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Abstract

We study offline multi-agent reinforcement
learning (RL) in Markov games, where the
goal is to learn an approximate equilibrium—
such as Nash equilibrium and (Coarse) Corre-
lated Equilibrium—from an offline dataset pre-
collected from the game. Existing works consider
relatively restricted tabular or linear models and
handle each equilibria separately. In this work, we
provide the first framework for sample-efficient
offline learning in Markov games under general
function approximation, handling all 3 equilibria
in a unified manner. By using Bellman-consistent
pessimism, we obtain interval estimation for poli-
cies’ returns, and use both the upper and the lower
bounds to obtain a relaxation on the gap of a
candidate policy, which becomes our optimiza-
tion objective. Our results generalize prior works
and provide several additional insights. Impor-
tantly, we require a data coverage condition that
improves over the recently proposed “unilateral
concentrability”. Our condition allows selective
coverage of deviation policies that optimally trade-
off between their greediness (as approximate best
responses) and coverage, and we show scenarios
where this leads to significantly better guarantees.
As a new connection, we also show how our al-
gorithmic framework can subsume seemingly dif-
ferent solution concepts designed for the special
case of two-player zero-sum games.

1. Introduction
Offline RL aims to learn a good policy from a pre-collected
historical dataset. It has emerged as an important paradigm
for bringing RL to real-life scenarios due to its non-
interative nature, especially in applications where deploying
adaptive algorithms in the real system is financially costly
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and/or ethically problematic (Levine et al., 2020). While
offline RL has been extensively studied in the single-agent
setting, many real-world applications involve the strategic
interactions between multiple agents. This renders the neces-
sity of bringing in game-theoretic reasoning, often modeled
using Markov games (Shapley, 1953) in the RL theory lit-
erature. Markov games can be viewed as the multi-agent
extension of Markov Decision Processes (MDPs), where
agents share the same state information and the dynamics is
determined by the joint action of all agents.

While online RL in Markov games has seen significant de-
velopments in recent years (Bai & Jin, 2020; Liu et al.,
2021; Song et al., 2022; Jin et al., 2021b), offline learning
in Markov games has only started to attract attention from
the community. Earlier works (Cui & Du, 2022b; Zhong
et al., 2022) focus on tabular cases or linear function ap-
proximation, which cannot handle complex environments
that require advanced function-approximation techniques.
Although there has been a rich literature on single-agent
RL with general function approximation (Jiang et al., 2017;
Jin et al., 2021a; Wang et al., 2020; Huang et al., 2021),
whether and how they can be extended to offline Markov
games remains largely unclear. In addition, the learning
goal in Markov games is no longer return optimization, but
instead finding an equilibrium. However, there are multiple
popular notions of equilibria, and prior results for the offline
setting mainly focus on one of them (Nash) (Cui & Du,
2022a;b; Zhong et al., 2022). These considerations motivate
us to study the following question:

Can we design sample-efficient algorithms for offline
Markov games with general function approximation, and

handle different equilibria in a unified framework?

Unified framework In this paper, we provide information-
theoretic results that answer the question in the positive. We
first express the equilibrium gap—the objective we wish
to minimize—in a unified manner for 3 popular notions of
equilibria: Nash Equilibrium (NE), Correlated Equilibrium
(CE), and Coarse Correlated Equilibrium (CCE) (Section 3).
Then, we build on top of the Bellman-consistent pessimism
framework from single-agent offline RL (Xie et al., 2021a),
which allows us to construct confidence sets for policy evalu-
ation and obtain the confidence intervals of policies’ returns.
An important difference is that Xie et al. (2021a) only needs
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pessimistic evaluations in the single-agent case; in contrast,
we need both optimistic and pessimistic evaluations to fur-
ther compute a surrogate upper bound on the equilibrium
gap of each candidate policy, which provably leads to strong
offline learning guarantees (Section 4).

New insights on data conditions Our algorithm and anal-
yses also shed new light on the offline learnability of Markov
games. In single-agent offline RL, it is understood that a
good policy can be learned as long as the data covers one,
and this condition is generally known as “single-policy con-
centrability/coverage” (Jin et al., 2021c; Zhan et al., 2022).
In contrast, in Markov games, data covering an equilibrium
is intuitively insufficient, as a fundamental aspect of equilib-
rium is reasoning about what would happen if other agents
were to deviate. To address this discrepancy, a notion of
“unilateral concentrability” is proposed as a sufficient data
condition for offline Markov games (Cui & Du, 2022a) (see
also Zhong et al. (2022)), which asserts that the equilibrium
as well as its all unilateral deviations are covered. While
this is sufficient and in the worst-case necessary, it remains
unclear whether less stringent conditions may also suffice.
Our work relaxes the assumption and provide more flexible
guarantees. Instead of depending on the worst-case esti-
mation error of all unilateral deviation policies, our error
bound exhibits the trade-off between a policy coverage er-
ror term and a policy suboptimality term. It automatically
adapts to the optimal trade-off, and we show scenarios in
Section 4.3 where the bound significantly improves over
unilateral coverage results (Cui & Du, 2022b).

V-type variant Our main algorithm estimates the poli-
cies’ Q-functions, which takes all agents’ actions as inputs.
When specialized to the tabular setting, this would incur an
exponentially dependence on the number of agents. While
this can be avoided by using strong function approxima-
tion to generalize over the joint action space (Zhong et al.,
2022), it prevents us from reproducing and subsuming the
prior works (Cui & Du, 2022a;b). To address this issue, we
propose a V-type variant of our algorithm, which estimates
state-value functions instead and uses importance sampling
to correct for action mismatches. It naturally avoids the
exponential dependence, and reproduces the rate (up to mi-
nor differences) of (Cui & Du, 2022b) whose analysis is
specialized to tabular settings (Section 5).

New connection for two-player zero-sum games As an
additional discovery, we show interesting connection be-
tween our work and prior algorithmic ideas (Jin et al., 2022;
Cui & Du, 2022b) that are specifically designed for two-
player zero-sum games. While they seem very different at
the first glance, we show in Appendix B that these ideas
can be subsumed by our algorithmic framework and our
analyses and guarantees extend straightforwardly.

1.1. Related Work

Offline RL Offline RL aims to learn a good policy from
a pre-collected dataset without direct interaction with the
environment. There are many prior works studying single-
agent offline RL problem in both the tabular (Yin et al.,
2021b;a; Yin & Wang, 2021; Rashidinejad et al., 2021; Xie
et al., 2021b; Shi et al., 2022; Li et al., 2022) and function
approximation setting (Antos et al., 2008; Precup, 2000;
Chen & Jiang, 2019; Xie & Jiang, 2020; 2021; Xie et al.,
2021a; Jin et al., 2021c; Uehara & Sun, 2022; Zhan et al.,
2022). Notably, Xie et al. (2021a) introduces the notion of
Bellman-consistent pessimism and our techniques are built
on it.

Markov games Markov games is a widely used frame-
work for multi-agent reinforcement learning. Online learn-
ing equilibria of Markov games has been extensively studied,
including two-player zero-sum Markov games (Wei et al.,
2017; Bai & Jin, 2020; Bai et al., 2020; Liu et al., 2021; Dou
et al., 2022), and multi-player general-sum Markov games
(Liu et al., 2021; Song et al., 2022; Jin et al., 2021b; Mao
& Başar, 2022). Three equilibria are usually considered
as the learning goal—Nash Equilibrium (NE), Correlated
Equilibrium (CE) and Coarse Correlated Equilibrium (CCE).
Recently, a line of works consider solving Markov games
with function approximation, including linear (Xie et al.,
2020; Chen et al., 2022) and general function approxima-
tion (Huang et al., 2022; Jin et al., 2022). A closely related
work is Jin et al. (2022), where a multi-agent version of the
Bellman-Eluder dimension is introduced to solve zero-sum
Markov games under general function approximation. How-
ever, they focus on the online setting which is different from
our offline setting.

Offline Markov games Since Cui & Du (2022a)’s initial
work on offline tabular zero-sum Markov games, there have
been several follow-up works on offline Markov games, ei-
ther for tabular zero-sum / general-sum Markov games (Cui
& Du, 2022b; Yan et al., 2022) or linear function approx-
imation (Zhong et al., 2022; Xiong et al., 2023). In this
work, we study general function approximation for multi-
player general-sum Markov games, which is a more general
framework. Technically, we differ from these prior works
in how we handle uncertainty quantification in policy eval-
uation, an important technical aspect of offline learning:
we use initial state optimism/pessimism for policy evalua-
tion, whereas previous works rely on pre-state pessimism
with bonus terms. In addition, previous works require the
so-called “unilateral concentrability” assumption of data
coverage.1 Although this assumption is unavoidable for
the worst-case, our approach requires a condition that is

1Zhong et al. (2022) proposes the notion of “relative uncer-
tainty, which is the linear version of “unilateral concentrability”.
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never worse (and coincides in the worst-case) and can be
significantly better on certain instances.

2. Preliminaries
Notations We use ∆(·) to denote the probability simplex.
We use bold letters to denote vectors such as a and the jth

element of a is denoted by aj . We use −i to denote all
the players except player i. For a positive integer m, [m]
denotes the set {1, 2, · · · ,m}. ∥f∥22,d represents Ed[f

2]
and f(s, π) stands for Ea∼π(·|s)[f(s, a)]. We use O(·) to
hide absolute constants and use Õ(·) to hide logarithmic
factors.

2.1. Multi-player General-sum Markov Games

We consider multi-player general-sum Markov games in the
infinite-horizon discounted setting. Such a Markov game
is specified by (S,A =

∏
i∈[m]Ai, P, r, γ, s0), where S

is the state space with |S| = S, Ai is the action space for
player i with |Ai| = Ai, a ∈ A is the joint action taken
by all m players, P : S × A → ∆(S) is the transition
function and P (·|s, a) describes the probability distribution
over the next state when joint action a is taken at state s,
r = {ri}i∈[m] is the collection of reward functions where
ri : S×A → [0, Rmax] is the deterministic reward function
for player i, γ ∈ [0, 1) is the discount factor, and s0 is the
fixed initial state which is without loss of generality.

Product and correlated policies A Markov joint
policy π : S → ∆(A) specifies the decision-
making strategies of all players and induces a trajec-
tory s0,a0, r0, s1,a1, r1, · · · , st,at, rt, · · · , where at ∼
π(·|st), rt,i = ri(st,at), and st+1 ∼ P (·|st,at). For a
joint policy π, πi is the marginalized policy of player i and
π−i is the marginalized policy for the remaining players. A
joint policy π is a product policy if π = π1 × π2 × · · ·πm

where each player i takes actions independently according
to πi. If π is not a joint policy, sometimes we say π is corre-
lated, and the players need to depend their actions on public
randomness.

Value function and occupancy For player i and joint
policy π, we define the value function V π

i (s) :=
Eπ[
∑∞

t=0 γ
tri(st,at)|s0 = s] and the Q-function

Qπ
i (s, a) := Eπ[

∑∞
t=0 γ

tri(st,at)|s0 = s, a0 = a], they
are bounded in [0, Vmax] where Vmax = Rmax/(1−γ). For
each joint policy π, the policy-specific Bellman operator of
the ith player T π

i : RS×A → RS×A is defined as

(T π
i f)(s, a) = ri(s, a) + γEs′∼P (·|s,a)[f(s

′, π)],

and Qπ
i is the unique fixed point of T π

i . Note that once
a policy is fixed, the game-theoretic considerations are no

longer relevant and the value functions are defined in fa-
miliar manners similar to the single-agent setting, with the
only difference that each player i has its own value function
due to the player-specific reward function ri. Similar to
the single-agent case, we also consider the discounted state-
action occupancy dπ(s, a) ∈ ∆(S ×A) which is defined as
dπ(s, a) = (1− γ)Eπ[

∑∞
t=0 γ

tI[st = s, at = a]].

2.2. Offline learning of Markov games

In the offline learning setting, we assume access to a
pre-collected dataset and cannot have further interactions
with the environment. The offline dataset D consists of
n independent tuples (s, a, r, s′), which are generated as
(s, a) ∼ dD, ri ∼ ri(s, a) and s′ ∼ P (·|s, a) with some
data distribution dD ∈ ∆(S ×A).2

Policy class In practical problems with large state spaces,
the space of all possible Markov joint policies is pro-
hibitively large and intractable to work with. To address
this, we assume we have a pre-specified policy class Π ⊂
(S → ∆(A)), from which we seek a policy that is ap-
proximately an equilibrium under a given criterion.3 Let
Πi = {πi : π ∈ Π} denote the class of induced marginal-
ized policies for player i, and define Π−i similarly.

The extended class As we will see in Section 3, a funda-
mental aspect of equilibria is the counterfactual reasoning
of how other agents would deviate and respond to a given
policy. After considering the possible deviation behaviors
of player i in response to each policy π ∈ Π, we arrive at
an extended class Πext

i ⊇ Π for player i. The concrete form
of Πext

i will be defined in Section 3 and can depend on the
notion of equilibrium under consideration, and for now it
suffices to say that Πext

i is a superset of Π consisting of all
policies that player i needs to reason about.

Value-function approximation We use Fi ⊂ (S × A →
[0, Vmax]) to approximate the Q-function Qπ

i for each player
i. Following (Xie et al., 2021a), we make two standard

2For non-i.i.d. adaptive data we may use martingale concen-
tration inequalities in our analyses. Without further mixing-type
assumptions, our analyses extend if we change the dD (which is
a static object) in the definitions such as (1) and (2) to d̂D , which
is the empirical distribution over state-action pairs. The resulting
definition of (2), for example, corresponds to quantities like Ĉ(π)
in Cui & Du (2022b, Definition 3) defined for the tabular setting.

3We only consider minimizing equilibrium gaps among a class
of stationary Markov policies in this paper. See Daskalakis et al.
(2022) and the references therein for how they suffice for standard
notions of equilibria such as NE and CCE, and Nowak & Raghavan
(1992) for the case of CE. Below we also only consider stationary
Markov policies as response policies for NE/CCE, which is also
justified by the fact that once a stationary Markov π−i is fixed,
optimizing player i’s behavior for best response becomes a single-
agent MDP problem.
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assumptions on Fi,

Assumption A (Approximate Realizability). For any player
i ∈ [m] and any π ∈ Πext

i , we have

inf
f∈Fi

sup
admissible d

∥f − T π
i f∥22,d ≤ εF ,

A data distribution d is admissible if d ∈ {dπ′
: π′ ∈

Πext
i } ∪ dD.

For each player i and joint policy π, Assumption A requires
that there exists f ∈ Fi such that f has small Bellman error
under all possible distributions induced from the extended
policy class Πext

i and the data distribution. When Qπ
i ∈ Fi,

∀π ∈ Πext
i , i ∈ [m], we have εF = 0.

Assumption B (Approximate Completeness). For any
player i ∈ [m] and any π ∈ Πext

i , we have

sup
f∈Fi

inf
f ′∈Fi

∥f ′ − T π
i f∥22,dD

≤ εF,F . (1)

Assumption B requires that Fi is approximately closed un-
der operator T π

i . Both assumptions are direct extensions of
their counterparts that are widely used in the single-agent
offline RL literature.

Distribution mismatch and data coverage Similar to
Xie et al. (2021a), we use the discrepancy of Bellman error
under π to measure the distribution mismatch between an
arbitrary distribution d and data distribution dD:

C (d; dD,Fi, π) := max
f∈Fi

∥f − T π
i f∥22,d

∥f − T π
i f∥22,dD

. (2)

We remark that C (d; dD,Fi, π) ≤ sups,a
d(s,a)
dD(s,a) , which

implies that C (d; dD,Fi, π) is a tighter measurement than
the raw density ratio.

3. Equilibria
We consider three common equilibria in game theory: Nash
Equilibrium (NE), Correlated Equilibrium (CE) and Coarse
Correlated Equilibrium (CCE). We define the three equi-
libria in a unified fashion using the concept of response
class mappings, so that each equilibrium is defined with re-
spect to the relative best response within each corresponding
response class.

A response class mapping Π†(·) maps a policy π to a policy
class, Π†(π) :=

⋃
i∈[m] Π

†
i (π). Roughly speaking, Π†

i (π)
is obtained by taking a candidate policy π, considering
various ways that player i would deviate its behavior from
πi to π†

i , and re-combining π†
i and π−i into joint policies.4

4For this reason, the policy class Π†
i (π) always satisfies the

following: for any i ∈ [m] and any π′ ∈ Π†
i (π), π

′
−i = π−i.

The space of possible π†
i which player i can choose from

determines the mapping, and will take different forms under
different notions of equilibria, as explained next.

1. A product policy is NE if it satisfies that no player
can increase her gain by deviating from her own pol-
icy. Therefore, the response class mapping for NE
is defined as Π†,NE(π) := {Π†,NE

i (π)}i∈[m], where
Π†,NE

i (π) := {π†
i × π−i : π†

i ∈ Πi}. Note that here
Π†,NE

i has no dependence on the input πi, and player i
simply considers using some π†

i ∈ Πi to replace πi.

2. A CE is defined by a class of strategy modifications
Φ = (Φi)i∈[m], where Φi ⊆ (S × Ai → Ai) is a set of
strategy modifications of the ith player, and each ϕi ∈ Φi

is a mapping ϕi : S × Ai → Ai. For any joint policy
π, the modified policy ϕi ⋄ π is defined as: at state
s ∈ S, all players sample a ∼ π(·|s), the ith player
changes action ai to ϕi(s, ai) and a−i remains the same.
For CE, the response class mapping of each joint policy
π is defined as Π†,CE(π) := {Π†,CE

i (π)}i∈[m], where
Π†,CE

i (π) = {(ϕi ⋄ πi)⊙ π−i : ϕi ∈ Φi}.

3. CCE is defined for general (i.e., possibly correlated) joint
policies and is a relaxation of NE. The only difference is
that CCE does not require the candidate policy π to be
a product policy. Hence, the response class mapping of
CCE is the same as that of NE.

With the definition of response class mapping, for EQ ∈
{NE,CE,CCE}, we define the gap of any joint policy π
with respect to Π†,EQ(·) as

GapΠ
†,EQ

(π) := max
i∈[m]

max
π†∈Π†,EQ

i (π)
V π†

i (s0)− V π
i (s0).

Now we are ready to present the definitions of three equilib-
ria.

Definition 1 (Equilibria; NE, CE, and CCE). For EQ ∈
{NE,CE,CCE}, a joint policy (product for NE) is an ε-EQ
with respect to Π†,EQ(·), if for the response class Π†,EQ(π),

GapΠ
†,EQ

(π) ≤ ε.

Definition 1 is defined with respect to the policy class Π
and strategy modification class Φ (for CE). Throughout the
paper, we focus on the theoretical guarantees of such “in-
class” notion of gaps, which is a reasonable definition if we
assume that all players have limited representation power
and must work with restricted policy classes. Under addi-
tional assumptions (which we call “strategy completeness”;
see Appendix A), such “in-class” gaps can be related to a
stronger notion of gap where unrestricted deviation policies
are considered for the best response.
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With the response class mappings, we also define the ex-
tended policy class Πext

i := (
⋃

π∈Π Π†
i (π))

⋃
Π, which

characterizes all possible policies with deviation from the
ith player. In addition, we define Πext :=

⋃m
i=1 Π

ext
i .

4. Information-Theoretic Results for
Multi-player General-sum Markov Games

4.1. Algorithm

As our learning goal is to find a policy π ∈ Π with small
equilibrium gap GapΠ

†,EQ

(π) (for EQ∈ {NE, CE, CCE}),
a natural idea is to simply estimate the gap and minimize
it over π ∈ Π. Unfortunately, we are in the offline setting
and only have access to data sampled from an arbitrary data
distribution dD, which may not provide enough information
for evaluating the gap of certain policies.

Since the gap is not always amendable to estimation, we
instead seek a surrogate objective that will always be an
upper bound on the equilibrium gap of each candidate pol-
icy π ∈ Π. The upper bound should also be tight when
the policy is covered by the data and we have sufficient
information to determine its gap accurately. To achieve this
goal, we recall the definition of gap:

GapΠ
†,EQ

(π) := max
i∈[m]

max
π†∈Π†,EQ

i (π)
V π†

i (s0)− V π
i (s0).

The key idea in our algorithm is that

V π†

i (s0)− V π
i (s0) ≤ V

π†

i (s0)− V π
i (s0),

where

• V
π†

i (s0) ≥ V π†

i (s0) is an optimistic evaluation of π†.

• V π
i (s0) ≤ V π

i (s0) is an pessimistic evaluation of π.

With this relaxation, the problem reduces to optimistic and
pessimistic policy evaluation, for which we can borrow
existing techniques from single-agent RL.

Bellman-consistent pessimism & optimism We use the
Bellman-consistent pessimism framework from Xie et al.
(2021a) to construct optimistic and pessimistic policy evalu-
ations. For each player i, we first use dataset D to compute
an empirical Bellman error of all function fi ∈ Fi under
Bellman operator T π

i ,

Ei(fi, π;D) := Li(fi, fi, π;D)− min
f ′
i∈Fi

Li(f
′
i , fi, π;D),

Li(f
′
i , fi, π;D) :=

1

n

∑
(s,a,r,s′)∈D

(f ′
i(s, a)− ri − γfi(s

′, π))
2
.

Similar to the single-agent setting, Ei(fi, π;D) is a good
approximation of the true Bellman error of fi w.r.t. π, i.e.,

Algorithm 1 Bellman-Consistent Equilibrium Learning
(BCEL) from an Offline Dataset

1: Input: Offline dataset D, parameter βf , equilibrium
EQ ∈ {NE,CE,CCE}

2: For each player i ∈ [m] and policy π ∈ Πext
i , construct

version space

Fπ,βf

i = {fi ∈ Fi : Ei(fi, π;D) ≤ βf}. (3)

3: For each player i ∈ [m], compute

V
π†

i (s0) = max
f∈F

π†,βf
i

f(s0, π
†), ∀π† ∈ Πext

i . (4)

V π
i (s0) = min

f∈F
π,βf
i

f(s0, π), ∀π ∈ Π. (5)

4: For each policy π ∈ Π, compute the estimated gap

ĜapEQ(π) := max
i∈[m]

max
π†∈Π†,EQ

i (π)
V

π†

i (s0)− V π
i (s0).

(6)
5: Output π̂ ← minπ∈Π ĜapEQ(π).

Ei(fi, π;D) ≈ ∥fi − T π
i fi∥22,dD

, so we can construct a

version space Fπ,βf

i for each player i and policy π ∈ Πext
i

in (3). To ensure that the best approximation of Qπ
i is

contained in Fπ,βf

i , given a failure probability δ > 0, we
pick the threshold parameter βf as follows,

βf =
80V 2

max log
|F||Πext|

δ

n
+ 30εF ,

where F =
⋃m

i=1 Fi. Then, optimistic and pessimistic
evaluations can be obtained by simply taking the highest
and the lowest prediction on the initial state s0 across all
functions in the version space ((4) and (5)).

With V
π†

i (s0) and V π
i (s0) at hand, we calculate the esti-

mated gap ĜapEQ(π) for each π ∈ Π in (6). We select the
policy π̂ with the lowest estimated gap and the algorithm is
summarized in Algorithm 1.

4.2. Theoretical Guarantees

Before presenting the theoretical guarantee, we introduce
the interval width ∆π

i of Fπ,βf

i , which will play a key role
in our main theorem statement:

∆π
i := max

fi∈F
π,βf
i

fi(s0, π)− min
fi∈F

π,βf
i

fi(s0, π).

As we will see, ∆π
i is a measure of how well the data distri-

bution dD covers dπ, the state-action occupancy of π. The
better coverage, the smaller ∆π

i . This is formalized by the
following proposition:
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Proposition 2 (Bound on interval width). With probability
at least 1− δ, for any player i ∈ [m] and any π ∈ Πext

i , we
have

∆π
i ≤ min

d

1

1− γ

√
C (d; dD,Fi, π)εapx +

1

1− γ
×∑

s,a

(dπ\d)(s, a) [∆fπ
i (s, a)− γ(Pπ∆fπ

i )(s, a)] , (7)

where εapx = O
(
Vmax

√
log

|F||Πext|
δ

n +
√
εF + εF,F

)
,

(dπ \ d)(s, a) := max(dπ(s, a) − d(s, a), 0),
∆fπ

i (s, a) := fπ,max
i (s, a) − fπ,min

i (s, a), and
(Pπf)(s, a) = Es′∼P (·|s,a)[f(s

′, π)].

Here, a distribution d ∈ ∆(S × A) in (7) is introduced
to handle the discrepancy between dD and dπ. The first
term in (7) captures the distribution mismatch between d
and dD, and the second term represents the off-support
Bellman error under π. When the data distribution dD
has a full coverage on dπ, d can be chosen as dπ and the
second term becomes zero. Therefore, for the purpose of
developing intuitions, one can always choose d = dπ and
treat ∆π

i ∝
√

C (dπ; dD,Fi, π), though in general some
d ̸= dπ may achieve a better trade-off and tighter bound.

With an intuitive understanding of ∆π
i , we are ready to show

the following theorem for our proposed algorithm.

Theorem 3. With probability at least 1− δ, for any π ∈ Π
and EQ ∈ {NE,CE,CCE}, the output policy π̂ of Algo-
rithm 1 satisfies that

GapΠ
†,EQ

(π̂) ≤ GapΠ
†,EQ

(π) +
4
√
εF

1− γ

+ max
i∈[m]

min
π̃i∈Π†,EQ

i (π)

(
∆π̃i

i +∆π
i + suboptπi (π̃i)

)
,

where suboptπi (π̃i) := maxπ†∈Π†,EQ
i (π) V

π†

i (s0) −

V
π̃i

i (s0).

We remark that since our algorithm requires enumeration
over the entire policy set, it is computationally inefficient
and our results are information-theoretic; we leave the in-
vestigation of computationally-efficient algorithms to future
work.

4.3. Improvement over Unilateral Coverage

To interpret Theorem 3 and compare it to existing guaran-
tees, we first introduce a direct corollary of Theorem 3 +
Proposition 2, which is a relaxed form of our result that is
closer to existing guarantees by Cui & Du (2022a;b).

Corollary 4. For Nash equilibrium policy π⋆ ∈ Π, suppose
there exists an unilateral coefficient C(π⋆) such that the

following inequality holds

max
i∈[m]

max
π†∈Π†,NE

i (π⋆)
C (dπ

†
; dD,Fi, π

⋆) ≤ C(π⋆). (8)

With probability at least 1− δ, we have

GapΠ
†,NE

(π̂)

≤ O

Vmax

√
log

|F||Πext|
δ

n +
√
εF + εF,F

1− γ

√
C(π⋆)

 .

The gap bound in Corollary 4 takes a simple form: the
first part of it has an O(1/

√
n) statistical error (scaled by

the complexities of function and policy classes, as fully
expected), and an approximation error term that depends
on εF , εF,F , which goes to 0 when our function classes are
exactly realizable and Bellman-complete.

The key item in the bound is the
√
C(π⋆) factor, which

measures distribution mismatch and implicitly determines
the data coverage condition. C(π⋆) is defined in (8). As we
can see, having a small C(π⋆) requires that data not only
covers π⋆ itself5, but also all policies in Π†,NE

i (π⋆) = {πi×
π⋆
−i : πi ∈ Πi}. This is the notion of unilateral coverage

proposed by Cui & Du (2022a) and Zhong et al. (2022).
Visualizing this in Figure 1(a) with a simplified setting of
a two-player matrix game, such a condition corresponds to
data covering the entire “cross” centered at the NE.

Although (Cui & Du, 2022a) argues that unilateral cover-
age is “sufficient and necessary” in the worst case, their
argument does not exclude an improved version that can be
substantially relaxed under certain conditions, and we show
that our Theorem 3 is such a version. We now provide a
breakdown of the bound in Theorem 3:

1. First, the RHS of the bound depends on ∆π
i , where π

is the policy we compete with and correspond to π⋆ in
Corollary 4. Recalling that ∆π

i ∝
√

C (dπ; dD,Fi, π),
this term corresponds to data coverage on π⋆, which is
always needed if we wish to compete with π⋆.

2. The RHS also depends on ∆π̃i
i + suboptπi (π̃i), where

π̃i is minimized over Π†,NE
i (π) when EQ=NE (and (8)

maximizes over π†). In particular, we can always choose
π̃i as the policy that maximizes V i, i.e., the optimistic
best response. This would set suboptπi (π̃i) = 0, show-
ing that we only need coverage for the optimistic best
response policy, instead of all policies in Π†,NE

i (π⋆) as
required by the unilateral assumption.

3. Finally, our bound provides a further relaxation: when
the optimistic best response is poorly covered, we may
choose some other well-covered π̃i instead, and pay an

5Note that π⋆ ∈ Π†,NE
i (π⋆).
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Figure 1. Illustration of unilateral coverage and our results on a zero-sum example. (a) Unilateral coverage requires the dataset to cover
all unilateral pairs (µ⋆, ν′) and (µ′, ν⋆) where (µ⋆, ν⋆) is NE. (b) Our approach enjoys an adaptive property and relaxes the condition.
To begin with, we can already achieve a good sample complexity if the data were to cover the optimistic best response ((µ5, ν

⋆) (in this
example) only, i.e. when ∆µ5,ν

⋆

was small. Even when the dataset has a poor coverage on (µ5, ν
⋆), there may exists some other µ6 so

that ∆µ5,ν
⋆

≫ ∆µ6,ν
⋆

. Instead of suffering ∆µ5,ν
⋆

, our approach automatically adapts to the policy π̃ = (µ6, ν
⋆) which achieves a

better trade-off between the policy coverage term ∆π̃ and suboptimality term subopt(π̃).

extra term suboptπi (π̃i) that measures to what extent π̃i

is an approximate V i-based best response.

Again, we illustrate the flexibility of our bound in Fig-
ure 1(b). Below we also show a concrete example, where
our guarantee leads to significantly improved sample rates
compared to that provided by the unilateral condition.

Example Consider a simple two-player zero-sum matrix
game with payoff matrix:

b1 b2 b3
a1 0.5 0.75 0.75
a2 0.25 0 0
a3 0.25 0 0

where the column player aims to maximize the reward and
the row player aims to minimize it. It is clear to see (a1, b1)
is NE. The offline dataset D is collected from the following
distribution,

b1 b2 b3
a1 p1 p2 p2
a2 p2 p3 p3
a3 p2 p3 p3

where 0 < p2 ≪ p1 and p3 = 1−p1−4p2

4 . Under Corol-
lary 4 (i.e., unilateral coverage (Cui & Du, 2022a)), the
sample complexity bound is Õ( 1

p2ϵ2
). However, when

n > Õ( 1
p2
), we already identify (a1, b2), (a1, b3), (a2, b1),

and (a3, b1) as suboptimal actions with high probability.
On this event, Theorem 3 shows that we only suffer the
coverage coefficient on the optimistic best response (which
is (a1, b1) itself), so that the sample complexity bound be-
comes Õ(max{ 1

p2
, 1
p1ϵ2
})≪ Õ( 1

p2ϵ2
).

5. V-type Function Approximation
A potential caveat of our approach in Section 4 is that we
model Q-functions which take joint actions as inputs. In
the tabular setting, the complexity of the full Q-function
class has exponential dependence on the number of agents
m, whereas prior results specialized to tabular settings do
not suffer such a dependence.

While it is known that jointly featurizing the actions can
avoid such an exponential dependence (Zhong et al., 2022)
(in a way similar to how linear MDP results do not incur |A|
dependence in the single-agent setting (Jin et al., 2020)), in
this section we provide an alternative approach that directly
subsumes the prior tabular results and produces the same
rate (up to minor differences to be discussed). We propose
a V-type variant algorithm of BCEL, which directly models
the state-value function V π

i with the help of a function class
Gi ⊂ (S → [0, Vmax]) for each player i.

As before, we assume that the tuples (s, a, r, s′) ∈ D are
generated as (s, a) ∼ dD, ri ∼ ri(s, a) and s′ ∼ P (·|s, a).
In this section, we write dD = dS × dA, i.e., (s, a) ∼
dD ⇔ s ∼ dS , a ∼ dA(·|s). We additionally assume that
(1) dA(a|s) > 0, ∀(s, a) ∈ S × A, 6 and (2) the behavior
policy dA(·|s) is known to the learner. We use the behavior
policy to perform importance weighting on the actions to
correct the mismatch between dA and π, and modify the
loss function L as follows: for any function gi ∈ Gi, define

Li(g
′
i, gi, π;D)

:=
1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(g′i(s)− ri − γgi(s
′))

2
.

6This assumption is w.l.o.g. and just for technical convenience,
so that the action importance weights are always well defined. Oth-
erwise, we can simply ignore any policy π where π(a|s)/dA(a|s)
goes unbounded and assume maximum ∆π

i for such π.
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Similarly as before, we compute empirical Bellman error
Ei(gi, π;D) := Li(gi, gi, π;D)−ming′

i∈Gi
Li(g

′
i, gi, π;D)

and construct version space Gπ,εi = {gi ∈ Gi :
Ei(gi, π;D) ≤ βg}. What is slightly different is that we
set parameter βg as

βg :=
80CA(π)V

2
max log

|F||Πext|
δ

n
+ 30εF ,

where CA(π) := maxs,a
π(a|s)
dA(a|s) . Compared to βf in Al-

gorithm 1, the extra CA(π) term comes from importance
weighting. With Gπ,βg

i at hand, we define

gπ,max
i := argmax

gi∈Gπ,βg
i

gi(s0), gπ,min
i := argmin

gi∈Gπ,βg
i

gi(s0).

We then compute ĜapEQ(π) which is an upper bound on
equilibrium gap for any π ∈ Π:

ĜapEQ(π) := max
i∈[m]

max
π†∈Π†,EQ

i (π)
gπ

†,max
i (s0)− gπ,min

i (s0).

We select the policy by minimizing the estimated equilib-
rium gap:

π̂ = argmin
π∈Π

ĜapEQ(π), (9)

whose performance guarantee is shown as follows.

Theorem 5 (V-type guarantee). With probability at least
1 − δ, for any π ∈ Π and EQ ∈ {NE,CE,CCE}, the
output policy π̂ from (9) satisfies that

GapΠ
†,EQ

(π̂) ≤ GapΠ
†,EQ

(π) +
4
√
εF

1− γ

+ max
i∈[m]

min
π̃i∈Π†,EQ

i (π)

(
∆π̃i

i +∆π
i + suboptπi (π̃i)

)
,

where ∆π
i = gπ,max

i (s0) − gπ,min
i (s0) and suboptπ̃i

i =

maxπ†∈Π†,EQ
i (π) g

π†,max
i (s0) − gπ̃i,max

i (s0). In addition,
with probability at least 1− δ, for any player i ∈ [m] and
any π ∈ Πext

i , we have

∆π
i ≤ min

d∈∆(S)

1

1− γ

√
C (d; dS ,Gi, π)εapx +

1

1− γ∑
s∈S

(dπ \ d)(s) [∆gπi (s)− γ(Pπ
i ∆gπi )(s)] ,

where εapx = O
(
Vmax

√
CA(π)

log
|G||Πext|

δ

n +
√
εF + εF,F

)
,

(dπ \ d)(s) := max(dπ(s) − d(s), 0), ∆gπi (s) :=

gπ,max
i (s) − gπ,min

i (s), and (Pπ
i g)(s) =

Ea∼π(·|s),s′∼P (·|s,a)[ri(s, a) + g(s′)].

Similar to the results in Section 4, our bound enjoys an
adaptive property and automatically selects the best policy
π̃i, which achieves the trade-off between the suboptimality
error suboptπi (π̃i) and the data coverage error ∆π̃i

i . Further-
more, when the dataset D satisfies the unilateral coverage
assumption, we have the following corollary.

Corollary 6. For Nash equilibrium policy π⋆ ∈ Π, if there
exists an unilateral coefficient CS(π

⋆) such that the follow-
ing inequality holds

max
i∈[m]

max
π†∈Π†,NE

i (π⋆)
C (dπ

†
; dS ,Gi, π⋆) ≤ CS(π

⋆).

With probability at least 1− δ, we have

GapΠ†,NE

(π̂)

≤ O

Vmax

√
log

|G||Πext|
δ

n
+

√
εF + εF,F

1− γ

√
CA(π⋆)CS(π⋆)

 .

Compared to Corollary 4, our bound here depends logarith-
mically on the V-function class G instead of the Q-function
class F . In the tabular setting when we use fully expres-
sive (and stationary) function classes, log |G| ≈ O(S) (via
a simple covering argument) and thus our bound avoids
the exponential dependence on m (i.e.,

∏m
i=1 Ai depen-

dence). In comparison, Cui & Du (2022b) established
Õ
(√

H4S2 log(N (Π))C(π⋆)/n
)

error bound for finite-
horizon tabular Markov games, where H is the horizon
length and N (Π) roughly corresponds to our |Πext|. While
finite-horizon and discounted results are generally incom-
parable, under a standard translation,7 our bound has the
same rate Õ(n−1/2);

√
log |G| ≈

√
SH 8 which results in

a better dependence on S (saving a
√
S factor) and a worse

overall dependence on H (we have
√
H5). The slight down-

side is that Corollary 6 measures distribution mismatch on
actions and states separately (instead of doing them jointly
as C(π∗) in Corollary 4), which is looser.

6. Discussion and Conclusion
Algorithms for two-player zero-sum games For most
part of this paper we consider the general case of multi-
player general-sum Markov games. We discover that when
our algorithm is specialized to the special case of two-player
zero-sum (2p0s), it seemingly differs from another sample-
efficient algorithm specifically designed for 2p0s inspired
by Jin et al. (2022); Cui & Du (2022b). In Appendix B, we

7Cui & Du (2022b) assume that rewards are in [0, 1], thus we
treat Vmax = 1/(1−γ) = H . When using fully expressive tabular
classes, εF = εF,F = 0.

8In finite-horizon problems we need to use a non-stationary
function class, therefore the extra H factor.
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show that this difference is superficial, and these special-
ized algorithms can be subsumed as small variants of our
algorithm.

Conclusion and open problems In this work, we study
offline learning in Markov games. We design a framework
that learn three popular equilibrium notions in a unified
manner under general function approximation. The adaptive
property of our framework enables us to relax and achieve
significant improvement over the “unilateral concentrability”
condition under certain situations.

One open problem is whether one can design a computa-
tional efficient algorithm for learning CE/CCE in offline
Markov games, even in the tabular setting. A potential di-
rection is to adapt the computationally efficient V-Learning
algorithm (Song et al., 2022; Jin et al., 2021b)—which runs
no-regret learning dynamics at each state—to the offline
setting, which may require new ideas.
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A. Connection Between In-class Gap and Real Gap
In this paper we consider “in-class” equilibrium gaps that are defined w.r.t. certain deviation policy classes (Section 3). It
is also common to consider stronger notions of equilibrium gap, which we denote simply as GapEQ, where the deviation
policies are unrestricted, e.g., for NE and CCE, the deviation policies can take arbitrary policies (Nash Jr, 1996; Aumann,
1974).

To establish the connection between our in-class gap and the stronger notion of gap, we have the following strategy
completeness assumption,

Assumption C (Strategy completeness). For any player i ∈ [m] and any EQ ∈ {NE,CCE}, we have

max
π†∈Π†,EQ

i (π)
V π†

i (s0) ≥ max
π′:π′

−i=π−i

V π′

i (s0)− εΠ.

For CE, we have

max
π†∈Π†,CE

i (π)
V π†

i (s0) ≥ max
ϕi

V
(ϕi⋄πi)⊙π−i

i (s0)− εΠ.

Assumption C requires that the (unrestricted) best-response policy is contained in Π (and its counterpart for CE contained in Φ,
respectively). Under Assumption C, it is clear that for any EQ ∈ {NE,CE,CCE} and π, GapEQ(π) ≤ GapΠ

†,EQ

(π)+εΠ.

B. A Connection in 2-player-0-sum Games
For the most part of this paper, we have considered the general case of multi-player general-sum Markov games. When we
are in a specialized setting, such as two-player zero-sum Markov games (2p0s), it is often the case that we can exploit the
special structure and come up with alternative algorithms (Yan et al., 2022; Jin et al., 2022).

In particular, Cui & Du (2022b, Section 3) design an offline 2p0s algorithm for the tabular setting, and extending their
algorithm to the function approximation setting (using uncertainty quantification techniques from our paper) results in an
algorithm that seemingly looks very different from our Algorithm 1. However, below we show that despite the superficial
difference, the two algorithms are actually quite similar and can be derived using optimism/pessimism in the same way as in
our Algorithm 1, with only one minor difference of minimizing the duality gap versus our GapNE. Consequently, for their
algorithm, we can give guarantees similar to our Theorem 3, by slightly adapting our algorithm and analysis.

2p0s setup We now introduce some notation specialized to 2p0s games. We consider two players, where x-player
aims to maximize the total reward while y-player aims to minimize it. The policy sets for x-player and y-player are
denoted as Πmax and Πmin respectively. We consider the policy payoff V ∈ [−1, 1]|Πmax|×|Πmin|, where V µ,ν denotes
the utility/loss for x-player/y-player when they follow policy µ and policy ν respectively. We use V and V to denote the
UCB and the LCB estimation of V respectively. To connect these symbols with those in the main text, V µ,ν is essentially
V π
1 (s0)(= −V π

2 (s0)) for π = µ× ν, assuming player 1 is the max player x and player 2 is the min player y. Furthermore,
we have V

µ,ν
= V

π

1 (s0) = −V
π
2 (s0) and V µ,ν = V π

1 (s0) = −V
π

2 (s0) due to the 0-sum nature of the game.

Duality gap For 2p0s game, a common learning objective is the duality gap, which is defined as:

Dual-Gap(µ, ν) = max
µ†∈Πmax

V µ†,ν − min
ν†∈Πmin

V µ,ν†
.

Since µ† and ν† can be chosen as µ and ν, the duality gap is always non-negative. It measures how close the policy is to NE
policy and NE policy always has zero duality gap. Inspired by the tabular 2p0s algorithm from Cui & Du (2022b), one
can design an offline algorithm that selects the two policies independently with adversarial opponent under pessimistic
estimation:

µ = argmax
µ

min
ν†∈Πmin

V µ,ν†
and ν = argmin

ν
max

µ†∈Πmax
V

µ†,ν
. (10)

Similar ideas can also be found in Jin et al. (2022), who design online algorithms for 2p0s games. By flipping their optimism
(for online) to pessimism (for offline), we can similarly arrive at (10).

11
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Recover (10) in our algorithmic framework (10) looks very different from our Algorithm 1 at the first glance, as (10)
chooses the players’ policies independently whereas our Algorithm 1 requires joint optimization. We now show, however,
that it is simply a minor variant of our algorithm, for which our analysis and guarantees straightforwardly extend.

First, note that the duality gap is not the same as our objective GapΠ
†,EQ

(π) when specialized to 2p0s games. Recall that

GapΠ
†,EQ

(π) := max
i∈[m]

max
π†∈Π†,EQ

i (π)
V π†

i (s0)− V π
i (s0).

To recover duality gap, we can simply replace the maxi in the above objective with
∑

i, and obtain the following in the
2p0s case: ∑

i∈[m]

max
π†∈Π†,EQ

i (π)
V π†

i (s0)− V π
i (s0) = ( max

µ†∈Πmax
V µ†,ν − V µ,ν) + (V µ,ν − min

ν†∈Πmin
V µ,ν†

)

= max
µ†∈Πmax

V µ†,ν − min
ν†∈Πmin

V µ,ν†
= Dual-Gap(µ, ν).

From the above equation, we can see that our objective in Algorithm 1 is almost the same as the duality gap, up to a
multiplicative factor of 2, as for non-negative a, b we have max(a, b) ≤ a+ b ≤ 2max(a, b). Therefore, our Algorithm 1
directly enjoys duality-gap guarantees.

However, remember that our goal here is to recover (10), so we choose to directly work with the duality gap and relax it in
the same spirit as in our Algorithm 1: since V ≤ V and −V ≤ −V , we have

Dual-Gap(µ, ν) = max
µ†∈Πmax

V µ†,ν − min
ν†∈Πmin

V µ,ν†
≤ max

µ†∈Πmax
V

µ†,ν − min
ν†∈Πmin

V µ,ν†
. (11)

Now, (10) is recovered by noticing that µ and ν can be optimized independently on the RHS of (11) and the optima are
exactly (10).

We also provide a guarantee for the above algorithm:

Proposition 7. Consider a two-player zero-sum Markov game with policy payoff V ∈ [−1, 1]|Πmax|×|Πmin|, let

J(µ, ν) = max
µ†∈Πmax

V
µ†,ν − min

ν†∈Πmin
V µ,ν†

.

Let µ̂, ν̂ = argmin J(µ, ν), with high probability, we have

Dual-Gap(µ̂, ν̂) ≤ min
µ̃,ν̃∈Πmax×Πmin

∆µ̃,ν∗
+∆µ∗,ν̃ + suboptπ

⋆

(µ̃) + suboptπ
⋆

(ν̃),

where ∆µ,ν := V
µ,ν − V µ,ν , suboptπ

⋆

(µ̃) := maxµ†∈Πmax V
µ†,ν∗

− V
µ̃,ν∗

and suboptπ
⋆

(ν̃) := V µ∗,ν̃ −
minν†∈Πmin V µ∗,ν†

.

Proof. By standard concentration analysis, we guarantee that with high probability, V
µ,ν ≥ V µ,ν and V µ,ν ≤ V µ,ν hold

for any µ, ν ∈ Πmax ×Πmin. This implies that for any µ, ν ∈ Πmax ×Πmin, Dual-Gap(µ, ν) ≤ J(µ, ν). For Nash policy

π⋆ = (µ∗, ν∗), let µ† = argmaxµ†∈Πmax V
µ†,ν∗

and ν† = argminν†∈Πmin V µ∗,ν†
. We have

J(µ∗, ν∗)− Dual-Gap(µ∗, ν∗) = V
µ†,ν∗

− max
µ∈Πmax

V µ,ν∗
+ min

ν∈Πmin
V µ∗,ν − V µ∗,ν†

≤ (V
µ̃,ν∗

− V µ̃,ν∗
) + (V µ∗,ν̃ − V µ∗,ν̃) + suboptπ

⋆

(µ̃) + suboptπ
⋆

(ν̃)

≤ ∆µ̃,ν∗
+∆µ∗,ν̃ + suboptπ

⋆

(µ̃) + suboptπ
⋆

(ν̃), (12)

where µ̃ and ν̃ are arbitrary polices from Πmax and Πmin respectively. By the optimality of (µ̂, ν̂) and (12), we obtain

Dual-Gap(µ̂, ν̂) ≤ J(µ̂, ν̂) ≤ J(µ∗, ν∗) ≤ min
µ̃,ν̃∈Πmax×Πmin

∆µ̃,ν∗
+∆µ∗,ν̃ + suboptπ

⋆

(µ̃) + suboptπ
⋆

(ν̃).

The proof is completed.
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C. Proofs for Section 4
In this section, we prove Theorem 3. We first show some concentration results.

Lemma 8. With probability at least 1− δ, for any player i ∈ [m], any fi, g1, g2 ∈ Fi, and any π ∈ Πext
i , we have∣∣∣∣∥g1 − T π

i fi∥22,dD
− ∥g2 − T π

i fi∥22,dD

− 1

n

∑
(s,a,r,s′)∈D

(g1(s, a)− ri − γfi(s
′, π))

2
+

1

n

∑
(s,a,r,s′)∈D

(g2(s, a)− ri − γfi(s
′, π))

2

∣∣∣∣
≤ 2Vmax∥g1 − g2∥2,dD

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n
.

Proof. For player i, we observe that

∥g1 − T π
i fi∥22,dD

− ∥g2 − T π
i fi∥22,dD

= EdD

[
(g1(s, a)− (T π

i fi)(s, a))
2
]
− EdD

[
(g2(s, a)− (T π

i fi)(s, a))
2
]

= EdD
[(g1(s, a)− g2(s, a))(g1(s, a) + g2(s, a)− 2(T π

i f)(s, a))]

= EdD

[
(g1(s, a)− g2(s, a))Es′∼P (·|s,a) [g1(s, a) + g2(s, a)− 2ri − 2γf(s′, π)|s, a]

]
= EdD×P

[
(g1(s, a)− ri − γfi(s

′, π))2
]
− EdD×P

[
(g2(s, a)− ri − γfi(s

′, π))2
]
. (13)

Let random variable X = (g1(s, a)− ri− γfi(s
′, π))2− (g2(s, a)− ri− γfi(s

′, π))2, X is drawn from dD×P . We know
that EdD×P [X] = EdD×P

[
(g1(s, a)− ri − γfi(s

′, π))2
]
− EdD×P

[
(g2(s, a)− ri − γfi(s

′, π))2
]
. For the variance, we

have

VdD×P [X] ≤ EdD×P [X
2]

≤ EdD×P [(g1(s, a)− g2(s, a)
2(g1(s, a) + g2(s, a)− 2ri − 2γfi(s

′, π))2]

≤ 4V 2
maxEdD

[
(g1(s, a)− g2(s, a))

2
]
.

We proceed as follows∣∣∣∣∥g1 − T π
i fi∥22,dD

− ∥g2 − T π
i fi∥22,dD

− 1

n

∑
(s,a,r,s′)∈D

(g1(s, a)− ri − γfi(s
′, π))

2
+

1

n

∑
(s,a,r,s′)∈D

(g2(s, a)− ri − γfi(s
′, π))

2

∣∣∣∣
=

∣∣∣∣EdD×P

[
(g1(s, a)− ri − γfi(s

′, π))2
]
− EdD×P

[
(g2(s, a)− ri − γfi(s

′, π))2
]
− 1

n

n∑
j=1

Xj

∣∣∣∣
(By (13) and definition of X)

≤

√
4V 2

max∥g1 − g2∥2dD
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n
. (By Freedman’s inequality)

Taking a union bound over i ∈ [m] finishes the proof.

For any player i ∈ [m] and π ∈ Πext
i , let us define

fπ
i := argmin

f∈Fi

sup
admissible d

∥f − T π
i f∥22,d (14)

gπi := argmin
g∈Fi

1

n

∑
(s,a,r,s′)∈D

(g(s, a)− ri − γfπ
i (s

′, π))
2
. (15)

We bound ∥fπ
i − gπi ∥2,dD

as follows.

13



Offline Learning in Markov Games with General Function Approximation

Lemma 9. Let fπ
i and gπi be defined as in Equations (14) and (15). Under the success event of Lemma 8, for any player

i ∈ [m] and π ∈ Πext
i , we have

∥fπ
i − gπi ∥2,dD

≤ 6Vmax

√
log |F||Πext|

δ

n
+ 2
√
εF .

Proof. We know that

∥fπ
i − gπi ∥22,dD

≤ 2∥fπ
i − T π

i fπ
i ∥22,dD

+ 2∥gπi − T π
i fπ

i ∥22,dD

= 2∥gπi − T π
i fπ

i ∥22,dD
− 2∥fπ

i − T π
i fπ

i ∥22,dD
+ 4∥fπ

i − T π
i fπ

i ∥22,dD

≤ 2∥gπi − T π
i fπ

i ∥22,dD
− 2∥fπ

i − T π
i fπ

i ∥22,dD
+ 4εF (By Assumption A)

(a)
≤ 4Vmax

√
∥gπi − fπ

i ∥22,dD
log |F||Πext|

δ

n
+

2V 2
max log

|F||Πext|
δ

n
+ 4εF , (16)

where (a) is from

∥gπi − T π
i fπ

i ∥22,dD
− ∥fπ

i − T π
i fπ

i ∥22,dD

≤ 1

n

∑
(s,a,r,s′)∈D

(gπi (s, a)− ri − γfπ
i (s

′, π))
2 − 1

n

∑
(s,a,r,s′)∈D

(fπ
i (s, a)− ri − γfπ

i (s
′, π))

2

+ 2Vmax

√
∥gπi − fπ

i ∥22,dD
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n
(by Lemma 8)

≤ 2Vmax

√
∥gπi − fπ

i ∥22,dD
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n
(by the optimality of g)

Solving (16) finishes the proof.

In the following lemma, we show that the best approximation of Qπ
i is contained in Fπ,βf

i .

Lemma 10. Under the success event of Lemma 8, for any player i ∈ [m] and π ∈ Πext
i , the following inequality for

Ei(fπ
i , π;D) holds

Ei(fπ
i , π;D) ≤

80V 2
max log

|F||Πext|
δ

n
+ 30εF =: βf .

Proof. Applying Lemma 8 and Lemma 9, we obtain that∣∣∣∣ ∥fπ
i − T π

i fπ
i ∥

2
2,dD
− ∥gπi − T π

i fπ
i ∥

2
2,dD
−

1

n

∑
(s,a,r,s′)∈D

(fπ
i (s, a)− ri − γfπ

i (s
′, π))

2
+

1

n

∑
(s,a,r,s′)∈D

(gπi (s, a)− ri − γfπ
i (s

′, π))
2

∣∣∣∣
≤ 2Vmax∥fπ

i − gπi ∥2,dD

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n

≤ 4Vmax

√
log |F||Πext|

δ

n
εF +

13V 2
max log

|F||Πext|
δ

n
. (17)

Then, we bound ∥fπ
i − T π

i fπ
i ∥22,dD

− ∥gπi − T π
i fπ

i ∥22,dD
as follows,

∥fπ
i − T π

i fπ
i ∥

2
2,dD
− ∥gπi − T π

i fπ
i ∥

2
2,dD

14
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≤
(
∥fπ

i − T π
i fπ

i ∥2,dD
+ ∥gπi − T π

i fπ
i ∥2,dD

) ∣∣∣∥fπ
i − T π

i fπ
i ∥2,dD

− ∥gπi − T π
i fπ

i ∥2,dD

∣∣∣
≤
(
2 ∥fπ

i − T π
i fπ

i ∥2,dD
+ ∥fπ

i − gπi ∥2,dD

)
∥fπ

i − gπi ∥2,dD
(By triangle inequality)

≤ 36Vmax

√
log |F||Πext|

δ

n
εF + 36V 2

max

log |F||Πext|
δ

n
+ 8εF . (By Assumption A and Lemma 9)

Combining this with (17), we get

1

n

∑
(s,a,r,s′)∈D

(fπ
i (s, a)− ri − γfπ

i (s
′, π))

2 − 1

n

∑
(s,a,r,s′)∈D

(gπi (s, a)− ri − γfπ
i (s

′, π))
2

≤ ∥fπ
i − T π

i fπ
i ∥

2
2,dD
− ∥gπi − T π

i fπ
i ∥

2
2,dD

+ 4Vmax

√
log |F||Πext|

δ

n
εF +

13V 2
max log

|F||Πext|
δ

n

≤ 40Vmax

√
log |F||Πext|

δ

n
εF +

59V 2
max log

|F||Πext|
δ

n
+ 8εF

≤
80V 2

max log
|F||Πext|

δ

n
+ 30εF . (

√
ab ≤ a+b

2 )

Then, we show that |fπ
i (s0, π)− V π

i (s0)| is upper bounded as follows

Lemma 11. For any player i ∈ [m] and π ∈ Πext
i , let fπ

i be defined as in (14), we have

|fπ
i (s0, π)− V π

i (s0)| ≤
√
εF

1− γ
.

Proof. By invoking Lemma 20, we get

|fπ
i (s0, π)− V π

i (s0)| ≤
|Es,a∼dπ [f(s, a)− (T π

i f)(s, a)]|
1− γ

≤ ∥f − T
π
i f∥2,dπ

1− γ
≤
√
εF

1− γ
.

The second inequality is from Jensen’s inequality and the last inequality follows from Assumption A.

For the version space Fπ,βf

i , we define

fπ,max
i := argmax

fi∈F
π,βf
i

fi(s0, π)

fπ,min
i := argmin

fi∈F
π,βf
i

fi(s0, π).

We show that fπ,max
i (s0, π) and fπ,min

i (s0, π) are the upper bound and the lower bound on the value function V π
i (s0)

respectively.

Lemma 12. Under the success event of Lemma 8, for any player i ∈ [m] and any π ∈ Πext
i , the following two inequalities

hold

fπ,max
i (s0, π) ≥ V π

i (s0)−
√
εF

1− γ

fπ,min
i (s0, π) ≤ V π

i (s0) +

√
εF

1− γ
.
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Proof. By Lemma 10, we know that under the success event of Lemma 8, fπ
i ∈ F

π,βf

i . Then, we invoke Lemma 11 and get

fπ,min
i (s0, π) ≤ fπ

i (s0, π) ≤ Qπ
i (s0, π) +

√
εF

1− γ
= V π

i (s0) +

√
εF

1− γ
.

Similarly, we have

fπ,max
i (s0, π) ≥ fπ

i (s0, π) ≥ Qπ
i (s0, π)−

√
εF

1− γ
= V π

i (s0)−
√
εF

1− γ
.

We now show that Ei(fi, π;D) could effectively estimate ∥fi − T π
i fi∥22,dD

.

Lemma 13. Under the success event of Lemma 8, for any player i ∈ [m] and any π ∈ Πext
i , given ε > 0, if fi ∈ Fi satisfies

that Ei(fi, π;D) ≤ ε, we have

∥fi − T π
i fi∥2,dD

≤ 8Vmax

√
log |F||Πext|

δ

n
+ 4
√
εF,F +

√
ε.

Proof. Let gπi be defined as in (15), we first upper bound term ∥gπi − T π
i fi∥2,dD

. Let us define

fπ
i,dD

:= argmin
f ′
i∈Fi

∥f ′
i − T π

i fi∥
2
2,dD

.

By invoking Lemma 8, we obtain that∣∣∣∣ ∥gπi − T π
i fi∥22,dD

−
∥∥fπ

i,dD
− T π

i fi
∥∥2
2,dD
− 1

n

∑
(s,a,r,s′)∈D

(gπi (s, a)− ri − γfi(s
′, π))

2

+
1

n

∑
(s,a,r,s′)∈D

(
fπ
i,dD

(s, a)− r − γfi(s
′, π)

)2 ∣∣∣∣
≤ 2Vmax∥gπi − fπ

i,dD
∥2,dD

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n
.

Rearranging the terms and we have

∥gπi − T π
i fi∥22,dD

≤ 1

n

∑
(s,a,r,s′)∈D

(gπi (s, a)− ri − γfi(s
′, π))

2 − 1

n

∑
(s,a,r,s′)∈D

(
fπ
i,dD

(s, a)− ri − γfi(s
′, π)

)2

+
∥∥fπ

i,dD
− T π

i fi
∥∥2
2,dD

+ 2Vmax∥gπi − fπ
i,dD
∥2,dD

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n

≤
∥∥fπ

i,dD
− T π

i fi
∥∥2
2,dD

+ 2Vmax∥gπi − fπ
i,dD
∥2,dD

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n

≤ εF,F + 2Vmax∥gπi − T π
i fi∥2,dD

√
log |F||Πext|

δ

n
+ 2Vmax

√
εF,F

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n

≤ 2Vmax∥gπi − T π
i fi∥2,dD

√
log |F||Πext|

δ

n
+

2V 2
max log

|F||Πext|
δ

n
+ 2εF,F . (18)

The second inequality is from the optimality of gπi . The third inequality follows from Assumption B and ∥gπi −fπ
i,dD
∥2,dD

≤
∥gπi − T π

i fi∥2,dD
+ ∥fπ

i,dD
− T π

i fi∥2,dD
. The last inequality is from

√
ab ≤ a+b

2 . By solving (18), we get

∥gπi − T π
i fi∥2,dD

≤ 3Vmax

√
log |F||Πext|

δ

n
+
√
2εF,F . (19)
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Then, we invoke Lemma 8 for fπ
i∣∣∣∣∥fi − T π

i fi∥22,dD
− ∥gπi − T π

i fi∥22,dD

− 1

n

∑
(s,a,r,s′)∈D

(fi(s, a)− ri − γfi(s
′, π))

2
+

1

n

∑
(s,a,r,s′)∈D

(gπi (s, a)− ri − γfi(s
′, π))

2

∣∣∣∣
≤ 2Vmax∥fi − gπi ∥2,dD

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n

≤ 2Vmax (∥fi − T π
i fi∥2,dD

+ ∥gπi − T π
i fi∥2,dD

)

√
log |F||Πext|

δ

n
+

V 2
max log

|F||Πext|
δ

n

≤ 2Vmax∥fi − T π
i fi∥2,dD

√
log |F||Πext|

δ

n
+ 3Vmax

√
log |F||Πext|

δ

n
εF,F +

7V 2
max log

|F||Πext|
δ

n
. (By (19))

Rearranging the terms, we get

∥fi − T π
i fi∥22,dD

≤ ∥gπi − T π
i fi∥22,dD

+
1

n

∑
(s,a,r,s′)∈D

(fi(s, a)− ri − γfi(s
′, π))

2 − 1

n

∑
(s,a,r,s′)∈D

(gπi (s, a)− ri − γfi(s
′, π))

2

+ 2Vmax∥fi − T π
i fi∥2,dD

√
log |F||Πext|

δ

n
+ 3Vmax

√
log |F||Πext|

δ

n
εF,F +

7V 2
max log

|F||Πext|
δ

n

≤

3Vmax

√
log |F||Πext|

δ

n
+
√
2εF,F

2

+ ε (By (19) and Ei(fi, π;D) ≤ ε)

+ 2Vmax∥fi − T π
i fi∥2,dD

√
log |F||Πext|

δ

n
+ 3Vmax

√
log |F||Πext|

δ

n
εF,F +

7V 2
max log

|F||Πext|
δ

n

= 2Vmax∥fi − T π
i fi∥2,dD

√
log |F||Πext|

δ

n
+ 12Vmax

√
log |F||Πext|

δ

n
εF,F +

16V 2
max log

|F||Πext|
δ

n
+ 2εF,F + ε. (20)

Solving (20) and using AM-GM inequality finishes the proof.

We upper bound ∆π
i as follows.

Proposition 2 (Bound on interval width). With probability at least 1− δ, for any player i ∈ [m] and any π ∈ Πext
i , we have

∆π
i ≤ min

d

1

1− γ

√
C (d; dD,Fi, π)εapx +

1

1− γ
×∑

s,a

(dπ\d)(s, a) [∆fπ
i (s, a)− γ(Pπ∆fπ

i )(s, a)] , (7)

where εapx = O
(
Vmax

√
log

|F||Πext|
δ

n +
√
εF + εF,F

)
, (dπ \ d)(s, a) := max(dπ(s, a) − d(s, a), 0), ∆fπ

i (s, a) :=

fπ,max
i (s, a)− fπ,min

i (s, a), and (Pπf)(s, a) = Es′∼P (·|s,a)[f(s
′, π)].

Proof. We apply Lemma 20 for fπ,max
i and fπ,min

i and obtain

fπ,max
i (s0, π)− fπ,min

i (s0, π)

= fπ,max
i (s0, π)− V π

i (s0) + V π
i (s0)− fπ,min

i (s0, π).

17
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=
1

1− γ

(
Edπ

[fπ,max
i − T π

i fπ,max
i ]− Edπ

[
fπ,min
i − T π

i fπ,min
i

])
(By Lemma 20)

=
1

1− γ

(
Ed

[
(fπ,max

i − T π
i fπ,max

i )−
(
fπ,min
i − T π

i fπ,min
i

)]
+ Edπ

[
(fπ,max

i − T π
i fπ,max

i )− (fπ,min
i − T π

i fπ,min
i )

]
− Ed

[
(fπ,max

i − T π
i fπ,max

i )− (fπ,min
i − T π

i fπ,min
i )

] )
=

1

1− γ
Ed

[
(fπ,max

i − T π
i fπ,max

i )−
(
fπ,min
i − T π

i fπ,min
i

)]
︸ ︷︷ ︸

(I)

+
1

1− γ
(Edπ [∆fπ

i − γPπ∆fπ
i ]− Ed [∆fπ

i − γPπ∆fπ
i ])︸ ︷︷ ︸

(II)

, (∆fπ
i := fπ,max

i − fπ,min
i )

where d ∈ ∆(S ×A) is an arbitrary distribution. For the term (I), we have

(I) ≤ |Ed [(f
π,max
i − T π

i fπ,max
i )]|+

∣∣∣Ed

[(
fπ,min
i − T π

i fπ,min
i

)]∣∣∣
≤ ∥fπ,max

i − T π
i fπ,max

i ∥2,d + ∥fπ,min
i − T π

i fπ,min
i ∥2,d (By Jensen’s inequality)

≤
√

C (d; dD,Fi, π)
(
∥fπ,max

i − T π
i fπ,max

i ∥2,dD
+ ∥fπ,min

i − T π
i fπ,min

i ∥2,dD

)
.

Recall that fπ,max
i := argmax

fi∈F
π,βf
i

fi(s0, π) and fπ,min
i := argmin

fi∈F
π,βf
i

fi(s0, π) and βf =
80V 2

max log
|F||Πext|

δ

n +

30εF . We invoke Lemma 13 and have

(I) ≤
√

C (d; dD,Fi, π)O

Vmax

√
log |F||Πext|

δ

n
+
√
εF + εF,F

 . (21)

For term (II), we have

(II) ≤
∑

(s,a)∈S×A

(dπ \ d)(s, a) [∆fπ
i (s, a)− γ(Pπ∆fπ

i )(s, a)]

+
∑

(s,a)∈S×A

I(d(s, a) > dπ(s, a)) [d(s, a)− dπ(s, a)] |∆fπ
i (s, a)− γ(Pπ∆fπ

i )(s, a)|

≤
∑

(s,a)∈S×A

(dπ \ d)(s, a) [∆fπ
i (s, a)− γ(Pπ∆fπ

i )(s, a)]

+ Ed

[
|fπ,max

i − T π
i fπ,max

i |+
∣∣∣fπ,min

i − T π
i fπ,min

i

∣∣∣]
≤

∑
(s,a)∈S×A

(dπ \ d)(s, a) [∆fπ
i (s, a)− γ(Pπ∆fπ

i )(s, a)]

+
√

C (d; dD,Fi, π)O

Vmax

√
log |F||Πext|

δ

n
+
√
εF + εF,F

 . (22)

The last step is from the analysis of term (I). Combining (21) and (22), we get

fπ,max
i (s0, π)− fπ,min

i (s0, π) ≤ min
d

1

1− γ

√
C (d; dD,Fi, π)O

Vmax

√
log |F||Πext|

δ

n
+
√
εF + εF,F


+

1

1− γ

∑
(s,a)∈S×A

(dπ \ d)(s, a) [∆fπ
i (s, a)− γ(Pπ∆fπ

i )(s, a)] .

The proof is completed.
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Then, we show that GapΠ
†,EQ

(π) is upper bounded by the estimated gap ĜapEQ(π).

Lemma 14. Under the success event of Lemma 8, for any π ∈ Π, we have

GapΠ
†,EQ

(π) ≤ ĜapEQ(π) +
2
√
εF

1− γ
.

Proof. Let π†
i = argmaxπ†∈Π†,EQ

i (π) V
π†

i (s0). With Lemma 12, for any player i ∈ [m], we have with probability at least
1− δ,

V
π†
i

i (s0) ≤ max

fi∈F
π
†
i
,βf

i

fi(s0, π
†
i ) +

√
εF

1− γ
.

Recall the definition of GapΠ
†,EQ

(π), we obtain

GapΠ
†,EQ

(π) = max
i∈[m]

max
π†∈Π†,EQ

i (π)
V π†

i (s0)− V π
i (s0)

≤ max
i∈[m]

 max

fi∈F
π
†
i
,βf

i

fi(s0, π
†
i )− V π

i (s0)

+

√
εF

1− γ
.

≤ max
i∈[m]

(
max

π†∈Π†,EQ
i (π)

V
π†

i (s0)− V π
i (s0)

)
+

√
εF

1− γ

(By definition of V
π†

i (s0))

≤ max
i∈[m]

(
max

π†∈Π†,EQ
i (π)

V
π†

i (s0)− V π
i (s0)

)
+

2
√
εF

1− γ
(By definition of V π

i (s0) and Lemma 12)

= ĜapEQ(π) +
2
√
εF

1− γ
.

Now we are ready to prove Theorem 3.

Theorem 3. With probability at least 1− δ, for any π ∈ Π and EQ ∈ {NE,CE,CCE}, the output policy π̂ of Algorithm 1
satisfies that

GapΠ
†,EQ

(π̂) ≤ GapΠ
†,EQ

(π) +
4
√
εF

1− γ

+ max
i∈[m]

min
π̃i∈Π†,EQ

i (π)

(
∆π̃i

i +∆π
i + suboptπi (π̃i)

)
,

where suboptπi (π̃i) := maxπ†∈Π†,EQ
i (π) V

π†

i (s0)− V
π̃i

i (s0).

Proof. Let π†
i = argmaxπ†∈Π†,EQ

i (π) V
π†

i (s0). With probability at least 1 − δ, for each player i ∈ [m], we upper bound

V
π†
i

i (s0)− V π
i (s0) as

V
π†
i

i (s0)− V π
i (s0) = V

π̃i

i (s0)− V π
i (s0) + suboptπi (π̃i) (π̃i is an arbitrary policy from Πext

i (π))

= f π̃i,max
i (s0)− fπ,min

i (s0) + suboptπi (π̃i)

≤ V π̃i
i (s0) + ∆π̃i

i − fπ,max
i (s0) + ∆π

i +

√
εF

1− γ
+ suboptπi (π̃i)

(By definition of ∆π̃i
i and Lemma 12)
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≤ V π̃i
i (s0)− V π

i (s0) + ∆π̃i
i +∆π

i +
2
√
εF

1− γ
+ suboptπi (π̃i) (By Lemma 12)

≤ max
π†∈Π†,EQ

i (π)
V π†

i (s0)− V π
i (s0) + ∆π̃i

i +∆π
i +

2
√
εF

1− γ
+ suboptπi (π̃i).

This directly implies that

ĜapEQ(π) ≤ GapΠ
†,EQ

(π) +
2
√
εF

1− γ
+ max

i∈[m]
min

π̃i∈Π†,EQ
i (π)

(
∆π̃i

i +∆π
i + suboptπi (π̃i)

)
. (23)

By the optimality of π̂, for any π ∈ Π, we have

GapΠ
†,EQ

(π̂) ≤ ĜapEQ(π̂) +
2
√
εF

1− γ

≤ ĜapEQ(π) +
2
√
εF

1− γ

≤ GapΠ
†,EQ

(π) +
4
√
εF

1− γ
+ max

i∈[m]
min

π̃i∈Π†,EQ
i (π)

(
∆π̃i

i +∆π
i + suboptπi (π̃i)

)
. (By (23))

This completes the proof.

D. Proofs for Section 5
In this section, we prove Theorem 5. We start with some concentration results.

Lemma 15. With probability at least 1− δ, for any g1, g2, h ∈ Gi and π ∈ Πext
i , we have∣∣∣∣∥g1 − T π

i h∥22,dS
− ∥g2 − T π

i h∥22,dS

− 1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(g1(s)− ri − γh(s′))
2
+

1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(g2(s)− ri − γh(s′))
2

∣∣∣∣
≤ 2Vmax∥g1 − g2∥2,dS

√
CA(π)

log |G||Πext|
δ

n
+

CA(π)V
2
max log

|G||Πext|
δ

n
,

where CA(π) := maxs,a
π(a|s)
dA(a|s) .

Proof. First, we observe that

∥g1 − T π
i h∥22,dS

− ∥g2 − T π
i h∥22,dS

= Es∼dS ,a∼π(·|s),s′∼P (·|s,a)[(g1(s)− ri(s, a)− γh(s′))2]− Es∼dS ,a∼π(·|s),s′∼P (·|s,a)[(g2(s)− ri(s, a)− γh(s′))2].

Let random variable X = π(a|s)
dA(a|s) (g1(si)− ri(si,a)− γh(s′i))

2 − π(a|s)
dA(a|s) (g2(si)− ri(si,a)− γh(s′i))

2, X is drawn from
dS × dA × P . Then we obtain∣∣∣∣∥g1 − T π

i f∥22,dS
− ∥g2 − T π

i f∥22,dS

− 1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(g1(s)− ri − γh(s′))
2
+

1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(g2(s)− ri − γh(s′))
2

∣∣∣∣
=

∣∣∣∣EdS×π×P
[
(g1(s)− ri(s, a)− γh(s′))2

]
− EdS×π×P

[
(g2(s)− ri(s, a)− γh(s′))2

]
− 1

n

n∑
i=1

Xi

∣∣∣∣
(By definition of X)
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Here EdS×dA×P [X] = EdS×π×P
[
(g1(s)− ri(s, a)− γh(s′))2

]
− EdS×π×P

[
(g2(s)− ri(s, a)− γh(s′))2

]
. For the

variance, we have

VdS×dA×P [X]

≤ EdS×dA×P

[
π(a|s)2

dA(a|s)2
(g1(s)− g2(s))

2(g1(s) + g2(s)− 2ri(s, a)− 2γh(s′))2
]

≤ 4V 2
maxEdS×dA

[
π(a|s)2

dA(a|s)2
(g1(s)− g2(s))

2

]
≤ 4V 2

max max
s,a

π(a|s)2

dA(a|s)
EdS

[
(g1(s)− g2(s))

2
]

Let CA(π) := maxs,a
π(a|s)
dA(a|s) . By Freedman’s inequality and union bound, we have with probability at least 1− δ,

∥∥∥∥∥E[X]− 1

n

n∑
i=1

Xi

∥∥∥∥∥ ≤
√

4V 2
maxCA(π)∥g1 − g2∥2dS

log |G||Πext|
δ

n
+

CA(π)V
2
max log

|G||Πext|
δ

n
.

For any player i ∈ [m] and π ∈ Πext
i , let us define

gπi := argmin
g∈Gi

sup
admissible d

∥g − T π
i g∥22,d (24)

hπ
i := argmin

h∈Gi

1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(h(s)− ri − γgπi (s
′))

2
. (25)

We bound ∥gπi − hπ
i ∥2,dS

as follows.

Lemma 16. Let gπi and hπ
i be defined as in Equations (24) and (25). Under the success event of Lemma 15, for any player

i ∈ [m] and π ∈ Πext
i , we have

∥gπi − hπ
i ∥2,dS

≤ 6Vmax

√
CA(π)

log |G||Πext|
δ

n
+ 2
√
εF .

The proof is to invoke Lemma 15 for gπi and hπ
i and the calculation is the same as Lemma 9. Similar to Lemma 10, we show

that the best approximation of V π
i is contained in Gπ,βg

i .

Lemma 17. Under the success event of Lemma 15, for any player i ∈ [m] and π ∈ Πext
i , the following inequality for

Ei(gπi , π;D) holds

Ei(gπi , π;D) ≤
80CA(π)V

2
max log

|G||Πext|
δ

n
+ 30εF =: βg.

Proof. Applying Lemma 15 and Lemma 16, we obtain∣∣∣∣ ∥gπi − T π
i gπi ∥

2
2,dS
− ∥hπ

i − T π
i gπi ∥

2
2,dS
−

1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(gπi (s)− ri − γgπi (s
′))

2
+

1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(hπ
i (s)− ri − γgπi (s

′))
2

∣∣∣∣
≤ 4Vmax

√
CA(π)

log |G||Πext|
δ

n
εF +

13CA(π)V
2
max log

|G||Πext|
δ

n
. (26)
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Similar to Lemma 10, we bound ∥gπi − T π
i gπi ∥22,dS

− ∥hπ
i − T π

i gπi ∥22,dS
as follows,

∥gπi − T π
i gπi ∥

2
2,dS
− ∥hπ

i − T π
i gπi ∥

2
2,dS

≤
(
∥gπi − T π

i gπi ∥2,dS
+ ∥hπ

i − T π
i gπi ∥2,dS

) ∣∣∣∥gπi − T π
i gπi ∥2,dS

− ∥hπ
i − T π

i gπi ∥2,dS

∣∣∣
≤ 36Vmax

√
CA(π)

log |G||Πext|
δ

n
εF + 36V 2

max

CA(π) log
|G||Πext|

δ

n
+ 8εF . (By Lemma 16)

Combining this with (26), we get

1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(gπi (s)− ri − γgπi (s
′))

2 − 1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(hπ
i (s)− ri − γgπi (s

′))
2

≤ ∥gπi − T π
i gπi ∥

2
2,dS
− ∥hπ

i − T π
i gπi ∥

2
2,dS

+ 4Vmax

√
CA(π)

log |G||Πext|
δ

n
εF +

13CA(π)V
2
max log

|G||Πext|
δ

n

≤
80CA(π)V

2
max log

|G||Πext|
δ

n
+ 30εF . (By AM-GM inequality)

We then prove that gπ,max
i (s0) and gπ,min

i (s0) are the upper bound and the lower bound on the value function V π
i (s0)

respectively.

Lemma 18. Under the success event of Lemma 15, for any player i ∈ [m] and any π ∈ Πext
i , the following two inequalities

hold

gπ,max
i (s0) ≥ V π

i (s0)−
√
εF

1− γ

gπ,min
i (s0) ≤ V π

i (s0) +

√
εF

1− γ
.

Proof. Let gπi be defined as in (24), by invoking Lemma 21, we get

|gπi (s0)− V π
i (s0)| ≤

Es,a∼dπ,s′∼P (·|s,a) [g(s)− ri(s, a)− γg(s′)]

1− γ

≤ ∥g − T
π
i g∥2,dπ

1− γ
≤
√
εF

1− γ
.

By Lemma 17, we know that gπi ∈ G
π,βg

i . Then, we obtain

gπ,max
i (s0) ≥ gπi (s0) ≥ V π

i (s0)−
√
εF

1− γ
.

The case for gπ,min
i is similar.

We now show that Ei(gi, π;D) could effectively estimate ∥gi − T π
i gi∥22,dS

.

Lemma 19. Under the success event of Lemma 15, for any player i ∈ [m] and any π ∈ Πext
i , given ε > 0, if gi ∈ Gi

satisfies that Ei(gi, π;D) ≤ ε, we have

∥gi − T π
i gi∥2,dS

≤ 8Vmax

√
CA(π)

log |G||Πext|
δ

n
+ 4
√
εF,F +

√
ε.
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Proof. Let hπ
i be defined as in (25), let us define

gπi,dS
:= argmin

g′
i∈Gi

∥g′i − T π
i gi∥

2
2,dS

.

Similar to Lemma 13, we first upper bound ∥hπ
i − T π

i gi∥2,dS
. By invoking Lemma 15, we obtain,∣∣∣∣ ∥hπ

i − T π
i gi∥22,dS

−
∥∥gπi,dS

− T π
i gi

∥∥2
2,dS
− 1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(hπ
i (s)− ri − γgi(s

′))
2

+
1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(
gπi,dS

(s)− ri − γgi(s
′)
)2 ∣∣∣∣

≤ 2Vmax∥hπ
i − gπi,dS

∥2,dS

√
CA(π)

log |G||Πext|
δ

n
+

CA(π)V
2
max log

|G||Πext|
δ

n
.

Rearranging the terms and by similar calculation to Lemma 13, we have

∥hπ
i − T π

i gi∥22,dS

≤ 2Vmax∥hπ
i − T π

i gi∥2,dS

√
CA(π)

log |G||Πext|
δ

n
+

2CA(π)V
2
max log

|G||Πext|
δ

n
+ 2εF,F . (27)

By solving (27), we get

∥hπ
i − T π

i gi∥2,dS
≤ 3Vmax

√
CA(π)

log |G||Πext|
δ

n
+
√
2εF,F . (28)

Then, we invoke Lemma 15 for gπi and have∣∣∣∣∥gi − T π
i gi∥22,dS

− ∥gπi − T π
i gi∥22,dS

− 1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(gi(s)− ri − γgi(s
′))

2
+

1

n

∑
(s,a,r,s′)∈D

π(a|s)
dA(a|s)

(gπi (s)− ri − γgi(s
′))

2

∣∣∣∣
≤ 2Vmax∥gi − T π

i gi∥2,dS

√
CA(π)

log |G||Πext|
δ

n
+ 3Vmax

√
CA(π)

log |G||Πext|
δ

n
εF,F +

7CA(π)V
2
max log

|G||Πext|
δ

n
.

With similar calculation to Lemma 13, we arrange the terms and have

∥gi − T π
i gi∥22,dS

= 2Vmax∥gi − T π
i gi∥2,dS

√
CA(π)

log |G||Πext|
δ

n
+ 12Vmax

√
CA(π)

log |G||Πext|
δ

n
εF,F

+
16CA(π)V

2
max log

|G||Πext|
δ

n
+ 2εF,F + ε. (29)

Solving (29) and using AM-GM inequality finishes the proof.

Now we are ready to prove Theorem 5.

Theorem 5 (V-type guarantee). With probability at least 1 − δ, for any π ∈ Π and EQ ∈ {NE,CE,CCE}, the output
policy π̂ from (9) satisfies that

GapΠ
†,EQ

(π̂) ≤ GapΠ
†,EQ

(π) +
4
√
εF

1− γ

+ max
i∈[m]

min
π̃i∈Π†,EQ

i (π)

(
∆π̃i

i +∆π
i + suboptπi (π̃i)

)
,
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where ∆π
i = gπ,max

i (s0) − gπ,min
i (s0) and suboptπ̃i

i = maxπ†∈Π†,EQ
i (π) g

π†,max
i (s0) − gπ̃i,max

i (s0). In addition, with
probability at least 1− δ, for any player i ∈ [m] and any π ∈ Πext

i , we have

∆π
i ≤ min

d∈∆(S)

1

1− γ

√
C (d; dS ,Gi, π)εapx +

1

1− γ∑
s∈S

(dπ \ d)(s) [∆gπi (s)− γ(Pπ
i ∆gπi )(s)] ,

where εapx = O
(
Vmax

√
CA(π)

log
|G||Πext|

δ

n +
√
εF + εF,F

)
, (dπ \ d)(s) := max(dπ(s) − d(s), 0), ∆gπi (s) :=

gπ,max
i (s)− gπ,min

i (s), and (Pπ
i g)(s) = Ea∼π(·|s),s′∼P (·|s,a)[ri(s, a) + g(s′)].

Proof. The proof for the first part is the same as Theorem 3. For the second part, we invoke Lemma 21 for gπ,min
i and

gπ,max
i

gπ,max
i (s0)− gπ,min

i (s0)

=
1

1− γ
Ed

[
(gπ,max

i − T π
i gπ,max

i )−
(
gπ,min
i − T π

i gπ,min
i

)]
︸ ︷︷ ︸

(I)

+
1

1− γ
(Edπ [∆gπi − γPπ

i ∆gπi ]− Ed [∆gπi − γPπ
i ∆gπi ])︸ ︷︷ ︸

(II)

, (∆gπi := gπ,max
i − gπ,min

i )

where d ∈ ∆(S) is an arbitrary distribution. For the term (I), we have

(I) ≤ |Ed [(g
π,max
i − T π

i gπ,max
i )]|+

∣∣∣Ed

[(
gπ,min
i − T π

i gπ,min
i

)]∣∣∣
≤ ∥gπ,max

i − T π
i gπ,max

i ∥2,d + ∥gπ,min
i − T π

i gπ,min
i ∥2,d (By Jensen’s inequality)

≤
√

C (d; dS ,Gi, π)
(
∥gπ,max

i − T π
i gπ,max

i ∥2,dS
+ ∥gπ,min

i − T π
i gπ,min

i ∥2,dS

)
.

Recall that βg =
80CA(π)V 2

max log
|G||Πext|

δ

n + 30εF . We invoke Lemma 13 and obtain with probability at least 1− δ

(I) ≤
√

C (d; dS ,Gi, π)O

Vmax

√
CA(π)

log |G||Πext|
δ

n
+
√
εF + εF,F

 . (30)

For term (II), we have

(II) ≤
∑
s∈S

(dπ \ d)(s) [∆gπi (s)− γ(Pπ
i ∆gπi )(s)]

+
∑
(s)∈S

I(d(s) > dπ(s)) [d(s)− dπ(s)] |∆gπi (s)− γ(Pπ
i ∆gπi )(s)|

≤
∑
s∈S

(dπ \ d)(s) [∆gπi (s)− γ(Pπ
i ∆gπi )(s)]

+ Ed

[
|gπ,max

i − T π
i gπ,max

i |+
∣∣∣gπ,min

i − T π
i gπ,min

i

∣∣∣]
≤
∑
s∈S

(dπ \ d)(s) [∆gπi (s)− γ(Pπ
i ∆gπi )(s)]

+
√

C (d; dS ,Gi, π)O

Vmax

√
CA(π)

log |G||Πext|
δ

n
+
√
εF + εF,F

 . (31)
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The last step is from the analysis of term (I). Combining (30) and (31), we get

gπ,max
i (s0)− gπ,min

i (s0) ≤ min
d

1

1− γ

√
C (d; dS ,Gi, π)O

Vmax

√
CA(π)

log |G||Πext|
δ

n
+
√
εF + εF,F


+

1

1− γ

∑
s∈S

(dπ \ d)(s) [∆gπi (s)− γ(Pπ
i ∆gπi )(s)] .

This completes the proof.

E. Auxiliary Lemmas
Lemma 20 (Q-function Evaluation Error Lemma). For any player i ∈ [m] and any π ∈ Πext

i , and any f ∈ RS×A

f(s0, π)− V π
i (s0) =

Es,a∼dπ,s′∼P (·|s,a) [f(s, a)− ri(s, a)− γf(s′, π)]

1− γ

Proof. We observe that∑
s,a

∞∑
t=0

γt+1 Pr(st = s, at = a|s0, π)
∑
s′

Pr(st+1 = s′|st = s, at = a)f(s′, π)

=
∑
s,a

∞∑
t=1

γt Pr(st = s, at = a|s0, π)f(s, a)

Then, we have

Es,a∼dπ,s′∼P (·|s,a) [f(s, a)− γf(s′, π)]

1− γ

=
∑
s,a

∞∑
t=0

γt Pr(st = s, at = a|s0, π)f(s, a)−
∑
s,a

∞∑
t=1

γt Pr(st = s, at = a|s0, π)f(s, a)

=
∑
a

Pr(a0 = a|s0, π)f(s0,a) = f(s0, π).

Since V π
i (s0) =

Edπ [ri(s,a)]
1−γ , rearranging the terms finishes the proof.

Lemma 21 (Value Function Evaluation Error Lemma). For any player i ∈ [m] and any π ∈ Πext
i , and any f ∈ RS

f(s0)− V π
i (s0) =

Es,a∼dπ,s′∼P (·|s,a) [f(s)− ri(s, a)− γf(s′)]

1− γ

Proof. We observe that∑
s,a

∞∑
t=0

γt+1 Pr(st = s, at = a|s0, π)
∑
s′

Pr(st+1 = s′|st = s, at = a)f(s′)

=
∑
s,a

∞∑
t=1

γt Pr(st = s, at = a|s0, π)f(s)

Then, we have

Es∼dπ,s′∼P (·|s,a) [f(s)− γf(s′)]

1− γ

=
∑
s,a

∞∑
t=0

γt Pr(st = s, at = a|s0, π)f(s)−
∑
s,a

∞∑
t=1

γt Pr(st = s, at = a|s0, π)f(s)
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=
∑
a

Pr(a0 = a|s0, π)f(s0) = f(s0).

Since V π
i (s0) =

Edπ [ri(s,a)]
1−γ , rearranging the terms finishes the proof.
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