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Abstract— The physical world evolves. The cyber world
evolves and grows with big data, with social media as a major
component of information growth. Classic ML models are limited
by their static training data with implicit Complete and Timeless
Knowledge assumptions. In an evolving world, static training data
suffer from knowledge obsolescence due to truly novel timely
information. Knowledge obsolescence introduces a widening
distance between static ML models and the evolving world, called
cyber-physical gap. Periodic retraining of new models may restore
their accuracy temporarily, but subsequently their performance
will deteriorate with widening cyber-physical gap. Knowledge
obsolescence affects statically trained models of any size, including
LLMs. Two major research challenges arise from cyber-physical
gap: (1) collection and incorporation of space-time aware ground
truth training data, and (2) understanding and capturing of the
varying speed of information and knowledge evolution when the
physical and cyber worlds evolve.

Keywords—machine learning, dynamic model performance,
evolution of knowledge, evolving social media

I. INTRODUCTION (HEADING 1)

The COVID-19 pandemic has been a stark reminder of the
unpredictable evolution of our world. Large natural disasters
such as hurricanes, earthquakes, and landslides all change our
environment and require our adaptation to the evolution of our
physical world. Since the advent of information technology (IT)
in the 20" century, we have also created a cyber world from bits
of information. Due to the ease of creating and manipulating
bits, the cyber world changes and grows at a rate much faster
than the physical world. According to one estimate (IDC [1]),
the world data will reach 64ZB in 2020, and 175ZB by 2025.
The growth is exponential: roughly doubling every two years.

Although the main sources of big data growth are usually
attributed to IoT sensor data on the physical world, those data
are often produced and consumed by automated systems. In
contrast, human generated social media data in the cyber world
(e.g., the estimated more than 1 trillion tweets sent since the
founding of Twitter in 2006. Social media often have higher
social impact, since they are produced and consumed by humans
(originally). There is an increasing suspicion that some parts of
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social media may be produced (and consumed) by bots, but that
speculation is beyond the scope of this paper.

Before the advent of large language models (LLMs [2]) and
foundation models [3], the gold standard of classic machine
learning (ML) research consisted primarily of training and
evaluating classifiers from closed ground truth data sets (e.g.,
MNIST [4] and CIFAR [5]). On the positive side, this self-
contained model of ML research and Al (artificial intelligence)
enabled a fair comparison among the competing algorithms
based on the same (static) ground truth data.

However, two significant issues were left out of this classic
ML approach. First, the applicability of the classifiers to other
data sets (i.e., generalizability) was left to the reader as a
separate exercise, despite well-known overfitting problems.
Second, the relationship between the classifier (as well as the
ground truth it was derived from) and the real world became
outside the scope. In other words, it is OK for the ML classifiers
constructed in the cyber world to be disconnected from the
physical world. In this paper, the word “knowledge” denotes the
cyber world, and “world” denotes the physical world. The
distance between our knowledge and the physical world will be
called cyber-physical gap.

Before the arrival of ChatGPT [6] in November 2022, and
the recognition of successful LLMs more generally, any
suggestions of alternatives beyond annotated ground truth
would have been routinely dismissed as irrelevant (see
discussion in Subsection III.B), or even heresy, by the ML
mainstream. Fortunately, LLMs have opened the door to
training data beyond manual annotations. While we are not
advocating any specific sources of ground truth training data, we
hope our readers will keep an open mind on potentially fruitful
possibilities beyond the exclusive orthodoxy of closed and static
training/evaluation data sets.

This paper will discuss some of the significant research and
practical challenges arising from the relaxed assumptions on
new training data. Concretely, two major issues arise from an
evolving world with evolving knowledge: generalizability and
cyber-physical gap. First, static knowledge is unaware of the
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changes, becoming out of date when the world evolves.
Therefore, generalizability becomes an important measure of the
decaying performance of static classifiers. Since generalizability
depends on the distance between the physical world and
knowledge of classifiers in the cyber world, it is also important
to study the cyber-physical gap, which affects classifier
performance as both the physical world and the cyber
knowledge in classifiers evolve.

II. BASIC ASSUMPTIONS OF THIS PAPER

A. Illustrative Applications of an Evolving World

The classic ML approach to focus on classifiers trained from
closed, static training data sets. They would work well in a static,
or slowly changing world. In the 21% century, new technologies
such as the Internet are bringing changes to the modern society
at unprecedented fast speeds. Changes are happening and
growing both in the cyber world (e.g., growth of social media)
and in the physical world (e.g., modern infrastructure in
transportation, smart energy generation and distribution, and
global supply chain). In our research, we have been working
with social media data on natural disasters such as landslides
[7]1[8], and man-made hazards such as fake news [9].

Natural disasters such as landslides, earthquakes, and
hurricanes are quite unique in their space/time coordinates. Each
of them is also truly novel when they happen. Man-made
hazards such as fake news are also novel by construction when
they are introduced for the first time. There is a small amount of
repetition due to laziness of both attack and defense, but the
professional fake news producers are very inventive, e.g., claims
of Bill Gates being responsible for the COVID-19 pandemic.

As an illustration of evolving cyber world, Figure 1 shows
the prevalence of two fake news campaigns on the origin of
COVID-19 virus from April 2020 to April 2022 (Figure 1 from
[10]). The virus was attributed to 5G networks and Bill Gates
were launched and reinforced at specific points in time (the high
peaks in the normalized graph).
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Figure I lllustrative Sample of Fake News Campaigns: 5G and Bill
Gates Origin of COVID-19 Virus (Figure 1 from [10])

Truly novel events such as natural disasters and man-made
hazards present significant challenges for static ML classifiers
due to their inherent and/or intentional novelty. While excellent
at distinguishing apples from oranges, static ML classifiers
trained from past knowledge are often reduced to guessing when
facing truly novel information. Even recurrent events such as
elections pose significant challenges when new candidates

appear, or the same candidates introduce new campaigns by
changing their party affiliation.

B. Analysis of Assumptions in Static ML Classifiers

Novel events such as natural and man-made disasters appear
and evolve quickly. Physically localized events such as
landslides and tornados last a few minutes or hours. Large
hurricanes last a few days, and their effects usually would pass
in a few weeks as recovery efforts repair the damages and the
affected population return to normal life. For different reasons,
but similar motivations, man-made hazards such as fake news
also have a relatively short expiration date, after which they lose
most their value. Typical fake news campaigns only last for a
few weeks. They are dropped and forgotten when the novelty
wears off and fact checkers confirm the campaigns as fake news.

The knowledge expiration timeframe of a few days or a few
weeks would be infeasible for classic ML knowledge acquisition
process based on manually annotated ground truth training data,
which takes months to years to complete. This mismatch has
constrained most of classic ML research on physical and man-
made events to retrospective studies of (yesteryear’s) news and
fake news. The recent development of LLMs have added new
authoritative training data, but each new generation of LLM
(e.g., the GPT-x family) still take (on the order of) a year to
create. A typical example is GPT-3 and ChatGPT [6], explicitly
constrained to knowledge from 2021 or earlier.

Given the impact of various (and often implicit) assumptions
in classic ML/AI work, we make them explicit in Table 1. As an
example, much of classic ML research assume closed ground
truth training data sets (e.g., MNIST and CIFAR) without regard
to the physical world. The justification is that the ground truth
data were gathered from the physical world, and they are often
called “real world data”. While a valid snapshot of the physical
world at the time of data collection, the continuity of snapshot
validity in an evolving world has remained outside of classic ML
work. Table 1 starts from these common assumptions of a static
world in squire {1,1}.

The three columns of Table 1 represent a gradual relaxation
of static knowledge assumption in {1,1}. The first column
consists of the classic static knowledge trained from closed
annotated data. The second column consists of static knowledge
from varied and open sources, as done in LLMs. The third
column denotes evolving knowledge from truly new sources
with data on the evolving world).

Table 1 Static vs. Evolving Training Knowledge and Testing

Cyber Static Static Evolving
knowledge & | Knowledge Knowledge | Knowledge
Physical (annotated (varied/open | (new training
World training data) | sources) data sets)
Static world, | {1,1} Classic | {1,2} GPT-2 | {1.3} Static
in-distr. test ML evalua. (1.5B par.) refinements
BIBO world, | {2,1} Virtual | {2,2} GPT-3 | {2,3} Contin.
OOD test concept drift | (175B par.) | refinements
Evolving {3,1} Real {3,2} GPT-4 | {3,3} This
world & test | concept drift | (1.76T par.) | paper’s focus




The rows in Table 1 represent a gradual relaxation of the
static (and in-distribution) assumption of the test data set {1,1}
in classic ML work. The first row illustrates the adaptation of
different training strategies in a static world to improve classifier
accuracy in large, closed test data sets. The second row relaxes
the static test data assumption through continuous variations
(often in sensor data streams). However, the variations are
typically bounded (as in BIBO — bounded input and bounded
output) models, allowing ML models with finite number of
nodes to achieve good coverage of a constrained input state
space. These assumptions often fall into the area of virtual
concept drift [11] {2,1} and can be covered reasonably with
relatively large LLMs {2,2} and {3,2}. The third row represents
an evolving world without pre-defined bounds, by removing the
two original assumptions (static knowledge in a static world).
The area {3,3} is the focus of this paper, which follows the trend
of pioneering work started from real concept drift [8][11] {3,1}
and growing LLMs {3,2}.

III. GENERALIZABILITY IN AN EVOLVING WORLD

A. Generalizability of Static Models

The original definition of generalizability refers to a
statically trained classifier’s performance (e.g., accuracy) when
tested with out-of-distribution (OOD) {2,1} input data. A
representative area of these studies is virtual concept drift, where
the OOD test data sets are also closed and static. Virtual concept
drift studies differ from classic ML evaluations {1,1} in only
one aspect: classic ML perform in-distribution testing (e.g.,
using k-fold validation), while virtual concept use OOD tests.

More directly relevant to the physical world is the area of
real concept drift [8][11] {3.1}, where the OOD test data can
change dynamically, following the evolution of the physical
world. These unbounded variations of test data cause static
classifiers to exhibit unpredictable accuracy over time. This
situation is inevitable for static classifiers (column 1 of Table 1).
In LLMs (column 2 of Table 1), the loss of performance is
reduced by significant growth of training data.

B. From Variety of Knowledge to LLMs

In addition to annotated ground truth training data, ML have
incorporated a variety of knowledge sources. For instance,
unsupervised learning methods are able to find knowledge by
exploiting existing properties in concrete data sets. An early
example consists of k-means clustering algorithms finding
association rules when data points contain clusters. Skipping
through the historical development of alternative methods such
as weakly supervised learning [12], few-shot learning [13], and
other similar methods, we find the current generation of Large
Language Models (LLMs) [2] as representative successful
models that incorporate the most knowledge from a variety of
trustable sources.

LLMs showed that the limitations of annotated training data
sets could be lifted by incorporating other sources. As a concrete
example, GPT-x series] integrate an increasingly large numbers
of parameters from alternative trustable sources: GPT-2 (1.5
billion parameters), GPT-3 (175 billion), and GPT-4 (1.76
trillion). As result, LLMs have been able to provide useful
answers to a much wider set of queries, corresponding to the size
of their training data. The 3 rows in column 2 of Table 1

illustrate the three orders of magnitude parameter differences.
LLMs represent significant advances over static annotated
knowledge because of their significantly larger number of
parameters and their design enabling improvements through
refinements (column 3 of Table 1).

The growth and success of GPT-x series bought good news
and bad news. The good news is the significant improvements
we see in each generation. The bad news is that those
improvements required orders of magnitude increases in their
parameters. These scalability concerns can be seen clearly in the
concrete implementations of GPT-x, with orders of magnitude
increases every generation. Similar scalability concerns apply to
LLMs more generally, since most LLMs are generated by “brute
force” additions of more training data.

Postponing the scalability concerns to the next section
(cyber-physical gap), the performance and wider applicability of
current LLMs already have proven to exceed the classic (gold
standard) ML models by far. We assume it is clear to (most of)
ML community that the incorporation of alternative trustable
sources is already an acceptable and promising practice.

IV. CYBER-PHYSICAL GAP

A. The Static Approximation Gap

We start from a recap of closed samples: ML has been
described as a function approximation of a sample. The sample
is the ground truth training data and the models and classifiers
generated from the training data are evaluated against the ground
truth. Quantitative criteria such as accuracy and precision
measure the distance between the models and the training data
during inference and testing. Let us call this distance function
the static approximation gap. It is static for typical models
(without randomization) because the models and the training
data are static and closed, which could be called the Complete
Knowledge assumption, since data points outside of sample
(OOD) are ignored during evaluation. Under the Complete
Knowledge assumption, questions such as generalizability
became out of scope.

In addition to Complete Knowledge, a second significant
assumption can be called Timeless World, where the knowledge
contained in the training data is considered valid forever. Indeed,
some concepts are timeless, e.g., digits representing Arabic
numerals. However, the physical world is evolving rapidly,
particularly due to recent technological advances. For example,
the concepts of “telephone”, “vehicle make”, and “new COVID
variant”, all evolve with time, sometimes rather quickly.

Under the Complete Knowledge and Timeless World
assumptions, a classic ML model has better performance if its
static approximation gap is closer to zero, with a perfect score of
zero gap being optimal. From this perspective, we have good
news and bad news. The good news: this definition is well-
defined and allows evaluation experiments with controlled
variables. The bad news: both the Complete Knowledge and
Timeless World assumptions are very far from an evolving
physical world, rendering the models achieving (near-)zero
static approximation gap criteria rapidly inapplicable to practical
problems as the physical world evolves.



B. Cyber-Physical Gap

The changes from an evolving physical world can be
modeled conceptually as a distance between the sample data and
the state of interest in the physical world. We call this distance
cyber-physical gap. Complementing the “internal” static
approximation gap in classic ML work, cyber-physical gap is
“external” to the training data. As an example, cyber-physical
gap is present in IoT applications connected to the physical
world, e.g., the distance between digital twins.

The conceptual linkage to the physical world raises a
hypothetical question: Is it theoretically possible to measure the
actual state of the physical world continuously? In principle, the
answer would be no. Measurements using digital scientific and
engineering instruments cannot achieve arbitrary frequency
required by continuity. Fortunately, our models of the physical
world, e.g., in physics and chemistry, show that sufficiently
precise sampling can provide reproducible (discrete)
measurements. As concrete examples, fine-grain sampling is
realized by many control systems every day in practical, real-
world applications.

This observation helps us divide the cyber-physical gap into
two components: (1) the physical sampling gap, and (2) the
cyber approximation gap. The physical sampling gap refers to
the appropriate granularity of discrete sampling that will allow
the system to model the continuous physical world with
sufficient fidelity. This is feasible since it is achieved routinely
by many control systems. The cyber approximation gap refers to
the distance between a sample of the physical world with
sufficient fidelity and the ML ground truth training data.

From the perspective of linking conceptually the cyber and
physical worlds, we can see that the cyber approximation gap is
a generalization of static approximation gap through the
relaxation of Complete Knowledge and Timeless World
assumptions. Acknowledging the incompleteness of ML ground
truth training data in the physical world would allow the addition
of (new and old) knowledge beyond the annotated training data.
Furthermore, tracking and incorporating truly novel information
from the real world, e.g., new COVID variants, will help us
constrain the distance between the evolving physical world and
new (and evolving) ML training data.

C. Cyber Approximation Gap Challenges

The growth of LLMs such as the GPT-x series demonstrates
an increasing recognition of the limitations of the Complete
Knowledge assumption in classic ML. Each generation of GPT-
x increases the number of parameters by orders of magnitude.
This meteoric rise of new knowledge highlights the significant
challenges to the Timeless World assumption. We will briefly
discuss some of the research challenges in building future
AI/ML systems that attempt to relax one or both the Complete
Knowledge and Timeless World assumptions.

The discussion on research challenges can benefit from the
inclusion of another implicit assumption: Location
Independence. Analogous to the Timeless World assumption,
closed training data often imply the applicability of their models
to any location. The limitations of the Location Independence
assumption have been shown in applications such as
autonomous driving, e.g., differences in pedestrian density and

their behavior in diverse environments such as New York City
and Arizona suburbs. The identification of Timeless World and
Location Independence assumptions lead us towards a higher-
level understanding of AI/ML models in the context of space-
time continuum.

The time dimension spans the spectrum from Timeless
(static models valid through the entire history) to Time-
Dependent (dynamic models that vary as a function of time).
Analogously, the space dimension spans the spectrum from
Location Independent (static models valid everywhere) to
Location Dependent (space-sensitive models that vary as a
function of spatial coordinates). Since our laws of physics are
often dependent on space-time coordinates, it should be
intuitively acceptable that more sophisticated would evolve
towards similar awareness. This direction of model evolution is
supported by the requirements of IoT applications such as
autonomous driving.

The first significant challenge of Space-Time Aware model
development is the collection and insertion of space-time
coordinates information into the (old and new) ground truth
training data. Those coordinates were unnecessary under the
Timeless and Location Independent assumptions, but the
relaxation of those assumptions introduce the possibility of
variations depending on space-time coordinates. This challenge
explains the ongoing deployment difficulties of autonomous
driving, where the Space-Time Awareness has yet to be made
explicit. This challenge is even more important for man-made
hazards such as fake news, where the changes are dynamically
and intentionally introduced to confuse static ML models trained
under the Timeless and Location-Independent assumptions.

The second significant challenge for Space-Time Aware
models consists of a detailed understanding of the rate (speed)
of knowledge variation as space-time coordinates change. If the
sample data vary slowly and in small increments, then a coarse
grain approximation may suffice. This is very useful for
applications that interact with stable physical world properties
such as autonomous driving. Understanding the speed of
variation also will impose practical requirements on the speed of
dynamic model deployment to achieve practical impact. For
example, ML-based fake news filters must be developed and
deployed before the entire fake news campaigns to have run
their course.

In general, the knowledge variations include the waning of
their applicability and rising of truly novel knowledge. The
waning can be called knowledge obsolescence, and acquisition
of novel knowledge called knowledge rejuvenation. An example
of rapid changes would be fake news, where each new campaign
requires knowledge rejuvenation, and their end signifies
knowledge obsolescence (for practical filtering). Autonomous
driving examples of knowledge obsolescence and rejuvenation
include slow and long-term changes (e.g., construction of new
roads and highways), fast and short-term changes (e.g.,
obstruction due to accidents), and legal variations (e.g., the
blanket prohibition of red-light right turns in Manhattan without
signs). From Space-Time Awareness perspective, the
obsolescence and rejuvenation of knowledge in IoT applications
(e.g., autonomous driving) should be treated explicitly with high
priority, instead of a minor occasional nuisance.



The two significant challenges from Space-Time Awareness
of ML models affect the development and evaluation of ML
models at both knowledge and technical levels. For example, in
the optimization dimension, approaches that reduce the size and
complexity of ML models typically exploit statistical properties
in the training and evaluation sample data; under the
assumptions of Timeless and Location Independence the
selection of most important parameters would be good forever
and everywhere. As we take Space-Time Awareness into
account, optimizations would become contingent on the
statistical distributions at specific space-time coordinates,
turning into a significant technical challenge.

Compared to the events and changes in the physical world,
the evolution of knowledge is much faster in social media, where
topics of interest flare up and die down in a matter of hours or
days. This is the case for both true news and fake news. So far,
much of research on social media (and media more generally)
have been retrospective studies due to the Timeless (and
Location Independence) assumptions in data collection. An
example of blurring the physical sampling gap is the famous
Sakaki paper [14] (5000+ citations), a pioneer retrospective
study of historical tweets from a log. The paper contains a good
study of the cyber approximation gap between earthquakes and
tweets on them, but their study overlooked the physical
sampling gap. Subsequent retrospective studies on social media
as a reflection of real-world events often have followed this
presumed omission of the physical sampling gap.

D. Need for New Research on Cyber-Physical Gap

From a classic ML perspective, a straightforward approach
would be carrying out periodic retraining (e.g., done in the GPT-
X series) to incorporate new information and knowledge. This
“catch-up” approach can be seen as a relaxation of the Timeless
Knowledge assumption by replacing it with a “Slowly
Changing” Knowledge assumption. This scenario is illustrated
in Figure 2 with data from a preliminary study on fake news.
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Figure 2 Performance Deterioration of Static ML Models Due to
Knowledge Obsolescence (preliminary experimental study)

Figure 2 shows results from a retrospective study of BERT-
based refinement fake news classification models generated
through bi-monthly retraining. Each curve in Figure 2 represents
a new model, trained from collection of COVID-related fake
news tweets [16] since 2020. Each new model incorporates a
modest amount of annotated fake news tweets from two
previous months. When tested with data up to those months (in-
distribution), the new model starts with an excellent F1 score

(always very near 1.0). However, when tested on (novel) fake
news tweets from subsequent months (OOD), the F1 score of
static ML models deteriorate visibly with the increasing amount
of novel fake news every two months.

Through a history of almost two years, Figure 2 shows
consistent deterioration happens with all static models. Further
studies suggest positive correlations between ~model
performance deterioration and the amount of truly novel fake
news (OOD). These deterioration results are consistent with the
model performance deterioration observed in large-scale
evaluations of many COVID pandemic predictive models. As an
example, Fig. 3 in Friedman et al [17] shows general
deterioration of model performance in 12 weeks for all
predictive and prognostic models studied. These (and other)
performance deteriorations due to the rise of truly novel
information can be plausibly and reasonably explained by
knowledge obsolescence.

We hope that by discussing the cyber-physical gap more
carefully, with measurably bounded distances in space and time
between the cyber and physical worlds, we (and the community
at large) will be able to link more concretely the fast-changing
social media (through Space-Time Aware ML models) to
evolving events in the real world. Such concrete linkage would
benefit applications such as social media-based detection of
natural disasters such as COVID-19 pandemic and new variants,
and man-made hazards such as constantly invented fake news.

V. SUMMARY

Classic (gold standard) ML models created from static
annotated ground truth training data have struggled with
generalizability issues when used in evolving environments
such as the world in pandemic. This is due to the inherent
Complete and Timeless Knowledge assumptions in closed
training data. Classic ML model evaluations, e.g., using k-fold
validation, are defined as distances between different subsets of
a closed ground truth (in-distribution). Since out-of-distribution
(OOD) data would fall outside of the Complete Knowledge, the
generalizability of models to OOD test data became out of
scope.

We call attention to the distance (called the cyber
approximation gap) between ML models on the one side, and
OOD data arising from an evolving world (e.g., IoT sensors and
growing social media) on the other side. When application data
evolve in space and time, static ML models would inevitably
suffer from widening cyber approximation gap. To adapt to real-
time changes in the real world, the ML models also need to
bridge the physical sampling gap, which separates the (physical
and social) sensor sampling of the evolving real world on the
one side, and the actual real-world state on the other side. The
combination of cyber approximation gap (between model and
sensor data) and physical sampling gap (between sensor data and
real world) form the cyber-physical gap between dynamic ML
models and evolving real world applications.

There are (at least) two significant research challenges for
bridging the cyber-physical gap in evolving applications that
connects with the real world, e.g., IoT applications such as
autonomous driving, and detection of natural and man-made
hazards such as fake news filtering. The first challenge is



collecting Space-Time Aware dynamic training data and
creating dynamic ML models that incorporate new knowledge
as they arise from evolving applications. The second challenge
is compensating for dynamic knowledge obsolescence and
rejuvenation as the existing and novel knowledge wane and rise.
The techniques for bridging the cyber-physical gap are part of
our current research and beyond the scope of this paper. We
encourage the readers to contact the authors for further details.
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