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Abstract

MDPs with low-rank transitions—that is, the
transition matrix can be factored into the product
of two matrices, left and right—is a highly rep-
resentative structure that enables tractable learn-
ing. The left matrix enables expressive function
approximation for value-based learning and has
been studied extensively. In this work, we in-
stead investigate sample-efficient learning with
density features, i.e., the right matrix, which in-
duce powerful models for state-occupancy dis-
tributions. This setting not only sheds light on
leveraging unsupervised learning in RL, but also
enables plug-in solutions for settings like con-
vex RL. In the offline setting, we propose an al-
gorithm for off-policy estimation of occupancies
that can handle non-exploratory data. Using this
as a subroutine, we further devise an online al-
gorithm that constructs exploratory data distri-
butions in a level-by-level manner. As a central
technical challenge, the additive error of occu-
pancy estimation is incompatible with the mul-
tiplicative definition of data coverage. In the
absence of strong assumptions like reachability,
this incompatibility easily leads to exponential
error blow-up, which we overcome via novel
technical tools. Our results also readily extend to
the representation learning setting, when the den-
sity features are unknown and must be learned
from an exponentially large candidate set.

1. Introduction

The theory of reinforcement learning (RL) in large state
spaces has seen fast development. In the model-free
regime, how to use powerful function approximation to
learn value functions has been extensively studied in both
the online and the offline settings (Jiang et al., 2017; Jin
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et al., 2020b,c; Xie et al., 2021), which also builds the the-
oretical foundations that connect RL with (discriminative)
supervised learning. On the other hand, generative models
for unsupervised/self-supervised learning—which define a
sampling distribution explicitly or implicitly—are becom-
ing increasingly powerful (Devlin et al., 2018; Goodfellow
et al., 2020), yet how to leverage them to address the key
challenges in RL remains under-investigated. While prior
works on RL with unsupervised-learning oracles exist (Du
et al., 2019; Feng et al., 2020), they often consider models
such as block MDPs, which are more restrictive than typ-
ical model structures considered in the value-based setting
such as low-rank MDPs.

In this paper, we study model-free RL in low-rank MDPs
with density features for state occupancy estimation. In a
low-rank MDP, the transition matrix can be factored into
the product of two matrices, and the left matrix is known
to serve as powerful features for value-based learning (Jin
et al., 2020b), as it can be used to approximate the Bellman
backup of any function. On the other hand, the right matrix
can be used to represent the policies’ state-occupancy dis-
tributions, yet how to leverage such density features (with-
out the knowledge of the left matrix) in offline or online RL
is unknown. To this end, our main research question is:

Is sample-efficient offline/online RL with density features
possible in low-rank MDPs?

We answer this question in the positive, and below is a sum-
mary of our contributions:

1. Offline: Section 3 provides an algorithm for off-policy
occupancy estimation. It bears similarity to existing al-
gorithms for estimating importance weights (Hallak and
Mannor, 2017; Gelada and Bellemare, 2019), but our
setting gives rise to a number of novel challenges. Most
importantly, our algorithm enjoys guarantees under ar-
bitrary offline data distributions, when the standard no-
tion of importance weights are not even well-defined.
We introduce a novel notion of recursively clipped oc-
cupancy and show that it can be learned in a sample-
efficient manner. The recursively clipped occupancy
always lower bounds the true occupancy, and the two
notions coincide when the data has sufficient coverage.
Such a guarantee immediately enables an offline policy
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learning result that only requires “single-policy concen-
trability”, which is comparable to the recent advances
in value-based offline RL (Jin et al., 2020c; Xie et al.,
2021).

2. Online: Using the offline algorithm as a subroutine,
in Section 4, we design an online algorithm that builds
an exploratory data distribution (or “policy cover” (Du
et al., 2019)) from scratch in a level-by-level man-
ner. At each level, we estimate each policy’s state-
occupancy distribution and construct an approximate
cover by choosing the barycentric spanner of such dis-
tributions. A critical challenge here is that the addi-
tive £1 error in occupancy estimation destroys the mul-
tiplicative coverage guarantee of the barycentric span-
ner, so the constructed distribution is never perfectly ex-
ploratory. Worse still, standard algorithm designs and
analyses for handling such a mismatch easily lead to
an exponential error blow-up. We overcome this by a
novel technique, where two inductive error terms are
maintained and analyzed in parallel, with delicate in-
terdependence that still allows for a polynomial error
accumulation (Figure 1).

3. Representation learning: We also extend our offline
and online results to the representation learning setting
(Agarwal et al., 2020), where the true density features
are not given but must also be learned from an exponen-
tially large candidate feature set.

4. Implications: Our online algorithm is automatically
reward-free (Jin et al., 2020a; Chen et al., 2022b) and
deployment-efficient (Huang et al., 2022). Further,
since we can accurately estimate the occupancy distribu-
tion for all candidate policies, our results enable plug-in
solutions for settings such as convex RL (Mutti et al.,
2022; Zahavy et al., 2021), where the objectives and/or
constraints are functions over the entire state distribu-
tions (see Appendix C).

2. Preliminaries

Markov Decision Processes (MDPs) We consider a finite-
horizon episodic MDP (without reward) defined as M =
(X, A, P,H), where X is the state space, .4 is the action
space, P = (Py,...,Py_1) with P, : X x A — A(X) is
the transition dynamics, H is the horizon, and dy € A(X)
is the known initial state distribution.! We assume that X’
is a measurable space with possibly infinite number of el-
ements and A is finite with cardinality K. Each episode

is a trajectory 7 = (Z0,G0,T1,-..,TH-1,0H—1,ZH)s
where z9 ~ dp, the agent takes a sequence of actions
ag,...,ag—1, and xpy1 ~ Pp(- | zp,ap). We use

"We assume the known initial state distribution for simplicity.
Our results easily extend to the unknown version.

7= (m0,...,ma—-1) € (X = A(A)) to denote a (non-
stationary) H-step Markov policy, which chooses aj ~
mr(-|zr). (We will also omit the subscript h and write
m(-|z) when it is clear from context.) We use p to re-
fer to non-Markov policies that can choose a; based on
the history xg.p, ag.n—1, Which often arises from the prob-
ability mixture of Markov policies at the beginning of an
trajectory. Once a policy 7 is fixed, the MDP becomes
an Markov chain, with d7 (x},) being its h-th step distri-
bution. As a shorthand, we use the notation [H| to denote
{0,1,...,H —1}.

Low-rank MDPs We consider learning in a low-rank
MDP, defined as:

Assumption 1 (Low-rank MDP). M is a low-rank MDP
with dimension d, that is, Vh € [H], there exist ¢}, : X X
A — Rdand pi + X — RY such that Vap,xp11 € X, ap, €
A Py(zh4tl|zn, an) = (95 (zh, an), 1), (xp41)). Further,
S gy (@)1 (dz) < B* and ||¢5;(-) || oo < 1.2

Notation We use the convention % = 0 when we define
the ratio between two functions. Define a A b = min(a, b),
and we treat A as an operator with precedence between
“x/” and “4+—". When clear from the context, {{J,} =
{Dh}th_Ol, and we refer to state “occupancies,” “distribu-
tions,” and “densities” interchangeably. Finally, letter “d”
has a few different versions (with different fonts): d is the
low-rank dimension, d(z) is a density, and (dx) is the dif-
ferential used in integration. Further, while dF and d?’ refer
to true densities, dj, (without superscripts) is often used for
optimization variables.

Learning setups We provide algorithms and guarantees
under a number of different setups (e.g., offline vs. online).
The result that connects all pieces together is the setting
of online reward-free exploration with known density fea-
tures pu* = (pg, - - - 37— ) and a policy class IT C (X —
A(A))H (Section 4). Here, the learner must explore the
MDP and form accurate estimations of dj; for all w € II and

h € [H], that is, output {d } ¢ 1] e such that with prob-
ability at least 1— 6,V € I1, h € [H], ||df —dF||, < &, by
only collecting poly(H, K, d,log(|II|),1/¢e,log(1/)) tra-
jectories. Two remarks are in order:

1. Such a guarantee immediately leads to standard guar-
antees for return maximization when a reward func-
tion is specified. More concretely (with proof in Ap-
pendix F.2),

2This is w.l.o.g. as the norm of ¢, can be absorbed into B".
In a natural special case of low-rank MDPs with “simplex fea-
tures” (Jin et al., 2020b, Example 2.2), Assumption 1 holds with
B* = d. Our sample complexities only have polylogarithmic

dependence on B* which will be suppressed by O.
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Proposition 1. Given any policy m and reward func-
tion® R = {Rp} with R, : X x A — [0,1], define
expected return as vf, = E;] fz_ol Ry (zh,an)] =

ff dh Th Rh(xh,ah) (ah\xh)(dxh)(dah).
Thenfor {d“} such that ||d7r drlh < e/(2H) for all
m € Wand h € [H|, we have ’UZR > maXyen Vg — &,
where Tp = argmax ey U, and U, is the expected
return calculated using {d 1.

Moreover, the result can be extended to more general
settings, where the optimization objective is some func-
tion of the state (and action) distribution that cannot be
written as cumulative expected rewards; e.g., entropy
as in max-entropy exploration (Hazan et al., 2019), or
|ldr — d7®||3, where 7 is an expert policy, used in
imitation learning (Abbeel and Ng, 2004). A detailed
discussion is deferred to Appendix C.

2. The introduction of IT and the dependence on K = | A|
are both necessary, since low-rank MDPs can emulate
general contextual bandits where the density features p*
become useless; see Appendix B for more details.

To enable such a result, a key component is to estimate
d} using offline data (Section 3). Later in Section 5, we
also generalize our results to the representation-learning
setting (Agarwal et al., 2020; Modi et al., 2021; Uehara
et al., 2021b), where p* is not known but must be learned
from an exponentially large candidate set.

3. Off-policy occupancy estimation

In this section, we describe our algorithm, FORC, which
estimates the occupancy distribution dj, of any given policy
« using an offline dataset. Note that this section serves both
as an important building block for the online algorithm in
Section 4 and a standalone offline-learning result in its own
right, so we will make remarks from both perspectives.

We start by introducing our assumption on the offline data.

Assumption 2 (Offline data). Consider a dataset

Do.-1 = DoJ...UDy_1, where D), = {(xh ,a;f),
(1) n
$h+1)
are sampled i.i.d. from p o 7rh , where ag, . . .,
p" =V is an arbitrary (h — 1)-step (possibly non-Markov)
policy* and ay, ~ W,? is a single-step Markov policy. Fur-
ther, ph,l,w,? can be a function of Do.p_1, and w,? is
known to the learner.

. For any fixed h, we assume that tuples in Dy,

h—1 A1 ~

3We assume known and deterministic rewards, and can easily
handle unknown/stochastic versions (Appendix D.2).

“B on the superscript of a policy distinguishes identities and
does not refer to the h-th step component (which is indicated by
the subscript), that is, p" and phl for b’ # h can be completely
unrelated policies.

The dataset consists of H parts, where the h-th part con-
sists of (xp, ap, zp+1) tuples, allowing us to reason about
the transition dynamics at level h. In practice (as well as
in Section 4), such tuples will be extracted from trajec-
tory data. We use dP (z, an, tni1), d2 (xn), dr T (2ha1)
to denote the joint and the marginal distributions, respec-
tively. Importantly, we do not assume that df’i(xhi_l) =
df’ 1 (zh41), ie., the next-state distribution of Dy, and the
current-state distribution of Dy 41 (which are both over &)
may not be the same, as we will need this flexibility in Sec-
tion 4. The H parts can also sequentially depend on each
other, though samples within each part are i.i.d. While this
setup is sufficient for Section 4 and already weaker than
the fully i.i.d. setting commonly adopted in the offline RL
literature (Chen and Jiang, 2019; Yin and Wang, 2021), in
Appendix D.1 we discuss how to relax it to handle more
general situations in offline learning.

3.1. Occupancy estimation via importance weights

Recall that value functions satisfy the familiar Bellman
equations, allowing us to learn them by approximating
Bellman operators via squared-loss regression. The oc-
cupancy distributions {d} } also satisfy the Bellman flow
equation: let P7 denote the Bellman flow operator, where
for any given dh : X — Rand policy m, (PLdp)(zp41) :=
ff Ph(xh+1 |J:h, ah)w(ah|xh)dh(xh)(dxh)(dah).s d;; can
be then recursively defined via the Bellman flow equation

7 = P7_,d}_,, with the base case dj = dy. (One differ-
ence is that value functions are defined bottom-up, whereas
occupancies are defined top-down.) Furthermore, in a low-
rank MDP, P} d}, is always linear in p1j (Lemma 16), just
like the image of Bellman operators for value is always in
the linear span of ¢ .

Given the similarity, one might think that we can also ap-
proximate P} _, by regressing directly onto the occupan-
cies, hoping to obtain dj, via

argmin]Edg_l[(d(xh) dr_(@n— 1)7”11(%1%1))} )
d

Poq(an—1]lTn_1)

T 1(@nh—1|Th—1) ;
7P 1 (an—1lTh_1)
ing to correct the mismatch on actions between 75,1 and
data policy w}?_l. Unfortunately, this does not work due
to the “time-reversed” nature of flow operators (Liu et al.,
2018). In fact, the Bayes-optimal solution of Eq. (1) is

(P;ifl (dD dgfl))(xh)
dy"! (@n)

However, the fractional form of the solution indicates that
we may instead aim to learn a related function—the impor-

where is the standard importance weight-

dp(xp) = # (Ph_1dh_1)(xn).

>In this definition, we do not require dy, to be a valid distribu-
tion. Even 7 is allowed to be unnormalized; see the definition of
pseudo-policy in Definition 1.
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tance weight, or density ratio (Hallak and Mannor, 2017).
If we use wj,_; = dg_l/d,?_l to replace dj,_, as the re-
gression target in Eq. (1), the population solution would be

(ngldzfﬂ(xh) _ dﬂxh) = wf (z1)

D, — D, — %h :

dh—Tl (n) dh—Tl (zn)

The occupancy can then be straightforwardly extracted
from the weight via elementwise multiplication, i.e., d} =

wy, - d,?_’fl, where d,];_)_”L1 can be estimated via MLE from the
dataset itself.

While this is promising, the approach uses importance
weight wf (x5,) as an intermediate variable, whose very ex-
istence and boundedness rely on the assumption that the
data distribution d,?_’Tl is exploratory and provides sufficient
coverage over dy. We next consider the scenario where
such an assumption does not hold. Perhaps surprisingly,
although we would like to construct exploratory datasets in
Section 4 and feed them into the offline algorithm, being
able to handle non-exploratory data turns out to be crucial
to the online setting, and also yields novel offline guaran-
tees of independent interest.

3.2. Handling insufficient data coverage

Because we make no assumptions about data coverage, the
true occupancy dj may be completely unsupported by data,
in which case there is no hope to estimate it well. What
kind of learning guarantees can we still obtain?

To answer this question, we introduce one of our main con-
ceptual contributions, a novel learning target for occupancy
estimation under arbitrary data distributions.

Definition 1 (Pseudo-policy and recursively clipped occu-
pancy). Given a Markov policy w, data distributions {th 1,
and state and action clipping thresholds {C3}, {C?}, the
recursively clipped occupancy, {82}, is defined as follows.
Let dy := dT = dy. Define m,(ap|zn) = mh(an|zn) A
CarP(ap|wy) (or T = mn A CRTP for short), and for
1 < h < H — 1, inductively set 6

EZ(xh) = (PZ—l (82—1 A C}};—ldf—1>> (@n). @

We also call objects like T a pseudo-policy, which can yield
unnormalized distributions over actions.

The above definition first clips the previous-level 8271 to
have at most CX_, ratio over the data distribution d2_, and

the policy 7 to have at most C}}_; ratio over w,?_l, then ap-
. . T .
plies the Bellman flow operator. This guarantees that dj, is

®Note that dj, depends on hyperparameters C7 and C}, which
are omitted in the notation. Appendix E.1 discusses the rela-
tionship between C5, C% and the missingness error, namely, that
ldr — dp ||1 is Lipschitz in, and thus insensitive to misspecifica-
tions of, the clipping thresholds.

always supported on the data distribution (unlike d7,), and
EZ < dj, because poorly-supported mass is removed from
every level (and hence ﬁz is generally an unnormalized dis-
tribution). Further, when we do have data coverage and the
original importance weights on states and actions are al-
ways bounded by {C}} and {C2}, it is easy to see that
EZ = d7, since the clipping operations will have no effects
and Definition 1 simply coincides with the Bellman flow
equation for {dJ }.

As we will see below in Section 3.3, {EZ} becomes a learn-
able target and the ¢; estimation error of our algorithm goes
to 0 when the sample size n — oo. The thresholds {C}}
and {C}} reflect a bias-variance trade-off: higher thresh-
olds ensure that less “mass” is clipped away (i.e., EZ will
be closer to dj,), but result in a worse sample complexity
as the algorithm will need to deal with larger importance
weights. Below we provide more fine-grained characteri-
zation on the bias part, i.e., how EZ is related to d7, and the
proof is deferred to Appendix E.2.

Proposition 2 (Properties of EZ).
1. d, < dF.

2. EZ = d}, when data covers T (i.e., Vh! < h we have
dr, < Cxdb and m < C2mh).

3. \ldy = dill < lldp—y = df_ill1 + [ dhoy —
i)z(—ldg—lHl + HPZ—l 2—1 - PZ—l 2—1H1~

Eh—l A

The 3rd claim shows how the bias term ||d, — drl Ge.,
how much mass EZ is missing from d} ) accumulates over
the horizon: the RHS of the bound consists of 3 terms,
where the first is missing mass from the previous level, and
the other terms correspond to the mass being clipped away
from states and actions, respectively, at the current level.

3.3. Algorithm and analyses

We are now ready to introduce our algorithm, FORC, with
its analyses and guarantees. See pseudocode in Algo-
rithm 1. The overall structure of the algorithm largely fol-
lows the sketch in Section 3.1: we use squared-loss regres-
sion to iteratively learn the importance weights (line 5), and
convert them to densities by multiplying with the data dis-
tributions (line 6) estimated via MLE (line 4).

The major difference is that we introduce clipping in line 5
(in the same way as Definition 1) to guarantee that the re-
gression target is always well-behaved and bounded, and
below we show that this makes EZ a good estimation of EZ.
In particular, we will bound the regression error ||c/l\g —dy |1
as a function of sample size n,¢q. A key lemma that enables
such a guarantee is the following error propagation result:
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Algorithm 1 Fitted Occupancy Iteration with Clipping (FORC)

Input: policy 7, density feature p*, dataset Dy, r—1, sample sizes npie and n,eq, clipping thresholds {C3} and {C2}.

1: Initialize df = dp.
2. forh=1,...,H do

3:  Randomly split Dj,_ to two folds D}flel and D;%, with sizes Nmle and Nyeg, rEspectively.

4:  Estimate marginal data distributions dh 1(zp_1) and dh 1 T(x5) by MLE on dataset Dinle

MNmle

&\}?71 = argmax
dp_1€Fn-1 Nmle i=1

where Fp, = {dh = <,U,Z_179h> tdy € A(X),Gh S Rd, ||0h||oo < 1} .

2
Nre i ) \Th-1(al? |zl .
£t (anel?) = wna ol ) B ) and estimate

5:  Define CD;egl(wh,wh,l,ﬁh,l) =

Nreg

Wy, = argmin LDreg

(wha

wp EWY
where W), = S wy, = M1 0,7) lwr]|
h — h — (,u;; gdown . h o0
6:  Set the estimate dh = wh dD T

7: end for R
Output: estimated state occupancies {dJ } -

Z log (dh,l(xs)_l)) and J}?_S = argmax

I x 7D
dh*l/\chfldhfl

e

Mmle

Z log (dh xh ) , )

dn€Fpn Mmle i—1

# ||9h||Oo < 1 guarantees d¥ € F,

h— 1( h—1

qD
dp_y

Th—1 A C;‘_m?_1> , 3)

< Cx_, 08,00 glovn ¢ Rd} .

Lemma 1. For every h € [H|, the error between estimates

EZ from Algorithm 1 and the clipped target EZ is decom-
posed recursively as

@i - ~ 4|
205, |[dRy - dp- H +CFAChy |2 = |

~ = dr_,AC d
+\/§ o ;Lrl(dg h—1 hlhl)

(PFdy)/dP.

<
1

1

)

2,d2 1

where (ETd},) :=

The proof can be found in Appendix E.2. The bound con-
sists of 3 parts: the first line is the error at the previous
level h — 1, showing that the regression error accumula-
tives linearly over the horizon. The second line captures
errors due to imperfect estimation of the data distributions,
since we use the estimated dh , and dh 1> instead of the
groundtruth distributions, to set up the weight regression
problem and extract the density; these errors can be re-
duced by simply using larger n,1e. The last line represents
the finite-sample error in regression, which is the difference
between the estimated weight @] and the Bayes-optimal
predictor. We set the constraints in the hypothesis class in a
way to guarantee the Bayes-optimal predictor is in the class
(see the definition of W, below Eq. (3)), so the regression
is realizable.

Bounding the complexities of 7, and V;, The last chal-
lenge is in controlling the statistical complexities of the

function classes used in learning, F5 and W, both of
which are infinite classes. For Fj, we construct an opti-
mistic covering to bound its covering number (Chen et al.,

2022a). For W), however, its hypothesis takes the form
<NZ—179;1P>
(1} _1,05°"")°
dard covering arguments, which discretize sz and 020“’“,
run into sensitivity issues, as 920“’“ is on the denomina-
tor where small perturbations can lead to large changes
in the ratio. We overcome this by recalling a technique
from Bartlett and Tewari (2006): we bound the pseudo-
dimension of W, which is equal to the VC-dimension of
the corresponding thresholding class. Then, using Gold-
berg and Jerrum (1993), the VC-dimension is bounded by
the syntactic complexity of the classification rule, written
as a Boolean formula of polynomial inequality predicates.
The pseudo-dimension of W), further implies ¢; covering
number bounds, for which Dong et al. (2020); Modi et al.

(2021) provide fast-rate regression guarantees.

of ratio between linear functions, where stan-

Sample complexity of FORC We now provide the guar-
antee for FORC, with its proof deferred to Appendix E.2.

Theorem 2 (Offline d™ estimation). Fix § € (0,1). Sup-
pose Assumption 1 and Assumption 2 hold, and p* i
known. Then, given an evaluation policy m, by setting’

"While it may appear that we need to set the value of n,1e and
Treg in a delicate manner, this is not the case and we can simply
set mie = Nreg = m/2 and suffer at most a constant blow-up in
the error guarantee. The values given in the theorem statements
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Mmle = O(d(X )¢ CrC)? log(1/6) [€2) and nyeg =
(A hem CRCR )2log(1/0) /%), with probability at

least 1 - ([S FORC (Algarzthm 1) returns state occupancy

estimates {d Yo satisfying

|y —dy |l < e,Yh € [H].

The total number of episodes required by the algorithm is

) <dH (Zhewm c;;c;;)g log(1/5) /52> :

Tllis result can also be used to establiAsh a guarantee for
ﬂ(ﬁ - dgﬂ}; simply by decomposing ||d} —df||1 < ||df —
dyll1 + ||d;, — di|l1. The regression error in the first term
is controlled by Theorem 2. The second term is a one-
sided missingness error due to insufficient coverage of data,
which we have characterized in Proposition 2. Note that we
split ||} — dT||; into two terms using dj, as an intermedi-
ate quantity and analyze how their errors accumulate over
the horizon separately; alternatively, one can directly try
to analyze how ||Eg — dJ||1 depends on \|E;;,1 —di -
In general, we find the latter can yield significantly worse
bounds—in fact, exponentially worse, as will be seen in
Section 4.

Offline policy optimization Theorem 2 provides learning
guarantees for EZ, which is a point-wise lower bound of
dy. When we consider standard return maximization with
a given reward function, having access to cfg ~ EZ im-
mediately enables pessimistic policy evaluation (Jin et al.,
2020c; Xie et al., 2021), and we are only e-suboptimal
compared to the maximal value computed over covered
parts of the data, i.e., with respect to Ez. The immediate im-
plication is that we can compete with the best policy fully
covered by data (satisfying property 2 of Proposition 2);
see Appendix E.3 for the full statement and proof.

Theorem 3 (Offline policy optimization). Fix § € (0, 1)
and suppose Assumption I and Assumption 2 hold, and
is known. Given a policy class 11, let {dh}he e be the
output of running Algorithm 1. Then with probability at
least 1 — ¢, for any reward function R and policy selected
as Tp = argmax,. .y U, we have

R
Up > mava

mell

where v}, and U, are defined in Proposition 1, and T is
defined similarly for {dy, }. The total number of episodes
required by the algorithm is

0 (4#* (Sherm Cr1) ow(1/6)/2?).

are the most “natural” values based on the the analysis.

Computation We remark that our policy optimization re-
sult only enjoys statistical efficiency and does not guaran-
tee computational efficiency, as Theorem 3 assumes that
we can enumerate over candidate policies and run FORC
for each of them; similar comments apply to our later on-
line algorithm as well. Since the optimization variable is
a policy, the most promising approach is to come up with
off-policy policy-gradient (OPPG) algorithms to approxi-
mate the objective. However, existing model-free OPPG
methods all rely on value-function approximation (Nachum
et al., 2019b; Liu et al., 2019), which is not available in our
setting. Studying OPPG with only density(-ratio) approx-
imation will be a pre-requisite for investigating the com-
putational feasibility of our problem, which we leave for
future work.

4. Online policy cover construction

We now consider the online setting where the learner ex-
plores the MDP to collect its own data. The hope is that
we will collect exploratory datasets that provide sufficient
coverage for all policies in II (so that we can estimate their
occupancies accurately), which is measured by the standard
definition of concentrability.

Definition 2 (Concentrability Coefficient (CC)). Given a
policy class 1 and any distribution d € A(X), the concen-
trability coefficient at level h relative to d is

< c} .

To achieve this goal, we first recall the following result,
which shows the existence of an exploratory data distribu-
tion that satisfies the above criterion and hints at how to
construct it.

Proposition 3 (Adapted from Chen and Jiang (2019)

Prop. 10). Given a policy class 11 and h, let {d, " 4,

be the barycentric spanner ( Deﬁnltlon 4 in Appendix 1.2)
of {d7 Y wert. Then, CC, (az dr ) <d.

CCp(d) = inf {c € R:max,en ’

di
d

Proposition 3 shows that for each level h, an exploratory
distribution that has d concentrability always exists. It is

simply the mixture of {d;h} for i € [d], which can be
identified if we have access to df for all 7 € 1I. Of course,
we can only estimate dj if we have exploratory data, so
the estimation of dj and the identification of {7} need
to be interleaved to overcome this “chicken-and-egg” prob-
lem (Agarwal et al., 2020; Modi et al., 2021): suppose we
have already constructed policy cover at h — 1. We can
construct it for the next level as follows:

1. Collect a dataset Dy, _1 by rolling in to level h — 1 with
the policy cover, with CCyp,_1 (d}?q) < d, then taking a

uniformly random action, thereby CCh(df;Tl) < dK.
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2. Use FORC to estimate dj, for all 7 € Il based on Dp,_;.

3. Choose their barycentric spanner as the policy cover for
level h, with CCh(th) <d.

The idea is that, since we have an exploratory distribution
at level h — 1, taking a uniform action afterwards will give
us an exploratory distribution at level h, though the degree
of exploration will be diluted by a factor of K. We collect
data from this distribution to estimate dj, and compute the
barycentric spanner for level h, which will bring the con-
centrability coefficient back to d, so that the process can
repeat inductively.

The above reasoning makes an idealized assumption that
d} can be estimated perfectly. In such a case, the con-
structed distribution will provide perfect coverage, so that
the clipping introduced in Section 3 becomes completely
unnecessary: all clipping operations would be inactive (by
setting C¥ = d and C? = K), and EZ = d7. Unfortu-
nately, when the estimation error of dj is taken into con-
sideration, the reasoning breaks down seriously.

The first problem is that our estimate (i,’f from FORC is not
necessarily linear due to its product form. However, that is
not a concern as we can linearize it (corresponding to line 7
in Algorithm 2); we also have an alternative procedure for
FoRrc that directly produces linear c/l\” (see Appendix D.3),
SO in this section we will i ignore t this issue and pretend that

7 is linear (thus is the same as d in Algorithm 2) for ease
of presentation.

4.1. Taming error exponentiation

Now that the issue of (non-)linear df is out of the way,
we are ready to see where the real trouble is: note that the
barycentric spanner computed from {d7 } rcr satisfies

d;

d  Jrhii
% >i—1 dp
However, the actual dlstrlbutlon 1nduced by the policy
cover {n}d_ isdP = 1529 | Suppose for now
we have n,,1c = oo for perfect estlmatlon of dP & 5 even then,
the regression target in Eq. (3) will no longer be bounded
without clipping, as the boundedness of d/d does not imply

<d, vrell (5)

oo

that of d/d, and the latter can be very large or even infinite.

While the unbounded regression target can be easily con-
trolled by clipping, analyzing the algorithm and bound-
ing its error still prove to be very challenging. A nat-
ural strategy is to inductively bound ||Eg — df|l1 using
Hdh 1 — d7_|l1- Unfortunately, this approach fails mis-

erably, as directly analyzing ||c?’,{ —d7||1 yields

ld = dils < A+ Ay = iy li+---, (©)

implying an O(d)¥ exponential error blow-up. (The con-
crete reason for this failure will be made clear shortly.) In
Appendix D.4, we also discuss an alternative approach that
“pretends” data to be perfectly exploratory, which only ad-
dresses the problem superficially and still suffers O(d)?
error exponentiation, just in a different way. Issues that
bear high-level similarities are commonly encountered in
level-by-level exploration algorithms, which often demand
the so-called reachability assumption (Du et al., 2019, Def-
inition 2.1), which we do not need.

As all the earlier hints allude to, the key to breaklng er-
ror exponentiation is to split the error us1ng dh into its two
sources with very different natures: a “two-sided” regres-
sion error ||JZ —dp, ||1, and a “one-sided” missingness error
[|dy, —d7 |1 (in the sense that d;, < df). Because the offline
occupancy estimation module of Algorithm 2 is the same as
that of Algorithm 1, Lemma 1 still holds (left x1 chain of
Figure 1), implying that ||JZ —dy ||1 can be bounded irre-
spective of the data distribution.

This observation disentangles the regression error from the
rest of the analysis, allowing us to focus on bounding
the missingness error. For the latter, Proposition 2 also
exhibits linear error propagation, as it takes the form of
Ap < Ap_1+Bj_1 where Ay, = ||E;r —dT||1. However, it
still remains to show that the additional error (“Bj,_1”) has
no dependence on the inductive error (“Aj_1”), otherwise
we would still have error exponentiation.’ This is shown in
the following key lemma:

Lemma 4. Forany h € [H] and 7 € I in Algorithm 2,

—T —T o~/ —n’
Iy, —dplly < ldp—1 —dp_1 1 +4d7rrr/12§||d’,;1—dh71\\1.

To understand this lemma, recall that the additional error
in Proposition 2 characterizes the mass clipped away at the
current level. This mass can be bounded by the regress1on

dh 1) in-

tuitively, had we had perfect estimation of dh 1= dh 1
our barycentric spanner would also be perfect and we
would not need any clipping at all in level &, implying 0
additional error in the bound. More generally, the closer

error of the previous level (max /g Hdh 1

=] . 771'/ .
df_, isto d,_, the less mass we need to clip away.

That said, this term is not instantaneous and depends in-
ductively on quantities in the previous time step, still rais-
ing concerns of error exponentiation. To see why this is
not a problem, we visualize error propagation in Figure 1:
it can be clearly seen that such a dependence corresponds
to a “cross-edge”, and appears at most once along any long
chain. This also explains the destined failure of directly

°For example, if B,_1 can only be bounded as Bj_1 <
Ap_1, we would still have A;, < 2A,_1.
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Algorithm 2 FORC-guided Exploration (FORCE)

Input: pohcy class II, dens1ty feature ™,

= dp and d
Hdo

1: Initialize d
2: forh =1,.

= do, V7 € 1L

n = Nmle + Nyeg-

d

3: Construct {dh 1 l}d 1 as the barycentric spanner of {J}j 1 }rem, and set HZXE’; = {rh-1i3d_,.

Draw a tuple dataset Dy,_; = {(xh 1,a2)1,x2))

forwGHdo

AN A

8: end for
9: end for

Output: estimated state occupancy measure {c?’,{}he[ H],rell-

Find the closest linear approximation df = (51 01,) where 6, = argming, cpa [[{45,_1,0n) —

', using unif (I1$P}) o unif (A).

Estimate d}{ using the h-level loop® of Algorlthm 1 (lines 4-6) with Dy, _1, dh LCr  =d,Ch_ 1= =K.

dr 1.

Idi; = dylly iy, — dRlly

h=0
h=1
h=2
i @

Figure 1. Error propagation diagram for FORCE. “e — e” with
xcmeans (o) < ¢ X (o) + (other instantaneous errors that do not
accumulate over horizon), and multiple incoming arrows imply
sum of errors. The left X1 chain is from Lemma 1, the right x1
chain from Proposition 2, and the x O(d) edges from Lemma 4.

analyzing ||c/l\g — d7]|1 in Eq. (6), as that corresponds to
merging the two chains into one, where every edge along
the only chain acquires an O(d) multiplicative factor.

With this, we can now state the formal guarantee for our
algorithm, FORCE. See Algorithm 2 for its pseudo-code,
and the proof of the guarantee is deferred to Appendix F.1.

Theorem 5 (Online d™ estimation). Fix 6 € (0,1)
and consider an MDP M that satisfies As-
sumption 1, and p* is known. Then by set-

ting nme = O (dK2H*1og(1/6)/€%) ey =
O (dP°K?H*log(|11|/6)/e%) ,n = nmie + Nreg, With
probability at least 1 — o, FORCE returns state occupancy
estimates {d} } e m),~en1 Satisfying that

The total number of episodes required by the algorithm is

dy; — df

. <eVhe[H],mell

O(nH) = O (d°K?H° log(|11|/8) /¢?) .

“MLE only needs to be done once and not for every 7 € II.

Theorem 5 also immediately translates to a policy opti-
mization guarantee when combined with Proposition 1:

Theorem 6 (Online policy optimization). Fix 6 € (0, 1)
and suppose Assumption I and Assumption 2 hold, and
is known. Given a policy class 11, let {dh}he e be the
output of running FORCE. Then with probablllty at least
1 — 6, for any reward function R and policy selected as
TR = argmax, .y U, we have

R
VR > mava

mell
where v}, and vV}, are defined in Proposition 1. The total
number of episodes required by the algorithm is

O (d°K2H" log(|11| /) /€?) .

The proof is deferred to Appendix F.2. We remark that
Theorem 6 is a reward-free learning guarantee (Jin et al.,
2020a; Chen et al., 2022b,a), and it is easy to see that Al-
gorithm 2 is deployment efficient (Huang et al., 2022).

5. Representation learning

In this section, we extend the offline (Section 3) and on-
line (Section 4) results to the representation learning set-
ting. Here, the true density feature p* is unknown, but the
learner has access to a realizable density feature class T,
defined formally below. For simplicity, we consider finite
and normalized T, as is standard in the literature (Agarwal
et al., 2020; Modi et al., 2021; Uehara et al., 2021b).

Assumption 3. We have a finite density feature class Y =
Uhe[H] T, such that i € Ty, for each h € [H), thus p* €
Y. Further, for any pj, € Th, we have [ ||y (x)|1(dz) <
B*.

The algorithms and analyses for the representation learn-
ing case mostly follow the same template as the known
feature case, so we restrict our discussion to their differ-
ences. Recall that, in order to have realizable function



Reinforcement Learning in Low-Rank MDPs with Density Features

classes for regression and MLE in Section 3, we con-
structed Fp, Wj, using functions linear in the known pj _ ;.
In order to maintain this realizability when p}_; is un-
known, we instead construct Fp, VW, using the union of
all functions linear in some candidate pup—1 € Yp_1,
ie., UMh—leTh—l{<‘uh_17 1), 0, € RYY} (see Eq. (28) and
Eq. (29) for their formal definitions).

While such union classes allow most of Section 3 and
Section 4 to straightforwardly extend to the representation
learning setting, a nontrivial modification must be made to
the online algorithm. Recall in line 7 of Algorithm 2, we
constructed our policy cover using the barycentric spanner
of {J,’{}ﬂen, the set of linearized approximations to the
density estimates. Importantly, this guaranteed a concen-
trability coefficient of d because all JZ are linear in the
same feature pj ;. This is no longer the case with un-
known features because, if linearized iE the same way (but
over all feasible p1p,_1 € T,_1), each d}, can be composed
of a different y,_; feature, resulting in a CC linear in |II].
To overcome this issue, we replace line 7 with the follow-
ing “joint linearization” step (see line 8 in Algorithm 4):

~ . . . o

Ar-i= mip max min [ (ttn—1,0n) — df ||,
where all density estimates are linearized using a single fea-
ture fi,_1, whose linear span approximates all JZ well. We
provide theorems for offline/online d™ estimation with rep-
resentation learning below.
Theorem 7 (Offline d™ estimation with representation
learning). Fix 6 € (0,1). Suppose Assumption 1, Assump-
tion 2, and Assumption 3 hold. Given evaluation policy T,
by setting nmie = O(d(X )¢y CxC2)?1og(|Y|/6)/€?)
and ey = O(d(S e CRCR) log(T1/8)/2%), with
probability at least 1 — 9, FORCRL (Algorithm 3) returns
state occupancy estimates {dZ}hHZ_O1 satisfying that

The total number of episodes required by the algorithm is

0 (48 (Sep CECE) ou(11/8)/22).

Theorem 8 (Online d™ estimation with representation
learning). Fix § € (0,1) and suppose Assumption 1
and Assumption 3 _hold. By setting n = nmle +

O(d*K*H*log(|Y[/0)/2%), nreg =
O(d> K2 H* log(|T1||Y|/8) /€2), with probability at least
1 — 0, FORCRLE (Algorithm 4) returns state occupancy
estimates {d }1'= satisfying that

~ —r
s
dh - dh

) <e,Vh e [H].

Nregy NMmle =

|df — d7||1 < e,Vh € [H], 7 € IL
The total number of episodes required by the algorithm is
O (K2 H® log(|11[|Y|/5) /€?) .

The detailed proofs of these two theorems are given in Ap-
pendix G. We also present the theorems and proofs for of-
fline/online policy optimization with representation learn-
ing as well as the formal representation learning algorithms
in Appendix G.

6. Conclusion

We have shown how to leverage density features for statis-
tically efficient state occupancy estimation and reward-free
exploration in low-rank MDPs, culminating in policy opti-
mization guarantees. An important open problem lies in in-
vestigating the computational efficiency of our algorithms
(e.g., through off-policy policy gradient).
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A. Related works

In this section, we discuss a few lines of related work in detail.

First, the closest related works involve RL with unsupervised-learning oracles (Du et al., 2019; Feng et al., 2020). Instead
of investigating low-rank MDPs, they consider more restricted block MDPs and need stronger assumptions such as reach-
ability, identifiability, and separatability (we refer the reader to their works for the definitions). Their notion of “decoder”
looks like density features in low-rank MDPs, but they are incomparable. The crucial property of “decoder” is that it is a
map from the X space to the low d dimensional space. This map itself no longer exists in low-rank MDPs. In addition, the
density feature serves a different purpose in our paper, as its primary purpose is for constructing the weight function class.

A second line of related work is model-based representation learning in low-rank MDPs (Agarwal et al., 2020; Uehara
et al., 2021b; Ren et al., 2022), which assumes that both a realizable left feature class ® > ¢* and realizable density (right)
feature class T > u* are given to the learner, essentially inducing a realizable dynamics model class. The learned model
(features) are subsequently used for downstream planning. In comparison, we utilize a much weaker inductive bias as we
only require a realizable density feature class T, and we do not try to learn a dynamics model. Though we additionally
need a policy class II, this is a very basic and natural function class to include. It can be immediately obtained from the
(Q-)value function class in the value-based approach, and from the dynamics model class (given a reward function) in the
model-based approach above. In terms of the algorithm design, we also use MLE, but for a different objective (the data
distribution, instead of the dynamics model).

The importance weight (density-ratio) learning used within our algorithms is related to the marginalized importance sam-
pling of the offline RL algorithms in Nachum et al. (2019a); Lee et al. (2021); Uehara et al. (2021a); Zhan et al. (2022);
Chen and Jiang (2022); Huang and Jiang (2022); Ozdaglar et al. (2022). These works do not make the low-rank MDP
assumption and study the problem in general MDPs, and require both a weight function class and value function class
for learning. We leverage the true density p* or density feature class T to construct the realizable weight function class,
allowing us to achieve statistically faster rates in the low-rank MDP setting. We do not need a value function class and
instead only need a weaker (as discussed in the previous paragraph) policy class I1. Lastly, we note that the aforementioned
works all learn weights, while our goal is to learn the densities. Extracting the densities from the weights allows us to effi-
ciently explore the MDP using its low-dimensional structure, and additionally enables our return maximization guarantees
of Proposition 1 by separating them from the underlying data distribution.

B. Hardness result without the policy class

In this section, we show that without policy class II, learning in low-rank MDPs (or an easier simplex feature setting) is
provably hard even when the true density feature ;* is known to the learner. The crux is that low-rank MDPs can readily
emulate a fully general contextual bandit problem, where p* is useless. For the hardness result, we adapt Theorem 2 of
Dann and Brunskill (2015) to our case by only keeping their second to third level to get a contextual bandit problem.

To provide specifics for the reward and transition functions, we first note that the subscript of the reward/transition function
denotes which level it applies to (e.g., Py are the transitions to ;1 from zg). Level h = 0 is composed of |X'| — 3 states
with zero reward, i.e., zp € {1,...,|X| — 3} and Ry(i) = 0,Vi € {1,...,|X| — 3}. Level h = 1 is composed of 2 states,
ie., x1 € {+,—}, where R;(+) = 1 and Ry (—) = 0. Lastly, at level h = 2 we have a single null absorbing state z5.

For the transition functions, in level h = 0 the transitions P, are Bernoulli distributions where for any state ¢ &€
{1,...,|X| — 3} and action ag € A, we have Py(+|i,a0) = 1 + €}(ao) and Po(—|i,a0) = 3 — €}(ag). Here, &} is
defined in a per-state manner given a parameter e. We have €/, (ag) = €/2 if ag = af, where o) is a fixed action; £} (ag) = ¢
if ap = afj* where aé’* is an unknown action defined per state i; and €} (ag) = 0 otherwise. In level h = 1, the transitions
Py simply transmit deterministically to the absorbing state xo, i.e., P (x2|x1,a1) = 1 forall z; € {+,—} and a; € A.

It is easy to see that the dynamics of this contextual bandit can be modeled using simplex features, thus it is an instantiation
of low-rank MDPs. Since we only have two levels (H = 2), we only need to verify that Py and P; can be written in the
desired form (Assumption 1). In level i = 0, we add two latent states corresponding to the rewarding and non-rewarding
state, thus d = 2. Then in level h = 0, we have right features ui(+) = [1,0] and (=) = [0, 1], and left features
o5 (xo,a0) = [P1(+|zo, ao), P1(—|zo, ag)] for any (zo, ag), corresponding to the original Bernoulli distribution. It is easy
to see that this satisfies Assumption 1, i.e., for any (xg, ag, z1) we have Py(z1|zo, ao) = (¢§(z0, ao), uf(z1)). In level
h = 1 we can simply set a single latent state representing the singleton x5, and observe that Assumption 1 is trivially
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satisfied with p(x2) = 1, and ¢ (x1,a1) = 1 for any (1, aq).

Finally, from Theorem 2 of Dann and Brunskill (2015), we know that the sample complexity of learning in this contextual
bandit problem is (| X|), demonstrating that efficient learning is impossible in low-rank MDPs (or the simplex feature
setting) given only p*.

The necessity of K = |.A| dependence It is well known that learning contextual bandits with just a policy class requires
a dependence on |.4| in regret and sample complexity; see Agarwal et al. (2014) and the references therein. This can also
be reproduced in the above hardness result: first, we can scale up the construction by adding more actions, and show an
Q(]X|K) lower bound. Second, we now provide the learner with a policy class that contains all Markov deterministic
policies. The size of the class is O(K|*!), and the log-size is O(|X|log(K)). Given the logarithmic dependence on K,
no polynomial dependence on log(|II|) can explain away the linear-in-K dependence in the lower bound, and we must
introduce K as a separate factor in the sample complexity.

C. RL with objectives on state distributions

Proposition 1 also extends to general optimization objectives f({dy}) that are Lipschitz in the input {d}, } (note the Lip-
schitz property does not require the input to be a valid distribution). This Lipschitzness property is key for many recent
results in convex RL (Zahavy et al., 2021; Mutti et al., 2022), and also holds for return maximization where f({d} }) = vF,
in which case the Lipschitz constant is related to the maximum reward maxy, ;. 4 Ry (x,a). While we write the objective
f({dn}) using state densities dj(x;) as input for simplicity, it is straightforward to instead use state-action densities
dp(xp)m(ap|xy) formed by directly composing the state density d;, with the policy 7. If f is Lipschitz in state-action
densities, it will still be Lipschitz in the state-action densities in the ¢; norm, which is the exactly the case in return maxi-
mization, since any input density will be composed with same 7. Lastly, we note that constraints can also be added to the
objective and to result in a similar statement.

Proposition 4. Suppose the optimization objective is f({d}), where f is Lipschitz in {dy} under the £, norm, i.e., there
exists a constant L > 0 such that for any {d},} and {dj, }

FHd ) = FABDI< LY lld, = di -

he[H]

Then for {EZ} such that HEZ —df|li < 55 forallm € Il and h € [H|, and T maximizing the plug-in estimate of the
objective: N
7 = argmax f({d}, }),
mell

we have
FUATY) > max F(LdFY) -

Proof. For any 7 € II, from the Lipschitz assumption,

FAGY = FAGH| < LY Ny - dilh < Le/2.

he[H]

Then, letting 7* = argmax_ .7 f({d} }) denote the maximizer of the true objective and using the above inequality,
FUARY) = AR 1) = R = FUAN + FUdRD) = (R D) + F({dR 1) = f{dR ) = —Le. O

On &\“ being invalid distributions One potential issue is that some of the objective functions f considered in the litera-
ture are only well deﬁned for valid probability distributions (e.g., entropy). This is easy to deal with in the online setting,
as we can simply project d onto the probability simplex, which picks up a multiplicative factor of 2 in ||al7T d7 |1 (cf. the
analysis of the linearization step in Algorithm 2).

For the offline setting, however, the situation can be trickier. For example, the above projection idea is clearly bad for
return maximization, since after projection all d satisfy ||d7 ||y = 1 and we lose pessimism. From an analytical point of
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view, pessimistic approaches (e.g., Theorem 3) only pays one factor of the missingness error ||EZ — dT||1 by leveraging its
one-sidedness, and a factor of 2 introduced by projection is simply unacceptable. Therefore, the question is whether we
can generalize the pessimism in Theorem 3 to general objective functions.

We answer this question with a rough sketch without detailed proofs: since we know ||c?’g —82 |1 < &’ (for some appropriate
value of &’ from our analysis), we can form a version space for d as (see also Appendix D.3.6 for a tighter approach to
forming version spaces):

-~

dpy € {dn = (uj,—1,0n) = dn € AX), ||[dfy — dn]4lly <€} (7)

~
T <

where [-]; := max(-,0) is used to capture the part that df
a pointwise upper bound of d,. df is in the set because ||[dF — d7] |y < ||[[df —dy]i|h < |ldf —dj|ly < ¢, and
the inequalities here show that ||[(-)]+||1 behaves like a one-sided (and hence assymetric) version of ¢ error between
unnormalized distributions. Then we can simply come up with pessimistic evaluation of f({d} }) by minimizing f({d})
over the above set. It is not hard to see that such an approach will provide similar guarantees to Theorem 3 when applied
to return maximization.

exceeds” dj, choosing normalized dj, that is approximately

D. Alternative setups, algorithm designs, and analyses
D.1. Offline data assumptions

As mentioned in Section 3, our offline data assumption allows sequentially dependent batches, where in-batch tuples are
i.i.d. samples. This is already weaker than the standard fully i.i.d. settings considered in the offline RL literature, and here
we further comment on how to handle various extensions.

Trajectory data One simple setting is when data are i.i.d. trajectories sampled from a fixed policy. (This setting does not
fit our need for the online algorithm, but is a representative setup for the purpose of offline learning.) While our protocol
directly handles it (we can simply split the data in H chunks and call them Dy, Dy, . . .), it seems somewhat wasteful as we
only extract 1 transition tuple per trajectory, potentially worsening the sample complexity by a factor of H. This is because
in our analysis of the regression step (Algorithm 1, line 5), we treat the regression target (which depends on EZ) as fixed
and independent of the current dataset. If we want to use all the data, we would need to union bound over the target as
well; see similar considerations in the work of Fan et al. (2020). A slow-rate analysis follows straightforwardly, and we
leave the investigation of fast-rate analysis to future work. We also remark that our current offline setup (Assumption 2) is
the most natural protocol for the data collected from the online algorithm (Section 4), and using full trajectory data does
not seem to improve the theoretical guarantees of the online setting.

Fully adaptive data A more general setting than Assumption 2 is that the data is fully adaptive, i.e., each trajectory is
allowed to depend on all trajectories that before it. To handle such a case, we will need to replace the i.i.d. concentration
inequalities with their martingale versions. Some special treatment in the concentration bounds will also be needed to
handle the random data-splitting step in Algorithm 1, line 3 (c.f. Mohri and Rostamizadeh, 2008); alternatively, if we
union bound over regression targets (see previous paragraph), the data splitting step will no longer be needed.

Unknown and/or non-Markov 77  In Assumption 2 we assume that the last-step policy in the data-collecting policy is
Markov and known, as we need it to form the importance weights on actions. When 77 is still Markov and unknown, we
can use behavior cloning to back it out from data, which would require some additional assumptions (e.g., having access
to a policy class that realizes 77), and we do not further expand on such an analysis. When 7 is non-Markoyv, it is well
known that the action in the data tuple (x},, ap, xx1) can be still treated as if it were generated from a Markov policy—one
can compute the state-action occupancy for (2, ay,) (which is well-defined even if 72 is non-Markov) and then obtain the
equivalent Markov policy by conditioning on x. Incidentally, the algorithmic solution is the same as the case of unknown
Markov 72, i.e., behavior cloning.

D.2. Stochastic and/or unknown reward functions

When the reward function is stochastic but still known, Proposition 1 and all policy optimization guarantees extend straight-
forwardly, since we can still directly compute the return. The more nontrivial case is when the reward function R is
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unknown and comes as part of the data, i.e., we have the usual format of data tuples that include (possibly) stochastic
reward signals, {(ng)7a§f),r,(f)) et~ dP. Then given estimates {c?;? } (from MLE) and {c/l\}{} (from Algorithm 1 or
Algorithm 2), the expected return can be estimated by reweighting the rewards according to the importance weight C/Z\Z / &}3 ,
and assuming this ratio is well-defined:

- L3ty ) mlale)
R~ i BINONRL
Tret 527 Kelm) &P(mg)) ﬂf(ai)lwi))
It can be shown that we then have \ﬁ}% — vg\ < ¢ + (additive terms), where the additive terms correspond to the statistical
error of return and MLE estimation, which is O((ne¢)~'/2). If c/l\f does not cover d}, which may generally be the case,
clipping (e.g., according to thresholds C7, C}) can again be used, which will lead to additional error corresponding to
clipped mass.

D.3. Algorithm design and analyses

In this section, we discuss alternative designs of the offline density learning algorithm (Algorithm 1), as well as their
downstream impacts on the online and representation learning algorithms, which use the offline module in their inner
loops. For simplicity, most discussions are in the case of offline density learning with known representation .

D.3.1. POINT ESTIMATE IN DENOMINATOR

First, we discuss alternative parameterizations of the weight function class. To enable more “elementary” /., covering
arguments, one may consider instead parameterizing the weight function class as a ratio of linear functions over a fixed
function vy, : X — R, specifically

¥
Wi (vn) = {wh = W Hlwnll € CR_1Ch_1.6h € Rd} :

When p* consists of simplex features, it can be shown that an /., covering with scale 7 of size (1/7)9 can be constructed
for Wy, (vy,), because it can be induced by an £, covering of the low-dimensional parameter space that has scale adaptively
chosen according to how much the weight can be perturbed with respect to the denominator, thus fixed size. It is unclear
how to construct such ¢, coverings for “linear-over-linear” function classes such as W, of Algorithm 1. One may consider
compositions of standard ¢, coverings generated separately for the linear numerator and denominator, but bounding the
covering error is challenging due to sensitivity of the denominator to perturbations.

As we will see, however, the key issue with such fixed-denominator parameterizations is that the Bayes-optimal solution
is no longer realizable. To handle this in the analysis, we can introduce an additional approximation error (similar to
Chen and Jiang (2019, Assumption 3) in the value learning setting) that will appear in the final bound, corresponding to
how well the Bayes-optimal solution is approximated by the function class. Depending on the choice of denominator, the
approximation error may not be controlled, or may lead to a slower rate of estimation; loosely, it is defined as

approx : ™ D
5 = max min wp, — EF _(dy_qwn-1)||, bt -
h wh_1:||wh -1 |leo <CF_1 wh EWn (vh) H HQ’dh*
One obvious choice for the fixed denominator is vy = d ﬂ Tl, since it is immediately available from the MLE data estimation
step, plus the linear numerator can then be extracted exactly through the elementwise multiplication dj = @;{d,?_’i.

However, the Bayes-optimal predictor Ef _, (d;—1) is no longer realizable, since Ef | (dp—1) = P} _, (dh_l)/dfjl isa

linear function over the true data distribution d 5:[1. In this case, using Lemma 19 gives a more interpretable upper bound on
the approximation error involves the difference between the ratio of any linear dj, covered on th;Tl and the corresponding

; aD.T.
ratio over d; ”3:

dj dy
6prrox < max - L v )
dn={p} _1.0n): dD«,T dD’T
SR h—1 h=1ll2,4D:1,
Sy

dn<CE_ Cp_ydy
However such approximation error may be difficult to control even with small data estimation error due to sensitivity of

the denominator (for example if H(if?jl - dfjl |l < emle but they have disjoint support).
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D.3.2. BARYCENTRIC SPANNER IN DENOMINATOR

To avoid the above support issue and control the approximation error, we can instead consider a denominator function upon

which th_’Tl is supported. This is satisfied by the barycentric spanner of the version space of the estimate d; f?_’Tl,

Vie = {on = (i, 00) : llow = &7l < 2,6 € RE

noting that dfjl € V), with high probability due to the MLE guarantee. Then letting v, denote the spanner, Lemma 15
D

ap-t N ~ L .
guarantees that == < d, and the approximation error of W}, (vp,) can be controlled by the error of MLE estimation, since

for any dj, < C;L‘_le;_ldfjl we have

N D,t
dn dp 2/d}?—1($) dp (@) ) |~ Dt
— — < (Cr_,C2_ —— 14+ =5 | |vn(z) = d;" (2)] (dz
e, = T Ty ) e a0

X a -~ Dv
< 2(CF_,CR_d)? [T — dP |

which implies that £}P"** < 2C%_C2_,d\/Emie by the definition of Vj,. However, since eye is O(nfl/ 2), this re-

mle
sults in a slow rate of 1/e* total sample complexity for offline density estimation, and from a computational stand-

point, introduces another barycentric spanner construction step in the algorithm which can be expensive. The rep-
resentation learning setting has the additional challenge that there will be approximation error if the wrong repre-
sentation fip,_1 € Yp_1 is chosen for d}?_’g, since dfjl ¢ Vn(iin) (we extend the definition to Vy(up—1) =

{vh = (pp—1,0p) : ||op — 67;?_’1 i < éemle, 01 € Rd}), which, as in the first case above, may be difficult to bound.

D.3.3. CLIPPED FUNCTION CLASS WITH POINT ESTIMATE IN DENOMINATOR

Generalizing and improving upon the previous analyses, using a clipped version of the function class W, (vy,)

(Hh—1:0n) N Cr_ 1 Ch_vn
Up

W}Cllip(’l]h) = {wh = : 9h+1 € Rd}

will allow us to bound the approximation error for general denominator functions v,. For any dj such that d, <
. . o dpACE_ CR_ vy, - N
x C2  dPT | we can approximate the ratio d%’i with il e WP (1;,), and separate the approximation

error into two terms, based on whether dfjl is covered by vy, according to a threshold C' > 1:

2
dp A C,’f_leL‘_lvh d,

D,t
Vh dh—l dejl
2
dy NCE_,C2_ o, d )t (@
< h h—1%n—1Yh DhT 1 L() <C (“covered”)
Up, d;,” vp () 94Dt

Th—1
2

(“not covered”)

+ ‘

Bounding the two terms individually, for the “covered” term, we have

<dh ACE_C2 v, dy ) B [dfﬁl(a:) - c

U B dfjl vp ()

D
2,d; 0

2
dn(z)  dn(®)
(13 9 < D D7T h _
(“covered”) < /:d,hj(l(;)gc d, (z) (vh(x) 27 (2) (dzx)
U}L x
dP 1 (x) (dPT (z) — v (2))?
S(Cf,lCﬁ,l)Q/ Y h—l( )( h—1( ) h( ))

2 h*l(;) <C 'U}L(Z‘) rUh(x)

vp (@

(d)
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<(CFACRPO0+0) [ iy |0 @) = i)

T (@) =

< (CrACrPe+C) a2 —u| -

For the “not covered” term, noticing that both parenthesized ratios are bounded on [0, C¥_,C2_,], we have

thiT1 (z)

oy > €| @)

(“not covered”) < (C¥_,C2_,)? / dfjl (x)-1

x 1 - D
< (G Chy)? (1 - C) Hdhjl - Uhul )
where the second inequality is because

1
(1 - C) /_df’fl<m>> dfjl(x)(dx) < / d{f’jl(m>>c(th—’T1(x) —vp(2))(dz) < dejl - UhHl

FTop (@) T @

Dt

. d .
since ~=+ > vy,. Thus in total, we have

approx x a C D
e < ORCRy <C +C% + C—1> Hdhjl — Un

‘1 '
The bound depends on how close the point estimate vy, is to the true dfjl, as well as the threshold C'. In the case where
v = d}?_’i is the point estimate, we are now able to bound £}"""** < C*_,C2 | (C +C? + %)‘ /€ mile, Which results in
a slower rate than our results in the main text. If v, = vy, is the barycentric spanner of the version space, then it suffices
to set C' = d, in which case only the “covered” part of the error is nonzero, and we recover the analysis in the previous
paragraph.

In general, the best choice of threshold C' is not obvious because d,?jl is not known, and will trade off between the two
errors. When C is large, the “covered” error will be large since it is proportional to C2, while if C' is too small (too close
c

to 1), the “not-covered” error will be large since it is proportional to ==

D.3.4. DIRECT EXTRACTION OF THE ESTIMATE

Putting aside the discussion of point estimates in the denominator, we now present an alternative to pointwise multiplication
+ linearization used to extract dj, from Algorithm 1. Instead, we can directly extract the numerator, which will already
be a linear function (in u*), from weight ratio and use it as the estimate for d}. The regression objective might then be
(replacing line 5 in Algorithm 1)

- dy df_ NCE_dP

di = argmin min Lpres , ~
dp €Fn(vn) VR EVh h=t Up dh*l

D
s Th—1 ANCR_1Th—_1 |

where the version space of denominator functions V), is defined above, and F,(vs) = {dn = (u);_1,0n) : ||dn/vnll <
Cr_,Cp_1,0h € RY} represents linear numerator functions covered by vy,. It is necessary to constrain the denominator
functions to the version space in order to ensure that the numerator is close to the true density, since regression only
guarantees quality of estimated weight. For example, even if @] = w7, if the denominator function is ¢ - df;l then the
numerator will be c- d, leading to large Eg estimation error. In terms of the analysis, this is quantified as the error between
the denominator and true df;l in Eq. (11), which is controlled by ¢,,;o when the denominator is constrained to the version
space Vy,, and will result in the same guarantee as we have for Algorithm 1 and Algorithm 2 in the known feature setting.

In the online setting with known features, direct extraction has the advantage of no longer requiring the linearization step
(line 7 in Algorithm 2), though it is computationally more expensive because the function classes are jointly optimized,
and the version space must be maintained. This advantage is lost in the representation learning setting because the esti-
mates {JZ}Wen must be jointly re-linearized with the same representation in order to construct the policy cover (line 9 of
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Algorithm 4). As another related advantage, this approach will relax the expressivity assumptions in the offline setting to a
form of “completeness” (Uehara et: al., 2021a) that we have function classes that are closed under the operators explicitly
defined in Eq. (4) (i.e., that maps dh ; to dh)

D.3.5. MLE INSTEAD OF REGRESSION

An alternative to using regression to estimate the occupancy is instead using MLE-type estimation. Along similar veins
as the regression algorithm, (a clipped version of) the previous-level estimate dj _; must be reused to reweight the data

distribution in order to estimate d} :

— argmin Zdﬁ 1 NCh_ 1dh \ Tt ACR_ymg) L log(f)
h = — .
fn€Fn M i—1 d? 1 77}? 1

where F, is some linear function class. One possible advantage of such an approach is that a linear density estimate can be
directly learned, but establishing formal guarantees for an MLE-type algorithm remains future work. After separating the
missingness error ||dj — dh |l1 in the same way as in Section 3, similar methods as classical MLE analysis (Appendix H)

might be used to control ||d —dy 1. The challenge is that such MLE analyses require F}, to include only valid densities

. cr_,dp
€ A(X), but this is at odds with reweighted MLE objectives such as the one above, since the weights %

generally will not induce a valid density when multiplied with the data distribution.

D.3.6. VERSION SPACE FOR dj

Most algorithmic ideas presented in the paper for estimating d} have a top-down manner, which resembles the standard
bottom-up structure of dynamic-programming algorithms for value-function estimation. On the other hand, Bellman-
residual minimization (Antos et al., 2008) learns value functions by checking whether each candidate function is temporally
self-consistent based on the data, and is very useful for producing version spaces of the functions of interest (Xie et al.,
2021) and is statistically more superior to dynamic-programming algorithms in various situations (Xie and Jiang, 2020;
Uehara et al., 2021a). Here we describe a method to produce a version space for dj;. In Appendix C we also described
how to form version space based on EZ (Eq. (7)); in contrast, the method below will not estimate EZ but instead directly
produce a version space that will be generally tighter than Eq. (7).

Similar to the case of value functions, the key to forming tight version spaces is to check whether a candidate function {d}, }
is temporally self-consistent. We do so by the following criterion: (we assume all candidate {d}, } agree on do) Vh > 1,

H [PT_, (dny ACT_dP ) — dh]+H1 <& )

Inside [-]4, the term P}_, (dp—1 A C¥_,df’ ) corresponds to pushing dj,_1 to the next level with clipped dynamics,
which is exactly the kind of object FORC learns in each step. {d),} = {d } satisfies the criterion with ¢’ = 0: when data
covers {d] }, the LHS becomes ||[P%_,d7 _, — df|||1 = 0as P]_,d}_, = d}; when data does not provide sufficient
coverage, PT_, (df_, AC¥_,df ;) < dF, and the LHS is still 0 since [-], only considers the positive part of the
difference. The above reasoning assumes PT h_1 (d271 A C}’fqdfq) is known, but in practice we need to estimate it
from data; therefore, €’ cannot be set as 0 and must be instead set to the estimation error of PZ_1 (dh,l A C’;L‘_lth_l) to
guarantee {dJ, } is not eliminated.

Given the criterion, we can form a version space of {d] } that includes all normalized {d}, } from the function class that
satisfies Eq. (8). Offline policy learning follows straightforwardly (Appendix C), and this version-space-based approach
produces generally less conservative estimate than using {EZ} (Theorem 3). The online case is trickier as we still need
to produce a point estimate {d}, } for policy cover construction (the role of 67” _, in FORCE), and our analysis requires the
chosen {d}, } to be approximately a point-wise lower bound of {d] } (which we informally denote as dj, < d7, meaning that
ld}, — d“]+ |l1 is small). To handle this problem, we can construct two version spaces, one that only includes normalized
distributions for reasoning about dj; (which we call VS;) and one that includes unnormalized distributions for selecting
{d},} (which we call VS]). It is easy to see that {d}} € VS, C VS/, and any member {d},} of VS’ satisfies d}, 2> EZ
. Given the two version spaces, we can choose any {d}, } € VS, that satisfies d}, < dj, V{dy} € VSx. {d,} € VS, i
always a viable choice, but in general there may be better choices of {d}, } that have significantly larger norm ||d}, ||1 than
[|dy, ||1, thus preserving more mass in the online algorithm.
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D.4. Discussion of other approaches for controlling error exponentiation in the online setting

Barycentric spanner in regression target (without clipping) In Section 4 we controlled the error exponentiation arising
from having only approx1mately exploratory data by first chppmg the regression target dr T/ ap ; (since the MLE estimate ap n

does not necessarlly cover d;{) then separating the error ||d7T dj |1 into the “two-sided regression error” and “one-sided
missingness error”. It will be instructive to also look at an alternative approach that avoids clipping and “pretends” that data
is perfectly exploratory, which provides interesting insights on the underlying issue and the delicacy of error propagation
in our problem from a different perspective.

The seemingly feasible solution is based on the observation that % Zz 1 d’r , the barycentric spanner of { d"}ﬁe 1'1 1n the
denominator of Eq. (5), is a good approximation of df’. So instead of using MLE to estimate d) = Zi:l d;{ ,
could simply use % Zle &\;{M , which will keep the regression target bounded in Algorithm 1 without any clipping.

However, a closer look reveals that this only sweeps the issue under the rug. The problem does not go away, and only

and when we use

appears in a different form: recall from Lemma 1 that the bound includes a term of 2d Hc?f —dP X

“ _h,t .
1579 a7 to replace dP, we obtain

< maXHdh wll
1

which, in addition to merging the two inductive chains, gives us [|df —d7 ||; < (1+d) maxrer ||dF —dF ||y +. . .. resulting
in O(d)* error. In other words, because the error of the denominator dlstrlbutlon depends on the quality of regression,
even with full coverage we will suffer the same error exponentiation issues.

Reachability-based approach Error exponentiation can be avoided if a reachability assumption (Du et al., 2019; Modi
et al., 2021) is satisfied in the underlying MDP. Formally, this assumption requires that there exists a constant 7,i, such
that Vh € [H], z € 2,41 we have max e Pr[2p+1 = 2] > Nmin, Where Zj, 11 correspond to the latent states of the MDP.
For example, in the case where i is full-rank and composed of simplex features, 2,41 = {1,...,d} and 6)[i] directly
corresponds to P [zp+1 = @] fori € {1,...,d}. The direct implication is that we can construct a fully exploratory policy
cover that reaches all latent states (and thus covers all 7 € II) as long as we find, for each latent state, the policy that
reaches it with probability at least 7. This policy can be found as long as E}Lf is estimated sufficiently well, which when
backed up implies the latent state visitation is estimated sufficiently well.

Specifically, in the offline module used in Algorithm 2, we can instead set n,c such that HEZ —d7 |1 < Omin(K_1)Mmin/4
for all # € II, which implies that when backed up to latent states the error of estimation is ||§g — 07 loc < Nmin/4.
Then the exploratory policy cover can be chosen as HZXPI = {n"#}d_| where for each i € {1,...,d}, 7™ is such that
(5;;h [¢] > Mmin/4, which implies th’i [¢] > 7min/2 with high probability, and such a policy is guaranteed to exist from the
reachability assumption. Since the policy cover is fully exploratory, a single induction chain in the error analysis (instead
of the two in Figure 1) will suffice.

E. Off-policy occupancy estimation proofs (Section 3)
E.1. Discussion of clipping thresholds for df

As we have previously mentioned, the clipped occupancy dh depends on clipping thresholds {Cx} and {C2} that are
hyperparameter inputs to the offline estimation algorithm (Algorithm 1). To better understand the effects of C}, C} on dy h
and downstream analysis, we highlight three properties below, which we have written only for C}* (but that take analogous
forms for C}).

Importantly, property 3 shows that the missingness error ||dj, — dj |1 is Lipschitz in the clipping thresholds {C }, indicating
that small changes in C7 will only lead to small changes in the missingness error, and thus the result of Theorem 2. For
practical purposes, this serves as a reassurance that, within some limit, misspecifications of C7, C'} in the algorithm do not
have catastrophic consequences.

Proposition 5. For two sets of clipping thresholds {C},{(C¥)'}, following Definition 1, for each h =1, ..., H let their
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corresponding clipped occupancies be defined recursively as
Eh = P§—1 (Eh—l A C}}:—ld}?—l)
(@) =Py (@) A (Cry)ap,)
with dy = (dy)' = do. Then the following two properties hold for each h € [H]:

1. (Monotonicity) d, < (d;)" if C% < (C%)' for all W' < h. The relationship also holds in the other direction, i.e.,
replacing “<” with “>".

2. (Clipped occupancy Lipschitz in thresholds) || (d) —dy ||, < Donen (CF) = CFl.

3. (Missingness error Lipschitz in thresholds) |||df — (dy)'||1 — ||df —dj ||| < Donen (CF) = CF .

Proof. We prove these three claims one by one.

Proof of Claim 1 We will prove Claim 1 via induction. Suppose d;,, , < (dj, )’ for some h’ < h. This holds for the
base case h’ = 1 since dy = (dg)’. Then since C,_, < (C%_,),

dy =Py (Ao A O adf) < PRy (@) A (G dD ) = ()
Then by induction we have that d;, < (d;,)’.

Proof of Claim 2 For Claim 2, using Lemma 20, we have

1(d5) — il

< (82—1 A C}}f—ld}?—1> - ((82—1)/ A (C;f—l)/df—l) Hl
< (32—1 A Cf)f—lth—l> - ((32—1)/ A C}’f—ﬂf—l) H1 + H ((32—1)/ A C}’f—ﬂf—l) - ((82—1)/ A (C}):—l)/dg—l) H1
< [~ @y, s Ol

=

dhy = (1)

Hlor - @yl
Unfolding this recursion from level i — 1 through level O gives the result.

Proof of Claim 3 For Claim 3, we have

Uy

a7, = (d3)'llx — lld7 —32||1‘ = () = (dp)'(2)] = |df (z) — dj (x)|(dz)

|
—
a,
=3

< [ |ldr@) - @)@ - 1d7) - @ )] o)
< [ @@ - @] @) (snce |lz] — Jy]| < |z — y)
= @ -a| -
1
Then applying Claim 2 gives the stated claim. O

E.2. Proof of occupancy estimation

Proposition (Restatement of Proposition 2). We have the following properties for EZ :
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1. dy <dj.

2. EZ = d} when data covers T, i.e., Yh' < h we have d}, < C;f,df, and mp < Cfl‘,w,?.

3. \ldy, — dilly < ldp—y — df |+ [dp_y — dpy ACF_ydl |+ [PF_ydf_ —PF_df |1
Proof. We prove these three claims one by one.

Proof of Claim 1 Firstly, we have d, = df = do. Assuming the claim holds for i/ — 1, then we have dy =
P,y (dy_y ANCo_ydip_y) < PR _y(dyy ACR_ydl)_y) < PR _y(dfy_y ACH_ydp)_y) < Pf,_ydf,_y = df,.
By induction, we complete the proof.

Proof of Claim 2 It is easy to see that dh, < C,db together with Claim 1 implies d,, < C,’f,df,, thus ||d,, — d,, A
Cx,dE |1 = 0. In addition, 7y < C® L) gives us 7, = 7, therefore ||Ph, Ay =P dr, 1||1 = 0. Now we

can prove Claim 2 inductively. For i’ = 0, we know the claim holds since do = dj = dp. Assuming the claim holds for
h' — 1, by Claim 3 we have that

0 < Ndy = dip |l < Ndp—y = diy [l + [y —y = dy_y ACR_ydi) i1+ [IPF_ydh—y = PR _qdfy_y[i = 0.
This means the claim holds for A’. By induction, we complete the proof.

Proof of Claim 3 For the third part, we have the following decomposition

I35, = dill = |[P7y (Gs A Crdfy) — Prdi |

< [P}, (8271 A Cﬁﬂdfq) - PfngqH + HPZAdZA - PZdZAHl
<& _ rncxab - H + ||P di_, —Prd_ ||, (Lemma 20)
< ||dp_y ANCE_ydi_y —dp_y . - dZ—1H1 + I\Pf_wli_l - Pgdg—1|‘1 . O

Lemma (Restatement of Lemma 1). For every h € [H|, the error between estimates c/l\’,; from Algorithm 1 and the clipped
target EZ is decomposed recursively as

i 7 7 x 7D x a 7D, D,
dp — thl < Hdhq - dthI +2C%_,4 Hdhq - quHl +Cr_1Ch_q Hdhj - dhj1H1

= (g BN CEadl,
h—1 h—1 C/l\D
h—1

)
D,t
2,d; 7Y

where (ETdp,) := (Pzdh)/df’f'

Proof. We start by separating out the recursive term

TR I T A Y e )]
< |dr —Pi_, (3271/\0}):71‘2571) LT Pr_, (3271/\0}):71‘2571) -P_, (8271 /\Ci)fqgfq)Hl
+ Hpi—l (82—1 A O}):—lgl\i?—l) -Pi_, (EZ—l A Cl)z(—ldf—l) Hl
< ||y - PF_, (&\7};71 A Cl’zilgl}z)fl) LT A7 NCE_ydf = dyy A Clilgl%)lel
+ ‘77T _8271/\6'})1(71‘1571"1
< ||gr -P7_, (JZ—1 A Cﬁ—l@?—l) LT a7, _E;r—lu1 +Cr_y HCT}D —dy- 1H1 (©))
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Here, we apply Lemma 20 in the second inequality. The last inequality is due to | min(z,y) — min(z, z)| < |y — z| for
z,y,z € R.

Now, we consider the first term in Eq. (9) and get

HJZ -Pr, (32—1 A 02—1675—1) H1

o or [(dranCE AP,
< || h—1 = di—y
D
dh—l 1
_|_ PF d;;—l /\O})l(flgl?fl dD > _PF (dZI /\Cf):flc/l?fl C/l\D )
h—1 =~ h—1 h—1 = h—1
dh—l dh—l 1
_ [dr_ . ACX_.dP
< |ldr —PT 1( h=1 cTDh 101 4D >| +Cﬁ_1Hth—17&?—1H1' (10)
1

> D
dp 1 ACR_ydp_y

In the last inequality, we notice < CF_, by our convention % = 0 and apply Lemma 20 again.

oo

Let w . 22—1/\0)’:—131?—1 fe h Si ~ < X L 19 (szl(d’?*lﬁjhfl)) < Cx .C2
et Wy,_1 = or short. Since ||Wy—1]|c < CF_,, Lemma 19 guarantees D <Cr_,Cp_,,

thus the ratio is well-defined. Then we can further upper-bound the first term in Eq. (10) as

~ — PT (dD Wh 1)
D~ 5D, h—1 \%h—1 D,
b~ Pho (dh—lwh—l)H = ||@F d2} ~ D o
1 dy; )
P dD Wh—1
< [lor a2 - g a2 + g aps, - T dia®ins) gog
1 a>
h 1
~D dy_w
= ||} dh & dDT H Py (dgT1 h-1)
h—1 1=dl?jl
~ P _, (df_jwn_1)
~ D, D, P h—1 \%h—1
< w7l Hdhjl - dhlel + ||@h — D
dh—l 17[15:&
PT_. (dP_ wh—
< cxes||aPt — aPt H +|l@F — et ( ko1 ) (11)
1 dhil dei’[l
Combining Eq. (9), Eq. (10), and Eq. (11) and noticing the definition of E} and w;_; completes the proof. O]

Theorem (Restatement of Theorem 2). Fix 6 € (0,1). Suppose Assumption 1 and Assumption 2 hold, and p* is known.
Then, given an evaluation policy T, by setting

2 2

Noe =0 [ d | Y CrCR | log(1/6)/e* | andnwey = O | d | Y CrCi| log(1/8)/ |,

he[H] he[H]

with probability at least 1 — 6, FORC (Algorithm 1) returns state occupancy estimates {d } he0 ! satisfying

The total number of episodes required by the algorithm is

dr —d, ‘1 < e,Vhe [H].

2

O|dH | Y Cxcq| log(1/0)/?

Proof. We first make two claims on MLE estimation and error propagation.
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Claim 1 Our estimated data distributions satisfy that with probability 1 — §/2, for any h € [H]
[ R -t . 1
1 1

where

dlog(16 H BH#nye/d
Emle = 6\/ Og( 6 Ml / )

T'mle

Claim 2 Under the high-probability event that Eq. (12) holds, we further have that with probability at least 1 — §/2, for
any 1 < h < H,

%=, |

AZlI — 32,1“1 +3CK_1CP_1Emie + \/Eﬁreg,hfh (13)

where

Nyeg

\/221184d(0;f_102_1)2 log (2Hnyeq/0)
€reg,h—1 =

Now we establish the final error bound with these two claims. Notice that the total failure probability is less than d.
Unfolding Eq. (13) from &’ = h to h’ = 1 and noticing that df = dy = d yields that for any h € [H]

Substituting in the expressions for 1 and €,¢g,, We have

|

It is easy to see that if we set

h—1

<3 (30,’; C® emie + ﬁereg,h/) . (14)

~ o
dh - dh 1=
h'=0

dlog(16 H B*nmie/d)

Nmle

dlog (2Hnyeg/0)

Nreg

5)

h—1
ar — EZHl <y 180,’f/C,?,\/ + 6660;;0,3,\/
h’/=0

2 2
Nmie = O | d Z CxC2 | log(1/6)/e? | and nyeg = O | d Z CxC2 | log(1/6)/e* |,
he[H] he[H]

then we have

In the following, we provide the proof of these two claims respectively.

dr —82“1 < e,Vhe [H].

Proof of Claim 1 We start with a fixed h € [H]| and bounding ||c/i\f — dP||1, where we recall that é\f is the MLE
solution in Eq. (2). By Lemma 22, we know that function class JF, has an ¢; optimistic cover with scale 1/n, of size
(2[B“nmle])d. It is easy to see that the true marginal distribution d2 € F), from Lemma 17 and any d;, € F}, is a valid
probability distribution over X'. From Assumption 2, we know that once conditioned on prior dataset Dy.;,—1, the current

dataset D}l’“e is drawn i.i.d. from the fixed distribution denoted as d,? . Thus, Lemma 12 tells us that when conditioned on
Do.n,—1, with probability at least 1 — 6 /(4H)

1 121og(4H (2[ B*niye])® /6 6
||C/l%)_d’ll)||1 S +\/ Og( ( [ n le-|) / ) 4 (16)
Nmle Nmle Tmle
o1, [12dlog(16HB nmc/5) | 6
T Mmle Nmle Nmle
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iy \/ dlog(16H Brnye /) an

= €mle-
Timle

Since Eq. (16) holds for any such fixed Dy.;,—1, applying the law of total expectation gives us this that Eq. (16) holds with
probability 1 — 6/(4H ) without conditioning on Dg.j,—1.

Similarly, with probability at least 1 — §/(4H), for the MLE solution E}? T we have ||c/l\,? T df’THl < Emle- Union
bounding these two high-probability events and further union bounding over h € [H| gives us that Eq. (12) holds with
probability 1 — 6/2.

Proof of Claim 2 Notice that the proof in this part is under the high-probability event that Eq. (12) holds. We consider a
fixed h € [H]. From Lemma 1, we have the error propagation result that

T g7 T i x 7D X 7D, D,
dh - th1 S Hdhfl - dh*lH1 + 2thfl Hdhfl - d}?*lHl + Chflc]?:fl Hdh—ii - dh TlHl

Pf—l (dg—ﬂzhfl)

D,t
Ay

+V2

wyp, —

) (18)

D,
2,dy7 Y

o D
dip 1 ACR_1dp_y
ap

h—1

where wj,_1 :=

Since W], € Wi, we have || 0] ||oc < CFC%. The last term on RHS isolates the finite-sample error of regression, involv-

. . .. S Py . S PT_ (dP_ an— .
ing the difference between the empirical minimizer wj, and the population minimizer % of the regression
h—1

objective. To bound this error, we apply Lemma 13 and Lemma 14, which give us that, with probability at least 1 —6/(2H ),

qu (d}?fliﬁh—l) ’

wp, — b
= 2y

e P7_y (df_ywn—1) _

=E [ﬁp;'fgl (wngh—lvf)] —E |Lpres, ( o ,’3; ),wh—uf
dh—l

o P7_y (df_ywn—1) _

<2 (/:ngl (@h, Wh—1,7) — Lpres, ( h-1 (dg’Tl ),wh_l,f + 260 h1 (19)
h—1

where

\/221184 -d(Cx_,C2_1)?10g (2H nveg /5)
€reg,h—1 ‘=
Nyeg

The first term in Eq. (19) compares the empirical regression loss of the empirical minimizer @7} against the population

. .. PT_,(dP_ @, _ .
solution. In order to show that this is < 0, we first need to check that % € W,,. As we have previously seen,
h—1

Pr_(df)_ @n- .o .
we have % < C¥_,C2_, from Lemma 19, thus satisfying the norm constraints of W},. Further, Lemma 16
h—1

guarantees that both the numerator and denominator are linear functions of pj_ 4, i.e., Pf_l (th_I{Eh,l) = <u;_1, 02")

and dP" = (ui_, 65°") for some 6}, #5o"™ € R%. Then since @} minimzes the empirical regression loss Eq. (3), we
have

ngl (dfflah—l)

Dt
dh—l

Lopres, (Wh_y, Wh—1,7) — Lopres, < ,@h—h?T) <0. (20)

Combining Eq. (18), Eq. (19), Eq. (20) with the MLE bound of Eq. (12), with probability at least 1 — §/(2H ) we have
Idf = dplly < Idf_y = dh_ill1 + 20K 18mie + CF 1 Cp_1Emie + V2eregn1
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<|ldh_1 — 32—1”1 +3C5_1Ch_1Emle + \f%regh—l-

Finally, union bounding over h € [H], plugging in the definition of e, and rearranging gives that Eq. (13) holds with
probability at least 1 — 6/2. O
E.3. Proof of offline policy optimization

Theorem (Restatement of Theorem 3). Fix ¢ € (0,1) and suppose Assumption 1 and Assumption 2 hold. Given a policy

class 11, let {Jz}he[H],weH be the output of running Algorithm 1. Then with probability at least 1 — 6, for any deterministic
reward function R and policy selected as Tr = argmax, cp; U, we have

%R T
VUVt > maxvp — €
R = LSRR )

where UF, 1= ZhH:_OI IS c/l\g (x1)R(zn, ap)w(ap|zy)(dzy ) (day) and Ty is defined similarly for {d;, }. The total number of
episodes required by the algorithm is

2

O|dE® [ Y crep | log(|/s)/e?

he[H]
Additionally, define the set of policies fully covered by the data to be
peovered — {7r ell:df =d,Vhe [H]} .
Then under the above guarantee, we also have

TR s
vt > max vp — €.
R = mellcovered R

. 2
Proof. Firstly, Theorem 2 states that, with probability at least 1 — ¢ /|II|, O (dH3 (Zhe[H] C,’fCﬁ) log(|H|/5)/eQ>

samples are sufficient for learning {EZ} such that ||EZ —dy|l; < 577 forall h € [H] and each 7 € II. Taking a union
bound over 7 € II, with probability at least 1 — &, we have that for all h € [H],w € II,

e

dF —dr | < —.
ldh = dnlly < 557

Then since the R is bounded on [0, 1], for any 7 € II we have

H-1
[0k — VRl = (di(xn) — dy (xn)) R(wn, a)w(anlzn) (dzp) (dap)
R R hz_;)// h\Lh h\Lh hy Gk h|Lh h h
H-1
|5 (xn) = dy(xn)| ([ w(anlen)(dan) ) (dan)
hz_%/ h\Lh h\Lh (/ h|th h) h

H-1
P —
= > lldi —dpl <e/2.
h=0

IN

Denote T, = max e U, and recall that we pick Tr = argmax, c; U5 Then

TR _ =1 _ RR _ TR~ MR _ 7TR _ =RR _ AR | SRR _ TR | ~MR _ TR ~ _
v ETHGaI}[(UR—’UR VRt 2> Up UR" =Up vt +Ug vp" +Up vt 2> —¢g,

where the first inequality follows from the fact that dj, > EZ, thus v%, > %. The second inequality results from the fact
that EZR > 0gF and [0F, — 0| < e/2forall 7 € II.

The result for TI°°V°*d is straightforward from the observation that max ¢y VR > MaX,cqjeovered Uy, SiNCE Ty = v, for
each covered policy. O
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F. Online policy cover construction proofs (Section 4)
F.1. Proof of occupancy estimation

Lemma (Restatement of Lemma 4). For any h € [H] and 7 € 11 in Algorithm 2,

| ], = %

Proof. Firstly, from the third claim of Proposition 2, we have that for any h € [H], 7 € II

dr
hl

| ad HE”', —a H .
o], + s mae | - 70
Iy — dilly < ldp_y —di_ylls + lldp_y — dp_y ACF_ydp 4 |ls + IPF_ydf_y — PF_ydy_y |1 (21

Now we further simplify the latter two error terms on the RHS of Eq. (21) by noticing that C¥ = d and C}} = K for all
h € [H]. For the last term, 7 = unif(.A) gives us

7(an_1|rp_1) = min{m(ap_1|zn_1), C2_ 7P (an_1|zn_1)} = min{m(ap_1|zn_1),1)} = m(an_1|zn_1)

and thus ’|P271d271 -P7_dr_, H , = 0. For the middle term, we expand the expression as

Consider a fixed ;,_; € X. Note that d, ,(zj_1) — (8271 A dth_1) (zp—1) is nonzero only if ddf | (zp_1) <

Ty | = [T sone) — (@ A ddR) nn) o).

dy,_,(zj_1), for which we have

dp_y(zh-1) — (3271 A dthf1> (zh-1) = dp_y(zh-1) — ddf_ | (zh-1)

< (@) = 4 (wnen) + Ay (@) — A (@ne)

To bound E’g_l(xh,l) —ddP_|(xn—1), we have

5

i (zho1) — ddiy (zn1)
1) = ddP (o) + |4 (@ne1) = diy (@)

IN
S
=3
I
=

Nﬂ_h, 1,4

P @nen)| = P o) + [dy(@ne1) = diy o)

-

&
Il
—

Sph—1i

P )| = AR (o) + (A 1) max i (o) — di (wn-)|

-

s
Il
—

h—1,i

Gy (@ne1)| = ddfy (o) + (d+ 1) max |45 (an-1) = i (o)

-

s
Il
—

_|_

h—1,i

L0 @her) = 4Py () + (d 1) max [dFy (@ne1) — d (o)

I
M&
|
=3

S
Il
-

-

+ dmax‘dh 1(Th—1) — dh 1(@h- 1)‘
< Zd " (@ner) = A o) + (A o+ 1) max |47 (o) = 7 (ono)|
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+ dmax ‘d’ﬁq(wm) - 3271(%71)‘
= (d+ D) max | i (en-1) = diy (on-1)| + dma |45y (@n-1) = dyy(@no1)]
/' €ll w/€ll
In the second inequality, we use that Hix_pi = {gh=b1 . gh=1d) are the policies corresponding to Ehe barycentric
spanner, which Lemma 15 guarantees to be of cardinality no larger than d. The first equality is because d;;_l(xh_l) >

0, vV, which can be seen by the induction definition in Eq. (4) and the non-negativity of do. The fifth inequality is due
tody (zh_1) < df _,(xp—1),Vm, which can be shown inductively by noticing dy < df and the definition of dj, in
Eq. (4). The last equality can be seen from that d{i)fl (zp—1) is the marginal distribution of Dj,_; and Dj,_; is rolled in
with unif (HZ’S’{)
Integrating over x;,_; yields

s~ mo ], 0 s+ g T,
Since dj,_;, = PT_,(dy_o ANCX_odP ) =PT _,(dy_, AddP_,) is linear in the features ;i _, (Lemma 16), and d¥_, is

the closest linear approximation in the £ norm to ‘7;;/—1 (line 7), for any 7’ € II we have

Hgl\f_l B Jg;lH1 = ngl_l _32_1“1 (22)
and thus
H&Z,l 4 A dclhlllH1 < 2(d+ 1) max HJ;;',I . EZ,lHl . (23)
Then combining Eq. (21) with Eq. (23) gives
d —di|| < |[@y - apo|| +admax ldE - ;| - O
Hh h|l, S ||%h—1 7 Gpr| TAAMAX fldp g = dppq |

Theorem (Restatement of Theorem 5). Fix § € (0,1) and consider an MDP M that satisfies Assumption 1, where the
right feature |1* is known. Then by setting

~ (d3K2H*1og(1 ~ (dSK2H*log(|II
=0 (EICHSUD o (IO o1

) ;= Nmle + Nyreg,

with probability at least 1 — 6, FORCE returns state occupancy estimates {EZ}hH:_()l satisfying that
|d — df|ly < e,Vh € [H],x € 1I.

The total number of episodes required by the algorithm is

O(nH) = 0 (d5K2H5 log<|n|/6>> .

2

Proof. From Algorithm 2, we know that dataset Dy.z;_ satisfies Assumption 2 and for each 7 € 1II, cﬁ{ is estimated in the
same way as that in Algorithm 1. Therefore, we can follow the same steps as the proof of Theorem 2. By setting C}* = d
and C? = K for all h € [H] in Eq. (15), with probability at least 1 — ¢, for any policy 7 € II, we get that

m
‘ < 18hd3/2K\/ log(16H Brnmic/9) 666hd3/2K\/ log (21| Hnxeg/9) (24)
1

T'mle Nreg
The primary difference between the above results and the corresponding statements in Theorem 2 is that the regression
error in Eq. (24) includes an additional union bound over all 7 € II. This is because Algorithm 2 performs estimation

dy —dj,
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for all policies, while Algorithm 1 only concerns a single fixed policy. We note that this change in the proof occurs only
through application of Lemma 14, which is stated generally and already includes a union bound over all policies of interest.
Because MLE estimation occurs only for the data distribution and is policy-agnostic, the MLE error (second term) does
not require such a union bound.

Next, to bound the missingness error, from Lemma 4, we have

-], 5 sy
Unfolding Eq. (25) yields
@ - az]|, g4d’§¥}g§H8§—dzf 1 (26)
h'=0
Plugging the bound for Hc/l\,’j — EZ: ) from Eq. (24) into Eq. (26) gives
7 - af, < e \/ OBIOH B ) | 122 \/log (2@2%/5)' o

Combining Eq. (24) and Eq. (27) via triangle inequality and simplifying, we have

‘ g 90h2d3/2K\/10g(16HBunmle/5) . 3330h2d5/2K\/10g(2|H|Hnreg/6).
<

Tmle Nreg
~ 3 2 4 ~ 5 274
Finally, noticing that n,, = O (%) s Nreg = O (W) , 0 = Nmle + Nreg completes the proof.

O

dy, — df

F.2. Proof of online policy optimization

First, we prove Proposition 1, from which our online policy optimization guarantee (Theorem 6) follows when combined
with Theorem 5.

Proposition 6 (Restatement of Proposition 1). Given any policy m and reward function'® R = {Ry,} with Ry, : X x A —
[0,1], deﬁnAe expected return as VR = Eﬂ[zth_ol Ry (zp,an)] = Zf:_ol [f di(xn)Ru(zh, an) m(an]zn)(dzy)(dag).
Then for {d}. } such that ||d}, — d} |1 < e/(2H) forall m € Il and h € [H], and policy chosen as

TR = argmax Ug,
mell

we have
TR T
v > maxvp — €
Ro= Tell R ’

where VF, = ZhH:_OI I &\Z () Ry (zh, an)m(ap|zr)(dey ) (day) is the expected return calculated using {JZ}

Proof. Since the R is bounded on [0, 1], for any 7 € II we have

VR — VRl

H—-1
(d (xn) — dff (wn)) R(zn, an)(ap|zp) (dzy) (day)
’;J// h h h h h h h|Lh h h

Hg [ Wit = dian)l ([ wtanlontaon) ) @)

'"We assume known & deterministic rewards, and can easily handle unknown/stochastic versions (Appendix D.2).

IN
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I

-1
47, = dillr < e/2.

h=0

s

Next, recall we pick T = argmax, .y 0%, and denote 77, = argmax, .y v%. Then using the above inequality, we have

TR _ _ R_ 7R Aﬂ-R_ TR Aﬂ'R_ Th .
vR mealngR—vR v UR vt + v v+ vt > —€

since 77, >0 o R completing the proof. O

Theorem 9 (Restatement of Theorem 6). Fix § € (0, 1) and suppose Assumption 1 and Assumption 2 hold, and u* is

known. Given a policy class 11, let {dJ } he[#),rert be the output of running FORCE. Then with probability at least 1 — 0,
for any reward function R and policy selected as Tr = argmax,c U, we have

® > maxvFh
well R

where vT, and U, are defined in Proposition 1. The total number of episodes required by the algorithm is

o (41 oty

2

Proof. The proof takes similar steps as the proof of Theorem 3. From Theorem 5, w.p. > 1 — §, we obtain estimates {d }
such that ||df — dg||1 < 557 forall 7 € II with O (W) total number of samples, where we use the union

bound over 7w € II. Combining this with Proposition 1 gives the result. O

G. Representation learning

In this section, we present the detailed algorithms and results for the representation learning setting (Section 5), where
the true density features are not given but must also be learned from an exponentially large candidate feature set. The
algorithms and analyses mostly follow that of the known density feature case (Section 3 and Section 4), therefore, we
mainly discuss the difference here.

G.1. Off-policy occupancy estimation

We start with describing our algorithm FORCRL (Algorithm 3), which estimates the occupancy distribution dj; of any given
policy 7 using an offline dataset Dy.;y—; when the true density feature 1* is unknown and the learner is given a realizable
density feature class T > p* (see Assumption 3).

As discussed in Section 5, instead of using 1+* to construct the function classes, a natural choice here is to use the union of all
linear function classes. Since now the feature comes from candidate feature classes Y, _o, Yp,_1, in line 4 of Algorithm 3,
we use different function classes Fj,_1(Yp—2), Fn(YTr—1) as defined in Eq. (28) for the MLE objective. In addition, in
line 5 of Algorithm 3, now we run regression with a different function class Wy, (Y1,—1) as defined in Eq. (29).

Similar as in the known feature case counterpart (Theorem 2), we have the following guarantee for estimating d™.

Theorem (Restatement of Theorem 7). Fix 6 € (0,1). Suppose Assumption 1, Assumption 2, and Assumption 3 hold.
Then, given an evaluation policy m, by setting

2 2

Mote =0 | d [ D CrCR | log(|Y[/8)/* | andmueg =O [ d | > CrC| log(Y]/5)/€* |,
he[H]

with probability at least 1 — 0, FORCRL (Algorithm 3) returns state occupancy estimates {d }h o L satisfying that

dr —Ezul <e,Vh e [H].

29



Reinforcement Learning in Low-Rank MDPs with Density Features

Algorithm 3 Fitted Occupancy Iteration with Clipping and Representation Learning (FORCRL)

Input: policy 7, density feature class T, dataset Do, 7 —1, sample sizes nyie and g, clipping thresholds {C} } and {C2}.
1 Initialize d¥ = do, Vr € I1.
2. forh=1,...,H do
3:  Randomly split Dj,_ to two folds D}flel and D;°%, with sizes Nmle and Nye respectively.
4:  Estimate marginal data distributions d? w1 (xp—1) and dh 1 ! (x4) by MLE with dataset Dinle

Mmle Mmle

(lijh)_l = argmax Z log (dh 1 ach 1)) and c@?_y = argmax Z log (dh l’h )
dn_1€Fn_1(Th_2) Mmle ;] dn€Fn(Th_z) Mmle ]

where
Fn(Tho1) = {dn = (tth-1,0n) : dn € A(X), -1 € Tho1,0, € R, |04 < 1} . (28)
n (%) (@) Th-1(ay) |e?) ?
5:  Define ED;egl (W, Wh—1,Th—1) := nlg Do <wh(xh ) — wp— 1(:17h 1)M> and estimate
b re T 1@y 11T~y
dr_, ACE_,dP
OF = argmin  Lpres | wy, —— /Dh_l hl A NCR TP
W EWR(Th-1) B dh,1
where
. B (th—1, 92p> . x a up pdown d
Wh(Th—l) =Wy = Towny - ||wh||oo < Ch_lCh_l,uh_l € Th_l,ah ,9h € R 5. 29)
<Mh71a Hh >
™ 7Dt
6:  Set the estimate dh =wpd, .
7: end for

Output: estimated state occupancies {EZ\Z};LE[ H]-

The total number of episodes required by the algorithm is

2

OdH | Y crcq| log(|Y|/6)/e
he[H]

Proof. The proof for this theorem largely follows its counterpart for the known feature case (Theorem 2), and we mainly
discuss the different steps here. We now make the following two slightly different claims on MLE estimation and error
propagation. Based on them, the final error bound is obtained in the same way as Theorem 2.

Claim 1 Our estimated data distributions satisfy that with probability 1 — §/2, for any h € [H]

|8 ek

< el and Hc?,f’tth*TH < Emles (30)
1 1

where

\/d 10g(16H|T|B’unmle/5)
Emle = 6 :

Nmle

Claim 2 Under the high-probability event that Eq. (30) holds, we further have with probability at least 1 — §/2, for any
1 < h < H, we have

- 3}7:"1 < HJZA - 8271”1 +3C5_1Ch_18mie + V2ereg h-1,
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where

221184d(Cx_,C2 )2 log (2H|Y|nreg/9)
Ereght = ) 31

Nreg

Proof of Claim 1 Notice that for the term £, in Eq. (30), we now have an additional |Y| factor inside the log.
The reason is that here we use Fp_1(Yhr_2), Fn(Tr_1) instead of Fp,_1, Fp. By Lemma 22, the two function classes
considered here have ¢; optimistic covers with scale 1/n,1. of size |T| (Z[B”nmle])d. In addition, we still have that
df_l € Frn-1(Th_2), thjl € Fp(Yp_1) from Lemma 18, and any dj,—1 € Fp,—1(Yr—2), Frn(Th—1) is a valid probabil-
ity distribution over X’

Proof of Claim 2 This proof mostly follows the proof of Claim 2 in Theorem 2. The difference is that the function
class Wy (T1,—1) now consists of all features in Y _; instead of only the true feature pj . Therefore, in Eq. (31), the
term €reg,h—1 has an additional || inside the log, which is from the counterpart of Eq. (19). It is also easy to see that

T D ~
% € Wp(Yh_1) by following the same logic before. Further noticing that 1}, € YTj,_;, we again have

h—
Eq. (20) hlolds here. O]

Theorem 10 (Offline policy optimization with representation learning). Fix 6 € (0,1) and suppose Assumption 1, As-
sumption 2, and Assumption 3 hold. Given a policy class 11, let {dJ; } ne[m],xcm be the output of running Algorithm 3. Then
with probability at least 1 — 6, for any deterministic reward function R and policy selected as Tr = argmax  cp U, we

have

%R =T
v > maxvp — €&
R =Zen B ’

where vF, and VT, are defined in Proposition 1, and Uy, is defined similarly for {E;} The total number of episodes required

by the algorithm is
2

OdE® [ Y crep | log(T|Y|/6)/e

Additionally, define the set of policies fully covered by the data to be
[Ieovered — {77 €ll:df =d,,Vhe [H]} .

Then with the same total number of episodes required by the algorithm, for any reward function R and policy selected as
TR = argmax, cjcoverea Ufy, With probability at least 1 — 8, we have

’ﬂ'\R ™
vt > max Up — €.
R = mEIlcovered R

Proof. The proof follows the same steps as that of Theorem 3. Notice that now we will apply Theorem 7 rather than
Theorem 2 to get the bound ||d} — dp,||1, which leads to the additional log(|Y|) factor. O

G.2. Online policy cover construction

Now we present the algorithm FORCRLE (Algorithm 4), which estimates the occupancy distribution dj, of any given policy
« with the access of online interaction. Again the true density feature x* is unknown and the learner is given a realizable
density feature class T (u* € T).

Similar as the know feature case online algorithm (Algorithm 2), we use the offline algorithm (Algorithm 3) as a submodule.
However, as discussed in the main text, the crucial different step is to select a representation ji,_1 in Eq. (32) in line 8
before setting d’T This guarantee the cardinality of the barycentric spanner is at most d. Then the state occupancy dr 7 is set
as the linear estimate using fi,—; (rather than using p; _, in the known feature case) in line 9.

Similar as in the known feature case counterpart (Theorem 5), we have the following guarantee for estimating d™.
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Algorithm 4 FORCRL-guided Exploration (FORCRLE)
Input pohcy class II, den51ty feature class T, n = nmle + Nreg
: Initialize d = dp and do =dy, Vm € IL.
2: forh=1,...,H do
Construct {c?”hfl"i}f | as the barycentric spanner of {d}_, }xerr, and set ISP = {rh=1i}d_

3

4:  Draw a tuple dataset Dy, 1 = {(xh b ag) " :rgf))}?:l using unif (T;P}) o unif (A).

5 form € Il do

6 Estimate d7 using the h-level loop!'of Algorithm 3 (lines 4-6) with Dy, df _,, C* = d, C2 =
7:  end for

8 Select feature fij,_1 according to

fho1 = i 0,) — dr ;. 32
1= —min lglggemm | {pen—1,0n) — dj |1 (32)

9:  For all # € II, set the closest linear approximation to (ﬁ{ with feature ji,_1 as JZ = (ﬁh,1,§h>, where §h =

argmineheRd || <///Zh—1a 9h> - dz Hl .
10: end for ~
Output: estimated state occupancy measure {dj, }c(a],xe1-

Theorem (Restatement of Theorem 8). Fix ¢ € (0,1) and suppose Assumption 1 and Assumption 3 hold. Then by setting
~ (d*K?H*1og(|Y|/6 ~ (d°K2H*log(|I1||Y|/§
- AT = oz(||T1/9)

22 ) > » T = Nimle + Nreg,

with probability at least 1 — 0, FORCRLE (Algorithm 4) returns state occupancy estimates {d } satisfying that
ldi — d|ly < e,Vh € [H],x € L.

The total number of episodes required by the algorithm is

d°K?H® log(|H|T|/6)>
o2

O(nH) =0 (

Proof. The proof for this theorem largely follows its counterpart for the known feature case (Theorem 5), and we only
discuss the different steps here.

Firstly, Lemma 4 still holds. However, since we use “joint linearization” in line 8 and line 9, we need to modify the proof

of Eq. (22) as the following. Again, we have d,_; = P} ,(d,_o A C¥_,dP ) = PF ,(dy_o AddP_,) is linear in the
true feature 1 _, (Lemma 16). Together with the feature selection criteria Eq. (32), we have that

~ 7 ~ 7
dr . —dr = h—a,0n_1) —dT
max [|dj_, — dj_ Lyl = H}ggehmm [{Bn—2,0n—1) — di_1llx

. 771', ~_/
< max min (s 0n-1) = di_yln < max ||dy_y —dj 1|1

For Eq. (24), we will have an additional | Y| factor inside the log as

\/dlog(16H|T|B“nmle/6)
Emle ‘= 6 .

Nmle

The reason is that here we use Fj,—1(Yr—2), Fn(¥h—1) instead of Fp_1, Fp. By Lemma 22, the two function classes
considered here have ¢, optimistic covers with scale 1/nye of size || (2[B*nme])®. In addition, we still have that
d?f1 € ]-'h_l(Th_g),dfjl € Frn(Yh—1) Lemma 18, and any dj,—1 € Fp—1(Th—2), Fn(Yr_1) is a valid probability
distribution over X.

The remaining part of the proof is the same as that of Theorem 5. O
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Theorem 11 (Online policy optimization with representation learning). Fix 6 € (0,1) and suppose Assumption 1 and
Assumption 3 hold. Given a policy class 11, let {d} } ,c[m),~en1 be the output of running Algorithm 4. Then with probability
at least 1 — 0, for any deterministic reward function R (as per Proposition 1) and policy selected as Tr = argmax cp Ug,
we have R
TR > T
VR 2 i =

where U, 1= Zth_Ol I C/Z\Z (xn)R(xp, ap)w(ap|xr)(dzy)(day). The total number of episodes required by the algorithm is

5 <d5K2H7 log(IHITI/5)> ‘

2

Proof. The proof follows the same steps as that of Theorem 6. Notice that now we will apply Theorem 8 rather than
Theorem 5 to get the bound ||d} — d7 ||, which leads to the additional log(|II|) factor. O

H. Maximum likelihood estimation

In this section, we adapt the standard i.i.d. results of maximum likelihood estimation (Van de Geer, 2000) to our setting,
and in particular, to our (infinite) linear function class. We consider the problem of estimating a probability distribution
over the instance space X, and note that we abuse some notations (e.g., n, £, D, F) in this section, as they have different
meanings in other parts of the paper. Given an i.i.d. sampled dataset D = {x(9}?_, and a function class F, we optimize
the MLE objective

f = argmin 1 i log (f(x(’))) . (33)
i=1

fer nN-—

We consider the function class F to be infinite, and as is common in statistical learning, our result will depends on its
structural complexity. In particular, this will be quantified using the ¢, optimistic cover, defined below:

Definition 3 (¢, optimistic cover). For a function class F C (X — R),ﬁwe call function class . F an {, optimistic cover
of F with scale v, if for any f € F there exists f € F, such that ||f — f|l1 <~ and f(x) < f(z), Vo € X. Notice that
here we do not require the cover to be proper, i.e., we allow F ¢ F.

Now we are ready to state the MLE guarantee formally.

Lemma 12 (MLE guarantee). Let D = {z)}?_, be a dataset, where 29 are drawn i.i.d. from some fixed probability
distribution f* over X. Consider a function class F that satisfies: (i) f* € F, (ii) each function f € F is a valid
probability distribution over X (i.e., f € A(X)), and (iii) F has a finite {1 optimistic cover (Definition 3) F with scale ~
and F C (X — Rxq). Then with probability at least 1 — §, the MLE solution fin Eq. (33) has an {1 error guarantee

||ff*||1gfy+¢m°g(m+w

n

Proof. Our proof is based on Zhang (2006); Agarwal et al. (2020); Liu et al. (2022) and is simpler since we assume the D
here is drawn i.i.d. instead of adaptively. We first define L(f, D) = % Z?:l log ( fé((f:;j)))) By Chernoff’s method, for a
fixed f € F we have that

P (L(f,D) —log(Eplexp(L(f, D))]) = log(|F]/d))
< exp(—log(|F[/9))Ep [exp (L(f, D) — log(Ep[exp(L(f,D)))))]
=4/|F|.

Union bounding over f € F, with probability at least 1 — &, for any f € F we have
—log(Eplexp(L(f,D))]) < —L(f, D) + log(|F|/). 34
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Let f € F be the y-close £; optimistic approximator of the MLE solution f € F. Since f(x) > f(:z:), Vo € X due to the
optimistic covering construction and f is the MLE estimator, for the RHS of Eq. (34). we have

_ n * (D) n * (D) n , noo
—e(m) - 3 3o (250 < 32 es (ff @))) - (Z tog (/* (") - ;log(f(w(”))> <0,

i=1 fz

Next, consider the LHS of Eq. (34). From the definition of dataset D and L(f, D), we get
Ly f@®)
e (o o (s ()] ) = o= | i3] )

Furthermore, by — log(y) > 1 — y, {1 optimistic cover definition, and f*, fare valid distributions over x € X, we have

(ED[ ff@D (1_% 2]} =1~ s
=/ (vre (1—/ Feas)

/769 100
-5 [(vF@ ) (F@)—7(@)) (da)
/(W Vi) @

— log(Eplexp(L(f,D))]) = —log (ED

Then notice that [ (\/ )+ fz ) (dz) <2 [ (f*(z) + f(2)) (dz) < 2 [(f*(@)+f(@)+[f(z)—f(2)])(dz) <6

and the Cauchy-Schwarz inequality, we obtain
s [ (Vi@ - W) ¢
<3/ (- i) dx></<mw>2<dx>>—“;
> (/ F(@) - f*(fc)l(dx))2 — S =nlF- -5

Combining the above inequalities and rearranging yields

121log(|F|/9)

IF = fI13 < +67.

Finally, by the triangle inequality and the definition of the ¢; optimistic cover, we get

1=l <WF=TFlh +IIF = flh <v+

)

\/ 1210 ((1/8) ,

which completes the proof. O
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I. Auxiliary lemmas

In this section, we provide detailed proofs for auxiliary lemmas.

I.1. Squared loss regression results

Lemma 13 (Squared loss decomposition). For any wy,, wp4+1 : X — R, dataset D;°® = {(xp, an, vht1)} ~ dP, and a
pseudo-policy m, we have

2
P} (djwn) P7 (dfwn)
Whi1 = ——p3 =K {‘C’ng (Wht1, whﬂf)} —E |Lpres — Dby WnT||. (35)
dy, 2,2 dy,

Proof. We introduce a new notation

(P, (dfwn)) (zn41)
d?T(th)
_ JS Pu(@nsa|zn, an)m(an|zn)di (zn)wn(@n) (dzn) (dan)

(Epwn)(Thi) =

P (on ) | co
which represents the conditional expectation. Then we have the decomposition
E [,CfDreg (whﬂ,wh,w)]
= [[[ e an ) (wh+1(xh+1> W;?;'f;}z) hm,)) (den) (dan) (dens1)
2
— [ R ananonin) (wnss(nin) = (Bun)onen) + B wn)onsn) - 5o an) )
(dzp)(dan)(dzny1)
= [ aP @) s one) = (Bfwn)onsn)P(don)
m(an|7n) 2
+ [[ ] R (@) - 5w @) (@) dan) ()
w2 [[[ af o n wnonin) - @) @) (@) - Tt @)
(dzp)(dap)(dzni1)
= l[wns1 = (Bfwn) |2 o1 +E [Lopee (Bfwn, wn, )|
+2/df’T(%+1)(wh+1($h+1) — (Eqwn)(@n+1)) (Epwn) (wh41)(dTni1)
=2 [ @R ) (o) — (Bn)111)
(] a2 nantonn) T o) ) ) ) )
= llwns1 = (BFwn)3 4o+ +E | Loper (Bfwn, wh, )]
+2/df’f($h+1)(wh+1(wh+1) — (BRwn)(@n+1)) (ERwn)(Tht1) — (ERwn)(@h+1))(d2ns1)
= |wh41 — (ngh)llidfﬁ +E {Ep;jg (ngmwhaﬂ)} : O

Lemma 14 (Deviation bound for regression with squared loss). For h € [H], consider a dataset Dy.p, that satisfies As-
sumption 2 and a function wy, : X — [0, C¥] that only depends on Dy.,,—1 |J D;;‘le. Consider a finite feature class Y, and a
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Sinite policy class IU' such that any w € Il is a pseudo-policy (Definition 1) satisfying 7, (ap|xp) < C’,"L‘ﬂ',? (ap|zp), Yy, €
X, apn € A. Then with probability 1 — 6, for any wp11 € Why1(Th) and m € T, we have

‘E |:,CD;€E (wh+1, Wh, 7T) - ,szeg (Eth, W, 7T):| - (,CD;Leg (’wh+1, W, 7T) - ,CDIYLeg (E;{U}h, Wh, W)) ‘
221184d(C¥C2)? 1og (nyeg|II'|| Th|/5)

Nyeg

< E [ﬁpjfg (Wh1, wh, ) — Lpres (ERwp, whﬂf)}

N | =

where the function class Wiy,41(Y1,) is defined in Algorithm 1 as in Eq. (28) and the operator ET is defined in Eq. (36).

Proof. We first fix the datasets Dy.;,—1 |J Dmle and prove the desired bound when conditioned on these datasets, in which

case wy, dj, D. , 0 are fixed. In the followmg, the expectation [E and variance V are w.r.t. (2, ap, Tpy1) ~ dh ,1.e., the data
distributlon from which the samples in D € are drawn i.i.d. from (Assumption 2), when conditioned on Dy.;,—1 | D"‘le

Consider a single 7 € II" and feature 11, € T3, and consider the hypothesis class

YWhii(pn), wn, ) = {Y (W1, Wh, ) : Why1 € Wiyt (un)} -

where the random variable Y (w11, wp,, 7) (suppressing the dependence on the (xp, ap, xp+1) tuple) is defined for con-
venience as

2 2
Y (why1, wn, ) := (wh+1($h+1) - wh(%)W) - (( hwn)(Thy1) — wh($h)7r(ah|xh))

70 (ap|zn 7P (ap|zp)

and we use Y;(wp41,wp, ) to denote its realization on the é-th tuple data (J:S), aﬁl), xﬁf}rl) € D;®. The function class
Wht1(up) is defined as in Eq. (29), i.e.,

</j’h7 023—1>

< 0down>

Hlwnsillo < CHCR 05 1, 0571 € Rd}~
h+1

Wht1(pn) = {wh+1 =
It can be seen that |Y (wp1,wn,7)| < 4(C3¥C2)? from the following. From their respective definitions, we know
™ D g
lnlloe < G 155 e < G and flwn oo < CECR. We also have (Bfwn)(en 1) = it el nes) o, oepy
, Th+1
from Lemma 19. "

Further, for any Y (wpy1, wp, ) € YWhi1(pn), wp, 7), we can bound the variance VY (w41, wp, 7)] as

VY (wht1, wn, )] < E [Y(wht1,wn, 7))

=E <<Wh+1($h+1) - wh(ﬂfh)wﬂ(ahxh))2 - (( T ) (Tha1) — wh(xh)W>2>2

P(ap|zp) (an|zn)

— E | (wnr (@ner) — (Bfwn)@nen))? <wh+1<xh+1>—2wh<zh>”(‘”l'x“+< ;;wh><xh+1>) ]

7P (ap|zp)

<A(CKCR)’E [(why1(zhir) — (Bfwn)(2n11))?]
= 4(CXC2’E Y (why1, wh, )] . (Lemma 13)

Next, we show that the uniform covering number A (v, Y (Wh+1(pn), wi, 7), m) (see Definition 7) for any v € R,m € N

can be bounded by the covering number of W, 1 (up,). Let Z™ = (:CEI ,aé ), a:,(LLJ)rl)Z . denote m i.i.d. samples from d?,

and denote X™ = (:v;lil) ”, the corresponding x4 samples. For any Z™ and Y (why1, wn, ), Y (W), 1, wn,T) €
y(Wh+1(/j/h)a Wp, T )

1 m
E Z |1/i('UJ}L+17th,7T) - )/i(w;H-D 'th,7T)|
=1

36



Reinforcement Learning in Low-Rank MDPs with Density Features

(.0 \? .0y \?
i iy T(ay’|x)”) i iy Tay|zy”)
<wh+1(x§lil) — wh(xg))ih _h ) — (wzﬂ(xﬁlil) — wh(xg))ih _“h

D (as) |m§lz)) D (as) \xg))

(),.(8)

i iy mlay’ @) i i i
wh-&-l(x;w)ﬂ) - ZW}L(JJ?)W + wh-&-l(‘xgﬂ)rl) ) ‘wh+1($£¢i1) - w2+1($§w)rl)’
h 1h

1 m
e
1 m
“n

_ ACKCE 5
m

Z ‘whﬂ xh+1 wh+1(xl(3r1)‘

Thus any v/ (4C¥C2)-covering of W), 41| xm in £q is a y-covering of Y (W41, wp,, )| zm in £1, and

N1(7v, Y Whga (pn), wn, ), Z™) < N1(v/(ACKCR), Wht (n), X™)

which implies the same relationship for the uniform covering numbers:

Ni(7 Y Whga (pn), wns ), m) = max Ni (v, Y Waeia (n), wn, 7), Z™)
< max N1 (y/(4CFCR), Whea (i), X™) = Ni(v/ (ACECR), Whta (1), m)

n

Then using this inequality and b = 4(CXC?)? in Lemma 26 and conditioning on Do.p,—1 UD,Ilnle, for any w41 €
Z}/i(wh+1awh77r)

Wh1 (), we have
P ( 2 8)
i=1

3 640n,10g (CFO2)
< I - reg\~h Zh/
< 36N (10240(0;502)4,y(Wthl(/ih)v’LUh,7T)7 2 )

1
ElY (wh41, wp, T)] —

Nyeg

cexp [ — Treg®
P\ T 128V[Y (wnss, wn, 7)] + 20482 (CRC2)2
o 64Onreg(C;L‘CfL‘)4>

< 36N\, <40960(C,xca)5,Wh+1(Nh)a
h~h

2

' B Nreg€
P ( 512(CXC2)2E[Y (why, wh, ™)) + 2048g(c;;cg)2> '
Then setting the RHS equal to ¢, we have

512(CECR)? (ELY (wni1, wn, m)] + 4¢) log (36M: (smgsmiomemyss Wt (n), 2020 ) /)

Nyeg = 2
implying
Nreg C"C
3 512(C¥C2)2E[Y (wht1, wp, 7)) log (36N1 (vahﬂ(”h) M) /5/)
€=
Nyeg
2048(CC2) 1og (36N (‘gomaiomemyss Wae (1), “2ssFECR) /5’)
n y
Nyeg
From Lemma 23 and Lemma 25, and noting that n,¢, > M, we have that

€3 6407,0q (CXC2)*
log ( 36NV | o —— ) )y
Og( Al (40960(02‘02)5’Wh+1(%)’ g2 )/ )
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2 x a6
< 4(d + 1) log(8¢) log (6553606 (CHCE) )

2347
< 96d log (nreg) )

A

Thus with probability at least 1 — ¢,

Nreg
1

> Yi(wpga,wp, )
Nreg =1

E[Y (wpt1,wp, ™)] —

- \/49152d(C,’;C§)2E[Y(wh+1,wh,w)] log (“%2) N 196608d(CxXC2)? log ("5 )

Nyeg Nyeg

Then invoking the AM-GM inequality,

Nreg
1

ElY (wh41, wh, m)] — Yi(why1, wh, )

n
reg ;1

- 221184 - d(CC2)? log (=)

E[Y(wh+1, Wh, 7T)] +

N | =

Nyeg

Recall that this result holds for a fixed 7 and W1 (up) defined using a fixed 5. Then setting ¢' = W and taking a
union bound over IT and T'j,, we have that with probability at least 1 — § that for any 7 € IT" and wp,+1 € Wy+1(T3) that

Nreg
1

E[Y(wh+17 Wh, ﬂ_)] -

}/i(thrlv Wh,, ’/T)
i=1

221184d(CxC3)? log (%)

Nreg

< E[Y(thrh Wp,, 7T)} +

N =

Nyeg

Finally, since this result holds for any fixed Dg.,—1 |J D;Lnlc, by the law of total expectation, it also holds with probability
at least 1 — ¢’ without conditioning on Dy.;,—1 | D}Tle. Using Lemma 13 with the definitions of Y (wp41,wp,,7) and
Y (wp 41, wp, m) completes the proof. O

I.2. Barycentric spanner

In this section we first define the barycentric spanner (Awerbuch and Kleinberg, 2008, Definition 2.1), then prove that a
spanner of size d always exists for a set of functions linear in a feature fj,_1, from which Proposition 3 follows straightfor-
wardly. The proof is adapted from Awerbuch and Kleinberg (2008, Proposition 2.2), which only applies to square matrices,
and we extend it to rectangular matrices for completeness. We close with a discussion of the computational complexity of
finding the barycentric spanner.

Definition 4 (Barycentric spanner). Let V be a vector space over the real numbers, and S C V a subset whose linear span
is a m-dimensional subspace of V. A set X = {x1,...,x,n} C S is a barycentric spanner of S if every x € S may be
expressed as a linear combination of elements of X using coefficients in [—1,+1].

Lemma 15 (Barycentric spanner for linear functions). For a feature pn_1 € Y11 with rank d, any compact set of linear
functions U C {{pn_1,0n) : 0, € RY} has a barycentric spanner of cardinality at most d.

Proof. We prove the proposition when rank(uy,—1) = d is full rank (the argument should be the same when rank (1) <
d). Because U is linear in f5_1, its linear span is a d-dimensional subspace of RI¥!, and any u € U can be written as the
linear combination of a subspace basis.

We claim the barycentric spanner is any subset B = {by,...,bq} C U with B € RI*I¥l that maximizes the volume
|det(BBT)|. By compactness, the maximum is obtained by at least one subset of U. Since det(BB") = (Hf:1 oi(B))?,
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the maximizing B will have d singular values and full row rank (otherwise the determinant will be 0). As a result, any
u € U will be a linear combination of the rows of B, i.e., there exists {c; }${_ such that u = E?:l c¢ib;. We will prove that
|c;] < 1 by contradiction.

W.Lo.g, suppose there exists u with coefficient |¢;| > 1. Then consider a new matrix B = {u, by, . . ., bg}, which can be
expressed as B = C'B, where C' € R9%4 is the coefficient matrix. Then B has determinant

|det(BBT)| = | det(C)*|det(BBT)| = |¢1)?| det(BBT)| > det(BBT).

Then we have a contradiction because B was volume-maximizing, and |¢;| < 1. O

Computation of barycentric spanner Lastly, we discuss computation of the barycentric spanner. In the main results
of the paper we assume that we can perfectly compute the barycentric spanner in an efficient manner. When this is not
the case, the algorithm in Figure 2 in Awerbuch and Kleinberg (2008) (with similar adaptations to handle rectangular
matrices as in the proof of Lemma 15) can be used to compute a C-approximate barycentric spanner, where C' > 1, with
O(d?log d) calls to a linear optimization oracle (Awerbuch and Kleinberg, 2008, Proposition 2.5). A C-approximate
barycentric spanner is defined similarly as Definition 4, except that the coefficients are in the range [—C, +C]. This will
only change our main results by increasing them by a factor of C', and we may simply set C' = 2 with minimal effects on
our sample complexity guarantees.

L.3. Properties of low-rank MDPs

Lemma 16. In the low-rank MDP (Assumption 1), for any h € [H], function d;,—1 : X — R, and pseudo-policy 7
(Definition 1), we have

(PTdy)(wni1) = / / Pr(@hst|tns an )T (anlzn)dn (zn) (dan) (dan) = (i (hnst), Ons)
for some 05,1 € RY with ||0, 11|00 < ||dnll1.

Proof. By the definition of low-rank MDPs (Assumption 1), we have
Prd;, = // Pr(xpi1|xn, ap)Tr(an|zp)dp(xp) (day)(day)

- / / W (nn), 81 (@ns an))Ta (anlen)dn (zn) (dn) (dar)
= (up(Tht1), Ongr),

where 011 = [[ ¢} (zh, an)®n(an)zn)dn (zn)(dzy)(das) € RY. In addition,

sl < / 165 (2o an) looh (anlen) dn (1) | (dzn) (dar)

< [ ([ matantan)iaon) ) dsten)aan)

< / ()| (dzp) = [[dn ]

where we use Lemma 21 in the last inequality. O

Lemma 17. In low-rank MDPs (Assumption 1), given a dataset Dy, satisfying Assumption 2 for h € [H], let d? and df’T
be the corresponding current-state and next-state data distributions. Then for the function class

Fn={dn = {h_1,00) : d € AX), 0, € R, |6 < 1},
we have that dP € Fy, and df’T € Fha1.
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1 1

Proof. Recall that under Assumption 2, Dy, is collected by p"~1 o 77,? where ag.;,_1 ~ p"~1, an (h — 1)-step non-Markov

policy, and ay, ~ 7P, a Markov policy.

First we prove the lemma statement for df’f. Since df is a valid distribution and 77 is a valid Markov policy, from

D
Lemma 16 we know that df’T = P}" (dP) can be written as (1}, 0,+1) with ||041] s < 1. Finally, since df’T is a valid
marginal distribution, df’T € A(X), thus satisfying all constraints of Fp .

To prove the lemma statement for d2, we first prove a variant of Lemma 16 for non-Markov policies. With some overload
of notation, let dffl(a:h_l) denote the marginal distribution of x,_; induced by rolling the non-Markov policy p"~! to
level h — 1. Then

dp (xp) = // Pr(zp|en—1,an-1)p" " (an—1|zon—-1)dy 1 (xn—1)(dzp_1)(dap_1).
Using similar steps as the proof of Lemma 16, we have that
AP (en) = [ Palonton-,an-1)pNan-alann-2)dE s (onos) (denor)(danr)

- / / (051 (@, hr)s 1y (1)) (@ |Z0n—1)dP 1 () [ )(dtn_1)
= </’LZ—1 (xh), 9h>a

where 60, = [ ¢ _1(zh_1,an—1)p" Han—1|zo:n—1)d? | (zp_1)(dzp_1)(dap_1) € RY  Since dP , and

p" 1 (-|zo.n—1) are valid probability distributions over states xj, and actions ay,, respectively, it is easy to see that
[10n o < / 65 —1 (@1, an—1)lloop" " (an—1|on—1)d;_; (wh—1)(dzn_1)(dan_1) < 1
since ||¢5_;()]loo < 1 from Assumption 1. Finally, since dZ is a valid distribution, we have d2 € F,. O

Lemma 18. In low-rank MDPs (Assumption 1), given a dataset Dy, satisfying Assumption 2 for h € [H], let dP and df’T
be the corresponding current-state and next-state data distributions. Then for the function class

Fn(Th-1) = {dn = (pn-1,6n) : dn € A(X), ptn—1 € Tpo1,0r € R, [|04]0c < 1},

we have that dP € F(Y1,—1) and d,?’T € Fry1(Th).

Proof. From Lemma 17 we know that df € Fy, (where Fy, is linear in the true features 1 _,, as defined in the Lemma 17),
and df’T € Fh+1. Noting that Fp, C Fp(Yp—1) and Fp41 € Fr11(YLh) completes the proof. O

Lemma 19. For h € [H|, suppose we have a dataset Dy, satisfying Assumption 2, with corresponding data distributions df
and df’T. Given a function wy, : X — [—C¥, C¥] and pseudo-policy T (Definition 1) with Tplale) < CrVreX,aec A

P (alz) =
we have B
P (djwn)

e oo
h

Proof. For any x4+, € X, we have
(P (dfwn)) (zns1) < CF (PRd;)) (xnt1)
=7t [ [ Pulansalon.an)ma(an on)df (an) (o) (dan)
< CZ‘CZ‘/ Pu(@ns1|wn, an)mi) (anlen)dy) (z4)(day) (day,)
= CRCRdy) (whga).

The last equality follows from the Bellman flow equation and Assumption 2. The convention that % = 0 gives the lemma
statement. O
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Lemma 20. For any two state distributions dy,, d}, and a pseudo-policy w (Definition 1), we have the following inequality
[PRdn — PRyl < |ldn — djl1,

where we recall that (P dp,)(zp41) = [ Pr(zpst|zn, an)m(ap|zn)dy (@) (dzy)(day).
Proof. From definition of P} and Lemma 21, we have
[Phdn — Phdyll = / P (@nt1len, an)m(anl@n) (dn(zn) — dy(2n)) (dzn)(dan)| (dzp).
< [ (it = o [ mtanton) Ptaniton,an)anen)(dan) ) ) o)

< [ 1dn(on) = dy @l (don) = ldo — di]s. =
Lemma 21. For any pseudo-policy T (Definition 1), we have

/ﬁh(ah|xh)(dah) <1 Vax,eX, he [H]

Proof. Recall T (ap|xy) = min {m, (ap|xs), Conp (an|zn)} where 7, is a valid Markov policy. Then
/%h(ah|xh)(dah) = /min {Wh(ah|xh)70,§‘7r,?(ah|xh)} (dah) S /wh(ah\mh)(dah) =1. D

L4. Covering lemmas

In this subsection, we provide the ¢; optimistic cover lemma used in MLE (Lemma 22) and pseudo-dimension bound for
the weight function class (Lemma 23) respectively.

Lemma 22. Suppose Assumption 3 holds. Then for the function class
Fn(Tho1) = {dn = (th—1,01) : pth—1 € Th_1,0, € R, [|0p]loc < 1,dn € A(X)},

there exists an {1 optimistic cover Fn(Yh_1) (according to Definition 3) with scale ~y of size |Tp_1| (2 [B“/fﬂ)d and
-Fh(Th—l) - (X — Rzo).

Proof. The ideas of this proof are adapted from the proof of Proposition H.15 in (Chen et al., 2022a). Let ©;, = {6}, :
Jpn—1 € Thot, sty {pn—1,01) € Fr(Tn_1)} € {0n : 01 € R, ||01]lc < 1} be the set of §), parameters associated
with F(Yy_1). Then any d, € Fp(Yr_1) can be written as (i1, 6,) for some pp—1 € Tp and 6, € ©y,. Define
the 7/-neighborhood of 6, to be B(01,,7') := 7' |0n/7'| +[0,7']¢, and construct the optimistic covering function for each
dp = (pnh—1,0n) as

Jun_1,00(x) = _ max (ph-1(x),0) VzeX.
0eB(0n,7")

Note that f,,, ,., > dn pointwise, thus f,,, , ¢, > 0, though it is not necessarily a valid distribution. Further,

| frn_10n —dnlli < [ _ max [(§ = 0p, pr_1(z))|(d)
068(0;1,7’)
< [ max 8- Ouloollns ()] (dx)
0€B(0r,y")
sfﬂWAwMM>
<+'B*

using Assumption 3 in the last line. Observe that there are at most (2[1/4'])® unique ~/-neighborhoods in
the set {B(0n,7')}o,co,. This implies that there are at most |Th_1] (2[1/4'])* unique functions in the set
{fun—1,0n Y (in_1,60)€Fn (Th_r)» Which forms an £;-optimistic cover of F, (Y1) of scale 7. Finally, setting v = /B*

gives us an (-optimistic covering of 7, (Yj,_1) of scale  with size | Y,_1| (2[B*/~])". O
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Lemma 23. For any h € [H| and density feature py—1 € Y _1, the function class

— 70up X u n
Wainor) = {un = LA < G 1GR3 0 < R
(th—1,05°"™)

has pseudo-dimension (Definition 6) bounded as PAim(Wy, (un—1)) < 4(d + 1) log(8e).
Proof. For any h and pu,, consider the unconstrained version Wy (pn—1) of Wi (pp—1):

_1,0® u

Clearly, Wh(,uh,l) - W}{L(Mh 1) thus Pdim(Wh(,uhfl)) < Pdim(W,’l(uh,l)), and Pdim(W{L(,uhfl)) =
VCAim(Hyy; (1, _,))» Where Hyyr (1, ) = {h = sign(w —¢) : w € W, (up-1),c € R}. We will use Lemma 24 to
bound VCdlm(Hw/ (1n_1))- Any h( ) € Hw (u,_,) may be written as the following Boolean formula

[ (tn-1(x),0,")
(pn—1(x), 650%™

( lzuh 1(@)[i]6;P[i] chu;L 1 Gdown[]>0]1AlZMh 1 )[]9down[]>0]>

=1

d
(lZwl af—wal oMWKﬂAﬂZM1>mmm<ﬂ>

=1

P

—c>0]

which involves k = 2d + 1 real variables, a polynomial degree of at most [ = 1 in these variables, and s = 4 atomic
predicates. Then from Lemma 24, Pdim(Wh (un—1))) < VCAim(Hwy (4, _,)) < 4(d + 1) log(8e). O

Lemma 24 (Theorem 2.2 of Goldberg and Jerrum (1993)). Let Cy, ., be a concept class where concepts and instances
are represented by k and m real values, respectively. Suppose that the membership test for any instance c in any con-
cept C of Cy, . can be expressed as a Boolean formula ®y, ., containing s distinct atomic predicates, each predicate
being a polynomial inequality over k + m variables of degree at most I. Then the VC dimension of Cy, p, is bounded as
VCAim(Cg ) < 2k log(8els).

1.5. Probabilistic tools

In this section, we define standard tools from statistical learning theory (Anthony and Bartlett, 2009; Vapnik, 1998) that
we use in our proofs. We note that, for convenience, we may override some notations from the main paper, e.g., € does not
refer to the same thing as in other sections.

Definition 5 (VC-dimension). Let F C {—1,+1}* and 27" = (z1,...,2m) € X™. We say a7 is shattered by F if
Vb € {-1,+1}™, 3fp € F such that (fp(z1),.-., fo(zm)) = (b1,...,b;m) € R™. The Vapnik-Chervonenkis (VC)
dimension of F is the cardinality of the largest set of points in X that can be shattered by F, that is, diim(F) = max{m €
N | 327 € X™, s.t. «§* is shattered by F}.

Definition 6 (Pseudo-dimension). Let F C R and 2" = (x1,...,2,,) € X™. We say 2" is pseudo-shattered by F if
de=(c1,...,¢m) € R" suchthatVy = (y1,...,Ym) € {—1,+1}", 3fy € F such that sign(fy (x; —c;) = y; Vi € [m).
The pseudo-dimension of F is the cardinality of the largest set of points in X that can be pseudo-shattered by F, that is,
Pdim(F) = max{m € N | 327" € X™, s.t. x1" is pseudo-shattered by F}.

Definition 7 (Uniform covering number). For p = 1,2, 00, the uniform covering number of H w.rt. the norm | - ||, is
define as

Ny(e, H,m) = max Ny(e, H, zT")

where Ny (e, H, x1") is the e-covering number of H|,m w.r.t. || - ||, that is, the cardinality of the smallest set S such that
for every h € H|ym, 35 € S such that |h — s||, < e.
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Lemma 25 (Bounding uniform covering number by pseudo-dimension, Corollary 42 of (Modi et al., 2021)). Given a
hypothesis class H C (Z — [a,b]), for any m € N we have

462(b . Cl) Pdim(H)
— .

Ni(e,H,m) < (

Lemma 26 (Uniform deviation bound using covering number, adapted from Corollary 39 of Modi et al. (2021)). For
b>1,let H C (Z — [—b,b]) be a hypothesis class and Z™ = (z1, . .., zy) be i.i.d. samples drawn from some distribution
P(z) supported on Z. Then

|

Eh()] - 5 > h(z)

53 4Onb2 n62
>el| < e Hy ——5— - )
= 6) < 36N (6401)27%7 2 ) oxp ( 128V[h(2)] + 5126[))
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