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Abstract
Theoretical guarantees in reinforcement learning
(RL) are known to suffer multiplicative blow-up
factors with respect to the misspecification error
of function approximation. Yet, the nature of such
approximation factors—especially their optimal
form in a given learning problem—is poorly un-
derstood. In this paper we study this question in
linear off-policy value function estimation, where
many open questions remain. We study the ap-
proximation factor in a broad spectrum of settings,
such as presence vs. absence of state aliasing
and full vs. partial coverage of the state space.
Our core results include instance-dependent upper
bounds on the approximation factors with respect
to both the weighted L2-norm (where the weight-
ing is the offline state distribution) and the L∞
norm. We show that these approximation factors
are optimal (in an instance-dependent sense) for a
number of these settings. In other cases, we show
that the instance-dependent parameters which ap-
pear in the upper bounds are necessary, and that
the finiteness of either alone cannot guarantee a
finite approximation factor even in the limit of
infinite data.

1. Introduction
Realizability assumptions are pervasive amongst theoretical
guarantees in reinforcement learning (RL) with function ap-
proximation. These assumptions posit that the true optimal
solution, a value function to be estimated from data, belongs
to the function class which is used. In practice, however,
the realizability assumption rarely holds, and the degree
to which it is violated is largely unknown. Thus, we need
algorithms that do not rely on the realizability assumption
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in the sense that their guarantees automatically scale with
the degree of misspecification.

When the ground truth solution is not representable by the
function class, a natural relaxed objective is to instead re-
cover the best-in-class function in the function class, i.e. the
function which is closest to the true solution as measured
by some norm. The “minimal” error incurred by the best-
in-class function is called the misspecification error. The
ratio between the error of the attained solution and that of
the best-in-class solution is called the approximation factor
or approximation ratio.

Existing error bounds for misspecified RL problems often
suffer large approximation factors in addition to other sta-
tistical errors (Chen & Jiang, 2019). Unlike the statistical
errors, these error terms represent the “bias” of the solution,
and thus do not decrease even asymptotically as the sample
size goes to infinity. It is rarely the case that attention is
brought to whether these blowup factors are necessary, or if
the ratios attained are optimal.

In a myriad of settings which are easier than RL (such as in
linear regression or empirical risk minimization), it is indeed
possible to recover an approximation factor of 1 (or arbitrar-
ily close to 1) (Wainwright, 2019; Shalev-Shwartz & Ben-
David, 2014). Whether or not similar guarantees are possi-
ble in RL problems, or what the optimal ratios would be, has
been largely unstudied. Towards studying this question, we
formulate an offline RL problem with linear features, and
examine the optimal approximation ratio achieved by any
estimator (even asymptotic ones). Attainable approximation
factors may depend on the number of samples available,
but the optimal asymptotic approximation factor is as low
as it can be since even “sample-inefficient” estimators are
allowed.

Concretely, our learning problem is that of linear off-policy
value function estimation in infinite-horizon discounted
Markov Reward Processes (MRPs). Despite the apparent
simplicity of this setting, even here an understanding of the
blowup factors remains open. In this problem, the learner
is given access to a feature-map φ : S → Rd and an offline
dataset of tuples (si, ri, s′i) from the MRP. The states si are
sampled i.i.d. from an off-policy distribution µ that may be
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different from the stationary distribution of the MRP. We
also study the aliased setting where the states can only be
observed through their feature mapping. We do not assume
anything about the off-policy distribution beyond that it
yields a non-degenerate second moment matrix (defined in
Section 3).1 We also do not assume that the value function
of the MRP is linear in the given feature mapping, and thus
the task of the learner is simply to output the best possible
linear approximation of the true value function (as measured
by some norm). Our question is thus: “what is the optimal
asymptotic approximation factor for linear off-policy value
function estimation under misspecification?”

Recent works (Amortila et al., 2020; Perdomo et al., 2022)
have provided some negative results in the realizable setting
which demonstrate that the approximation factor may be
arbitrarily large in the worst case. In this paper, we provide
instance-dependent upper and lower bound results, with the
goal of pinning down the optimal approximation ratio for
off-policy value function estimation, under both the L2(µ)
norm and the L∞ norm. For upper bounds, we analyze
the well-known (off-policy) Least Squares Temporal Dif-
ference (LSTD) algorithm (Bradtke & Barto, 1996), and
provide exact characterizations of its error compared to the
optimal linear projection. This leads to an approximation
factor for LSTD involving two problem-dependent terms,
giving two “failure modes” for this algorithm. Via instance-
dependent lower bounds, we show that the approximation
factor attained by LSTD is optimal (up to constant factors)
in a myriad of settings. In other cases, we show that both
factors are necessary: the finiteness of only one of these
terms cannot guarantee a finite approximation factor.2 Our
results explain the above unidentifiability results, as well
as provides new ones. To our knowledge, the only prior
work establishing the optimality of LSTD was in the on-
policy setting (i.e., when µ is the stationary distribution) and
held for sample sizes which were much smaller than the
size of the state space (Mou et al., 2020). In particular, no
prior work exists on characterizing the necessary blowup
of the misspecification error in the off-policy case, even
that which is asymptotically achievable. Furthermore, prior
LSTD bounds are in the L2(µ) norm only, while we also
provide additional results in the maximum-norm, L∞, a
norm that allows for distribution-free error guarantees. For
ease of reference, a summary of the settings that we study
and their associated results can be found in Table 1.

1e.g. µ need not cover the entire state space or have good
“concentrability” with respect to the stationary distribution

2Here and throughout the paper, we use “necessary” in the usual
way, i.e. that the problem is intractable without these quantities
unless we make alternate assumptions or introduce other problem-
dependent quantities. See Section 6 for more discussion.

2. Problem setup
This section formalizes linear off-policy value function esti-
mation in discounted Markov Reward Processes.

Notation We write Dists(X ) to denote the set of prob-
ability distributions over a set X . We write In×n for the
n × n identity matrix, or simply I when the dimension is
clear from context. For any matrix X , we let λmin(X) and
σmin(X) denote its minimum eigenvalue (if X is square)
and minimum singular value, respectively. All vectors are
column vectors, and we write ⊤ for the transpose operator.

Markov Reward Processes Markov Reward Processes
arise when a fixed memoryless policy is followed in a a
Markov Decision Process (Puterman, 2014; Szepesvári,
2010).

Definition 2.1 (Markov Reward Process). A finite dis-
counted Markov Reward Process (MRP) M = ⟨S,R,P, γ⟩
is defined by a finite state space S ∈ N, a stochastic reward
function R : S → Dists([−1, 1]) with expectation r(s) =∫
x d(R(s)), a transition function P : S → Dists(S), and

a discount factor γ ∈ [0, 1).

To simplify the presentation, we consider finite (but arbi-
trarily large) state spaces. As is standard, we have assumed
that the reward distribution at any state is almost-surely
bounded. We will write S := |S|, and canonically identify
S = {1, · · · , S}. We can identify r with a S-dimensional
vector and P with the S × S row-stochastic matrix. We
write P(s′|s) = [P(s)](s′) = Ps,s′ . The value function of
an MRP is the following:

Definition 2.2 (Value function). The value function in an
MRP M is the function vM : S 7→ [ −1

1−γ ,
1

1−γ ] defined by:

vM(s) = E

∑
t≥0

γtr(St)

∣∣∣∣S0 := s, St ∼ P (St−1)

 .

In vector notation we have

vM =
∞∑
t=0

γtP tr = (I − γP )−1r,

which is an S-dimensional vector.

Policy evaluation with misspecified linear features A
feature map φ : S → Rd is given, which the learner can use
to approximate vM. The task of the learner is to output a
function f : S → R that is linear in the features in the sense
that for some θ ∈ Rd, for every s ∈ S, f(s) = θ⊤φ(s).
We write Φ ∈ RS×d for the matrix whose sth row (s ∈ S)
is (φ(s))⊤, and FΦ = {fθ = Φθ | θ ∈ Rd} ⊆ RS for the
subspace consisting of linear functions. The learner will be
evaluated by how far the function f is from vM in a given
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L2(µ) norm L∞ norm

µ ≥ 0. Aliasing. α⋆ ≈
√
1 +

(
γ

∥ΠµP∥µ

σmin(Σ−1/2AΣ−1/2)

)2
α⋆ ≈ 1 + 1+γ

σmin(A)

µ ≥ 0. No aliasing. Upper bound: α⋆ ≤
√
1 +

(
γ∥ΠµP∥µ

σmin(Σ−1/2AΣ−1/2)

)2
Lower bounds: ∥ΠµP∥µ = ∞ or σmin(Σ

−1/2AΣ−1/2) = 0 =⇒ α⋆ = ∞.
α⋆ ≈ 1 + 1+γ

σmin(A)

µ > 0. Aliasing. α⋆ ≈
√
1 +

(
γ

∥ΠµP∥µ

σmin(Σ−1/2AΣ−1/2)

)2
α⋆ = 1

2(1−γ)

µ > 0. No aliasing. α⋆ = 1. α⋆ = 1.

Table 1. The optimal asymptotic approximation factors α⋆ for various settings. µ ≥ 0: offline distribution is arbitrary. µ > 0: offline
distribution has full support. Aliasing: states are only observed through feature mapping (cf. Section 2). The terms Πµ, Σ, and A are
defined in Section 3. ≈ indicates matching upper and lower bounds up to constants for certain parameter regimes. = indicates matching
upper and lower bounds.

norm, which is also available to the learner. We consider
the so-called misspecified setting, that is, we do not assume
vM itself is a linear function of the features. Instead, the
learner is only asked to produce a function whose error is
not much larger than that of the best linear approximation of
vM in the given norm (obtained via the projection operators
defined in Section 3).

Observation model We study the offline setting, meaning
that the learner is given a dataset Dn from the MRP and no
interaction is allowed. We will study both the aliased and
non-aliased settings. In the aliased setting (Sutton & Barto,
2018), the states are only seen through the feature mapping.
Formally, the observations take the form of n i.i.d. samples,
which are generated by the following process

φi = φ(si) where si
i.i.d.∼ µ, (1)

Ri ∼ R(si), (2)
φ′
i = φ(s′i) where s′i ∼ P(si). (3)

We refer to the joint distribution over the triplets (φi, ri, φ
′
i)

as QM,µ,φ, and thus the dataset Dn = {(φi, ri, φ
′
i)}ni=1

consists of n i.i.d. samples from QM,µ,φ.

In the non-aliased setting, the learner instead observes
D⋄

n = {(si, φ(si), ri, s′i, φ(s′i))}ni=1, where

si
i.i.d.∼ µ, ri ∼ R(si), s

′
i ∼ P(Si). (4)

We will refer to the joint distribution over non-aliased tuples
(si, φ(si), ri, s

′
i, φ(s

′
i)) as Q⋄

M,µ,φ. We write supp(µ) :=
{µ(s) > 0} ⊆ S for the support of µ.

We are in the off-policy setting, by which we mean that µ is
not restricted to be a stationary distribution of the transition
matrix P . In particular, we do not assume that µ has good
“concentrability” or has support over the entire state space.

All of our upper bounds will apply to the aliased setting and
thus also for the easier non-aliased setting, so we will only
need to distinguish the settings when stating lower bounds.
We make some minor “quality of life” assumptions about φ
and µ, which are mainly for convenience. Let us write D for
the diagonal matrix with the entries of µ along its diagonal
(i.e. Ds,s = µ(s), for s ∈ S, and 0 otherwise).
Assumption 2.3 (Feature boundedness & non-degenerate
second moment). We have maxs ∥φ(s)∥2 ≤ 1. Further-
more, we assume that Σ := Φ⊤DΦ = Eµ[φ(s)φ(s)

⊤] is
invertible.

Above, the L2-boundedness of φ just provides a normal-
ization of the features and can be assumed without loss of
generality. Furthermore, if Σ is not invertible then the fea-
tures are redundant; the dimensionality of the feature space
can be reduced so that after the reduction Σ is invertible.
Hence, this assumption can also be made without loss of
generality, and we further know that it is insufficient by itself
for the value prediction problem (even under realizability)
(Amortila et al., 2020).

Optimal asymptotic approximation factors The qual-
ity of a finite-sample estimator is characterized by its ap-
proximation ratio and its statistical error. If, given the
dataset Dn a learner returns the (possibly random) function
v̂ = v̂(Dn) ∈ FΦ, one often upper bounds the error of the
returned function via an oracle inequality of the following
form:

∥v̂ − vM∥ ≤ αn(M, µ, φ)︸ ︷︷ ︸
approximation factor

inf
θ
∥Φθ − vM∥︸ ︷︷ ︸
oracle’s error

+ εn(M, µ, φ)︸ ︷︷ ︸
statistical error

, (5)

which holds either with high probability or in expectation.
The approximation factor measures the magnification of
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the oracle approximation error infθ ∥Φθ − vM∥, and may
be due to the imperfection of the learning algorithm or be-
cause of a fundamental hurdle that every learner faces (or
both). As we will be interested in the fundamental diffi-
culty all learners face in off-policy estimation, regardless of
sample-sizes, we will consider the limit of infinite sample
sizes, where the statistical error is zero. In particular, we
can think of this as the case when the learner is given the
distribution QM,µ,φ (in the non-aliased case the distribution
Q⋄

M,µ,φ). In the non-aliased case this is equivalent to the
learner being given the model P(s) and r(s) for all states
s ∈ supp(µ), and its task can be viewed as “completing”
this model outside of the data distribution (using the fea-
tures). A learner is a map from distributions of the above
form to linear functions over FΦ. The approximation ratio
exhibited by a deterministic asymptotic estimator is:

αv̂
∥·∥(M, µ, φ) =

∥v̂(QM,µ,φ)− vM∥
infθ ∥Φθ − vM∥

, (6)

with the convention that 0
0 = 1 and x

0 = ∞ whenever
x > 0. We refer to infθ ∥Φθ − vM∥ as the misspecification
error of the MRP M. We do not need to consider random
asymptotic estimators since, if one measures them by their
expected approximation ratio, Jensen’s inequality tells us
that deterministic estimators are optimal.3

We will consider two natural choices for the norms, the
weighted L2(µ) norm and the L∞ norm. These are defined
by

∥v∥µ =

(∑
s

µ(s)v2(s)

)1/2

& ∥v∥∞ = max
s

|v(s)|,

where µ is the offline state distribution from Equation (1).
For any matrix X ∈ RS×S , we will write ∥X∥µ for it’s
L2(µ)-operator norm. The L2(µ) norm is a natural choice
for function estimation as it only asks to minimize the
error on states which have been encountered. In particu-
lar, for the simpler problem of linear regression (a special
case of our setting for γ = 0), the least squares estima-
tor attains the optimal approximation ratio of 1 under this
norm. Meanwhile, the L∞ norm is important for obtaining
distribution-independent guarantees which we often need
for RL, e.g. when value prediction is being used as a sub-
routine (Lagoudakis & Parr, 2003). We emphasize that
our problem setting requires function estimation (estimat-
ing vM) rather than simply return estimation (estimating
vM under an initial distribution). Function estimation is a
strictly more difficult problem, and there are many applica-
tions where one would require a guarantee on the error of
off-policy evaluation on the whole space rather than simply

3Since the averaged estimator E[v̂] will be deterministic and
output functions in FΦ, and we have ∥E[v̂(QM,µ,φ)]− vM∥ ≤
E[∥v̂(QM,µ,φ)− vM∥].

at the initial states, e.g. for the aforementioned subroutines
or in model selection problems (Huang & Jiang, 2022). We
will write αµ for approximation ratios in the L2(µ) norm,
and α∞ for approximation ratios in the L∞ norm.

3. Background
The optimal linear approximations of vM are obtained by
taking its projection via the projection operators.

Definition 3.1 (Projection operators). We write Πµ for
the linear projection in the L2(µ) norm, i.e. Πµv =
argminv̂∈FΦ

∥v̂ − v∥µ. This operator has a closed form,

Πµ = ΦΣ−1Φ⊤D, (7)

which is well-defined by Assumption 2.3. We also write
Π∞ for the linear projection in the L∞ norm, i.e. Π∞v ∈
argminv̂∈FΦ

∥v̂ − v∥∞. The L∞ projection may not be
unique, and we consider that ties can be broken arbitrar-
ily (we will not need to refer to a specific minimizer, only
the value of the minimum).

One canonical estimator for the policy evaluation problem
is the Least Squares Temporal Difference (LSTD) algorithm
(Bradtke & Barto, 1996). In the limit of infinite samples, or
at the population level, it is defined by the estimator

A := Φ⊤D(I − γP )Φ = Es,s′
[
φ(s)(φ(s)− γφ(s′))⊤

]
(8)

b := Φ⊤Dr = Es∼µ [φ(s)r(s)] (9)

θLSTD := A−1b , vLSTD = ΦθLSTD , (10)

whenever A is invertible. In the sequel we will see that we
do not need to define θLSTD when A is not invertible since in
that case no estimator can have a finite approximation ratio.
The finite-sample version of LSTD is obtained by replacing
A and b by their empirical averages. We note that LSTD is
applicable in the aliased setting.

4. Approximation Ratios in the L2(µ) Norm
We begin by studying the optimal approximation factor
in the L2(µ) norm. Section 4.1 provides a general upper
bound for the approximation ratio attained by LSTD and
then provides a nearly-matching lower bound for the aliased
setting. Section 4.2 studies whether this approximation ratio
is also optimal in the non-aliased setting. The results of this
section are summarized in the left column of Table 1.

4.1. Under aliasing: LSTD attains the optimal
approximation factor

Our first result is a tight upper bound for the approximation
factor obtained by LSTD.
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Theorem 4.1. Assume that the A matrix from Equation
(8) is invertible. Then the population LSTD estimator of
Equation (10) has an approximation factor upper bound of

αLSTD
µ ≤

√
1 +

(
γ∥ΦA−1Φ⊤DP∥µ

)2
(11)

≤

√√√√1 +

(
γ

∥ΠµP∥µ
σmin(Σ−1/2AΣ−1/2)

)2

(12)

Proof (sketch). This result relies on an exact error decom-
position of the LSTD solution:

ΦθLS − ΦθLSTD = γΦA−1Φ⊤DP (ΠµvM − vM), (13)

where θLS is the least-squares parameter corresponding to
the optimal solution, i.e. satisfying ΦθLS = ΠµvM. See
Appendix A.1 for a full proof.

We note that the vector ΠµvM − vM is the component of
the value function which is orthogonal to the features, so
Equation (13) indicates that the error of LSTD is precisely
dictated by action of the linear operator ΦA−1Φ⊤DP on
this vector. The second upper bound in Theorem 4.1 (Equa-
tion (12)) further separates out the two terms ∥ΠµP∥µ and
σmin(Σ

−1/2AΣ−1/2). We identify these two terms as the
two instance-dependent factors which control the hardness
of the value function estimation problem under the L2(µ)
norm. We next give an instance-dependent lower bound
which shows that for any instance values of the two param-
eters (within certain domains), there is a nearly-matching
lower bound on the achievable asymptotic approximation
factor.

Theorem 4.2. In the aliased setting, ∀x ∈ [1,∞], ∀y ∈
(0, 1

2 ), there exists a collection of two instances
M = {(M1, µ1, φ1), (M2, µ2, φ2)} which both satisfy
∥ΠµP∥µ = x and σmin(Σ

−1/2AΣ−1/2) = y and gener-
ate the same data distribution Q, yet any estimator v̂ will
satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) ≥

√
1 + γ2

∥ΠµP∥2µ − 1

σ2
min(Σ

−1/2AΣ−1/2)
(14)

Proof (sketch). We construct two MRPS which, under alias-
ing, will generate the same data distribution. However, the
two MRPs have different value functions and one will be
realizable. In particular, the approximation ratio will be infi-
nite if learner doesn’t output that particular value function.
The lower bound is obtained by calculating the error of this
value function as the estimate for the first MRP. See Figure
1 for an illustration of the two MRPs, and Appendix A.2 for
a full proof.

φ(s1) = φ φ(s2) = φ φ(s1) = φ φ(s2) = φ
r = Ber(µ1)

r = Ber(µ1)

r = 1

r = 0

Figure 1. The construction of Theorem 4.2. Left: MRP M1. Right:
MRP M2. They generate the same aliased distribution Q.

The numerator in the second term of the lower bound is
always non-negative due to the restriction on the domain
of x. Furthermore, when x >

√
2, then the upper bound

(Eq. (12)) and the lower bound (Eq. (14)) differ by at
most a multiplicative factor of 2. Thus, in this regime
of the instance-dependent parameters, LSTD attains the
asymptotically optimal approximation ratio up to constant
factors. Our domain restrictions on x and y in the lower
bound also do not preclude the interesting regimes of the
problem, i.e. the cases where ∥ΠµP∥µ is large (→ ∞) or
σmin(Σ

−1/2AΣ−1/2) is small (→ 0). Of course, this lower
bound heavily relies on the aliased nature of the problem.
Our next section examines whether the same lower bound
holds in the non-aliased setting, where the learner is less
restricted.

4.2. Without aliasing: what is the optimal
approximation factor?

In the non-aliased case, the learner can still use the LSTD
algorithm, so the upper bound of Theorem 4.1 still holds.
For the lower bounds, the class of learners that we are com-
peting against now have more information. We conjecture
that the bound in Equation (12) remains optimal, but this
remains open. In this work, we instead show the weaker
results that both of our instance-dependent factors appear-
ing in Equation (12) are independently necessary, meaning
that the finiteness of one alone does not guarantee a finite
approximation ratio.

4.2.1. ∥ΠµP∥µ IS NECESSARY

The first result of two exhibits a family of instances where
σmin(Σ

−1/2AΣ−1/2) > 0 yet the approximation ratio of
any estimator is infinite. By the upper bound of Theorem
4.1, this must indicate that ∥ΠµP∥µ = ∞, and indeed this
is the case.

Lemma 4.3. In the non-aliased setting, there exists a fam-
ily of instances M = {(M, µ, φ)} which all have an
L2(µ)-misspecification of 0, σmin(Σ

−1/2AΣ−1/2) > 0,
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and ∥ΠP∥µ = ∞, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) = ∞

Proof. We take MRPs which have the same transition dy-
namics as those in the construction of Theorem 4.2. They
have a reward r(s1) = 0 and r(s2) = r, and µ(s1) = 1,
µ(s2) = 0. The features are arbitrary non-zero vec-
tors. L2(µ)−realizability is trivially satisfied since only
supp(µ) = {s1}. No estimator can recover the true value
function since there is no data on state s2. See Appendix
A.3 for a full proof.

This example illustrates the interpretation that ∥ΠµP∥µ in-
tuitively captures the main source hardness in value func-
tion estimation. Namely, it is large (or infinite) when there
is a lack of “pushforward” coverage (Xie & Jiang, 2021),
meaning that a state s ∈ supp(µ) may transition to a state
s′ /∈ supp(µ). Since the value at s depends on the value
at s′, we may not be able to predict vM(s) even under re-
alizability. Our next result shows that, surprisingly, this
is not the only source of hardness in the off-policy value
estimation problem.

4.2.2. σmin(Σ
−1/2AΣ−1/2) IS ALSO NECESSARY

We next examine the case where ∥ΠµP∥µ is finite but
σmin(Σ

−1/2AΣ−1/2) is zero. This case is somewhat re-
stricted, as in the presence of unsupported states the con-
dition ∥ΠµP∥µ < ∞ implies a strong structure on the
features (cf. Lemma 4.5). Our next result demonstrates that
even in the presence of this condition, one can find a set
of instances where any estimator will have an infinite ap-
proximation ratio. The upper bound of Theorem 4.1 implies
that σmin(Σ

−1/2AΣ−1/2) = 0 must be the case on these
instances, and indeed this is the case.

Theorem 4.4. In the non-aliased setting, there ex-
ists a family of instances {(M,µ, φ)} which all have
an L2(µ)-misspecification of 0, ∥ΠµP∥µ < ∞, and
σmin(Σ

−1/2AΣ−1/2) = 0, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) = ∞

Proof (sketch). We pick a 5-state MRP with 3 µ-supported
states (numbered 1, 2, 3) and 2 µ-unsupported states (num-
bered 4, 5). We set the reward to be zero except for r(4) and
r(5) (which will be unknown to the learner). For a fixed tran-
sition matrix P , let d = (I − γP )−1 denotes its discounted
occupancy matrix, and d4 and d5 denote the fourth and
fifth columns of this matrix, respectively. Geometrically,
the space of possible value functions chosen by varying
the reward function corresponds to a 2-dimensional place
VM := {r(4) · d4 + r(5) · d5}r4,r5∈[−1,1]. We then pick

<latexit sha1_base64="9VZM+WE/GNOh/Qbi1IFvH8pT1QM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48VbC20oWy2m3btZhN2J4US+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGW+yWMa6HVDDpVC8iQIlbyea0yiQ/DEY3c78xzHXRsTqAScJ9yM6UCIUjKKVWt0hRTLulStu1Z2DrBIvJxXI0eiVv7r9mKURV8gkNabjuQn6GdUomOTTUjc1PKFsRAe8Y6miETd+Nr92Ss6s0idhrG0pJHP190RGI2MmUWA7I4pDs+zNxP+8TorhtZ8JlaTIFVssClNJMCaz10lfaM5QTiyhTAt7K2FDqilDG1DJhuAtv7xKWhdV77Jau69V6jd5HEU4gVM4Bw+uoA530IAmMHiCZ3iFNyd2Xpx352PRWnDymWP4A+fzB0Deju4=</latexit>

v̂
<latexit sha1_base64="nQsX9L/lq/3dlYfgFTiVm5DZ8sE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZpaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj+7nfGqPSPJaPZpKgH9GB5CFn1FipPu4VS27ZXYCsEy8jJchQ6xW/uv2YpRFKwwTVuuO5ifGnVBnOBM4K3VRjQtmIDrBjqaQRan+6OHRGLqzSJ2GsbElDFurviSmNtJ5Ege2MqBnqVW8u/ud1UhPe+lMuk9SgZMtFYSqIicn8a9LnCpkRE0soU9zeStiQKsqMzaZgQ/BWX14nzauyd12u1Cul6l0WRx7O4BwuwYMbqMID1KABDBCe4RXenCfnxXl3PpatOSebOYU/cD5/AOYfjQM=</latexit>v<latexit sha1_base64="eix02kIt3Wtz2hJ0vNpbF0J7NGk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cq9gPSUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqhlSj4BJbhhuB3VQhjUOBnXB8O/M7T6g0T+SjmaQYxHQoecQZNVZ66OX9as2tu3OQVeIVpAYFmv3qV2+QsCxGaZigWvuem5ogp8pwJnBa6WUaU8rGdIi+pZLGqIN8fumUnFllQKJE2ZKGzNXfEzmNtZ7Eoe2MqRnpZW8m/uf5mYlugpzLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYELzll1dJ+6LuXdUv7y9rDb+IowwncArn4ME1NOAOmtACBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AKX3jYc=</latexit> {

<latexit sha1_base64="eix02kIt3Wtz2hJ0vNpbF0J7NGk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cq9gPSUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqhlSj4BJbhhuB3VQhjUOBnXB8O/M7T6g0T+SjmaQYxHQoecQZNVZ66OX9as2tu3OQVeIVpAYFmv3qV2+QsCxGaZigWvuem5ogp8pwJnBa6WUaU8rGdIi+pZLGqIN8fumUnFllQKJE2ZKGzNXfEzmNtZ7Eoe2MqRnpZW8m/uf5mYlugpzLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYELzll1dJ+6LuXdUv7y9rDb+IowwncArn4ME1NOAOmtACBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AKX3jYc=</latexit> {
<latexit sha1_base64="APIUpzsfvXcWHz3/H5FrhdJR8ng=">AAACFnicbZDLSgMxFIYz9VbrrerSTbCIddEyI0VdFt24rGAv0Cklk2ba0ExmSM4Uy7RP4cZXceNCEbfizrcxvSy09UDg4//P4eT8XiS4Btv+tlIrq2vrG+nNzNb2zu5edv+gpsNYUValoQhVwyOaCS5ZFTgI1ogUI4EnWN3r30z8+oApzUN5D8OItQLSldznlICR2tmCy6XfTgan2AB2gT2AChIdETnOu1GPn42xO8LGLuCBO2pnc3bRnhZeBmcOOTSvSjv75XZCGgdMAhVE66ZjR9BKiAJOBRtn3FiziNA+6bKmQUkCplvJ9KwxPjFKB/uhMk8Cnqq/JxISaD0MPNMZEOjpRW8i/uc1Y/CvWgmXUQxM0tkiPxYYQjzJCHe4YhTE0AChipu/YtojilAwSWZMCM7iyctQOy86F8XSXSlXvp7HkUZH6BjlkYMuURndogqqIooe0TN6RW/Wk/VivVsfs9aUNZ85RH/K+vwByzGefg==</latexit>

infv 02span(�) kv 0� vk

<latexit sha1_base64="cf4HmAgt+GMvhli8VRMpxVavD7s=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRahXkoiRT0WvXisYD+gCWWz3bZLN5tldyKGUP+KFw+KePWHePPfuG1z0NYHA4/3ZpiZF0rONLjut1VYW9/Y3Cpul3Z29/YP7MOjto4TRWiLxDxW3RBrypmgLWDAaVcqiqOQ0044uZn5nQeqNIvFPaSSBhEeCTZkBIOR+nbZB/oIKsq0xGJa9eWYnfXtiltz53BWiZeTCsrR7Ntf/iAmSUQFEI617nmuhCDDChjhdFryE00lJhM8oj1DBY6oDrL58VPn1CgDZxgrUwKcufp7IsOR1mkUms4Iw1gvezPxP6+XwPAqyJiQCVBBFouGCXcgdmZJOAOmKAGeGoKJYuZWh4yxwgRMXiUTgrf88ippn9e8i1r9rl5pXOdxFNExOkFV5KFL1EC3qIlaiKAUPaNX9GY9WS/Wu/WxaC1Y+UwZ/YH1+QMQJZUK</latexit>

span(�)

<latexit sha1_base64="xcZxe6g/qWDuhxn/PyrfwHOr4vQ=">AAAB9XicbVDJSgNBEK1xjXGLevTSGAQvhhkJ6jHoxWMEs0BmDD2dnqRJz0J3TSRM8h9ePCji1X/x5t/YWQ6a+KDg8V4VVfX8RAqNtv1trayurW9s5rby2zu7e/uFg8O6jlPFeI3FMlZNn2ouRcRrKFDyZqI4DX3JG37/duI3BlxpEUcPOEy4F9JuJALBKBrp0R25PYpkQM7JwB21C0W7ZE9BlokzJ0WYo9oufLmdmKUhj5BJqnXLsRP0MqpQMMnHeTfVPKGsT7u8ZWhEQ669bHr1mJwapUOCWJmKkEzV3xMZDbUehr7pDCn29KI3Ef/zWikG114moiRFHrHZoiCVBGMyiYB0hOIM5dAQypQwtxLWo4oyNEHlTQjO4svLpH5Rci5L5ftysXIzjyMHx3ACZ+DAFVTgDqpQAwYKnuEV3qwn68V6tz5mrSvWfOYI/sD6/AFqL5HR</latexit>

kv̂ � vk

<latexit sha1_base64="UIyWLvTcQwdqoWRJIFfC4DrvEUg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ74Ucab9ac+vuHGSVeAWpQYFmv/rVGyQsi7lCJqkxXc9NMcipRsEkn1Z6meEpZWM65F1LFY25CfL5sVNyZpUBiRJtSyGZq78nchobM4lD2xlTHJllbyb+53UzjG6CXKg0Q67YYlGUSYIJmX1OBkJzhnJiCWVa2FsJG1FNGdp8KjYEb/nlVdK6qHtX9cuHy1rjtoijDCdwCufgwTU04B6a4AMDAc/wCm+Ocl6cd+dj0Vpyiplj+APn8wfGxI6t</latexit>

�

Figure 2. Illustration of proof of Theorem 4.4. The plane is a
space of possible value functions VM which the nature can choose
from without leaking more information to the learner. The line
represents the space of possible linear predictors FΦ. The true
value function is v, and the best estimator is v̂. As shown on
the figure, the angle β determines the approximation ratio, and
β = 0 (line in the plane) implies ∞ approximation ratio. In our
construction, β is controlled by the magnitude of A.

a 1-dimensional feature map Φ = λ1d4 + λ2d5 ∈ R5×1,
which is a linear combination of the columns of d and thus
lies in the plane. Thus, there are an infinite number of realiz-
able value functions, and the learner cannot distinguish the
correct one without knowing r(4) and r(5) (which occur
at unsupported states). This implies that the approxima-
tion ratio is infinite. The only thing left to check is that
∥ΠµP∥µ < ∞. In the presence of unsupported states, this
would imply following structural condition.

Lemma 4.5. Under Assumption 2.3, ∥ΠµP∥µ < ∞ if and
only if ∀s′ /∈ supp(µ),Es∼µ [φ(s)P(s′|s)] = 0.

See Appendix A.4 for a proof of Lemma 4.5. This con-
dition (along with the condition that supp(µ) = {1, 2, 3})
turns out to be a set of bilinear condition in both µ and
Φ, and we proceeded by random search to find a problem
(P, λ1, λ2, µ(1), µ(2), µ(3)) which satisfies this condition.
See Appendix A.4 for a full description of the MRP.

Why is A = 0 implied by the construction of the previous
proof? While it may appear surprising that the invertibil-
ity of some algorithm-specific quantity (the A matrix) can
dictate the hardness of value function estimation for all
estimators, the intuition is that A = 0 implies that the lin-
ear subspace FΦ can live completely inside of the space of
“plausible” value functions which the learner can not distin-
guish between (VM, in the notation of our proof). More for-
mally, when Φ is a linear combination of columns from the
discounted occupancy matrix, we have that DΦ = D(γP )Φ
and thus A = 0. In the general case where A is nonzero, its
minimum singular value dictates the “angle” between the
FΦ and VM, and a small angle indicates a large approxima-
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tion error (see Figure 2). In conclusion, we have showed
that ∥ΠµP∥ < ∞ and σmin(Σ

−1/2AΣ−1/2) > 0 are both
independently necessary for finite approximation factors in
value function estimation under the L2(µ) norm.

Cases where the approximation factor is well-behaved
Even though the blowup from these two factors is unavoid-
able in general, along the way we identify several novel con-
ditions under which the optimal value function can be recov-
ered, either by LSTD or by alternative estimators. These are
outlined in Appendix B. Particularly interesting conditions
are when P maps orthogonal value functions (i.e. functions
not lying in the span of Φ) to orthogonal value functions,
or when ∥P∥µ < ∞ (noting that this is stronger than just
∥ΠµP∥µ < ∞, since ∥ΠµP∥µ ≤ ∥Πµ∥µ∥P∥µ = ∥P∥µ).

5. Approximation Ratios in the L∞ Norm
In this section we study the optimal asymptotic approxima-
tion factor for the L∞ norm. A summary of the results for
this section can be found in the right column of Table 1.
Recall that we write α∞ for approximation factors in this
norm.

5.1. LSTD attains the optimal approximation factor

We begin with an upper bound for LSTD. We first note that
it is possible (see Appendix D) to convert an approxima-
tion ratio bound for the L2(µ) norm into an approximation
ratio bound for the L∞ norm by paying an extra factor of
1/λmin(Σ) (which is finite by Assumption 2.3, but may be
arbitrarily large). However, our next result shows that this
eigenvalue dependence is not necessary and a more direct
approach yields a better result.

Theorem 5.1. Assume that the A matrix from Equation (8)
is invertible. Then the population LSTD estimator has an
approximation factor upper bound of

αLSTD∞ ≤ 1 +
∥∥ΦA−1Φ⊤D(I − γP )

∥∥
∞ ≤ 1 +

1 + γ

σmin(A)

Proof (sketch). Relies on another exact decomposition of
the LSTD error:

Π∞vM−ΦθLSTD = ΦA−1Φ⊤D(I−γP )(Π∞vM−vM).

See Appendix C.1 for a full proof.

This shows that, in the L∞ norm, the upper bound obtained
by LSTD only depends on the minimum singular value of A
(rather than on the same singular value as well as ∥ΠµP∥µ,
as was the case for the L2(µ) norm). At first glance it
might appear strange that there are less problem-dependent
factors in the L∞ bound (which should be a harder norm to
minimize), but the resolution to this apparent contradiction

is that a guarantee of small misspecification under the L∞
norm is a substantially stronger assumption. Intuitively, the
usefulness of the L2(µ) guarantee hinges on our ability to
translate the misspecification error on µ-supported states to
other parts of the state space, which additionally depends
on ∥ΠµP∥µ.

On the lower bound side, we can combine the ideas of the
construction from (Amortila et al., 2020) and our previous
lower bound (Theorem 4.4) to establish that LSTD attains
the optimal approximation factor for regimes where γ is
large enough. Formally, the result is that:

Theorem 5.2. In the non-aliased setting, for all γ ∈ [c1, 1)
where c1 is some absolute constant, and for all y ∈ [0, 1−γ],
there exists three instances {(Mi, µi, φi)} which all satisfy
σmin(A) = y yet

inf
v̂

sup
(Mi,µi,φi)

αv̂
∞(Mi, µi, φi) ≥

1

2
+

γ

σmin(A)
.

The value of the constant is upper bounded by c1 ≤ 0.7.

Proof (sketch). The proof uses the MRP construction from
(Amortila et al., 2020) (and Lemma 4.3) but perturbs the
features by adding a column of the discounted occupancy
matrix (similar to the construction of Theorem 4.4). See
Appendix C.2 for a full proof.

We note again that the domain for our problem-dependent
parameters (y ∈ [0, 1− γ]) do not preclude the interesting
regimes, which are when σmin(A) → 0. We also note that,
since the lower bound holds for the non-aliased setting, it
also holds for the (harder) aliased setting. Towards compar-
ing the upper and lower bound, we can take their ratio, use
the bounds on γ and y, and observe that the ratio is always
upper bounded by 2. Thus, for this regime of problem pa-
rameters, the lower bounds and upper bounds match up to a
constant factor.

5.2. Optimal approximation ratio under full support

In this section, we examine a natural additional assumption
which enables an alternative model-based estimator that
asymptotically achieves a much better approximation ratio
of (1− γ)−1, which is independent of 1/σmin(A). On the
other hand, this estimator will be much less sample-efficient,
as its sample complexity will depend on the cardinality of
|φ(S)|. Formally, the assumption is:

Assumption 5.3 (Full support). The off-policy distribution
µ is such that supp(µ) = S .

The full support assumption appears somewhat commonly
in the literature when L∞ norms are concerned (Huang
& Jiang, 2022; Bertsekas & Tsitsiklis, 1996). We note
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that Assumption 5.3 renders the problem trivial in the non-
aliased setting as we can asymptotically recover the true
value function vM. However, it remains an interesting ques-
tion whether a similar result is possible under aliasing. Our
estimator is based on state abstractions.

State abstractions We call φ(S) := X the abstract
space, and we denote abstract states by x, x′. Note that
X := |X | ≤ |S| and in particular the abstract space is also
finite. This estimator ignores the topology on X and instead
learns a pointwise function on the abstract space. Our esti-
mator is defined as the solution to the Bayes model Mφ =
(rφ, Pφ), where: rφ(x) = E[r(s) | φ(s) = x] ∈ RX and
Pφ(x, x

′) = P(x′ | x) ∈ RX×X . Note that the Bayes
model implicitly depends on the off-policy distribution µ
via the condition expectations. The solution to this model is

vφ = (I − γPφ)
−1rφ ∈ RX , (15)

which we call the Bayes value function. The following
result shows that vφ has a well-behaved approximation ratio
(see Appendix C.3 for a proof).

Theorem 5.4. Under Assumption 5.3, the estimator vφ from
Equation (15) has an approximation ratio of 2

1−γ , i.e. we
have

∥vφ ◦ φ− vM∥∞ ≤ 2

1− γ
inf

f :X 7→R
∥f ◦ φ− vM∥∞

≤ 2

1− γ
inf
θ
∥Φθ − vM∥∞

Indeed, one can construct examples where this estimator is
infinitely better than LSTD, by taking σmin(A) → 0, which
causes the LSTD parameter to diverge. This is illustrated in
the counterexample of (Kolter, 2011), where LSTD diverges
but our Bayes estimator achieves an approximation ratio
of 1. Our next result shows that the approximation ratio
2/(1− γ) is arbitrarily close to optimal.

Theorem 5.5. In the aliased setting, under Assumption
5.3, ∀ε > 0, ∀ γ ∈ (0, 1), there exists a collection of two
instances M = {(M1, µ1, φ1), (M2, µ2, φ2)} which gen-
erate the same data distribution Q, yet any estimator v̂ will
satisfy

sup
(M,µ,φ)∈M

αv̂
∞(M, µ, φ) ≥ 2

1− γ
− ε

Proof (sketch). We use same construction as Theorem 4.2,
but the error remains bounded when we are under the L∞
norm. See Appendix C.4 for a full proof.

It is interesting to note that this abstract model-based estima-
tor does not work under L2(µ) misspecification. In particu-
lar, the construction in the lower bound of Theorem 4.2 sat-
isfies the full-support assumption (Assumption 5.3), yet the

minimax L2(µ) error can be taken to infinity by taking the
“pushforward” parameter ∥ΠµP∥µ ≈ µ(s1)/µ(s2) → ∞.
We note that the function vφ ◦φ may not be a linear function
of the features (since it is defined pointwise for each value
of φ). We can output a linear function simply by taking the
L∞ projection to the set of linear functions, which results
in a final bound of 1 + 2

1−γ (see Corollary C.2 in Appendix
C.5).

6. Related works
Existing negative results for off-policy evaluation With
finite-horizons MRPs, (Wang et al., 2020) show that the off-
policy evaluation problem has an exponential lower bound
(either in d or in H , the horizon) even with realizability and
good λmin(Σ). This was adapted to the infinite-horizon set-
ting by (Amortila et al., 2020) which shows that even with
L∞ realizability and good λmin(Σ) the true solution may
be asymptotically unidentifiable. (Perdomo et al., 2022)
identify that the invertibility of A may be necessary for iden-
tifiability in the realizable setting: they show that amongst
a class of “linear estimators” (which depend only on cer-
tain first-moment quantities), any MDP where A = 0 can
be modified such that “linear estimators” can not recover
the true value function. Their lower bound only applies to
a restricted class of estimators, whereas ours rules out all
estimators. In the misspecified on-policy case, (Mou et al.,
2020) show that LSTD has the optimal approximation factor
for restricted sample sizes n satisfying n2 + d ≲ S. In
the on-policy case, the asymptotic approximation ratio is 1,
so the hardness in their result comes from the sample size
restriction, whereas ours comes from the non-stationarity of
the off-policy distribution µ. Overall, there was no precise
understanding of when this problem is solvable/not solv-
able (a result which is captured by our instance-dependent
bounds), or which blowup is optimal in the off-policy case
(even asymptotically).

Existing guarantees for LSTD The LSTD algorithm was
originally proposed by (Bradtke & Barto, 1996). There
have been several sample complexity analyses, (e.g. Per-
domo et al. (2022); Pires & Szepesvári (2012); Tu & Recht
(2018); Duan et al. (2021)). In terms of approximation ra-
tios under misspecification, in the on-policy case, (Tsitsiklis
& Van Roy, 1997) derive the classical approximation ratio
bound of (1 − γ2)−1/2, which uses the fact that P (and
thus ΠµP ) are contractive in the L2(µ) norm when µ is
the stationary distribution. This bound was sharpened in an
instance-dependent fashion by Yu & Bertsekas (2010); Mou
et al. (2020), which both consider the more general problem
of solving projected fixed point equations. Their approx-
imation bounds are similar to our Theorem 4.1, although
our proof relies on a simpler and exact error decomposi-
tion. Our proof also enables us to readily derive L∞ bounds,
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whereas only L2(µ) bounds are considered the above works.
Conversely, the work of (Perdomo et al., 2022) provides
approximation bounds only in the L∞ norm, and these sub-
optimally scale with both λmin(Σ) and σmin(A) (similar
to our result in Appendix D). The work of (Mou et al.,
2020) studies the optimality of the blowup only in the on-
policy setting and with restricted sample sizes. The work
of (Scherrer, 2010) studies both LSTD and Bellman Resid-
ual Minimization and shows that they are both instances of
oblique projections onto certain subspaces, a perspective
which yields the approximation factor of

∥∥Π(I−γP )⊤DΦ

∥∥
µ

,

where ΠX = Φ(X⊤Φ)−1X⊤ is the oblique projection op-
erator.

OPE at large In the paper we show the quantities
∥ΠµP∥µ and σmin(Σ

−1/2AΣ−1/2) are both necessary for
the L2(µ) norm, and that σmin(A) is necessary for the L∞
norm. This implies that removing the finiteness of any of
these quantities leads to unbounded approximation ratio.
However, our results do not exclude the possibility that
one can come up with alternative assumptions/quantities
to replace them. In fact, there are two sets of alternative
assumptions that are widely used in the OPE literature: (1)
“Bellman-completeness” (Antos et al., 2008; Munos, 2007;
Chen & Jiang, 2019; Duan & Wang, 2020), which asserts
that the function class is closed under the Bellman operator,
and (2) the realizability of so-called importance weight func-
tions (Liu et al., 2018; Uehara et al., 2020; Miyaguchi, 2021).
However, most of these works focus on the estimation of
the expected return at the initial state distribution instead
of recovering the full function (with Huang & Jiang (2022)
as an exception), and none of them study the optimality of
the approximation ratio. Moreover, under these different as-
sumptions, the definition of misspecification error changes
(e.g., the violation of Bellman-completeness is sometimes
referred to as “inherent Bellman error” (IBE) (Antos et al.,
2008)), and so does the behavior of the approximation ratio.
Under the L2(µ) norm, small misspecification and small
IBE do not imply each other, so studying the approximation
ratio under these assumptions would be an interesting future
direction. We can also compare the ∥ΠµP∥µ quantity, a
measure of data coverage, with the more classical notion
of concentrability (Antos et al., 2008).4 However, the con-
struction of Theorem 4.4 shows that ∥ΠµP∥µ can be small
while concentrability could be infinite, so this notion is too
loose for our purposes.

4In this setting we could for example define concentrability as
∥ρ/µ∥∞ or ∥d/µ∥∞, where ρ is the stationary distribution and d
is the discounted state occupancy.

7. Conclusion
In this work we have highlighted the importance of under-
standing the necessary blowups to the approximation factors
which occur in misspecified RL problems. We have posed
a simple but fundamental learning problem, that of linear
off-policy value function estimation, and focused on estab-
lishing the optimal approximation ratios for this problem
achieved even by asymptotic estimators. We have provided
instance-dependent upper and lowers bounds for a variety of
settings (the L2(µ) and L∞ norms, aliased and non-aliased
observations, partial support and full-support) which estab-
lished the optimal algorithms and ratios for certain of these
settings. In the other settings, it was shown that LSTD is a
fundamental algorithm in the sense that whenever it has an
infinite error then so does every other estimator.

For future work, it would be fruitful to understand the gen-
eral lower bound for the non-aliased L2(µ) case (Section
4.2). In sections 4.1, 5.1, and 5.2, we have been able to
provide matching upper and lower bounds (potentially up
to constant factors) for the optimal asymptotic factors. By
contrast, our results for the non-aliased L2(µ) setting only
proved that our instance-dependent quantities were neces-
sary (without being able to establish the precise scaling of
the bounds).

While we have only been concerned with policy evaluation,
it would also be important to consider misspecification in
the more complicated policy optimization (or online explo-
ration) problems. Here, there are even more hardness results
which preclude a simple answer to this question (Lattimore
et al., 2020; Du et al., 2019; Weisz et al., 2021; Foster et al.,
2021).
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A. Proofs for Section 4
A.1. Proof of Theorem 4.1

Theorem 4.1. Assume that the A matrix from Equation (8) is invertible. Then the population LSTD estimator of Equation
(10) has an approximation factor upper bound of

αLSTD
µ ≤

√
1 +

(
γ∥ΦA−1Φ⊤DP∥µ

)2
(11)

≤

√√√√1 +

(
γ

∥ΠµP∥µ
σmin(Σ−1/2AΣ−1/2)

)2

(12)

The proof follows from the following exact characterization of LSTD.

Lemma A.1. If A−1 exists, then we have that

θLS − θLSTD = γA−1Φ⊤DPv⊥,

where v⊥ = vM −ΠµvM.

Proof. We have that vM = ΠµvM + v⊥, with Πµv ∈ col(Φ) and v⊥ ∈ (col(Φ))⊥ (note: the ⊥ subspace is with respect to
the µ-weighted inner product). This equivalently means that v⊥ ∈ ker(Φ⊤D). Then we have:

(I − γP )vM = r

(I − γP )ΦθLS + (I − γP )v⊥ = r

Φ⊤D(I − γP )ΦθLS +Φ⊤D(I − γP )v⊥ = Φ⊤Dr (Φ⊤D on both sides)(
Φ⊤D(Φ− γPΦ)

)
θLS − γΦ⊤DPv⊥ = Φ⊤Dr (v⊥ ∈ ker(Φ⊤D))

AθLS = b+ γΦ⊤DPv⊥ (Defns of A, b)

θLS = A−1b+ γA−1Φ⊤DPv⊥ (A−1 exists)

Meanwhile, the LSTD solution is defined by θLSTD = A−1b. Substracting both of these gives:

θLS − θLSTD = γA−1Φ⊤DPv⊥. (16)

Note that we also have:

θLS − θLSTD = −A−1Φ⊤D(I − γP )v⊥, (17)

since Φ⊤Dv⊥ = 0.

Corollary A.2. Let vLSTD = ΦθLSTD and vLS = ΦθLS. Then we have the two inequalities

∥ΦθLSTD − ΦθLS∥µ = γ
∥∥ΦA−1Φ⊤DPv⊥

∥∥
µ
≤ γ

∥∥ΦA−1Φ⊤DP
∥∥
µ

∥∥v⊥∥∥
µ

and
∥vLSTD − vLS∥µ ≤ γ

σmin(I − γΣ−1/2ΣcrΣ−1/2)

∥∥ΠµPv⊥
∥∥
µ
≤ γ

σmin(Σ−1/2AΣ−1/2)
∥ΠµP∥µ

∥∥v⊥∥∥
µ
, (18)

where Σ = Φ⊤DΦ = Eµ[φ(s)φ(s)
⊤] is the covariance matrix and Σcr = Φ⊤DPΦ = Eµ,P [φ(s)φ(s

′)⊤] is the cross-
covariance.
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Proof. The first equality follows from

∥ΦθLSTD − ΦθLS∥µ = γ
∥∥ΦA−1Φ⊤DPv⊥

∥∥
µ
≤ γ

∥∥ΦA−1Φ⊤DP
∥∥
µ

∥∥v⊥∥∥
µ

The second equality follows from:

∥ΦθLSTD − ΦθLS∥µ =
∥∥∥Σ1/2(θLSTD − θLS)

∥∥∥
2

= γ
∥∥∥Σ1/2A−1Φ⊤DPv⊥

∥∥∥
2

= γ
∥∥∥(I − γΣ−1/2ΣcrΣ

−1/2)−1Σ−1/2Φ⊤DPv⊥
∥∥∥
2

≤ γ

σmin(I − γΣ−1/2ΣcrΣ−1/2)

∥∥∥Σ−1/2Φ⊤DPv⊥
∥∥∥
2

=
γ

σmin(I − γΣ−1/2ΣcrΣ−1/2)

∥∥∥Σ1/2Σ−1Φ⊤DPv⊥
∥∥∥
2

=
γ

σmin(I − γΣ−1/2ΣcrΣ−1/2)

∥∥∥Σ1/2(Φ⊤DΦ)−1Φ⊤DPv⊥
∥∥∥
2

=
γ

σmin(I − γΣ−1/2ΣcrΣ−1/2)

∥∥Φ(Φ⊤DΦ)−1Φ⊤DPv⊥
∥∥
µ

=
γ

σmin(I − γΣ−1/2ΣcrΣ−1/2)

∥∥ΠµPv⊥
∥∥
µ

(19)

And then note that I − γΣ−1/2ΣcrΣ
−1/2 = Σ−1/2(Σ− γΣcr)Σ

−1/2 = Σ−1/2AΣ−1/2.

To conclude the proof of Theorem 4.1, we can use the Pythagorean theorem on vLSTD−ΠµvM ∈ col(Φ) and ΠµvM−vM ∈
(col(Φ))⊥:

∥vLSTD − vM∥µ =
√
∥ΠµvM − vM∥2µ + ∥vLSTD −ΠµvM∥2µ

≤
√
∥ΠµvM − vM∥2µ +

(
γ∥ΦA−1Φ⊤DP∥µ

)2
∥ΠµvM − vM∥2µ

=

√
1 +

(
γ∥ΦA−1Φ⊤DP∥µ

)2
∥ΠµvM − vM∥µ

≤

√√√√1 +

(
γ

∥ΠµP∥µ
σmin(Σ−1/2AΣ−1/2)

)2

∥ΠµvM − vM∥µ

≤

(
1 + γ

∥ΠµP∥µ
σmin(Σ−1/2AΣ−1/2)

)
∥ΠµvM − vM∥µ (

√
1 + x2 ≤ 1 + x whenever x ≥ 0)

A.2. Proof of Theorem 4.2

Theorem 4.2. In the aliased setting, ∀x ∈ [1,∞], ∀y ∈ (0, 1
2 ), there exists a collection of two instances M =

{(M1, µ1, φ1), (M2, µ2, φ2)} which both satisfy ∥ΠµP∥µ = x and σmin(Σ
−1/2AΣ−1/2) = y and generate the same data

distribution Q, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) ≥

√
1 + γ2

∥ΠµP∥2µ − 1

σ2
min(Σ

−1/2AΣ−1/2)
(14)

Proof. Our first instance is (M1, µ, φ) defined via

13
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φ(s1) = φ φ(s2) = φ
r = 1

r = 0

We set φ = 1 ∈ R1, and define the shorthands µ1 = µ(s1), µ2 = µ(s2). The values of γ and µ1, µ2 will be picked to ensure
that σmin(Σ

−1/2AΣ−1/2) = y and ∥ΠµP∥µ = x.

By taking the derivative of µ1(θ − 1)2 + µ2(θ)
2 wrt θ, the optimal estimator is θ1 = θφ = µ1. It has a square error:

∥θ1φ(s)− vM1∥
2
µ = µ1(µ1 − 1)2 + µ2(µ1)

2 = µ1 − µ2
1 = µ1µ2

Note that this instance has P =

(
0 1
0 1

)
, Σ−1 = 1, and Πµ = ΦΦ⊤D = (1, 1)(1, 1)⊤D =

(
1 1
1 1

)(
µ1 0
0 µ2

)
=(

µ1 µ2

µ1 µ2

)
. This gives ΠµP =

(
µ1 µ2

µ1 µ2

)(
0 1
0 1

)
=

(
0 1
0 1

)
. The operator norm thus has a value

max
∥v∥µ=1

∥ΠµPv∥µ = max
∥v∥µ=1

√
µ1v22 + µ2v22 ,

which is maximized by taking v1 = 0, v2 = 1/
√
µ2, giving a value of

∥ΠµP∥µ =

√
µ1

µ2
+ 1.

Note that ∥ΠµP∥µ ∈ [1,∞]. We need this to equal x which is easily achieved by solving 1 + µ1

1−µ1
= x2 =⇒ µ1 = x2−1

x2

which lies inside (0, 1) for all x ∈ (1,∞). The cases where x = 1 or x = ∞ are handled by picking µ1 = 1 or µ1 = 0,
respectively. Meanwhile we also have that

A = φ2 − γφ2 = φ2(1− γ) = (1− γ),

and Σ−1/2AΣ−1/2 = A. We need A = y, which is achieved by picking γ = 1− y. Note the restriction on the domain of
y ∈ (0, 1/2) means that 1/2 < γ < 1.

The second MRP is the one defined as:

φ(s1) = φ φ(s2) = φ
r = Ber(µ1)

r = Ber(µ1)

where again φ = 1 ∈ R1. We take µ1 and µ2 to be the same as in the first MRP. This instance also has A = φ2(1− γ) =
(1− γ) and ∥ΠµP∥µ = 1 + µ1

µ2
, which is easily seen since the features and the transition dynamics are the same. Further

note that these two MRPs generate the same aliased distribution QM,µ,φ since they both generate (φ, 0, φ) with probability
1− µ1 and (φ, 1, φ) with probability µ1.

The optimal estimator for M2 is evidently θ2 = φθ = µ1/(1− γ), since vM2(s1) = vM2(s2) = µ1/(1− γ). In particular,
this second MRP is realizable so this forces the estimator to pick µ1/(1− γ) when faced against these two examples (µ1 is

14
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known by looking at the occurrence of the triples (φ, 1, φ) in QM,µ,φ). And other choice of estimator will in fact have a
worst-case approximation ratio supM∈{M1,M2} α = ∞. On the first instance, this estimator will have a squared error

∥θ2φ(s)− vM1
∥2µ = µ1(

µ1

1− γ
− 1)2 + µ2(

µ1

1− γ
)2 = µ1((

µ1

1− γ
)2 − 2

µ1

1− γ
+ 1) + µ2(

µ1

1− γ
)2

= (
µ1

1− γ
)2(µ1 + µ2)− 2

µ2
1

1− γ
+ µ1

= (
µ1

1− γ
)2 − 2

µ2
1

1− γ
+ µ1

Taking the ratio of squared errors gives:

∥θ2φ(s)− vM1
∥2µ

∥θ1φ(s)− vM1
∥2µ

=
( µ1

1−γ )
2 − 2

µ2
1

1−γ + µ1

µ1 − µ2
1

=

µ1

(1−γ)2 − 2 µ1

1−γ + 1

1− µ1

=

µ1

(1−γ)2 − 2 µ1

1−γ + 1

µ2

≥ 1 +
µ1

µ2

(
2γ − 1

(1− γ)2

)
(1/µ2 ≥ 1, and algebra)

≥ 1 +
µ1

µ2

(
1

(1− γ)2

)
( 12 ≤ γ ≤ 1)

= 1 +
∥ΠµP∥2µ − 1

σmin(Σ−1/2AΣ−1/2)2

≥ 1 + γ2
∥ΠµP∥2µ − 1

σmin(Σ−1/2AΣ−1/2)2

The LHS was the ratio of squared errors, so taking square roots gives αµ and the desired bound.

A.3. Proof of Theorem 4.3

Lemma 4.3. In the non-aliased setting, there exists a family of instances M = {(M, µ, φ)} which all have an L2(µ)-
misspecification of 0, σmin(Σ

−1/2AΣ−1/2) > 0, and ∥ΠP∥µ = ∞, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) = ∞

Proof. This example is a slight modification of the two-state example (Amortila et al., 2020). See Figure A.3.

In the construction, we have µ(sA) = 1 and µ(sB) = 0. Note that A = −γ2ε ̸= 0. Since the reward at state sB is
never observed, any estimator will have constant error Ω(1/(1 − γ)) error asymptotically. Since vM is realizable on
sA (with θ = r/(1 − γ)), the misspecification is 0. Thus, the approximation ratio is infinite. The last thing to show

is that ∥ΠµP∥µ = ∞. This is because P =

(
0 1
0 1

)
, and Πµ =

(
1 0

(1 + ε)/γ 0

)
so ΠµP =

(
0 1
0 (1 + ε)/γ

)
thus

∥ΠµP∥µ = max∥v∥µ=1 ∥ΠµPv∥ = max∥v∥µ=1

∥∥∥(v2, 1+ε
γ v2)

⊤
∥∥∥
µ
= max∥v∥µ=1 v2 = ∞. In the last step we can take

v2 → ∞ in the maximization since that state is unsupported.

A.4. Proof of Theorem 4.4

Block matrix notation In this section we will use the following convenient block matrix notation. Noting that | supp(µ)| ≤
S (with equality iff µ has support on all the states), we will re-arrange the states such that those that are supported
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φ(s1) = γ φ(s2) = 1 + ε
r = 0

r

Figure 3. The construction of Lemma 4.3

are numbered 1 . . . | supp(µ)|, and the unsupported ones are numbered | supp(µ)| + 1 . . . S. Furthermore, for a given
vector v ∈ RS , we will write vµ = (v1, . . . , v| supp(µ)|) for the restriction of v to the support states of S, and v¬µ =
(v| supp(µ)|+1, . . . , vS) for the restriction of v to the unsupported states. Similarly, for a given matrix X , we will write it in
block form as

X =

[
Xµ,µ Xµ,¬µ

X¬µ,µ X¬µ,¬µ

]
Theorem 4.4. In the non-aliased setting, there exists a family of instances {(M,µ, φ)} which all have an L2(µ)-
misspecification of 0, ∥ΠµP∥µ < ∞, and σmin(Σ

−1/2AΣ−1/2) = 0, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) = ∞

We start by noting the following property.

Lemma 4.5. Under Assumption 2.3, ∥ΠµP∥µ < ∞ if and only if ∀s′ /∈ supp(µ),Es∼µ [φ(s)P(s′|s)] = 0.

Proof. We show that ∥ΠµP∥µ < ∞ ⇐⇒ (ΠP )µ,¬µ = 0µ,¬µ, and then that this implies ∀i ∈ µ, k /∈ µ,

⟨φi,Σ
−1
(∑

j µjφjPj,k

)
⟩ = 0. Lastly we show that If λmin(Σ) > 0 then ∥ΠµP∥µ < ∞ if and only if

∑
j µφjPj,k =

0 ∀k /∈ µ.

The first part is easily observed by noting that ∥ΠµP∥µ < ∞ ⇐⇒ max∥v∥µ=1 ∥ΠµPv∥µ < ∞ ⇐⇒
max∥v∥µ=1 ∥((ΠµP )µ,µvµ + (ΠµP )µ,¬µv¬µ; 0¬µ)∥µ < ∞ ⇐⇒ (ΠµP )µ,¬µ = 0, where the last line follows since
if it has a non-trivial kernel then we can take v¬µ going to infinity while satisfying the constraints ∥v∥µ = 1. The
second part is observed by expanding the definition of (ΠµP )i,k for all i ∈ µ and all k /∈ µ. For the last part, we
note that λmin(Σ) > 0 implies that the span of {φ(si)}i∈supp(µ) = Rd. Thus, for each k /∈ µ, the set of equations

⟨φi,Σ
−1
(∑

j µjφjPj,k

)
⟩ = 0 obtained by varying over all i ∈ µ must imply that the vector on the RHS must be 0, i.e.

Σ−1
(∑

j µjφjPj,k

)
= 0 =⇒

∑
j µjφjPj,k = 0 for each k.

Proof (of 4.4). There are m := 3 states in µ, and n := 2 states in ¬µ. We number the known states as 1, 2, 3 and the
unknown states as 4 and 5. The states within µ transition amongst each other and to the unknown states. The unknown
states simply self-loop. The reward will be

R = (0, 0, 0, r4, r5),

where r4 and r5 are chosen later. We also set
γ = 9/10.

The only things left to choose are (P, φ, µ). Let us write down the transition matrix.
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P =


0.313 0.2322 0.2999 0.0786 0.0763
0.8483 0.0014 0.0867 0.0484 0.0152
0.1144 0.2852 0.219 0.2437 0.1377

0 0 0 1 0
0 0 0 0 1


where the floating point numbers are exact (i.e. can be represented as rationals).

And of course the discounted occupancy matrix is

d := (I − γP)−1 =


2.22637 0.675069 0.814047 3.65445 2.63005
1.76839 1.56311 0.74639 3.56891 2.35319
0.85084 0.586281 1.58849 4.3413 2.63309

0 0 0 10 0
0 0 0 0 10


The data distribution is not yet chosen but will have the following constraints

µ1 > 0, µ2 > 0, µ3 > 0, µ4 = µ5 = 0

The task of the learner is to predict a value function on µ, i.e. on the first 3 states. Let us write d4 for the 4th column of d,
and d5 for the 5th of d. The space of possible value functions in this MRP is

VM = {v = r4 · d4 + r5 · d5 | r4, r5 ∈ [−1, 1]} ⊆ R5,

since we set r1 = r2 = r3 = 0. The space of possible value functions restricted to µ is:

Vµ
M =

{
(v(s1), v(s2), v(s3))

⊤ = r4 · d1::3,4 + r5 · d1::3,5 | r4, r5 ∈ [−1, 1]
}
⊆ R3,

where d1::3,4 is the first 3 elements of d4, and d1::3,5 is the first 3 elements of d5 (i.e. the column vectors
(3.65445, 3.56891, 4.3413)⊤ and (2.63005, 2.35319, 2.63309)⊤, respectively). This is a 2−dimensional plane lying in
R3. There is no loss of generality in assuming that the learner will pick a hypothesis whose restriction to µ is in Vµ

M , as
hypothesis lying outside of VM would be incorrect for all choices of reward functions (thus, strictly worse).

We pick a 1−dimensional feature mapping φ : S 7→ R (i.e. Φ ∈ R5×1). We choose Φ such that it is a linear combination of
the last two columns of d, i.e.

Φ = αd4 + βd5,

which means that Φ is a vector lying inside VM. Our particular choice of α and β give

(φ1, φ2, φ3)
⊤ = −0.5874d1::3,4 + 0.9354d1::3,5 = (0.313528, 0.104797,−0.0870883)⊤ (20)

The only thing left to pick now is µ. We cannot do this arbitrarily, as we have to ensure that ∥ΠµP∥µ < ∞. Following the
characterization of Lemma 4.5, we need to ensure that

∑
j µjφjPj,4 = 0 and

∑
j µjφjPj,5 = 0. Since we have chosen φ

and P , the above two equations are linear constraints in µ. Together with the constraint that µ1 + µ2 + µ3 = 1, we can
solve them to find that

(µ1, µ2, µ3)
⊤ = (0.0840949, 0.660425, 0.25548)⊤

Note that such a solution—where µ is a valid distribution—is not always possible for different choices of P and φ, hence the
seemingly mysterious choices for P and φ. This particular instance was found via a random search: we keep generating P
and the coefficients in Eq.(20) for defining φ, and stop when we find an instance with µ1, µ2, µ3 > 0 (they can be negative).

It remains to show that 1) σmin(Σ
−1/2AΣ−1/2) = 0, and 2) the worst-case asymptotic approximation error is ∞. For 1),

one can verify that with this choice of (P,φ, µ) we have:

Σ = 0.0174572 > 0&A = 0 =⇒ σmin(Σ
−1/2AΣ−1/2) = 0.
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The last thing to argue is that the error is ∞. The space of possible linear predictors is the line {θ · (φ1, φ2, φ3)}. Recall
that we picked Φ such that this entire line lies inside VM . In other words, there are an infinite number of possible realizable
value functions that the environment could pick (obtained via (r4, r5) = θ(α, β) for arbitrary θ).

However, from the perspective of the learner, the only information available is the value of the reward inside µ (which is 0),
the transitions inside µ (the matrix Pµ,µ), and the transitions from µ to ¬µ (the matrix Pµ,¬µ). In fact we can assume that
the learner knows the whole P matrix, since P¬µ,µ = 0 and P¬µ,¬µ = Id2×2 (self-loops). But none of this information is
enough to deduce the value of r4, r5 (the reward happens at states that are unsupported), and this reward is what determines
the true value function. So, for whatever value function the learner picks, we can pick a different realizable value function,
thus rendering the approximation factor infinite. (See Figure 4).

Figure 4. The construction above. Red plane: VM , space of value functions. Blue line: {θ · (φ1, φ2, φ3) | θ}, space of linear predictors,
which lies inside VM . Two green points: a hypothesis value function and the other true value function.

B. Cases where α = 1 is asymptotically achievable
Thanks to the proof of Equation 12, we identify several scenarios where the true solution can be recovered.

1. ΦA−1Φ⊤DPv⊥ = 0, in particular Φ⊤DPv⊥ = 0, e.g. when is satisfied under the condition that the orthogonal
subspace of col(Φ) is closed under P (i.e. P maps orthogonal vectors (of the features) to orthogonal vectors). Then
LSTD has an L2(µ) approximation factor of 1.

• Proof: from Equation (13).

2. ∥P∥µ < ∞ implies that vM can be learned exactly on the support of µ. Thus with the tabular function class the
asymptotic approximation ratio in the L2(µ) norm is either 1 if ∥P∥µ < ∞ or ∞ if ∥P∥µ.

• Proof: If ∥P∥µ < ∞ then we must have the condition (µ(s) > 0&P (s′|s) > 0) =⇒ µ(s′) > 0, otherwise in
the equation max∥v∥µ=1 ∥Pv∥µ we will have a contribution of Ps,s′v(s

′) for some unsupported state s′, and the
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value for v(s′) can be taken to infinity while satisfying the constraint ∥v∥µ = 1. From this condition it is easy
to see that vM can be recovered exactly on µ, as in the asymptotic regime we have access to r(s)∀s ∈ µ and
P (s)∀s ∈ µ, and if a state transitions to s′ then we will also have P (s′) and r(s′).

C. Proofs for Section 5
C.1. Proof of Theorem 5.1

Theorem 5.1. Assume that the A matrix from Equation (8) is invertible. Then the population LSTD estimator has an
approximation factor upper bound of

αLSTD∞ ≤ 1 +
∥∥ΦA−1Φ⊤D(I − γP )

∥∥
∞ ≤ 1 +

1 + γ

σmin(A)

Proof. We repeat the steps of Lemma A.1. Let us write vM = Π∞vM + δ := Φθ∞ + δ, so that δ = vM −Π∞vM.

Then we have:

(I − γP )vM = r

(I − γP )Φθ∞ + (I − γP )δ = r

Φ⊤D(I − γP )Φθ∞ +Φ⊤D(I − γP )δ = Φ⊤Dr (Φ⊤D on both sides)(
Φ⊤D(Φ− γPΦ)

)
θ∞ = Φ⊤Dr − Φ⊤D(I − γP )δ

Aθ∞ = b− Φ⊤D(I − γP )δ (Defns of A, b)

θ∞ = A−1b−A−1Φ⊤D(I − γP )δ (A−1 exists)

Meanwhile, the LSTD solution is defined by θLSTD = A−1b. Substracting both of these gives:

θ∞ − θLSTD = −A−1Φ⊤D(I − γP )δ (21)

Now, applying Φ and taking the ∞ norm gives

∥Φ(θ∞ − θLSTD)∥∞ =
∥∥ΦA−1Φ⊤D(I − γP )δ

∥∥
∞

≤
∥∥ΦA−1Φ⊤D(I − γP )

∥∥
∞∥δ∥∞

≤
∥∥ΦA−1Φ⊤D

∥∥
∞∥(I − γP )∥∞∥δ∥∞

≤
∥∥ΦA−1Φ⊤D

∥∥
∞(1 + γ)∥δ∥∞

It remains to relate
∥∥ΦA−1Φ⊤D

∥∥
∞ to σmin(A). Notice that

(ΦA−1Φ⊤D)i,j = µj

〈
φi, A

−1φj

〉
,

The L∞ matrix norm is the maximum L1 norm of a row, thus

∥∥ΦA−1Φ⊤D
∥∥
∞ = max

i

∑
j

|µj

〈
φi, A

−1φj

〉
|

 ≤ max
i

∑
j

µj∥φi∥2
∥∥A−1φj

∥∥
2

 (Cauchy-Schwartz)

=
∥∥A−1

∥∥
2
max

i
∥φi∥2

∑
j

µj∥φj∥2


≤
∥∥A−1

∥∥
2
1 (∥φi∥ ≤ 1 ∀i)

=
1

σmin(A)
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Combining everything and using a triangle inequality gives us:

∥vLSTD − vM∥∞ ≤ (1 +
(1 + γ)1

σmin(A)
)∥Φθ∞ − vM∥∞

C.2. Proof of Theorem 5.2

Theorem 5.2. In the non-aliased setting, for all γ ∈ [c1, 1) where c1 is some absolute constant, and for all y ∈ [0, 1− γ],
there exists three instances {(Mi, µi, φi)} which all satisfy σmin(A) = y yet

inf
v̂

sup
(Mi,µi,φi)

αv̂
∞(Mi, µi, φi) ≥

1

2
+

γ

σmin(A)
.

The value of the constant is upper bounded by c1 ≤ 0.7.

Proof. We take P =

(
0 1
0 1

)
and D =

(
1 0
0 0

)
. Note that this is the same MRP as in (Amortila et al., 2020) and Lemma

4.3. This gives a discounted occupancy matrix

d = (I − γP )−1 =

(
1 γ/(1− γ)
0 1/(1− γ)

)
.

Let d1 denote the first column of d and d2 denote the second column. We take r = (0, r2)
⊤, i.e. no reward at state 1 and

a reward of r2 at state 2. This gives vM = r2d2. We set one instance to have r2 = 1, one instance to have r2 = 0, and
the last instance to have r2 = −1. The three instances are otherwise identical. We take Φ = [αd1 + d2] (1− γ) ∈ R2×1

(thus φ(s) ∈ R), and we will later impose that 0 ≤ α ≤ 1. Assuming that this bound on α holds for now, we can see that
∥φ1∥2 = [α+ γ/(1− γ)](1− γ) ≤ (1− γ)/(1− γ) = 1 and ∥φ2∥2 = (1− γ)/(1− γ) and thus ∥φi∥2 ≤ 1 for all i. We
can directly verify that

A = Φ⊤D(I − γP )Φ =
[
α2 + αγ/(1− γ)

]
(1− γ)2 = α2(1− γ)2 + αγ(1− γ)

We need σmin(A) = |A| = A = y, so we can solve the quadratic for α and pick the positive solution to get:

α =
−γ +

√
γ2 + 4y

2(1− γ)

Note that α satisfies the bound 0 ≤ α ≤ 1 whenever γ < 1 and 0 ≤ y ≤ 1 − γ, which holds by the assumption in our
theorem statement. The misspecification error is at most:

inf
θ
∥vM − Φθ∥∞ = inf

θ
∥r2d2 − (αd1 + d2)θ(1− γ)∥∞ = inf

θ
∥(r2 − (1− γ)θ)d2 − α(1− γ)θd1∥∞ ≤ α∥d1∥∞ = α,

where the upper bound was obtained by plugging in θ = r2
1−γ . Note that the minimax estimator against these three instances

will need to output θ = 0 since the instance with r2 = 0 is realizable with θ = 0. Namely, if the learner does not output
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θ = 0 then its worst-case approximation will be ∞. This gives the ratio:

α∞ ≥
∥vM − 0∥∞

∥Π∞vM − vM∥∞

≥
∥vM∥∞

α

=
1

α(1− γ)

=
1

y
{α(1− γ) + γ} (using that α(1− γ) {α(1− γ) + γ} = y by definition of A)

=
1

y

{
−γ +

√
γ2 + 4y

2
+ γ

}
(using that α =

−γ+
√

γ2+4y

2(1−γ) )

=
γ

2y

{
1 +

√
1 +

4y

γ2

}
≥ γ

2y

{
1 + 1 +

2y

γ2
− (4y)2

8γ4

}
(using that

√
1 + x ≥ 1 + x/2− x2/8 for all x ≥ 0)

=
γ

y

{
1 +

y

γ2
− y2

γ4

}
=

γ

y
+

1

γ
− y

γ3

≥ γ

y
+

1

γ
− 1− γ

γ3
(using that y ≤ 1− γ)

≥ γ

y
+

1

2
, (using that 1

γ − 1−γ
γ3 ≥ 1

2 when γ ≥ c1)

as desired. The value of c1 can be taken to be the smallest solution x such that 1
x − 1−x

x3 ≥ 1
2 , which by Mathematica is

approximately 0.6889 (but one can verify that 0.7 suffices and that this inequality holds for all x ≥ 0.7 since the function is
increasing).

C.3. Proof of Theorem 5.4

Theorem 5.4. Under Assumption 5.3, the estimator vφ from Equation (15) has an approximation ratio of 2
1−γ , i.e. we have

∥vφ ◦ φ− vM∥∞ ≤ 2

1− γ
inf

f :X 7→R
∥f ◦ φ− vM∥∞

≤ 2

1− γ
inf
θ
∥Φθ − vM∥∞

Proof. Inspired by the theory of “q⋆-irrelevant abstractions” (Li et al., 2006; Jiang, 2018; Xie & Jiang, 2021), we define
vM-irrelevant abstractions as follows:

Definition C.1. A feature map φ : S 7→ X is an ε−approximate vM−irrelevant abstraction for MRP M if there exists a
function f : X 7→ R such that

inf
f :X 7→R

∥f ◦ φ− vM∥∞ = ε

Note that the inf is taken over all pointwise functions over X , and thus every feature mapping with an L∞-misspecification
error of ε is also a ε-approximate vM-irrelevant abstraction.

To conclude the proof we use Theorem 5 from (Jiang, 2018), which establishes the analogous claim for the case of
q⋆-irrelevant abstractions. Indeed, the case of vM-irrelevant abstractions can be reduced from the more general case of
q⋆-irrelevant abstractions by considering the case where there is only one action to take in each state. It is easily seen that our
Bayes model is then equivalent to the model constructed in Lemma 3 of (Jiang, 2018), which Theorem 5 uses to establish
the approximation error bound of 2/(1− γ).
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C.4. Proof of Theorem 5.5

Theorem 5.5. In the aliased setting, under Assumption 5.3, ∀ε > 0, ∀ γ ∈ (0, 1), there exists a collection of two instances
M = {(M1, µ1, φ1), (M2, µ2, φ2)} which generate the same data distribution Q, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
∞(M, µ, φ) ≥ 2

1− γ
− ε

Proof. The first MRP M1 is defined as

φ(s1) = φ φ(s2) = φ
1

0

We set φ = 1 for simplicity. We place the initial distribution µ(s1) = p and µ(s2) = 1− p, and should think of p → 1 (we
can’t actually set p = 1 due to the full-support condition, but a limiting argument suffices). Note that vM(s1) = 1 and
vM(s2) = 0, so the optimal ∞-norm approximation for this MRP is θ1 = φθ = 1

2 .

Our second MRP M2 is the following:

φ

Ber(p)

which generates the same distribution Q. This instance is realizable with value function θ2 = vM = p
1−γ , which forces

our estimator to output θ2. Let p be large enough such that ∥θ2 − vM1∥∞ = max{| p
1−γ − 1|, | p

1−γ − 0|} = p
1−γ (i.e.

p > (1− γ)/2). Taking the ratio of approximation errors:

∥θ2 − vM1
∥∞

∥θ1 − vM1
∥∞

=
p/(1− γ)

1/2
=

2p

1− γ
≥ 2

1− γ
− ε,

where the last step takes p ≥ 1− ε(1−γ)
2 .

C.5. Proof of Corollary C.2

Corollary C.2. The projected Bayes value function has an approximation factor of

∥Π∞(vφ ◦ φ)− vM∥∞ ≤
(
1 +

2

1− γ

)
inf
θ
∥Φθ − vM∥∞

Proof. This amounts to an application of the triangle inequality:

∥Π∞(vφ ◦ φ)− vM∥∞ ≤ ∥Π∞vφ −Π∞vM∥∞ + ∥Π∞vM − vM∥∞
≤ ∥(vφ ◦ φ)− vM∥∞ + inf

θ
∥Φθ − vM∥∞ (Π∞ is non-expansive)

≤ 2

1− γ
inf
θ
∥Φθ − vM∥∞ + inf

θ
∥Φθ − vM∥∞ (Previous bound)

=

(
1 +

2

1− γ

)
ε∞,

which concludes the proof.
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D. Translating L2(µ) oracle inequalities to L∞ oracle inequalities
This section shows that one can convert an L2(µ) oracle inequality to an L∞ oracle inequality

Lemma D.1. Assuming we have a bound

∥vθ − vM∥µ ≤ αµ∥ΠµvM − vM∥µ.

This can be converted to an approximation ratio bound

∥vθ − vM∥∞ ≤
(
1 + max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2
(1 + αµ)

)
∥Π∞vM − vM∥∞

Proof. Let ΦθM be an L∞ linear projection, and δ(s) be such that vM(s) = δ(s) + θ⊤Mφ(s).

∥vM − vθ∥∞ = max
s

|θ⊤φ(s)− vM(s)|

= max
s

|θ⊤φ(s)− θ⊤Mφ(s)− δ(s)|

≤ ∥δ(s)∥∞ +max
s

|(θ⊤φ(s)− θM)⊤φ(s)|

≤ ∥δ(s)∥∞ +max
s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

∥∥∥Σ1/2(θM − θ)
∥∥∥
2

(Cauchy-Schwartz)

= ∥δ(s)∥∞ +
(
max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

)
∥Φ(θM − θ)∥µ

≤ ∥δ(s)∥∞ +
(
max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

)(
∥Φ(θM)− vM∥µ + ∥vM − Φθ∥µ

)
≤ ∥δ(s)∥∞ +

(
max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

)(
∥Φ(θM)− vM∥µ + αµ∥vM −ΠµvM∥µ

)
≤ ∥δ(s)∥∞ +

(
max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

)(
∥Φ(θM)− vM∥µ + αµ∥vM − ΦθM∥µ

)
(ΠµvM = inf v̂∈FΦ

∥vM − v̂∥)

≤ ∥δ(s)∥∞ +
(
max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

)(
(1 + αµ)∥Φ(θM)− vM∥µ

)
≤ ∥δ(s)∥∞ +

(
max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

)
(1 + αµ)∥Φ(θM)− vM∥∞

= ∥δ(s)∥∞ +
(
max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2

)
(1 + αµ)∥δ(s)∥∞

=
(
1 + max

s

∥∥∥Σ−1/2φ(s)
∥∥∥
2
(1 + αµ)

)
∥δ(s)∥∞
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