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ABSTRACT

Context. Machine-learning methods for predicting solar flares typically employ physics-based features that have been carefully cho-
sen by experts in order to capture the salient features of the photospheric magnetic fields of the Sun.
Aims. Though the sophistication and complexity of these models have grown over time, there has been little evolution in the choice
of feature sets, or any systematic study of whether the additional model complexity leads to higher predictive skill.
Methods. This study compares the relative prediction performance of four different machine-learning based flare prediction models
with increasing degrees of complexity. It evaluates three different feature sets as input to each model: a “traditional” physics-based
feature set, a novel “shape-based” feature set derived from topological data analysis (TDA) of the solar magnetic field, and a com-
bination of these two sets. A systematic hyperparameter tuning framework is employed in order to assure fair comparisons of the
models across different feature sets. Finally, principal component analysis is used to study the effects of dimensionality reduction on
these feature sets.
Results. It is shown that simpler models with fewer free parameters perform better than the more complicated models on the canoni-
cal 24-h flare forecasting problem. In other words, more complex machine-learning architectures do not necessarily guarantee better
prediction performance. In addition, it is found that shape-based feature sets contain just as much useful information as physics-based
feature sets for the purpose of flare prediction, and that the dimension of these feature sets – particularly the shape-based one – can
be greatly reduced without impacting predictive accuracy.
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1. Introduction

Solar flares are produced during magnetic eruptions from
sunspot active regions (ARs) or filament channels on the Sun.
The high-energy plasma emitted in conjunction with these erup-
tions can cause catastrophic events on Earth, with potentially
trillions of dollars in associated economic losses. Forecast-
ing these events is of obvious importance since, with enough
notice, it is possible to mitigate some of their impacts. In cur-
rent operational practice, flare forecasts are produced by human
experts using established classification systems (McIntosh 1990;
Hale et al. 1919) to categorize ARs into various classes. Fore-
casts for the probability of flaring in the next 24, 48, and 72 h
are then constructed by consulting lookup tables of flaring rates
for each category derived from historical records (Crown 2012).
These climatological forecasts are of limited utility as they
provide insufficient accuracy or reliability for actionable flare
warnings to be issued. Over the past two decades, machine-
learning (ML) solutions to this problem have been explored
in an effort to provide higher predictive skill. After being
trained on corpora of observations of the Sun to learn corre-
lations between the data and known instances of solar flares,

these models can be applied to new observations to generate
flare forecasts.

The most commonly used observations in solar-flare fore-
casting are magnetic field images called magnetograms that
are captured by the Helioseismic and Magnetic Imager
(HMI) on board the Solar Dynamics Observatory (SDO). The
SDO, located in a geosynchronous orbit above White Sands,
New Mexico, has been operational since 2010, measuring the
photospheric vector magnetic field on the visible hemisphere
of the Sun by exploiting the Zeeman effect in solar spectral
lines. In addition to the full-disk vector magnetic field data
returned every 12 min, the HMI science team creates cutouts
of ARs as they rotate across the visible disk. These cutouts
are called Spaceweather HMI Active Region Patches (SHARPs;
Bobra et al. 2014). These SHARPs records contain values for
the radial, polar, and azimuthal components Br, Bθ, and Bφ of
the magnetic field at each pixel of the cutout image, along with
a number of aggregate properties, such as the total unsigned
magnetic flux and the total vertical electric current (Bobra et al.
2014). These physics-based metadata have been developed by
solar physics researchers in the search for parameters relevant to
the prediction of flares.

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

A159, page 1 of 15

https://doi.org/10.1051/0004-6361/202245742
https://www.aanda.org
http://orcid.org/0000-0003-1858-8044
http://orcid.org/0000-0002-4989-475X
http://orcid.org/0000-0002-4567-2543
http://orcid.org/0000-0002-0019-0356
mailto:varad.deshmukh@colorado.edu
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Deshmukh, V., et al.: A&A 674, A159 (2023)

The SHARPs images and metadata have been used in a variety
of ML methods. Some researchers have trained models directly
on the SHARPs magnetogram images (for example, Huang et al.
2018; Park et al. 2018; Zheng et al. 2019, 2021; Li et al. 2020;
Abed et al. 2021). However, it is well known in the ML literature
that “featurizing” data – preprocessing it to extract higher-level
properties that are salient in a given context – can be advanta-
geous. The notion of salience is problem-specific; in computer
vision, for instance, useful features might be edges or polygons.
Most ML work to date has used the physics-based features in
the SHARPs metadata as the preferred feature set for the flare
forecasting problem. A wide range of models have been trained
on this feature set: linear discriminant analysis (Leka & Barnes
2007), logistic regression (LR; Yuan et al. 2010), least abso-
lute shrinkage and selection operator regression (Campi et al.
2019), support vector machines (Bobra & Couvidat 2015), ran-
dom forests or extremely randomized trees (Nishizuka et al. 2017;
Campi et al. 2019) – and, in recent years, deep-learning models
such as MLPs (Nishizuka et al. 2018), long short-term memories
(LSTMs; Chen et al. 2019), autoencoders (Chen et al. 2019), and
Convolutional Neural Networks (CNNs; Deshmukh et al. 2022).

However, the performance of these ever-more-complex pre-
diction models has so far not been markedly better than the
current climatology-based systems used in operational settings
(Barnes et al. 2016; Leka et al. 2019a,b). Moreover, increasing
model complexity may not actually be an advantage in this appli-
cation. It is possible that this is due simply to data limitations: in
general, more complex ML models require larger training sets to
effectively extract the patterns needed for prediction. This issue
is exacerbated when correlations are deeply embedded in com-
plex data for complex situations. A second issue is the nature
of the training data. Until recently, ML-based flare forecasting
work had not moved beyond the original SHARPs data: that
is, the images themselves (the vector B values at each pixel)
and the associated physics-based metadata. Choosing features
that are scientifically meaningful makes good sense, of course,
but ML methods can sometimes leverage attributes that are not
obvious to human experts. For example, a recent Nature paper
reports on using ML to discover a previously unknown corre-
lation between geometrical and topological attributes of knots
(Davies et al. 2021). A third and related concern is the dimen-
sionality of the training data. This, too, is a well-known issue
in the ML community, but there has been little exploration of
it in the context of ML-based flare forecasting methods. Exist-
ing approaches have used the complete SHARPs feature set–
or minor physics-based augmentations (for example, Sinha et al.
2022) – but it may well be the case that a carefully crafted sub-
set of these features would work as well, or perhaps even better,
thus reducing computational cost for a given forecast model.

In this paper, we aim to investigate the issues raised above.
Our first objective is to explore whether there are useful ways to
move beyond the set of physics-based attributes in the SHARPs
metadata. Conjecturing that the shape of the magnetic struc-
tures in the photosphere could provide important clues about
the evolving complexity of the field leading up to an erup-
tion, we focus specifically on the abstract spatial properties of
the magnetograms extracted using a mathematical technique
called topological data analysis (TDA). Our preliminary stud-
ies using MLPs – also called fully connected networks (FCNs)
– suggested that features like this could perform as well as a
basic set of SHARPs features (Deshmukh et al. 2020, 2021).
This was significant because the SHARPs feature set has been
designed by solar physics experts, while the topological features
are mathematical spatial attributes that are unrelated to physics.

However, our previous study used a single ML model and the
comparison only involved a subset of the SHARPs features. In
this paper, we perform a more extensive comparison using a
wider range of ML models, employ a new method of quanti-
fying topological changes in the data, and compare the result-
ing flare predictive skill to a more comprehensive physics-based
feature set.

Our second objective is to make a systematic comparison of
the predictive performance of ML flare-forecasting models with
varying complexity. The specific question we address is how
increasing the model complexity affects the skill of a 24-h solar
flare prediction. To that end, we study four ML models: logis-
tic regression (LR), extremely randomized trees (ERTs), MLPs,
and long short-term memory (LSTM) systems. Here, we define
complexity informally as the number of free parameters that are
optimized during the training of the model. For example, logis-
tic regression requires calculating a scaling weight for each ele-
ment of the input feature vector, whereas the MLPs and LSTMs
that we use are complex networks with thousands of nonlinear,
weighted connections that are adjusted during training. Compar-
ing different ML models is not a trivial task given the complexity
of the training process. Each model has a number of free param-
eters, known as hyperparameters, that control the learning pro-
cess: for example, the learning rate in neural networks, or the
maximum number of trees in an ERT. A systematic and fair com-
parison requires that the hyperparameters be optimized for each
model and each test problem. To that end, we use an established
hyperparameter tuning framework (Liaw et al. 2018) to optimize
the performance of each model. Finally, we use several standard
metrics to compare the predictive skill of these models on a dif-
ferent set of similarly labeled active regions. The results demon-
strate that the simpler models (LR and ERT) actually perform
better than the more complicated MLP and LSTM models.

We also demonstrate the impact of dimensionality reduc-
tion of the various feature sets on flare prediction skill. Feature
sets often contain correlations and redundancies: for example,
the mean and total values of some derived quantity. Removing
these redundancies can both speed training and increase predic-
tive skill. Here, we use Principal Component Analysis (PCA)
to show that models trained on the most significant principal
components of each feature set, that is, those features explaining
98.5% of the variance, largely equaled the performance of mod-
els trained on the full set of features. This is an advantage since
the amount of data required to successfully train a machine-
learning model grows with its dimensionality. We include this
work in the study because while PCA dimensionality reduction
is a well-known technique in ML, it is not clear how PCA will
apply to the different feature sets developed for this study.

2. Data

In this study, we use magnetic field images (“magnetograms”)
captured by the Helioseismic and Magnetic Imager (HMI)
instrument on board the Solar Dynamics Observatory (SDO;
Scherrer et al. 2012). The HMI full-disk magnetogram data
as well as the SHARPs cutout images are available from
the Stanford Joint Space Operations Center1. We use the
hmi.sharp_cea_720s data series, which provides the Lambert
Cylindrical Equal-Area (CEA) projection (Snyder 1987) of the
magnetic field images. We use only the radial field component,
Br, for flare prediction, as obtained directly from the image data
associated with each SHARPs data file. Use of Br is standard

1 http://jsoc.stanford.edu
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Fig. 1. Radial component of the magnetic field in NOAA active region AR 12673 (SHARP 7115). This region produced multiple M- and X-class
flares during its rotation across the solar disk in September 2017. (a) Initial emergence of the field at 0000 UT on 1 September 2017; (b) Complex
evolution at 0900 UT on 5 September 2017, approximately 24 h before producing an X17 flare, the largest flare of solar cycle 24; and (c) at
1000 UT on 7 September 2017, during an M-class flare.

practice in ML-based flare forecasting work because the radial
surface field is by far the strongest component and it corrects
for the variable line-of-sight angle between the Sun-Earth line
and the solar surface across visible disk. Figure 1 shows SHARP
#7115, a particularly active sunspot region that transited the solar
disk in September of 2017. In each panel, white represents the
positive polarity of the radial flux, while black corresponds to
negative polarity. Panel (a) shows the radial flux captured shortly
after the emergence of the AR where the configuration is sim-
ple, with one positive sunspot surrounded by scattered negative
polarity “plage” fields. The AR evolves rapidly to develop a
complex pattern of positive and negative polarity structures that
exhibit close proximity of positive and negative polarity fields in
a sheared or elongated pattern. This “sheared neutral line” pat-
tern is frequently seen in large eruptions and indeed the largest
flare of Solar Cycle 24 (an X17 class flare on 7 September 2017)
was generated by this active region about 24 h after the obser-
vation shown in panel (b). Panel (c) shows the post-flare radial
field configuration, which is still complicated, though perhaps
less so than the field in the previous panel. Such a reduction
in complexity is expected after peak flaring activity. However,
the field in panel (c) is still highly sheared and this particular
AR continued to produce large M- and X-class flares for at least
another 5−10 days, including an extremely large eruption and
X-class flare when the AR was on the west limb of the Sun on
10 September 2017.

For the study reported here, we use SHARPs data from
May 2010 (early in the SDO mission) to December 2017 (near
the end of Solar Cycle 24), using a one-hour cadence between
magnetograms to reduce redundancy between consecutive data
elements2. This data set contains 505 872 records. For training
the ML models, each SHARPs record (images and metadata for
a particular AR at a given time) is labeled based on whether
the corresponding AR produced an M- or X-class flare in the
next 24 h. Flare-related information is not part of the HMI meta-
data, so we use the NOAA Geostationary Operational Environ-
ment Satellite (GOES) X-ray Spectrometer (XRS) flare catalog3,
which contains records of the location on the solar disk, onset
time, peak time, end time, and magnitude by class (A, B, C,

2 Data from 2018–2020 were omitted from this study because the very
few high-intensity flares that occurred during that period, which was at
solar minimum, do not significantly add value to our current dataset;
data from 2021 – present were not available at the time of the study,
which we carried out in 2021 and 2022.
3 https://www.ngdc.noaa.gov/stp/space-weather/
solar-data/solar-features/solar-flares/x-rays/goes/
xrs/

M, or X) of all solar flares since 1975. For our period, which
encompasses the weak activity levels of Solar Cycle 24, the
GOES database reports only 509 M-class and 36 X-class flares.
We label each SHARP record as “flaring” if an M1.0+ flare (one
with an intensity above 10−5 W

m2 ) occurred from it within 24 h
after the observation time; otherwise, it is labeled as “nonflar-
ing”. It is important to note that this means we categorize an AR
magnetogram that may have produced a C9.9 flare as nonflaring
while another AR that produces an M1.0 flare (essentially indis-
tinguishable from a C9.9 flare) is labeled as flaring. This choice
of a hard cutoff is necessary to produce a binary classification of
flaring versus nonflaring active regions, but it obviously means
that the ML model will be challenged with data from different
classes that may have significant overlap in characteristics. Mod-
els using multiclass categorization or regression to scalar inten-
sity values can avoid this difficulty, but we choose the binary
“flare–no-flare” classification problem for this study to make it
directly comparable to the large number of prior flare prediction
studies that conduct similar binary classification predictions. Our
binary M1.0 or greater flare–no-flare categorization yields a data
set containing 3872 individual ARs, each identified by a unique
SHARP number, with 453 273 SHARPs labeled as nonflaring
and 5769 as flaring. It should be noted that the total number of
labeled SHARPS is less than the total dataset number of 505 872
due to the removal of SHARPS that contain NaN values from
off-limb data. This strong class imbalance (78 nonflaring mag-
netogram for every flaring magnetogram) in the training set is a
major challenge for ML-based models but is also unavoidable in
training for realistic conditions–artificially balancing the flaring
and nonflaring event frequency in training produces models with
unacceptably high false-positive rates.

Training, optimizing, and evaluating ML models requires
splitting the data into training, validation, and testing sets,
respectively. We assign all magnetogram data from a given AR to
either the training or testing sets rather than assigning individual
magnetogram data to each set randomly. This ensures that obser-
vations of the same AR at different points in its evolution do not
appear in both the training and testing sets, thus preventing a
possible artificial score improvement from testing the model on
data it saw in training. Random assignment of magnetogram data
from the same AR to training and test sets is a major error that
produces leakage of training data into testing producing unnatu-
rally high skill scores. Of the 3872 ARs in our data set, we assign
70% to the training set and 30% to the test set. The validation sets
used for optimizing the models are produced as a fixed fraction
of the training set as explained in Sect. 4.2. We produce ten dif-
ferent train-test data splits through randomized selections (again,
ensuring that each AR is either in one or the other but not both
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sets), each generated with a different random number generator
seed. These sets serve as ten separate trial runs of the experi-
ment of training, optimizing, and testing our models, enabling
statistical analysis of the results.

3. Featurization of magnetograms

The magnetogram data described in the previous section (for
example, the value of Br at every pixel in a SHARPs record)
can be used directly to train models like Convolutional Neu-
ral Networks (CNNs), which were developed for the specific
purpose of learning patterns in images. Alternatively, the mag-
netogram data can be processed to extract meaningful numer-
ical attributes, or “features”, of the magnetic field that can be
assembled into “feature sets” and used to train other ML mod-
els, such as logistic regression models, Support Vector Machines
(SVMs), Extremely Randomized Trees (ERTs), etc. Feature
engineering–the task of crafting a set of attributes that help the
ML methods work better–can be a challenge. The more salient
the features are in the context of the task at hand, the more
skill they give the method, but it is not always obvious which
attributes to choose. Domain knowledge can be useful in this
endeavor, but sometimes unexpected attributes can also be pre-
dictive, particularly in the context of complicated problems and
rich data.

Here, we work with two different feature sets: (i) a set of
standardized physics-based properties of the photospheric mag-
netic field used by many solar flare prediction methods and (ii)
a set of abstract topological properties of the photospheric mag-
netic field. In addition we consider a third feature set that com-
bines (i) and (ii).

3.1. Physics-based features

Each record in the SHARPs data set includes a set of metadata
containing twenty values that characterize the corresponding AR
at a particular time (Bobra et al. 2014)4. These attributes, devel-
oped and refined by the solar physics community (for example,
Leka & Barnes 2007), are listed in Table 1.

Most of the SHARPs metadata are derived from the vector
magnetic field observations and are designed to be useful pre-
dictors of solar flares. Two important examples are USFLUX
(total unsigned magnetic flux) and the R_VALUE, or summed
flux near a polarity inversion line, developed in Schrijver (2007).
Both of these extensive parameters5 increase significantly as an
AR evolves to produce major flares making them useful fea-
tures for prediction. It is also believed that indications of twist
in the magnetic field above the photosphere, as parameterized
by the total twist parameter MEANALP or total unsigned ver-
tical current TOTUSJZ, for example, have predictive potential
(for example, Nandy et al. 2008). It should be noted that some
of the metadata parameters are simple extensive scalars such
as AREA_ACR or location-related parameters such as the lat-
itude and longitude of the flux-weighted center of the AR image
(LAT_FWT and LON_FWT). While the area of an active region
on the Sun is a sensible correlate for major flare productiv-
ity, location on the disk, particularly after cylindrical equal-area
projection of the images, would not seem to be relevant. Nev-

4 It should be noted that the original 16 parameters shown in
Bobra et al. (2014) have been expanded over time to the set of
20 shown here.
5 Extensive features are those that scale in proportion to the size of the
underlying object.

ertheless, all parameters listed in Table 1 are included in the
ML model runs discussed below. All metadata listed in Table 1
are calculated automatically for each SHARP record by the
data processing pipeline at the Joint Space Operations Center at
Stanford, from which all data for this study were downloaded.

3.2. Shape-based features

The evolution of the magnetic fields in the Sun during the lead-
up to major flares manifests as an increase in the topological
complexity of the structures on the magnetogram, as seen in both
the mixing of strong positive and negative polarity regions and
highly sheared polarity inversion lines. This observation, which
is visually obvious in Fig. 1, plays a critical role in the qualita-
tive classifications used in operational space-weather forecasts.
The McIntosh classification system used at the NOAA Space
Weather Prediction Center, for instance, is based on character-
istics like the size and number of umbras and penumbras in
a given AR. These spatial characteristics are, however, absent
from the SHARPs metadata shown in of Table 1, most of which
are derived from vector operations (for example, div and curl)
on the magnetic field, or scalar values such as means and totals.
Thus it seems natural to explore whether features that char-
acterize shape would be useful in ML-based flare forecasting
methods–not only because this is what human forecasters use
in their classifications, but also because AR shape in the photo-
sphere has fundamental, meaningful connections to the coronal
magnetic field physics leading up to an eruption.

Topology is the fundamental mathematics of shape: it dis-
tinguishes sets that cannot be deformed into one another by
continuous transformations. Part of this shape classification –
homology – corresponds to the number of connected compo-
nents, 2D holes, 3D voids, etc., of a set. These numbers are
known as the Betti numbers, β0, β1, β2, . . ., where βk is the
number of k-dimensional “holes” (Carlsson 2009). Topological
data analysis (TDA), also called computational topology, oper-
ationalizes this framework for situations where one has only
finitely many samples of an object, for example when working
with digital images. The strategy for employing TDA in solar-
flare forecasting was first developed in Deshmukh et al. (2020).
We offer a brief review of the procedure for analyzing shape
from magnetograms into feature vectors suitable for input to
ML-based flare prediction models below; for more detail, please
see Deshmukh et al. (2020).

One way to create a shape from finite data is to “fill in the
gaps” between the samples by treating two points as connected if
they lie within some distance ε of one other. Building an approx-
imating object in this fashion, TDA computes the Betti num-
bers, then varies ε and repeats the process. The dependence of
βk on ε provides a rich morphological signature that captures
the shape of an object at multiple resolutions. One can con-
struct an even-richer representation by tracking the ε value at
which each feature is formed, and at which it is destroyed or
merges with another. This results in a set of (birth, death) values
of ε for each feature (component, 2D hole, 3D void, etc.). This
methodology has proved to be quite powerful; it has been suc-
cessfully applied to a range of different problems ranging from
coverage of sensor networks (de Silva & Ghrist 2007), to struc-
tures in natural images (Ghrist 2008), neural spike train data
(Singh et al. 2007), and even the large-scale structure of the uni-
verse (Xu et al. 2019).

Our strategy for employing TDA in solar-flare forecasting
is somewhat different from the ε-connectivity approach. Con-
jecturing that the shapes of the level sets of a magnetogram
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Table 1. SHARPs physics-based feature set.

Acronym Description Units

LAT_FWT Latitude of the flux-weighted center of active pixels degrees
LON_FWT Longitude of the flux-weighted center of active pixels degrees
AREA_ACR Line-of-sight field active pixel area microhemispheres
USFLUX Total unsigned flux Mx
MEANGAM Mean inclination angle, γ degrees
MEANGBT Mean value of the total field gradient G Mm−1

MEANGBZ Mean value of the vertical field gradient G Mm−1

MEANGBH Mean value of the horizontal field gradient G Mm−1

MEANJZD Mean vertical current density mA m−2

TOTUSJZ Total unsigned vertical current A
MEANALP Total twist parameter, α Mm−1

MEANJZH Mean current helicity G2 m−1

TOTUSJH Total unsigned current helicity G2 m−1

ABSNJZH Absolute value of the net current helicity G2 m−1

SAVNCPP Sum of the absolute value of the net currents per polarity A
MEANPOT Mean photospheric excess magnetic energy density ergs cm−3

TOTPOT Total photospheric magnetic energy density ergs cm−3

MEANSHR Mean shear angle (measured using Btotal) degrees
SHRGT45 Percentage of pixels with a mean shear angle greater than 45 deg. percent
R_VALUE Sum of flux near polarity inversion line Mx

Notes. Values for these 20 features, together with error estimates, are available for each magnetogram in the SDO SHARPs database. Abbrevia-
tions: A and mA are Amperes and milli-Amperes, respectively; Mm is megameters, G is Gauss and Mx is Maxwells.

are of central importance in this problem, we use the magnetic
field intensity Br as the variable parameter, rather than a dis-
tance ε. We threshold the SHARPs image, keeping only the pix-
els where the magnetic field intensity falls at or below some
value (that is, sublevel thresholding) then compute the topol-
ogy of the resulting object. By varying the threshold, and
tracking the birth and death of each feature, we obtain a sig-
nature that captures the morphological richness of a magne-
togram in a manner that factors in the spatial structure of field
strength.

We build what is technically known as a “cubical complex”
(Kaczynski et al. 2004) from the pixels in the SHARPs image
whose Br values fall below some threshold. Pixels are connected
in such a complex if they share an edge or a vertex. Since mag-
netograms are 2D images, only connected components and 2D
holes (which manifest as noncontractible loops in the thresh-
olded image) make sense–there is no higher-dimensional struc-
ture. Counting these gives β0 and β1 for the given threshold
field, and this computation is then repeated for a range of Br
thresholds.

Figure 2 demonstrates this procedure for an artificial 11× 11
image. Each pixel in panel (a) is color-coded according to inten-
sity. Given an intensity value, a sublevel thresholded image cor-
responds to those pixels with a magnitude at or below the thresh-
old. The gray regions in panels (b–f) represent such images for
thresholds Br ∈ [0, 4]. Pixels that share an edge or a vertex in
a thresholded image become a component and increment β0.
Empty regions (black) in the interior of a thresholded image that
are surrounded a loop of connected gray pixels become holes,
incrementing β1. In panel (b), where Br = 0, the gray, thresh-
olded image contains two components separated by the empty,
black region where the intensity is larger than zero; thus β0 = 2.
There is a single loop in the image (the red curve) that encloses
the empty region, so it is noncontractible and β1 = 1. Increasing
the threshold to Br = 1, as in panel (c), causes the structure to

enlarge, shrinking the hole and splitting it into two; thus β1 = 2.6
The two components from panel (b) merge in panel (c), and for
the remainder of the thresholding process, the number of com-
ponents remains one, so β0 = 1. Upon raising the threshold, as
shown in panel (d), the dominant hole splits into seven while the
single-pixel hole remains intact, bringing the number of holes to
eight (β1 = 8). At Br = 3 in panel (e), two holes disappear; thus
β1 = 6. Finally, for Br = 4 in panel (f), the number of holes is
reduced to three as three of the holes are filled in by new image
pixels. If the threshold were raised to five (not shown), all pixels
would be filled so that the image would have β0 = 1 and β1 = 0.

In this study, we use the values of β1 as a function of
the threshold Br to represent the topological complexity of a
magnetogram. For the example with discrete thresholds Br =
(0, 1, . . . , 5), this gives the vector β1 = (1, 2, 8, 6, 3, 0). A similar
vector for β0 would give additional information about the image.
For the example in Fig. 2, however, the number of components
is not too interesting since – apart from the brief appearance of a
second component at Br = 0 – there is only one component for
all thresholds. This holds true for the number of components for
actual magnetograms: β0 does not add much information to the
analysis. For this reason, we exclusively use β1 below.

A number of different representations have been developed by
the TDA community to capture the information about the scale
and complexity of the topology of data. These include “bar codes”
(Ghrist 2008), “persistence diagrams” (Edelsbrunner et al. 2000),
“persistent rank functions” (Robins & Turner 2016), and “per-
sistence images” (Adams et al. 2017), all of which are graphi-
cal representations of the birth and death thresholds for each fea-
ture in a single point cloud. The CROCKER plot7 introduced
in Topaz et al. (2015) extends this to capture information about

6 The green loop is in the image since gray pixels are connected at
vertices.
7 A pseudo-acronym for “contour realization of computed k-dimen-
sional hole evolution in the Rips complex”.
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Fig. 2. Topological data analysis for the example “image” in panel (a). The gray pixels in panels b–f represent the cubical complex of the image
for five sublevel thresholding values, Br = 0, 1, 2, 3, and 4. For each complex, the (β0, β1) values are given. The colored loops represent the holes
in the thresholded images.

the temporal evolution of the Betti numbers, which is important
for flare prediction. Related methods are discussed in Xian et al.
(2021). Figure 3 shows an example for two ARs. Here the ordi-
nate is the threshold value, Br, and the abscissa is time. The value
shown at each (t, Br) point is β1 for the AR at the current time for
the indicated threshold. The colors change logarithmically with
β1, as shown in the color bars.

In panel (a) of Fig. 3, for AR #6950, β1 falls to zero (white
color) at a relatively low threshold, Br ≈ 1300 G. This active
region did not flare. By contrast for AR #7115 in panel (b),
the complexity of the structure rapidly grows in days 5−6, so
that β1 & 10 for thresholds up to Br ≈ 2300 G and β1 is
nonzero up to Br ≈ 3500 G during days 8−10. As shown in
the panel, this AR had its first M-class flare early in day 7,
nearly two days after the jump in β1, and there is an X-class
flare at the beginning of day 9. The topological structure appears
to exhibit a strong and potentially predictive correlation with
these flares.

The CROCKER plots in Fig. 3 show only the positive
sublevel thresholds for Br. We can also construct equivalent
CROCKER plots for negative polarity shapes by choosing nega-
tive threshold values, though in this case it is appropriate to use
“superlevel” instead of sublevel thresholding. Thus we would
first include – for the threshold Br = 0 – all pixels with Br ≥ 0,
and then filter for increasingly negative values of Br. For exam-
ple, in Fig. 2a, this process will leave a hole surrounding the blue
pixels for a superlevel threshold of Br = −3.

The results suggest that CROCKER plots can be useful indi-
cators of impending solar flares. To operationalize this in the

context of machine learning, however, there is an additional
challenge: ML models generally require data that have a fixed
dimension, but Br varies continuously. Various approaches to
this “vectorization” problem have been proposed (Chazal et al.
2014; Bubenik 2015; Reininghaus et al. 2015; Kusano et al.
2016; Robins & Turner 2016; Adams et al. 2017; Carrière et al.
2017, 2020; Le & Yamada 2018). Here we choose 10 equally
spaced thresholds with Br > 0 for positive polarity thresholding
and 10 thresholds with Br < 0 for negative polarity threshold-
ing, setting the maximum |Br | = 5000 G8. The spacing of the
chosen thresholds ensures a good balance between redundancy
(that is, closely spaced, highly similar images with nearly iden-
tical β1 counts) and adequate representation (avoiding a spacing
so coarse as to miss important information). This process pro-
duces two 10-dimensional vectors: one for positive and one for
negative Br that give the number of “live” holes at each thresh-
old. These 20 values make up the feature vector for the model
comparison results presented in Sect. 5. Our preliminary exper-
iments (Deshmukh et al. 2020) showed that the more compli-
cated featurization methods such as persistence rank functions
perform no better, for the purposes of this problem, than simpler
approaches, indicating that the simple featurization effectively
captures shape-based information that discriminates flaring and
nonflaring magnetograms just as well as the more complicated
approaches.

8 Specifically the thresholds are {263 G, . . . , 4473 G, 5000 G} for sub-
levels and {−263 G, . . . ,−4473 G,−5000 G} for superlevels.
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(a) (b)(a)

Fig. 3. Contours of β1 as a function of time for sublevel thresholds Br = 0 to 5000 G for two ARs. Panel (a) shows ten days of evolution for
SHARP 6950 (NOAA AR 12636) where day 0 is 2300 UT on 14 February 2017. No flares were observed. Panel (b) shows thirteen days of evolution
for SHARP 7115 (NOAA AR 12673) where day 0 is 0900 UT on 28 August 2017. In this case, the threshold for β1 & 10 jumps up about two days
before the first M-class flare (indicated by orange vertical bar), and nearly four days before the first X-class eruption (red vertical bar) that occurred
at 0857 UT on 6 September 2017. The Br strength thresholds, s0 = 263 G, s1 = 789 G, . . . , s8 = 4473 G and s9 = 5000 G, correspond to the tick
marks on the ordinate. The breadth of the color bar scale is the result of the large number of small-scale holes from noise in the image.

4. Machine learning: models and framework

Evaluation and comparison of the predictive power of different
ML methods and different feature sets require care. The first step,
as described at the end of Sect. 2, involves creating a split of the
data set into training, validation, and test sets that are represen-
tative of the problem at hand, but do not artificially boost the
performance of the model. Secondly, it is important to include a
range of ML models in the experimental framework to be able to
claim whether one feature set is more useful than another. The
models in this study, described in Sect. 4.1 below, were chosen to
span ranges of complexity and strategies. Thirdly, ML methods
have a number of hyperparameters that guide their training pro-
cesses. Optimal values for these parameters depend on the model
and the data, so a truly fair comparison requires individualized
tuning. To that end, we use a k-fold cross-validation approach
to automatically determine hyperparameters from the data as
explained in Sect. 4.2. This systematic approach, which is in
contrast to the trial-and-error grid search used in the majority of
the flare-prediction literature, ensures a near-optimal selection of
hyperparameters, especially those that are metric-sensitive and
take on continuous values.

4.1. Machine-learning models

In our study, we use four different models: logistic regres-
sion, multilayer perceptrons, long short-term memories, and
extremely randomized trees. In the following paragraphs, we
give brief descriptions of these methods; for more details, please
see (Murphy 2012; Goodfellow et al. 2016), or any other basic
ML reference.

Logistic regression, perhaps the simplest of all models in the
ML literature, uses a sigmoid function h:Rn → [0, 1] to model
the data:

hθ(x) =
1

1 + e−θT x
· (1)

The components of the vector θ are the weights applied to
each element of the input vector x. In the context of the
flare-prediction problem, hθ(x) represents the flaring probabil-
ity, which we then convert to a categorical flare–no-flare out-

put using a threshold of 0.5—if hθ(x) < 0.5 then x is classified
as nonflaring, otherwise it is classified as flaring. Training this
model is a matter of determining θ; we accomplish this using the
LBFGS algorithm of Liu & Nocedal (1989). The only hyperpa-
rameter involved in this process is the class weight that is used
in the gradient descent: the higher the weight for one class, the
more the model is penalized for getting the classification wrong.

A multilayer perceptron or MLP is a type of feedforward artifi-
cial neural network containing multiple layers of nodes (neurons),
with the outputs of each layer propagated forward to the next layer.
These canonical ML models contain an input layer, some number
of hidden layers, and an output layer. The output of each neuron is
a nonlinear function of its inputs with a single free parameter, typ-
ically a multiplicative constant, that is “learned” during training
using some optimization strategy (for example, gradient descent)
on a suitable loss function: in this case, the weighted binary cross-
entropy loss function, as described in Deshmukh et al. (2020).
We employ the Adagrad optimizer (Duchi et al. 2011) to update
the weights during gradient descent and an architecture with five
dense layers containing 36, 24, 16, 8 and 2 nodes, respectively.
This configuration was chosen using a manual grid search. There
are two important hyperparameters here: the class weight, which
plays a similar role as in the logistic regression model, and the
L2 regularization constant in the loss function, which ensures that
none of the neuron weights becomes too large, which would lead
to overfitting.

Active regions evolve over time in ways that are meaning-
ful from the standpoint of solar physics. Logistic regression
and MLPs cannot leverage the information that is implicit in a
sequence of magnetograms, as their forecasts are based on indi-
vidual snapshots. For that reason, a thorough evaluation of ML-
based solar flare forecasting should include methods that factor
in the history of the observations. To that end, we use long-short
term memories (LSTMs), which are designed to work with tem-
poral sequences of data, using a feedback loop in a hidden layer
that takes the state calculated in time step tn−1 and feeds it to the
same network for the sample at time step tn. The LSTMs used
in our study contain the same number of hidden layers as the
MLP discussed above, but with such a feedback loop incorpo-
rated in one of the hidden layers. This strategy for propagating
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Fig. 4. Hyperparameter tuning workflow.

information forward in time is powerful, but it can compli-
cate the training of these models. Simple gradient descent, for
instance, can be problematic if there are long-term temporal
dependencies in the data, since the gradient can decay as it is
propagated through the time steps. To address this, LSTM nodes
often incorporate mechanisms called “forget gates” that limit the
number of steps through which information is propagated for-
ward in time. This limit is an important choice, and one that is
generally tuned by hand for a given model and data set. We use
this approach and find that a sequence length of ten works well
in our application. Like MLPs, LSTMs have two hyperparame-
ters that significantly impact their performance: the weights in
the binary cross-entropy loss function and the L2 regularization
constant.

The fourth model used in our work is a type of decision tree,
a class of ML models that have a tree-like structure, where each
branch represents a decision based on some attribute of the data
and the leaves correspond to the salient classes for the problem at
hand (flaring and nonflaring, in our case). The input data dictate
the path taken through the tree during the classification process,
eventually routing the outcome to one of these classes. A major
advantage of this strategy is that its results are an indication of
how well each individual feature is able to divide the data set:
a major step toward explainability, a critical challenge in mod-
ern AI. The main disadvantage of decision trees is their tendency
for overfitting. One can mitigate this by building an ensemble of
trees using a randomly chosen subset of features at each branch
point – a so-called “Random Forest” – and use the mean or mode
of their predictions to classify a sample. The extremely random-
ized tree (ERT; Geurts et al. 2006) that we use in this paper is a
variant of this approach. These models have three hyperparam-
eters: the class weight; the minimum impurity decrease, which
controls when nodes will split; and the number of trees in the
ensemble, which mitigates overfitting.

This set of choices is intended to cover a large portion of exist-
ing ML methods, in terms of architecture (for example, tree-based
or not) and complexity (number of free parameters), making it a
sensible evaluation set. We discuss tuning of these models next.

4.2. Hyperparameter tuning

Since the performance of an ML model depends on both the
data and the training process, and because that training process is
governed by the hyperparameters, a fair comparison of two dif-

ferent ML models requires careful tuning of their hyperparame-
ters. To do this, one evaluates the performance of a model on a
subset of the data, called the validation set, for different hyperpa-
rameter combinations. The best-performing combination is then
used to train the model on the training set before it is evalu-
ated on the corresponding test set. Using distinct subsets of the
data for these three purposes ensures that the processes are com-
pletely independent.

Instead of using a single validation set, a better strategy is to
perform what is called a k-fold cross-validation. In this approach,
the training set is divided randomly into k subsets, or “folds”, of
roughly equal size. For each evaluation of hyperparameters, one
of the k folds acts as the validation set and the remaining k − 1
folds are merged to become the training set. After training, the
model is then tested on the 1-fold validation set. This process is
repeated using each of the k folds, individually, and the success
of the hyperparameter combination is judged using the mean of
the model’s performance metric across these runs.

This process is illustrated in Fig. 4. The first step is the stan-
dard random splitting of the data set, as described at the end of
Sect. 2. We repeat this ten times using a 70%−30% ratio to gen-
erate ten trial runs, splitting by AR as described in Sect. 2, then
generate k folds on each of those training sets. In ML practice,
k is generally chosen as 3, 5, or 10. In our case, k = 5 works
well to produce sufficiently long training and validation sets.
A second important decision in this tuning process is the sam-
pling method for the hyperparameter value combinations. Vari-
ous strategies have been proposed for this in the ML literature:
grid search, random sampling, Bayesian sampling, etc. Here, we
employ the Bayesian optimization method of Martinez-Cantin
(2014), that uses Gaussian processes to mix exploration and
exploitation in optimizing the hyperparameter combinations. We
employ the Python implementation BayesOptSearch and use
the ray.tune Python library (Liaw et al. 2018) to implement
the sampling and evaluation process. As shown in Fig. 4, the
BayesOptSearch method iteratively samples 40 hyperparam-
eter combinations, choosing the one that gives the best perfor-
mance on the validation set, as measured by some metric that
compares the forecast to the ground truth. (We use the true skill
statistic, as described further in Sect. 5). For BayesOptSearch,
we use the upper confidence bound as the acquisition func-
tion, setting the exploration parameter κ = 5 in order to bal-
ance exploitation and exploration in the sampling process; see
Snoek et al. (2012) for details. That sampling process begins
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with 10 uniformly chosen hyperparameter samples, continuing
in steps of 10 to explore 40 hyperparameter combinations9. The
model is then trained on the full training set using the best-
performing hyperparameter values before being evaluated on the
30% test set.

Not all hyperparameters require this kind of complex, com-
putationally intensive treatment; some of them can be effectively
tuned using a manual grid search. For those, we employ a two-
phase model-tuning strategy, first performing a hand optimiza-
tion of hyperparameters such as the number of model layers, the
nonlinear activation function, and the optimization function. Val-
ues for these hyperparameters, which are chosen from among a
finite set of options, generally impact all metrics in a similar way.
This is followed by the automated approach described above
for tuning hyperparameters such as the loss function weights or
the regularization penalty. Automatic tuning of these parame-
ters is important for two reasons. Firstly, they take on contin-
uous values, so hand-tuning becomes cumbersome. Secondly,
their effects are not independent: changing one often improves
one metric at the cost of another – a situation where an auto-
mated, systematic exploration of the search space can be espe-
cially appropriate. It is entirely possible, of course, to use the
automated approach for all the hyperparameters, but that signif-
icantly increases the computation time.

Hyperparameter tuning is, as should be clear from the details
above, a complex process. We offer these details here not only so
that others can not only fully reproduce these results, but also use
this framework in other applications that involve evaluation and
comparison of flare-forecasting approaches. It is also worth men-
tioning that the metric that one uses to evaluate performance will
affect the process, and in subtle ways: optimizing for pure accu-
racy will produce different results than balancing false positives
against false negatives. This matter is discussed further below.

5. Results

In this section, we compare the relative prediction performance
of the ML based flare-forecasting models described in Sect. 4
for the three feature sets covered in Sect. 3. Using the labeled
data set described in Sect. 2, we carry out the hyperparame-
ter tuning procedure outlined in the previous section on each
model and feature-set combination, using the k-fold cross vali-
dation approach on the ten data sets, then train it with optimized
hyperparameters on the corresponding training set. To evaluate
the results, we run the model on the corresponding test set and
compare its 24-h forecasts to the ground truth using four stan-
dard prediction metrics: accuracy; the true skill statistic or TSS
(also known as the H&KSS), the Heidke skill score (HSS2)10,
frequency bias (Bias), and F1, which is the harmonic mean of
precision and recall. These metrics, whose detailed formulae can
be found in Jolliffe & Stephenson (2012), are derived from the
entries of the contingency table – that is, the numbers of true and
false positives and true and false negatives. In the context of this
problem, a flaring magnetogram (that is, a magnetogram with an
associated M1.0 or larger flare in the next 24 h) is considered as
a positive while a nonflaring magnetogram is considered a nega-
tive. Since our data set includes 5769 of the former and 447 504
of the latter, accuracy is not a very useful metric here; a simple
model that classified every input as nonflaring would be 98.7%

9 That is, using initial_random_steps in ray.tune, with
max_concurrent_trials= 10.
10 We use the second common definition of the HSS score, denoted by
HSS2 as defined in Barnes et al. (2016, Eq. (6)).

accurate. The skill scores strike various balances between cor-
rectly forecasting the positive and negative samples. TSS ranges
from [−1, 1] and HSS2 from (−∞, 1]. In both cases, these scores
are 1 when there are no false positives or false negatives, while
a score of 0 means the model is doing only as well as a random
forecast, essentially, an “always no-flare” forecast. Bias has the
range [0,∞], where Bias< 1 indicates under-forecasting (many
false negatives), and Bias> 1 implies over-forecasting (many
false positives). F1 has the range [0, 1] with 1 indicating a per-
fect forecast score. These metrics, all of which are used broadly
in the flare-prediction literature, span the various methods used
to quantify the performance of ML models.

As discussed in Sect. 4, hyperparameters for each model
must be individually tuned in order to provide a fair compari-
son of their performance. The choice of metric plays a subtle
role here, since hyperparameters can have different effects on
the various metrics, that is, tuning performance based on val-
ues of one can impact performance as measured by the others.
The choice of metric is often left as a decision for the fore-
caster: some might wish to prioritize the TSS score, for exam-
ple Deshmukh et al. (2021), while others might prefer a fore-
cast that has lower false positive rate (Deshmukh et al. 2022) or
is more reliable (Nishizuka et al. 2021). In the problem treated
here, where the data set is highly imbalanced, an optimization
based on accuracy would be a particularly bad choice, as it would
lead to models defaulting to the always no-flare forecast. Here
we use TSS, choosing hyperparameters that maximize its values
via the k-fold cross-validation described above. TSS is a com-
mon choice in the flare-forecasting literature, as well as in the
broader ML literature. It does come with limitations, however:
optimizing the TSS score can lead to high false positives, thereby
impacting some of the other metrics like precision, F1, and Bias.
This effect manifests in the results described below.

The experiments were carried out on an NVIDIA Titan RTX
(24 GB, 33 MHz) GPU for the deep-learning models (MLP and
LSTM), and on an Intel i9-9280X (3.30 GHz) CPU for the sim-
pler models (logistic regression and ERT)11. Run times ranged
from 2.5 s to train and 0.02 s to test each logistic regression
model on the SHARPs feature set to 210 s and 9 s for the LSTM
model using the combined feature set. The run time of the hyper-
parameter tuning procedure ranged from 40 s for each logistic
regression model with the SHARPs feature set to just under two
hours for each LSTM model with the combined feature set.

Table 2 compares the performance of the various models
for the three feature sets: the traditional physics-based features
that appear in the SHARPs metadata (Sect. 3.1), the shape-based
attributes extracted from each magnetogram image using topo-
logical data analysis (Sect. 3.2), and a third set that combines
the two.

A between-model comparison addresses the first research
question posed in Sect. 1: whether model complexity is an
advantage in the context of this problem. Table 2 suggests that
the answer is no. Indeed, the general trend in the TSS scores
shows that increased complexity slightly reduces performance.
Indeed, even though the MLP and LSTM models have orders
of magnitude more parameters, the simpler LR and ERT mod-
els perform marginally better, as judged by the TSS scores.
(For the other metrics, there is no significant variation among
the four models). This may simply be due to data limitations;
recall that the higher the complexity of a ML model, the more

11 Different ML models lend themselves to different types of hardware,
depending on how well they parallelize. The machine used to carry out
these experiments affects only the run time, not the results.
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Table 2. 24-h forecast performance of four ML models using three feature sets.

Model Feature set Param. Accuracy TSS HSS2 F1 Bias

LR SHARPs 21 0.87 ± 0.01 0.79 ± 0.01 0.13 ± 0.02 0.15 ± 0.02 11.44 ± 1.75
Topological 21 0.87 ± 0.01 0.78 ± 0.02 0.12 ± 0.02 0.14 ± 0.02 11.88 ± 1.40
Combined 41 0.87 ± 0.02 0.79 ± 0.02 0.13 ± 0.02 0.15 ± 0.02 11.76 ± 1.98

ERT SHARPs 332 0.84 ± 0.01 0.79 ± 0.01 0.11 ± 0.01 0.13 ± 0.01 13.96 ± 0.81
Topological 483 0.85 ± 0.02 0.76 ± 0.04 0.11 ± 0.02 0.13 ± 0.02 13.34 ± 1.93
Combined 340 0.86 ± 0.02 0.77 ± 0.03 0.12 ± 0.02 0.14 ± 0.02 12.27 ± 2.12

MLP SHARPs 2198 0.85 ± 0.02 0.76 ± 0.02 0.11 ± 0.02 0.13 ± 0.02 13.13 ± 2.42
Topological 2198 0.85 ± 0.02 0.76 ± 0.02 0.11 ± 0.01 0.13 ± 0.01 13.56 ± 1.53
Combined 2918 0.86 ± 0.03 0.76 ± 0.03 0.11 ± 0.02 0.13 ± 0.02 13.10 ± 1.78

LSTM SHARPs 6662 0.87 ± 0.02 0.75 ± 0.02 0.12 ± 0.02 0.14 ± 0.02 11.90 ± 1.93
Topological 6662 0.85 ± 0.02 0.75 ± 0.03 0.11 ± 0.02 0.13 ± 0.02 13.28 ± 2.11
Combined 7382 0.86 ± 0.01 0.75 ± 0.02 0.12 ± 0.01 0.14 ± 0.01 12.00 ± 1.63

Notes. The third column shows the number of free parameters needed to classify a single data sample. For the ERT, this equals the average depth
of the tree (the path taken by a data sample from the root to a leaf node in the tree). The listed metric score and error bars are determined by
computing the sample mean and standard deviation of the scores from 10 experiments performed on 10 different data splits.

data is needed for training. If the training set is too small, the
model will over-fit that data, causing it to fail to generalize well
to the testing set. Simpler models avoid this trap. It is impor-
tant to note that while a set of 460 000 samples might seem
large, many of the images in the solar flare data set are simi-
lar, and almost all are nonflaring. Another possible hypothesis
for these observations, as asserted in Florios et al. (2018), is that
magnetogram data is not sufficient for improving the model per-
formance beyond a certain limit by increasing the model com-
plexity. In other words, the total amount of information – that
is, the number of sufficiently diverse and useful samples – in
this data set is inadequate for the purposes of the discussed
ML models.

In addition, Table 2 shows that the topological features
perform just as well as the SHARPs features. Moreover, the
combined feature set does not provide any improvement, indi-
cating that neither feature set provides a significant advantage
over the other. This is an answer to our second research ques-
tion. Abstract spatial properties of active region magnetograms–
calculated using abstract universal algorithms that quantify
shape from raw image data without any assumptions about the
underlying mechanics – appear to impart equal skill to ML flare-
forecasting models as the set of physics-based attributes devel-
oped by solar flare experts.

Determining whether data limitations are important is an
open problem in current ML research. One way to approach it
is to compare the values of the weighted binary cross-entropy
loss function across the models; another is to observe the pat-
terns in the convergence over the training process. Both are prob-
lematic for the more complex models in our study. ERTs do not
generate a loss, nor do they have an iterative training process.
For models that do have an iterative training procedure (MLP
and LSTM), we carried out the second test, and found that both
the validation and training losses reached asymptotes during the
training process, suggesting – but of course not proving – that
overfitting is not at issue. The first approach is not useful in
the case of the LSTM because one-to-one loss comparisons are
problematic in such models due to the variation in the number
of samples in the training and testing sets that occurs when the
original data are converted to temporal sequences by the feed-
back loop in the model. In the future, as more data is recorded
by SDO/HMI, we hope to learn, by rerunning these experiments

on longer, richer data sets, whether the effects described in this
paragraph are artifacts of data limitations or something more
fundamental.

In regard to optimization of models, optimizing TSS for this
highly imbalanced data set leads to over-forecasting across all
configurations, generating poor results for metrics such as F1,
HSS and Bias. Indeed, optimizing on different metrics gives
different results. As an additional experiment, we regenerated
Table 2 by optimizing each configuration on F1 instead of TSS.
Doing so reduced the over-forecasting, improving all of the
metrics except for TSS, which decreased. The overall effect of
this modification was due to a reduction in false positives, at
the cost of a similar reduction in true positives. This, however,
could be desirable for applications that have a high cost associ-
ated with the former. A more detailed discussion of optimizing
metrics to achieve a lower false positive rate can be found in
Deshmukh et al. (2022).

To assess the effects of the prediction horizon, we carried
out a set of experiments using the best-performing model and
feature combination from Table 2 (logistic regression with the
SHARPs feature set) and generated forecasts for 3, 6, and 12 h
in addition to our previous 24 h case. The results are shown in
Table 3. As one would expect, the shorter the forecast window,
the higher the accuracy, but the story for the other metrics is more
complicated: TSS is roughly similar for all forecasting windows,
while HSS2, F1, and Bias actually worsen as the forecast window
shrinks. This counter-intuitive result is almost certainly due to
the increasing fraction of negative samples: for each flare, fewer
magnetograms will be labeled as “flaring within m hours” if m is
smaller. This is, again, a side effect of tuning on the TSS score,
as discussed above: its optimization leads to a high false positive
rate for a severely imbalanced data set.

The LSTM is not only the most complex model in this
study – by a factor of three, as judged by the number of free
parameters – but also the only one that uses the AR history. In
view of this, its lack of performance is particularly striking. The
feedback loop in its architecture makes it difficult to deconvolve
the effects of the temporal history and the number of parame-
ters, so we cannot say for sure whether or not the former, alone,
confers any advantage. Nevertheless, the additional complexity
certainly does not appear to help.
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Table 3. Logistic regression forecasts for different forecasting windows, measured in hours.

Forecasting window Accuracy TSS HSS2 F1 Bias

24 0.87 ± 0.01 0.79 ± 0.01 0.13 ± 0.02 0.15 ± 0.02 11.44 ± 1.75
12 0.89 ± 0.02 0.82 ± 0.01 0.10 ± 0.03 0.11 ± 0.03 17.13 ± 4.10
6 0.91 ± 0.01 0.82 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 25.17 ± 4.83
3 0.93 ± 0.01 0.79 ± 0.05 0.05 ± 0.01 0.05 ± 0.01 33.18 ± 4.60

Notes. Values and error bars are calculated as in Table 2.

Our final investigation concerns dimensionality reduction of
the feature sets. To explore this, we perform principal component
analysis (PCA) on the data sets (see Appendix A for the details),
and then retune the model hyperparameters and repeat the train
and test procedure using only nine, three, and eleven PCA vec-
tors for the traditional, topological and combined feature sets
respectively: so chosen to cover 98.5% of the variance in the
three data sets, respectively. The number of PCA vectors for the
SHARPs data set is in accord with the findings of Chen et al.
(2019). What is more striking is that the topological data set can
be reduced to only three features, indicating that the informa-
tion in that feature set is highly anisotropic and suggesting that
dimensional reduction has the potential to significantly reduce
model complexity.

Figure 5 compares the TSS scores for the original data sets
and the PCA-reduced data sets. For all three feature sets, the per-
formance of the full and reduced-order models are similar for the
logistic regression, MLP, and LSTM models. This extends to the
other metrics as well (not shown). In other words, we can suc-
cessfully simplify these ML models by reducing the number of
features without sacrificing predictive skill. This is an obvious
advantage as models that work with smaller feature sets have
fewer free parameters that must be learned from the same train-
ing data. It is important to note that this advantage is highest for
the topological feature set, which contains only three features.
That is, by training a logistic regression model on only three
features, we are able to achieve a simple model for solar flare
prediction without sacrificing performance.

The ERT model, however, departs from this pattern, demon-
strating a marked reduction in TSS scores for the PCA-reduced
feature set. This effect is strongest for the topological feature set,
followed by the SHARPs feature set, with the combined feature
set seeing the smallest impact. A possible explanation for this
performance degradation lies in the way ERTs are constructed.
In a k-feature ERT,

√
k randomly chosen features are typically

used to determine the split at each branch point. A reduction
in the number of features, then, confines the exploration of the
ERT parameter space. This could result in branches that do not
effectively separate the positive and negative samples, thereby
impacting the model performance. Modifying the training pro-
cess to use all k features for choosing the best split can ame-
liorate this problem. Indeed after doing this, we find that there
is no statistically significant difference between the reduced and
the full feature sets for the TSS scores of the topological and
combined feature sets. However, the SHARPs feature set does
not show a similar improvement upon increasing the number of
features used in the split. This disparity suggests that the pres-
ence of shape-based features in the combined set helps make up
for the shortcomings of the physics-based features. As shown
in Appendix A, both SHARPs and topological features are
highly weighted in the first principal component of the combined
feature set.

6. Conclusions

Machine learning-based solar flare prediction has been a topic of
interest to the space weather community for some time. Various
ML models, ranging from simple ones like logistic regression to
incredibly complex “deep-learning” models such as multilayer
perceptrons (MLPs) and long short-term memories (LSTMs),
have been used to map the correlation between physics-based
magnetic field features and near-term flaring probability. There
have been studies that compared different ML flare-forecasting
models (Barnes et al. 2016; Nishizuka et al. 2017; Florios et al.
2018), but the models in those studies only used physics-
based features derived from photospheric magnetograms. Fur-
thermore, none of these approaches performed a systematic,
automated hyperparameter tuning process to assure a fair com-
parison between models (Florios et al. 2018; Sinha et al. 2022
performed simple manual hyperparameter tuning).

Our first objective in this paper was to evaluate a new
shape-based feature set, introduced in Deshmukh et al. (2020),
composed of quantities extracted from magnetograms using
topological data analysis. The results from these features are
compared to the standard physics-based SHARPs feature set.
Our results extend previous pilot studies (Deshmukh et al. 2020,
2021; Knyazeva et al. 2017) by using a more comprehensive
SHARPs feature set, employing four different ML models, and
using a systematic hyperparameter tuning methodology. This
broader and deeper study confirmed that the shape-based fea-
tures – calculated using abstract and universal algorithms with-
out any assumptions about the underlying physics – impart just
as much skill to ML flare prediction models as the set of tradi-
tional, heuristically derived physics-based attributes. Further, the
combination of the shape-based and physics-based feature sets
does not provide any improvement over the individual sets, con-
firming that neither set provides a significant advantage over the
other. Using principal component analysis to find relevant sub-
spaces of the feature sets, we studied the effect of dimensionality
reduction on model performance. We found that the topological
feature set afforded the largest dimensionality reduction, and that
the PCA-reduced data sets performed just as well as the original
feature sets for three of the four ML models. In a data-limited
situation, this is a major advantage for the effectiveness of ML
based solar-flare prediction methods, since more complex mod-
els generally require larger training sets.

In performing the feature set evaluations, we systematically
compared a set of four ML models operating on feature vectors
with increasing complexity to determine whether higher model
complexity is correlated with higher predictive skill. Using an
automated hyperparameter tuning approach to assure a fair com-
parison, we showed that increasing the complexity of the model
did not improve the predictive skill of models developed for the
M-class and above 24-h flare forecasting problem. It should be
noted that we did not include convolutional neural networks as
part of this study. CNNs are a form of automated shape-based
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Fig. 5. TSS score comparison in the form of box-whiskers plots for four ML models. The models are trained on the three feature sets and their
PCA reduced counterparts over ten trials: (a) Logistic Regression model; (b) ERT model; (c) MLP model; (d) LSTM model. The central line
each box represents the median TSS score while the top and bottom edge of the boxes represent the 25 and 75 percentiles over the ten trials. The
whiskers are the upper and lower bounds for the scores in each experiment set to be 1.5 times the interquartile range, and the dots represent the
outliers defined as points outside of the specified whisker length. After PCA reduction, the SHARPs feature set is reduced from 20 to 9 features,
the topological set from 20 to 3 features, and the combined set from 40 to 11 features. For all models except for the ERT, the reduced feature set
does just as well as the complete feature set.

image analysis that are commonly used in large-scale classifi-
cation problems; see, for example, Krizhevsky et al. (2017). It
is difficult to directly compare the performance of CNN-based
models to models operating on feature vectors; the level of com-
plexity in these models, particularly for recurrent versions, is
generally much higher than for the models used in this study
and the computational time required for training and hyperpa-
rameter tuning is much longer. A separate comparative study of
image-based flare prediction ML models, for example, CNN- vs.
attention- vs. transformer-based models, would be interesting to
conduct. Preliminary results with a hybrid CNN-ERT model ana-
lyzing HMI magnetograms for flare prediction is demonstrated
in Deshmukh et al. (2022). In the future, we plan to develop
image time series analysis models operating on both SDO/HMI
magnetogram data and SDO/Atmospheric Imaging Assembly
(AIA) coronal and chromospheric image data.
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Appendix A: Training set dimensionality reduction

As part of the training process, ML models learn which attributes
of the input data, in which combinations, are meaningful. Their
efficiency in doing so depends on the amount and complexity of
the data, and also–importantly–on the way it is represented. In
general, a larger feature set leads to increased model complexity,
which in turn can result in overfitting and increased computa-
tional time (Goodfellow et al. 2016), as well as requiring larger
training data sets. The nature of the individual features also mat-
ters. Features that are not salient, or that are redundant, hinder
the learning process. For these reasons, it is important to mini-
mize the number of features and maximize their relevance.

A good way to approach this problem is to apply
dimensionality-reduction techniques to the feature space in order
to find the most relevant subspaces. A variety of methods have
been proposed for this, including principal component analy-
sis (PCA), linear discriminant analysis, t-distributed stochastic
neighbor embedding (Van der Maaten & Hinton 2008), uniform
manifold approximation and projection (McInnes et al. 2018),
etc. We use PCA here because of its simplicity and effective-
ness. It determines an alternative basis to represent the data by
iteratively constructing an orthogonal basis such that the vari-
ance of the data along the first dimension is maximal, the second
dimension is in the direction of maximum variance orthogonal
to the first, and so on. One then typically keeps the first l, say,
principal vectors that together account for some chosen fraction
of the total variance. This approach, applied to an n-dimensional
feature set, effectively reduces the dimensionality to l. It should
be noted that each of the l basis vectors may contain all of the
original n values; we discuss this more below.

Applying this approach to the ten randomly shuffled train-
ing sets discussed in Sect. 2–first using the SHARPs feature set
of Sect. 3.1, then the shape-based feature set of Sect. 3.2, and
finally their combination–gives Fig. A.1. For the SHARPs fea-
ture set, the first principal component captures 38% of the vari-
ance. As the figure shows, adding a second principal component
increases the total to 60%. The topological feature set is much
more anisotropic: its first principal component captures almost
85% of the variance of the data set, a level that requires four
principal components in the SHARPs feature set. We apply a
threshold of 98.5% (the dashed line in Fig. A.1) to select nine,
three, and eleven dimensions from the orthogonal PCA repre-
sentation for the reduced-dimension versions of the traditional,
topological, and combined feature sets, respectively.

A detailed analysis of the reduced features is revealing. The
coefficients of the first principal component–the weights of each
SHARPs attribute in the basis vector–for one of the ten train-
ing sets are shown in Fig. A.2(a). These results are to some
extent consistent with the science: the R_VALUE and USFLUX
attributes, which are known to be important for flare predic-

Fig. A.1. Cumulative explained variance plots. These are for the prin-
cipal components for the three feature sets, determined from the ten
training sets. The darker curves represent the medians of the explained
variance, while the shaded regions around them indicate standard devi-
ations. The dashed line marks the 98.5% level.

tion, are weighted heavily in the first principal component of
the SHARPs set. Note, though, that six other quantities are also
weighted heavily in Fig. A.2(a); moreover, this first principal
component does not capture much of the variance, so one should
not over-interpret its weights. Rather, one must think about all of
the principal components, acting together as a basis for the new
feature space. (A feature that is totally absent from every prin-
cipal component, of course, is certainly not salient, but a low-
weighted feature in the first one could have a high weight in
another). That being said, interpretation of Fig. A.2(b) is some-
what different because, as Fig. A.1 shows, the first principal
component in the topological feature set captures a very large
fraction of the variance. It is interesting to note that the topolog-
ical features at lower magnetic fluxes are weighted more heav-
ily in the first principal component, and with some symmetry
across positive and negative fluxes. This makes sense in view of
the nature of the threshold construction: a high threshold value
removes much of the small-scale structure of the magnetogram,
leaving only the highest-magnitude pixels. Finally, it is impor-
tant to note that the first principal component from the combined
feature set is a weighted combination of both SHARPs and TDA
features. As we discuss in Sect. 5, this can have implications
regarding model performance.

Of course, PCA only finds a new basis set for the feature
space; it does not produce a feature ranking. The previous para-
graph only explains how one principal component is represented
in terms of the original features, in one particular split of the
data. Even though this gives possible ties to the physics, it does
not represent a comprehensive, formal analysis of the impor-
tance of a given feature in the classification problem.
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Fig. A.2. Weights of the features. (a) SHARPs, (b) topological, and (c) combined features in the first principal component of the corresponding
feature set for one of the ten training sets examined in this paper. Labels of the topological features indicate the flux level of the threshold value
used to construct those features.
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