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Abstract— The physical world evolves. The cyber world 

evolves and grows with big data, with social media as a major 

component of information growth. Classic ML models are limited 

by their static training data with implicit Complete and Timeless 

Knowledge assumptions. In an evolving world, static training data 

suffer from knowledge obsolescence due to truly novel timely 

information. Knowledge obsolescence introduces a widening 

distance between static ML models and the evolving world, called 

cyber-physical gap. Periodic retraining of new models may restore 

their accuracy temporarily, but subsequently their performance 

will deteriorate with widening cyber-physical gap. Knowledge 

obsolescence affects statically trained models of any size, including 

LLMs. Two major research challenges arise from cyber-physical 

gap: (1) collection and incorporation of space-time aware ground 

truth training data, and (2) understanding and capturing of the 

varying speed of information and knowledge evolution when the 

physical and cyber worlds evolve.   

Keywords—machine learning, dynamic model performance, 

evolution of knowledge, evolving social media   

I. INTRODUCTION (HEADING 1) 

The COVID-19 pandemic has been a stark reminder of the 
unpredictable evolution of our world. Large natural disasters 
such as hurricanes, earthquakes, and landslides all change our 
environment and require our adaptation to the evolution of our 
physical world. Since the advent of information technology (IT) 
in the 20th century, we have also created a cyber world from bits 
of information. Due to the ease of creating and manipulating 
bits, the cyber world changes and grows at a rate much faster 
than the physical world. According to one estimate (IDC [1]), 
the world data will reach 64ZB in 2020, and 175ZB by 2025. 
The growth is exponential: roughly doubling every two years.  

Although the main sources of big data growth are usually 
attributed to IoT sensor data on the physical world, those data 
are often produced and consumed by automated systems. In 
contrast, human generated social media data in the cyber world 
(e.g., the estimated more than 1 trillion tweets sent since the 
founding of Twitter in 2006. Social media often have higher 
social impact, since they are produced and consumed by humans 
(originally). There is an increasing suspicion that some parts of 

social media may be produced (and consumed) by bots, but that 
speculation is beyond the scope of this paper. 

Before the advent of large language models (LLMs [2]) and 
foundation models [3], the gold standard of classic machine 
learning (ML) research consisted primarily of training and 
evaluating classifiers from closed ground truth data sets (e.g., 
MNIST [4] and CIFAR [5]). On the positive side, this self-
contained model of ML research and AI (artificial intelligence) 
enabled a fair comparison among the competing algorithms 
based on the same (static) ground truth data.  

However, two significant issues were left out of this classic 
ML approach. First, the applicability of the classifiers to other 
data sets (i.e., generalizability) was left to the reader as a 
separate exercise, despite well-known overfitting problems. 
Second, the relationship between the classifier (as well as the 
ground truth it was derived from) and the real world became 
outside the scope. In other words, it is OK for the ML classifiers 
constructed in the cyber world to be disconnected from the 
physical world. In this paper, the word “knowledge” denotes the 
cyber world, and “world” denotes the physical world. The 
distance between our knowledge and the physical world will be 
called cyber-physical gap.  

Before the arrival of ChatGPT [6] in November 2022, and 
the recognition of successful LLMs more generally, any 
suggestions of alternatives beyond annotated ground truth 
would have been routinely dismissed as irrelevant (see 
discussion in Subsection III.B), or even heresy, by the ML 
mainstream. Fortunately, LLMs have opened the door to 
training data beyond manual annotations. While we are not 
advocating any specific sources of ground truth training data, we 
hope our readers will keep an open mind on potentially fruitful 
possibilities beyond the exclusive orthodoxy of closed and static 
training/evaluation data sets.  

This paper will discuss some of the significant research and 
practical challenges arising from the relaxed assumptions on 
new training data. Concretely, two major issues arise from an 
evolving world with evolving knowledge: generalizability and 
cyber-physical gap. First, static knowledge is unaware of the 
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changes, becoming out of date when the world evolves. 
Therefore, generalizability becomes an important measure of the 
decaying performance of static classifiers. Since generalizability 
depends on the distance between the physical world and 
knowledge of classifiers in the cyber world, it is also important 
to study the cyber-physical gap, which affects classifier 
performance as both the physical world and the cyber 
knowledge in classifiers evolve.   

II. BASIC ASSUMPTIONS OF THIS PAPER 

A. Illustrative Applications of an Evolving World 

The classic ML approach to focus on classifiers trained from 
closed, static training data sets. They would work well in a static, 
or slowly changing world. In the 21st century, new technologies 
such as the Internet are bringing changes to the modern society 
at unprecedented fast speeds. Changes are happening and 
growing both in the cyber world (e.g., growth of social media) 
and in the physical world (e.g., modern infrastructure in 
transportation, smart energy generation and distribution, and 
global supply chain). In our research, we have been working 
with social media data on natural disasters such as landslides 
[7][8], and man-made hazards such as fake news [9].  

Natural disasters such as landslides, earthquakes, and 
hurricanes are quite unique in their space/time coordinates. Each 
of them is also truly novel when they happen. Man-made 
hazards such as fake news are also novel by construction when 
they are introduced for the first time. There is a small amount of 
repetition due to laziness of both attack and defense, but the 
professional fake news producers are very inventive, e.g., claims 
of Bill Gates being responsible for the COVID-19 pandemic.  

As an illustration of evolving cyber world, Figure 1 shows 
the prevalence of two fake news campaigns on the origin of 
COVID-19 virus from April 2020 to April 2022 (Figure 1 from 
[10]). The virus was attributed to 5G networks and Bill Gates 
were launched and reinforced at specific points in time (the high 
peaks in the normalized graph).  

 

Figure 1 Illustrative Sample of Fake News Campaigns: 5G and Bill 

Gates Origin of COVID-19 Virus (Figure 1 from [10]) 

Truly novel events such as natural disasters and man-made 
hazards present significant challenges for static ML classifiers 
due to their inherent and/or intentional novelty. While excellent 
at distinguishing apples from oranges, static ML classifiers 
trained from past knowledge are often reduced to guessing when 
facing truly novel information. Even recurrent events such as 
elections pose significant challenges when new candidates 

appear, or the same candidates introduce new campaigns by 
changing their party affiliation.  

B. Analysis of Assumptions in Static ML Classifiers 

Novel events such as natural and man-made disasters appear 
and evolve quickly. Physically localized events such as 
landslides and tornados last a few minutes or hours. Large 
hurricanes last a few days, and their effects usually would pass 
in a few weeks as recovery efforts repair the damages and the 
affected population return to normal life. For different reasons, 
but similar motivations, man-made hazards such as fake news 
also have a relatively short expiration date, after which they lose 
most their value. Typical fake news campaigns only last for a 
few weeks. They are dropped and forgotten when the novelty 
wears off and fact checkers confirm the campaigns as fake news.  

The knowledge expiration timeframe of a few days or a few 
weeks would be infeasible for classic ML knowledge acquisition 
process based on manually annotated ground truth training data, 
which takes months to years to complete. This mismatch has 
constrained most of classic ML research on physical and man-
made events to retrospective studies of (yesteryear’s) news and 
fake news. The recent development of LLMs have added new 
authoritative training data, but each new generation of LLM 
(e.g., the GPT-x family) still take (on the order of) a year to 
create. A typical example is GPT-3 and ChatGPT [6], explicitly 
constrained to knowledge from 2021 or earlier.  

Given the impact of various (and often implicit) assumptions 
in classic ML/AI work, we make them explicit in Table 1. As an 
example, much of classic ML research assume closed ground 
truth training data sets (e.g., MNIST and CIFAR) without regard 
to the physical world. The justification is that the ground truth 
data were gathered from the physical world, and they are often 
called “real world data”. While a valid snapshot of the physical 
world at the time of data collection, the continuity of snapshot 
validity in an evolving world has remained outside of classic ML 
work. Table 1 starts from these common assumptions of a static 
world in squire {1,1}. 

The three columns of Table 1 represent a gradual relaxation 
of static knowledge assumption in {1,1}. The first column 
consists of the classic static knowledge trained from closed 
annotated data. The second column consists of static knowledge 
from varied and open sources, as done in LLMs. The third 
column denotes evolving knowledge from truly new sources 
with data on the evolving world). 

Table 1 Static vs. Evolving Training Knowledge and Testing 

Cyber 
knowledge & 
Physical 
World 

Static 
Knowledge 
(annotated 
training data) 

Static 
Knowledge 
(varied/open 
sources) 

Evolving 
Knowledge 
(new training 
data sets) 

Static world, 
in-distr. test 

{1,1} Classic 
ML evalua. 

{1,2} GPT-2 
(1.5B par.) 

{1.3} Static 
refinements 

BIBO world, 
OOD test 

{2,1} Virtual 
concept drift 

{2,2} GPT-3 
(175B par.) 

{2,3} Contin. 
refinements 

Evolving 
world & test 

{3,1} Real 
concept drift  

{3,2} GPT-4 
(1.76T par.) 

{3,3} This 
paper’s focus 



The rows in Table 1 represent a gradual relaxation of the 
static (and in-distribution) assumption of the test data set {1,1} 
in classic ML work. The first row illustrates the adaptation of 
different training strategies in a static world to improve classifier 
accuracy in large, closed test data sets. The second row relaxes 
the static test data assumption through continuous variations 
(often in sensor data streams). However, the variations are 
typically bounded (as in BIBO – bounded input and bounded 
output) models, allowing ML models with finite number of 
nodes to achieve good coverage of a constrained input state 
space. These assumptions often fall into the area of virtual 
concept drift  [11] {2,1} and can be covered reasonably with 
relatively large LLMs {2,2} and {3,2}. The third row represents 
an evolving world without pre-defined bounds, by removing the 
two original assumptions (static knowledge in a static world). 
The area {3,3} is the focus of this paper, which follows the trend 
of pioneering work started from real concept drift [8][11] {3,1} 
and growing LLMs {3,2}.  

III. GENERALIZABILITY IN AN EVOLVING WORLD 

A. Generalizability of Static Models 

The original definition of generalizability refers to a 
statically trained classifier’s performance (e.g., accuracy) when 
tested with out-of-distribution (OOD) {2,1} input data. A 
representative area of these studies is virtual concept drift, where 
the OOD test data sets are also closed and static. Virtual concept 
drift studies differ from classic ML evaluations {1,1} in only 
one aspect: classic ML perform in-distribution testing (e.g., 
using k-fold validation), while virtual concept use OOD tests. 

More directly relevant to the physical world is the area of 
real concept drift [8][11] {3.1}, where the OOD test data can 
change dynamically, following the evolution of the physical 
world. These unbounded variations of test data cause static 
classifiers to exhibit unpredictable accuracy over time. This 
situation is inevitable for static classifiers (column 1 of Table 1). 
In LLMs (column 2 of Table 1), the loss of performance is 
reduced by significant growth of training data.  

B. From Variety of Knowledge to LLMs 

In addition to annotated ground truth training data, ML have 
incorporated a variety of knowledge sources. For instance, 
unsupervised learning methods are able to find knowledge by 
exploiting existing properties in concrete data sets. An early 
example consists of k-means clustering algorithms finding 
association rules when data points contain clusters. Skipping 
through the historical development of alternative methods such 
as weakly supervised learning [12], few-shot learning [13], and 
other similar methods, we find the current generation of Large 
Language Models (LLMs) [2] as representative successful 
models that incorporate the most knowledge from a variety of 
trustable sources.  

LLMs showed that the limitations of annotated training data 
sets could be lifted by incorporating other sources. As a concrete 
example, GPT-x series] integrate an increasingly large numbers 
of parameters from alternative trustable sources: GPT-2 (1.5 
billion parameters), GPT-3 (175 billion), and GPT-4 (1.76 
trillion). As result, LLMs have been able to provide useful 
answers to a much wider set of queries, corresponding to the size 
of their training data. The 3 rows in column 2 of Table 1 

illustrate the three orders of magnitude parameter differences. 
LLMs represent significant advances over static annotated 
knowledge because of their significantly larger number of 
parameters and their design enabling improvements through 
refinements (column 3 of Table 1).  

The growth and success of GPT-x series bought good news 
and bad news. The good news is the significant improvements 
we see in each generation. The bad news is that those 
improvements required orders of magnitude increases in their 
parameters. These scalability concerns can be seen clearly in the 
concrete implementations of GPT-x, with orders of magnitude 
increases every generation. Similar scalability concerns apply to 
LLMs more generally, since most LLMs are generated by “brute 
force” additions of more training data.  

 Postponing the scalability concerns to the next section 
(cyber-physical gap), the performance and wider applicability of 
current LLMs already have proven to exceed the classic (gold 
standard) ML models by far. We assume it is clear to (most of) 
ML community that the incorporation of alternative trustable 
sources is already an acceptable and promising practice.  

IV. CYBER-PHYSICAL GAP 

A. The Static Approximation Gap 

We start from a recap of closed samples: ML has been 
described as a function approximation of a sample. The sample 
is the ground truth training data and the models and classifiers 
generated from the training data are evaluated against the ground 
truth. Quantitative criteria such as accuracy and precision 
measure the distance between the models and the training data 
during inference and testing. Let us call this distance function 
the static approximation gap. It is static for typical models 
(without randomization) because the models and the training 
data are static and closed, which could be called the Complete 
Knowledge assumption, since data points outside of sample 
(OOD) are ignored during evaluation. Under the Complete 
Knowledge assumption, questions such as generalizability 
became out of scope.  

In addition to Complete Knowledge, a second significant 
assumption can be called Timeless World, where the knowledge 
contained in the training data is considered valid forever. Indeed, 
some concepts are timeless, e.g., digits representing Arabic 
numerals. However, the physical world is evolving rapidly, 
particularly due to recent technological advances. For example, 
the concepts of “telephone”, “vehicle make”, and “new COVID 
variant”, all evolve with time, sometimes rather quickly.  

Under the Complete Knowledge and Timeless World 
assumptions, a classic ML model has better performance if its 
static approximation gap is closer to zero, with a perfect score of 
zero gap being optimal. From this perspective, we have good 
news and bad news. The good news: this definition is well-
defined and allows evaluation experiments with controlled 
variables. The bad news: both the Complete Knowledge and 
Timeless World assumptions are very far from an evolving 
physical world, rendering the models achieving (near-)zero 
static approximation gap criteria rapidly inapplicable to practical 
problems as the physical world evolves. 



B. Cyber-Physical Gap 

The changes from an evolving physical world can be 
modeled conceptually as a distance between the sample data and 
the state of interest in the physical world. We call this distance 
cyber-physical gap. Complementing the “internal” static 
approximation gap in classic ML work, cyber-physical gap is 
“external” to the training data. As an example, cyber-physical 
gap is present in IoT applications connected to the physical 
world, e.g., the distance between digital twins.  

The conceptual linkage to the physical world raises a 
hypothetical question: Is it theoretically possible to measure the 
actual state of the physical world continuously?  In principle, the 
answer would be no. Measurements using digital scientific and 
engineering instruments cannot achieve arbitrary frequency 
required by continuity. Fortunately, our models of the physical 
world, e.g., in physics and chemistry, show that sufficiently 
precise sampling can provide reproducible (discrete) 
measurements. As concrete examples, fine-grain sampling is 
realized by many control systems every day in practical, real-
world applications.  

This observation helps us divide the cyber-physical gap into 
two components: (1) the physical sampling gap, and (2) the 
cyber approximation gap. The physical sampling gap refers to 
the appropriate granularity of discrete sampling that will allow 
the system to model the continuous physical world with 
sufficient fidelity. This is feasible since it is achieved routinely 
by many control systems. The cyber approximation gap refers to 
the distance between a sample of the physical world with 
sufficient fidelity and the ML ground truth training data.  

From the perspective of linking conceptually the cyber and 
physical worlds, we can see that the cyber approximation gap is 
a generalization of static approximation gap through the 
relaxation of Complete Knowledge and Timeless World 
assumptions. Acknowledging the incompleteness of ML ground 
truth training data in the physical world would allow the addition 
of (new and old) knowledge beyond the annotated training data. 
Furthermore, tracking and incorporating truly novel information 
from the real world, e.g., new COVID variants, will help us 
constrain the distance between the evolving physical world and 
new (and evolving) ML training data.  

C. Cyber Approximation Gap Challenges 

The growth of LLMs such as the GPT-x series demonstrates 
an increasing recognition of the limitations of the Complete 
Knowledge assumption in classic ML. Each generation of GPT-
x increases the number of parameters by orders of magnitude. 
This meteoric rise of new knowledge highlights the significant 
challenges to the Timeless World assumption. We will briefly 
discuss some of the research challenges in building future 
AI/ML systems that attempt to relax one or both the Complete 
Knowledge and Timeless World assumptions.  

The discussion on research challenges can benefit from the 
inclusion of another implicit assumption: Location 
Independence. Analogous to the Timeless World assumption, 
closed training data often imply the applicability of their models 
to any location. The limitations of the Location Independence 
assumption have been shown in applications such as 
autonomous driving, e.g., differences in pedestrian density and 

their behavior in diverse environments such as New York City 
and Arizona suburbs. The identification of Timeless World and 
Location Independence assumptions lead us towards a higher-
level understanding of AI/ML models in the context of space-
time continuum.  

The time dimension spans the spectrum from Timeless 
(static models valid through the entire history) to Time-
Dependent (dynamic models that vary as a function of time). 
Analogously, the space dimension spans the spectrum from 
Location Independent (static models valid everywhere) to 
Location Dependent (space-sensitive models that vary as a 
function of spatial coordinates). Since our laws of physics are 
often dependent on space-time coordinates, it should be 
intuitively acceptable that more sophisticated would evolve 
towards similar awareness. This direction of model evolution is 
supported by the requirements of IoT applications such as 
autonomous driving.  

The first significant challenge of Space-Time Aware model 
development is the collection and insertion of space-time 
coordinates information into the (old and new) ground truth 
training data. Those coordinates were unnecessary under the 
Timeless and Location Independent assumptions, but the 
relaxation of those assumptions introduce the possibility of 
variations depending on space-time coordinates. This challenge 
explains the ongoing deployment difficulties of autonomous 
driving, where the Space-Time Awareness has yet to be made 
explicit. This challenge is even more important for man-made 
hazards such as fake news, where the changes are dynamically 
and intentionally introduced to confuse static ML models trained 
under the Timeless and Location-Independent assumptions.  

The second significant challenge for Space-Time Aware 
models consists of a detailed understanding of the rate (speed) 
of knowledge variation as space-time coordinates change. If the 
sample data vary slowly and in small increments, then a coarse 
grain approximation may suffice. This is very useful for 
applications that interact with stable physical world properties 
such as autonomous driving. Understanding the speed of 
variation also will impose practical requirements on the speed of 
dynamic model deployment to achieve practical impact. For 
example, ML-based fake news filters must be developed and 
deployed before the entire fake news campaigns to have run 
their course.  

In general, the knowledge variations include the waning of 
their applicability and rising of truly novel knowledge. The 
waning can be called knowledge obsolescence, and acquisition 
of novel knowledge called knowledge rejuvenation. An example 
of rapid changes would be fake news, where each new campaign 
requires knowledge rejuvenation, and their end signifies 
knowledge obsolescence (for practical filtering). Autonomous 
driving examples of knowledge obsolescence and rejuvenation 
include slow and long-term changes (e.g., construction of new 
roads and highways), fast and short-term changes (e.g., 
obstruction due to accidents), and legal variations (e.g., the 
blanket prohibition of red-light right turns in Manhattan without 
signs). From Space-Time Awareness perspective, the 
obsolescence and rejuvenation of knowledge in IoT applications 
(e.g., autonomous driving) should be treated explicitly with high 
priority, instead of a minor occasional nuisance. 



The two significant challenges from Space-Time Awareness 
of ML models affect the development and evaluation of ML 
models at both knowledge and technical levels. For example, in 
the optimization dimension, approaches that reduce the size and 
complexity of ML models typically exploit statistical properties 
in the training and evaluation sample data; under the 
assumptions of Timeless and Location Independence the 
selection of most important parameters would be good forever 
and everywhere. As we take Space-Time Awareness into 
account, optimizations would become contingent on the 
statistical distributions at specific space-time coordinates, 
turning into a significant technical challenge.  

Compared to the events and changes in the physical world, 
the evolution of knowledge is much faster in social media, where 
topics of interest flare up and die down in a matter of hours or 
days. This is the case for both true news and fake news. So far, 
much of research on social media (and media more generally) 
have been retrospective studies due to the Timeless (and 
Location Independence) assumptions in data collection. An 
example of blurring the physical sampling gap is the famous 
Sakaki paper [14] (5000+ citations), a pioneer retrospective 
study of historical tweets from a log. The paper contains a good 
study of the cyber approximation gap between earthquakes and 
tweets on them, but their study overlooked the physical 
sampling gap. Subsequent retrospective studies on social media 
as a reflection of real-world events often have followed this 
presumed omission of the physical sampling gap.  

D. Need for New Research on Cyber-Physical Gap  

From a classic ML perspective, a straightforward approach 
would be carrying out periodic retraining (e.g., done in the GPT-
x series) to incorporate new information and knowledge. This 
“catch-up” approach can be seen as a relaxation of the Timeless 
Knowledge assumption by replacing it with a “Slowly 
Changing” Knowledge assumption. This scenario is illustrated 
in Figure 2 with data from a preliminary study on fake news.  

 

 

Figure 2 Performance Deterioration of Static ML Models Due to 

Knowledge Obsolescence (preliminary experimental study) 

Figure 2 shows results from a retrospective study of BERT-
based refinement fake news classification models generated 
through bi-monthly retraining. Each curve in Figure 2 represents 
a new model, trained from collection of COVID-related fake 
news tweets [16] since 2020. Each new model incorporates a 
modest amount of annotated fake news tweets from two 
previous months. When tested with data up to those months (in-
distribution), the new model starts with an excellent F1 score 

(always very near 1.0). However, when tested on (novel) fake 
news tweets from subsequent months (OOD), the F1 score of 
static ML models deteriorate visibly with the increasing amount 
of novel fake news every two months.  

Through a history of almost two years, Figure 2 shows 
consistent deterioration happens with all static models. Further 
studies suggest positive correlations between model 
performance deterioration and the amount of truly novel fake 
news (OOD). These deterioration results are consistent with the 
model performance deterioration observed in large-scale 
evaluations of many COVID pandemic predictive models. As an 
example, Fig. 3 in Friedman et al [17] shows general 
deterioration of model performance in 12 weeks for all 
predictive and prognostic models studied. These (and other) 
performance deteriorations due to the rise of truly novel 
information can be plausibly and reasonably explained by 
knowledge obsolescence.   

We hope that by discussing the cyber-physical gap more 
carefully, with measurably bounded distances in space and time 
between the cyber and physical worlds, we (and the community 
at large) will be able to link more concretely the fast-changing 
social media (through Space-Time Aware ML models) to 
evolving events in the real world. Such concrete linkage would 
benefit applications such as social media-based detection of 
natural disasters such as COVID-19 pandemic and new variants, 
and man-made hazards such as constantly invented fake news.  

V. SUMMARY 

Classic (gold standard) ML models created from static 
annotated ground truth training data have struggled with 
generalizability issues when used in evolving environments 
such as the world in pandemic. This is due to the inherent 
Complete and Timeless Knowledge assumptions in closed 
training data. Classic ML model evaluations, e.g., using k-fold 
validation, are defined as distances between different subsets of 
a closed ground truth (in-distribution). Since out-of-distribution 
(OOD) data would fall outside of the Complete Knowledge, the 
generalizability of models to OOD test data became out of 
scope. 

We call attention to the distance (called the cyber 
approximation gap) between ML models on the one side, and 
OOD data arising from an evolving world (e.g., IoT sensors and 
growing social media) on the other side. When application data 
evolve in space and time, static ML models would inevitably 
suffer from widening cyber approximation gap. To adapt to real-
time changes in the real world, the ML models also need to 
bridge the physical sampling gap, which separates the (physical 
and social) sensor sampling of the evolving real world on the 
one side, and the actual real-world state on the other side. The 
combination of cyber approximation gap (between model and 
sensor data) and physical sampling gap (between sensor data and 
real world) form the cyber-physical gap between dynamic ML 
models and evolving real world applications.  

There are (at least) two significant research challenges for 
bridging the cyber-physical gap in evolving applications that 
connects with the real world, e.g., IoT applications such as 
autonomous driving, and detection of natural and man-made 
hazards such as fake news filtering. The first challenge is 



collecting Space-Time Aware dynamic training data and 
creating dynamic ML models that incorporate new knowledge 
as they arise from evolving applications. The second challenge 
is compensating for dynamic knowledge obsolescence and 
rejuvenation as the existing and novel knowledge wane and rise. 
The techniques for bridging the cyber-physical gap are part of 
our current research and beyond the scope of this paper. We 
encourage the readers to contact the authors for further details.  
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