Systems & Control Letters 174 (2023) 105488

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Flocks, games, and cognition: A geometric approach™ N

Udit Halder *', Vidya Raju ™', Matteo Mischiati®, Biswadip Dey ¢, P.S. Krishnaprasad ®* i

¢ Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, IL 61801, USA

b John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA

€OM1 Inc., Boston, MA 02116, USA

d Siemens Corporation, Technology, Princeton, Nj 08540, USA

€ Institute for Systems Research and Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

ARTICLE INFO ABSTRACT

Article history:

Received 5 August 2022

Received in revised form 31 December 2022
Accepted 15 February 2023

Available online xxxx

Avian flocks display a wide variety of flight behaviors, including steady directed translation of center
of mass, rapid change of overall morphology, re-shuffling of positions of individuals within a persistent
form, etc. These behaviors may be viewed as flock-scale strategies, emerging from interactions between
individuals, accomplishing some collective adaptive purpose such as finding a roost, or mitigating the
danger from predator attacks. While we do not conceive the flock as a single cognitive agent, the
moment-to-moment decisions of individuals, influenced by their neighbors, appear as if to realize
collective strategies that are cognizant of purpose. In this paper, we identify the actions of the flock
as allocation of energetic resources, and thereby associate a cognitive cost to behavior. Our notion of
cognitive cost is a measure of the temporal variability of such resource allocation. Using a recently
developed natural geometric approach to kinetic energy allocation, we map the flock behavior to a
temporal signature on the standard (probability) simplex. From the signature of a flocking event, we
calculate the cognitive cost as a solution to an optimal control problem based on a game-theoretic
model. Alternatively, one can associate to a signature an entropic cost. These two cost measures, when
applied to data on starling flocks, show a consistent spread in value across events, and we suggest the
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possibility that higher cost may arise from flock response to predator attacks.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In modern studies of avian flocks, significant progress has
been made, thanks to advances in motion capture technologies
based on computer vision, as in the work of Cavagna and collab-
orators [1-4], and GPS data-logging methods as in the work of
Vicsek and collaborators [5]. While the investigations of starling
flocks in [1,2] were focused on the structure and statistics of
interactions ruling the observed flocking events (a bottom-up ap-
proach), questions of flock-scale phenomena, such as information
transfer through waves were the subject of [3,4,6]. In [5] the
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authors were concerned with pigeon flocks engaged in free flight
or homing behaviors and the appearance of leadership structures
in these settings. In this paper, we are concerned with flock-
scale phenomena found in the starling flight data obtained by
the Collective Behavior in Biological Systems (COBBS) group, led
by Dr. Andrea Cavagna and Dr. Irene Giardina of the Institute
for Complex Systems (ISC-CNR) in Rome. Specifically, we use a
top-down approach to the dynamics of observed flight behaviors,
including steady directed translation of center of mass of the
flock, rapid change of overall morphology, re-shuffling of posi-
tions of individuals within a persistent form, etc. It has been
suggested that such behaviors confer anti-predatory advantage
on flocks thanks to the confusion effect [7-11] - predators such as
peregrine falcons, that are exceptionally successful with isolated
targets, are foiled by the perceptual challenges posed by large
flocks [12]. The time course of fractional allocation of kinetic
energy resource among different behaviors can be represented as
a signature of a flocking event on a standard simplex. Treating
distinct flight behaviors as competing pure strategies in a game,
the signature is a trace of mixed strategies. We draw on the
subject of evolutionary game theory to establish natural families
of dynamics and control systems on the simplex. Fitting a gener-
ative model from such a family to each signature is formulated
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as an optimal control problem on the simplex. Solutions to such
optimal control problems allow us to propose and examine a
notion of cognitive cost of flock behavior.

Computer vision algorithms yield data on starling flocks in the
form of streams of three dimensional coordinates of individuals
in a flocking event approximately every 6ms [3,13]. To extract
dynamical properties of trajectories, including velocity and ac-
celeration, it is necessary to smooth the data. While there is a
long history of smoothing techniques in biological data analysis,
we used an efficient method based on the theory of optimal
control of linear systems with quadratic cost functionals, to ob-
tain smoothed trajectories for each bird [14,15]. The passage
from individual-scale to flock-scale analysis is based on a recent
development of the idea of kinematic modes in many-particle
systems [16]. Using the geometric language of fiber bundles, the
velocity of the flock as a whole is split into several mutually
orthogonal components (kinematic modes). The notion of orthog-
onality is based on a Riemannian metric tensor defined by the
masses of individuals (here assumed to be equal on the basis of
homogeneity of the flock). We note that our kinematic modes
are akin to the chemist’s idea of normal modes of vibration of
polyatomic molecules in spectroscopy [17-19]. The kinetic energy
of a flock is in turn split into energy modes (e.g. kinetic energy
relative to center of mass, and its further splitting into kinetic
energy of flock shape deformation relative to center of mass,
kinetic energy of global rigid rotation etc.). Taking fractions of
the different energy modes with respect to the kinetic energy
relative to center of mass yields a signature of a flocking event on
a standard (probability) simplex. In [16] this process was applied
to pigeon flock data from [5] purely as an application of the
computation of energy modes.

The simplex is the natural space for representing mixed strate-
gies in a game with finitely many pure strategies [20]. In a
typical flocking event one does not see sustained pure strategies
e.g. global rigid rotation. Instead one finds non-zero fractions
of multiple energy modes, which we interpret as the occur-
rence of mixed strategies. In the development of evolutionary
game theory in biology [21], a central idea is that of replicator
dynamics [22,23] specified by a vector-valued fitness map on
the simplex. It captures the evolution of mixed strategies. In
a recent development [24,25], it has been suggested that such
dynamics may be viewed as occupying the middle layer of a
three layer cognitive hierarchy where the top (cognitive) layer
concerns the control of replicator dynamics through modulation
of fitness maps. This is of particular interest, since the observed
signature of a flocking event cannot in general be identified with
a fixed replicator dynamics due to self-intersections, but one can
fit a controlled replicator dynamics to the signature. The control
enables time-dependence of energy mode allocation. This leads to
a natural optimal control problem on the simplex, to be solved by
construction of a Hamiltonian system via the Maximum Principle
of Pontryagin and coworkers [26]. The time-averaged Hamilto-
nian arising from the optimal solution directly reflects the rate of
re-allocation of energy resource among different energy modes.
For this reason, we interpret the time-averaged Hamiltonian as
cognitive cost of flocking. On the other hand one can associate
an entropy value to each point on a signature curve, and hence
the average entropy of the signature. This reflects the degree of
unpredictability of flock behavior and the extent of confusion
effect that a predator targeting a flock is subject to. This measure
is insensitive to the temporal variation of the flock signature. This
paper examines both these measures on starling flock data. In
what follows, we discuss the organization and contributions of
this paper.

In Section 2, we briefly indicate the characteristics of the
starling flock data used in this paper. Section 3.1 is an account
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of the linear-quadratic optimal control methods [14,15] used to
smooth the sampled data to obtain trajectories of individual birds
in the flocking events. In Section 3.2, a brief summary of a more
general approach based on the Pontryagin Maximum Principle
(PMP) is given for use later in Section 5.2 in connection with
the optimal energy mode allocation problem. In Section 4 the
different energy mode splittings originating in [16] are described.
Section 5 provides an outline of the concept of cognitive hierarchy
developed in [24] and specializes it in Section 5.1 to the setting
of games with two pure strategies. This leads to the optimal
control problem in the cognitive layer discussed in Section 5.2.
The resulting evaluations of cognitive cost and entropic cost
under energy splittings for eight flocking events are presented
and compared in Section 6. The value of such measures lies in
ordering or distinguishing flocking events, with the possibility of
discerning/suggesting underlying causes for the observed differ-
ences. We conclude with discussions and interpretations of these
results in Section 7.

Historical Remark: The cognitive cost of human decision-making
has been of interest to researchers in behavioral psychology
and neuroscience for quite some time (see [27] and references
therein, as well as [28]). In [27], a combination of physiologically
plausible models of glycogen metabolism in the brain, an asso-
ciated optimal control formulation, and simulation experiments
are used to put forward a case for energy utilization as a means
to account for cognitive cost. While this presupposes that the
brain has an intelligent control system to manage the use of
its metabolic resources, in the present work we do not wish to
suggest any sort of central authority controlling resource alloca-
tion in the flock. Indeed one expects that the energy resource
(mode) allocation, seen in starling data is an epiphenomenon of
perceptually-guided steering behaviors of individuals respond-
ing to conspecific neighbors and predators (such as peregrine
falcons). Individual behaviors may have been selected through
evolution thanks to the benefits of predator avoidance conferred
by flock-scale behaviors that engender the confusion effect. While
the notion of energy resource allocation in our work parallels
that in [27], we are not dependent on any physiologically based
models. Instead our measure of cognitive cost is centered on:
(i) it is possible to recognize a finite set of flock-scale behaviors;
(ii) there are associated kinetic energy modes; and (iii) rapid re-
source reallocation across energy modes (modeled via controlled
replicator dynamics) incurs a burden (measured as cognitive cost
using optimal control theory). In the investigation of signatures
of decision-making processes, cognitive scientists have identified
a spectrum ranging from the automatic, fast, and relatively in-
flexible extreme to the slower, flexible, and deliberative extreme,
the latter often referred to as “cognitive control” - a term we do
not use in this paper to avoid conflating with control-theoretic
usage [29]. It is important to note that these authors initiate
and explore a modeling approach based on replicator dynamics
on the 1-dimensional simplex, incorporating various feedback
laws, and costs. The fast and slow extremes are treated as pure
strategies in a game, akin to the notion of energy modes (with
mechanical origins) in our own work. As we show later, the
geometric approach of the present work allows consideration
of signatures in higher dimensional simplices. Another relevant
antecedent for our control-theoretic notion of cognitive cost has
to do with the problem of selective attention to sensory input
and motor sequences - of great interest to neuroscience and
cognitive science. In pioneering work Roger Brockett formulated
a notion of cost of attention, which leads to novel problems of
infinite dimensional control - specifically (optimal) control on the
diffeomorphism group and Liouville equations [30].

Whereas this paper is aimed at quantitative exploration of
flocking events and their dynamic morphologies by consider-
ing underlying adaptive purpose (e.g. predation avoidance), the
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recorded history of observations by naturalists have for long
provided questions and suggested qualitative explanations that
have stimulated research. In her article [31], referring to the nat-
uralist Edmund Selous as a confirmed Darwinian, Margaret Nice
quotes from his famous book [32] this memorable description (on
page 141) of a starling flock:

“..and now, more and faster than the eye can take it in, band
grows upon band, the air is heavy with the ceaseless sweep
of pinions, till, glinting and gleaming, their weary wayfaring
turned to swiftest arrows of triumphant flight—toil become
ecstasy, prose an epic song—with rush and roar of wings, with
a mighty commotion, all sweep, together, into one enormous
cloud. And still they circle; now dense like a polished roof,
now disseminated like the meshes of some vast all-heaven-
sweeping net, now darkening, now flashing out a million
rays of light, wheeling, rending, tearing, darting, crossing, and
piercing one another —a madness in the sky”.

In this passage one senses the fascination that the dynamic
flock morphology and its likely purpose hold for casual and
scholarly observers alike. Further on Selous speculates about the
collective guidance that might drive the phenomenon (pages
142-143 in [32]). A modern view treats the phenomenon as the
result of co-evolution of predator (peregrine falcon) and prey
(common starling) - to quote naturalist Grainger Hunt [12]:

“What are we to make of the pulsating, other-worldly spec-
tacle of a massive starling flock, moving amoeba-like across
the open skies? A Peregrine Falcon or other winged predator
is almost always involved, as the thousands of individual flock
members fight to evade capture”.

And again,

“The wondrous cloud [of starlings] is thus secondary - an
extraneous property, emerging from independent attempts
by each individual, within the multitude of self-interested
starlings, to escape the falcon”. [12]

Hunt also views as a relevant factor the self-interest of the
falcon in avoiding injury that might result from even a grazing
collision with a starling in a flock - thereby raising the failure
rate for prey-capture by the falcon.

“And so the peregrine attacks the flock gingerly, and in ap-
parent moderation of its true ability to catch [an isolated]
starling”. [12]

Contributions of this paper: This paper presents a new in-
tegrative treatment of avian flocking behavior by bringing to-
gether computational tools, optimal control theory, evolutionary
game dynamics, and geometric decompositions to shed light on
the question - is there a quantitative mechanism, for ordering of
flocking events that exhibit dynamic morphology, that is consistent
with the idea that a purpose of flocking is to mitigate predation
risk? This problem is framed here as a game with finitely many
discrete strategies (flock behaviors), which are identified with en-
ergy modes derived from geometric decompositions of flock-scale
kinematics. Until now discrete flock behaviors have been under-
stood in terms of qualitative observer-dependent categorizations
(e.g. a flock displaying Wave events, Blackening, Flash expansion,
Vacuole, Split into subflocks, Merge of multiple subflocks, Cordon,
Flock dilution etc.) as in [11]. The dynamic probabilistic mixture
of energy modes in data used in our paper naturally presents a
signature of a flocking event on the probability simplex. Arguing
that it is the temporal variability of the signature that matters
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for the ordering we seek, we use optimal control theory on the
simplex to extract a measure of such variability for each event.
Since this new measure (here called cognitive cost) signifies how
big a perceptual/cognitive challenge an event is for a predator, we
propose that it is an ordering mechanism - events that display
high cognitive cost are more likely to have been induced by
predator attacks resulting in flock behavior to counter the same.
Using optimal control computations on individual trajectory data,
and on flocking event signatures, we are able to present this new
ordering mechanism, in contrast to the mainly qualitative and
observer-dependent understanding from video data as in [11].
This is a key advance in our paper.

Matters outside the scope of this paper: We note that in this
paper, we have not considered what may be viewed as counter-
measures evolved by the predator (as in [33]) to avoid the confu-
sion effect, nor have we taken account of the physiological aspects
of bird vision [34], both likely to affect cognitive cost. Further,
collective behavior in avian flocks may be shaped by purpose
other than mitigation of predation risk. For consideration of this
see the recent wide-ranging perspective article [35].

Dedication: We dedicate this paper to Professor Arthur Krener
on his eightieth birthday, celebrating his many contributions
to nonlinear and optimal control, geometric perspectives, and
computational investigation.

2. Flocking data

This project grew out of a collaborative project funded by
the U.S. Air Force Office of Scientific Research during the period
2010-2014, between the University of Maryland (Principal Inves-
tigator: P. S. Krishnaprasad) and the sub-awardee COBBS group
(Co-Principal Investigator: Andrea Cavagna) at the Institute for
Complex Systems in Rome (ISC-CNR), located at the University
of Rome “La Sapienza”. Andrea Cavagna had already pursued an
earlier campaign of observations of starling flocks (with support
from the European Union, StarFlag 2007).

Starlings gather around urban areas during winter months to
gain extra warmth from the cities. They spend the day feeding
in the countryside, and before settling on the trees for the night
they gather in flocks to perform elaborate aerial displays. Data on
flocking events were captured by the COBBS group (principally by
researchers, Stefania Melillo, Leonardo Parisi, and Massimiliano
Viale) between November 2010 and December 2012. Three high
speed cameras (IDT M5) were used for this purpose, with a maxi-
mum frame rate of 170 frames per second (fps) at a resolution of
2288 x 1728 pixels. Data were collected at the site of Piazza dei
Cinquecento in Rome near one of the major roosting sites used
by starlings. Further details on the data collection instrumenta-
tion and signal processing can be found in the Methods Section
(page 695) of [3]. Data pertaining to eight flocking events were
supplied by Andrea Cavagna to the Maryland group (specifically
P. S. Krishnaprasad). The details for the particular flocking events
used in this paper are to be found in Table 1.

The data supplied to the Maryland group contained time-
stamped 3D coordinates of each bird in each flocking event,
obtained using advanced computer vision algorithms developed
by the COBBS group. One of the key steps in our analysis is
to develop from this data, requisite trajectory characteristics at
finer resolution through a process of smoothing discussed in the
next section. In particular, velocity, acceleration and jerk were
extracted in this way.

The flocking data came unlabeled in that none of the eight
events was identified as occasioned by a predator attack even
though starling flocks invariably elicit attention from peregrine
falcons [12]. Our analysis below suggests candidate events that
may be so labeled.
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3. Data smoothing

Given a time-indexed sequence of sampled observations on a
manifold, generative models provide a meaningful way of cap-
turing them through the use of an underlying dynamical system
complete with control inputs having useful interpretations. The
control inputs are determined by solving an optimal control prob-
lem, where the cost function consists of a data-fitting term that
penalizes mismatch between the generated trajectory and sam-
pled data, and a smoothing term weighted by a parameter A that
affects the smoothness of the generated trajectory. We discuss
two generative models to solve this problem.

3.1. A linear generative model

A first approach to solving the data smoothing problem (in 3
dimensions), presented in [ 14], is to formulate an optimal control
problem to minimize the jerk path integral, with intermediary
state costs determining the fit error. Suppose that {r,-}f’=0 denote
the positions r; € R? of the birds at each sampling time instant
t;. In order to recover a trajectory fit r(t) : [to, tn] — R?, one can
use the jerk-driven linear generative model

£(t) = v(t)
v(t) = a(t)
a(t) = u(t),
where v(t), a(t), u(t) denote the velocity, acceleration, and jerk

(input) of the trajectory respectively. The cost functional to be
minimized is

(1)

N tn

= D)~ 4 ol e @)
i=0 fo

where || - || denotes the Euclidean norm, and the minimization

is over initial conditions r(ty), v(tg),
u(-). Defining the state as

r(t)
x(t) = [ v(t) } eR’, (3)
a(t)

a(tg) and the input function

we can write (1) as the linear control system
X(t) = Ax(t) + Bu(t), (4)

with the matrices A and B defined appropriately. The problem of
minimizing J; subject to (4) becomes a linear, quadratic optimal
control problem, which can be solved by a completion of squares
of terms in the cost by invoking a path independence lemma,
or by applying the Pontryagin Maximum Principle as shown
in [14]. This approach has been used to smooth the starling flock
data [15] for all the events listed in Table 1, with the parameter
A found by leave-one-out cross validation.

3.2. Data smoothing in the Euclidean setting

In this section, we present a general result on the Pontyagin
Maximum Principle based approach for data smoothing on the
Euclidean space RX. Suppose that { }N denote the sampled
data. For a generative model given by the dynamics x = f(x, u)
on R¥, with the control u € R™, the optimal control problem can
be formulated as

X(to). 1) = }:F (0.4 + - /‘nmmﬁm, 5

subject to: x = f(x, u),

min
X(to), u(- )]
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Table 1
Details of captured flocking events.
Flocking Flock size Duration Data capture rate
Event (n) (seconds) (frames/second)
1 175 5.4875 80
2 123 1.8176 170
3 46 5.6118 170
4 485 2.3471 170
5 104 3.8824 170
6 122 4.1588 170
7 380 5.7353 170
8 194 1.7588 170

where parameter A > 0 is a regularization parameter, and F;’s
are suitably defined fit errors of the reconstructed trajectories
and sampled data at the sampling times. Using Pontryagin Maxi-
mum Principle, the optimal control values can be calculated as a
function of the state and a co-state variable. The following result
from [36] states this precisely.

Theorem 3.1 (PMP for Data Smoothing [36]). Let u*(-) be an optimal
control input for (5), and let x*(-) denote the corresponding state

trajectory. Then there exists a costate trajectory p : [to, tn] —
k p 0, such that
. oH
K=o (X pouT)
P (6)
p=——(t,x" p,u),
0x
during t € (t;, tiyq), i = 0,1,...,N — 1, and the Hamiltonian is
given as
H(t, X", p,u*) = max H(t, x", p, v), (7)
veRM

for t € [to,tn] \ {to,t1,...,tn}, where the pre-Hamiltonian is
defined as H(t,x,p,u) = p'f(x,u) — %Ilullz. Moreover, jump
discontinuities of the costate variable can be written as

p(ty) =0,
p(t") = p(t;)
p(ty) = 0.

OFR(())

, i=0,1,...,N, 8
ox(t;) ®

The piecewise continuous nature of the co-state trajectory due
to jump conditions arising from mismatch between the sampled
data points and the reconstructed state must be noted here. The
initial condition x(ty) is identified by using the terminal condition
for the co-state, while the optimal value of X is typically obtained
through leave-one-out cross validation. The reconstructed trajec-
tory is then obtained as the projection onto the state space of the
solution of Hamilton’s equations derived from the (maximized
pre-) Hamiltonian. We refer the reader to [15] for a detailed
treatment of this problem. This is the result that will be used in
our data fitting problem on a simplex (Section 5.2).

4. Energy modes

Avian flocks display a variety of flight behaviors that may be
characterized as collective strategies such as steady translation
of center of mass (which we denote by com), coherent rotation
about center of mass (rot), change of ensemble form (ens), in-
ternal re-shuffling of relative positions or democratic strategy
(dem), (rapid) expansion or contraction of volume (vol) etc. A
flocking event may display all of the mentioned strategies to
varying degrees as governed by the time-dependent allocation of
kinetic energy to each strategy. We take the viewpoint presented
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in [16] and study the fractions of the total kinetic energy of a flock
allocated to several ‘kinematic modes’ - rigid translations, rigid
rotations, inertia tensor transformations, expansion and compres-
sion, in order to describe collective behavior. By doing so, we
treat the flock as a single entity with several strategies of energy
allocations emerging from individual behavior. Below is a brief
discussion on the resolution of kinetic energy into components,
from [16].

If the positions of the birds in a flock are denoted by {ry, r,,

., Iy}, the center of mass can be written as

1 n
Tcom = H ;I‘h (9)
i=

where we treat every bird alike, i.e. their masses are taken to be
equal to 1. The ensemble inertia tensor is defined by

n

K= Z (r; — Teom) (rj — rcom)-r . (10)

i=1
Let the velocities of the birds be denoted as, {v,1, ..
the total kinetic energy is

,1 n
E=§;||vﬁ||2. (11)

We can define the position and velocity vector with respect to the
center of mass, i.e. ¢ 2 [cy, ..., ;] € R®*", where¢; =1, —
Ve 2 [Ver, Ve, - - ., Ven] € R3*", where V¢ = Vi — Veom. Then

., V), then

Tcom;

n 1 <
Ecom = 5 IVeomll? s Erel 2 3 ; Iveill? . (12)

We thus have the splitting, E = Ecom + Ere. As shown in [16],
instantaneous relative energy allocations can be expressed on the
probability simplex,> A% by exploiting two distinct fiber bundle
structures of the flock’s total configuration space to split the total
kinetic energy using (i) ensemble fibration or (ii) shape fibration.

(i) Ensemble Fibration: We note that the ensemble inertia tensor
K (10) is (for a generic flock configuration) a symmetric
positive definite matrix. Hence its eigendecomposition can
be written as, K = QAQT, with A = diag(iq, Ay, A3),

where A1 > A, > A3 > 0. Define, F = cv] + vee' and
F = [Fj] = Q"FQ. Then the following energy modes can be
calculated

LR i B
EenS‘rOt - + + E)
2\ Mi+A AtAs At

52 B2 52 (13)
1/(F F. F
E a _ 11 T2 733
ens.def 3 (k] + )Lz + )\3
Furthermore,
1tr? (ev]
vol £ ,M’ (14)
2 tr(K)

so that, Eensres = Eens.def — Evol. We may also calculate Eger, =
Erel — Eensrot — Eensdef- FOr interpretations of these energy
modes, see [16]. (The notation Eger in [16] is inspired by
association with the term democracy transformation in [19].)

2 A1 denotes the (k — 1) dimensional probability simplex
k
AT =dx = (x1, %, ..., xk)e]Rk:Ofxigl,Zx,-:l .
i=1
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Hence, in this fibration we have the following splitting of the
kinetic energy

<Ecom Edem Eens.rot @ Eenl;.res) €A4. (.15)

(ii) Shape Fibration: Define the flock angular momentum, re-
spectively the locked moment of inertia tensor, by

J=Z(Ci X Vei)
i—1

. (16)
I = Z (llcil* 1 — cicf) .
i=1
Then the rotational energy E;o: can be calculated as
1.
Erot £ 7.]1—1( 1.'7 (17)

2

The shape residual energy is given by Egnpres = Erel — Erot —
Eens.der, Which provides the splitting in this fibration as below

(Ecom ’ @’ Eshp.res ’ Evol , Eens.res) c A4 (18)

E E E E E

While we can split the kinetic energy in 5 different modes
(15), (18), many flocking events show a predominant allocation
of nearly constant energy of rigid translation (Ec,m) (see supple-
mentary material). We exclude this component from the total
E in our analysis, and consider the allocation of the remaining
energy E. to obtain a time dependent signature of each event
on a lower dimensional simplex. In particular, we capture the
signature generated by the following decomposition of E,e using
ensemble fibration on the 1-simplex by two different methods

E E
(ENS-I) ( dem E“) €A, (19)
Erel Erel
(ENS—]I) (Eens.rot’ Erel - Eens.rot) c Al, (20)
Erel Erel
where Erl = E — Ecom, and Eens = Erel — Edem = Eensror +

Eyol + Eensres- Similarly, a one dimensional simplex description
using shape fibration may be given by two ways

(SHP—[) <Eshp.res ) Erel - Eshp.res) c Al, (2.1)
Erel Erel
Erot E
(SHP-II) <it 5‘“’) e Al (22)
Erel Erel
where Esnp = Erel — Ervot = Eshpres + Evol + Eensres. On the

1-dimensional simplex we have four different geometric ways
of looking at flocking event signatures. On the 2-dimensional
simplex A? one has two different signatures for each flocking
event

(ZDENS) <Edem i Eens.rot’ Eens.def) c Az’ (23)
Erel Erel Erel
Eot E E

(ZDSHP) <ﬂ’ shp.res ; ens.def) c Az, (24)
Erel Erel Erel

corresponding respectively to the ensemble and shape fibrations.
Letting E;, i = 1,2,3 stand in for fractional energy modes,
one can associate an average entropy S = (— Z?:lEi log, E;)
to each event (the average denoted by angle bracket ( - ) is
taken over the duration of the event). The results are shown in
Figs. 1 and 2. We will refer to S as the entropic cost. For both
SHP and ENS fiberings Event 2 has the highest entropic cost,
although event-to-event variability in this measure is not very
substantial. (The notion of average entropy to define entropic cost
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S =0.99124

(a) Event 1 (b) Event 2

S =1.1874 S =1.1886

S =1.1249

(c) Event 3 (d) Event 4 0

[ [
S =0.98924

(e) Event 5 (f) Event 6

(g) Event 7 (h) Event 8 0

Fig. 1. Signatures on the 2-D simplex using ensemble fibering for all eight events. Each signature is colored by normalized time, with initial time in blue and
final time in green. Vertices a, b and c of the simplex correspond to the kinetic energy fractions of Egem/Erel, Eensrot/Erel and Eensdef/Erel, and S is the entropic cost
calculated for each signature in base two. Except for Event 4 which shows little variation in its allocation of E. to the democratic strategy, other events display a
more complex evolution of the energy distributions to predominantly two of the components. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

S =1.0152

S =1.1617

S =0.77603

(a) Event 1

(b) Event 2

[¢] c

S =1.1266 S5 =1.1309

5§ =0.96102

(c) Event 3 (d) Event 4 0

¢ Cc
S =0.96106

(e) Event 5

(f) Event 6

(g) Event 7 (h) Event 8

Fig. 2. Signatures on the 2-D simplex using shape fibering for all eight events. Each signature is colored by normalized time, with initialized time in blue and final
time in green. Vertices a, b and c of the simplex correspond to the Kinetic energy fractions of Eyot/Erel, Eshp.res/Erel and Eensdef/Erel, and S is the entropic cost calculated
for each signature in base two. Similar to the signatures corresponding to the ensemble fibering, Event 4 has the least variation in the allocation of E almost
entirely to Egnpres OVer its total duration, while other events undergo more complex evolution of the energy distributions. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

parallels that of complexity in [37] which is in part concerned
with symbolic sequences over finite alphabets in the study of
dance movements.)

From the formulas relating the different energy modes it fol-
lows that one can view the A! signature as a compression of
the A? signature. One should note that entropic cost is not
sensitive to temporal variations in the signature. By fitting suit-
able dynamic models to signatures, one can develop a measure
that is sensitive to temporal variability. We do precisely this in
Section 5, working out the details in the setting of signatures
on Al. As we shall see, this also reveals fibering dependencies

of signature properties. Our approach is based on generative
evolutionary game dynamics modeling the competition between
the flock-scale strategies.

The moment-to-moment decisions made by individuals in a
flock, taking account of the decisions by their conspecific neigh-
bors and the predators, contribute to flock-scale strategies cap-
tured in the present section by time dependent signatures on the
probability simplex. Fractional energy modes are conceptualized
as probabilities defining mixed strategies in a game. This sets the
stage for an evolutionary game-theoretic treatment of flocking
events and quantitative comparisons of events.
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5. Generative models on the simplex and the data-smoothing
problem

In this work, instead of modeling the microscopic behavior of
individual members of the flock that result in complex collective
motion, motivated by [16], we adopt the viewpoint that the flock
operates as if it is a single entity, capable of exhibiting different
‘modes’ of behavior. These modes or strategies are identified
with the allocation of kinetic energy components. The temporal
variations of a resulting signature on the probability simplex
as explained in Section 4 can be captured by an underlying
controlled evolutionary game that models competition between
strategies. The average Hamiltonian associated to optimal con-
trols in this setting is interpreted as a measure of cognitive
cost.

Our approach in this section is informed by the concept of
a three-layered cognitive hierarchy operating at multiple time-
scales, shown in Fig. 3, to model decision-making by the col-
lective [24]. The bottom layer captures the interaction of the
flock with its environment at a fast time-scale. This interaction
is in accordance with a mixed-strategy choice determining the
allocations of kinetic energy, dictated by replicator dynamics in
the middle layer operating at a slower time-scale. The fitness map
defining this replicator dynamics is in turn modulated by means
of controls in the top layer, at the slowest time-scale. While
the time-scale differences of this model are meant to distinguish
reaction to fast external stimuli from long term learning, the
top layer can flexibly intervene in order to accommodate for a
changing environment or enable response to an adversary. With
these in mind, we propose a class of generative models on the
simplex.

Controlled evolutionary games offer a natural model for cap-
turing the underlying dynamics that generates signatures rep-
resenting time-dependent mixed strategies on a simplex. The
replicator dynamics that captures the evolutions of fractions x;
of k types is given by

X = AN((x) - f(xe), (25)

where A(x) = diag(xy, X2, ..., x) € R f(x)=[f1(x) ... FX@)]"
€ R is a fitness map such that each component is an element of
(A1), the space of smooth functions on the simplex, f(x) =
ZL] xf'(x) is the average fitness, and e = [1 11" € RrL
Replicator dynamics have been shown to be universal in recent
work [25]. That is, every simplex-preserving dynamics can be
transformed into replicator dynamics with appropriate fitness.
Therefore, they are natural candidates for generative models on
the simplex, as explained below.
Consider the system on A%~ [25]

X =wfi + waf, (26)
where f;,i = 1, 2 are fitness maps, andﬁ, i = 1,2 are associated
replicator vector fields, and u;, i = 1, 2 are controls. Suppose the

fitness maps are given by f; = [a; ... a;]" € R¥, a constant fitness,
and f, = Bx, a linear fitness map where all g;'s are assumed to
be distinct and positive, and B is assumed to be non-singular.
Then, according to [24,25], (26) is controllable. This implies that
there exist controls u;,i = 1,2 such that any two points in
the interior of the probability simplex can be connected by a
solution curve of (26). The dynamics (26) with the specific choice
of fitness maps can be used to explain/approximate signatures
on the simplex for two reasons: first, due to controllability, and
second, such a system allows us to express and steer competition
between the strategies. When u; = 0 and u; = 1 identically, the
behavior of (26) is to converge to a pure strategy. For this reason,
f1 can be identified as dynamics due to a bias contributed by the
ordering of the constant fitness components learned via games
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TOP LAYER:
GAME-CHANGING DYNAMICS

| f

MIDDLE LAYER:
REPLICATOR DYNAMICS

| f

LOWER LAYER:
COMBINATION FEEDBACK LAW

( PHYSICAL WORLD ]

Fig. 3. The cognitive hierarchy of collective decision making. At the lowest
layer, the birds of the flock interact with the environment by implementing
feedback laws with respect to conspecific neighbors, predators and other stimuli.
The actions of the individual birds result in a distribution of the total kinetic
energy into different modes, whose evolution is captured by the replicator
dynamics in the middle layer. At the top layer, the temporally changing fitness
of each flock strategy is captured by the control variable.

against nature as in [38]. On the other hand, when u; = 0 and
u, = 1 identically, the evolution of the strategies is influenced
by the game matrix B which reflects a comparative assessment
of the pure strategies when pitted against each other. Therefore,
(26) is interpreted to be a system capable of producing any
desired mixed strategy decision, by managing the influence of
pre-existing biases and learned information or experience, with
the controls as driving forces.

5.1. Specialization to k = 2

Since we are interested in describing the evolution of two
flock strategies as in Egs. (19) and (20) for ensemble fibration or
Eqgs. (21) and (22) for shape fibration, we capture the signature of
a flocking event via a generative model on the 1-simplex. We con-
sider an evolutionary game model, namely replicator dynamics
equipped with a multiplicative control, in order to describe their
evolution in the interior (0, 1) of the one-dimensional simplex.
The choice of replicator dynamics is influenced by its universality
in describing simplex-preserving dynamics, and by virtue of de-
termining extremals for a variational problem [39,40]. With the
inclusion of a control variable, we consider a different variational
problem that aims to perform data smoothing using regulariza-
tion as in [36]. To see this, let x = [x; x2]7 € A! where x;,
i = 1, 2 denote the prevalence of strategies i (to be specified) on
the simplex with the natural constraint x; +x; = 1.x;, = 1,i =
1, 2 correspond to allocation of E. entirely to one of the two
pure strategies. Suppose that the probabilities associated with the
strategies are updated (evolved) according to the rule

f(x)

xi(t + 1) = x;(t)=—, 27

il ) =xi(t) S (27)
where the fitness map f(x) = Ax and f(x) = x1f'(x) + x2f2(x).
Here, A = [a;;] defines a payoff matrix with a; denoting the payoff
of the ith strategy against jth strategy. (In the case that the payoffs
do not depend on the strategy j against which it is matched up,
the columns of A are identical.) In the ode limit of (27), after an
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inhomogeneous time-scale change, we get the equations
() = x(O(f'(x) - fx), i=1,2. (28)

Since addition of the same term to each component of the fitness
keeps the dynamics (28) unchanged, by subtracting a,; and a;;
from the first and second column elements of A respectively, we
get the equivalent payoff matrix

5 ap — a 0
A= . 29
[ 0 a2 — a2 :| (29)

We restrict the parameters of the matrix such that a;; — ay; =
—(ayz — ajz) = B so that the fitness can be rewritten as

f(&)zﬂ[(l, o }x. (30)

Due to the simplex constraint, (28) is completely described using
X = X1,

X(t) = Bx(t)(1 — x(t)), (31)

with x = 0,1 corresponding to the pure strategies 2 and 1
respectively. This allows us to adopt a time-scale change by the
factor B and introduce a time-varying control to modulate the
fitness as in (26) to arrive at our generative model

X(t) = u(tX()(1 — X(1)). (32)

This dynamics results in asymptotic convergence to the pure
strategy x = 1 in the absence of temporal modulation, that
is, when u(t) = 1. However, the time-varying control u serves
to model changing preferences for the flock strategies by ap-
propriate changes in its sign and magnitude. Such a temporal
modulation of the fitness ensures feasibility of capturing arbitrary
signatures in the interior of the simplex.

5.2. Optimal control problem

Given a set of data points {xd,x%,...,x%} with each x¢ €

(0,1),k = 0,1,...,N, at time instants {to, t1, ..., ty}, we for-
mulate the optimal control problem
N A tN ,
min J(x(tp), u) = Fi(x(t;))) + = u(t)dt,
i ot = 3 i) + [ v .

subject to: x = ux(1 — x),

where the fit errors F;'s are given by the Kullback-Leibler diver-
gence measure of mismatch between the data and the state

p X g 1—xd

Fi(x) = x{ log(—l> +(1 —x,-)log<7’>, i=0,1,...,N.
X 1—x

(34)

We can directly appeal to Pontryagin’s Maximum Principle (PMP)
and theorem 3.1 to write necessary conditions for optimality. We
can write the pre-Hamiltonian as

H(x, p,u) = upx(1 — x) — %uz. (35)

The Hamiltonian maximization condition (7) yields an optimal
control in each time interval t € (¢, t;y1), i=0,1,...,N —1,

1
u= XPX(l —X), (36)
with the Hamiltonian given by

Hex,p) = 51— (37)
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Hamilton’s Egs. (6) read

x= lpx2(1 —x)?
M (38)
p= —szx(l —x)(1 = 2x).

The jump conditions (8) for p can be written as

p(ty) =0,

ey A=K
p(t;") p(ti)_x(ti)(l—x(ti))’ i=0,1,...,N, (39)
p(ty) = 0.

Remark 5.1. Note that the optimal control is piecewise constant
since Z—‘t‘ = 0 for each of these time intervals t € (t;, tir1), i =
0,1,...,N—1.So is the PMP Hamiltonian as seen from Egs. (36)
and (37).

Therefore, denoting x, = x(tx), k = 0,1, ..., N, any optimal

control can be described by a tuple (ug, u1, ..., uy) with the
conditions

1( d)
Ug = —(Xgo — Xj),
0 N 0
1 d

U — Up1 = X(Xk — Xp),

k=1,2,...,N, (40)

uy =0.

Piecewise constancy of the control input allows us to write the
solution to the state Eq. (32) explicitly. Suppose the sampling
time of the signature is uniform, i.e. At = 1 — t,Vk €
{0, ..., N — 1}, integrating the state Eq. (32) in (&, ty+1), we can
write

XkeukAt
1+ X (eukAt _ ]) s

By iteration, we can in turn write every X, as a function of xo and

Xip1 = k=0,1,...,N—1. (41)

Ug, Uy, ..., Uk—1,
X e(U0+U1+‘“+uk71)Af
X = Xi(Xo) = > . k=1.2,....N.
1 + Xo (e(u0+u1+'“+uk_1)At _ -1)
(42)

The endpoint condition (uy = 0) can then be written as

N
gxo) =) (xx—x{)=0, (43)

k=0

where we use (42). Solving the optimal control problem (33)
thus boils down to solving (43) for x € (0, 1), constrained
by (40), (41), (42).

Remark 5.2. The value of the regularization parameter A is
usually chosen through cross validation technique. We do not
employ this. The value of X is chosen such that the root finding
algorithm for solving (43) converges for all events. For A = 0.2,
(assuming the logarithms in Eq. (34) are natural logarithms) the
roots were found with good accuracy for all events with the value
of the function g(-) dropping to the order of 107>. For lower A
however, the problem becomes stiffer and left hand side of (43)
demonstrates ‘effective discontinuity’ in xo. This poses serious
problem in solving (43). As a future step, cross validation could
be explored to arrive at a good value of A in the range where (43)
can be solved.

Remark 5.3. A concern with not performing cross validation to
obtain the parameter A is overfitting to noise remaining in the
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(c) Event 3 (d) Event4

(g) Event 7 (h) Event8

Fig. 4. Starling flight trajectories for all eight events. The time-sampled raw data was processed to generate smooth trajectories as shown here. The details for each

event are given in Table 1.
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Fig. 5. Event signature and its optimal fit on the 1-D simplex, for the case ENS-I, i.e. here x =

signature. We note here that the original flight data was sub-
jected to data-smoothing to obtain smooth trajectories [15]. This
data-smoothing process used ordinary cross validation for the
trajectory of each bird to determine the appropriate weight to the
regularization term. This procedure generated smooth trajecto-
ries with suppressed level of noise compared to the original data.
We then construct the sampled signature {xg, cees va} from these
smooth trajectories. Therefore, not performing cross validation
for the data smoothing on the simplex may not be deleterious,
and the approach indicated in Remark 5.2 may suffice.

6. Signature fitting results and cognitive cost

For all eight events, we perform the data smoothing technique
as described in Section 3.1 to obtain smooth flight trajectories.
These are shown in Fig. 4. Given the smooth trajectories for all the
birds in a flocking event, we compute signatures in A! and solve
the optimal control problem (33) and report the results here. The
value of the regularization weight A is taken to be 0.2 and 100
signature data samples at regular time intervals are taken for all
events. Given this data vector, we solve Eq. (43), constrained by

Edem
Erel

(40), (41) and (42), for xo € (0, 1). The MATLAB function fzero
was used to solve the root finding problem. Control solutions for
the games (ENS-I) (19) and (SHP-II) (22) for individual events are
shown in Figs. 5 and 6, respectively. In Table 2, we report time-
averaged Hamiltonian and time-averaged total costs for all the
different games that we consider in Egs. (19)-(22). The piecewise
constant control signals are plotted in Figure S2 for (ENS-I) and
in Figure S3 for (SHP-II) in the Supplementary material.

The mechanical activity of members of the flock in response
to conspecific neighbors and any detected predators gives rise to
the flock-scale behaviors we have discussed earlier. The cognitive
process in each individual bird underlying such mechanical activ-
ity is not the subject of this paper. Instead we focus on flock-scale
behaviors and associated (rapid) morphological changes which
induce cognitive burdens (through the confusion effect) on the
perceptual capabilities of a predator seeking to take a prey item
from the flock. The cognitive cost of a flocking event, as discussed
in this paper, is a measure of this burden. We define the average
value of the PMP Hamiltonian of an event to be the cognitive
cost. It will be shown below that this measure captures temporal
variability of the signature. The time-averaged total cost J /T is also
a related metric for an event. Both are graphically represented in
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Fig. 6. Event signature and its optimal fit on the 1-D simplex, for the case SHP-II, i.e. here x =
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Table 2

Flocking event metrics: time-averaged Hamiltonian or cognitive cost and time-averaged total cost for all eight flocking events, and for all four games.
Duration I ﬁ‘d[ ](}OTZJ)
(seconds) (ENS-I) (SHP-I) (ENS-II) (SHP-II) (ENS-I) (SHP-I) (ENS-II) (SHP-II)
5.4875 0.1232 0.1263 0.0976 0.1077 0.1981 0.1975 0.1454 0.1499
1.8176 0.1432 0.1018 0.2210 0.1760 0.2227 0.1619 0.3769 0.3118
5.6118 0.2735 0.2392 0.0613 0.1073 0.4595 0.4092 0.1557 0.2495
2.3471 0.1021 0.1270 0.0107 0.0190 0.2440 0.2702 0.0594 0.0610
3.8824 0.0779 0.2699 0.1587 0.1383 0.0896 0.3692 0.3001 0.3041
4.1588 0.1809 0.1634 0.0846 0.1105 0.2799 0.2706 0.2063 0.2090
5.7353 0.0804 0.1293 0.0576 0.0619 0.1127 0.2079 0.1087 0.1221
1.7588 0.4569 0.4069 0.0731 0.1090 0.8037 0.8361 0.2074 0.3810

Fig. 7, for each of the 4 distinct geometric ways (or games) of
looking at flock event signatures on the 1-dimensional simplex.

As seen from Table 2 and Fig. 7, the trend of (ENS-I) closely
follows that of the game (SHP-I), except for Event 5. The trend
of (ENS-II) closely follows that of (SHP-II), without making an
exception of Event 5. Thus we see that there is a pairing of games
in the 1-dimensional simplex in the information they yield about
events. Now referring to Figs. 1 and 2, which portray signatures
on the 2-dimensional simplex, note for each event, for games
(2DENS) and (2DSHP) respectively, the signatures tend to allocate
lower energy fractions to one of the pure strategies (vertex b
and vertex a respectively). This suggests that analysis on the
1-dimensional simplex is sufficiently informative. An extreme
situation occurs with Event 4 with signature hovering close to a
pure strategy without much temporal variability (see Figs. 5 and
6). In this case, one might expect low cognitive cost (as seen in
Table 2, especially in the paired games (ENS-II) and (SHP-II)). It
can be seen in Figs. 1 and 2 that for this event, E, is nearly all
Egem and Egpp res respectively.

Justification for using the average PMP Hamiltonian: In looking
at plots of control signals (as in Figure S2 for (ENS-I) and Figure S3
for (SHP-II)) one needs to be mindful that short duration peaking
of controls is not by itself indication of high temporal variability
of signature overall. One might expect that high average absolute
value of control flags an event as costly. But we have a different
and more natural choice. Observe that the reconstructed signa-
tures (in red, which track the empirical signatures in blue in
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Figs. 5 and 6) satisfy the model (32), with control u(t) taking
piece-wise constant values u; obtained from PMP in intervals
(ti, tiy1), i=0,1,2,...,N—1(as Section 5). While in each such
interval X2 is proportional to uiz, a measure of temporal variability
of the reconstructed signature over the duration of the event
is given by the substitution of the PMP control values into the
penalty term in (33). From (36) and (37) this is simply

N x (average PMP Hamiltonian) .

Thus we see that the average PMP Hamiltonian is a suitable
scalar measure of temporal variability of flock signature and of
use in ordering the events — answering the question raised in
the Introduction. In this regard Event 8 and Event 3 stand out in
paired games (ENS-I) and (SHP-I) - see Table 2 and Fig. 7. The
paired games (ENS-II) and (SHP-II) draw attention to Event 2 and
Event 5 - see Table 2 and Fig. 7.

As already discussed in Section 4 in the setting of the 2-
dimensional simplex, where we associate an entropic cost S,
the empirical entropic cost for the setting of the 1-dimensional
simplex can be computed as

N

= (xog x! + (1—x{) log, (1 — x))

i=0

S=—
N

(44)
The plots of normalized cognitive cost obtained from the smooth-
ed trajectory on the simplex and time-averaged entropy based
on the raw signatures on the simplex for all eight events are
depicted in Fig. 8. We observe that for ENS-II and SHP-II the
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Fig. 7. Comparisons of flocking event metrics across all four games in 1-simplex: (a) time-averaged Hamiltonian or cognitive cost, (b) time-averaged total cost.
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Fig. 8. Plot of normalized (by maximum across all eight events) cognitive cost
(blue) against entropic cost (red) for all four games. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

entropic cost and the cognitive cost appear to show consistent
trends. Such is not the case with the other games (ENS-I) and
(SHP-I). Apparently the information obtained from entropic cost
depends on the game. This may also be due to the insensitivity
of entropic cost to temporal variability in signature.

7. Discussion

Distributed decision-making across a collective leads to phe-
nomena in the large, not shaped by any one individual. In the
setting of starling flocks this is exhibited in the form of flock-scale
behaviors (emerging from individuals interacting with conspe-
cific individuals and predators), recognizable as morphological
changes over time, and quantified as dynamic allocations of ki-
netic energy modes. The different energy modes, defined here
by appeal to geometric decompositions, are thought of as pure
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strategies of a controlled evolutionary game with the fitness
modulated by time-varying decision or control variables. From
empirical data on trajectories of individuals in a flocking event,
further compressed into event signatures on the probability sim-
plex where mixed strategies of the game reside, these controls
are found by solving an optimal control problem to best-fit the
signatures. The Pontryagin Maximum Principle (PMP) is used for
this computation. The time-averaged PMP Hamiltonian, defined
as the cognitive cost of the event, is a measure of the cognitive
burden on the perceptual capabilities of a predator seeking to
take a prey item from the flock. In the basic two mode version of
the problem (on the one dimensional simplex) the formulation of
the optimal control problem makes the cognitive cost track the
temporal variability of the reconstructed signature - higher the
variability higher is the cost.

We suggest that higher cognitive cost of an event signature
is an indicator of rapid morphological changes to the flock as
perceived by a predator, hence magnifying the confusion effect
experienced by the predator and leading to lowered success rate
in capturing prey in the flock. This is supported by the results
of Section 6. We have also argued that another measure, the
entropic cost, interpretable as how uncertain the behavior of
the flock appears to be to an observer (predator), also offers
some clues, despite the fact that it is insensitive to temporal
variation. In the discussion of 2-dimensional simplex signatures
in Section 4, the dominance of entropic cost of Event 2 draws
attention to that case as potentially influenced by predator attack.
This is also supported by the cognitive costs of paired games
(ENS-II) and (SHP-II) in Table 2, and Fig. 8. On the other hand,
data on the 1-dimensional simplex signatures collected in Table 2
highlight the dominance of cognitive cost for Event 8 in paired
games (ENS-I) and (SHP-I), again a case potentially influenced by
predator attack. Taken together the cost measures suggest the
possibility of labeling Event 2 and Event 8 as predator attack
related.

In summary, the suggested measures of cost, especially the
cognitive cost, may serve the purpose of extracting environmental
influences from flock behavioral data. This is a tentative proposal
and should be tested further, with optimal control studies with
generative models of signature on higher dimensional simplex
(beyond the 1-dimensional case studied in detail in Sections 5
and 6 of this paper). One point to keep in mind is that the higher
dimensional simplex offers a wealth of generative models with
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multiple controls, but the time-averaged PMP Hamiltonian may
still be the right notion of cognitive cost. We aim to pursue these
matters in future work.

Data source

Starling flight data was obtained from the COBBS group of the
Institute for Complex Systems in Rome (ISC-CNR), University of
Rome “La Sapienza”, led by Andrea Cavagna and Irene Giardina.
Data on flocking events were captured principally by researchers,
Stefania Melillo, Leonardo Parisi, and Massimiliano Viale.
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Figure S-1: The fractions of the translational energy FEcom to the total kinetic energy E for
all eight events. These indicate Ecom is indeed the dominating part of the kinetic energy.
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Figure S-2: Optimal Controls to fit the energy signatures on the 1-D simplex for the case
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Figure S-3: Optimal Controls to fit the energy signatures on the 1-D simplex for the case
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