Adversarial Model for Offline Reinforcement Learning

Mohak Bhardwaj* Tengyang Xie*
University of Washington Microsoft Research & UW-Madison
mohakb@cs.washington.edu tx@cs.wisc.edu
Byron Boots Nan Jiang Ching-An Cheng
University of Washington UIuC Microsoft Research, Redmond
bboots@cs.washington.edu nanjiang@illinois.edu chinganc@microsoft.com
Abstract

We propose a novel model-based offline Reinforcement Learning (RL) frame-
work, called Adversarial Model for Offline Reinforcement Learning (ARMOR),
which can robustly learn policies to improve upon an arbitrary reference policy re-
gardless of data coverage. ARMOR is designed to optimize policies for the worst-
case performance relative to the reference policy through adversarially training
a Markov decision process model. In theory, we prove that ARMOR, with a
well-tuned hyperparameter, can compete with the best policy within data coverage
when the reference policy is supported by the data. At the same time, ARMOR
is robust to hyperparameter choices: the policy learned by ARMOR, with any ad-
missible hyperparameter, would never degrade the performance of the reference
policy, even when the reference policy is not covered by the dataset. To validate
these properties in practice, we design a scalable implementation of ARMOR,
which by adversarial training, can optimize policies without using model ensem-
bles in contrast to typical model-based methods. We show that ARMOR achieves
competent performance with both state-of-the-art offline model-free and model-
based RL algorithms and can robustly improve the reference policy over various
hyperparameter choices.”

1 Introduction

Offline reinforcement learning (RL) is a technique for learning decision-making policies from
logged data (Lange et al., 2012; Levine et al., 2020; Jin et al., 2021; Xie et al., 2021a). In com-
parison with alternate learning techniques, such as off-policy RL and imitation learning (IL), offline
RL reduces the data assumption needed to learn good policies and does not require collecting new
data. Theoretically, offline RL can learn the best policy that the given data can explain: as long as
the offline data includes the scenarios encountered by a near-optimal policy, an offline RL algorithm
can learn such a near-optimal policy, even when the data is collected by highly sub-optimal policies
and/or is not diverse. Such robustness to data coverage makes offline RL a promising technique for
solving real-world problems, as collecting diverse or expert-quality data in practice is often expen-
sive or simply infeasible.

The fundamental principle behind offline RL is the concept of pessimism, which considers worst-
case outcomes for scenarios without data. In algorithms, this is realized by (explicitly or implic-
itly) constructing performance lower bounds in policy learning which penalizes uncertain actions.

*Equal contribution
2Open source code is available at: https:/sites.google.com/view/armorofflinerl/.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

s ORL REF s 0.01 0.05 0.1 0.5 1.0
== IIII
50 II II
I =T

hopper-med pen-cloned hammer-cloned

i
o
o
|

Normalized Returns

o

Figure 1: Robust Policy Improvement: ARMOR can improve performance over the reference policy
(REF) over a broad range of pessimism hyperparameter (purple) regardless of data coverage. ORL
denotes best offline RL policy without using the reference policy, and reference is obtained by
behavior cloning on expert dataset.

Various designs have been proposed to construct such lower bounds, including behavior regulariza-
tion (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fujimoto and
Gu, 2021), point-wise pessimism based on negative bonuses or truncation (Kidambi et al., 2020; Jin
et al., 2021), value penalty (Kumar et al., 2020; Yu et al., 2020), or two-player games (Xie et al.,
2021a; Uehara and Sun, 2021; Cheng et al., 2022). Conceptually, the tighter the lower bound is, the
better the learned policy would perform; see a detailed discussion of related work in Appendix C.

Despite these advances, offline RL still has not been widely adopted to build learning-based deci-
sion systems beyond academic research. One important factor we posit is the issue of performance
degradation: Usually, the systems we apply RL to have currently running policies, such as an engi-
neered autonomous driving rule or a heuristic-based system for diagnosis, and the goal of applying
a learning algorithm is often to further improve upon these baseline reference policies. As a result,
it is imperative that the policy learned by the algorithm does not degrade the base performance. This
criterion is especially critical for applications where poor decision outcomes cannot be tolerated.

However, running an offline RL algorithm based on pessimism, in general, is not free from perfor-
mance degradation. While there have been algorithms with policy improvement guarantees (Laroche
et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto and Gu, 2021; Cheng et al., 2022),
such guarantees apply only to the behavior policy that collects the data, which might not necessar-
ily be the reference policy. In fact, quite often these two policies are different. For example, in
robotic manipulation, it is common to have a dataset of activities different from the target task. In
such a scenario, comparing against the behavior policy is meaningless, as these policies do not have
meaningful performance in the target task.

In this work, we propose a novel model-based offline RL framework, called Advesarial Model for
Offline Rinforcement Learning (ARMOR), which can robustly learn policies that improve upon
an arbitrary reference policy by adversarially training a Markov decision process (MDP) model, re-
gardless of the data quality. ARMOR is designed based on the concept of relative pessimism (Cheng
et al., 2022), which aims to optimize for the worst-case relative performance over uncertainty. In
theory, we prove that, owing to relative pessimism, the ARMOR policy never degrades the perfor-
mance of the reference policy for a range of hyperparameters which is given beforehand, a property
known as Robust Policy Improvement (RPI) (Cheng et al., 2022). In addition, when the right hy-
perparameter is chosen, and the reference policy is covered by the data, we prove that the ARMOR
policy can also compete with any policy covered by the data in an absolute sense. To our knowl-
edge, RPI property of offline RL has so far been limited to comparing against the data collection
policy (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fujimoto
and Gu, 2021; Cheng et al., 2022). In ARMOR, by adversarially training an MDP model, we extend
the technique of relative pessimism to achieve RPI with arbitrary reference policies, regardless of
whether they collected the data or not (Fig. 1).

In addition to theory, we design a scalable deep-learning implementation of ARMOR to validate
these claims that jointly trains an MDP model and the state-action value function to minimize the
estimated performance difference between the policy and the reference using model-based rollouts.
Our implementation achieves state-of-the-art (SOTA) performance on D4RL benchmarks (Fu et al.,
2020), while using only a single model (in contrast to ensembles used in existing model-based
offline RL works). This makes ARMOR a better framework for using high-capacity world models
(e.g.(Hafner et al., 2023)) for which building an ensemble is too expensive. We also empirically
validate the RPI property of our implementation.

2 Preliminaries

Markov Decision Process We consider learning in the setup of an infinite-horizon discounted
Markov Decision Process (MDP). An MDP M is defined by the tuple (S, A, Pas, Rar,7y), where
S is the state space, A is the action space, Py : S x A — A(S) is the transition dynam-
ics, Rpy = S x A — [0,1] is a scalar reward function and v € [0,1) is the discount factor.
A policy 7 is a mapping from S to a distribution on A. For 7, we let d7,(s,a) denote the dis-
counted state-action distribution obtained by running 7 on M from an initial state distribution dy,
iedy(s,a) = (1 =) Ernr X007 L (st = s,a0 = a)]. Let Jas(m) = Exar Do v'7e] be the
expected discounted return of policy © on M starting from dy, where 1, = Rps(s¢, a;). We de-
fine the value function as Vj(s) = Ex a [>,ov'7¢|so = s], and the state-action value function
(i.e., Q-function) as Q7,(s,a) = Exar [> 1oy 7'7¢|s0 = 8,80 = a]. By this definition, we note
Im (1) = Eqy [V (s)] = Eqy.2[QF; (s, a)]. We use [0, Vinax| to denote the range of value functions,
where Vinax > 1. We denote the ground truth MDP as M™, and J = Jj;«

Offline RL The aim of offline RL is to find the policy that maximizes J(7), while using
a fixed dataset D collected by a behavior policy p. We assume the dataset D consists of
{(Sny @y Ty Sns1) }N_,, where (s, ay,) is sampled from dh;. and 7y, s,41 follow M*; for sim-
plicity, we also write (s, a) = dh,. (s, a).

We assume that the learner has access to a Markovian policy class IT and an MDP model class M.
Assumption 1 (Realizability). We assume the ground truth model M™ is in the model class M.

In addition, we assume that we are provided a reference policy 7. In practice, such a reference
policy represents a baseline whose performance we want to improve with offline RL and data.

Assumption 2 (Reference policy). We assume access to a reference policy Tf, which can be
queried at any state. We assume e is realizable, i.e., T € 11

If e is not provided, we can still run ARMOR as a typical offline RL algorithm, by first performing
behavior cloning on the data and setting the cloned policy as 7. In this case, ARMOR has RPI
with respect to the behavior policy.

Robust Policy Improvement RPI is a notion introduced in Cheng et al. (2022), which means that
the offline algorithm can learn to improve over the behavior policy, using hyperparameters within
a known set. Algorithms with RPI are more robust to hyperparameter choices, and they are often
derived from the principle of relative pessimism (Cheng et al., 2022). In this work, we extend the
RPI concept to compare with an arbitrary reference (or baseline) policy, which can be different from
the behavior policy and can take actions outside data support.

3 Adversarial Model for Offline Reinforcement Learning (ARMOR)

ARMOR is a model-based offline RL algorithm designed with relative pessimism. The goal of
ARMOR is to find a policy 7 that maximizes the performance difference J(7) — J(m.f) to a given
reference policy 7., While accounting for the uncertainty due to limited data coverage. ARMOR
achieves this by solving a two-player game between a learner policy and an adversary MDP model:

T == i - re 1
T arTgrérlllax pfhin I () — g (Tref) (1)

based on a version space of MDP models
My={M e M:E(M)— Jv?’léljl\/l Ep(M') < a},)

where we define the model fitting loss as
Ep(M) = =3 plog Pu(s' | s,a) + (Rau(sa)=n/vi,, (3)
and o > 0 is a bound on statistical errors such that M* € M,,. In this two-player game, ARMOR is

optimizing a lower bound of the relative performance .J(7) — J(7ref). This is due to the construction
that M* € M., which ensures minp;e aq, Jar(7m) — g (7rer) < Jnge () — Jngs (Tref)-

One interesting property that follows from optimizing the relative performance lower bound is that 7
is guaranteed to always be no worse than ¢, for a wide range of o and regardless of the relationship
between m,ef and the data D.

True MDP

a, a, a
@ . : ‘ : . * @ Possible Dynamics in Unknown Region
ai aj ai
Dataset Transitions @ ‘ ar . . ar @ i @ . ar, . ar ‘ ar 3
T @000, @O0 O
a ar ar ar i al ar ar :

Reference Policy

ar ARMOR chooses worst-case models ‘
OO0 @O0
CROACAORD st .

Figure 2: A toy MDP illustrating the RPI property of ARMOR. (Top) The true MDP has determin-
istic dynamics where taking the left (a;) or right (a,.) actions takes the agent to corresponding states;
start state is in yellow. The suboptimal behavior policy visits only the left part of the state space,
and the reference policy demonstrates optimal behavior by always choosing a,.. (Bottom) A subset
of possible data-consistent MDP models in the version space. The adversary always chooses the
MDP that makes the reference maximally outperform the learner. In response, the learner will learn
to mimic the reference outside data support to be competitive.

Proposition 1. For any « large enough such that M* € M, it holds that J(T) > J(mef).

This fact can be easily reasoned: Since 7r,ef € II, we have max e minpre pm,, Jaz () — Jag (Tref) >
minyre pm, Jv (Tref) — Jar(mres) = 0. In other words, ARMOR achieves the RPI property with
respect to any reference policy 7. and offline dataset D.

This RPI property of ARMOR is stronger than the RPI property in the literature. In comparison,
previous algorithms with RPI (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Laroche
et al., 2019; Fujimoto and Gu, 2021; Cheng et al., 2022) are only guaranteed to be no worse than
the behavior policy that collected the data. In Section 3.2, we will also show that when « is set
appropriately, ARMOR can provably compete with the best data covered policy as well, as prior
offline RL works (e.g., Xie et al., 2021a; Uehara and Sun, 2021; Cheng et al., 2022).

3.1 An Illustrative Toy Example

Why does ARMOR have the RPI property, even when the reference policy s is not covered by the
data D? While we will give a formal analysis soon in Section 3.2, here we provide some intuitions as
to why this is possible. First, notice that ARMOR has access to the reference policy .. Therefore,
a trivial way to achieve RPI with respect to m.f is to just output 7.s. However, this naive algorithm
while never degrading m,.f cannot learn to improve from ... ARMOR achieves these two features
simultaneously by /) learning an MDP Model, and 2) adversarially training this MDP model to
minimize the relative performance difference to 7,es during policy optimization.

We illustrate this by a one-dimensional discrete MDP example with five possible states as shown
in Figure 2. The dynamic is deterministic, and the agent always starts in the center cell. The agent
receives a lower reward of 0.1 in the left-most state and a high reward of 1.0 upon visiting the right-
most state. Say, the agent only has access to a dataset from a sub-optimal policy that always takes
the left action to receive the 0.1 reward. Further, let’s say we have access to a reference policy that
demonstrates optimal behavior on the true MDP by always visiting the right-most state. However, it
is unknown a priori that the reference policy is optimal. In such a case, typical offline RL methods
can only recover the sub-optimal policy from the dataset as it is the best-covered policy in the data.

ARMOR can learn to recover the expert reference policy in this example by performing rollouts
with the adversarially trained MDP model. From the realizability assumption (Assumption 1), we
know that the version space of models contains the true model (i.e., M* € M,,). The adversary can
then choose a model from this version space where the reference policy 7, maximally outperforms
the learner. In this toy example, the model selected by the adversary would be the one allowing the
expert policy to reach the right-most state. Now, optimizing relative performance difference with
respect to this model will ensure that the learner can recover the expert behavior, since the only
way for the learner to stay competitive with the reference policy is to mimic the reference policy
in the region outside data support. In other words, the reason why ARMOR has RPI to s is that

its adversarial model training procedure can augment the original offline data with new states
and actions that would cover those generated by running the reference policy.’

3.2 Theoretical Analysis

Now we make the above discussions formal and give theoretical guarantees on ARMOR’s absolute
performance and RPI property. To this end, we introduce a single-policy concentrability coefficient,
which measures the distribution shift between a policy 7 and the data distribution .

Definition 1 (Generalized Single-policy Concentrability). We define the generalized single-
policy concentrability for policy w, model class M and offline data distribution (| as

Egr [E* (M 2
Cm(m) = supprenm W7 where E*(M) = Drpv (Pu(-|s,a), Pu<(-]s,a)” +
(RM(s,a)fR*(s,a))2/Vn2)ax'

Note that €4 (7) is always upper bounded by the standard single-policy concentrability coefficient
[ld™ / p]| oo (e.g., Jin et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021b), but it can be smaller in
general with model class M. It can also be viewed as a model-based analog of the one in Xie et al.
(2021a). A detailed discussion around € 4 (7) can be found in Uehara and Sun (2021).

First, we present the absolute performance guarantee of ARMOR, which holds for a well-tuned a.

Theorem 2 (Absolute performance). Under Assumption 1, there is an absolute constant c such that
forany § € (0,1], if we set « = ¢ - (log(IMl/5)) in Eq. (2), then for any reference policy ms and
comparator policy w1 € 11, with probability 1 — §, the policy 7 learned by ARMOR in Eq. (1)
satisfies that J (1) — J (%) is upper bounded by

o ((\/QM(WT) + \/@,M(mef)) Yinax W) .

Roughly speaking, Theorem 2 shows that 7 learned by ARMOR can compete with any policy 7
with a large enough dataset, as long as the offline data ;2 has good coverage on 7 (good coverage
over Tf can be automatically satisfied if we simply choose 7yef = 1, which yields € (mef) = 1).
Compared to the closest model-based offline RL work (Uehara and Sun, 2021), if we set mf =
(data collection policy), Theorem 2 leads to almost the same guarantee as Uehara and Sun (2021,
Theorem 1) up to constant factors.

In addition to absolute performance, below we show that, under Assumptions 1 and 2, ARMOR
has the RPI property to m.ef: it always improves over J(m,.f) for a wide range of parameter .
Compared with the model-free ATAC algorithm in Cheng et al. (2022, Proposition 6), the threshold
for v in Theorem 3 does not depend on sample size N due to the model-based nature of ARMOR.

Theorem 3 (Robust strong policy improvement). Under Assumptions 1 and 2, there exists an abso-
lute constant ¢ such that for any 6 € (0,1], if: i) o > ¢ - (log(IMl/s)) in Eq. (2); ii) s € 11, then
with probability 1 — 6, the policy T learned by ARMOR in Eq. (1) satisfies J(T) > J(Tyef).-

The detailed proofs of Theorems 2 and 3, as well as the discussion on how to relax Assumptions |
and 2 to the misspecified model and policy classes are deferred to Appendix A.

4 Practical Implementation

In this section, we present a scalable implementation of ARMOR (Algorithm 1) that approximately
solves the two-player game in Eq. (1). We first describe the overall design principle and then the
algorithmic details.

4.1 A Model-based Actor Critic Approach

For computational efficiency, we take a model-based actor critic approach and solve a regularized
version of Eq. (1). We construct this regularized version by relaxing the constraint M € M,

3Note that ARMOR does not depend on knowledge of the true reward function and similar arguments hold
in the case of learned rewards as we illustrate in Appendix E.

Algorithm 1 ARMOR (Adversarial Model for Offline Reinforcement Learning)

Input: Batch data D,,, policy 7, MDP model M, critics fi, f2, horizon H, constants 3, A > 0,
T €[0,1], w € [0,1],

1: Initialize target networks f1 < f1, fo < f2 and Dyodel = 0

2: fork=0,..., K—1do

3: Sample minibatch D™ from dataset Dyeq and minibatch D™ | from dataset Diodel.

o real . o model
4: Construct transition tuples using model predictions

DM = {(5,(1, TMaS3V[) TM = RM(S7GJ)55;\4 ~ PJV[(' ‘ 57a)a (S,CL) € Dl{gziirlli UDrnr?(i)I:iiel}

5 Update the adversary networks; fori = 1, 2,

PO (f M) = L, (f 7 Teer) + B (€8, (f: M, 7) + A (M) 4)
M M — g (Vg PV (f1, M) + Vg PV (fo, M)
fi < Proj =(fi — nfasth'iladversary(fi, M)) and fi+ (1—-7)fi+7fi
6: Update actor network with respect to the first critic network and the reference policy

PN (1) i= —Lop,, (f1, T Tref) (5)
T 4— Pl”()jl'[(7r - nslowvwlacwr(w))

7. Ifk%H = 0, then reset model state: S, + {s € D™t} and S, « {s € Dmini}

real real

8: Query the MDP model to expand D,04e1 and update model state
Ay ={a:a~m(s),s€ S} and A, :={a:a~ Tef(s),s € Sp.}
Diodel = Dimodet U { S, A} U {Srpp, Ar }
Sy« {s'| s ~detach(Py(- | s,a)),s € Sy,a € Az}
Sp {5 | s ~detach(Py(- | 5,a)),s € Sy,a € Ay}

9: end for

in the inner minimization of Eq. (1) to a regularization term and introducing an additional critic
function. To clearly elaborate this, we first present the regularized objective in its complete form,
and subsequently derive it from Eq. (1).

Let F : {f : S x A — [0, Vinax|} be a class of critic functions. The regularized objective is given as

T e argg_[ax EdLref (m, f) (6)

st 7€ argmin Ly (m,) + (5,,7, (£, M)+ /\ED(M))
MeM,fer M e
where Ep(M) = Y., —logPu(s’ | s,a) + (Bu(s,@)=r)?/v2_ s the model-fitting error,
L yres (m, f) = E e [f(s,m) — f(s,mref)] is equal to the performance difference (1 —) (Jps () —
I (Teet))s Ep,. (7, f, M) denotes the squared Bellman error on the distribution pr,» that de-
notes the distribution generated by first running 7, and then rolling out 7 in M (with a switching
time sampled from a geometric distribution of «y), and 3, A act as the Lagrange multipliers.

This regularized formulation in Eq. (6) can be derived as follows. Assuming 7, € F, and us-
ing the facts that Jas(m) = Eg4,[Q75,(s,7)] and the Bellman equation Q7,(s,a) = ra(s,a) +
YVE g Py (s,0) (@71 (87,)], we can rewrite Eq. (1) as

i E e - ref)]- 7
ErrlglzchEH/\}ll,r)lceJ: de[f(S,ﬂ') f(S,ﬂ'ef)] ()

< i !
st. Ep(M) <a+ Ain Ep (M)

Vs,a € Supp(pﬂ'refyﬂ')’ f(s,a) =rum(s,a) + ’YES’NPM(S,G) [f(5/7)]
We then convert the constraints in Eq. (7) into regularization terms in the inner minimization by
introducing Lagrange multipliers (3, A), following (Xie et al., 2021a; Cheng et al., 2022), and drop
the constants not affected by M, f, w, which results in Eq. (6).

4.2 Algorithm Details

Algorithm 1 is an iterative solver for approximating the solution to Eq. (6). Here we further approx-
imate d3f" and pr . » in Eq. (6) using samples from the state-action buffer Dyode1. We want ensure
that Dodel has a larger coverage than both d}(};‘ and pr,. . We do so heuristically, by construct-
ing the model replay buffer Dyoq4e1 through repeatedly rolling out 7 and s with the adversarially
trained MDP model M, such that Dy,eqe contains a diverse training set of state-action tuples.

Specifically, the algorithm takes as input an offline dataset Di,, a policy 7w, an MDP model M
and two critic networks f1, fo. At every iteration, the algorithm proceeds in two stages. First, the
adversary is optimized to find a data-consistent model that minimizes the performance difference
with the reference policy. We sample mini-batches of only states and actions D" and Dy, from
the real and model-generated datasets respectively (Line 4). The MDP model M is queried on these
mini-batches to generate next-state and reward predictions. The adversary then updates the model

and Q-functions (Line 5) using the gradient of the loss described in Eq. (4), where

‘CDM (f7 , ﬂ-ref) =Ep,, [f(s, 71'(5)) - f(87 7"-I'Ef(s)}
5gM(f>M,7T) = (1 *U})S%i(f,f,M,’f() +w€gj(f,f_7M77T)
Epm (M) == Epmin[—log Par(s' | 5,0) + (Rars.a)=n)?/vz]

Lp,, is the pessimistic loss term that forces the f to predict a lower value for the learner than
the reference on the sampled states. &7~ is the Bellman surrogate to encourage the Q-functions
to be consistent with the model-generated data Djy;. We use the double Q residual algorithm
loss similar to Cheng et al. (2022), which is defined as a convex combination of the temporal
difference losses with respect to the critic and the delayed target networks, Eth (f, f\M,7) =
Ep [(f(s,a) —r —~f'(s',7))?]. Ep(M) is the model-fitting loss that ensures the model is data-
consistent. 5 and A control the effect of the pessimistic loss, by constraining Q-functions and models
the adversary can choose. Once the adversary is updated, we update the policy (Line 6) to maximize
the pessimistic loss as defined in Eq. (5). Similar to Cheng et al. (2022), we choose one Q-function
and a slower learning rate for the policy updates (75t > Msiow)-

We remark that £5 = not only affects f1, f2, but also M, i.e., it forces the model to generate transi-
tions where the Q-function is Bellman consistent. This allows the pessimistic loss to indirectly affect
the model learning, thus making the model adversarial. Consider the special case where A = 0 in
the loss of Line 4. The model here is no longer forced to be data consistent, and the adversary can
now freely update the model via £f5 ~ such that the Q-function is always Bellman consistent. As a
consequence, the algorithm becomes equivalent to IL on the model-generated states. We empirically
study this behavior in our experiments (Section 5).

Lines 7 and 8 describe our model-based rollout procedure. We incrementally rollout both 7 and 7 ef
from states in DI} for a horizon H, and add the generated transitions to Dyoge1. The aim of this
strategy is to generate a distribution with large coverage for training the adversary and policy, and

we discuss this in detail in the next section.

Finally, it is important to note the fact that neither the pessimistic nor the Bellman surrogate losses
uses the real transitions; hence our algorithm is completely model-based from a statistical point of
view, that the value function f is solely an intermediate variable that helps in-model optimization
and not directly fit from data.

S Experiments

We test the efficacy of ARMOR on two major fronts: (1) performance comparison to existing offline
RL algorithms, and (2) robust policy improvement over a reference policy that is not covered by the
dataset, a novel setting that is not applicable to existing works*. We use the D4RL (Fu et al., 2020)
continuous control benchmarks datasets for all our experiments and the code will be made public.

Experimental Setup: We parameterize 7, f1, fo and M using feedforward neural networks, and
set Nt = de — 4, Nyow = De — 7, w = 0.5 similar to Cheng et al. (2022). In all our experiments,
we vary only the 8 and A parameters which control the amount of pessimism; others are fixed.
Importantly, we set the rollout horizon to be the max episode horizon defined in the environment.

*In Appendix F we empirically show how imitation learning can be obtained as a special case of ARMOR

Dataset ARMOR | MoREL | MOPO | RAMBO | COMBO | ATAC | CQL | IQL BC
hopper-med 101.4 954 28.0 92.8 97.2 85.6 86.6 | 663 | 29.0
walker2d-med 90.7 77.8 17.8 86.9 81.9 89.6 745 | 783 6.6
halfcheetah-med 54.2 42.1 423 77.6 54.2 53.3 444 | 474 | 36.1
hopper-med-replay 97.1 93.6 67.5 96.6 89.5 102.5 | 48.6 | 947 | 11.8
walker2d-med-replay 85.6 49.8 39.0 85.0 56.0 92.5 326 | 739 11.3
halfcheetah-med-replay 50.5 40.2 53.1 68.9 55.1 48.0 | 462 | 442 | 384
hopper-med-exp 103.4 108.7 23.7 83.3 111.1 1119 | 111.0 | 91.5 | 111.9
walker2d-med-exp 112.2 95.6 44.6 68.3 103.3 1142 | 98.7 | 109.6 | 64
halfcheetah-med-exp 93.5 53.3 63.3 93.7 90.0 94.8 624 | 86.7 | 35.8
pen-human 72.8 - - - - 53.1 375 | 71.5 | 344
hammer-human 1.9 - - - - 1.5 44 1.4 1.5
door-human 6.3 - - - - 2.5 9.9 43 0.5
relocate-human 0.4 - - - - 0.1 0.2 0.1 0.0
pen-cloned 514 - - - - 43.7 39.2 | 373 | 569
hammer-cloned 0.7 - - - - 1.1 2.1 2.1 0.8
door-cloned -0.1 - - - - 37 0.4 1.6 -0.1
relocate-cloned -0.0 - - - - 0.2 -0.1 -0.2 -0.1
pen-exp 112.2 - - - - 136.2 | 107.0 - 85.1
hammer-exp 118.8 - - - - 126.9 | 86.7 - 125.6
door-exp 98.7 - - - - 99.3 | 101.5 - 349
relocate-exp 96.0 - - - - 99.4 95.0 - 101.3

Table 1: Performance comparison of ARMOR against baselines on the DARL datasets. The values
for ARMOR denote last iteration performance averaged over 4 random seeds, and baseline values
were taken from their respective papers. The values denote normalized returns based on random and
expert policy returns similar to Fu et al. (2020). Boldface denotes performance within 10% of the
best performing algorithm. We report results with standard deviations in Appendix F.

The dynamics model is pre-trained for 100k steps using model-fitting loss on the offline dataset.
ARMOR is then trained for 1M steps on each dataset. Refer to Appendix F for more details.

5.1 Comparison with Offline RL Baselines

By setting the reference policy to the behavior-cloned policy on the offline dataset, we can use
ARMOR as a standard offline RL algorithm. Table 1 shows a comparison of the performance
of ARMOR against SOTA model-free and model-based offline RL baselines. In the former cate-
gory, we consider ATAC (Cheng et al., 2022), CQL (Kumar et al., 2020) and IQL (Kostrikov et al.,
2021), and for the latter we consider MoREL (Kidambi et al., 2020), MOPO (Yu et al., 2020), and
RAMBO (Rigter et al., 2022). We also compare against COMBO (Yu et al., 2021) which is a hybrid
model-free and model-based algorithm. In these experiments, we initially warm start the optimiza-
tion for 100k steps, by training the policy and Q-function using behavior cloning and temporal dif-
ference learning respectively on the offline dataset to ensure the learner policy is initialized to be the
same as the reference. Overall, we observe that ARMOR consistently outperforms or is competitive
with the best baseline algorithm on most datasets. Specifically, compared to other purely model-
based baselines (MoREL, MOPO and RAMBO), there is a marked increase in performance in the
walker2d-med, hopper-med-exp and walker2d-med-exp datasets. We would like to highlight two
crucial elements about ARMOR, in contrast to other model-based baselines - (1) ARMOR achieves
SoTA performance using only a single neural network to model the MDP, as opposed to complex
network ensembles employed in previous model-based offline RL methods (Kidambi et al., 2020;
Yu et al., 2021, 2020; Rigter et al., 2022), and (2) to the best of our knowledge, ARMOR is the
only purely model-based offline RL algorithm that has shown performance comparable with model-
free algorithms on the high-dimensional Adroit environments. The lower performance compared to
RAMBO on halfcheetah-med and halfcheetah-med-replay may be attributed to that the much larger
computational budget used by RAMBO is required for convergence on these datasets.

5.2 Robust Policy Improvement

Next, we test whether the practical version of ARMOR demonstrates RPI of the theoretical version.
We consider a set of 14 datasets comprised of the medium and medium-replay versions of D4RL
locomotion tasks, as well as the human and cloned versions of the Adroit tasks, with the reference
policy set to be the stochastic behavior cloned policy on the expert dataset. We chose these combi-

5The variation in performance of the reference for different dataset qualities in the same environment is
owing to different random seeds.

I ORL REF 0.01 0.05 0.1 0.5 1.0

T — E———— T—=——

£

2100 E=———

g I, I =g ==

& 50 T T I = = _

©

E o I

S med med-replay [med med-replay [med med-replay [

= hopper walker2d halfcheetah

€100 = =

El

& IIII T LAl EpdmE iz

3 50 gl I Il o

2 Do Il P Hll i

g e L T ==y

5 o - _ = | _ i _

= human cloned | human cloned | human cloned | human cloned |
pen hammer door relocate

Figure 3: Verification of RPI over the reference policy for different 3 (purple). ORL denotes the
performance of offline RL with ARMOR (Table 1), and REF is the performance of reference policy.’

nations of dataset quality and reference, to ensure that the reference policy takes out-of-distribution
actions with respect to the data. Unlike Sec. 5.1 here the reference policy is a black-box given as
a part of the problem definition. This opens the question of how the learner should be initialized,
since we can not trivially initialize the learner to be the reference as in the previous experiments.®
In a similar spirit to Sec. 5.1, one might consider initializing the learner close to the reference by
behavior cloning the reference policy on the provided dataset during warmstart, i.e, by replacing
the dataset actions with reference actions. However, when the reference chooses out of support ac-
tions, this procedure will not provide a good global approximation of the reference policy, which
can make the optimization problem harder. Instead, we propose to learn a residual policy where
the learned policy outputs an additive correction to the reference (Silver et al., 2018). This is an
appropriate choice since ARMOR does not make any restrictive assumptions about the structure of
the policy class. Figure 3 shows the normalized return achieved by ARMOR for different 3, with
fixed values for remaining hyperparameters. We observe that ARMOR is able to achieve perfor-
mance comparable or better than the reference policy for a range of 5 values uniformly across all
datasets, thus verifying the RPI property in practice. Specifically, there is significant improvement
via RPI in the hammer, door and relocate domains, where running ARMOR as a pure offline RL
algorithm(Section 5.1) does not show any progress ’. Overall, we note the following metrics:

* In 14/14 datasets, ARMOR shows RPI (i.e., ARMOR policy is no worse than the reference
when measured by overlap of confidence intervals). Further, considering the difference be-
tween ORL and REF as a rough indication of whether the reference is within data support,
we note that in 12/14 cases REF is strictly better than ORL, and in all those cases ARMOR
demonstrates RPI.

* In 5/14 datasets, the ARMOR policy is strictly better than the reference. (Criterion: the
lower confidence of ARMOR performance is better than upper confidence of REF). It is
important to note that this metric is highly dependent on the quality of the reference pol-
icy. Since the reference is near-expert, it can be hard for some environments to improve
significantly over it.

6 Discussion

The RPI of ARMOR is highly valuable as it allows easy tuning of the pessimism hyperparameter
without performance degradation. We believe that leveraging this property can pave the way for
real-world deployment of offline RL. Thus, we next present a discussion of RPL®

When does RPI actually improve over the reference policy?

Given ARMOR’s ability to improve over an arbitrary policy, the following question naturally arises:
Can ARMOR nontrivially improve the output policy of other offline algorithms, including itself?
If this were true, can we repeatedly run ARMOR to improve over itself and obtain the best policy
any algorithm can learn offline? Unfortunately, the answer is negative. Not only can ARMOR not

8In Appendix F.5 we provide further experiments for different choices of reference policies.
"We provide comparisons when using a behavior cloning initialization for the learner in Appendix F.
8Due to space limit, we defer the complete discussion to Appendix D and only provide salient points here.

improve over itself, but it also cannot improve over a variety of algorithms (e.g., absolute pessimism
or minimax regret). In fact, the optimal policy of an arbitrary model in the version space M,
is provably unimprovable (Corollary 10; Appendix D). With a deep dive into when RPI gives
nontrivial improvement (Appendix D), we found some interesting observations, which we highlight
here.

Return maximization and regret minimization are different in offline RL. These objectives
generally produce different policies, even though they are equivalent in online RL. Their equiva-
lence in online RL relies on the fact that online exploration can eventually resolve any uncertainty.
In offline RL with an arbitrary data distribution, there will generally be model uncertainty that cannot
be resolved, and the worst-case reasoning over such model uncertainty (i.e., M,,) leads to defini-
tions that are no longer equivalent. Moreover, it is impossible to compare return maximization and
regret minimization and make a claim about which is better. They are not simply an algorithm
design choice, but are definitions of the learning goals and guarantees themselves—and are thus
incomparable: if we care about obtaining a guarantee for the worst-case return, the return maxi-
mization is optimal by definition; if we are more interested in a guarantee for the worst-case regret,
then regret minimization is optimal. We also note that analyzing algorithms under a metric that is
different from the one they are designed for can lead to unusual conclusions, e.g., Xiao et al. (2021)
show that optimistic/neutral/pessimistic algorithms are equally minimax-optimal in terms of their
regret guarantees in offline multi-armed bandits. However, the algorithms they consider are opti-
mistic/pessimistic with respect to the return (as commonly considered in the offline RL literature)
not the regret which is the performance metric they are interested in analyzing.

Tref iS more than a hyperparameter—it defines the performance metric and learning goal
Corollary 10 in Appendix D shows that ARMOR has many different fixed points: when . is
chosen from these fixed points, the solution to Eq. (1) is also m,f. Furthermore, some of them may
seem quite unreasonable for offline learning (e.g., the greedy policy to an arbitrary model in M, or
even the optimistic policy). This is not a defect of the algorithm. Rather, because of the unresolv-
able uncertainty in the offline setting, there are many different performance metrics/learning goals
that are generally incompatible/incomparable, and the agent designer must make a conscious choice
among them and convey the intention to the algorithm. In ARMOR, such a choice is explicitly
conveyed by 7.f, which makes ARMOR subsume return maximization and regret minimization as
special cases.

7 Conclusion

We have presented a model-based offline RL framework, ARMOR, that can improve over arbi-
trary reference policies regardless of data coverage, by using the concept of relative pessimism.
ARMOR provides strong theoretical guarantees with general function approximators, and exhibits
robust policy improvement over the reference policy for a wide range of hyper-parameters. We have
also presented a scalable deep learning instantiation of the theoretical algorithm. Empirically, we
demonstrate that ARMOR indeed enjoys the RPI property, and has competitive performance with
several SOTA model-free and model-based offline RL algorithms, while employing a simpler model
architecture (a single MDP model) than other model-based baselines that rely on ensembles. This
also opens the opportunity to leverage high-capacity world models (Hafner et al., 2023) with offline
RL in the future. However, there are also some limitations. While RPI holds for the pessimism pa-
rameter, the others still need to be tuned. In practice, the non-convexity of the optimization can also
make solving the two-player game challenging. For instance, if the adversary is not strong enough
(i.e., far from solving the inner minimization), RPI would break. Further, runtime of ARMOR is
slightly slower than model-free algorithms owing to extra computations for model rollouts.

Acknowledgments and Disclosure of Funding
Nan Jiang acknowledges funding support from NSF IIS-2112471 and NSF CAREER IIS-214178.

References

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complex-
ity and representation learning of low rank mdps. Advances in Neural Information Processing
Systems, 33:20095-20107, 2020.

10

Andréas Antos, Csaba Szepesvari, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71(1):89-129, 2008.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
In International Conference on Machine Learning, pages 1042-1051, 2019.

Xiong-Hui Chen, Yang Yu, Zheng-Mao Zhu, Zhihua Yu, Zhenjun Chen, Chenghe Wang, Yinan Wu,
Hongqiu Wu, Rong-Jun Qin, Ruijin Ding, et al. Adversarial counterfactual environment model
learning. arXiv preprint arXiv:2206.04890, 2022.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. International Conference on Machine Learning, 2022.

Amir Massoud Farahmand, Rémi Munos, and Csaba Szepesvari. Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems, 2010.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34:20132-20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pages 1587-1596. PMLR,
2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052-2062, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pages 1861-1870. PMLR, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline r1? In
International Conference on Machine Learning, pages 5084-5096. PMLR, 2021.

Sham M Kakade. A natural policy gradient. Advances in Neural Information Processing Systems,
14, 2001.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In Advances in Neural Information Processing Systems,
2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy g-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32:11784-11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191,
2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. Reinforcement
learning: State-of-the-art, pages 45-73, 2012.

11

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning, pages 3652-3661.
PMLR, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qinghua Liu, Alan Chung, Csaba Szepesvari, and Chi Jin. When is partially observable reinforce-
ment learning not scary? In Conference on Learning Theory, volume 178, pages 5175-5220.
PMLR, 2022.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with stationary distribution correction. In Uncertainty in Artificial Intelligence, pages 1180-1190.
PMLR, 2020a.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy
reinforcement learning without great exploration. Advances in Neural Information Processing
Systems, 33:1264—1274, 2020b.

Rémi Munos. Error bounds for approximate policy iteration. In Proceedings of the Twentieth
International Conference on International Conference on Machine Learning, pages 560-567,

2003.

Rémi Munos and Csaba Szepesvari. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(5), 2008.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702-11716, 2021.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:16082—16097,
2022.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline
reinforcement learning: Towards optimal sample complexity. In International Conference on
Machine Learning, pages 19967-20025. PMLR, 2022.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. arXiv
preprint arXiv:1812.06298, 2018.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
partial coverage. In International Conference on Learning Representations, 2021.

Sara A van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press,
2000.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba Szepesvari, and
Dale Schuurmans. On the optimality of batch policy optimization algorithms. In International
Conference on Machine Learning, pages 11362—11371. PMLR, 2021.

Tengyang Xie and Nan Jiang. Q¥ approximation schemes for batch reinforcement learning: A
theoretical comparison. In Conference on Uncertainty in Artificial Intelligence, pages 550-559.
PMLR, 2020.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. In Inter-
national Conference on Machine Learning, pages 11404-11413. PMLR, 2021.

12

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in Neural Information Processing Sys-
tems, 34:6683-6694, 2021a.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in Neural Information
Processing Systems, 34:27395-27407, 2021b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129-14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34:28954-28967, 2021.

Andrea Zanette, Martin J] Wainwright, and Emma Brunskill. Provable benefits of actor-critic meth-
ods for offline reinforcement learning. Advances in Neural Information Processing Systems, 34,
2021.

Tong Zhang. From e-entropy to kl-entropy: Analysis of minimum information complexity density
estimation. The Annals of Statistics, 34(5):2180-2210, 2006.

13

A Proofs for Section 3

A.1 Technical Tools

Lemma 4 (Simulation lemma). Consider any two MDP model M and M', and any 7w : S — A(A),
we have

Vma
[T () = Tae(m)] <

xIEd7r [DTV (PM(| s>a>7PM’(' | Saa))] + 1 ! Eg~ HRM(S7G’) - RJ\/I’(Sva)H .

-7 -7
Lemma 4 is the standard simulation lemma in model-based reinforcement learning literature, and its

proof can be found in, e.g., Uehara and Sun (2021, Lemma 7).

A.2 MLE Guarantees

We use £p (M) to denote the likelihood of model M = (P, R) with offline data D, where

tp(M)=J[Pu(s'|sa). (8)

(s,a,r,s")€ED
For the analysis around maximum likelihood estimation, we largely follow the proving idea of Agar-
wal et al. (2020); Liu et al. (2022), which is inspired by Zhang (2006).

The next lemma shows that the ground truth model M™* has a comparable log-likelihood compared
with MLE solution.

Lemma 5. Let M™* be the ground truth model. Then, with probability at least 1 — §, we have
log bp(M) — log bp(M™*) < log(IMl/s).
Inax log £p(M) — log ép (M) < log(IM//s)

Proof of Lemma 5. The proof of this lemma is obtained by a standard argument of MLE (see, e.g.,
van de Geer, 2000). For any M € M,

E [exp (log ¢p (M) — logbp(M*))] = E [{p(M)]

L{p(M*)
[s.a,r.nep Pr(s' | s5,0)
_H(s,a,r,s’)ED P+ (5/ ‘ S, CL)

= E H ‘51\/[(5//| S? a’)
| (s,a,r,s")€D M (8 | 87(1)

=E|]] IE[PM(S/ |5, a)

PM*(S/ | Sva)

s,a}

L (s,a)€D
=E H ZPM(S’|S,a)
L(s,a)€ED s
—1.)

Then by Markov’s inequality, we obtain
P [(log (M) —log {p(M*)) > log(/s)]
< Elexp (log p (M) —log {p(M™))] - exp [— log(1/s)] = 0.

=1by Eq. (9)

Therefore, taking a union bound over M, we obtain
P[(log ¢p(M) —log bp(M™*)) > log(IMl/s)] < 6.
This completes the proof. O

14

The following lemma shows that, the on-support error of any model M € M can be captured via
its log-likelihood (by comparing with the MLE solution).

Lemma 6. For any model M, we have with probability at least 1 — 6,

E, [DTV (Par(- | 5,a), Pae (- | s,a))ﬂ <0 (

where {p(-) is defined in Eq. (8).

log bp(M™) — log bp(M) + log(IMl/s)

.)

Proof of Lemma 6. By Agarwal et al. (2020, Lemma 25), we have

1 Py (s | s,a
Ey [DTV (Pa(- | s,a), Par (- | Sva))z} < —2logEpxpy,. [exp (—210g (AM))] ’

Pp(s' | s,a)

where p x Py« denote the ground truth offline joint distribution of (s, a, s).

Let D = {(3;, @, 74, St} ~ p be another offline dataset that is independent to D. Then,

1
—n-logE,xp,. {exp <2 log (

= = logE, 4,5~

i=1

= —log Eﬁwﬂ lexp (
i=1

= —log Ef>~u

We use ¢p/(s,a,s’) as the shorthand of f% log (

exp Z

(s,a,s")€D

P+ (s']s,a)
Pr(s']s,a)

(10)
i)
PM(S/ | S,a/)
1 (Py (3| 5i,d)
{exp (_210g (W)ﬂ
L. Py (3] 5i,30)
> log <W)> ‘ D]
1 Py (s | 5,a)
s (PM(S/M> D|. (11)

), for any (s,a,s’) € S x A x S.

By Agarwal et al. (2020, Lemma 24) (see also Liu et al., 2022, Lemma 15), we know

Ep~, |exp Z éM(S,a,s’)—logEﬁN“ exp

(s,a,s")€D

S tulsas)| | D] ~logM]

(s,a,s")€D

Thus, we can use Chernoff method as well as a union bound on the equation above to obtain the
following exponential tail bound: with probability at least 1 — ¢, we have for all (P, R) = M € M,

—logE5_, |exp Z lr(s,a,s")
(s,a,s’)eﬁ

Dl <— > lu(s,a,s) + 2log(IMl/s).
(s,a,s8’)ED

12)

Plugging back the definition of £;; and combining Egs. (10) to (12), we obtain

n By [Dry (PC [5,0), Pare(5,00 <5 3 1°g<

Therefore, we obtain

(s,a,s’)eD

n By [Dry (P | 5,0), Pa (| 5,0)°]

< Zlo

(s,a,s")€ED

g

Py« (s'] s,a)

P(s" | 5,a)

) + log(IMl/s)

= log {p(M™) —log {p(M) + log(IMl/s).

This completes the proof.

15

PM*(S/ | Saa)

Bl Ts.0)) + 2log(IMI/s).

(¢p(-) is defined in Eq. (8))
O

A.3 Guarantees about Model Fitting Loss

Lemma 7. Let M™* be the ground truth model. Then, with probability at least 1 — §, we have
M*) — mi M) < O (log(IM]
Ep(M”) — min Ep(M) < O (log(IMl/s))

where Ep is defined in Eq. (3).

Proof of Lemma 7. By defition, we know
Ep(M) = —log bp(M) + (Rar(s.a)=r)fv2
By Lemma 5, we know

-) < IM|/s).
Ar?g/)\{/llogﬁp(M) log bp(M™) < log(IMl/s) (13)

In addition, by Xie et al. (2021a, Theorem A.1) (with setting v = 0), we know w.p. 1 — 6,
Z (R*(s,a) —r)* — min Z (Ras(s,a) —r)* < log(IMI/s). (14)

MeM
(s,a,r,s") €D (s,a,r,s")€ED

Combining Egs. (13) and (14) and using the fact of Vi,.x > 1, we have w.p. 1 — 9,
Ep(M*) — min Ep(M)
MeM

< log{p(M) — mi (R (s,a)=r)? fy2. Ep(M™
< max log {p(M) z\rflelf\l/t(Z)ED M V2. + Ep(M™)

< log(IMI/s).
This completes the proof. O
Lemma 8. For any M € M, we have with probability at least 1 — 9,

B, [Drv (Pu- | 5.0). Pars(-| 5,0))° + (e, |
<0 <ED(M) —Ep(M*) + log(M/é)) 7

n

where Ep is defined in Eq. (3).
Proof of Lemma 8. By Lemma 6, we have w.p. 1 — 9,
n-E, [DTV (Par(- | 5,a), Pare (- | s,a))ﬂ < log £p(M*) — log £p(M) + log(IMI/s). (15)
Also, we have
n-E, [(RM(S, a) — R*(s,a))ﬂ (16)

=By [(Ru(s,0) =)] = 0B, [(R*(s,0) = 7]
(see, e.g., Xie et al., 2021a, Eq. (A.10) with v = 0)
S Y Buls,a)—r)’ = D (R(s,a) —1)° + log(IMl)s),
(s,a,r,s’)ED (s,a,r,s")ED

where the last inequality is a direct implication of Xie et al. (2021a, Lemma A.4). Combining
Egs. (15) and (16) and using the fact of Vj,.x > 1, we obtain

n-E, {DTV (Par(- | 5,0), Pag- (- | 5,a))? + (Rar(s,0) =R (s,0)) ;2 }

max

< loglp(M™) — Z (R*(s,0)=1)?/v2, — log bp(M) + Z (R (s,0)=1)2/v2, + log(IMl/s)
(s,a,r,s’)ED (s,a,r,s")ED

=Ep(M) — Ep(M™) + log(IMI/s).

This completes the proof. O

16

A.4 Proof of Main Theorems

Proof of Theorem 2. By the optimality of 7 (from Eq. (1)), we have
J(7T) = J@) = J(71) — T(meet) — [J(F) — T (mref)]

< T = T () — Ivjn[eli\l/l1 [Ja () — Tng (Teef)])
< J(mh) = J(mrer) — min [Tas () = T (mees)] (17)

where step (x) follows from Lemma 5 so that we have M™* € M., and the last step is because of
7t € II. By the simulation lemma (Lemma 4), we know for any policy and any M € M,

|J(m) = Jar ()] < I/max Egr [Drv (Par(- | 8,a), Pars (- | 8,a))] + T ! Eg~ [|Ra(s,a) — R*(s,a)l]

- -7

Vmax 2 Vmax Ras(s.a)—R*(s.a))?
< 1\/Edfr [DTV (Pr (-] s,a), Py+(- | 5,a)) } + ﬁ\/Ed” [(Bu(s,0)=R*(s:0)?/v2,, |

Vm X *
S _a,y\/ﬂ‘zdfr {DTV (Pas(- | 5,0), Pars (- | 5,a))” + (Ras(s.0)—R (5’“))2/‘43“}

1
(a < bmeans a < O(b))

Vmax € *
< \/M(W)\/Eu [DTV (Par(- | 5,a), Pare (- | 8,0))° + (Rar(s.0)=R (S’“))z/Vrﬁax}

1—y
5 Vmaxl\/_ety (71—) \/ED (M) — ED(]Z*) + 10g(|M|/5) (by Lemma 8)
< Vinax/€m(m) \/5D(M) — minyyenm Ep(M’) + log(1MI/s) @
~ 1—7~ n
5 Vmax\/CM (ﬂ—) \/log(lMl/é) (18)
1—7 n

where the step (1) follows from the assumption of M* € M, and last step is because Ep(M) —
minpyrepm Ep(M') < a = O(log(IMl/5) by Eq. (2).

Combining Egs. (17) and (18), we obtain
~ Vinax [log(IMl/,6
IE) = I 5 |\fEunlr) + v Eaalran| - 7[R,
— n
This completes the proof. O

Note that, over the proof above, only steps (x) and (1) have used the realizability assumption of
M* € M. To extend that to the misspecification case, where there only exists an M* € M such

that M* is close to M* up to some misspecification error, we just need the following straightforward
accommodations:

(1) A variant of Lemma 5—to ensure that M* is included in the version space M. By doing
so, the misspecification error should also be included in the radius of the version space.

(2) Upper bound |J(m) — Jy7. ()| for any m using misspecification error. This is a stan-

dard argument, and by combining with the item above, (x) becomes J(7) — J(7ref) >
minpsem,, [Jar(T) — Jar (e)] — misspecification error.

(3) Upper bound difference in model-fitting error ED(]T/f *) — Ep(M™) using misspecification
error. Then, step (1) becomes, for M € M,,

Ep(M) — Ep(M*) = Ep(M) — Ep(M*) + Ep(M*) — Ep(M*)
<&p(M) - MH/leiI/{/t Ep(M'") + misspecification error

< log (IMl/s5) + misspecification error.

17

Due to the unboundedness of the likelihood, we conjecture that naively defining misspecifica-
tion error using total variation without any accommodation on the MLE loss may be insufficient
for the steps above. To resolve that, we may adopt an alternate misspecification definition, e.g.,
llog Par+(s' | s,a) —log Pz, (s' | s,a)| < e, V(s,a,8') € S x A xS, or add extra smoothing to
the MLE loss with regularization.

Proof of Theorem 3.
J(mref) — J(T) = J(Tref) — J(Mres) — [J(T) — J (Tref)]
< - MHGI}\I/I([Ja(T) — Tpg (Tref)] (by Lemma 5, we have M™* € M,,)
= - ngﬁc A}Qﬁa [Jar () — Jar(mef)] (by the optimality of 7 from Eq. (1))
S - MH€1.1/\I/1(.1 [JM (ﬂ'ref) - JM (Wref)] (ﬂ-ref S H)

=0.
O

A misspecified version of Theorem 3 can be derived similarly to what we discussed about that of
Theorem 2. If the policy class is also misspecified, where there exists only 7r,ef € II that is close
to Tef Up to some misspecification error, the second last step of the proof of Theorem 3 becomes
—minprepm, [In (Tref) — I (Trer)] < misspecification error by simply applying the performance
difference lemma on the difference between T,ef and myef.

B Proofs for Section 6

Proof of Lemma 9. We prove the result by contradiction. First notice minyre g Jps(7') —
Ju(m') = 0. Suppose there is T € II such that minpseag, Jar(7) — Jar(n') > 0, which im-
plies that Jp (7) > Jp(7'), VM € M,,. Since M C M,,, we have

min (%) + V(M) > min () + (M) = max amin Ty (7) + 6(M)

which is a contradiction of the maximin optimality. Thus max,cm minye s, Jar (7)) — S (n') =
0, which means 7’ is a solution.

For the converse statement, suppose 7 is a fixed point. We can just let (M) = —Js (7). Then this
pair of 7 and ¢ by definition of the fixed point satisfies Eq. (19). O

C Related Work

There has been an extensive line of works on reinforcement with offline/batch data, especially for
the case with the data distribution is rich enough to capture the state-action distribution for any
given policy (Munos, 2003; Antos et al., 2008; Munos and Szepesvari, 2008; Farahmand et al.,
2010; Lange et al., 2012; Chen and Jiang, 2019; Liu et al., 2020a; Xie and Jiang, 2020, 2021).
However, this assumption is not practical since the data distribution is typically restricted by factors
such as the quality of available policies, safety concerns, and existing system constraints, leading to
narrower coverage. As a result, recent offline RL works in both theoretical and empirical literature
have focused on systematically addressing datasets with inadequate coverage.

Modern offline reinforcement learning approaches can be broadly categorized into two groups for
the purpose of learning with partial coverage. The first type of approaches rely on behavior regu-
larization, where the learned policy is encouraged to be close to the behavior policy in states where
there is insufficient data (e.g., Fujimoto et al., 2018; Laroche et al., 2019; Kumar et al., 2019; Siegel
et al., 2020). These algorithms ensure that the learned policy performs at least as well as the behav-
ior policy while striving to improve it when possible, providing a form of safe policy improvement
guarantees. These and other studies (Wu et al., 2019; Fujimoto and Gu, 2021; Kostrikov et al., 2021)
have provided compelling empirical evidence for the benefits of these approaches.

The second category of approaches that has gained prevalence relies on the concept of pessimism
under uncertainty to construct lower-bounds on policy performance without explicitly constraining

18

the policy. Recently, there have been several model-free and model-based algorithms based on
this concept that have shown great empirical performance on high dimensional continuous control
tasks. Model-free approaches operate by constructing lower bounds on policy performance and
then optimizing the policy with respect to this lower bound (Kumar et al., 2020; Kostrikov et al.,
2021). The model-based counterparts first learn a world model and the optimize a policy using
model-based rollouts via off-the-shelf algorithms such as Natural Policy Gradient (Kakade, 2001)
or Soft-Actor Critic (Haarnoja et al., 2018). Pessimism is introduced by either terminating model
rollouts using uncertainty estimation from an ensemble of neural network models (Kidambi et al.,
2020) or modifying the reward function to penalize visiting uncertain regions (Yu et al., 2020). Yu
et al. (2021) propose a hybrid model-based and model-free approach that integrates model-based
rollouts into a model-free algorithm to construct tighter lower bounds on policy performance. On
the more theoretical side, the offline RL approaches built upon the pessimistic concept (e.g., Liu
etal., 2020b; Jin et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021a; Zanette et al., 2021; Uehara
and Sun, 2021; Shi et al., 2022) also illustrate desired theoretical efficacy under various of setups.

Another class of approaches employs an adversarial training framework, where offline RL is posed
a two player game between an adversary that chooses the worst-case hypothesis (e.g., a value func-
tion or an MDP model) from a hypothesis class, and a policy player that tried to maximize the
adversarially chosen hypothesis. Xie et al. (2021a) propose the concept of Bellman-consistent pes-
simism to constrain the class of value functions to be Bellman consistent on the data. Cheng et al.
(2022) extend this framework by introducing a relative pessimism objective which allows for robust
policy improvement over the data collection policy p for a wide range of hyper-parameters. Our
approach can be interpreted as a model-based extension of Cheng et al. (2022). These approaches
provide strong theoretical guarantees even with general function approximators while making min-
imal assumptions about the function class (realizability and Bellman completeness). Chen et al.
(2022) provide an adversarial model learning method that uses an adversarial policy to generate a
data-distribution where the model performs poorly and iteratively updating the model on the gener-
ated distribution. There also exist model-based approaches based on the same principle (Uehara
and Sun, 2021; Rigter et al., 2022) for optimizing the absolute performance. Of these, Rigter et al.
(2022) is the closest to our approach, as they also aim to find an adversarial MDP model that mini-
mizes policy performance. They use a policy gradient approach to train the model, and demonstrate
great empirical performance. However, their approach is based on absolute pessimism and does not
enjoy the same RPI property as ARMOR.

D A Deeper Discussion of Robust Policy Improvement

D.1 How to formally define RPI?

Improving over some reference policy has been long studied in the literature. To highlight the
advantage of ARMOR, we formally give the definition of different policy improvement properties.

Definition 2 (Robust policy improvement). Suppose 7 is the learned policy from an algorithm.
We say the algorithm has the policy improvement (PI) guarantee if J(mwf) — J(T) < o(N)/N is
guaranteed for some reference policy m.s with offline data D ~ u, where N = |D|. We use the
following two criteria w.r.t. T.ef and y to define different kinds PI:

(i) The PI is strong if m.f can be selected arbitrarily from policy class 11 regardless of the
choice data-collection policy i, otherwise, Pl is weak (i.e., Tef = |1 is required).

(ii) The PI is robust if it can be achieved by a range of hyperparameters with a known subset.

Weak policy improvement is also known as safe policy improvement in the literature (Fujimoto
et al., 2019; Laroche et al., 2019). It requires the reference policy to be also the behavior policy that
collects the offline data. In comparison, strong policy improvement imposes a stricter requirement,
which requires policy improvement regardless of how the data were collected. This condition is
motivated by the common situation where the reference policy is not the data collection policy.
Finally, since we are learning policies offline, without online interactions, it is not straightforward to
tune the hyperparameter directly. Therefore, it is desirable that we can design algorithms with these
properties in a robust manner in terms of hyperparameter selection. Formally, Definition 2 requires
the policy improvement to be achievable by a set of hyperparameters that is known before learning.

19

Theorem 3 indicates the robust strong policy improvement of ARMOR. On the other hand, algo-
rithms with robust weak policy improvement are available in the literature (Fujimoto et al., 2019;
Kumar et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fujimoto and Gu, 2021; Cheng et al., 2022);
this is usually achieved by designing the algorithm to behave like IL for a known set of hyperpa-
rameter (e.g., behavior regularization algorithms have a weight that can turn off the RL behavior
and regress to IL). However, deriving guarantees of achieving the best data-covered policy of the
IL-like algorithm is challenging due to its imitating nature. To our best knowledge, ATAC (Cheng
et al., 2022) is the only algorithm that achieves both robust (weak) policy improvement as well as
guarantees absolute performance.

D.2 When RPI actually improves?

Given ARMOR’s ability to improve over an arbitrary policy, the following questions naturally arise:
Can ARMOR nontrivially improve the output policy of other algorithms (e.g., such as those based
on absolute pessimism (Xie et al., 2021a)), including itself? Note that outputting s itself always
satisfies RPI, but such result is trivial. By “nontrivially” we mean a non-zero worst-case improve-
ment. If the statement were true, we would be able to repeatedly run ARMOR to improve over itself
and then obtain the best policy any algorithm can learn offline.

Unfortunately, the answer is negative. Not only ARMOR cannot improve over itself, but it also
cannot improve over a variety of algorithms. In fact, the optimal policy of an arbitrary model
in the version space is unimprovable (see Corollary 10)! Our discussion reveals some interesting
observations (e.g., how equivalent performance metrics for online RL can behave very differently in
the offline setting) and their implications (e.g., how we should choose 7, for ARMOR). Despite
their simplicity, we feel that many in the offline RL community are not actively aware of these facts
(and the unawareness has led to some confusion), which we hope to clarify below.

Setup We consider an abstract setup where the learner is given a version space M., that contains
the true model and needs to choose a policy = € II based on M. We use the same notation M,
as before, but emphasize that it does not have to be constructed as in Eqs. (2) and (3). In fact, for
the purpose of this discussion, the data distribution, sample size, data randomness, and estimation
procedure for constructing M,, are all irrelevant, as our focus here is how decisions should be
made with a given M. This makes our setup very generic and the conclusions widely applicable.

To facilitate discussion, we define the fixed point of ARMOR’s relative pessimism step:

Definition 3. Consider Eq. (1) as an operator that maps an arbitrary policy s to T. A
fixed point of this relative pessimism operator is, therefore, any policy m € 1l such that m €
argmax ey Minaze pm, Sy (') — Jpr ().

Given the definition, relative pessimism cannot improve over a policy if it is already a fixed point.

Below we show a sufficient and necessary condition for being a fixed point, and show a number of
concrete examples (some of which may be surprising) that are fixed points and thus unimprovable.

Lemma 9 (Fixed-point Lemma). For any M C M, and any ¢ : M — R, consider the policy

T 4 (M 19
Wearfg?xz\%/%t M (7") + (M) (19)

Then is a fixed point in Definition 3. Conversely, for any fixed point 7 in Definition 3, there is a
¥ M — R such that 7 is a solution to Eq. (19).

Corollary 10. The following are fixed points of relative pessimism (Definition 3):

1. Absolute-pessimism policy, i.e., (M) = 0.

2. Relative-pessimism policy for any reference policy, i.e., V(M) = —Jpr(ref)-

3. Regret-minimization policy, i.e., (M) = —Jn (7)), where my; € argmax, oy Jas ().
4. Optimal policy of an arbitrary model M € M, 7}, i.e., M = {M}. This would include

the optimistic policy, that is, argmaxcy prem,, Ja (T)

Return maximization and regret minimization are different in offline RL. We first note that
these four examples generally produce different policies, even though some of them optimize for

20

objectives that are traditionally viewed as equivalent in online RL (the “worst-case over M,,” part
of the definition does not matter in online RL), e.g., absolute pessimism optimizes for Jys (), which
is the same as minimizing the regret Jys (7},) — Ja () for a fixed M. However, their equivalence
in online RL relies on the fact that online exploration can eventually resolve any model uncertainty
when needed, so we only need to consider the performance metrics w.r.t. the true model M = M*.
In offline RL with an arbitrary data distribution (since we do not make any coverage assumptions),
there will generally be model uncertainty that cannot be resolved, and worst-case reasoning over
such model uncertainty (i.e., M) separates apart the definitions that are once equivalent.

Moreover, it is impossible to compare return maximization and regret minimization and make a
claim about which one is better. They are not simply an algorithm design choice, but are definitions
of the learning goals and the guarantees themselves—thus incomparable: if we care about obtaining
a guarantee for the worst-case refurn, the return maximization is optimal by definition; if we are
more interested in obtaining a guarantee for the worst-case regret, then again, regret minimization is
trivially optimal. We also note that analyzing algorithms under a metric that is different from the one
they are designed for can lead to unusual conclusions. For example, Xiao et al. (2021) show that op-
timistic/neutral/pessimistic algorithms’ are equally minimax-optimal in terms of their regret guaran-
tees in offline multi-armed bandits. However, the algorithms they consider are optimistic/pessimistic
w.r.t. the return—as commonly considered in the offline RL literature—not w.r.t. the regret which is
the performance metric they are interested in analyzing.

Tef is more than a hyperparameter—it defines the performance metric and learning goal
Corollary 10 shows that ARMOR (with relative pessimism) has many different fixed points, some of
which may seem quite unreasonable for offline learning, such as greedy w.r.t. an arbitrary model or
even optimism (#4). From the above discussion, we can see that this is not a defect of the algorithm.
Rather, in the offline setting with unresolvable model uncertainty, there are many different perfor-
mance metrics/learning goals that are generally incompatible/incomparable with each other, and the
agent designer must make a choice among them and convey the choice to the algorithm. In ARMOR,
such a choice is explicitly conveyed by the choice of 7., which subsumes return maximization and
regret minimization as special cases (#2 and #3 in Corollary 10)

E A More Comprehensive Toy Example for RPI

We illustrate with a simple toy example why ARMOR intuitively demonstrates the RPI property
even when ¢ is not covered by the data D. ARMOR achieves this by /) learning an MDP Model,
and 2) adversarially training this MDP model to minimize the relative performance difference to mef
during policy optimization. Consider a one-dimensional discrete MDP with five possible states as
shown in Figure 4. The dynamics is deterministic, and the agent always starts in the center cell. The
agent receives a lower reward of 0.1 in the left-most state and a high reward of 1.0 upon visiting the
right-most state. Say, the agent only has access to a dataset from a sub-optimal policy that always
takes the left action to receive the 0.1 reward. Further, let’s say we have access to a reference policy
that demonstrates optimal behavior on the true MDP by always choosing the right action to visit
the right-most state. However, it is unknown a priori that the reference policy is optimal. In such a
case, typical offline RL methods can only recover the sub-optimal policy from the dataset as it is the
best-covered policy in the data. Now, for the sake of clarity, consider the current learner policy is
same as the behavior policy, i.e it always takes the left action.

ARMOR can learn to recover the expert reference policy in this example by performing rollouts with
the adversarially trained MDP model. From the realizability assumption we know that the version
space of models contains the true model (i.e., M* € M,,). The adversary can then choose a model
from this version space where the reference policy s maximally outperforms the learner. Note,
that ARMOR does not require the true reward function to be known. In this toy example, the model
selected by the adversary would be the one that not only allows the expert policy to reach the right-
most state, but also predicts the highest reward for doing so. Now, optimizing to maximize relative
performance difference with respect to this model will ensure that the learner can recover the expert
behavior, since the only way for the learner to stay competitive with the reference policy is to mimic
the reference policy in the region outside data support. In other words, the reason why ARMOR has
RPI to 7 is that its adversarial model training procedure can augment the original offline data with

“Incidentally, optimistic/neutral policies correspond to #4 in Corollary 10.

21

True MDP
@, OO0 @)
al al ai
Dataset Transitions

Possible Dynamics and Rewards in Unknown Region

ar ar ar ar ar
@.0:0.0'0 QOO0
EN a a ai al a
ar

aj ar ap
ar a
Dataset Transitions @ ..‘ @ @ ay a ar
a—Fa ar)

ap ap al

ar a ar .
it (O Ot

al al al

i a,
@ .Rf: o e ' CH@=@
ar, ar ar I
@ . . 8 . O 8 @ : ... ‘ @ o . "
1

Figure 4: A toy MDP illustrating the RPI property of ARMOR. (Top) The true MDP has determin-
istic dynamics where taking the left (a;) or right (a,-) actions takes the agent to corresponding states;
start state is in yellow. The suboptimal behavior policy only visits only the left part of the state
space, and the reference policy demonstrates optimal behavior by always choosing a,.. (Bottom)
A subset of possible data-consistent MDP models (dynamics + rewards) in the version space. The
adversary always chooses the MDP that makes the reference maximally outperform the learner. In
response, the learner will learn to mimic the reference outside data support to be competitive.

ARMOR chooses worst-case models

new states and actions that would cover those generated by running the reference policy in the true
environment, even though ARMOR does not have knowledge of M*.

F Further Experimental Details

F.1 Experimental Setup and Hyper-parameters

We represent our policy 7, Q-functions f1, fo and MDP model M as standard fully connected neural
networks. The policy is parameterized as a Gaussian with a state-dependent covariance, and we use
a tanh transform to limit the actions to the action space bound similar to Haarnoja et al. (2018).
The MDP model learns to predict the next state distribution, rewards and terminal states, where
the reward and next-state distributions part are parameterized as Gaussians with state-dependent
covariances. The model fitting loss consists of negative log-likelihood for the next-state and reward
and binary cross entropy for the terminal flags. In all our experiments we use the same model
architecture and a fixed value of \. We use Adam optimizer (Kingma and Ba, 2015) with fixed
learning rates 1yqst and 7510, similar to Cheng et al. (2022). Also similar to prior work (Kidambi
et al., 2020), we let the MDP model network predict delta differences to the current state. The
rollout horizon is always set to the maximum episode steps per environment. A complete list of
hyper-parameters can be found in Table 3.

Compute: Each run of ARMOR has access to 4CPUs with 28GB RAM and a single Nvidia T4 GPU
with 16GB memory. With these resources each run tasks around 6-7 hours to complete. Including
all runs for 4 seeds, and ablations this amounts to approximately 2500 hours of GPU compute.

22

Hyperparameter Value Hyperparameter Value
model_num_layers 3 critic learning rate 7,y Se-4
model_hidden_size | 512 policy learning rate 7gow Se-7
model_nonlinearity | swish discount factor 0.99
policy_num_layers 3 rollout horizon max episode steps
policy_hidden_size | 256 model buffer size 106
policy_nonlinearity | relu batch size 125

f_num_layers 3 model batch size 125

f hidden_size 256 num warmstart steps 10°

f_nonlinearity relu T 5e — 3
Table 2: Model Architecture Details Table 3: List of Hyperparameters.

F.2 Detailed Performance Comparison and RPI Ablations

In Table 4 we show the performance of ARMOR compared to model-free and model-based offline
RL baselines with associate standard deviations over 8 seeds. For ablation, here we also include
ARMOR', which is running ARMOR in Algorithm 1 but without the model optimizing for the
Bellman error (that is, the model is not adversarial). Although ARMORT does not have any theo-
retical guarantees (and indeed in the worst case its performance can be arbitrarily bad), we found
that ARMORT in these experiments is performing surprisingly well. Compared with ARMOR,
ARMORT has less stable performance when the dataset is diverse (e.g. -med-replay datasets) and
larger learning variance. Nonetheless, ARMOR using a single model is already pretty competi-
tive with other algorithms. We conjecture that this is due to that Algorithm 1 also benefits from
pessimism due to adversarially trained critics. Since the model buffer would not cover all states
and actions (they are continuous in these problems), the adversarially trained critic still controls the
pessimism for actions not in the model buffer, as a safe guard. As a result, the algorithm can tolerate
the model quality more.

Dataset ARMOR ARMORT ARMOR"™ | MoREL MOPO RAMBO COMBO | ATAC | CQL | IQL BC
hopper-med 101.4 £ 0.3 | 1004 £1.7 65348 954 280E£124] 928+£6.0 | 972+22 85.6 86.6 | 663 | 29.0
walker2d-med 90.7 £ 44 | 91.0+104 79.0 £22 77.8 17.8+193 | 869 +2.7 | 81.9+28 | 89.6 745 | 183 6.6
halfcheetah-med 542424 56.3+£0.5 452402 42.1 423416 | 776+ 1.5 | 542+ 15 533 444 | 474 | 36.1
hopper-med-replay 97.1£4.8 | 82.7+23.1 684+52 93.6 67.5+247 | 96.6 £7.0 | 89.5+18 | 1025 | 48.6 | 94.7 11.8
walker2d-med-replay 856 £7.5 784+19 503 +£5.7 49.8 39.0+£9.6 | 85.0+15.0 | 56.0+8.6 | 925 326 | 739 113
halfcheetah-med-replay | 50.5 + 0.9 49.5+£0.9 368+ 1.5 40.2 53.1+£20 | 68.9+23 | 551+£10 | 480 | 462 | 442 | 384
hopper-med-exp 103.4+5.9 | 100.1 £10.0 | 89.3+32 108.7 237+£60 | 833+9.1 | 111.1+£29 | 1119 | 111.0 | 915 | 111.9

walker2d-med-exp 11224+ 1.7 | 110.5+14 | 1058 =14 95.6 4464129 | 683 +150 | 103.3£5.6 | 1142 | 987 | 109.6 | 64
halfcheetah-med-exp 93.5+0.5 934+£03 61.8 £3.75 533 63.3+£38.0 | 93.7+10.5 | 90.0+5.6 | 94.8 624 | 86.7 | 358

pen-human 728 +£13.9 | 50.0+ 156 | 62.3£8.35 53.1 375 | 715 | 344
hammer-human 19+1.6 1.1+14 31+19 - - - - 1.5 44 1.4 1.5
door-human 6.3+ 6.0 39+24 594275 - - - - 2.5 9.9 43 0.5
relocate-human 04+04 0.4 + 0.6 0.3 +0.25 - - - - 0.1 0.2 0.1 0.0
pen-cloned 514 +£155 | 452+ 158 | 40.0 £8.25 - - - - 437 | 392 | 373 | 56.9
hammer-cloned 0.7+ 0.6 0.3+ 0.0 2.7+ 0.15 - - - - 1.1 2.1 2.1 0.8
door-cloned -0.1+£0.0 -0.1+0.1 05+04 - - - - 3.7 0.4 1.6 -0.1
relocate-cloned -0.0+£0.0 -0.0 £ 0.0 -0.0 + 0.0 - - - - 0.2 -0.1 -0.2 -0.1
pen-exp 1122+63 | 113.0+11.8 | 92.8 £9.25 - - - - 136.2 | 107.0 - 85.1
hammer-exp 1188 £ 5.6 | 1153+9.3 | 51.0+11.05 - - - - 126.9 | 86.7 - 125.6
door-exp 98.7 + 4.1 97.1+49 88.4 +3.05 - - - - 99.3 | 101.5 - 349
relocate-exp 96.0 + 6.8 90.7 +£ 6.3 642+73 - - - - 994 | 95.0 - 101.3

Table 4: Performance comparison of ARMOR against baselines on the D4RL datasets. The values
for ARMOR denote last iteration performance averaged over 4 random seeds along with standard
deviations, and baseline values were taken from their respective papers. Boldface denotes perfor-
mance within 10% of the best performing algorithm.

F.3 Effect of Residual Policy

In Figure 5, we show the effect on RPI of different schemes for initializing the learner for several
D4RL datasets. Specifically, we compare using a residual policy(Section 5) versus behavior cloning
the reference policy on the provided offline dataset for learner initialization. Note that this offline
dataset is the suboptimal one used in offline RL and is different from the expert-level dataset used to
train and produce the reference policy. We observe that using a residual policy (purple) consistently
shows RPI across all datasets. However, with behavior cloning initialization (pink), there is a large
variation in performance across datasets. While RPI is achieved with behavior cloning initialization
on hopper, walker2d and hammer datasets, performance can be arbitrarily bad compared to the
reference on other problems. As an ablation, we also study the effect of using a residual policy in

23

m ORL Imm 0.01 I 0.05 I 0.1 [0.5 1.0
REF B 0.01 s 0.05 w01 0.5 1.0

el

Normalized Returns
Normalized Returns

med-replay med-replay

(a) Hopper

H

Normalized Returns
Normalized Returns

med-replay

(c) Halfcheetah (d) Pen

Normalized Returns
Normalized Returns

human cloned

human cloned

(e) Hammer (f) Door

==

Normalized Returr—\s
H
B
H
-
-
1

human cloned

(g) Relocate

Figure 5: Comparison of different policy initializations for RPI with varying pessimism hyper-
parameter 3 . ORL denotes the performance of offline RL with ARMOR (Table 1), and REF
is the performance of reference policy. Purple represents residual policy initialization and pink is
initialization using behavior cloning of the reference on the suboptimal offline RL dataset.

the offline RL case where no explicit reference is provided, and the behavior cloning policy is used
as the reference similar to Section 5.1. We include the results in Table 4 as ARMOR"¢, where we
observe that using a residual policy overall leads to worse performance across all datasets. This
lends evidence to the fact that using a residual policy is a compromise in instances where initializing
the learner exactly to the reference policy is not possible.

F.4 Connection to Imitation Learning
As mentioned in Section 4.2, IL is a special case of

Dataset ARMOR-IL | BC ARMOR with A = 0. In this setting, the Q-function
hopper-exp 111.6 111.7 can fully affect the adversarial MDP model, so the best
walker2d-exp 108.1 108.5 strategy of the policy is to mimic the reference. We test
halfcheetah-exp 93.9 94.7 this on the expert versions of the D4RL locomotion

tasks in Table 5, and observe that ARMOR can indeed
Table 5: ARMOR-IL on expert datasets. o form L to match expert performance.
By setting A = 0, 5 > 0 we recover IL.

F.5 Ablation Study: RPI for Different Reference Policies

Here we provide ablation study results for robust policy improvement under different reference poli-
cies for a wide range of /3 values (pessimism hyper-parameter). For all the considered reference
policies we present average normalized scroes for ARMOR and reference (REF) over multiple ran-
dom seeds, and observe that ARMOR can consistently outperform the reference for a large range of
[values.

Random Dataset Reference We use a reference policy obtained by running behavior cloning on
the RANDOM versions of different datasets. This is equivalent to using a randomly initialized neural
network as the reference.

24

Dataset 0.01 | 005|011 0.5 1.0 | 10.0 | 100.0 | 200.0 | 500.0 | 1000.0 | REF

hopper-med 1.3 1.5 | 47| 9.6 | 204 | 348 | 258 | 40.8 | 25.6 28.9 1.2
walker2d-med 00 | 00 |02] 15 | 40 | 174 | 236 12.4 12.1 20.1 0.0
halfcheetah-med 00 | 01 | 01| 07 12 | -01 | -0.7 0.1 1.1 -0.3 -0.1

hopper-med-replay 1.3 | 30 | 82| 133|395 |57.6 | 480 | 344 | 510 329 1.2
walker2d-med-replay 00 | 00 |01 | 40 | 59 | 13.1 | 10.8 | 14.1 16.5 16.6 0.0
halfcheetah-med-replay | -0.2 | 04 |03 | 0.7 | 09 | 7.7 5.8 8.2 4.9 6.1 -0.2

Hand-designed Reference In this experiment we use a hand-designed reference policy called RAN-
DOMBANGBANG, that selects either the minimum of maximum action in the data with 0.5 proba-
bility each.

Dataset 001 [005] 01 | 05 1.0 | 10.0 | 100.0 | 200.0 | 500.0 | 1000.0 | REF
hopper-med 85 | 150 | 158 | 5.0 | 81 | 11.1 | 37.0 | 19.6 | 124 25.6 1.2
walker2d-med 227 | 36.1 | 31.6 | 42.6 | 12.0 | 559 | 33.6 | 378 | 36.6 49.6 0.1

halfcheetah-med 106 | 9.8 | 19.1 | 11.7 | 13.1 | 15.6 | 143 3.8 8.3 11.1 -1.0
hopper-med-replay 339 | 548 | 62.6 | 66.7 | 553 | 57.0 | 67.7 | 795 | 70.7 62.0 1.3
walker2d-med-replay | 11.6 | 35.5 | 47.5 | 40.4 | 42.7 | 47.6 | 64.8 | 49.9 | 447 33.0 0.1
halfcheetah-med-replay | 13.1 | 10.1 | 11.3 | 9.7 | 124 | 17.6 | 9.0 14.5 11.1 9.1 -1.3

25

	Introduction
	Preliminaries
	Adversarial Model for Offline Reinforcement Learning (ARMOR)
	An Illustrative Toy Example
	Theoretical Analysis

	Practical Implementation
	A Model-based Actor Critic Approach
	Algorithm Details

	Experiments
	Comparison with Offline RL Baselines
	Robust Policy Improvement

	Discussion
	Conclusion
	Proofs for Section 3
	Technical Tools
	MLE Guarantees
	Guarantees about Model Fitting Loss
	Proof of Main Theorems

	Proofs for Section 6
	Related Work
	A Deeper Discussion of Robust Policy Improvement
	How to formally define RPI?
	When RPI actually improves?

	A More Comprehensive Toy Example for RPI
	Further Experimental Details
	Experimental Setup and Hyper-parameters
	Detailed Performance Comparison and RPI Ablations
	Effect of Residual Policy
	Connection to Imitation Learning
	Ablation Study: RPI for Different Reference Policies

