf

]
=

H∑
h=1

E
d
(t)
h

[
g(t)

h −Phg
(t)

h

]
=

H∑
h=1

(
E
d
(t)
h

[
g(t)

h

]
−E

d
(t)
h+1

[
g(t)

h+1

])
(by Eq. (32))

= E
d
(t)
1

[
g(t)

1

]
= g(t)

1 (x1,π
(t)

1 ). (33)

Now, since

t⋆ :=argmin
t∈[T ]

g(t)

1 (x1,π
(t)

1 ),

then,

g(t⋆)

1 (x1,π
(t⋆))=

1

T

T∑
t=1

g(t)

1 (x1,π
(t)

1 )

=
1

T

T∑
t=1

H∑
h=1

E
d
(t)
h

[
δ(t)

h,rf

]
(by Eq. (33))

≤H
√

SECRL,rf(G,ΠG ,T )βrf
T

, (34)

where the last inequality follows from Eq. (31).

By Lemma 25, we know there exists a ĝ∈G(t⋆−1), such that f̂h−Thf̂h+1= ĝh−Phĝh+1, ∀h∈ [H]. In
addition, we can obtain

J(π⋆)−J(πf̂ )≤ f̂(x1,πf̂ ,1)−J(πf̂ ) (by Lemma 12)

≤ ĝ(x1,πĝ,1). (by Lemma 24)

Therefore, we have

J(π⋆)−J(πf̂ )≤ ĝ(x1,πĝ,1)

≤ g(t⋆)

1 (x1,π
(t⋆)

1 )

≤H
√

SECRL,rf(G,ΠG ,T )βrf
T

. (by Eq. (34))

Plugging back the selection of βrf completes the proof.

Proof of Lemma 24. We establish the proof by induction. For h=H , the the inductive hypothesis
holds because gH=fH−RH=fH−Q

πf
H .

Suppose the inductive hypothesis holds at h+1, we have for any x∈X ,

gh+1(x,a)≥ fh+1(x,a)−Q
πf
h+1(x,a), ∀a∈A.

=⇒gh+1(x,πf,h+1)≥ fh+1(x,πf,h+1)−Q
πf
h+1(x,πf,h+1).

=⇒max
a∈A

gh+1(x,a)≥ fh+1(x,πf,h+1)−Q
πf
h+1(x,πf,h+1).

=⇒gh+1(x,πg,h+1)≥ fh+1(x,πf,h+1)−V
πf
h+1(x). (35)

Then, as gh=fh−Thfh+1+Phgh+1, we have for any (x,a)∈X×A,

gh(x,a)= fh(x,a)−Rh(x,a)−Ex′|x,a

[
max
a′∈A

fh+1(x
′,a′)

]
+Ex′|x,a

[
max
a′∈A

gh+1(x
′,a′)

]
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= fh(x,a)−Rh(x,a)+Ex′|x,a

[
max
a′∈A

gh+1(x
′,a′)−max

a′∈A
fh+1(x

′,a′)

]
= fh(x,a)−Rh(x,a)+Ex′|x,a[gh+1(x

′,πg,h+1)−fh+1(x
′,πf,h+1)]

≥ fh(x,a)−Rh(x,a)+Ex′|x,a
[
−V πfh+1(x

′)
]

(by Eq. (35))

= fh(x,a)−
(
Rh(x,a)+Ex′|x,a

[
V
πf
h+1(x

′)
])

= fh(x,a)−Q
πf
h (x,a).

Therefore, we prove that the inductive hypothesis also holds at h using the inductive hypothesis at
h+1. This completes the proof.

Proof of Lemma 25. Over this proof, we use d(t)

h as the shorthand of dπ
(t)

h . The proof of this lemma
consists of two parts.

(i) There exists a radius β1, such that for any g∈G, if such g satisfies

t⋆−1∑
t=1

E
d
(t)
h

[
(gh−Phgh+1)

2
]
≤β1, ∀h∈ [H]

then g∈G(t⋆−1).

(ii) There exists another radius β2, where β2≤β1. For any f ∈Foff , we have

t⋆−1∑
t=1

E
d
(t)
h

[
(fh−Thfh+1)

2
]
≤β2, ∀h∈ [H].

Proof of part (i). For any (t,h,g)∈ [T ]×[H]×G, let Y (t)

h (g) be defined as

Y (t)

h (g) :=
(
gh(x

(t)

h ,a
(t)

h )−gh+1(x
(t)

h+1,πg,1)
)2−((Phgh+1)(x

(t)

h ,a
(t)

h )−gh+1(x
(t)

h+1,πg,1)
)2
.

Also, let F (t)

h be the filtration induced by {x(i)

1 ,a
(i)

1 ,x
(i)

2 ,a
(i)

2 ,...,x
(i)

H }ti=1, and we then have

E
[
Y (t)

h (g)
∣∣F (t−1)

h

]
=E

d
(t)
h

[
(gh−Phgh+1)

2
]

(36)

and

V
[
Y (t)

h (g)
∣∣F (t−1)

h

]
≤E
[(
Y (t)

h (g)
)2 ∣∣∣F (t−1)

h

]
≤2E

[
Y (t)

h (g)
∣∣F (t−1)

h

]
=2E

d
(t)
h

[
(gh−Phgh+1)

2
]
.

Now, let Ȳ (t)

h (g) := Y (t)

h (g)−E
[
Y (t)

h (g)
∣∣F (t−1)

h

]
, so that

{
Ȳ (t)

h (g)
}T
t=1

is a martingale difference

sequence adapts to the filtration
{
F (t)

h

}T
t=1

, and |Ȳ (t)

h (g)| ≤ 2 almost surely. Then, by applying
Lemma 26 with a union bound, we have for any (h,g)∈ [H]×G and any η∈(0,1/2), with probability at
least 1−δ,

t⋆−1∑
t=1

Ȳ (t)

h (g)≤ η
t⋆−1∑
t=1

E
[(
Ȳ (t)

h (g)
)2 ∣∣∣F (t−1)

h

]
+
log(H|G|/δ)

η

≤ η
t⋆−1∑
t=1

E
[(
Y (t)

h (g)
)2 ∣∣∣F (t−1)

h

]
+
log(H|G|/δ)

η

(variance is bounded by the second moment)

≤ η
t⋆−1∑
t=1

E
[
Y (t)

h (g)
∣∣F (t−1)

h

]
+
log(H|G|/δ)

η
. (|Y (t)

h (g)|≤1 by its definition)

=⇒
t⋆−1∑
t=1

Y (t)

h (g)≤ η
t⋆−1∑
t=1

E
[
Y (t)

h (g)
∣∣F (t−1)

h

]
+
log(H|G|/δ)

η
+

t⋆−1∑
t=1

E
[
Y (t)

h (g)
∣∣F (t−1)

h

]
(by the definition of Ȳ (t)

h (g))
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= (1+η)

t⋆−1∑
t=1

E
[
Y (t)

h (g)
∣∣F (t−1)

h

]
+
log(H|G|/δ)

η
. (37)

If some g∈G satisfies
t⋆−1∑
t=1

E
d
(t)
h

[
(gh−Phgh+1)

2
]

︸ ︷︷ ︸
=
∑t⋆−1
t=1 E

[
Y

(t)
h (g)

∣∣∣ F
(t−1)
h

]
by Eq. (36)

≤β1, ∀h∈ [H],

then by Eq. (37), we have for any h∈ [H]

t⋆−1∑
t=1

Y (t)

h (g)≤ (1+η)β1+
log(H|G|/δ)

η

≤ 3(β1+log(H|G|/δ)). (e.g., by picking η=1/3)

So we only need to guarantee

3·(β1+log(H|G|/δ))≤ βrf

=⇒β1≤
βrf
3
−log(H|G|/δ). (38)

Proof of part (ii). Similar to (i), for any (t,h,f)∈ [T ]×[H]×F , letX(t)

h (f) be defined as

X(t)

h (f) :=
(
fh(x

(t)

h ,a
(t)

h )−R(x(t)

h ,a
(t)

h )−fh+1(x
(t)

h+1,ΠG)
)2

−
(
(Thfh+1)(x

(t)

h ,a
(t)

h )−R(x(t)

h ,a
(t)

h )−fh+1(x
(t)

h+1,πf,h+1)
)2
.

Also let X̄(t)

h (f) :=E
[
X(t)

h (f)
∣∣F (t−1)

h

]
−X(t)

h (f), so that
{
X̄(t)

h (f)
}T
t=1

is a martingale difference

sequence adapts to the filtration
{
F (t)

h

}T
t=1

, and |X̄(t)

h (f)|≤2 almost surely.

Thus, by same arguments as Eqs. (36) and (37) (as well as applying Lemma 26), we have

E
[
X(t)

h (f)
∣∣F (t)

h

]
=E

d
(t)
h

[
(fh−Thfh+1)

2
]

(39)

and for any (h,f)∈ [H]×F and any η∈(0,1/2), with probability at least 1−δ,
t⋆−1∑
t=1

E
[
X(t)

h (f)
∣∣F (t−1)

h

]
≤η

t⋆−1∑
t=1

E
[
X(t)

h (f)
∣∣F (t−1)

h

]
+
log(H|F|/δ)

η
+

t⋆−1∑
t=1

X(t)

h (f)

=⇒(1−η)
t⋆−1∑
t=1

E
[
X(t)

h (f)
∣∣F (t−1)

h

]
≤ log(H|F|/δ)

η
+

t⋆−1∑
t=1

X(t)

h (f). (40)

Therefore, if f ∈F (off), we have
t⋆−1∑
t=1

X(t)

h (f)=

t⋆−1∑
t=1

(
fh(x

(t)

h ,a
(t)

h )−fh+1(x
(t)

h+1,πf,h+1)
)2−t⋆−1∑

t=1

(
(Thfh+1)(x

(t)

h ,a
(t)

h )−fh+1(x
(t)

h+1,πf,h+1)
)2

≤
t⋆−1∑
t=1

(
fh(x

(t)

h ,a
(t)

h )−fh+1(x
(t)

h+1,πf,h+1)
)2− min

f ′
h∈Fh

t⋆−1∑
t=1

(
f ′h(x

(t)

h ,a
(t)

h )−fh+1(x
(t)

h+1,πf,h+1)
)2

≤L(off)

h (fh,f
(t⋆)

h+1)− min
f ′
h∈Fh

L(off)

h (f ′h,f
(t⋆)

h+1)

≤ βoff . (41)

We then combine Eqs. (39) to (41) and obtain
t⋆−1∑
t=1

E
d
(t)
h

[
(fh−Thfh+1)

2
]
=

t⋆−1∑
t=1

E
[
X(t)

h (f)
∣∣F (t−1)

h

]
(by Eq. (39))
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≤ log(H|F|/δ)

(1−η)η
+

1

1−η

t⋆−1∑
t=1

X(t)

h (f) (by Eq. (40))

≤ log(H|F|/δ)

(1−η)η
+

1

1−η
βoff (by Eq. (41))

≤ 5log(H|F|/δ)+2βoff︸ ︷︷ ︸
=:β2

. (by e.g., setting η=1/3)

So we only need to guarantee

5log(H|F|/δ)+2βoff =β2≤β1. (42)

Putting everything together. By Eqs. (38) and (42), we know we only need the following inequality
to hold:

5log(H|F|/δ)+2βoff≤
βrf
3
−log(H|G|/δ).

=⇒βrf≥ 6βoff+18log(H|G|/δ).

This is satisfied via the condition of Theorem 23.

Combining (i) and (ii), we can simply obtain for any h∈ [H],

{
fh−Thfh+1 :f ∈Foff

}
⊆

{
fh−Thfh+1 :

t⋆−1∑
t=1

E
d
(t)
h

[
(fh−Thfh+1)

2
]
≤β2,∀h∈ [H],f ∈F

}
(by (ii))

⊆

{
gh−Phfh+1 :

t⋆−1∑
t=1

E
d
(t)
h

[
(gh−Phfh+1)

2
]
≤β1,∀h∈ [H],g∈G

}
(by Assumption 2 and β2≤β1)

⊆ {gh−Phgh+1 :g∈G(t⋆−1)}. (by (i))

This completes the proof.
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