
Reinforcement Learning in Low-rank MDPs with Density Features

Audrey Huang * 1 Jinglin Chen * 1 Nan Jiang 1

Abstract
MDPs with low-rank transitions—that is, the
transition matrix can be factored into the product
of two matrices, left and right—is a highly rep-
resentative structure that enables tractable learn-
ing. The left matrix enables expressive function
approximation for value-based learning and has
been studied extensively. In this work, we in-
stead investigate sample-efficient learning with
density features, i.e., the right matrix, which in-
duce powerful models for state-occupancy dis-
tributions. This setting not only sheds light on
leveraging unsupervised learning in RL, but also
enables plug-in solutions for settings like con-
vex RL. In the offline setting, we propose an al-
gorithm for off-policy estimation of occupancies
that can handle non-exploratory data. Using this
as a subroutine, we further devise an online al-
gorithm that constructs exploratory data distri-
butions in a level-by-level manner. As a central
technical challenge, the additive error of occu-
pancy estimation is incompatible with the mul-
tiplicative definition of data coverage. In the
absence of strong assumptions like reachability,
this incompatibility easily leads to exponential
error blow-up, which we overcome via novel
technical tools. Our results also readily extend to
the representation learning setting, when the den-
sity features are unknown and must be learned
from an exponentially large candidate set.

1. Introduction
The theory of reinforcement learning (RL) in large state
spaces has seen fast development. In the model-free
regime, how to use powerful function approximation to
learn value functions has been extensively studied in both
the online and the offline settings (Jiang et al., 2017; Jin

*Equal contribution 1Department of Computer Science, Uni-
versity of Illinois Urbana-Champaign, Urbana, IL, USA. Corre-
spondence to: Nan Jiang <nanjiang@illinois.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

et al., 2020b,c; Xie et al., 2021), which also builds the the-
oretical foundations that connect RL with (discriminative)
supervised learning. On the other hand, generative models
for unsupervised/self-supervised learning—which define a
sampling distribution explicitly or implicitly—are becom-
ing increasingly powerful (Devlin et al., 2018; Goodfellow
et al., 2020), yet how to leverage them to address the key
challenges in RL remains under-investigated. While prior
works on RL with unsupervised-learning oracles exist (Du
et al., 2019; Feng et al., 2020), they often consider models
such as block MDPs, which are more restrictive than typ-
ical model structures considered in the value-based setting
such as low-rank MDPs.

In this paper, we study model-free RL in low-rank MDPs
with density features for state occupancy estimation. In a
low-rank MDP, the transition matrix can be factored into
the product of two matrices, and the left matrix is known
to serve as powerful features for value-based learning (Jin
et al., 2020b), as it can be used to approximate the Bellman
backup of any function. On the other hand, the right matrix
can be used to represent the policies’ state-occupancy dis-
tributions, yet how to leverage such density features (with-
out the knowledge of the left matrix) in offline or online RL
is unknown. To this end, our main research question is:

Is sample-efficient offline/online RL with density features
possible in low-rank MDPs?

We answer this question in the positive, and below is a sum-
mary of our contributions:

1. Offline: Section 3 provides an algorithm for off-policy
occupancy estimation. It bears similarity to existing al-
gorithms for estimating importance weights (Hallak and
Mannor, 2017; Gelada and Bellemare, 2019), but our
setting gives rise to a number of novel challenges. Most
importantly, our algorithm enjoys guarantees under ar-
bitrary offline data distributions, when the standard no-
tion of importance weights are not even well-defined.
We introduce a novel notion of recursively clipped oc-
cupancy and show that it can be learned in a sample-
efficient manner. The recursively clipped occupancy
always lower bounds the true occupancy, and the two
notions coincide when the data has sufficient coverage.
Such a guarantee immediately enables an offline policy

1

Reinforcement Learning in Low-Rank MDPs with Density Features

learning result that only requires “single-policy concen-
trability”, which is comparable to the recent advances
in value-based offline RL (Jin et al., 2020c; Xie et al.,
2021).

2. Online: Using the offline algorithm as a subroutine,
in Section 4, we design an online algorithm that builds
an exploratory data distribution (or “policy cover” (Du
et al., 2019)) from scratch in a level-by-level man-
ner. At each level, we estimate each policy’s state-
occupancy distribution and construct an approximate
cover by choosing the barycentric spanner of such dis-
tributions. A critical challenge here is that the addi-
tive ℓ1 error in occupancy estimation destroys the mul-
tiplicative coverage guarantee of the barycentric span-
ner, so the constructed distribution is never perfectly ex-
ploratory. Worse still, standard algorithm designs and
analyses for handling such a mismatch easily lead to
an exponential error blow-up. We overcome this by a
novel technique, where two inductive error terms are
maintained and analyzed in parallel, with delicate in-
terdependence that still allows for a polynomial error
accumulation (Figure 1).

3. Representation learning: We also extend our offline
and online results to the representation learning setting
(Agarwal et al., 2020), where the true density features
are not given but must also be learned from an exponen-
tially large candidate feature set.

4. Implications: Our online algorithm is automatically
reward-free (Jin et al., 2020a; Chen et al., 2022b) and
deployment-efficient (Huang et al., 2022). Further,
since we can accurately estimate the occupancy distribu-
tion for all candidate policies, our results enable plug-in
solutions for settings such as convex RL (Mutti et al.,
2022; Zahavy et al., 2021), where the objectives and/or
constraints are functions over the entire state distribu-
tions (see Appendix C).

2. Preliminaries
Markov Decision Processes (MDPs) We consider a finite-
horizon episodic MDP (without reward) defined as M =
(X ,A, P,H), where X is the state space, A is the action
space, P = (P0, . . . , PH−1) with Ph : X ×A → ∆(X) is
the transition dynamics, H is the horizon, and d0 ∈ ∆(X)
is the known initial state distribution.1 We assume that X
is a measurable space with possibly infinite number of el-
ements and A is finite with cardinality K. Each episode
is a trajectory τ = (x0, a0, x1, . . . , xH−1, aH−1, xH),
where x0 ∼ d0, the agent takes a sequence of actions
a0, . . . , aH−1, and xh+1 ∼ Ph(· | xh, ah). We use

1We assume the known initial state distribution for simplicity.
Our results easily extend to the unknown version.

π = (π0, . . . , πH−1) ∈ (X → ∆(A))H to denote a (non-
stationary) H-step Markov policy, which chooses ah ∼
πh(·|xh). (We will also omit the subscript h and write
π(·|xh) when it is clear from context.) We use ρ to re-
fer to non-Markov policies that can choose ah based on
the history x0:h, a0:h−1, which often arises from the prob-
ability mixture of Markov policies at the beginning of an
trajectory. Once a policy π is fixed, the MDP becomes
an Markov chain, with dπh(xh) being its h-th step distri-
bution. As a shorthand, we use the notation [H] to denote
{0, 1, . . . ,H − 1}.

Low-rank MDPs We consider learning in a low-rank
MDP, defined as:

Assumption 1 (Low-rank MDP). M is a low-rank MDP
with dimension d, that is, ∀h ∈ [H], there exist ϕ∗

h : X ×
A → Rd and µ∗

h : X → Rd such that ∀xh,xh+1 ∈ X , ah ∈
A : Ph(xh+1|xh, ah) = ⟨ϕ∗

h(xh, ah), µ
∗
h(xh+1)⟩. Further,∫

∥µ∗
h(x)∥1(dx) ≤ Bµ and ∥ϕ∗

h(·)∥∞ ≤ 1.2

Notation We use the convention 0
0 = 0 when we define

the ratio between two functions. Define a∧ b = min(a, b),
and we treat ∧ as an operator with precedence between
“×/” and “+−”. When clear from the context, {□h} =
{□h}H−1

h=0 , and we refer to state “occupancies,” “distribu-
tions,” and “densities” interchangeably. Finally, letter “d”
has a few different versions (with different fonts): d is the
low-rank dimension, d(x) is a density, and (dx) is the dif-
ferential used in integration. Further, while dπh and dDh refer
to true densities, dh (without superscripts) is often used for
optimization variables.

Learning setups We provide algorithms and guarantees
under a number of different setups (e.g., offline vs. online).
The result that connects all pieces together is the setting
of online reward-free exploration with known density fea-
tures µ∗ = (µ∗

0, . . . , µ
∗
H−1) and a policy class Π ⊆ (X →

∆(A))H (Section 4). Here, the learner must explore the
MDP and form accurate estimations of dπh for all π ∈ Π and
h ∈ [H], that is, output {d̂πh}h∈[H],π∈Π such that with prob-
ability at least 1−δ, ∀π ∈ Π, h ∈ [H], ∥d̂πh−dπh∥1 ≤ ε, by
only collecting poly(H,K, d, log(|Π|), 1/ε, log(1/δ)) tra-
jectories. Two remarks are in order:

1. Such a guarantee immediately leads to standard guar-
antees for return maximization when a reward func-
tion is specified. More concretely (with proof in Ap-
pendix F.2),

2This is w.l.o.g. as the norm of ϕ∗
h can be absorbed into Bµ.

In a natural special case of low-rank MDPs with “simplex fea-
tures” (Jin et al., 2020b, Example 2.2), Assumption 1 holds with
Bµ = d. Our sample complexities only have polylogarithmic
dependence on Bµ which will be suppressed by Õ.

2

Reinforcement Learning in Low-Rank MDPs with Density Features

Proposition 1. Given any policy π and reward func-
tion3 R = {Rh} with Rh : X × A → [0, 1], define
expected return as vπR := Eπ[

∑H−1
h=0 Rh(xh, ah)] =∑H−1

h=0

∫∫
dπh(xh)Rh(xh, ah)π(ah|xh)(dxh)(dah).

Then for {d̂πh} such that ∥d̂πh − dπh∥1 ≤ ε/(2H) for all
π ∈ Π and h ∈ [H], we have vπ̂R

R ≥ maxπ∈Π vπR − ε,
where π̂R = argmaxπ∈Π v̂πR, and v̂πR is the expected
return calculated using {d̂πh}.

Moreover, the result can be extended to more general
settings, where the optimization objective is some func-
tion of the state (and action) distribution that cannot be
written as cumulative expected rewards; e.g., entropy
as in max-entropy exploration (Hazan et al., 2019), or
∥dπh − dπE

h ∥22, where πE is an expert policy, used in
imitation learning (Abbeel and Ng, 2004). A detailed
discussion is deferred to Appendix C.

2. The introduction of Π and the dependence on K = |A|
are both necessary, since low-rank MDPs can emulate
general contextual bandits where the density features µ∗

become useless; see Appendix B for more details.

To enable such a result, a key component is to estimate
dπh using offline data (Section 3). Later in Section 5, we
also generalize our results to the representation-learning
setting (Agarwal et al., 2020; Modi et al., 2021; Uehara
et al., 2021b), where µ∗ is not known but must be learned
from an exponentially large candidate set.

3. Off-policy occupancy estimation
In this section, we describe our algorithm, FORC, which
estimates the occupancy distribution dπh of any given policy
π using an offline dataset. Note that this section serves both
as an important building block for the online algorithm in
Section 4 and a standalone offline-learning result in its own
right, so we will make remarks from both perspectives.

We start by introducing our assumption on the offline data.

Assumption 2 (Offline data). Consider a dataset
D0:H−1 = D0

⋃
. . .
⋃
DH−1, where Dh = {(x(i)

h , a
(i)
h ,

x
(i)
h+1)}ni=1. For any fixed h, we assume that tuples in Dh

are sampled i.i.d. from ρh−1 ◦ πD
h , where a0, . . . , ah−1 ∼

ρh−1 is an arbitrary (h − 1)-step (possibly non-Markov)
policy4 and ah ∼ πD

h is a single-step Markov policy. Fur-
ther, ρh−1, π

D
h can be a function of D0:h−1, and πD

h is
known to the learner.

3We assume known and deterministic rewards, and can easily
handle unknown/stochastic versions (Appendix D.2).

4h on the superscript of a policy distinguishes identities and
does not refer to the h-th step component (which is indicated by
the subscript), that is, ρh and ρh

′
for h′ ̸= h can be completely

unrelated policies.

The dataset consists of H parts, where the h-th part con-
sists of (xh, ah, xh+1) tuples, allowing us to reason about
the transition dynamics at level h. In practice (as well as
in Section 4), such tuples will be extracted from trajec-
tory data. We use dDh (xh, ah, xh+1), d

D
h (xh), d

D,†
h (xh+1)

to denote the joint and the marginal distributions, respec-
tively. Importantly, we do not assume that dD,†

h (xh+1) =
dDh+1(xh+1), i.e., the next-state distribution of Dh and the
current-state distribution of Dh+1 (which are both over X)
may not be the same, as we will need this flexibility in Sec-
tion 4. The H parts can also sequentially depend on each
other, though samples within each part are i.i.d. While this
setup is sufficient for Section 4 and already weaker than
the fully i.i.d. setting commonly adopted in the offline RL
literature (Chen and Jiang, 2019; Yin and Wang, 2021), in
Appendix D.1 we discuss how to relax it to handle more
general situations in offline learning.

3.1. Occupancy estimation via importance weights

Recall that value functions satisfy the familiar Bellman
equations, allowing us to learn them by approximating
Bellman operators via squared-loss regression. The oc-
cupancy distributions {dπh} also satisfy the Bellman flow
equation: let Pπ

h denote the Bellman flow operator, where
for any given dh : X → R and policy π, (Pπ

hdh)(xh+1) :=∫∫
Ph(xh+1|xh, ah)π(ah|xh)dh(xh)(dxh)(dah).5 dπh can

be then recursively defined via the Bellman flow equation
dπh = Pπ

h−1d
π
h−1, with the base case dπ0 = d0. (One differ-

ence is that value functions are defined bottom-up, whereas
occupancies are defined top-down.) Furthermore, in a low-
rank MDP, Pπ

hdh is always linear in µ∗
h (Lemma 16), just

like the image of Bellman operators for value is always in
the linear span of ϕ∗

h.

Given the similarity, one might think that we can also ap-
proximate Pπ

h−1 by regressing directly onto the occupan-
cies, hoping to obtain dπh via

argmin
d

EdD
h−1

[(
d(xh)−dπh−1(xh−1)

πh−1(ah−1|xh−1)

πD
h−1(ah−1|xh−1)

)2]
(1)

where πh−1(ah−1|xh−1)

πD
h−1(ah−1|xh−1)

is the standard importance weight-
ing to correct the mismatch on actions between πh−1 and
data policy πD

h−1. Unfortunately, this does not work due
to the “time-reversed” nature of flow operators (Liu et al.,
2018). In fact, the Bayes-optimal solution of Eq. (1) is

dh(xh) =
(Pπ

h−1(d
D
h−1d

π
h−1))(xh)

dD,†
h−1(xh)

̸= (Pπ
h−1d

π
h−1)(xh).

However, the fractional form of the solution indicates that
we may instead aim to learn a related function—the impor-

5In this definition, we do not require dh to be a valid distribu-
tion. Even π is allowed to be unnormalized; see the definition of
pseudo-policy in Definition 1.

3

Reinforcement Learning in Low-Rank MDPs with Density Features

tance weight, or density ratio (Hallak and Mannor, 2017).
If we use wπ

h−1 = dπh−1/d
D
h−1 to replace dπh−1 as the re-

gression target in Eq. (1), the population solution would be

(Pπ
h−1d

π
h−1)(xh)

dD,†
h−1(xh)

=
dπh(xh)

dD,†
h−1(xh)

=: wπ
h(xh).

The occupancy can then be straightforwardly extracted
from the weight via elementwise multiplication, i.e., dπh =

wπ
h · dD,†

h−1, where dD,†
h−1 can be estimated via MLE from the

dataset itself.

While this is promising, the approach uses importance
weight wπ

h(xh) as an intermediate variable, whose very ex-
istence and boundedness rely on the assumption that the
data distribution dD,†

h−1 is exploratory and provides sufficient
coverage over dπh . We next consider the scenario where
such an assumption does not hold. Perhaps surprisingly,
although we would like to construct exploratory datasets in
Section 4 and feed them into the offline algorithm, being
able to handle non-exploratory data turns out to be crucial
to the online setting, and also yields novel offline guaran-
tees of independent interest.

3.2. Handling insufficient data coverage

Because we make no assumptions about data coverage, the
true occupancy dπh may be completely unsupported by data,
in which case there is no hope to estimate it well. What
kind of learning guarantees can we still obtain?

To answer this question, we introduce one of our main con-
ceptual contributions, a novel learning target for occupancy
estimation under arbitrary data distributions.
Definition 1 (Pseudo-policy and recursively clipped occu-
pancy). Given a Markov policy π, data distributions {dDh },
and state and action clipping thresholds {Cx

h}, {Ca
h}, the

recursively clipped occupancy, {dπh}, is defined as follows.
Let d

π

0 := dπ0 = d0. Define πh(ah|xh) := πh(ah|xh) ∧
Ca

hπ
D
h (ah|xh) (or πh = πh ∧ Ca

hπ
D
h for short), and for

1 ≤ h ≤ H − 1, inductively set 6

d
π

h(xh) :=
(
Pπ

h−1

(
d
π

h−1 ∧ Cx
h−1d

D
h−1

))
(xh). (4)

We also call objects like π a pseudo-policy, which can yield
unnormalized distributions over actions.

The above definition first clips the previous-level d
π

h−1 to
have at most Cx

h−1 ratio over the data distribution dDh−1 and
the policy π to have at most Ca

h−1 ratio over πD
h−1, then ap-

plies the Bellman flow operator. This guarantees that d
π

h is

6Note that d
π
h depends on hyperparameters Cx

h and Ca
h , which

are omitted in the notation. Appendix E.1 discusses the rela-
tionship between Cx

h , C
x
a and the missingness error, namely, that

∥dπh − d
π
h∥1 is Lipschitz in, and thus insensitive to misspecifica-

tions of, the clipping thresholds.

always supported on the data distribution (unlike dπh), and
d
π

h ≤ dπh because poorly-supported mass is removed from
every level (and hence d

π

h is generally an unnormalized dis-
tribution). Further, when we do have data coverage and the
original importance weights on states and actions are al-
ways bounded by {Cx

h} and {Ca
h}, it is easy to see that

d
π

h = dπh , since the clipping operations will have no effects
and Definition 1 simply coincides with the Bellman flow
equation for {dπh}.

As we will see below in Section 3.3, {dπh} becomes a learn-
able target and the ℓ1 estimation error of our algorithm goes
to 0 when the sample size n → ∞. The thresholds {Cx

h}
and {Ca

h} reflect a bias-variance trade-off: higher thresh-
olds ensure that less “mass” is clipped away (i.e., d

π

h will
be closer to dπh), but result in a worse sample complexity
as the algorithm will need to deal with larger importance
weights. Below we provide more fine-grained characteri-
zation on the bias part, i.e., how d

π

h is related to dπh , and the
proof is deferred to Appendix E.2.

Proposition 2 (Properties of d
π

h).

1. d
π

h ≤ dπh .

2. d
π

h = dπh when data covers π (i.e., ∀h′ < h we have
dπh′ ≤ Cx

h′dDh′ and πh′ ≤ Ca
h′πD

h′).

3. ∥dπh − dπh∥1 ≤ ∥dπh−1 − dπh−1∥1 + ∥dπh−1 − d
π

h−1 ∧
Cx

h−1d
D
h−1∥1 + ∥Pπ

h−1d
π
h−1 −Pπ

h−1d
π
h−1∥1.

The 3rd claim shows how the bias term ∥dπh − dπh∥1 (i.e.,
how much mass d

π

h is missing from dπh) accumulates over
the horizon: the RHS of the bound consists of 3 terms,
where the first is missing mass from the previous level, and
the other terms correspond to the mass being clipped away
from states and actions, respectively, at the current level.

3.3. Algorithm and analyses

We are now ready to introduce our algorithm, FORC, with
its analyses and guarantees. See pseudocode in Algo-
rithm 1. The overall structure of the algorithm largely fol-
lows the sketch in Section 3.1: we use squared-loss regres-
sion to iteratively learn the importance weights (line 5), and
convert them to densities by multiplying with the data dis-
tributions (line 6) estimated via MLE (line 4).

The major difference is that we introduce clipping in line 5
(in the same way as Definition 1) to guarantee that the re-
gression target is always well-behaved and bounded, and
below we show that this makes d̂πh a good estimation of d

π

h .
In particular, we will bound the regression error ∥d̂πh−d

π

h∥1
as a function of sample size nreg. A key lemma that enables
such a guarantee is the following error propagation result:

4

Reinforcement Learning in Low-Rank MDPs with Density Features

Algorithm 1 Fitted Occupancy Iteration with Clipping (FORC)
Input: policy π, density feature µ∗, dataset D0:H−1, sample sizes nmle and nreg, clipping thresholds {Cx

h} and {Ca
h}.

1: Initialize d̂π0 = d0.
2: for h = 1, . . . ,H do
3: Randomly split Dh−1 to two folds Dmle

h−1 and Dreg
h−1 with sizes nmle and nreg, respectively.

4: Estimate marginal data distributions d̂Dh−1(xh−1) and d̂D,†
h−1(xh) by MLE on dataset Dmle

h−1:

d̂Dh−1 = argmax
dh−1∈Fh−1

1

nmle

nmle∑
i=1

log
(
dh−1(x

(i)
h−1)

)
and d̂D,†

h−1 = argmax
dh∈Fh

1

nmle

nmle∑
i=1

log
(
dh(x

(i)
h)
)
, (2)

where Fh =
{
dh = ⟨µ∗

h−1, θh⟩ : dh ∈ ∆(X), θh ∈ Rd, ∥θh∥∞ ≤ 1
}
. # ∥θh∥∞ ≤ 1 guarantees dDh ∈ Fh

5: Define LDreg
h−1

(wh, wh−1, πh−1) :=
1

nreg

∑nreg

i=1

(
wh(x

(i)
h)− wh−1(x

(i)
h−1)

πh−1(a
(i)
h−1|x

(i)
h−1)

πD
h−1(a

(i)
h−1|x

(i)
h−1)

)2

, and estimate

ŵπ
h = argmin

wh∈Wh

LDreg
h−1

(
wh,

d̂π
h−1∧Cx

h−1d̂
D
h−1

d̂D
h−1

, πh−1 ∧ Ca
h−1π

D
h−1

)
, (3)

where Wh =
{
wh =

⟨µ∗
h−1,θ

up
h ⟩

⟨µ∗
h−1,θ

down
h ⟩ : ∥wh∥∞ ≤ Cx

h−1C
a
h−1, θ

up
h , θdown

h ∈ Rd
}
.

6: Set the estimate d̂πh = ŵπ
h d̂D,†

h−1.
7: end for

Output: estimated state occupancies {d̂πh}h∈[H].

Lemma 1. For every h ∈ [H], the error between estimates
d̂πh from Algorithm 1 and the clipped target d

π

h is decom-
posed recursively as∥∥∥d̂πh − d

π

h

∥∥∥
1
≤
∥∥∥d̂πh−1 − d

π

h−1

∥∥∥
1

+ 2Cx
h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+ Cx

h−1C
a
h−1

∥∥∥d̂D,†
h−1 − dD,†

h−1

∥∥∥
1

+
√
2

∥∥∥∥ŵπ
h −Eπ

h−1

(
dDh−1

d̂π
h−1∧Cx

h−1d̂
D
h−1

d̂D
h−1

)∥∥∥∥
2,dD,†

h−1

,

where (Eπ
hdh) := (Pπ

hdh)/d
D,†
h .

The proof can be found in Appendix E.2. The bound con-
sists of 3 parts: the first line is the error at the previous
level h − 1, showing that the regression error accumula-
tives linearly over the horizon. The second line captures
errors due to imperfect estimation of the data distributions,
since we use the estimated d̂Dh−1 and d̂D,†

h−1, instead of the
groundtruth distributions, to set up the weight regression
problem and extract the density; these errors can be re-
duced by simply using larger nmle. The last line represents
the finite-sample error in regression, which is the difference
between the estimated weight ŵπ

h and the Bayes-optimal
predictor. We set the constraints in the hypothesis class in a
way to guarantee the Bayes-optimal predictor is in the class
(see the definition of Wh below Eq. (3)), so the regression
is realizable.

Bounding the complexities of Fh and Wh The last chal-
lenge is in controlling the statistical complexities of the

function classes used in learning, Fh and Wh, both of
which are infinite classes. For Fh, we construct an opti-
mistic covering to bound its covering number (Chen et al.,
2022a). For Wh, however, its hypothesis takes the form
of ratio between linear functions, ⟨µ∗

h−1,θ
up
h ⟩

⟨µ∗
h−1,θ

down
h ⟩ , where stan-

dard covering arguments, which discretize θuph and θdown
h ,

run into sensitivity issues, as θdown
h is on the denomina-

tor where small perturbations can lead to large changes
in the ratio. We overcome this by recalling a technique
from Bartlett and Tewari (2006): we bound the pseudo-
dimension of Wh, which is equal to the VC-dimension of
the corresponding thresholding class. Then, using Gold-
berg and Jerrum (1993), the VC-dimension is bounded by
the syntactic complexity of the classification rule, written
as a Boolean formula of polynomial inequality predicates.
The pseudo-dimension of Wh further implies ℓ1 covering
number bounds, for which Dong et al. (2020); Modi et al.
(2021) provide fast-rate regression guarantees.

Sample complexity of FORC We now provide the guar-
antee for FORC, with its proof deferred to Appendix E.2.

Theorem 2 (Offline dπ estimation). Fix δ ∈ (0, 1). Sup-
pose Assumption 1 and Assumption 2 hold, and µ∗ is
known. Then, given an evaluation policy π, by setting7

7While it may appear that we need to set the value of nmle and
nreg in a delicate manner, this is not the case and we can simply
set nmle = nreg = n/2 and suffer at most a constant blow-up in
the error guarantee. The values given in the theorem statements

5

Reinforcement Learning in Low-Rank MDPs with Density Features

nmle = Õ(d(
∑

h∈[H] C
x
hC

a
h)

2 log(1/δ)/ε2) and nreg =

Õ(d(
∑

h∈[H] C
x
hC

a
h)

2 log(1/δ)/ε2), with probability at
least 1 − δ, FORC (Algorithm 1) returns state occupancy
estimates {d̂πh}

H−1
h=0 satisfying

∥d̂πh − d
π

h∥1 ≤ ε, ∀h ∈ [H].

The total number of episodes required by the algorithm is

Õ

(
dH

(∑
h∈[H] C

x
hC

a
h

)2
log(1/δ)/ε2

)
.

This result can also be used to establish a guarantee for
∥d̂πh − dπh∥1, simply by decomposing ∥d̂πh − dπh∥1 ≤ ∥d̂πh −
d
π

h∥1 + ∥dπh − dπh∥1. The regression error in the first term
is controlled by Theorem 2. The second term is a one-
sided missingness error due to insufficient coverage of data,
which we have characterized in Proposition 2. Note that we
split ∥d̂πh − dπh∥1 into two terms using d

π

h as an intermedi-
ate quantity and analyze how their errors accumulate over
the horizon separately; alternatively, one can directly try
to analyze how ∥d̂πh − dπh∥1 depends on ∥d̂πh−1 − dπh−1∥1.
In general, we find the latter can yield significantly worse
bounds—in fact, exponentially worse, as will be seen in
Section 4.

Offline policy optimization Theorem 2 provides learning
guarantees for d

π

h , which is a point-wise lower bound of
dπh . When we consider standard return maximization with
a given reward function, having access to d̂πh ≈ d

π

h im-
mediately enables pessimistic policy evaluation (Jin et al.,
2020c; Xie et al., 2021), and we are only ε-suboptimal
compared to the maximal value computed over covered
parts of the data, i.e., with respect to d

π

h . The immediate im-
plication is that we can compete with the best policy fully
covered by data (satisfying property 2 of Proposition 2);
see Appendix E.3 for the full statement and proof.

Theorem 3 (Offline policy optimization). Fix δ ∈ (0, 1)
and suppose Assumption 1 and Assumption 2 hold, and µ∗

is known. Given a policy class Π, let {d̂πh}h∈[H],π∈Π be the
output of running Algorithm 1. Then with probability at
least 1 − δ, for any reward function R and policy selected
as π̂R = argmaxπ∈Π v̂πR, we have

vπ̂R

R ≥ max
π∈Π

vπR − ε,

where vπR and v̂πR are defined in Proposition 1, and vR is
defined similarly for {dπh}. The total number of episodes
required by the algorithm is

Õ

(
dH3

(∑
h∈[H] C

x
hC

a
h

)2
log(|Π|/δ)/ε2

)
.

are the most “natural” values based on the the analysis.

Computation We remark that our policy optimization re-
sult only enjoys statistical efficiency and does not guaran-
tee computational efficiency, as Theorem 3 assumes that
we can enumerate over candidate policies and run FORC
for each of them; similar comments apply to our later on-
line algorithm as well. Since the optimization variable is
a policy, the most promising approach is to come up with
off-policy policy-gradient (OPPG) algorithms to approxi-
mate the objective. However, existing model-free OPPG
methods all rely on value-function approximation (Nachum
et al., 2019b; Liu et al., 2019), which is not available in our
setting. Studying OPPG with only density(-ratio) approx-
imation will be a pre-requisite for investigating the com-
putational feasibility of our problem, which we leave for
future work.

4. Online policy cover construction
We now consider the online setting where the learner ex-
plores the MDP to collect its own data. The hope is that
we will collect exploratory datasets that provide sufficient
coverage for all policies in Π (so that we can estimate their
occupancies accurately), which is measured by the standard
definition of concentrability.
Definition 2 (Concentrability Coefficient (CC)). Given a
policy class Π and any distribution d ∈ ∆(X), the concen-
trability coefficient at level h relative to d is

CCh(d) = inf
{
c ∈ R : maxπ∈Π

∥∥∥dπ
h

d

∥∥∥
∞

≤ c
}
.

To achieve this goal, we first recall the following result,
which shows the existence of an exploratory data distribu-
tion that satisfies the above criterion and hints at how to
construct it.
Proposition 3 (Adapted from Chen and Jiang (2019),

Prop. 10). Given a policy class Π and h, let {dπ
h,i
∗

h }di=1

be the barycentric spanner (Definition 4 in Appendix I.2)

of {dπh}π∈Π. Then, CCh

(
1
d

∑d
i=1 d

πh,i
∗

h

)
≤ d.

Proposition 3 shows that for each level h, an exploratory
distribution that has d concentrability always exists. It is

simply the mixture of {dπ
h,i
∗

h } for i ∈ [d], which can be
identified if we have access to dπh for all π ∈ Π. Of course,
we can only estimate dπh if we have exploratory data, so
the estimation of dπh and the identification of {πh,i

∗ } need
to be interleaved to overcome this “chicken-and-egg” prob-
lem (Agarwal et al., 2020; Modi et al., 2021): suppose we
have already constructed policy cover at h − 1. We can
construct it for the next level as follows:

1. Collect a dataset Dh−1 by rolling in to level h− 1 with
the policy cover, with CCh−1(d

D
h−1) ≤ d, then taking a

uniformly random action, thereby CCh(d
D,†
h−1) ≤ dK.

6

Reinforcement Learning in Low-Rank MDPs with Density Features

2. Use FORC to estimate dπh for all π ∈ Π based on Dh−1.

3. Choose their barycentric spanner as the policy cover for
level h, with CCh(d

D
h) ≤ d.

The idea is that, since we have an exploratory distribution
at level h− 1, taking a uniform action afterwards will give
us an exploratory distribution at level h, though the degree
of exploration will be diluted by a factor of K. We collect
data from this distribution to estimate dπh and compute the
barycentric spanner for level h, which will bring the con-
centrability coefficient back to d, so that the process can
repeat inductively.

The above reasoning makes an idealized assumption that
dπh can be estimated perfectly. In such a case, the con-
structed distribution will provide perfect coverage, so that
the clipping introduced in Section 3 becomes completely
unnecessary: all clipping operations would be inactive (by
setting Cx

h = d and Ca
h = K), and d

π

h ≡ dπh . Unfortu-
nately, when the estimation error of dπh is taken into con-
sideration, the reasoning breaks down seriously.

The first problem is that our estimate d̂πh from FORC is not
necessarily linear due to its product form. However, that is
not a concern as we can linearize it (corresponding to line 7
in Algorithm 2); we also have an alternative procedure for
FORC that directly produces linear d̂πh (see Appendix D.3),
so in this section we will ignore this issue and pretend that
d̂πh is linear (thus is the same as d̃πh in Algorithm 2) for ease
of presentation.

4.1. Taming error exponentiation

Now that the issue of (non-)linear d̂πh is out of the way,
we are ready to see where the real trouble is: note that the
barycentric spanner computed from {d̂πh}π∈Π satisfies∥∥∥∥∥ d̂πh

1
d

∑d
i=1 d̂

πh,i

h

∥∥∥∥∥
∞

≤ d, ∀π ∈ Π. (5)

However, the actual distribution induced by the policy
cover {πh,i}di=1 is dDh = 1

d

∑d
i=1 d

πh,i

h . Suppose for now
we have nmle = ∞ for perfect estimation of dDh ; even then,
the regression target in Eq. (3) will no longer be bounded
without clipping, as the boundedness of d̂/d̂ does not imply
that of d̂/d, and the latter can be very large or even infinite.

While the unbounded regression target can be easily con-
trolled by clipping, analyzing the algorithm and bound-
ing its error still prove to be very challenging. A nat-
ural strategy is to inductively bound ∥d̂πh − dπh∥1 using
∥d̂πh−1 − dπh−1∥1. Unfortunately, this approach fails mis-
erably, as directly analyzing ∥d̂πh − dπh∥1 yields

∥d̂πh − dπh∥1 ≤ (1 + d)∥d̂πh−1 − dπh−1∥1 + · · · , (6)

implying an O(d)H exponential error blow-up. (The con-
crete reason for this failure will be made clear shortly.) In
Appendix D.4, we also discuss an alternative approach that
“pretends” data to be perfectly exploratory, which only ad-
dresses the problem superficially and still suffers O(d)H

error exponentiation, just in a different way. Issues that
bear high-level similarities are commonly encountered in
level-by-level exploration algorithms, which often demand
the so-called reachability assumption (Du et al., 2019, Def-
inition 2.1), which we do not need.

As all the earlier hints allude to, the key to breaking er-
ror exponentiation is to split the error using d

π

h into its two
sources with very different natures: a “two-sided” regres-
sion error ∥d̂πh−d

π

h∥1, and a “one-sided” missingness error
∥dπh−dπh∥1 (in the sense that d

π

h ≤ dπh). Because the offline
occupancy estimation module of Algorithm 2 is the same as
that of Algorithm 1, Lemma 1 still holds (left ×1 chain of
Figure 1), implying that ∥d̂πh − d

π

h∥1 can be bounded irre-
spective of the data distribution.

This observation disentangles the regression error from the
rest of the analysis, allowing us to focus on bounding
the missingness error. For the latter, Proposition 2 also
exhibits linear error propagation, as it takes the form of
Ah ≤ Ah−1+Bh−1 where Ah = ∥dπh−dπh∥1. However, it
still remains to show that the additional error (“Bh−1”) has
no dependence on the inductive error (“Ah−1”), otherwise
we would still have error exponentiation.9 This is shown in
the following key lemma:

Lemma 4. For any h ∈ [H] and π ∈ Π in Algorithm 2,

∥dπh−dπh∥1 ≤ ∥dπh−1−dπh−1∥1+4dmax
π′∈Π

∥d̂π
′

h−1−d
π′

h−1∥1.

To understand this lemma, recall that the additional error
in Proposition 2 characterizes the mass clipped away at the
current level. This mass can be bounded by the regression

error of the previous level (maxπ′∈Π ∥d̂π′

h−1− d
π′

h−1∥1): in-

tuitively, had we had perfect estimation of d̂π
′

h−1 = d
π′

h−1,
our barycentric spanner would also be perfect and we
would not need any clipping at all in level h, implying 0
additional error in the bound. More generally, the closer

d̂π
′

h−1 is to d
π′

h−1, the less mass we need to clip away.

That said, this term is not instantaneous and depends in-
ductively on quantities in the previous time step, still rais-
ing concerns of error exponentiation. To see why this is
not a problem, we visualize error propagation in Figure 1:
it can be clearly seen that such a dependence corresponds
to a “cross-edge”, and appears at most once along any long
chain. This also explains the destined failure of directly

9For example, if Bh−1 can only be bounded as Bh−1 ≤
Ah−1, we would still have Ah ≤ 2Ah−1.

7

Reinforcement Learning in Low-Rank MDPs with Density Features

Algorithm 2 FORC-guided Exploration (FORCE)
Input: policy class Π, density feature µ∗, n = nmle + nreg.

1: Initialize d̂π0 = d0 and d̃π0 = d0, ∀π ∈ Π.
2: for h = 1, . . . ,H do
3: Construct {d̃πh−1,i

h−1 }di=1 as the barycentric spanner of {d̃πh−1}π∈Π, and set Πexpl
h−1 = {πh−1,i}di=1.

4: Draw a tuple dataset Dh−1 = {(x(i)
h−1, a

(i)
h−1, x

(i)
h)}ni=1 using unif(Πexpl

h−1) ◦ unif(A).
5: for π ∈ Π do
6: Estimate d̂πh using the h-level loop8 of Algorithm 1 (lines 4-6) with Dh−1, d̂πh−1, Cx

h−1 = d, Ca
h−1 = K.

7: Find the closest linear approximation d̃πh = ⟨µ∗
h−1, θ̃h⟩ where θ̃h = argminθh∈Rd ∥⟨µ∗

h−1, θh⟩ − d̂πh∥1.
8: end for
9: end for

Output: estimated state occupancy measure {d̂πh}h∈[H],π∈Π.

<latexit sha1_base64="iUF3Tfi8EuXG4r49POn+pIqyKPc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0sWw2m3bpZrPsboQS+iO8eFDEq7/Hm//GbZqDtj4YeLw3w8y8QHKmjet+O6W19Y3NrfJ2ZWd3b/+genjU0UmqCG2ThCeqF2BNORO0bZjhtCcVxXHAaTeY3M797hNVmiXiwUwl9WM8EixiBBsrdcPh+HEg2bBac+tuDrRKvILUoEBrWP0ahAlJYyoM4VjrvudK42dYGUY4nVUGqaYSkwke0b6lAsdU+1l+7gydWSVEUaJsCYNy9fdEhmOtp3FgO2NsxnrZm4v/ef3URNd+xoRMDRVksShKOTIJmv+OQqYoMXxqCSaK2VsRGWOFibEJVWwI3vLLq6RzUfcu6437Rq15U8RRhhM4hXPw4AqacActaAOBCTzDK7w50nlx3p2PRWvJKWaO4Q+czx9BFY+H</latexit>

d⇡h

<latexit sha1_base64="M/gik2QLuiNcFTCCGpvJqfXola8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9DC8dnvlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7qJ7fn1dqN3kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI50X5935mLcWnHzmEP7A+fwBwQGNdg==</latexit>

h = 0

<latexit sha1_base64="O4HtrK0AGrHdSXlnqe8XV5JvnPk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHobXXq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qJ7fn1dqN3kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBwoWNdw==</latexit>

h = 1

<latexit sha1_base64="4ZKpPHw5UUYj1M5Qq2/fuuoHnYo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoF6EoBePEc0DkiXMTnqTIbOzy8ysEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/loxkn6Ed0IHnIGTVWehheV3rFklt25yCrxMtICTLUe8Wvbj9maYTSMEG17nhuYvwJVYYzgdNCN9WYUDaiA+xYKmmE2p/MT52SM6v0SRgrW9KQufp7YkIjrcdRYDsjaoZ62ZuJ/3md1IRX/oTLJDUo2WJRmApiYjL7m/S5QmbE2BLKFLe3EjakijJj0ynYELzll1dJs1L2LsrV+2qpdpPFkYcTOIVz8OASanAHdWgAgwE8wyu8OcJ5cd6dj0VrzslmjuEPnM8fxAmNeA==</latexit>

h = 2

<latexit sha1_base64="wXk731aH5LcIJMP6LwlQIvGi8LQ=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgxbIrRb0IRS89VnDbQruUbJptQ7PZJckKZelv8OJBEa/+IG/+G9N2D9r6YODx3gwz84JEcG0c5xsV1tY3NreK26Wd3b39g/LhUUvHqaLMo7GIVScgmgkumWe4EayTKEaiQLB2ML6f+e0npjSP5aOZJMyPyFDykFNirOSNbhsXbr9ccarOHHiVuDmpQI5mv/zVG8Q0jZg0VBCtu66TGD8jynAq2LTUSzVLCB2TIetaKknEtJ/Nj53iM6sMcBgrW9Lgufp7IiOR1pMosJ0RMSO97M3E/7xuasIbP+MySQ2TdLEoTAU2MZ59jgdcMWrExBJCFbe3YjoiilBj8ynZENzll1dJ67LqXlVrD7VK/S6PowgncArn4MI11KEBTfCAAodneIU3JNELekcfi9YCymeO4Q/Q5w+/wY4A</latexit>

h = H � 1

<latexit sha1_base64="t0AT9NS68CC6KyjL3eDmmcYIH2Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9FxA3x+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqqF3jZ/N7p+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMye54MhOYM5cQSyrSwtxI2opoytBGVbAje8surpHVR9S6rtftapX6Tx1GEEziFc/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1oKTzxzDHzifP4Lmj6I=</latexit>⇥1

<latexit sha1_base64="t0AT9NS68CC6KyjL3eDmmcYIH2Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9FxA3x+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqqF3jZ/N7p+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMye54MhOYM5cQSyrSwtxI2opoytBGVbAje8surpHVR9S6rtftapX6Tx1GEEziFc/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1oKTzxzDHzifP4Lmj6I=</latexit>⇥1

<latexit sha1_base64="t0AT9NS68CC6KyjL3eDmmcYIH2Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9FxA3x+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqqF3jZ/N7p+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMye54MhOYM5cQSyrSwtxI2opoytBGVbAje8surpHVR9S6rtftapX6Tx1GEEziFc/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1oKTzxzDHzifP4Lmj6I=</latexit>⇥1

<latexit sha1_base64="t0AT9NS68CC6KyjL3eDmmcYIH2Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9FxA3x+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqqF3jZ/N7p+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMye54MhOYM5cQSyrSwtxI2opoytBGVbAje8surpHVR9S6rtftapX6Tx1GEEziFc/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1oKTzxzDHzifP4Lmj6I=</latexit>⇥1

<latexit sha1_base64="1kyleqUgxA/H/SS2szok/+9IGAY=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVRIp6rLoxmUF+4Amhsnkphk6eTAzqZTQP3HjQhG3/ok7/8Zpm4W2HrhwOOde7r3HzziTyrK+jcra+sbmVnW7trO7t39gHh51ZZoLCh2a8lT0fSKBswQ6iikO/UwAiX0OPX90O/N7YxCSpcmDmmTgxmSYsJBRorTkmabzxAKIiMKBFz06GfPMutWw5sCrxC5JHZVoe+aXE6Q0jyFRlBMpB7aVKbcgQjHKYVpzcgkZoSMyhIGmCYlBusX88ik+00qAw1ToShSeq78nChJLOYl93RkTFcllbyb+5w1yFV67BUuyXEFCF4vCnGOV4lkMOGACqOITTQgVTN+KaUQEoUqHVdMh2Msvr5LuRcO+bDTvm/XWTRlHFZ2gU3SObHSFWugOtVEHUTRGz+gVvRmF8WK8Gx+L1opRzhyjPzA+fwBMzZN0</latexit>

bd⇡h
<latexit sha1_base64="b3ZKaQCaSQc5/xkfwzTByigZh+g=">AAAB+nicbVC7TsMwFHXKq5RXCiOLRYXEVCUIAWMFC2OR6ENqQuQ4TmvVsSPbAVWhn8LCAEKsfAkbf4PTZoCWI1k6Ouce3esTpowq7TjfVmVldW19o7pZ29re2d2z6/tdJTKJSQcLJmQ/RIowyklHU81IP5UEJSEjvXB8Xfi9ByIVFfxOT1LiJ2jIaUwx0kYK7LonjF2kYRSM7r2UBnbDaTozwGXilqQBSrQD+8uLBM4SwjVmSKmB66Taz5HUFDMyrXmZIinCYzQkA0M5Sojy89npU3hslAjGQprHNZypvxM5SpSaJKGZTJAeqUWvEP/zBpmOL/2c8jTThOP5ojhjUAtY9AAjKgnWbGIIwpKaWyEeIYmwNm3VTAnu4peXSfe06Z43z27PGq2rso4qOARH4AS44AK0wA1ogw7A4BE8g1fwZj1ZL9a79TEfrVhl5gD8gfX5AziMk/w=</latexit>

d
⇡
h

<latexit sha1_base64="ZgdQPO5Z0VpL5Qr34StytGgTaPA=">AAACE3icbVBLS8NAGNzUV62vqEcvi0UQwZJIUY9FLx4r2Ac0MWw2m2bp5sHuRilp/4MX/4oXD4p49eLNf+OmjaCtAwvDzDe7+42bMCqkYXxppYXFpeWV8mplbX1jc0vf3mmLOOWYtHDMYt51kSCMRqQlqWSkm3CCQpeRjju4zP3OHeGCxtGNHCbEDlE/oj7FSCrJ0Y+skXVPPRIgCT0nuLUSCo+hFatMfuWPZo0c09GrRs2YAM4TsyBVUKDp6J+WF+M0JJHEDAnRM41E2hnikmJGxhUrFSRBeID6pKdohEIi7Gyy0xgeKMWDfszViSScqL8TGQqFGIaumgyRDMSsl4v/eb1U+ud2RqMklSTC04f8lEEZw7wg6FFOsGRDRRDmVP0V4gBxhKWqsaJKMGdXniftk5p5Wqtf16uNi6KOMtgD++AQmOAMNMAVaIIWwOABPIEX8Ko9as/am/Y+HS1pRWYX/IH28Q08vp3D</latexit>

kbd⇡h � d
⇡
hk1

<latexit sha1_base64="vx9o1WVgJ0iHTD2CmZ8B+4US3iU=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhuLIkUdVl047KCfUATw2QyaYdOJmFmIpS0azf+ihsXirj1C9z5N07aCNp6YOBwzrncucdPGJXKsr6MhcWl5ZXV0lp5fWNza9vc2W3JOBWYNHHMYtHxkSSMctJUVDHSSQRBkc9I2x9c5X77nghJY36rhglxI9TjNKQYKS155oEzcmIdyOdh4PXvnITCkx/mjDzbMytW1ZoAzhO7IBVQoOGZn04Q4zQiXGGGpOzaVqLcDAlFMSPjspNKkiA8QD3S1ZSjiEg3m5wyhkdaCWAYC/24ghP190SGIimHka+TEVJ9Oevl4n9eN1XhhZtRnqSKcDxdFKYMqhjmvcCACoIVG2qCsKD6rxD3kUBY6fbKugR79uR50jqt2mfV2k2tUr8s6iiBfXAIjoENzkEdXIMGaAIMHsATeAGvxqPxbLwZ79PoglHM7IE/MD6+AVQ5mgc=</latexit>

kd⇡h � d⇡hk1

<latexit sha1_base64="l03gnkBcq8exDfuUgOON5g/vB5U=">AAAB/XicbVDLSsNAFL3xWesrPnZuBotQNyWRoi6LbtxZwT6gCWUymbRDJw9mJkINxV9x40IRt/6HO//GaZqFth4YOJxzL/fM8RLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJOBaEtEvNYdD0sKWcRbSmmOO0mguLQ47Tjja6nfueBCsni6F6NE+qGeBCxgBGstNQ3Dx3FQirRbdUJsRrKIPMnp32zYtWsHGiR2AWpQIFm3/xy/JikIY0U4VjKnm0lys2wUIxwOik7qaQJJiM8oD1NI6xPulmefoJOtOKjIBb6RQrl6u+NDIdSjkNPT+YR572p+J/XS1Vw6WYsSlJFIzI7FKQcqRhNq0A+E5QoPtYEE8F0VkSGWGCidGFlXYI9/+VF0j6r2ee1+l290rgq6ijBERxDFWy4gAbcQBNaQOARnuEV3own48V4Nz5mo0tGsXMAf2B8/gAEwpT1</latexit>

⇥O(d)

<latexit sha1_base64="l03gnkBcq8exDfuUgOON5g/vB5U=">AAAB/XicbVDLSsNAFL3xWesrPnZuBotQNyWRoi6LbtxZwT6gCWUymbRDJw9mJkINxV9x40IRt/6HO//GaZqFth4YOJxzL/fM8RLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJOBaEtEvNYdD0sKWcRbSmmOO0mguLQ47Tjja6nfueBCsni6F6NE+qGeBCxgBGstNQ3Dx3FQirRbdUJsRrKIPMnp32zYtWsHGiR2AWpQIFm3/xy/JikIY0U4VjKnm0lys2wUIxwOik7qaQJJiM8oD1NI6xPulmefoJOtOKjIBb6RQrl6u+NDIdSjkNPT+YR572p+J/XS1Vw6WYsSlJFIzI7FKQcqRhNq0A+E5QoPtYEE8F0VkSGWGCidGFlXYI9/+VF0j6r2ee1+l290rgq6ijBERxDFWy4gAbcQBNaQOARnuEV3own48V4Nz5mo0tGsXMAf2B8/gAEwpT1</latexit>

⇥O(d)

Figure 1. Error propagation diagram for FORCE. “• → •” with
×c means (•) ≤ c× (•) + (other instantaneous errors that do not
accumulate over horizon), and multiple incoming arrows imply
sum of errors. The left ×1 chain is from Lemma 1, the right ×1
chain from Proposition 2, and the ×O(d) edges from Lemma 4.

analyzing ∥d̂πh − dπh∥1 in Eq. (6), as that corresponds to
merging the two chains into one, where every edge along
the only chain acquires an O(d) multiplicative factor.

With this, we can now state the formal guarantee for our
algorithm, FORCE. See Algorithm 2 for its pseudo-code,
and the proof of the guarantee is deferred to Appendix F.1.

Theorem 5 (Online dπ estimation). Fix δ ∈ (0, 1)
and consider an MDP M that satisfies As-
sumption 1, and µ∗ is known. Then by set-
ting nmle = Õ

(
d3K2H4 log(1/δ)/ε2

)
,nreg =

Õ
(
d5K2H4 log(|Π|/δ)/ε2

)
, n = nmle + nreg, with

probability at least 1 − δ, FORCE returns state occupancy
estimates {d̂πh}h∈[H],π∈Π satisfying that∥∥∥d̂πh − dπh

∥∥∥
1
≤ ε, ∀h ∈ [H], π ∈ Π.

The total number of episodes required by the algorithm is

Õ(nH) = Õ
(
d5K2H5 log(|Π|/δ)/ε2

)
.

9MLE only needs to be done once and not for every π ∈ Π.

Theorem 5 also immediately translates to a policy opti-
mization guarantee when combined with Proposition 1:

Theorem 6 (Online policy optimization). Fix δ ∈ (0, 1)
and suppose Assumption 1 and Assumption 2 hold, and µ∗

is known. Given a policy class Π, let {d̂πh}h∈[H],π∈Π be the
output of running FORCE. Then with probability at least
1 − δ, for any reward function R and policy selected as
π̂R = argmaxπ∈Π v̂πR, we have

vπ̂R

R ≥ max
π∈Π

vπR − ε,

where vπR and v̂πR are defined in Proposition 1. The total
number of episodes required by the algorithm is

Õ
(
d5K2H7 log(|Π|/δ)/ε2

)
.

The proof is deferred to Appendix F.2. We remark that
Theorem 6 is a reward-free learning guarantee (Jin et al.,
2020a; Chen et al., 2022b,a), and it is easy to see that Al-
gorithm 2 is deployment efficient (Huang et al., 2022).

5. Representation learning
In this section, we extend the offline (Section 3) and on-
line (Section 4) results to the representation learning set-
ting. Here, the true density feature µ∗ is unknown, but the
learner has access to a realizable density feature class Υ,
defined formally below. For simplicity, we consider finite
and normalized Υ, as is standard in the literature (Agarwal
et al., 2020; Modi et al., 2021; Uehara et al., 2021b).

Assumption 3. We have a finite density feature class Υ =⋃
h∈[H] Υh such that µ∗

h ∈ Υh for each h ∈ [H], thus µ∗ ∈
Υ. Further, for any µh ∈ Υh, we have

∫
∥µh(x)∥1(dx) ≤

Bµ.

The algorithms and analyses for the representation learn-
ing case mostly follow the same template as the known
feature case, so we restrict our discussion to their differ-
ences. Recall that, in order to have realizable function

8

Reinforcement Learning in Low-Rank MDPs with Density Features

classes for regression and MLE in Section 3, we con-
structed Fh,Wh using functions linear in the known µ∗

h−1.
In order to maintain this realizability when µ∗

h−1 is un-
known, we instead construct Fh,Wh using the union of
all functions linear in some candidate µh−1 ∈ Υh−1,
i.e.,

⋃
µh−1∈Υh−1

{⟨µh−1, θh⟩, θh ∈ Rd} (see Eq. (28) and
Eq. (29) for their formal definitions).

While such union classes allow most of Section 3 and
Section 4 to straightforwardly extend to the representation
learning setting, a nontrivial modification must be made to
the online algorithm. Recall in line 7 of Algorithm 2, we
constructed our policy cover using the barycentric spanner
of {d̃πh}π∈Π, the set of linearized approximations to the
density estimates. Importantly, this guaranteed a concen-
trability coefficient of d because all d̃πh are linear in the
same feature µ∗

h−1. This is no longer the case with un-
known features because, if linearized in the same way (but
over all feasible µh−1 ∈ Υh−1), each d̃πh can be composed
of a different µh−1 feature, resulting in a CC linear in |Π|.
To overcome this issue, we replace line 7 with the follow-
ing “joint linearization” step (see line 8 in Algorithm 4):

µ̂h−1 = min
µh−1∈Υh−1

max
π∈Π

min
θh∈Rd

∥⟨µh−1, θh⟩ − d̂πh∥1,

where all density estimates are linearized using a single fea-
ture µ̂h−1, whose linear span approximates all d̂πh well. We
provide theorems for offline/online dπ estimation with rep-
resentation learning below.
Theorem 7 (Offline dπ estimation with representation
learning). Fix δ ∈ (0, 1). Suppose Assumption 1, Assump-
tion 2, and Assumption 3 hold. Given evaluation policy π,
by setting nmle = Õ(d(

∑
h∈[H] C

x
hC

a
h)

2 log(|Υ|/δ)/ε2)
and nreg = Õ(d(

∑
h∈[H] C

x
hC

a
h)

2 log(|Υ|/δ)/ε2), with
probability at least 1 − δ, FORCRL (Algorithm 3) returns
state occupancy estimates {d̂πh}

H−1
h=0 satisfying that∥∥∥d̂πh − d

π

h

∥∥∥
1
≤ ε, ∀h ∈ [H].

The total number of episodes required by the algorithm is

Õ

(
dH

(∑
h∈[H] C

x
hC

a
h

)2
log(|Υ|/δ)/ε2

)
.

Theorem 8 (Online dπ estimation with representation
learning). Fix δ ∈ (0, 1) and suppose Assumption 1
and Assumption 3 hold. By setting n = nmle +
nreg, nmle = Õ(d3K2H4 log(|Υ|/δ)/ε2), nreg =

Õ(d5K2H4 log(|Π||Υ|/δ)/ε2), with probability at least
1 − δ, FORCRLE (Algorithm 4) returns state occupancy
estimates {d̂πh}

H−1
h=0 satisfying that

∥d̂πh − dπh∥1 ≤ ε, ∀h ∈ [H], π ∈ Π.

The total number of episodes required by the algorithm is

Õ
(
d5K2H5 log(|Π||Υ|/δ)/ε2

)
.

The detailed proofs of these two theorems are given in Ap-
pendix G. We also present the theorems and proofs for of-
fline/online policy optimization with representation learn-
ing as well as the formal representation learning algorithms
in Appendix G.

6. Conclusion
We have shown how to leverage density features for statis-
tically efficient state occupancy estimation and reward-free
exploration in low-rank MDPs, culminating in policy opti-
mization guarantees. An important open problem lies in in-
vestigating the computational efficiency of our algorithms
(e.g., through off-policy policy gradient).

Acknowledgements
The authors thank Akshay Krishnamurthy and Dylan Fos-
ter for discussions related to MLE generalization error
bounds. NJ acknowledges funding support from NSF IIS-
2112471 and NSF CAREER IIS-2141781.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship Learning

via Inverse Reinforcement Learning. In Proceedings of
the 21st International Conference on Machine learning,
page 1. ACM, 2004.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford,
Lihong Li, and Robert Schapire. Taming the monster:
A fast and simple algorithm for contextual bandits. In
International Conference on Machine Learning, pages
1638–1646, 2014.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy,
and Wen Sun. Flambe: Structural complexity and repre-
sentation learning of low rank mdps. Advances in Neural
Information Processing Systems, 2020.

Martin Anthony and Peter L Bartlett. Neural network
learning: Theoretical foundations. cambridge university
press, 2009.

András Antos, Csaba Szepesvári, and Rémi Munos. Learn-
ing near-optimal policies with bellman-residual mini-
mization based fitted policy iteration and a single sample
path. Machine Learning, 2008.

Baruch Awerbuch and Robert Kleinberg. Online linear op-
timization and adaptive routing. Journal of Computer
and System Sciences, 74(1):97–114, 2008.

Peter Bartlett and Ambuj Tewari. Sample complexity of
policy search with known dynamics. Advances in Neural
Information Processing Systems, 19, 2006.

9

Reinforcement Learning in Low-Rank MDPs with Density Features

Fan Chen, Song Mei, and Yu Bai. Unified algo-
rithms for rl with decision-estimation coefficients: No-
regret, pac, and reward-free learning. arXiv preprint
arXiv:2209.11745, 2022a.

Jinglin Chen and Nan Jiang. Information-theoretic con-
siderations in batch reinforcement learning. In Interna-
tional Conference on Machine Learning, 2019.

Jinglin Chen and Nan Jiang. Offline reinforcement learning
under value and density-ratio realizability: The power of
gaps. In Conference on Uncertainty in Artificial Intelli-
gence, 2022.

Jinglin Chen, Aditya Modi, Akshay Krishnamurthy, Nan
Jiang, and Alekh Agarwal. On the statistical efficiency
of reward-free exploration in non-linear rl. In Advances
in Neural Information Processing Systems, 2022b.

Christoph Dann and Emma Brunskill. Sample complexity
of episodic fixed-horizon reinforcement learning. In Ad-
vances in Neural Information Processing Systems, pages
2818–2826, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Kefan Dong, Jian Peng, Yining Wang, and Yuan Zhou.
√
n-

regret for learning in Markov decision processes with
function approximation and low Bellman rank. In Con-
ference on Learning Theory, 2020.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh
Agarwal, Miroslav Dudik, and John Langford. Provably
efficient rl with rich observations via latent state decod-
ing. In International Conference on Machine Learning,
2019.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran
Yang. A theoretical analysis of deep q-learning. In
Learning for Dynamics and Control, pages 486–489.
PMLR, 2020.

Fei Feng, Ruosong Wang, Wotao Yin, Simon S Du, and
Lin Yang. Provably efficient exploration for reinforce-
ment learning using unsupervised learning. Advances
in Neural Information Processing Systems, 33:22492–
22504, 2020.

Carles Gelada and Marc G Bellemare. Off-policy deep
reinforcement learning by bootstrapping the covariate
shift. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 33, pages 3647–3655, 2019.

Paul Goldberg and Mark Jerrum. Bounding the vapnik-
chervonenkis dimension of concept classes parameter-
ized by real numbers. In Proceedings of the sixth annual
conference on Computational learning theory, pages
361–369, 1993.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

Assaf Hallak and Shie Mannor. Consistent on-line off-
policy evaluation. In International Conference on Ma-
chine Learning, pages 1372–1383. PMLR, 2017.

Elad Hazan, Sham M Kakade, Karan Singh, and Abby
Van Soest. Provably efficient maximum entropy explo-
ration. In International Conference on Machine Learn-
ing, 2019.

Audrey Huang and Nan Jiang. Beyond the return: Off-
policy function estimation under user-specified error-
measuring distributions. In Advances in Neural Infor-
mation Processing Systems, 2022.

Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang,
and Tie-Yan Liu. Towards deployment-efficient rein-
forcement learning: Lower bound and optimality. In
International Conference on Learning Representations,
2022.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John
Langford, and Robert E. Schapire. Contextual decision
processes with low Bellman rank are PAC-learnable. In
International Conference on Machine Learning, 2017.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and
Tiancheng Yu. Reward-free exploration for reinforce-
ment learning. In International Conference on Machine
Learning, 2020a.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jor-
dan. Provably efficient reinforcement learning with lin-
ear function approximation. In Conference on Learning
Theory, pages 2137–2143. PMLR, 2020b.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pes-
simism provably efficient for offline rl? arXiv preprint
arXiv:2012.15085, 2020c.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau,
and Kee-Eung Kim. Optidice: Offline policy optimiza-
tion via stationary distribution correction estimation. In
International Conference on Machine Learning, pages
6120–6130. PMLR, 2021.

10

Reinforcement Learning in Low-Rank MDPs with Density Features

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou.
Breaking the curse of horizon: Infinite-horizon off-
policy estimation. In Advances in Neural Information
Processing Systems, pages 5356–5366, 2018.

Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin.
When is partially observable reinforcement learning not
scary? In Conference on Learning Theory, pages 5175–
5220. PMLR, 2022.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma
Brunskill. Off-policy policy gradient with state distribu-
tion correction. arXiv preprint arXiv:1904.08473, 2019.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan
Jiang, and Alekh Agarwal. Model-free represen-
tation learning and exploration in low-rank mdps.
arXiv:2102.07035, 2021.

Mehryar Mohri and Afshin Rostamizadeh. Rademacher
complexity bounds for non-iid processes. Advances in
Neural Information Processing Systems, 21, 2008.

Mirco Mutti, Riccardo De Santi, Piersilvio De Bar-
tolomeis, and Marcello Restelli. Challenging common
assumptions in convex reinforcement learning. arXiv
preprint arXiv:2202.01511, 2022.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li.
Dualdice: Behavior-agnostic estimation of discounted
stationary distribution corrections. Advances in Neural
Information Processing Systems, 32, 2019a.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow,
Lihong Li, and Dale Schuurmans. Algaedice: Pol-
icy gradient from arbitrary experience. arXiv preprint
arXiv:1912.02074, 2019b.

Asuman Ozdaglar, Sarath Pattathil, Jiawei Zhang, and
Kaiqing Zhang. Revisiting the linear-programming
framework for offline rl with general function approxi-
mation. arXiv preprint arXiv:2212.13861, 2022.

Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E Gon-
zalez, Dale Schuurmans, and Bo Dai. Spectral decom-
position representation for reinforcement learning. arXiv
preprint arXiv:2208.09515, 2022.

Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan
Kallus, Wen Sun, and Tengyang Xie. Finite sample anal-
ysis of minimax offline reinforcement learning: Com-
pleteness, fast rates and first-order efficiency. arXiv
preprint arXiv:2102.02981, 2021a.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Repre-
sentation learning for online and offline RL in low-rank
MDPs. In International Conference on Learning Repre-
sentations, 2021b.

Sara A Van de Geer. Empirical Processes in M-estimation,
volume 6. Cambridge university press, 2000.

Vladimir Vapnik. Statistical learning theory, volume 2.
Wiley New York, 1998.

Tengyang Xie and Nan Jiang. Q* approximation schemes
for batch reinforcement learning: A theoretical compar-
ison. In Conference on Uncertainty in Artificial Intelli-
gence, 2020.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro,
and Alekh Agarwal. Bellman-consistent pessimism for
offline reinforcement learning. Advances in neural in-
formation processing systems, 34, 2021.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal
offline reinforcement learning with pessimism. Ad-
vances in neural information processing systems, 34:
4065–4078, 2021.

Tom Zahavy, Brendan O’Donoghue, Guillaume Des-
jardins, and Satinder Singh. Reward is enough for con-
vex mdps. Advances in Neural Information Processing
Systems, 34:25746–25759, 2021.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang,
and Jason Lee. Offline reinforcement learning with re-
alizability and single-policy concentrability. In Con-
ference on Learning Theory, pages 2730–2775. PMLR,
2022.

Tong Zhang. From ε-entropy to kl-entropy: Analysis
of minimum information complexity density estimation.
The Annals of Statistics, 34(5):2180–2210, 2006.

11

Reinforcement Learning in Low-Rank MDPs with Density Features

A. Related works
In this section, we discuss a few lines of related work in detail.

First, the closest related works involve RL with unsupervised-learning oracles (Du et al., 2019; Feng et al., 2020). Instead
of investigating low-rank MDPs, they consider more restricted block MDPs and need stronger assumptions such as reach-
ability, identifiability, and separatability (we refer the reader to their works for the definitions). Their notion of “decoder”
looks like density features in low-rank MDPs, but they are incomparable. The crucial property of “decoder” is that it is a
map from the X space to the low d dimensional space. This map itself no longer exists in low-rank MDPs. In addition, the
density feature serves a different purpose in our paper, as its primary purpose is for constructing the weight function class.

A second line of related work is model-based representation learning in low-rank MDPs (Agarwal et al., 2020; Uehara
et al., 2021b; Ren et al., 2022), which assumes that both a realizable left feature class Φ ∋ ϕ∗ and realizable density (right)
feature class Υ ∋ µ∗ are given to the learner, essentially inducing a realizable dynamics model class. The learned model
(features) are subsequently used for downstream planning. In comparison, we utilize a much weaker inductive bias as we
only require a realizable density feature class Υ, and we do not try to learn a dynamics model. Though we additionally
need a policy class Π, this is a very basic and natural function class to include. It can be immediately obtained from the
(Q-)value function class in the value-based approach, and from the dynamics model class (given a reward function) in the
model-based approach above. In terms of the algorithm design, we also use MLE, but for a different objective (the data
distribution, instead of the dynamics model).

The importance weight (density-ratio) learning used within our algorithms is related to the marginalized importance sam-
pling of the offline RL algorithms in Nachum et al. (2019a); Lee et al. (2021); Uehara et al. (2021a); Zhan et al. (2022);
Chen and Jiang (2022); Huang and Jiang (2022); Ozdaglar et al. (2022). These works do not make the low-rank MDP
assumption and study the problem in general MDPs, and require both a weight function class and value function class
for learning. We leverage the true density µ∗ or density feature class Υ to construct the realizable weight function class,
allowing us to achieve statistically faster rates in the low-rank MDP setting. We do not need a value function class and
instead only need a weaker (as discussed in the previous paragraph) policy class Π. Lastly, we note that the aforementioned
works all learn weights, while our goal is to learn the densities. Extracting the densities from the weights allows us to effi-
ciently explore the MDP using its low-dimensional structure, and additionally enables our return maximization guarantees
of Proposition 1 by separating them from the underlying data distribution.

B. Hardness result without the policy class
In this section, we show that without policy class Π, learning in low-rank MDPs (or an easier simplex feature setting) is
provably hard even when the true density feature µ∗ is known to the learner. The crux is that low-rank MDPs can readily
emulate a fully general contextual bandit problem, where µ∗ is useless. For the hardness result, we adapt Theorem 2 of
Dann and Brunskill (2015) to our case by only keeping their second to third level to get a contextual bandit problem.

To provide specifics for the reward and transition functions, we first note that the subscript of the reward/transition function
denotes which level it applies to (e.g., P0 are the transitions to x1 from x0). Level h = 0 is composed of |X | − 3 states
with zero reward, i.e., x0 ∈ {1, . . . , |X | − 3} and R0(i) = 0, ∀i ∈ {1, . . . , |X | − 3}. Level h = 1 is composed of 2 states,
i.e., x1 ∈ {+,−}, where R1(+) = 1 and R1(−) = 0. Lastly, at level h = 2 we have a single null absorbing state x2.

For the transition functions, in level h = 0 the transitions P0 are Bernoulli distributions where for any state i ∈
{1, . . . , |X | − 3} and action a0 ∈ A, we have P0(+|i, a0) = 1

2 + ε′i(a0) and P0(−|i, a0) = 1
2 − ε′i(a0). Here, ε′i is

defined in a per-state manner given a parameter ε. We have ε′i(a0) = ε/2 if a0 = a∗0, where a∗0 is a fixed action; ε′i(a0) = ε

if a0 = ai,∗0 where ai,∗0 is an unknown action defined per state i; and ε′i(a0) = 0 otherwise. In level h = 1, the transitions
P1 simply transmit deterministically to the absorbing state x2, i.e., P1(x2|x1, a1) = 1 for all x1 ∈ {+,−} and a1 ∈ A.

It is easy to see that the dynamics of this contextual bandit can be modeled using simplex features, thus it is an instantiation
of low-rank MDPs. Since we only have two levels (H = 2), we only need to verify that P0 and P1 can be written in the
desired form (Assumption 1). In level h = 0, we add two latent states corresponding to the rewarding and non-rewarding
state, thus d = 2. Then in level h = 0, we have right features µ∗

0(+) = [1, 0] and µ∗
0(−) = [0, 1], and left features

ϕ∗
0(x0, a0) = [P1(+|x0, a0), P1(−|x0, a0)] for any (x0, a0), corresponding to the original Bernoulli distribution. It is easy

to see that this satisfies Assumption 1, i.e., for any (x0, a0, x1) we have P0(x1|x0, a0) = ⟨ϕ∗
0(x0, a0), µ

∗
0(x1)⟩. In level

h = 1 we can simply set a single latent state representing the singleton x2, and observe that Assumption 1 is trivially

12

Reinforcement Learning in Low-Rank MDPs with Density Features

satisfied with µ∗
1(x2) = 1, and ϕ∗

1(x1, a1) = 1 for any (x1, a1).

Finally, from Theorem 2 of Dann and Brunskill (2015), we know that the sample complexity of learning in this contextual
bandit problem is Ω(|X |), demonstrating that efficient learning is impossible in low-rank MDPs (or the simplex feature
setting) given only µ∗.

The necessity of K = |A| dependence It is well known that learning contextual bandits with just a policy class requires
a dependence on |A| in regret and sample complexity; see Agarwal et al. (2014) and the references therein. This can also
be reproduced in the above hardness result: first, we can scale up the construction by adding more actions, and show an
Ω(|X |K) lower bound. Second, we now provide the learner with a policy class that contains all Markov deterministic
policies. The size of the class is O(K |X |), and the log-size is O(|X | log(K)). Given the logarithmic dependence on K,
no polynomial dependence on log(|Π|) can explain away the linear-in-K dependence in the lower bound, and we must
introduce K as a separate factor in the sample complexity.

C. RL with objectives on state distributions
Proposition 1 also extends to general optimization objectives f({dh}) that are Lipschitz in the input {dh} (note the Lip-
schitz property does not require the input to be a valid distribution). This Lipschitzness property is key for many recent
results in convex RL (Zahavy et al., 2021; Mutti et al., 2022), and also holds for return maximization where f({dπh}) = vπR,
in which case the Lipschitz constant is related to the maximum reward maxh,x,a Rh(x, a). While we write the objective
f({dh}) using state densities dh(xh) as input for simplicity, it is straightforward to instead use state-action densities
dh(xh)π(ah|xh) formed by directly composing the state density dh with the policy π. If f is Lipschitz in state-action
densities, it will still be Lipschitz in the state-action densities in the ℓ1 norm, which is the exactly the case in return maxi-
mization, since any input density will be composed with same π. Lastly, we note that constraints can also be added to the
objective and to result in a similar statement.

Proposition 4. Suppose the optimization objective is f({dh}), where f is Lipschitz in {dh} under the ℓ1 norm, i.e., there
exists a constant L > 0 such that for any {d′h} and {d′′h}

|f({d′h})− f({d′′h})| ≤ L
∑

h∈[H]

∥d′h − d′′h∥1.

Then for {d̂πh} such that ∥d̂πh − dπh∥1 ≤ ε
2H for all π ∈ Π and h ∈ [H], and π̂ maximizing the plug-in estimate of the

objective:
π̂ = argmax

π∈Π
f({d̂πh}),

we have
f({dπ̂h}) ≥ max

π∈Π
f({dπh})− Lε.

Proof. For any π ∈ Π, from the Lipschitz assumption,∣∣∣f({dπh})− f({d̂πh})
∣∣∣ ≤ L

∑
h∈[H]

∥dπh − d̂πh∥1 ≤ Lε/2.

Then, letting π∗ = argmaxπ∈Π f({dπh}) denote the maximizer of the true objective and using the above inequality,

f({dπ̂h})− f({dπ
∗

h }) = f({dπ̂h})− f({d̂π̂h}) + f({d̂π̂h})− f({d̂π
∗

h }) + f({d̂π
∗

h })− f({dπ
∗

h }) ≥ −Lε.

On d̂πh being invalid distributions One potential issue is that some of the objective functions f considered in the litera-
ture are only well defined for valid probability distributions (e.g., entropy). This is easy to deal with in the online setting,
as we can simply project d̂πh onto the probability simplex, which picks up a multiplicative factor of 2 in ∥d̂πh−dπh∥1 (c.f. the
analysis of the linearization step in Algorithm 2).

For the offline setting, however, the situation can be trickier. For example, the above projection idea is clearly bad for
return maximization, since after projection all d̂πh satisfy ∥d̂πh∥1 = 1 and we lose pessimism. From an analytical point of

13

Reinforcement Learning in Low-Rank MDPs with Density Features

view, pessimistic approaches (e.g., Theorem 3) only pays one factor of the missingness error ∥dπh − dπh∥1 by leveraging its
one-sidedness, and a factor of 2 introduced by projection is simply unacceptable. Therefore, the question is whether we
can generalize the pessimism in Theorem 3 to general objective functions.

We answer this question with a rough sketch without detailed proofs: since we know ∥d̂πh−d
π

h∥1 ≤ ε′ (for some appropriate
value of ε′ from our analysis), we can form a version space for dπh as (see also Appendix D.3.6 for a tighter approach to
forming version spaces):

dπh ∈ {dh = ⟨µ∗
h−1, θh⟩ : dh ∈ ∆(X), ∥[d̂πh − dh]+∥1 ≤ ε′} (7)

where [·]+ := max(· , 0) is used to capture the part that d̂πh “exceeds” dh, choosing normalized dh that is approximately
a pointwise upper bound of dh. dπh is in the set because ∥[d̂πh − dπh]+∥1 ≤ ∥[d̂πh − d

π

h]+∥1 ≤ ∥d̂πh − d
π

h∥1 ≤ ε′, and
the inequalities here show that ∥[(·)]+∥1 behaves like a one-sided (and hence assymetric) version of ℓ1 error between
unnormalized distributions. Then we can simply come up with pessimistic evaluation of f({dπh}) by minimizing f({dh})
over the above set. It is not hard to see that such an approach will provide similar guarantees to Theorem 3 when applied
to return maximization.

D. Alternative setups, algorithm designs, and analyses
D.1. Offline data assumptions

As mentioned in Section 3, our offline data assumption allows sequentially dependent batches, where in-batch tuples are
i.i.d. samples. This is already weaker than the standard fully i.i.d. settings considered in the offline RL literature, and here
we further comment on how to handle various extensions.

Trajectory data One simple setting is when data are i.i.d. trajectories sampled from a fixed policy. (This setting does not
fit our need for the online algorithm, but is a representative setup for the purpose of offline learning.) While our protocol
directly handles it (we can simply split the data in H chunks and call them D0,D1, . . .), it seems somewhat wasteful as we
only extract 1 transition tuple per trajectory, potentially worsening the sample complexity by a factor of H . This is because
in our analysis of the regression step (Algorithm 1, line 5), we treat the regression target (which depends on d̂πh) as fixed
and independent of the current dataset. If we want to use all the data, we would need to union bound over the target as
well; see similar considerations in the work of Fan et al. (2020). A slow-rate analysis follows straightforwardly, and we
leave the investigation of fast-rate analysis to future work. We also remark that our current offline setup (Assumption 2) is
the most natural protocol for the data collected from the online algorithm (Section 4), and using full trajectory data does
not seem to improve the theoretical guarantees of the online setting.

Fully adaptive data A more general setting than Assumption 2 is that the data is fully adaptive, i.e., each trajectory is
allowed to depend on all trajectories that before it. To handle such a case, we will need to replace the i.i.d. concentration
inequalities with their martingale versions. Some special treatment in the concentration bounds will also be needed to
handle the random data-splitting step in Algorithm 1, line 3 (c.f. Mohri and Rostamizadeh, 2008); alternatively, if we
union bound over regression targets (see previous paragraph), the data splitting step will no longer be needed.

Unknown and/or non-Markov πD In Assumption 2 we assume that the last-step policy in the data-collecting policy is
Markov and known, as we need it to form the importance weights on actions. When πD is still Markov and unknown, we
can use behavior cloning to back it out from data, which would require some additional assumptions (e.g., having access
to a policy class that realizes πD), and we do not further expand on such an analysis. When πD is non-Markov, it is well
known that the action in the data tuple (xh, ah, xh+1) can be still treated as if it were generated from a Markov policy—one
can compute the state-action occupancy for (xh, ah) (which is well-defined even if πD is non-Markov) and then obtain the
equivalent Markov policy by conditioning on xh. Incidentally, the algorithmic solution is the same as the case of unknown
Markov πD, i.e., behavior cloning.

D.2. Stochastic and/or unknown reward functions

When the reward function is stochastic but still known, Proposition 1 and all policy optimization guarantees extend straight-
forwardly, since we can still directly compute the return. The more nontrivial case is when the reward function R is

14

Reinforcement Learning in Low-Rank MDPs with Density Features

unknown and comes as part of the data, i.e., we have the usual format of data tuples that include (possibly) stochastic
reward signals, {(x(i)

h , a
(i)
h , r

(i)
h)}nret

i=1 ∼ dDh . Then given estimates {d̂Dh } (from MLE) and {d̂πh} (from Algorithm 1 or
Algorithm 2), the expected return can be estimated by reweighting the rewards according to the importance weight d̂πh/d̂

D
h ,

and assuming this ratio is well-defined:

v̂πR =
1

nret

nret∑
i=1

∑
h∈[H]

d̂πh(x
(i)
h)

d̂Dh (x
(i)
h)

πh(a
(i)
h |x(i)

h)

πD
h (a

(i)
h |x(i)

h)
r
(i)
h .

It can be shown that we then have |v̂πR − vπR| ≤ ε+ (additive terms), where the additive terms correspond to the statistical
error of return and MLE estimation, which is O((nret)

−1/2). If d̂Dh does not cover d̂πh , which may generally be the case,
clipping (e.g., according to thresholds Cx

h , C
a
h) can again be used, which will lead to additional error corresponding to

clipped mass.

D.3. Algorithm design and analyses

In this section, we discuss alternative designs of the offline density learning algorithm (Algorithm 1), as well as their
downstream impacts on the online and representation learning algorithms, which use the offline module in their inner
loops. For simplicity, most discussions are in the case of offline density learning with known representation µ∗.

D.3.1. POINT ESTIMATE IN DENOMINATOR

First, we discuss alternative parameterizations of the weight function class. To enable more “elementary” ℓ∞ covering
arguments, one may consider instead parameterizing the weight function class as a ratio of linear functions over a fixed
function vh : X → R, specifically

Wh(vh) =

{
wh =

⟨µ∗
h−1, θh⟩
vh

: ∥wh∥∞ ≤ Cx
h−1C

a
h−1, θh ∈ Rd

}
.

When µ∗ consists of simplex features, it can be shown that an ℓ∞ covering with scale γ of size (1/γ)d can be constructed
for Wh(vh), because it can be induced by an ℓ∞ covering of the low-dimensional parameter space that has scale adaptively
chosen according to how much the weight can be perturbed with respect to the denominator, thus fixed size. It is unclear
how to construct such ℓ∞ coverings for “linear-over-linear” function classes such as Wh of Algorithm 1. One may consider
compositions of standard ℓ∞ coverings generated separately for the linear numerator and denominator, but bounding the
covering error is challenging due to sensitivity of the denominator to perturbations.

As we will see, however, the key issue with such fixed-denominator parameterizations is that the Bayes-optimal solution
is no longer realizable. To handle this in the analysis, we can introduce an additional approximation error (similar to
Chen and Jiang (2019, Assumption 3) in the value learning setting) that will appear in the final bound, corresponding to
how well the Bayes-optimal solution is approximated by the function class. Depending on the choice of denominator, the
approximation error may not be controlled, or may lead to a slower rate of estimation; loosely, it is defined as

εapproxh = max
wh−1:∥wh−1∥∞≤Cx

h−1

min
wh∈Wh(vh)

∥∥wh −Eπ
h−1(d

D
h−1wh−1)

∥∥
2,dD,†

h−1

.

One obvious choice for the fixed denominator is vh = d̂D,†
h−1, since it is immediately available from the MLE data estimation

step, plus the linear numerator can then be extracted exactly through the elementwise multiplication d̂πh = ŵπ
h d̂

D,†
h−1.

However, the Bayes-optimal predictor Eπ
h−1(dh−1) is no longer realizable, since Eπ

h−1(dh−1) = Pπ
h−1(dh−1)/d

D,†
h−1 is a

linear function over the true data distribution dD,†
h−1. In this case, using Lemma 19 gives a more interpretable upper bound on

the approximation error involves the difference between the ratio of any linear dh covered on dD,†
h−1 and the corresponding

ratio over d̂D,†
h−1:

εapproxh ≤ max
dh=⟨µ∗

h−1,θh⟩:
dh≤Cx

h−1C
a
h−1d

D,†
h−1

∥∥∥∥∥ dh

d̂D,†
h−1

− dh

dD,†
h−1

∥∥∥∥∥
2,dD,†

h−1

.

However such approximation error may be difficult to control even with small data estimation error due to sensitivity of
the denominator (for example if ∥d̂D,†

h−1 − dD,†
h−1∥1 ≤ εmle but they have disjoint support).

15

Reinforcement Learning in Low-Rank MDPs with Density Features

D.3.2. BARYCENTRIC SPANNER IN DENOMINATOR

To avoid the above support issue and control the approximation error, we can instead consider a denominator function upon
which dD,†

h−1 is supported. This is satisfied by the barycentric spanner of the version space of the estimate d̂D,†
h−1,

Vh =
{
vh = ⟨µ∗

h−1, θh⟩ : ∥vh − d̂D,†
h−1∥1 ≤ εmle, θh ∈ Rd

}
,

noting that dD,†
h−1 ∈ Vh with high probability due to the MLE guarantee. Then letting ṽh denote the spanner, Lemma 15

guarantees that
dD,†
h−1

ṽh
≤ d, and the approximation error of Wh(ṽh) can be controlled by the error of MLE estimation, since

for any dh ≤ Cx
h−1C

a
h−1d

D,†
h−1 we have∥∥∥∥∥dhṽh − dh

dD,†
h−1

∥∥∥∥∥
2

2,dD,†
h−1

≤ (Cx
h−1C

a
h−1)

2

∫
dD,†
h−1(x)

ṽh(x)

(
1 +

dD,†
h−1(x)

ṽh(x)

)∣∣∣ṽh(x)− dD,†
h−1(x)

∣∣∣ (dx)
≤ 2(Cx

h−1C
a
h−1d)

2∥ṽh − dD,†
h−1∥1

which implies that εapproxh ≤ 2Cx
h−1C

a
h−1d

√
εmle by the definition of Vh. However, since εmle is O(n

−1/2
mle), this re-

sults in a slow rate of 1/ε4 total sample complexity for offline density estimation, and from a computational stand-
point, introduces another barycentric spanner construction step in the algorithm which can be expensive. The rep-
resentation learning setting has the additional challenge that there will be approximation error if the wrong repre-
sentation µ̂h−1 ∈ Υh−1 is chosen for d̂D,†

h−1, since dD,†
h−1 /∈ Vh(µ̂h) (we extend the definition to Vh(µh−1) ={

vh = ⟨µh−1, θh⟩ : ∥vh − d̂D,†
h−1∥1 ≤ εmle, θh ∈ Rd

}
), which, as in the first case above, may be difficult to bound.

D.3.3. CLIPPED FUNCTION CLASS WITH POINT ESTIMATE IN DENOMINATOR

Generalizing and improving upon the previous analyses, using a clipped version of the function class Wh(vh)

Wclip
h (vh) =

{
wh =

⟨µ∗
h−1, θh⟩ ∧ Cx

h−1C
a
h−1vh

vh
: θh+1 ∈ Rd

}
will allow us to bound the approximation error for general denominator functions vh. For any dh such that dh ≤
Cx

h−1C
a
h−1d

D,†
h−1, we can approximate the ratio dh

dD,†
h−1

with dh∧Cx
h−1C

a
h−1vh

vh
∈ Wclip

h (vh), and separate the approximation

error into two terms, based on whether dD,†
h−1 is covered by vh according to a threshold C ≥ 1:∥∥∥∥∥dh ∧ Cx

h−1C
a
h−1vh

vh
− dh

dD,†
h−1

∥∥∥∥∥
2

2,dD,†
h−1

≤

∥∥∥∥∥
(
dh ∧ Cx

h−1C
a
h−1vh

vh
− dh

dD,†
h−1

)
· 1

[
dD,†
h−1(x)

vh(x)
≤ C

]∥∥∥∥∥
2

2,dD,†
h−1

(“covered”)

+

∥∥∥∥∥
(
dh ∧ Cx

h−1C
a
h−1vh

vh
− dh

dD,†
h−1

)
· 1

[
dD,†
h−1(x)

vh(x)
> C

]∥∥∥∥∥
2

2,dD,†
h−1

(“not covered”)

Bounding the two terms individually, for the “covered” term, we have

(“covered”) ≤
∫
x:

d
D,†
h−1

(x)

vh(x)
≤C

dD,†
h−1(x)

(
dh(x)

vh(x)
− dh(x)

dD,†
h−1(x)

)2

(dx)

≤ (Cx
h−1C

a
h−1)

2

∫
x:

d
D,†
h−1

(x)

vh(x)
≤C

dD,†
h−1(x)

vh(x)

(dD,†
h−1(x)− vh(x))

2

vh(x)
(dx)

16

Reinforcement Learning in Low-Rank MDPs with Density Features

≤ (Cx
h−1C

a
h−1)

2C(1 + C)

∫
x:

d
D,†
h−1

(x)

vh(x)
≤C

∣∣∣dD,†
h−1(x)− vh(x)

∣∣∣
≤ (Cx

h−1C
a
h−1)

2C(1 + C)
∥∥∥dD,†

h−1 − vh

∥∥∥
1
.

For the “not covered” term, noticing that both parenthesized ratios are bounded on [0, Cx
h−1C

a
h−1], we have

(“not covered”) ≤ (Cx
h−1C

a
h−1)

2

∫
dD,†
h−1(x) · 1

[
dD,†
h−1(x)

vh(x)
> C

]
(dx)

≤ (Cx
h−1C

a
h−1)

2

(
1− 1

C

)−1 ∥∥∥dD,†
h−1 − vh

∥∥∥
1
,

where the second inequality is because(
1− 1

C

)∫
x:

d
D,†
h−1

(x)

vh(x)
>C

dD,†
h−1(x)(dx) <

∫
x:

d
D,†
h−1

(x)

vh(x)
>C

(dD,†
h−1(x)− vh(x))(dx) ≤

∥∥∥dD,†
h−1 − vh

∥∥∥
1

since
dD,†
h−1

C > vh. Thus in total, we have

εapproxh ≤ Cx
h−1C

a
h−1

(
C + C2 +

C

C − 1

)√∥∥∥dD,†
h−1 − vh

∥∥∥
1
.

The bound depends on how close the point estimate vh is to the true dD,†
h−1, as well as the threshold C. In the case where

vh = d̂D,†
h−1 is the point estimate, we are now able to bound εapproxh ≤ Cx

h−1C
a
h−1(C +C2 + C

C−1)
√
εmle, which results in

a slower rate than our results in the main text. If vh = ṽh is the barycentric spanner of the version space, then it suffices
to set C = d, in which case only the “covered” part of the error is nonzero, and we recover the analysis in the previous
paragraph.

In general, the best choice of threshold C is not obvious because dD,†
h−1 is not known, and will trade off between the two

errors. When C is large, the “covered” error will be large since it is proportional to C2, while if C is too small (too close
to 1), the “not-covered” error will be large since it is proportional to C

C−1 .

D.3.4. DIRECT EXTRACTION OF THE ESTIMATE

Putting aside the discussion of point estimates in the denominator, we now present an alternative to pointwise multiplication
+ linearization used to extract d̂πh from Algorithm 1. Instead, we can directly extract the numerator, which will already
be a linear function (in µ∗), from weight ratio and use it as the estimate for d̂πh . The regression objective might then be
(replacing line 5 in Algorithm 1)

d̂πh = argmin
dh∈Fh(vh)

min
vh∈Vh

LDreg
h−1

(
dh
vh

,
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

d̂Dh−1

, πh−1 ∧ Ca
h−1π

D
h−1

)
,

where the version space of denominator functions Vh is defined above, and Fh(vh) = {dh = ⟨µ∗
h−1, θh⟩ : ∥dh/vh∥∞ ≤

Cx
h−1C

a
h−1, θh ∈ Rd} represents linear numerator functions covered by vh. It is necessary to constrain the denominator

functions to the version space in order to ensure that the numerator is close to the true density, since regression only
guarantees quality of estimated weight. For example, even if ŵπ

h = wπ
h , if the denominator function is c · dD,†

h−1 then the
numerator will be c ·dπh , leading to large d̂πh estimation error. In terms of the analysis, this is quantified as the error between
the denominator and true dD,†

h−1 in Eq. (11), which is controlled by εmle when the denominator is constrained to the version
space Vh, and will result in the same guarantee as we have for Algorithm 1 and Algorithm 2 in the known feature setting.

In the online setting with known features, direct extraction has the advantage of no longer requiring the linearization step
(line 7 in Algorithm 2), though it is computationally more expensive because the function classes are jointly optimized,
and the version space must be maintained. This advantage is lost in the representation learning setting because the esti-
mates {d̂πh}π∈Π must be jointly re-linearized with the same representation in order to construct the policy cover (line 9 of

17

Reinforcement Learning in Low-Rank MDPs with Density Features

Algorithm 4). As another related advantage, this approach will relax the expressivity assumptions in the offline setting to a
form of “completeness” (Uehara et al., 2021a), that we have function classes that are closed under the operators explicitly
defined in Eq. (4) (i.e., that maps d

π

h−1 to d
π

h).

D.3.5. MLE INSTEAD OF REGRESSION

An alternative to using regression to estimate the occupancy is instead using MLE-type estimation. Along similar veins
as the regression algorithm, (a clipped version of) the previous-level estimate d̂πh−1 must be reused to reweight the data
distribution in order to estimate d̂πh:

d̂πh = argmin
fh∈Fh

1

n

n∑
i=1

d̂πh−1 ∧ Cx
h−1d̂

D
h−1

d̂Dh−1

πh−1 ∧ Ca
h−1π

D
h−1

πD
h−1

log(fh).

where Fh is some linear function class. One possible advantage of such an approach is that a linear density estimate can be
directly learned, but establishing formal guarantees for an MLE-type algorithm remains future work. After separating the
missingness error ∥dπh − d

π

h∥1 in the same way as in Section 3, similar methods as classical MLE analysis (Appendix H)
might be used to control ∥d̂πh − d

π

h∥1. The challenge is that such MLE analyses require Fh to include only valid densities

∈ ∆(X), but this is at odds with reweighted MLE objectives such as the one above, since the weights d̂π
h−1∧Cx

h−1d̂
D
h−1

d̂D
h−1

generally will not induce a valid density when multiplied with the data distribution.

D.3.6. VERSION SPACE FOR dπh

Most algorithmic ideas presented in the paper for estimating dπh have a top-down manner, which resembles the standard
bottom-up structure of dynamic-programming algorithms for value-function estimation. On the other hand, Bellman-
residual minimization (Antos et al., 2008) learns value functions by checking whether each candidate function is temporally
self-consistent based on the data, and is very useful for producing version spaces of the functions of interest (Xie et al.,
2021) and is statistically more superior to dynamic-programming algorithms in various situations (Xie and Jiang, 2020;
Uehara et al., 2021a). Here we describe a method to produce a version space for dπh . In Appendix C we also described
how to form version space based on d

π

h (Eq. (7)); in contrast, the method below will not estimate d
π

h but instead directly
produce a version space that will be generally tighter than Eq. (7).

Similar to the case of value functions, the key to forming tight version spaces is to check whether a candidate function {dh}
is temporally self-consistent. We do so by the following criterion: (we assume all candidate {dh} agree on d0) ∀h ≥ 1,∥∥∥[Pπ

h−1

(
dh−1 ∧ Cx

h−1d
D
h−1

)
− dh

]
+

∥∥∥
1
≤ ε′. (8)

Inside [·]+, the term Pπ
h−1

(
dh−1 ∧ Cx

h−1d
D
h−1

)
corresponds to pushing dh−1 to the next level with clipped dynamics,

which is exactly the kind of object FORC learns in each step. {dh} = {dπh} satisfies the criterion with ε′ = 0: when data
covers {dπh}, the LHS becomes ∥[Pπ

h−1d
π
h−1 − dπh]+∥1 = 0 as Pπ

h−1d
π
h−1 = dπh; when data does not provide sufficient

coverage, Pπ
h−1

(
dπh−1 ∧ Cx

h−1d
D
h−1

)
≤ dπh , and the LHS is still 0 since [·]+ only considers the positive part of the

difference. The above reasoning assumes Pπ
h−1

(
dπh−1 ∧ Cx

h−1d
D
h−1

)
is known, but in practice we need to estimate it

from data; therefore, ε′ cannot be set as 0 and must be instead set to the estimation error of Pπ
h−1

(
dh−1 ∧ Cx

h−1d
D
h−1

)
to

guarantee {dπh} is not eliminated.

Given the criterion, we can form a version space of {dπh} that includes all normalized {dh} from the function class that
satisfies Eq. (8). Offline policy learning follows straightforwardly (Appendix C), and this version-space-based approach
produces generally less conservative estimate than using {dπh} (Theorem 3). The online case is trickier as we still need
to produce a point estimate {d′h} for policy cover construction (the role of d̃πh−1 in FORCE), and our analysis requires the
chosen {d′h} to be approximately a point-wise lower bound of {dπh} (which we informally denote as d′h ≲ dπh , meaning that
∥[d′h − dπh]+∥1 is small). To handle this problem, we can construct two version spaces, one that only includes normalized
distributions for reasoning about dπh (which we call VSπ) and one that includes unnormalized distributions for selecting
{d′h} (which we call VS′

π). It is easy to see that {dπh} ∈ VSπ ⊆ VS′
π , and any member {d′h} of VS′

π satisfies d′h ≳ d
π

h

. Given the two version spaces, we can choose any {d′h} ∈ VS′
π that satisfies d′h ≲ dh, ∀{dh} ∈ VSπ . {dπh} ∈ VS′

π is
always a viable choice, but in general there may be better choices of {d′h} that have significantly larger norm ∥d′h∥1 than
∥dπh∥1, thus preserving more mass in the online algorithm.

18

Reinforcement Learning in Low-Rank MDPs with Density Features

D.4. Discussion of other approaches for controlling error exponentiation in the online setting

Barycentric spanner in regression target (without clipping) In Section 4 we controlled the error exponentiation arising
from having only approximately exploratory data by first clipping the regression target d̂πh/d̂

D
h (since the MLE estimate d̂Dh

does not necessarily cover d̂πh), then separating the error ∥d̂πh − dπh∥1 into the “two-sided regression error” and “one-sided
missingness error”. It will be instructive to also look at an alternative approach that avoids clipping and “pretends” that data
is perfectly exploratory, which provides interesting insights on the underlying issue and the delicacy of error propagation
in our problem from a different perspective.

The seemingly feasible solution is based on the observation that 1
d

∑d
i=1 d̂

πh,i

h , the barycentric spanner of {d̂πh}π∈Π in the
denominator of Eq. (5), is a good approximation of dDh . So instead of using MLE to estimate dDh = 1

d

∑d
i=1 d

πh,i

h , we
could simply use 1

d

∑d
i=1 d̂

πh,i

h , which will keep the regression target bounded in Algorithm 1 without any clipping.

However, a closer look reveals that this only sweeps the issue under the rug. The problem does not go away, and only
appears in a different form: recall from Lemma 1 that the bound includes a term of 2d

∥∥∥d̂Dh − dDh

∥∥∥
1
, and when we use

1
d

∑d
i=1 d̂

πh,i

h to replace d̂Dh , we obtain

∥∥∥d̂Dh − dDh

∥∥∥
1
=

∥∥∥∥∥1d
d∑

i=1

d̂π
h,i

h − 1

d

d∑
i=1

dπ
h,i

h

∥∥∥∥∥
1

≤ max
π∈Π

∥d̂πh − dπh∥1

which, in addition to merging the two inductive chains, gives us ∥d̂πh−dπh∥1 ≤ (1+d)maxπ∈Π ∥d̂πh−dπh∥1+ . . ., resulting
in O(d)H error. In other words, because the error of the denominator distribution depends on the quality of regression,
even with full coverage we will suffer the same error exponentiation issues.

Reachability-based approach Error exponentiation can be avoided if a reachability assumption (Du et al., 2019; Modi
et al., 2021) is satisfied in the underlying MDP. Formally, this assumption requires that there exists a constant ηmin such
that ∀h ∈ [H], z ∈ Zh+1 we have maxπ∈Π Pπ[zh+1 = z] ≥ ηmin, where Zh+1 correspond to the latent states of the MDP.
For example, in the case where µ∗

h is full-rank and composed of simplex features, Zh+1 = {1, . . . , d} and θh[i] directly
corresponds to Pπ[zh+1 = i] for i ∈ {1, . . . , d}. The direct implication is that we can construct a fully exploratory policy
cover that reaches all latent states (and thus covers all π ∈ Π) as long as we find, for each latent state, the policy that
reaches it with probability at least ηmin. This policy can be found as long as d̂πh is estimated sufficiently well, which when
backed up implies the latent state visitation is estimated sufficiently well.

Specifically, in the offline module used in Algorithm 2, we can instead set nreg such that ∥d̂πh−dπh∥1 ≤ σmin(µ
∗
h−1)ηmin/4

for all π ∈ Π, which implies that when backed up to latent states the error of estimation is ∥θ̂πh − θπh∥∞ ≤ ηmin/4.
Then the exploratory policy cover can be chosen as Πexpl

h = {πh,i}di=1 where for each i ∈ {1, . . . , d}, πh,i is such that
θ̂π

h,i

h [i] ≥ ηmin/4, which implies θπ
h,i

h [i] ≥ ηmin/2 with high probability, and such a policy is guaranteed to exist from the
reachability assumption. Since the policy cover is fully exploratory, a single induction chain in the error analysis (instead
of the two in Figure 1) will suffice.

E. Off-policy occupancy estimation proofs (Section 3)
E.1. Discussion of clipping thresholds for d̄πh

As we have previously mentioned, the clipped occupancy d
π

h depends on clipping thresholds {Cx
h} and {Ca

h} that are
hyperparameter inputs to the offline estimation algorithm (Algorithm 1). To better understand the effects of Cx

h , C
a
h on d

π

h

and downstream analysis, we highlight three properties below, which we have written only for Cx
h (but that take analogous

forms for Ca
h).

Importantly, property 3 shows that the missingness error ∥dπh−dπh∥1 is Lipschitz in the clipping thresholds {Cx
h}, indicating

that small changes in Cx
h will only lead to small changes in the missingness error, and thus the result of Theorem 2. For

practical purposes, this serves as a reassurance that, within some limit, misspecifications of Cx
h , C

a
h in the algorithm do not

have catastrophic consequences.

Proposition 5. For two sets of clipping thresholds {Cx
h}, {(Cx

h)
′}, following Definition 1, for each h = 1, . . . ,H let their

19

Reinforcement Learning in Low-Rank MDPs with Density Features

corresponding clipped occupancies be defined recursively as

d
π

h = Pπ
h−1

(
d
π

h−1 ∧ Cx
h−1d

D
h−1

)
(d

π

h)
′ = Pπ

h−1

(
(d

π

h−1)
′ ∧ (Cx

h−1)
′dDh−1

)
with d

π

0 = (d
π

0)
′ = d0. Then the following two properties hold for each h ∈ [H]:

1. (Monotonicity) d
π

h ≤ (d
π

h)
′ if Cx

h′ ≤ (Cx
h′)′ for all h′ < h. The relationship also holds in the other direction, i.e.,

replacing “≤” with “>”.

2. (Clipped occupancy Lipschitz in thresholds) ∥(dπh)′ − d
π

h∥1 ≤
∑

h′<h |(Cx
h′)′ − Cx

h′ |.

3. (Missingness error Lipschitz in thresholds)
∣∣∣∥dπh − (d

π

h)
′∥1 − ∥dπh − d

π

h∥1
∣∣∣ ≤∑h′<h |(Cx

h′)′ − Cx
h′ |.

Proof. We prove these three claims one by one.

Proof of Claim 1 We will prove Claim 1 via induction. Suppose d
π

h′−1 ≤ (d
π

h′−1)
′ for some h′ ≤ h. This holds for the

base case h′ = 1 since d
π

0 = (d
π

0)
′. Then since Cx

h′−1 ≤ (Cx
h′−1)

′,

d
π

h′ = Pπ
h′−1

(
d
π

h′−1 ∧ Cx
h′−1d

D
h′−1

)
≤ Pπ

h′−1

(
(d

π

h′−1)
′ ∧ (Cx

h′−1)
′dDh′−1

)
= (d

π

h′)′.

Then by induction we have that d
π

h ≤ (d
π

h)
′.

Proof of Claim 2 For Claim 2, using Lemma 20, we have

∥(dπh)′ − d
π

h∥1

≤
∥∥∥(dπh−1 ∧ Cx

h−1d
D
h−1

)
−
(
(d

π

h−1)
′ ∧ (Cx

h−1)
′dDh−1

)∥∥∥
1

≤
∥∥∥(dπh−1 ∧ Cx

h−1d
D
h−1

)
−
(
(d

π

h−1)
′ ∧ Cx

h−1d
D
h−1

)∥∥∥
1
+
∥∥∥((dπh−1)

′ ∧ Cx
h−1d

D
h−1

)
−
(
(d

π

h−1)
′ ∧ (Cx

h−1)
′dDh−1

)∥∥∥
1

≤
∥∥∥dπh−1 − (d

π

h−1)
′
∥∥∥
1
+
∥∥Cx

h−1d
D
h−1 − (Cx

h−1)
′dDh−1

∥∥
1

=
∥∥∥dπh−1 − (d

π

h−1)
′
∥∥∥
1
+
∣∣Cx

h−1 − (Cx
h−1)

′∣∣ .
Unfolding this recursion from level h− 1 through level 0 gives the result.

Proof of Claim 3 For Claim 3, we have∣∣∣∥dπh − (d
π

h)
′∥1 − ∥dπh − d

π

h∥1
∣∣∣ = ∣∣∣∣∫ |dπh(x)− (d

π

h)
′(x)| − |dπh(x)− d

π

h(x)|(dx)
∣∣∣∣

≤
∫ ∣∣∣|dπh(x)− (d

π

h)
′(x)| − |dπh(x)− d

π

h(x)|
∣∣∣ (dx)

≤
∫ ∣∣∣(dπh)′(x)− d

π

h(x)
∣∣∣ (dx) (since ||x| − |y|| ≤ |x− y|)

=
∥∥∥(dπh)′ − d

π

h

∥∥∥
1
.

Then applying Claim 2 gives the stated claim.

E.2. Proof of occupancy estimation

Proposition (Restatement of Proposition 2). We have the following properties for d
π

h:

20

Reinforcement Learning in Low-Rank MDPs with Density Features

1. d
π

h ≤ dπh .

2. d
π

h = dπh when data covers π, i.e., ∀h′ < h we have dπh′ ≤ Cx
h′dDh′ and πh′ ≤ Ca

h′πD
h′ .

3. ∥dπh − dπh∥1 ≤ ∥dπh−1 − dπh−1∥1 + ∥dπh−1 − d
π

h−1 ∧ Cx
h−1d

D
h−1∥1 + ∥Pπ

h−1d
π
h−1 −Pπ

h−1d
π
h−1∥1.

Proof. We prove these three claims one by one.

Proof of Claim 1 Firstly, we have d
π

h = dπh = d0. Assuming the claim holds for h′ − 1, then we have d
π

h′ =

Pπ
h′−1(d

π

h′−1 ∧ Cx
h′−1d

D
h′−1) ≤ Pπ

h′−1(d
π

h′−1 ∧ Cx
h′−1d

D
h′−1) ≤ Pπ

h′−1(d
π
h′−1 ∧ Cx

h′−1d
D
h′−1) ≤ Pπ

h′−1d
π
h′−1 = dπh′ .

By induction, we complete the proof.

Proof of Claim 2 It is easy to see that dπh′ ≤ Cx
h′dDh′ together with Claim 1 implies d

π

h′ ≤ Cx
h′dDh′ , thus ∥dπh′ − d

π

h′ ∧
Cx

h′dDh′∥1 = 0. In addition, πh′ ≤ Ca
h′πD

h′ gives us πh′ = πh′ , therefore
∥∥Pπ

h′−1d
π
h′−1 −Pπ

h′−1d
π
h′−1

∥∥
1
= 0. Now we

can prove Claim 2 inductively. For h′ = 0, we know the claim holds since d
π

0 = dπ0 = d0. Assuming the claim holds for
h′ − 1, by Claim 3 we have that

0 ≤ ∥dπh′ − dπh′∥1 ≤ ∥dπh′−1 − dπh′−1∥1 + ∥dπh′−1 − d
π

h′−1 ∧ Cx
h′−1d

D
h′−1∥1 + ∥Pπ

h′−1d
π
h′−1 −Pπ

h′−1d
π
h′−1∥1 = 0.

This means the claim holds for h′. By induction, we complete the proof.

Proof of Claim 3 For the third part, we have the following decomposition

∥dπh − dπh∥1 =
∥∥∥Pπ

h−1

(
d
π

h−1 ∧ Cx
h−1d

D
h−1

)
−Pπ

hd
π
h−1

∥∥∥
1

≤
∥∥∥Pπ

h−1

(
d
π

h−1 ∧ Cx
h−1d

D
h−1

)
−Pπ

h−1d
π
h−1

∥∥∥
1
+
∥∥Pπ

h−1d
π
h−1 −Pπ

hd
π
h−1

∥∥
1

≤
∥∥∥dπh−1 ∧ Cx

h−1d
D
h−1 − dπh−1

∥∥∥
1
+
∥∥Pπ

h−1d
π
h−1 −Pπ

hd
π
h−1

∥∥
1

(Lemma 20)

≤
∥∥∥dπh−1 ∧ Cx

h−1d
D
h−1 − d

π

h−1

∥∥∥
1
+
∥∥∥dπh−1 − dπh−1

∥∥∥
1
+
∥∥Pπ

h−1d
π
h−1 −Pπ

hd
π
h−1

∥∥
1
.

Lemma (Restatement of Lemma 1). For every h ∈ [H], the error between estimates d̂πh from Algorithm 1 and the clipped
target d

π

h is decomposed recursively as∥∥∥d̂πh − d
π

h

∥∥∥
1
≤
∥∥∥d̂πh−1 − d

π

h−1

∥∥∥
1
+ 2Cx

h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+ Cx

h−1C
a
h−1

∥∥∥d̂D,†
h−1 − dD,†

h−1

∥∥∥
1

+
√
2

∥∥∥∥∥ŵπ
h −Eπ

h−1

(
dDh−1

d̂πh−1 ∧ Cx
h−1d̂

D
h−1

d̂Dh−1

)∥∥∥∥∥
2,dD,†

h−1

,

where (Eπ
hdh) := (Pπ

hdh)/d
D,†
h .

Proof. We start by separating out the recursive term∥∥∥d̂πh − d
π

h

∥∥∥
1
=
∥∥∥d̂πh −Pπ

h−1

(
d
π

h−1 ∧ Cx
h−1d

D
h−1

)∥∥∥
1

≤
∥∥∥d̂πh −Pπ

h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

)∥∥∥
1
+
∥∥∥Pπ

h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

)
−Pπ

h−1

(
d
π

h−1 ∧ Cx
h−1d̂

D
h−1

)∥∥∥
1

+
∥∥∥Pπ

h−1

(
d
π

h−1 ∧ Cx
h−1d̂

D
h−1

)
−Pπ

h−1

(
d
π

h−1 ∧ Cx
h−1d

D
h−1

)∥∥∥
1

≤
∥∥∥d̂πh −Pπ

h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

)∥∥∥
1
+
∥∥∥d̂πh−1 ∧ Cx

h−1d̂
D
h−1 − d

π

h−1 ∧ Cx
h−1d̂

D
h−1

∥∥∥
1

+
∥∥∥dπh−1 ∧ Cx

h−1d̂
D
h−1 − d

π

h−1 ∧ Cx
h−1d

D
h−1

∥∥∥
1

≤
∥∥∥d̂πh −Pπ

h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

)∥∥∥
1
+
∥∥∥d̂πh−1 − d

π

h−1

∥∥∥
1
+ Cx

h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
. (9)

21

Reinforcement Learning in Low-Rank MDPs with Density Features

Here, we apply Lemma 20 in the second inequality. The last inequality is due to |min(x, y) − min(x, z)| ≤ |y − z| for
x, y, z ∈ R.

Now, we consider the first term in Eq. (9) and get∥∥∥d̂πh −Pπ
h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

)∥∥∥
1

≤

∥∥∥∥∥d̂πh −Pπ
h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

d̂Dh−1

dDh−1

)∥∥∥∥∥
1

+

∥∥∥∥∥Pπ
h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

d̂Dh−1

dDh−1

)
−Pπ

h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

d̂Dh−1

d̂Dh−1

)∥∥∥∥∥
1

≤

∥∥∥∥∥d̂πh −Pπ
h−1

(
d̂πh−1 ∧ Cx

h−1d̂
D
h−1

d̂Dh−1

dDh−1

)∥∥∥∥∥
1

+ Cx
h−1

∥∥∥dDh−1 − d̂Dh−1

∥∥∥
1
. (10)

In the last inequality, we notice
∥∥∥∥ d̂π

h−1∧Cx
h−1d̂

D
h−1

d̂D
h−1

∥∥∥∥
∞

≤ Cx
h−1 by our convention 0

0 = 0 and apply Lemma 20 again.

Let w̃h−1 :=
d̂π
h−1∧Cx

h−1d̂
D
h−1

d̂D
h−1

for short. Since ∥w̃h−1∥∞ ≤ Cx
h−1, Lemma 19 guarantees (Pπ

h−1(d
D
h−1w̃h−1))

dD,†
h−1

≤ Cx
h−1C

a
h−1,

thus the ratio is well-defined. Then we can further upper-bound the first term in Eq. (10) as∥∥∥d̂πh −Pπ
h−1

(
dDh−1w̃h−1

)∥∥∥
1
=

∥∥∥∥∥ŵπ
h d̂D,†

h−1 −
Pπ

h−1

(
dDh−1w̃h−1

)
dD,†
h−1

dD,†
h−1

∥∥∥∥∥
1

≤
∥∥∥ŵπ

h d̂D,†
h−1 − ŵπ

h dD,†
h−1

∥∥∥
1
+

∥∥∥∥∥ŵπ
h dD,†

h−1 −
Pπ

h−1

(
dDh−1w̃h−1

)
dD,†
h−1

dD,†
h−1

∥∥∥∥∥
1

=
∥∥∥ŵπ

h d̂D,†
h−1 − ŵπ

h dD,†
h−1

∥∥∥
1
+

∥∥∥∥∥ŵπ
h −

Pπ
h−1

(
dDh−1w̃h−1

)
dD,†
h−1

∥∥∥∥∥
1,dD,†

h−1

≤ ∥ŵπ
h∥∞

∥∥∥d̂D,†
h−1 − dD,†

h−1

∥∥∥
1
+

∥∥∥∥∥ŵπ
h −

Pπ
h−1

(
dDh−1w̃h−1

)
dD,†
h−1

∥∥∥∥∥
1,dD,†

h−1

≤ Cx
hC

a
h

∥∥∥d̂D,†
h−1 − dD,†

h−1

∥∥∥
1
+

∥∥∥∥∥ŵπ
h −

Pπ
h−1

(
dDh−1w̃h−1

)
dD,†
h−1

∥∥∥∥∥
2,dD,†

h−1

. (11)

Combining Eq. (9), Eq. (10), and Eq. (11) and noticing the definition of Eπ
h and w̃h−1 completes the proof.

Theorem (Restatement of Theorem 2). Fix δ ∈ (0, 1). Suppose Assumption 1 and Assumption 2 hold, and µ∗ is known.
Then, given an evaluation policy π, by setting

nmle = Õ

d

 ∑
h∈[H]

Cx
hC

a
h

2

log(1/δ)/ε2

 and nreg = Õ

d

 ∑
h∈[H]

Cx
hC

a
h

2

log(1/δ)/ε2

 ,

with probability at least 1− δ, FORC (Algorithm 1) returns state occupancy estimates {d̂πh}
H−1
h=0 satisfying∥∥∥d̂πh − d

π

h

∥∥∥
1
≤ ε, ∀h ∈ [H].

The total number of episodes required by the algorithm is

Õ

dH

 ∑
h∈[H]

Cx
hC

a
h

2

log(1/δ)/ε2

 .

Proof. We first make two claims on MLE estimation and error propagation.

22

Reinforcement Learning in Low-Rank MDPs with Density Features

Claim 1 Our estimated data distributions satisfy that with probability 1− δ/2, for any h ∈ [H]∥∥∥d̂Dh − dDh

∥∥∥
1
≤ εmle and

∥∥∥d̂D,†
h − dD,†

h

∥∥∥
1
≤ εmle, (12)

where

εmle := 6

√
d log(16HBµnmle/δ)

nmle
.

Claim 2 Under the high-probability event that Eq. (12) holds, we further have that with probability at least 1 − δ/2, for
any 1 ≤ h ≤ H , ∥∥∥d̂πh − d

π

h

∥∥∥
1
≤
∥∥∥d̂πh−1 − d

π

h−1

∥∥∥
1
+ 3Cx

h−1C
a
h−1εmle +

√
2εreg,h−1, (13)

where

εreg,h−1 :=

√
221184d(Cx

h−1C
a
h−1)

2 log (2Hnreg/δ)

nreg
.

Now we establish the final error bound with these two claims. Notice that the total failure probability is less than δ.
Unfolding Eq. (13) from h′ = h to h′ = 1 and noticing that d̂π0 = d

π

0 = d0 yields that for any h ∈ [H]

∥∥∥d̂πh − d
π

h

∥∥∥
1
≤

h−1∑
h′=0

(
3Cx

h′Ca
h′εmle +

√
2εreg,h′

)
. (14)

Substituting in the expressions for εmle and εreg,, we have

∥∥∥d̂πh − d
π

h

∥∥∥
1
≤

h−1∑
h′=0

18Cx
h′Ca

h′

√
d log(16HBµnmle/δ)

nmle
+ 666Cx

h′Ca
h′

√
d log (2Hnreg/δ)

nreg

 . (15)

It is easy to see that if we set

nmle = Õ

d

 ∑
h∈[H]

Cx
hC

a
h

2

log(1/δ)/ε2

 and nreg = Õ

d

 ∑
h∈[H]

Cx
hC

a
h

2

log(1/δ)/ε2

 ,

then we have ∥∥∥d̂πh − d
π

h

∥∥∥
1
≤ ε, ∀h ∈ [H].

In the following, we provide the proof of these two claims respectively.

Proof of Claim 1 We start with a fixed h ∈ [H] and bounding ∥d̂Dh − dDh ∥1, where we recall that d̂Dh is the MLE
solution in Eq. (2). By Lemma 22, we know that function class Fh has an ℓ1 optimistic cover with scale 1/nmle of size
(2⌈Bµnmle⌉)d. It is easy to see that the true marginal distribution dDh ∈ Fh from Lemma 17 and any dh ∈ Fh is a valid
probability distribution over X . From Assumption 2, we know that once conditioned on prior dataset D0:h−1, the current
dataset Dmle

h is drawn i.i.d. from the fixed distribution denoted as dDh . Thus, Lemma 12 tells us that when conditioned on
D0:h−1, with probability at least 1− δ/(4H)

∥d̂Dh − dDh ∥1 ≤ 1

nmle
+

√
12 log(4H (2⌈Bµnmle⌉)d /δ)

nmle
+

6

nmle
(16)

≤ 1

nmle
+

√
12d log(16HBµnmle/δ)

nmle
+

6

nmle

23

Reinforcement Learning in Low-Rank MDPs with Density Features

≤ 6

√
d log(16HBµnmle/δ)

nmle
= εmle. (17)

Since Eq. (16) holds for any such fixed D0:h−1, applying the law of total expectation gives us this that Eq. (16) holds with
probability 1− δ/(4H) without conditioning on D0:h−1.

Similarly, with probability at least 1 − δ/(4H), for the MLE solution d̂D,†
h we have ∥d̂D,†

h − dD,†
h ∥1 ≤ εmle. Union

bounding these two high-probability events and further union bounding over h ∈ [H] gives us that Eq. (12) holds with
probability 1− δ/2.

Proof of Claim 2 Notice that the proof in this part is under the high-probability event that Eq. (12) holds. We consider a
fixed h ∈ [H]. From Lemma 1, we have the error propagation result that∥∥∥d̂πh − d

π

h

∥∥∥
1
≤
∥∥∥d̂πh−1 − d

π

h−1

∥∥∥
1
+ 2Cx

h−1

∥∥∥d̂Dh−1 − dDh−1

∥∥∥
1
+ Cx

h−1C
a
h−1

∥∥∥d̂D,†
h−1 − dD,†

h−1

∥∥∥
1

+
√
2

∥∥∥∥∥ŵπ
h −

Pπ
h−1

(
dDh−1w̃h−1

)
dD,†
h−1

∥∥∥∥∥
2,dD,†

h−1

, (18)

where w̃h−1 :=
d̂π
h−1∧Cx

h−1d̂
D
h−1

d̂D
h−1

.

Since ŵπ
h ∈ Wh, we have ∥ŵπ

h∥∞ ≤ Cx
hC

a
h . The last term on RHS isolates the finite-sample error of regression, involv-

ing the difference between the empirical minimizer ŵπ
h and the population minimizer

Pπ
h−1(d

D
h−1w̃h−1)

dD,†
h−1

of the regression

objective. To bound this error, we apply Lemma 13 and Lemma 14, which give us that, with probability at least 1−δ/(2H),∥∥∥∥∥ŵπ
h −

Pπ
h−1

(
dDh−1w̃h−1

)
dD,†
h−1

∥∥∥∥∥
2

2,dD,†
h−1

= E
[
LDreg

h−1
(ŵπ

h , w̃h−1, π)
]
− E

[
LDreg

h−1

(
Pπ

h−1

(
dDh−1w̃h−1

)
dD,†
h−1

, w̃h−1, π

)]

≤ 2

(
LDreg

h−1
(ŵπ

h , w̃h−1, π)− LDreg
h−1

(
Pπ

h−1

(
dDh−1w̃h−1

)
dD,†
h−1

, w̃h−1, π

))
+ 2ε2reg,h−1 (19)

where

εreg,h−1 :=

√
221184 · d(Cx

h−1C
a
h−1)

2 log (2Hnreg/δ)

nreg

The first term in Eq. (19) compares the empirical regression loss of the empirical minimizer ŵπ
h against the population

solution. In order to show that this is ≤ 0, we first need to check that
Pπ

h−1(d
D
h−1w̃h−1)

dD,†
h−1

∈ Wh. As we have previously seen,

we have
Pπ

h−1(d
D
h−1w̃h−1)

dD,†
h−1

≤ Cx
h−1C

a
h−1 from Lemma 19, thus satisfying the norm constraints of Wh. Further, Lemma 16

guarantees that both the numerator and denominator are linear functions of µ∗
h−1, i.e., Pπ

h−1

(
dDh−1w̃h−1

)
= ⟨µ∗

h−1, θ
up
h ⟩

and dD,†
h−1 = ⟨µ∗

h−1, θ
down
h ⟩ for some θuph , θdown

h ∈ Rd. Then since ŵπ
h minimzes the empirical regression loss Eq. (3), we

have

LDreg
h−1

(
ŵπ

h−1, w̃h−1, π
)
− LDreg

h−1

(
Pπ

h−1

(
dDh−1w̃h−1

)
dD,†
h−1

, w̃h−1, π

)
≤ 0. (20)

Combining Eq. (18), Eq. (19), Eq. (20) with the MLE bound of Eq. (12), with probability at least 1− δ/(2H) we have

∥d̂πh − d
π

h∥1 ≤ ∥d̂πh−1 − d
π

h−1∥1 + 2Cx
h−1εmle + Cx

h−1C
a
h−1εmle +

√
2εreg,h−1

24

Reinforcement Learning in Low-Rank MDPs with Density Features

≤ ∥d̂πh−1 − d
π

h−1∥1 + 3Cx
h−1C

a
h−1εmle +

√
2εreg,h−1.

Finally, union bounding over h ∈ [H], plugging in the definition of εmle, and rearranging gives that Eq. (13) holds with
probability at least 1− δ/2.

E.3. Proof of offline policy optimization

Theorem (Restatement of Theorem 3). Fix δ ∈ (0, 1) and suppose Assumption 1 and Assumption 2 hold. Given a policy
class Π, let {d̂πh}h∈[H],π∈Π be the output of running Algorithm 1. Then with probability at least 1−δ, for any deterministic
reward function R and policy selected as π̂R = argmaxπ∈Π v̂πR, we have

vπ̂R

R ≥ max
π∈Π

vπR − ε,

where v̂πR :=
∑H−1

h=0

∫∫
d̂πh(xh)R(xh, ah)π(ah|xh)(dxh)(dah) and vR is defined similarly for {dπh}. The total number of

episodes required by the algorithm is

Õ

dH3

 ∑
h∈[H]

Cx
hC

a
h

2

log(|Π|/δ)/ε2

 .

Additionally, define the set of policies fully covered by the data to be

Πcovered =
{
π ∈ Π : dπh = d

π

h, ∀h ∈ [H]
}
.

Then under the above guarantee, we also have

vπ̂R

R ≥ max
π∈Πcovered

vπR − ε.

Proof. Firstly, Theorem 2 states that, with probability at least 1 − δ/|Π|, Õ
(
dH3

(∑
h∈[H] C

x
hC

a
h

)2
log(|Π|/δ)/ε2

)
samples are sufficient for learning {d̂πh} such that ∥d̂πh − d

π

h∥1 ≤ ε
2H for all h ∈ [H] and each π ∈ Π. Taking a union

bound over π ∈ Π, with probability at least 1− δ, we have that for all h ∈ [H], π ∈ Π,

∥d̂πh − d
π

h∥1 ≤ ε

2H
.

Then since the R is bounded on [0, 1], for any π ∈ Π we have

|v̂πR − vπR| =
H−1∑
h=0

∫∫
(d̂πh(xh)− d

π

h(xh))R(xh, ah)π(ah|xh)(dxh)(dah)

≤
H−1∑
h=0

∫
|d̂πh(xh)− d

π

h(xh)|
(∫

π(ah|xh)(dah)

)
(dxh)

=
H−1∑
h=0

∥d̂πh − d
π

h∥1 ≤ ε/2.

Denote π∗
R = maxπ∈Π vπR, and recall that we pick π̂R = argmaxπ∈Π v̂πR. Then

vπ̂R

R −max
π∈Π

vπR = vπ̂R

R − v
π∗
R

R ≥ vπ̂R

R − v
π∗
R

R = vπ̂R

R − v̂π̂R

R + v̂π̂R

R − v̂
π∗
R

R + v̂
π∗
R

R − v
π∗
R

R ≥ −ε,

where the first inequality follows from the fact that dπh ≥ d
π

h , thus vπR ≥ vπR. The second inequality results from the fact
that v̂π̂R

R ≥ v̂
π∗
R

R and |v̂πR − vπR| ≤ ε/2 for all π ∈ Π.

The result for Πcovered is straightforward from the observation that maxπ∈Π vπR ≥ maxπ∈Πcovered vπR, since vπR = vπR for
each covered policy.

25

Reinforcement Learning in Low-Rank MDPs with Density Features

F. Online policy cover construction proofs (Section 4)
F.1. Proof of occupancy estimation

Lemma (Restatement of Lemma 4). For any h ∈ [H] and π ∈ Π in Algorithm 2,∥∥∥dπh − dπh

∥∥∥
1
≤
∥∥∥dπh−1 − dπh−1

∥∥∥
1
+ 4dmax

π′∈Π

∥∥∥d̂π′

h−1 − d
π′

h−1

∥∥∥
1
.

Proof. Firstly, from the third claim of Proposition 2, we have that for any h ∈ [H], π ∈ Π

∥dπh − dπh∥1 ≤ ∥dπh−1 − dπh−1∥1 + ∥dπh−1 − d
π

h−1 ∧ Cx
h−1d

D
h−1∥1 + ∥Pπ

h−1d
π
h−1 −Pπ

h−1d
π
h−1∥1. (21)

Now we further simplify the latter two error terms on the RHS of Eq. (21) by noticing that Cx
h = d and Ca

h = K for all
h ∈ [H]. For the last term, πD = unif(A) gives us

π(ah−1|xh−1) = min{π(ah−1|xh−1), C
a
h−1π

D(ah−1|xh−1)} = min{π(ah−1|xh−1), 1)} = π(ah−1|xh−1)

and thus
∥∥Pπ

h−1d
π
h−1 −Pπ

h−1d
π
h−1

∥∥
1
= 0. For the middle term, we expand the expression as∥∥∥dπh−1 − d

π

h−1 ∧ ddDh−1

∥∥∥
1
=

∫
d
π

h−1(xh−1)−
(
d
π

h−1 ∧ ddDh−1

)
(xh−1)(dxh−1).

Consider a fixed xh−1 ∈ X . Note that d
π

h−1(xh−1) −
(
d
π

h−1 ∧ ddDh−1

)
(xh−1) is nonzero only if ddDh−1(xh−1) <

d
π

h−1(xh−1), for which we have

d
π

h−1(xh−1)−
(
d
π

h−1 ∧ ddDh−1

)
(xh−1) = d

π

h−1(xh−1)− ddDh−1(xh−1)

≤ d̂πh−1(xh−1)− ddDh−1(xh−1) +
∣∣∣dπh−1(xh−1)− d̂πh−1(xh−1)

∣∣∣ .
To bound d̂πh−1(xh−1)− ddDh−1(xh−1), we have

d̂πh−1(xh−1)− ddDh−1(xh−1)

≤ d̃πh−1(xh−1)− ddDh−1(xh−1) +
∣∣∣d̂πh−1(xh−1)− d̃πh−1(xh−1)

∣∣∣
≤

d∑
i=1

∣∣∣d̃πh−1,i

h−1 (xh−1)
∣∣∣− ddDh−1(xh−1) +

∣∣∣d̂πh−1(xh−1)− d̃πh−1(xh−1)
∣∣∣

≤
d∑

i=1

∣∣∣d̂πh−1,i

h−1 (xh−1)
∣∣∣− ddDh−1(xh−1) + (d+ 1)max

π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d̃π
′

h−1(xh−1)
∣∣∣

≤
d∑

i=1

∣∣∣∣dπh−1,i

h−1 (xh−1)

∣∣∣∣− ddDh−1(xh−1) + (d+ 1)max
π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d̃π
′

h−1(xh−1)
∣∣∣

+ dmax
π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d
π′

h−1(xh−1)
∣∣∣

=
d∑

i=1

d
πh−1,i

h−1 (xh−1)− ddDh−1(xh−1) + (d+ 1)max
π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d̃π
′

h−1(xh−1)
∣∣∣

+ dmax
π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d
π′

h−1(xh−1)
∣∣∣

≤
d∑

i=1

dπ
h−1,i

h−1 (xh−1)− ddDh−1(xh−1) + (d+ 1)max
π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d̃π
′

h−1(xh−1)
∣∣∣

26

Reinforcement Learning in Low-Rank MDPs with Density Features

+ dmax
π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d
π′

h−1(xh−1)
∣∣∣

= (d+ 1)max
π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d̃π
′

h−1(xh−1)
∣∣∣+ dmax

π′∈Π

∣∣∣d̂π′

h−1(xh−1)− d
π′

h−1(xh−1)
∣∣∣ .

In the second inequality, we use that Πexpl
h−1 = {πh−1,1, . . . , πh−1,d} are the policies corresponding to the barycentric

spanner, which Lemma 15 guarantees to be of cardinality no larger than d. The first equality is because d
π

h−1(xh−1) ≥
0, ∀π, which can be seen by the induction definition in Eq. (4) and the non-negativity of d0. The fifth inequality is due
to d

π

h−1(xh−1) ≤ dπh−1(xh−1), ∀π, which can be shown inductively by noticing d
π

0 ≤ dπ0 and the definition of d
π

h in
Eq. (4). The last equality can be seen from that dDh−1(xh−1) is the marginal distribution of Dh−1 and Dh−1 is rolled in
with unif(Πexpl

h−1).

Integrating over xh−1 yields∥∥∥dπh−1 − d
π

h−1 ∧ ddDh−1

∥∥∥
1
≤ (d+ 1)max

π′∈Π

∥∥∥d̂π′

h−1 − d̃π
′

h−1

∥∥∥
1
+ (d+ 1)max

π′∈Π

∥∥∥d̂π′

h−1 − d
π′

h−1

∥∥∥
1
.

Since d
π′

h−1 = Pπ′

h−2(d
π

h−2 ∧ Cx
h−2d

D
h−2) = Pπ′

h−2(d
π

h−2 ∧ ddDh−2) is linear in the features µ∗
h−2 (Lemma 16), and d̃π

′

h−1 is
the closest linear approximation in the ℓ1 norm to d̂π

′

h−1 (line 7), for any π′ ∈ Π we have∥∥∥d̂π′

h−1 − d̃π
′

h−1

∥∥∥
1
≤
∥∥∥d̂π′

h−1 − d
π′

h−1

∥∥∥
1

(22)

and thus ∥∥∥dπh−1 − d
π

h−1 ∧ ddDh−1

∥∥∥
1
≤ 2(d+ 1)max

π′∈Π

∥∥∥d̂π′

h−1 − d
π′

h−1

∥∥∥
1
. (23)

Then combining Eq. (21) with Eq. (23) gives∥∥∥dπh − dπh

∥∥∥
1
≤
∥∥∥dπh−1 − dπh−1

∥∥∥
1
+ 4dmax

π′∈Π

∥∥∥d̂π′

h−1 − d
π′

h−1

∥∥∥
1
.

Theorem (Restatement of Theorem 5). Fix δ ∈ (0, 1) and consider an MDP M that satisfies Assumption 1, where the
right feature µ∗ is known. Then by setting

nmle = Õ

(
d3K2H4 log(1/δ)

ε2

)
, nreg = Õ

(
d5K2H4 log(|Π|/δ)

ε2

)
, n = nmle + nreg,

with probability at least 1− δ, FORCE returns state occupancy estimates {d̂πh}
H−1
h=0 satisfying that

∥d̂πh − dπh∥1 ≤ ε, ∀h ∈ [H], π ∈ Π.

The total number of episodes required by the algorithm is

Õ(nH) = Õ

(
d5K2H5 log(|Π|/δ)

ε2

)
.

Proof. From Algorithm 2, we know that dataset D0:H−1 satisfies Assumption 2 and for each π ∈ Π, d̂πh is estimated in the
same way as that in Algorithm 1. Therefore, we can follow the same steps as the proof of Theorem 2. By setting Cx

h = d
and Ca

h = K for all h ∈ [H] in Eq. (15), with probability at least 1− δ, for any policy π ∈ Π, we get that

∥∥∥d̂πh − d
π

h

∥∥∥
1
≤ 18hd3/2K

√
log(16HBµnmle/δ)

nmle
+ 666hd3/2K

√
log (2|Π|Hnreg/δ)

nreg
. (24)

The primary difference between the above results and the corresponding statements in Theorem 2 is that the regression
error in Eq. (24) includes an additional union bound over all π ∈ Π. This is because Algorithm 2 performs estimation

27

Reinforcement Learning in Low-Rank MDPs with Density Features

for all policies, while Algorithm 1 only concerns a single fixed policy. We note that this change in the proof occurs only
through application of Lemma 14, which is stated generally and already includes a union bound over all policies of interest.
Because MLE estimation occurs only for the data distribution and is policy-agnostic, the MLE error (second term) does
not require such a union bound.

Next, to bound the missingness error, from Lemma 4, we have∥∥∥dπh − dπh

∥∥∥
1
≤
∥∥∥dπh−1 − dπh−1

∥∥∥
1
+ 4dmax

π′∈Π

∥∥∥d̂π′

h−1 − d
π′

h−1

∥∥∥
1
. (25)

Unfolding Eq. (25) yields ∥∥∥dπh − dπh

∥∥∥
1
≤ 4d

h−1∑
h′=0

max
π′∈Π

∥∥∥d̂π′

h′ − d
π′

h′

∥∥∥
1
. (26)

Plugging the bound for
∥∥∥d̂π′

h′ − d
π′

h′

∥∥∥
1

from Eq. (24) into Eq. (26) gives

∥∥∥dπh − dπh

∥∥∥
1
≤ 72h2d3/2K

√
log(16HBµnmle/δ)

nmle
+ 2664h2d5/2K

√
log (2|Π|Hnreg/δ)

nreg
. (27)

Combining Eq. (24) and Eq. (27) via triangle inequality and simplifying, we have

∥∥∥d̂πh − dπh

∥∥∥
1
≤ 90h2d3/2K

√
log(16HBµnmle/δ)

nmle
+ 3330h2d5/2K

√
log (2|Π|Hnreg/δ)

nreg
.

Finally, noticing that nmle = Õ
(

d3K2H4 log(1/δ)
ε2

)
, nreg = Õ

(
d5K2H4 log(|Π|/δ)

ε2

)
, n = nmle + nreg completes the proof.

F.2. Proof of online policy optimization

First, we prove Proposition 1, from which our online policy optimization guarantee (Theorem 6) follows when combined
with Theorem 5.

Proposition 6 (Restatement of Proposition 1). Given any policy π and reward function10 R = {Rh} with Rh : X ×A →
[0, 1], define expected return as vπR := Eπ[

∑H−1
h=0 Rh(xh, ah)] =

∑H−1
h=0

∫∫
dπh(xh)Rh(xh, ah) π(ah|xh)(dxh)(dah).

Then for {d̂πh} such that ∥d̂πh − dπh∥1 ≤ ε/(2H) for all π ∈ Π and h ∈ [H], and policy chosen as

π̂R = argmax
π∈Π

v̂πR,

we have
vπ̂R

R ≥ max
π∈Π

vπR − ε,

where v̂πR =
∑H−1

h=0

∫∫
d̂πh(xh)Rh(xh, ah)π(ah|xh)(dxh)(dah) is the expected return calculated using {d̂πh}.

Proof. Since the R is bounded on [0, 1], for any π ∈ Π we have

|v̂πR − vπR| =
H−1∑
h=0

∫∫
(d̂πh(xh)− dπh(xh))R(xh, ah)π(ah|xh)(dxh)(dah)

≤
H−1∑
h=0

∫
|d̂πh(xh)− dπh(xh)|

(∫
π(ah|xh)(dah)

)
(dxh)

10We assume known & deterministic rewards, and can easily handle unknown/stochastic versions (Appendix D.2).

28

Reinforcement Learning in Low-Rank MDPs with Density Features

=
H−1∑
h=0

∥dπh − d̂πh∥1 ≤ ε/2.

Next, recall we pick π̂R = argmaxπ∈Π v̂πR, and denote π∗
R = argmaxπ∈Π vπR. Then using the above inequality, we have

vπ̂R

R −max
π∈Π

vπR = vπ̂R

R − v
π∗
R

R = vπ̂R

R − v̂π̂R

R + v̂π̂R

R − v̂
π∗
R

R + v̂
π∗
R

R − v
π∗
R

R ≥ −ε

since v̂π̂R

R ≥ v̂
π∗
R

R , completing the proof.

Theorem 9 (Restatement of Theorem 6). Fix δ ∈ (0, 1) and suppose Assumption 1 and Assumption 2 hold, and µ∗ is
known. Given a policy class Π, let {d̂πh}h∈[H],π∈Π be the output of running FORCE. Then with probability at least 1 − δ,
for any reward function R and policy selected as π̂R = argmaxπ∈Π v̂πR, we have

vπ̂R

R ≥ max
π∈Π

vπR − ε,

where vπR and v̂πR are defined in Proposition 1. The total number of episodes required by the algorithm is

Õ

(
d5K2H7 log(|Π|/δ)

ε2

)
.

Proof. The proof takes similar steps as the proof of Theorem 3. From Theorem 5, w.p. ≥ 1− δ, we obtain estimates {d̂πh}
such that ∥dπh − d̂πh∥1 ≤ ε

2H for all π ∈ Π with Õ
(

d5K2H7 log(|Π|/δ)
ε2

)
total number of samples, where we use the union

bound over π ∈ Π. Combining this with Proposition 1 gives the result.

G. Representation learning
In this section, we present the detailed algorithms and results for the representation learning setting (Section 5), where
the true density features are not given but must also be learned from an exponentially large candidate feature set. The
algorithms and analyses mostly follow that of the known density feature case (Section 3 and Section 4), therefore, we
mainly discuss the difference here.

G.1. Off-policy occupancy estimation

We start with describing our algorithm FORCRL (Algorithm 3), which estimates the occupancy distribution dπh of any given
policy π using an offline dataset D0:H−1 when the true density feature µ∗ is unknown and the learner is given a realizable
density feature class Υ ∋ µ∗ (see Assumption 3).

As discussed in Section 5, instead of using µ∗ to construct the function classes, a natural choice here is to use the union of all
linear function classes. Since now the feature comes from candidate feature classes Υh−2,Υh−1, in line 4 of Algorithm 3,
we use different function classes Fh−1(Υh−2),Fh(Υh−1) as defined in Eq. (28) for the MLE objective. In addition, in
line 5 of Algorithm 3, now we run regression with a different function class Wh(Υh−1) as defined in Eq. (29).

Similar as in the known feature case counterpart (Theorem 2), we have the following guarantee for estimating dπ .

Theorem (Restatement of Theorem 7). Fix δ ∈ (0, 1). Suppose Assumption 1, Assumption 2, and Assumption 3 hold.
Then, given an evaluation policy π, by setting

nmle = Õ

d

 ∑
h∈[H]

Cx
hC

a
h

2

log(|Υ|/δ)/ε2

 and nreg = Õ

d

 ∑
h∈[H]

Cx
hC

a
h

2

log(|Υ|/δ)/ε2

 ,

with probability at least 1− δ, FORCRL (Algorithm 3) returns state occupancy estimates {d̂πh}
H−1
h=0 satisfying that∥∥∥d̂πh − d

π

h

∥∥∥
1
≤ ε, ∀h ∈ [H].

29

Reinforcement Learning in Low-Rank MDPs with Density Features

Algorithm 3 Fitted Occupancy Iteration with Clipping and Representation Learning (FORCRL)
Input: policy π, density feature class Υ, dataset D0:H−1, sample sizes nmle and nreg, clipping thresholds{Cx

h} and{Ca
h}.

1: Initialize d̂π0 = d0, ∀π ∈ Π.
2: for h = 1, . . . ,H do
3: Randomly split Dh−1 to two folds Dmle

h−1 and Dreg
h−1 with sizes nmle and nreg respectively.

4: Estimate marginal data distributions d̂Dh−1(xh−1) and d̂D,†
h−1(xh) by MLE with dataset Dmle

h−1.

d̂Dh−1 = argmax
dh−1∈Fh−1(Υh−2)

1

nmle

nmle∑
i=1

log
(
dh−1(x

(i)
h−1)

)
and d̂D,†

h−1 = argmax
dh∈Fh(Υh−1)

1

nmle

nmle∑
i=1

log
(
dh(x

(i)
h)
)

where

Fh(Υh−1) =
{
dh = ⟨µh−1, θh⟩ : dh ∈ ∆(X), µh−1 ∈ Υh−1, θh ∈ Rd, ∥θh∥∞ ≤ 1

}
. (28)

5: Define LDreg
h−1

(wh, wh−1, πh−1) :=
1

nreg

∑nreg

i=1

(
wh(x

(i)
h)− wh−1(x

(i)
h−1)

πh−1(a
(i)
h−1|x

(i)
h−1)

πD
h−1(a

(i)
h−1|x

(i)
h−1)

)2

and estimate

ŵπ
h = argmin

wh∈Wh(Υh−1)

LDreg
h−1

(
wh,

d̂πh−1 ∧ Cx
h−1d̂

D
h−1

d̂Dh−1

, πh−1 ∧ Ca
h−1π

D
h−1

)

where

Wh(Υh−1) =

{
wh =

⟨µh−1, θ
up
h ⟩

⟨µh−1, θdown
h ⟩

: ∥wh∥∞ ≤ Cx
h−1C

a
h−1, µh−1 ∈ Υh−1, θ

up
h , θdown

h ∈ Rd

}
. (29)

6: Set the estimate d̂πh = ŵπ
h d̂D,†

h−1.
7: end for

Output: estimated state occupancies {d̂πh}h∈[H].

The total number of episodes required by the algorithm is

Õ

dH

 ∑
h∈[H]

Cx
hC

a
h

2

log(|Υ|/δ)/ε2

 .

Proof. The proof for this theorem largely follows its counterpart for the known feature case (Theorem 2), and we mainly
discuss the different steps here. We now make the following two slightly different claims on MLE estimation and error
propagation. Based on them, the final error bound is obtained in the same way as Theorem 2.

Claim 1 Our estimated data distributions satisfy that with probability 1− δ/2, for any h ∈ [H]∥∥∥d̂Dh − dDh

∥∥∥
1
≤ εmle and

∥∥∥d̂D,†
h − dD,†

h

∥∥∥
1
≤ εmle, (30)

where

εmle := 6

√
d log(16H|Υ|Bµnmle/δ)

nmle
.

Claim 2 Under the high-probability event that Eq. (30) holds, we further have with probability at least 1 − δ/2, for any
1 ≤ h ≤ H , we have ∥∥∥d̂πh − d

π

h

∥∥∥
1
≤
∥∥∥d̂πh−1 − d

π

h−1

∥∥∥
1
+ 3Cx

h−1C
a
h−1εmle +

√
2εreg,h−1,

30

Reinforcement Learning in Low-Rank MDPs with Density Features

where

εreg,h−1 :=

√
221184d(Cx

h−1C
a
h−1)

2 log (2H|Υ|nreg/δ)

nreg
. (31)

Proof of Claim 1 Notice that for the term εmle in Eq. (30), we now have an additional |Υ| factor inside the log.
The reason is that here we use Fh−1(Υh−2),Fh(Υh−1) instead of Fh−1,Fh. By Lemma 22, the two function classes
considered here have ℓ1 optimistic covers with scale 1/nmle of size |Υ| (2⌈Bµnmle⌉)d. In addition, we still have that
dDh−1 ∈ Fh−1(Υh−2), d

D,†
h−1 ∈ Fh(Υh−1) from Lemma 18, and any dh−1 ∈ Fh−1(Υh−2),Fh(Υh−1) is a valid probabil-

ity distribution over X .

Proof of Claim 2 This proof mostly follows the proof of Claim 2 in Theorem 2. The difference is that the function
class Wh(Υh−1) now consists of all features in Υh−1 instead of only the true feature µ∗

h−1. Therefore, in Eq. (31), the
term εreg,h−1 has an additional |Υ| inside the log, which is from the counterpart of Eq. (19). It is also easy to see that
Pπ

h−1(d
D
h−1w̃h−1)

dD,†
h−1

∈ Wh(Υh−1) by following the same logic before. Further noticing that µ∗
h−1 ∈ Υh−1, we again have

Eq. (20) holds here.

Theorem 10 (Offline policy optimization with representation learning). Fix δ ∈ (0, 1) and suppose Assumption 1, As-
sumption 2, and Assumption 3 hold. Given a policy class Π, let {d̂πh}h∈[H],π∈Π be the output of running Algorithm 3. Then
with probability at least 1 − δ, for any deterministic reward function R and policy selected as π̂R = argmaxπ∈Π v̂πR, we
have

vπ̂R

R ≥ max
π∈Π

vπR − ε,

where vπR and v̂πR are defined in Proposition 1, and vR is defined similarly for {dπh}. The total number of episodes required
by the algorithm is

Õ

dH3

 ∑
h∈[H]

Cx
hC

a
h

2

log(|Π||Υ|/δ)/ε2

 .

Additionally, define the set of policies fully covered by the data to be

Πcovered =
{
π ∈ Π : dπh = d

π

h, ∀h ∈ [H]
}
.

Then with the same total number of episodes required by the algorithm, for any reward function R and policy selected as
π̂R = argmaxπ∈Πcovered v̂πR, with probability at least 1− δ, we have

vπ̂R

R ≥ max
π∈Πcovered

vπR − ε.

Proof. The proof follows the same steps as that of Theorem 3. Notice that now we will apply Theorem 7 rather than
Theorem 2 to get the bound ∥d̂πh − d

π

h∥1, which leads to the additional log(|Υ|) factor.

G.2. Online policy cover construction

Now we present the algorithm FORCRLE (Algorithm 4), which estimates the occupancy distribution dπh of any given policy
π with the access of online interaction. Again the true density feature µ∗ is unknown and the learner is given a realizable
density feature class Υ (µ∗ ∈ Υ).

Similar as the know feature case online algorithm (Algorithm 2), we use the offline algorithm (Algorithm 3) as a submodule.
However, as discussed in the main text, the crucial different step is to select a representation µ̂h−1 in Eq. (32) in line 8
before setting d̃πh . This guarantee the cardinality of the barycentric spanner is at most d. Then the state occupancy d̃πh is set
as the linear estimate using µ̂h−1 (rather than using µ∗

h−1 in the known feature case) in line 9.

Similar as in the known feature case counterpart (Theorem 5), we have the following guarantee for estimating dπ .

31

Reinforcement Learning in Low-Rank MDPs with Density Features

Algorithm 4 FORCRL-guided Exploration (FORCRLE)
Input: policy class Π, density feature class Υ, n = nmle + nreg

1: Initialize d̂π0 = d0 and d̃π0 = d0, ∀π ∈ Π.
2: for h = 1, . . . ,H do
3: Construct {d̃πh−1,i

h−1 }di=1 as the barycentric spanner of {d̃πh−1}π∈Π, and set Πexpl
h−1 = {πh−1,i}di=1.

4: Draw a tuple dataset Dh−1 = {(x(i)
h−1, a

(i)
h−1, x

(i)
h)}ni=1 using unif(Πexpl

h−1) ◦ unif(A).
5: for π ∈ Π do
6: Estimate d̂πh using the h-level loop11of Algorithm 3 (lines 4-6) with Dh, d̂πh−1, Cx

h = d, Ca
h = K.

7: end for
8: Select feature µ̂h−1 according to

µ̂h−1 = min
µh−1∈Υh−1

max
π∈Π

min
θh∈Rd

∥⟨µh−1, θh⟩ − d̂πh∥1. (32)

9: For all π ∈ Π, set the closest linear approximation to d̂πh with feature µ̂h−1 as d̃πh = ⟨µ̂h−1, θ̃h⟩, where θ̃h =

argminθh∈Rd ∥⟨µ̂h−1, θh⟩ − d̂πh∥1.
10: end for
Output: estimated state occupancy measure {d̂πh}h∈[H],π∈Π.

Theorem (Restatement of Theorem 8). Fix δ ∈ (0, 1) and suppose Assumption 1 and Assumption 3 hold. Then by setting

nmle = Õ

(
d3K2H4 log(|Υ|/δ)

ε2

)
, nreg = Õ

(
d5K2H4 log(|Π||Υ|/δ)

ε2

)
, n = nmle + nreg,

with probability at least 1− δ, FORCRLE (Algorithm 4) returns state occupancy estimates {d̂πh}
H−1
h=0 satisfying that

∥d̂πh − dπh∥1 ≤ ε, ∀h ∈ [H], π ∈ Π.

The total number of episodes required by the algorithm is

Õ(nH) = Õ

(
d5K2H5 log(|Π||Υ|/δ)

ε2

)
.

Proof. The proof for this theorem largely follows its counterpart for the known feature case (Theorem 5), and we only
discuss the different steps here.

Firstly, Lemma 4 still holds. However, since we use “joint linearization” in line 8 and line 9, we need to modify the proof

of Eq. (22) as the following. Again, we have d
π′

h−1 = Pπ′

h−2(d
π

h−2 ∧ Cx
h−2d

D
h−2) = Pπ′

h−2(d
π

h−2 ∧ ddDh−2) is linear in the
true feature µ∗

h−2 (Lemma 16). Together with the feature selection criteria Eq. (32), we have that

max
π′∈Π

∥d̃π
′

h−1 − d̂π
′

h−1∥1 = max
π′∈Π

min
θh−1∈Rd

∥⟨µ̂h−2, θh−1⟩ − d̂π
′

h−1∥1

≤ max
π′∈Π

min
θh−1∈Rd

∥⟨µ∗
h−2, θh−1⟩ − d̂π

′

h−1∥1 ≤ max
π′∈Π

∥dπ
′

h−1 − d̂π
′

h−1∥1.

For Eq. (24), we will have an additional |Υ| factor inside the log as

εmle := 6

√
d log(16H|Υ|Bµnmle/δ)

nmle
.

The reason is that here we use Fh−1(Υh−2),Fh(Υh−1) instead of Fh−1,Fh. By Lemma 22, the two function classes
considered here have ℓ1 optimistic covers with scale 1/nmle of size |Υ| (2⌈Bµnmle⌉)d. In addition, we still have that
dDh−1 ∈ Fh−1(Υh−2), d

D,†
h−1 ∈ Fh(Υh−1) Lemma 18, and any dh−1 ∈ Fh−1(Υh−2),Fh(Υh−1) is a valid probability

distribution over X .

The remaining part of the proof is the same as that of Theorem 5.

32

Reinforcement Learning in Low-Rank MDPs with Density Features

Theorem 11 (Online policy optimization with representation learning). Fix δ ∈ (0, 1) and suppose Assumption 1 and
Assumption 3 hold. Given a policy class Π, let {d̂πh}h∈[H],π∈Π be the output of running Algorithm 4. Then with probability
at least 1− δ, for any deterministic reward function R (as per Proposition 1) and policy selected as π̂R = argmaxπ∈Π v̂πR,
we have

vπ̂R

R ≥ max
π∈Π

vπR − ε,

where v̂πR :=
∑H−1

h=0

∫∫
d̂πh(xh)R(xh, ah)π(ah|xh)(dxh)(dah). The total number of episodes required by the algorithm is

Õ

(
d5K2H7 log(|Π||Υ|/δ)

ε2

)
.

Proof. The proof follows the same steps as that of Theorem 6. Notice that now we will apply Theorem 8 rather than
Theorem 5 to get the bound ∥dπh − d̂πh∥, which leads to the additional log(|Π|) factor.

H. Maximum likelihood estimation
In this section, we adapt the standard i.i.d. results of maximum likelihood estimation (Van de Geer, 2000) to our setting,
and in particular, to our (infinite) linear function class. We consider the problem of estimating a probability distribution
over the instance space X , and note that we abuse some notations (e.g., n,L,D,F) in this section, as they have different
meanings in other parts of the paper. Given an i.i.d. sampled dataset D = {x(i)}ni=1 and a function class F , we optimize
the MLE objective

f̂ = argmin
f∈F

1

n

n∑
i=1

log
(
f(x(i))

)
. (33)

We consider the function class F to be infinite, and as is common in statistical learning, our result will depends on its
structural complexity. In particular, this will be quantified using the ℓ1 optimistic cover, defined below:

Definition 3 (ℓ1 optimistic cover). For a function class F ⊆ (X → R), we call function class F an ℓ∞ optimistic cover
of F with scale γ, if for any f ∈ F there exists f ∈ F , such that ∥f − f∥1 ≤ γ and f(x) ≤ f(x), ∀x ∈ X . Notice that
here we do not require the cover to be proper, i.e., we allow F ̸⊆ F .

Now we are ready to state the MLE guarantee formally.

Lemma 12 (MLE guarantee). Let D = {x(i)}ni=1 be a dataset, where x(i) are drawn i.i.d. from some fixed probability
distribution f∗ over X . Consider a function class F that satisfies: (i) f∗ ∈ F , (ii) each function f ∈ F is a valid
probability distribution over X (i.e., f ∈ ∆(X)), and (iii) F has a finite ℓ1 optimistic cover (Definition 3) F with scale γ

and F ⊆ (X → R≥0). Then with probability at least 1− δ, the MLE solution f̂ in Eq. (33) has an ℓ1 error guarantee

∥f̂ − f∗∥1 ≤ γ +

√
12 log(|F|/δ)

n
+ 6γ.

Proof. Our proof is based on Zhang (2006); Agarwal et al. (2020); Liu et al. (2022) and is simpler since we assume the D
here is drawn i.i.d. instead of adaptively. We first define L(f,D) = 1

2

∑n
i=1 log

(
f(x(i))
f∗(x(i))

)
. By Chernoff’s method, for a

fixed f ∈ F we have that

P
(
L(f,D)− log(ED[exp(L(f,D))]) ≥ log(|F|/δ)

)
≤ exp(− log(|F|/δ))ED [exp (L(f,D)− log(ED[exp(L(f,D))]))]

= δ/|F|.

Union bounding over f ∈ F , with probability at least 1− δ, for any f ∈ F we have

− log(ED[exp(L(f,D))]) ≤ −L(f,D) + log(|F|/δ). (34)

33

Reinforcement Learning in Low-Rank MDPs with Density Features

Let f ∈ F be the γ-close ℓ1 optimistic approximator of the MLE solution f̂ ∈ F . Since f(x) ≥ f̂(x), ∀x ∈ X due to the
optimistic covering construction and f̂ is the MLE estimator, for the RHS of Eq. (34). we have

−L(f,D) =
1

2

n∑
i=1

log

(
f∗(x(i))

f(x(i))

)
≤ 1

2

n∑
i=1

log

(
f∗(x(i))

f̂(x(i))

)
=

1

2

(
n∑

i=1

log(f∗(x(i)))−
n∑

i=1

log(f̂(x(i)))

)
≤ 0.

Next, consider the LHS of Eq. (34). From the definition of dataset D and L(f,D), we get

− log(ED[exp(L(f,D))]) = − log

(
ED

[
exp

(
1

2

n∑
i=1

log

(
f(x(i))

f∗(x(i))

))])

= − n log

(
ED

[
exp

(
1

2
log

(
f(x)

f∗(x)

))])
= −n log

ED

√ f(x)

f∗(x)

 .

Furthermore, by − log(y) ≥ 1− y, ℓ1 optimistic cover definition, and f∗, f̂ are valid distributions over x ∈ X , we have

− n log

ED

√ f(x)

f∗(x)

 ≥ n

1− ED

√ f(x)

f∗(x)

 = n

(
1−

∫ √
f(x)f∗(x)(dx)

)

=
n

2

∫ (√
f∗(x)−

√
f(x)

)2

(dx) +
n

2

(
1−

∫
f(x)(dx)

)
=

n

2

∫ (√
f∗(x)−

√
f(x)

)2

(dx) +
n

2

∫ (
f̂(x)− f(x)

)
(dx)

≥ n

2

∫ (√
f∗(x)−

√
f(x)

)2

(dx)− nγ

2
.

Then notice that
∫ (√

f∗(x) +
√

f(x)

)2

(dx) ≤ 2
∫ (

f∗(x) + f(x)
)
(dx) ≤ 2

∫
(f∗(x)+f̂(x)+|f(x)−f̂(x)|)(dx) ≤ 6

and the Cauchy-Schwarz inequality, we obtain

n

2

∫ (√
f∗(x)−

√
f(x)

)2

(dx)− nγ

2

≥ n

12

(∫ (√
f∗(x)−

√
f(x)

)2

(dx)

)(∫ (√
f∗(x) +

√
f(x)

)2

(dx)

)
− nγ

2

≥ n

12

(∫
|f(x)− f∗(x)|(dx)

)2

− nγ

2
=

n

12
∥f − f∗∥21 −

nγ

2
.

Combining the above inequalities and rearranging yields

∥f − f∗∥21 ≤ 12 log(|F|/δ)
n

+ 6γ.

Finally, by the triangle inequality and the definition of the ℓ1 optimistic cover, we get

∥f̂ − f∗∥1 ≤ ∥f̂ − f∥1 + ∥f − f∗∥1 ≤ γ +

√
12 log(|F|/δ)

n
+ 6γ ,

which completes the proof.

34

Reinforcement Learning in Low-Rank MDPs with Density Features

I. Auxiliary lemmas
In this section, we provide detailed proofs for auxiliary lemmas.

I.1. Squared loss regression results

Lemma 13 (Squared loss decomposition). For any wh, wh+1 : X → R, dataset Dreg
h = {(xh, ah, xh+1)} ∼ dDh , and a

pseudo-policy π, we have∥∥∥∥∥wh+1 −
Pπ

h

(
dDh wh

)
dD,†
h

∥∥∥∥∥
2

2,dD,†
h

= E
[
LDreg

h
(wh+1, wh, π)

]
− E

[
LDreg

h

(
Pπ

h

(
dDh wh

)
dD,†
h

, wh, π

)]
. (35)

Proof. We introduce a new notation

(Eπ
hwh)(xh+1) :=

(
Pπ

h

(
dDh wh

))
(xh+1)

dD,†
h (xh+1)

=

∫∫
Ph(xh+1|xh, ah)π(ah|xh)d

D
h (xh)wh(xh)(dxh)(dah)

dD,†
h (xh+1)

, (36)

which represents the conditional expectation. Then we have the decomposition

E
[
LDreg

h
(wh+1, wh, π)

]
=

∫∫∫
dDh (xh, ah, xh+1)

(
wh+1(xh+1)−

π(ah|xh)

πD(ah|xh)
wh(xh)

)2

(dxh)(dah)(dxh+1)

=

∫∫∫
dDh (xh, ah, xh+1)

(
wh+1(xh+1)− (Eπ

hwh)(xh+1) + (Eπ
hwh)(xh+1)−

π(ah|xh)

πD(ah|xh)
wh(xh)

)2

(dxh)(dah)(dxh+1)

=

∫
dD,†
h (xh+1)(wh+1(xh+1)− (Eπ

hwh)(xh+1))
2(dxh+1)

+

∫∫∫
dDh (xh, ah, xh+1)

(
(Eπ

hwh)(xh+1)−
π(ah|xh)

πD(ah|xh)
wh(xh)

)2

(dxh)(dah)(dxh+1)

+ 2

∫∫∫
dDh (xh, ah, xh+1)(wh+1(xh+1)− (Eπ

hwh)(xh+1))

(
(Eπ

hwh)(xh+1)−
π(ah|xh)

πD(ah|xh)
wh(xh)

)
(dxh)(dah)(dxh+1)

= ∥wh+1 − (Eπ
hwh)∥22,dD,†

h

+ E
[
LDreg

h
(Eπ

hwh, wh, π)
]

+ 2

∫
dD,†
h (xh+1)(wh+1(xh+1)− (Eπ

hwh)(xh+1))(E
π
hwh)(xh+1)(dxh+1)

− 2

∫
dD,†
h (xh+1)(wh+1(xh+1)− (Eπ

hwh)(xh+1))

·
(∫∫

dDh (xh, ah|xh+1)
π(ah|xh)

πD(ah|xh)
wh(xh)(dxh)(dah)

)
(dxh+1)

= ∥wh+1 − (Eπ
hwh)∥22,dD,†

h

+ E
[
LDreg

h
(Eπ

hwh, wh, π)
]

+ 2

∫
dD,†
h (xh+1)(wh+1(xh+1)− (Eπ

hwh)(xh+1))((E
π
hwh)(xh+1)− (Eπ

hwh)(xh+1))(dxh+1)

= ∥wh+1 − (Eπ
hwh)∥22,dD,†

h

+ E
[
LDreg

h
(Eπ

hwh, wh, π)
]
.

Lemma 14 (Deviation bound for regression with squared loss). For h ∈ [H], consider a dataset D0:h that satisfies As-
sumption 2 and a function wh : X → [0, Cx

h] that only depends on D0:h−1

⋃
Dmle

h . Consider a finite feature class Υh and a

35

Reinforcement Learning in Low-Rank MDPs with Density Features

finite policy class Π′ such that any π ∈ Π′ is a pseudo-policy (Definition 1) satisfying πh(ah|xh) ≤ Ca
hπ

D
h (ah|xh), ∀xh ∈

X , ah ∈ A. Then with probability 1− δ, for any wh+1 ∈ Wh+1(Υh) and π ∈ Π′, we have∣∣∣E [LDreg
h

(wh+1, wh, π)− LDreg
h

(Eπ
hwh, wh, π)

]
−
(
LDreg

h
(wh+1, wh, π)− LDreg

h
(Eπ

hwh, wh, π)
)∣∣∣

≤ 1

2
E
[
LDreg

h
(wh+1, wh, π)− LDreg

h
(Eπ

hwh, wh, π)
]
+

221184d(Cx
hC

a
h)

2 log (nreg|Π′||Υh|/δ)
nreg

where the function class Wh+1(Υh) is defined in Algorithm 1 as in Eq. (28) and the operator Eπ
h is defined in Eq. (36).

Proof. We first fix the datasets D0:h−1

⋃
Dmle

h and prove the desired bound when conditioned on these datasets, in which
case wh, d

D,†
h , πD are fixed. In the following, the expectation E and variance V are w.r.t. (xh, ah, xh+1) ∼ dDh , i.e., the data

distribution from which the samples in Dreg
h are drawn i.i.d. from (Assumption 2), when conditioned on D0:h−1

⋃
Dmle

h .

Consider a single π ∈ Π′ and feature µh ∈ Υh, and consider the hypothesis class

Y(Wh+1(µh), wh, π) = {Y (wh+1, wh, π) : wh+1 ∈ Wh+1(µh)} .

where the random variable Y (wh+1, wh, π) (suppressing the dependence on the (xh, ah, xh+1) tuple) is defined for con-
venience as

Y (wh+1, wh, π) :=

(
wh+1(xh+1)− wh(xh)

π(ah|xh)

πD(ah|xh)

)2

−
(
(Eπ

hwh)(xh+1)− wh(xh)
π(ah|xh)

πD(ah|xh)

)2

,

and we use Yi(wh+1, wh, π) to denote its realization on the i-th tuple data (x
(i)
h , a

(i)
h , x

(i)
h+1) ∈ Dreg

h . The function class
Wh+1(µh) is defined as in Eq. (29), i.e.,

Wh+1(µh) =

{
wh+1 =

⟨µh, θ
up
h+1⟩

⟨µh, θdown
h+1 ⟩

: ∥wh+1∥∞ ≤ Cx
hC

a
h , θ

up
h+1, θ

down
h+1 ∈ Rd

}
.

It can be seen that |Y (wh+1, wh, π)| ≤ 4(Cx
hC

a
h)

2 from the following. From their respective definitions, we know

∥wh∥∞ ≤ Cx
h , ∥ π

πD ∥∞ ≤ Ca
h , and ∥wh+1∥∞ ≤ Cx

hC
a
h . We also have (Eπ

hwh)(xh+1) =
(Pπ

h(d
D
h wh))(xh+1)

dD,†
h (xh+1)

∈ [0, Cx
hC

a
h]

from Lemma 19.

Further, for any Y (wh+1, wh, π) ∈ Y(Wh+1(µh), wh, π), we can bound the variance V[Y (wh+1, wh, π)] as

V[Y (wh+1, wh, π)] ≤ E
[
Y (wh+1, wh, π)

2
]

= E

((wh+1(xh+1)− wh(xh)
π(ah|xh)

πD(ah|xh)

)2

−
(
(Eπ

hwh)(xh+1)− wh(xh)
π(ah|xh)

πD(ah|xh)

)2
)2


= E

[
(wh+1(xh+1)− (Eπ

hwh)(xh+1))
2

(
wh+1(xh+1)− 2wh(xh)

π(ah|xh)

πD(ah|xh)
+ (Eπ

hwh)(xh+1)

)2
]

≤ 4(Cx
hC

a
h)

2E
[
(wh+1(xh+1)− (Eπ

hwh)(xh+1))
2
]

= 4(Cx
hC

a
h)

2E [Y (wh+1, wh, π)] . (Lemma 13)

Next, we show that the uniform covering number N1(γ,Y(Wh+1(µh), wh, π),m) (see Definition 7) for any γ ∈ R,m ∈ N
can be bounded by the covering number of Wh+1(µh). Let Zm = (x

(i)
h , a

(i)
h , x

(i)
h+1)

m
i=1 denote m i.i.d. samples from dDh ,

and denote Xm = (x
(i)
h+1)

m
i=1 the corresponding xh+1 samples. For any Zm and Y (wh+1, wh, π), Y (w′

h+1, wh, π) ∈
Y(Wh+1(µh), wh, π),

1

m

m∑
i=1

∣∣Yi(wh+1, wh, π)− Yi(w
′
h+1, wh, π)

∣∣
36

Reinforcement Learning in Low-Rank MDPs with Density Features

=
1

m

m∑
i=1

∣∣∣∣∣∣
(
wh+1(x

(i)
h+1)− wh(x

(i)
h)

π(a
(i)
h |x(i)

h)

πD(a
(i)
h |x(i)

h)

)2

−

(
w′

h+1(x
(i)
h+1)− wh(x

(i)
h)

π(a
(i)
h |x(i)

h)

πD(a
(i)
h |x(i)

h)

)2
∣∣∣∣∣∣

=
1

m

m∑
i=1

∣∣∣∣∣wh+1(x
(i)
h+1)− 2wh(x

(i)
h)

π(a
(i)
h |x(i)

h)

πD(a
(i)
h |x(i)

h)
+ w′

h+1(x
(i)
h+1)

∣∣∣∣∣ · ∣∣∣wh+1(x
(i)
h+1)− w′

h+1(x
(i)
h+1)

∣∣∣
≤ 4Cx

hC
a
h

m

m∑
i=1

∣∣∣wh+1(x
(i)
h+1)− w′

h+1(x
(i)
h+1)

∣∣∣ .
Thus any γ/(4Cx

hC
a
h)-covering of Wh+1|Xm in ℓ1 is a γ-covering of Y (Wh+1, wh, π)|Zm in ℓ1, and

N1(γ, Y (Wh+1(µh), wh, π), Z
m) ≤ N1(γ/(4C

x
hC

a
h),Wh+1(µh), X

m)

which implies the same relationship for the uniform covering numbers:

N1(γ, Y (Wh+1(µh), wh, π),m) = max
Zm

N1(γ, Y (Wh+1(µh), wh, π), Z
m)

≤ max
Xm

N1(γ/(4C
x
hC

a
h),Wh+1(µh), X

m) = N1(γ/(4C
x
hC

a
h),Wh+1(µh),m).

Then using this inequality and b = 4(Cx
hC

a
h)

2 in Lemma 26 and conditioning on D0:h−1

⋃
Dmle

h , for any wh+1 ∈
Wh+1(µh), we have

P

(∣∣∣∣∣E[Y (wh+1, wh, π)]−
1

nreg

n∑
i=1

Yi(wh+1, wh, π)

∣∣∣∣∣ ≥ ε

)

≤ 36N1

(
ε3

10240(Cx
hC

a
h)

4
,Y(Wh+1(µh), wh, π),

640nreg(C
x
hC

a
h)

4

ε2

)
· exp

(
− nregε

2

128V[Y (wh+1, wh, π)] + 2048ε(Cx
hC

a
h)

2

)
≤ 36N1

(
ε3

40960(Cx
hC

a
h)

5
,Wh+1(µh),

640nreg(C
x
hC

a
h)

4

ε2

)
· exp

(
− nregε

2

512(Cx
hC

a
h)

2E[Y (wh+1, wh, π)] + 2048ε(Cx
hC

a
h)

2

)
.

Then setting the RHS equal to δ′, we have

nreg =
512(Cx

hC
a
h)

2 (E[Y (wh+1, wh, π)] + 4ε) log
(
36N1

(
ε3

40960(Cx
hC

a
h)

5 ,Wh+1(µh),
640nreg(C

x
hC

a
h)

4

ε2

)
/δ′
)

ε2

implying

ε ≤

√√√√512(Cx
hC

a
h)

2E[Y (wh+1, wh, π)] log
(
36N1

(
ε3

40960(Cx
hC

a
h)

5 ,Wh+1(µh),
640nreg(Cx

hC
a
h)

4

ε2

)
/δ′
)

nreg

+
2048(Cx

hC
a
h)

2 log
(
36N1

(
ε3

40960(Cx
hC

a
h)

5 ,Wh+1(µh),
640nreg(C

x
hC

a
h)

4

ε2

)
/δ′
)

nreg
.

From Lemma 23 and Lemma 25, and noting that nreg ≥ 2048(Cx
hC

a
h)

2

ε , we have that

log

(
36N1

(
ε3

40960(Cx
hC

a
h)

5
,Wh+1(µh),

640nreg(C
x
hC

a
h)

4

ε2

)
/δ′
)

37

Reinforcement Learning in Low-Rank MDPs with Density Features

≤ 4(d+ 1) log(8e) log

(
655360e2(Cx

hC
a
h)

6

ε3δ′

)
≤ 96d log

(nreg

δ′

)
.

Thus with probability at least 1− δ′,∣∣∣∣∣E[Y (wh+1, wh, π)]−
1

nreg

nreg∑
i=1

Yi(wh+1, wh, π)

∣∣∣∣∣
≤

√
49152d(Cx

hC
a
h)

2E[Y (wh+1, wh, π)] log
(nreg

δ′

)
nreg

+
196608d(Cx

hC
a
h)

2 log
(nreg

δ′

)
nreg

.

Then invoking the AM-GM inequality,∣∣∣∣∣E[Y (wh+1, wh, π)]−
1

nreg

nreg∑
i=1

Yi(wh+1, wh, π)

∣∣∣∣∣
≤ 1

2
E[Y (wh+1, wh, π)] +

221184 · d(Cx
hC

a
h)

2 log
(nreg

δ′

)
nreg

.

Recall that this result holds for a fixed π and Wh+1(µh) defined using a fixed µh. Then setting δ′ = δ
|Π′||Υh| and taking a

union bound over Π and Υh, we have that with probability at least 1− δ that for any π ∈ Π′ and wh+1 ∈ Wh+1(Υh) that∣∣∣∣∣E[Y (wh+1, wh, π)]−
1

nreg

nreg∑
i=1

Yi(wh+1, wh, π)

∣∣∣∣∣
≤ 1

2
E[Y (wh+1, wh, π)] +

221184d(Cx
hC

a
h)

2 log
(

nreg|Π′||Υh|
δ

)
nreg

.

Finally, since this result holds for any fixed D0:h−1

⋃
Dmle

h , by the law of total expectation, it also holds with probability
at least 1 − δ′ without conditioning on D0:h−1

⋃
Dmle

h . Using Lemma 13 with the definitions of Y (wh+1, wh, π) and
Yi(wh+1, wh, π) completes the proof.

I.2. Barycentric spanner

In this section we first define the barycentric spanner (Awerbuch and Kleinberg, 2008, Definition 2.1), then prove that a
spanner of size d always exists for a set of functions linear in a feature µh−1, from which Proposition 3 follows straightfor-
wardly. The proof is adapted from Awerbuch and Kleinberg (2008, Proposition 2.2), which only applies to square matrices,
and we extend it to rectangular matrices for completeness. We close with a discussion of the computational complexity of
finding the barycentric spanner.

Definition 4 (Barycentric spanner). Let V be a vector space over the real numbers, and S ⊆ V a subset whose linear span
is a m-dimensional subspace of V . A set X = {x1, . . . , xm} ⊆ S is a barycentric spanner of S if every x ∈ S may be
expressed as a linear combination of elements of X using coefficients in [−1,+1].

Lemma 15 (Barycentric spanner for linear functions). For a feature µh−1 ∈ Υh−1 with rank d, any compact set of linear
functions U ⊆ {⟨µh−1, θh⟩ : θh ∈ Rd} has a barycentric spanner of cardinality at most d.

Proof. We prove the proposition when rank(µh−1) = d is full rank (the argument should be the same when rank(µh−1) <
d). Because U is linear in µh−1, its linear span is a d-dimensional subspace of R|X |, and any u ∈ U can be written as the
linear combination of a subspace basis.

We claim the barycentric spanner is any subset B = {b1, . . . , bd} ⊆ U with B ∈ Rd×|X| that maximizes the volume
| det(BB⊤)|. By compactness, the maximum is obtained by at least one subset of U . Since det(BB⊤) = (

∏d
i=1 σi(B))2,

38

Reinforcement Learning in Low-Rank MDPs with Density Features

the maximizing B will have d singular values and full row rank (otherwise the determinant will be 0). As a result, any
u ∈ U will be a linear combination of the rows of B, i.e., there exists {ci}di=1 such that u =

∑d
i=1 cibi. We will prove that

|ci| ≤ 1 by contradiction.

W.l.o.g, suppose there exists u with coefficient |c1| > 1. Then consider a new matrix B̃ = {u, b2, . . . , bd}, which can be
expressed as B̃ = CB, where C ∈ Rd×d is the coefficient matrix. Then B̃ has determinant

| det(B̃B̃⊤)| = | det(C)|2| det(BB⊤)| = |c1|2| det(BB⊤)| ≥ det(BB⊤).

Then we have a contradiction because B was volume-maximizing, and |ci| ≤ 1.

Computation of barycentric spanner Lastly, we discuss computation of the barycentric spanner. In the main results
of the paper we assume that we can perfectly compute the barycentric spanner in an efficient manner. When this is not
the case, the algorithm in Figure 2 in Awerbuch and Kleinberg (2008) (with similar adaptations to handle rectangular
matrices as in the proof of Lemma 15) can be used to compute a C-approximate barycentric spanner, where C > 1, with
O(d2 logC d) calls to a linear optimization oracle (Awerbuch and Kleinberg, 2008, Proposition 2.5). A C-approximate
barycentric spanner is defined similarly as Definition 4, except that the coefficients are in the range [−C,+C]. This will
only change our main results by increasing them by a factor of C, and we may simply set C = 2 with minimal effects on
our sample complexity guarantees.

I.3. Properties of low-rank MDPs

Lemma 16. In the low-rank MDP (Assumption 1), for any h ∈ [H], function dh−1 : X → R, and pseudo-policy π
(Definition 1), we have

(Pπ
hdh)(xh+1) =

∫∫
Ph(xh+1|xh, ah)πh(ah|xh)dh(xh)(dxh)(dah) = ⟨µ∗

h(xh+1), θh+1⟩

for some θh+1 ∈ Rd with ∥θh+1∥∞ ≤ ∥dh∥1.

Proof. By the definition of low-rank MDPs (Assumption 1), we have

Pπ
hdh =

∫∫
Ph(xh+1|xh, ah)πh(ah|xh)dh(xh)(dxh)(dah)

=

∫∫
⟨µ∗

h(xh+1), ϕ
∗
h(xh, ah)⟩πh(ah|xh)dh(xh)(dxh)(dah)

= ⟨µ∗
h(xh+1), θh+1⟩,

where θh+1 =
∫∫

ϕ∗
h(xh, ah)πh(ah|xh)dh(xh)(dxh)(dah) ∈ Rd. In addition,

∥θh+1∥∞ ≤
∫∫

∥ϕ∗
h(xh, ah)∥∞πh(ah|xh)|dh(xh)|(dxh)(dah)

≤
∫ (∫

πh(ah|xh)(dah)

)
|dh(xh)|(dxh)

≤
∫

|dh(xh)|(dxh) = ∥dh∥1

where we use Lemma 21 in the last inequality.

Lemma 17. In low-rank MDPs (Assumption 1), given a dataset Dh satisfying Assumption 2 for h ∈ [H], let dDh and dD,†
h

be the corresponding current-state and next-state data distributions. Then for the function class

Fh =
{
dh = ⟨µ∗

h−1, θh⟩ : dh ∈ ∆(X), θh ∈ Rd, ∥θh∥∞ ≤ 1
}
,

we have that dDh ∈ Fh and dD,†
h ∈ Fh+1.

39

Reinforcement Learning in Low-Rank MDPs with Density Features

Proof. Recall that under Assumption 2, Dh is collected by ρh−1 ◦ πD
h where a0:h−1 ∼ ρh−1, an (h− 1)-step non-Markov

policy, and ah ∼ πD
h , a Markov policy.

First we prove the lemma statement for dD,†
h . Since dDh is a valid distribution and πD

h is a valid Markov policy, from

Lemma 16 we know that dD,†
h = P

πD
h

h (dDh) can be written as ⟨µ∗
h, θh+1⟩ with ∥θh+1∥∞ ≤ 1. Finally, since dD,†

h is a valid
marginal distribution, dD,†

h ∈ ∆(X), thus satisfying all constraints of Fh+1.

To prove the lemma statement for dDh , we first prove a variant of Lemma 16 for non-Markov policies. With some overload
of notation, let dDh−1(xh−1) denote the marginal distribution of xh−1 induced by rolling the non-Markov policy ρh−1 to
level h− 1. Then

dDh (xh) =

∫∫
Ph(xh|xh−1, ah−1)ρ

h−1(ah−1|x0:h−1)d
D
h−1(xh−1)(dxh−1)(dah−1).

Using similar steps as the proof of Lemma 16, we have that

dDh (xh) =

∫∫
Ph(xh|xh−1, ah−1)ρ

h−1(ah−1|x0:h−1)d
D
h−1(xh−1)(dxh−1)(dah−1)

=

∫∫
⟨ϕ∗

h−1(xh−1, ah−1), µ
∗
h−1(xh)⟩ρh−1(ah−1|x0:h−1)d

D
h−1(xh−1)(dxh−1)(dah−1)

= ⟨µ∗
h−1(xh), θh⟩,

where θh =
∫∫

ϕ∗
h−1(xh−1, ah−1)ρ

h−1(ah−1|x0:h−1)d
D
h−1(xh−1)(dxh−1)(dah−1) ∈ Rd. Since dDh−1 and

ρh−1(·|x0:h−1) are valid probability distributions over states xh and actions ah, respectively, it is easy to see that

∥θh∥∞ ≤
∫∫

∥ϕ∗
h−1(xh−1, ah−1)∥∞ρh−1(ah−1|x0:h−1)d

D
h−1(xh−1)(dxh−1)(dah−1) ≤ 1

since ∥ϕ∗
h−1(·)∥∞ ≤ 1 from Assumption 1. Finally, since dDh is a valid distribution, we have dDh ∈ Fh.

Lemma 18. In low-rank MDPs (Assumption 1), given a dataset Dh satisfying Assumption 2 for h ∈ [H], let dDh and dD,†
h

be the corresponding current-state and next-state data distributions. Then for the function class

Fh(Υh−1) =
{
dh = ⟨µh−1, θh⟩ : dh ∈ ∆(X), µh−1 ∈ Υh−1, θh ∈ Rd, ∥θh∥∞ ≤ 1

}
,

we have that dDh ∈ Fh(Υh−1) and dD,†
h ∈ Fh+1(Υh).

Proof. From Lemma 17 we know that dDh ∈ Fh (where Fh is linear in the true features µ∗
h−1, as defined in the Lemma 17),

and dD,†
h ∈ Fh+1. Noting that Fh ⊆ Fh(Υh−1) and Fh+1 ⊆ Fh+1(Υh) completes the proof.

Lemma 19. For h ∈ [H], suppose we have a dataset Dh satisfying Assumption 2, with corresponding data distributions dDh
and dD,†

h . Given a function wh : X → [−Cx
h , C

x
h] and pseudo-policy π (Definition 1) with πh(a|x)

πD
h (a|x) ≤ Ca

h , ∀x ∈ X , a ∈ A,
we have ∥∥∥∥∥Pπ

h(d
D
h wh)

dD,†
h

∥∥∥∥∥
∞

≤ Cx
hC

a
h .

Proof. For any xh+1 ∈ X , we have(
Pπ

h

(
dDh wh

))
(xh+1) ≤ Cx

h

(
Pπ

hd
D
h

)
(xh+1)

= Cx
h

∫∫
Ph(xh+1|xh, ah)πh(ah|xh)d

D
h (xh)(dxh)(dah)

≤ Cx
hC

a
h

∫∫
Ph(xh+1|xh, ah)π

D
h (ah|xh)d

D
h (xh)(dxh)(dah)

= Cx
hC

a
hd

D,†
h (xh+1).

The last equality follows from the Bellman flow equation and Assumption 2. The convention that 0
0 = 0 gives the lemma

statement.

40

Reinforcement Learning in Low-Rank MDPs with Density Features

Lemma 20. For any two state distributions dh, d′h and a pseudo-policy π (Definition 1), we have the following inequality

∥Pπ
hdh −Pπ

hd
′
h∥1 ≤ ∥dh − d′h∥1,

where we recall that (Pπ
hdh)(xh+1) =

∫∫
Ph(xh+1|xh, ah)π(ah|xh)dh(xh)(dxh)(dah).

Proof. From definition of Pπ
h and Lemma 21, we have

∥Pπ
hdh −Pπ

hd
′
h∥1 =

∫∫
|Ph(xh+1|xh, ah)π(ah|xh) (dh(xh)− d′h(xh)) (dxh)(dah)| (dxh+1).

≤
∫ (

|dh(xh)− d′h(xh)|
(∫∫

π(ah|xh)Ph(xh+1|xh, ah)(dxh+1)(dah)

))
(dxh)

≤
∫

|dh(xh)− d′h(xh)|(dxh) = ∥dh − d′h∥1.

Lemma 21. For any pseudo-policy π (Definition 1), we have∫
πh(ah|xh)(dah) ≤ 1 ∀xh ∈ X , h ∈ [H].

Proof. Recall πh(ah|xh) = min
{
πh(ah|xh), C

a
hπ

D
h (ah|xh)

}
where πh is a valid Markov policy. Then∫

πh(ah|xh)(dah) =

∫
min

{
πh(ah|xh), C

a
hπ

D
h (ah|xh)

}
(dah) ≤

∫
πh(ah|xh)(dah) = 1.

I.4. Covering lemmas

In this subsection, we provide the ℓ1 optimistic cover lemma used in MLE (Lemma 22) and pseudo-dimension bound for
the weight function class (Lemma 23) respectively.
Lemma 22. Suppose Assumption 3 holds. Then for the function class

Fh(Υh−1) = {dh = ⟨µh−1, θh⟩ : µh−1 ∈ Υh−1, θh ∈ Rd, ∥θh∥∞ ≤ 1, dh ∈ ∆(X)},

there exists an ℓ1 optimistic cover Fh(Υh−1) (according to Definition 3) with scale γ of size |Υh−1| (2⌈Bµ/γ⌉)d and
Fh(Υh−1) ⊆ (X → R≥0).

Proof. The ideas of this proof are adapted from the proof of Proposition H.15 in (Chen et al., 2022a). Let Θh = {θh :
∃µh−1 ∈ Υh−1, s.t., ⟨µh−1, θh⟩ ∈ Fh(Υh−1)} ⊆ {θh : θh ∈ Rd, ∥θh∥∞ ≤ 1} be the set of θh parameters associated
with Fh(Υh−1). Then any dh ∈ Fh(Υh−1) can be written as ⟨µh−1, θh⟩ for some µh−1 ∈ Υh and θh ∈ Θh. Define
the γ′-neighborhood of θh to be B(θh, γ′) := γ′⌊θh/γ′⌋+ [0, γ′]d, and construct the optimistic covering function for each
dh = ⟨µh−1, θh⟩ as

fµh−1,θh(x) = max
θ∈B(θh,γ′)

⟨µh−1(x), θ⟩ ∀x ∈ X .

Note that fµh−1,θh ≥ dh pointwise, thus fµh−1,θh ≥ 0, though it is not necessarily a valid distribution. Further,

∥fµh−1,θh − dh∥1 ≤
∫

max
θ∈B(θh,γ′)

|⟨θ − θh, µh−1(x)⟩|(dx)

≤
∫

max
θ∈B(θh,γ′)

∥θ − θh∥∞∥µh−1(x)∥1(dx)

≤ γ′
∫

∥µh−1(x)∥1(dx)

≤ γ′Bµ

using Assumption 3 in the last line. Observe that there are at most (2⌈1/γ′⌉)d unique γ′-neighborhoods in
the set {B(θh, γ′)}θh∈Θh

. This implies that there are at most |Υh−1| (2⌈1/γ′⌉)d unique functions in the set
{fµh−1,θh}⟨µh−1,θh⟩∈Fh(Υh−1), which forms an ℓ1-optimistic cover of Fh(Υh−1) of scale γ′. Finally, setting γ′ = γ/Bµ

gives us an ℓ1-optimistic covering of Fh(Υh−1) of scale γ with size |Υh−1| (2⌈Bµ/γ⌉)d.

41

Reinforcement Learning in Low-Rank MDPs with Density Features

Lemma 23. For any h ∈ [H] and density feature µh−1 ∈ Υh−1, the function class

Wh(µh−1) =

{
wh =

⟨µh−1, θ
up
h ⟩

⟨µh−1, θdown
h ⟩

: ∥wh∥∞ ≤ Cx
h−1C

a
h−1, θ

up
h , θdown

h ∈ Rd

}
.

has pseudo-dimension (Definition 6) bounded as Pdim(Wh(µh−1)) ≤ 4(d+ 1) log(8e).

Proof. For any h and µh, consider the unconstrained version W ′
h(µh−1) of Wh(µh−1):

W ′
h(µh−1) =

{
w =

⟨µh−1, θ
up
h ⟩

⟨µh−1, θdown
h ⟩

: θuph , θdown
h ∈ Rd

}
.

Clearly, Wh(µh−1) ⊆ W ′
h(µh−1), thus Pdim(Wh(µh−1)) ≤ Pdim(W ′

h(µh−1)), and Pdim(W ′
h(µh−1)) =

VCdim(HW′
h(µh−1)), where HW′

h(µh−1) = {h = sign(w − c) : w ∈ W ′
h(µh−1), c ∈ R}. We will use Lemma 24 to

bound VCdim(HW′
h(µh−1)). Any h(x) ∈ HW′

h(µh−1) may be written as the following Boolean formula

Φ = 1

[
⟨µh−1(x), θ

up
h ⟩

⟨µh−1(x), θdown
h ⟩

− c ≥ 0

]

=

(
1

[
d∑

i=1

µh−1(x)[i]θ
up
h [i]− c

d∑
i=1

µh−1(x)[i]θ
down
h [i] ≥ 0

]
1 ∧

[
d∑

i=1

µh−1(x)[i]θ
down
h [i] ≥ 0

])

∨

(
1

[
d∑

i=1

µh−1(x)[i]θ
up
h [i]− c

d∑
i=1

µh−1(x)[i]θ
down
h [i] ≤ 0

]
∧ 1

[
d∑

i=1

µh−1(x)[i]θ
down
h [i] < 0

])

which involves k = 2d + 1 real variables, a polynomial degree of at most l = 1 in these variables, and s = 4 atomic
predicates. Then from Lemma 24, Pdim(Wh(µh−1))) ≤ VCdim(HW′

h(µh−1)) ≤ 4(d+ 1) log(8e).

Lemma 24 (Theorem 2.2 of Goldberg and Jerrum (1993)). Let Ck,m be a concept class where concepts and instances
are represented by k and m real values, respectively. Suppose that the membership test for any instance c in any con-
cept C of Ck,m can be expressed as a Boolean formula Φk,m containing s distinct atomic predicates, each predicate
being a polynomial inequality over k + m variables of degree at most l. Then the VC dimension of Ck,m is bounded as
VCdim(Ck,m) ≤ 2k log(8els).

I.5. Probabilistic tools

In this section, we define standard tools from statistical learning theory (Anthony and Bartlett, 2009; Vapnik, 1998) that
we use in our proofs. We note that, for convenience, we may override some notations from the main paper, e.g., ε does not
refer to the same thing as in other sections.

Definition 5 (VC-dimension). Let F ⊆ {−1,+1}X and xm
1 = (x1, . . . , xm) ∈ Xm. We say xm

1 is shattered by F if
∀b ∈ {−1,+1}m, ∃fb ∈ F such that (fb(x1), . . . , fb(xm)) = (b1, . . . , bm) ∈ Rm. The Vapnik-Chervonenkis (VC)
dimension of F is the cardinality of the largest set of points in X that can be shattered by F , that is, dim(F) = max{m ∈
N | ∃xm

1 ∈ Xm, s.t. xm
1 is shattered by F}.

Definition 6 (Pseudo-dimension). Let F ⊆ RX and xm
1 = (x1, . . . , xm) ∈ Xm. We say xm

1 is pseudo-shattered by F if
∃c = (c1, . . . , cm) ∈ Rm such that ∀y = (y1, . . . , ym) ∈ {−1,+1}m, ∃fy ∈ F such that sign(fy(xi−ci) = yi ∀i ∈ [m].
The pseudo-dimension of F is the cardinality of the largest set of points in X that can be pseudo-shattered by F , that is,
Pdim(F) = max{m ∈ N | ∃xm

1 ∈ Xm, s.t. xm
1 is pseudo-shattered by F}.

Definition 7 (Uniform covering number). For p = 1, 2,∞, the uniform covering number of H w.r.t. the norm ∥ · ∥p is
define as

Np(ε,H,m) = max
xm
1 ∈Xm

Np(ε,H, xm
1)

where Np(ε,H, xm
1) is the ε-covering number of H|xm

1
w.r.t. ∥ · ∥p, that is, the cardinality of the smallest set S such that

for every h ∈ H|xm
1

, ∃s ∈ S such that ∥h− s∥p < ε.

42

Reinforcement Learning in Low-Rank MDPs with Density Features

Lemma 25 (Bounding uniform covering number by pseudo-dimension, Corollary 42 of (Modi et al., 2021)). Given a
hypothesis class H ⊆ (Z → [a, b]), for any m ∈ N we have

N1(ε,H,m) ≤
(
4e2(b− a)

ε

)Pdim(H)

.

Lemma 26 (Uniform deviation bound using covering number, adapted from Corollary 39 of Modi et al. (2021)). For
b ≥ 1, let H ⊆ (Z → [−b, b]) be a hypothesis class and Zn = (z1, . . . , zn) be i.i.d. samples drawn from some distribution
P(z) supported on Z . Then

P

(∣∣∣∣∣E[h(z)]− 1

n

n∑
i=1

h(zi)

∣∣∣∣∣ ≥ ε

)
≤ 36N1

(
ε3

640b2
,H,

40nb2

ε2

)
exp

(
− nε2

128V[h(z)] + 512εb

)
.

43

	Introduction
	Preliminaries
	Off-policy occupancy estimation
	Occupancy estimation via importance weights
	Handling insufficient data coverage
	Algorithm and analyses

	Online policy cover construction
	Taming error exponentiation

	Representation learning
	Conclusion
	Related works
	Hardness result without the policy class
	RL with objectives on state distributions
	Alternative setups, algorithm designs, and analyses
	Offline data assumptions
	Stochastic and/or unknown reward functions
	Algorithm design and analyses
	Point estimate in denominator
	Barycentric spanner in denominator
	Clipped function class with point estimate in denominator
	Direct extraction of the estimate
	MLE instead of regression
	Version space for dh

	Discussion of other approaches for controlling error exponentiation in the online setting

	Off-policy occupancy estimation proofs (Section 3)
	Discussion of clipping thresholds for h
	Proof of occupancy estimation
	Proof of offline policy optimization

	Online policy cover construction proofs (Section 4)
	Proof of occupancy estimation
	Proof of online policy optimization

	Representation learning
	Off-policy occupancy estimation
	Online policy cover construction

	Maximum likelihood estimation
	Auxiliary lemmas
	Squared loss regression results
	Barycentric spanner
	Properties of low-rank MDPs
	Covering lemmas
	Probabilistic tools

