
Journal of Machine Learning Research 24 (2023) 1-40 Submitted 3/23; Revised 10/23; Published 11/23

Densely Connected G-invariant Deep Neural Networks with
Signed Permutation Representations

Devanshu Agrawal dagrawa2@vols.utk.edu
Department of Industrial and Systems Engineering
University of Tennessee
Knoxville, TN 37996, USA

James Ostrowski jostrows@utk.edu

Department of Industrial and Systems Engineering

University of Tennessee

Knoxville, TN 37996, USA

Editor: Joan Bruna

Abstract

We introduce and investigate, for finite groups G, G-invariant deep neural network (G-
DNN) architectures with ReLU activation that are densely connected– i.e., include all
possible skip connections. In contrast to other G-invariant architectures in the literature,
the preactivations of theG-DNNs presented here are able to transform by signed permu-
tation representations (signed perm-reps) of G. Moreover, the individual layers of the
G-DNNs are not required to be G-equivariant; instead, the preactivations are constrained
to be G-equivariant functions of the network input in a way that couples weights across
all layers. The result is a richer family of G-invariant architectures never seen previously.
We derive an efficient implementation of G-DNNs after a reparameterization of weights, as
well as necessary and sufficient conditions for an architecture to be “admissible”– i.e., non-
degenerate and inequivalent to smaller architectures. We include code that allows a user
to build a G-DNN interactively layer-by-layer, with the final architecture guaranteed to be
admissible. We show that there are far more admissible G-DNN architectures than those
accessible with the “concatenated ReLU” activation function from the literature. Finally,
we apply G-DNNs to two example problems—(1) multiplication in {−1, 1} (with theoretical
guarantees) and (2) 3D object classification—finding that the inclusion of signed perm-reps
significantly boosts predictive performance compared to baselines with only ordinary (i.e.,
unsigned) perm-reps.
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1. Introduction

When fitting a deep neural network (DNN) to a target function that is known to be G-
invariant with respect to a group G, it only makes sense to enforce G-invariance on the
DNN as prior knowledge. With the rise of geometric deep learning (Bronstein et al., 2021),
this is becoming an increasingly common practice, finding applications in various domains
including computer vision (Veeling et al., 2018; Esteves et al., 2018; Musallam et al., 2022),
the physical sciences (Luo et al., 2021; Atz et al., 2021; Kaba and Ravanbakhsh, 2022;
Agrawal et al., 2023), and genomics (Mallet and Vert, 2021; Zhou et al., 2022). In general-
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purpose G-invariant and G-equivariant architectures such as G-equivariant convolutional
neural networks (G-CNNs) (Cohen and Welling, 2016) and G-equivariant graph neural net-
works (Maron et al., 2019a), it is standard to require every linear layer to be G-equivariant.
Moreover, in case of the rectified linear unit (ReLU) activation, every linear layer is G-
equivariant only with respect to permutation representations. It is commonly assumed that
the G-invariant architectures constructed in this way are sufficient for consideration (Cohen
et al., 2019; Finzi et al., 2021), but it is unclear if this layerwise construction covers all
possible ways of enforcing G-invariance on a fully-connected feedforward DNN, and it re-
mains an open conjecture (Kondor and Trivedi, 2018). While these architectures and others
are certainly sufficient for universal approximation of G-invariant functions (Maron et al.,
2019b; Ravanbakhsh, 2020; Kicki et al., 2020), the way in which G-invariance is enforced
is an aspect of the neural architecture and thus likely plays a key role in determining the
inductive bias of the model and hence its generalization power on a given problem.

It has recently been discovered that there are, in fact, more ways to enforce G-invariance
on shallow ReLU neural networks than just permutations on the hidden neurons (Agrawal
and Ostrowski, 2022). In their work, Agrawal and Ostrowski (2022) exploit the identity

ReLU(−x) = ReLU(x)− x (1)

to show that G-invariance can be achieved even if G acts on the hidden neurons via a “signed
permutation representation” (signed perm-rep), resulting in novel G-invariant shallow archi-
tectures previously unknown. In an attempt towards a generalization to deep architectures,
we observe that the linear term in Eq. (1) can be interpreted as a skip connection; this
suggests that skip connections may be the key to novel deep G-invariant architectures.

In this paper, as a partial generalization of the work of Agrawal and Ostrowski (2022),
we investigate G-invariant deep neural network (G-DNN) architectures that are “densely
connected”– i.e., include all possible skip connections. We note that (non-G-invariant)
densely connected neural networks exist in the literature and have found immense success
especially in medical imaging (Huang et al., 2017). We use ReLU activation, and every
preactivation layer is still a G-equivariant function of the network input; however, in contrast
to previous architectures such as the G-CNN, the individual weight matrices of a G-DNN
need not be G-equivariant. Instead, in each layer, only the concatenation of the weight
matrix with all skip connections from previous layers need be G-equivariant. This dense
structure allows us to use signed perm-reps to enforceG-equivariance on the preactivation
layers, thus granting us access to a much larger family of G-invariant architectures than
seen previously.

Implementation of G-DNNs is nontrivial, as the group representation by which the
weight matrix (concatenated with all skip connections) in each layer transforms is itself
a function of the weights in previous layers. That is, due to the skip connections and in
contrast to previous architectures such as the G-CNN, G-invariance is enforced in a way
that couples weights across layers. We show, however, that there is a reparameterization of
G-DNNs in which the equivariance conditions of the weight matrices decouple and admit a
simple implementation (Thm. 6 (a)). For efficiency, rather than transforming back to the
original weights, we express and implement the forward pass of a G-DNN directly in terms
of these reparameterized weights (Thm. 6 (b)).

2



G-invariant Deep Neural Networks

There is additional literature suggesting the potential of G-DNNs. Signed perm-reps
have been used previously as design components in G-invariant architectures and have
proved beneficial especially in computer vision (Cohen and Welling, 2017). These previ-
ous works incorporate signed perm-reps by replacing ReLU with the concatenated ReLU
(CRELU) activation function (Shang et al., 2016) defined as

CReLU(x) = ReLU

([
x
−x

])
, (2)

which sends negations of its input to transpositions of its output. CReLU was originally
introduced to capture the empirical observation that certain feature maps in convolutional
neural networks trained on images tend to pair up (Shang et al., 2016). Since then, be-
sides its use in G-invariant architectures, CReLU has been shown to be beneficial for the
trainability of networks with skip connections– e.g., its compatibility with batch normal-
ization (Shang et al., 2017) and its role in the “looks linear” weight initialization (Balduzzi
et al., 2017). The CReLU literature thus suggests that G-invariance, signed perm-reps,
and skip connections may play well together. and we claim that the G-DNN architectures
introduced in this paper are a culmination of these ideas. In contrast to the literature,
however, our perspective is top-down, and we show in this paper that a systematic study
of G-DNN architectures leads to the discovery of novel architecture designs not accessible
with CReLU alone (Ex. 1).

Finally, this work contributes to the ultimate goal of G-invariant neural architecture
search (G-NAS), which purports to apply search methods over G-invariant architectures.
In addition to finding good G-invariant architectures for a given problem, G-NAS would
relieve practitioners from having to learn or perform specialized mathematics (in particular,
group theory), thereby making G-invariant deep learning more accessible and applicable.
Previous works have already begun to explore G-NAS with promising results (Basu et al.,
2021; Maile et al., 2022), but these works only operate within a limited region of G-invariant
architecture space; indeed, Agrawal and Ostrowski (2022) argue that a more extensive G-
NAS first requires the characterization of all G-invariant architectures as well as the so-called
network morphisms between them. There has been work characterizing G-invariant archi-
tectures from a graph-theoretic perspective but not exploiting identities of the activation
function (Ravanbakhsh et al., 2017); work on the classification of G-invariant shallow ReLU
architectures (Agrawal and Ostrowski, 2022); and even work introducing novel G-invariant
architectures based on a sum-product layer (Kicki et al., 2021). Now, our discovery of novel
G-DNN architectures based on Eq. (1) pushes the horizon on G-invariant architecture space
further back, revealing new regions of exploration. We prove Thm. 7, which lets us count
numbers of distinct non-degenerate G-DNNs, in terms of which we gain intuition about how
many new architectures we are now able to access.

The remainder of the paper is organized as follows: In Sec. 2, we review signed perm-reps
and state our central hypothesis with some theoretical support. In Sec. 3, we introduce and
describe the implementation of G-DNN architectures. We additionally derive necessary
and sufficient conditions for a G-DNN architecture to be “admissible” or nondegenerate
(Thm. 7), in the sense that (1) no neuron is missing an input and (2) no two ReLU neurons
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can be combined into a single ReLU neuron or a skip connection. We include code1 that
allows a user to build a G-DNN interactively such that the final architecture is guaranteed to
be admissible. We also verify that batch normalization placed after ReLU is compatible with
G-DNNs out-of-the-box. In Sec. 4, we demonstrate that G-DNNs go well-beyond CReLU-
based architectures, and we test G-DNNs on two examples—(1) a simple mathematical
function and (2) a real-world computer vision problem—and demonstrate that signed perm-
reps can, in fact, carry useful inductive bias. Finally, in Sec. 5, we end with conclusions,
implications, and future outlook.

2. Signed permutation representations

2.1 Preliminaries

We begin by introducing some notions and notation that will be used throughout this paper.
This section is an abbreviation of Secs. 2.1-2.2 of Agrawal and Ostrowski (2022), and we
refer readers to all of Sec. 2 of that paper for details of the below material.

Throughout this paper, let G be a finite group of m × m orthogonal matrices. Let
P(n) be the group of n × n permutation matrices and Z(n) the group of n × n diagonal
matrices with diagonal entries ±1. Let PZ(n) be the group of signed permutations– i.e., the
group of all permutations and reflections of the standard orthonormal basis {e1, . . . , en}.
For interested readers, this group is the semidirect product P(n)⋉Z(n), and it is also called
the hyperoctahedral group in the literature (Baake, 1984).

A signed permutation representation (signed perm-rep) of degree n of G is a homomor-
phism ρ : G 7→ PZ(n). Two signed perm-reps ρ, ρ′ are said to be equivalent or conjugate
if there exists A ∈ PZ(n) such that ρ′(g) = Aρ(g)A−1∀g ∈ G– i.e., if they are related by a
change of basis. A signed perm-rep ρ is said to be reducible if it is equivalent to a direct sum
of signed perm-reps of smaller degrees– i.e., if there exists A ∈ PZ(n) such that Aρ(·)A−1

is simultaneously block-diagonal with at least two blocks. The signed perm-rep is said to
be irreducible (signed perm-irrep for short) otherwise.2

The signed perm-irreps of G can be completely classified up to equivalence in terms of
certain pairs of subgroups of G (Agrawal and Ostrowski, 2022, Thm. 1). For every pair
of subgroups K ≤ H ≤ G, |H : K| ≤ 2, define the signed perm-rep ρHK : G 7→ PZ(n),
n = |G/H|, to be the induced representation

ρHK = IGHσ, where σ : H 7→ {−1, 1} | ker(σ) = K.

Then ρHK is irreducible, and every signed perm-irrep is equivalent to some ρHK . Moreover,
ρHK and ρH′K′ are equivalent iff (H ′,K ′) = (gHg−1, gKg−1) for some g ∈ G. We can thus
always understand a “signed perm-irrep” to mean ρHK for some appropriate subgroups H
and K, and conversely we will always understand the notation ρHK to mean the above
construction.

For a more explicit but equivalent construction of ρHK , let {g1, . . . , gn} be a transversal
of G/H. If |H : K| = 1 (i.e., H = K), then we define ρHK(g)ei = ej iff ggiH = gjH;

1. Code for our implementation and for reproducing all results in this paper is available at: https://

github.com/dagrawa2/gdnn_code.
2. A useful characterization is that a signed perm-rep ρ is irreducible iff for every i, j = 1, . . . , n, there

exists g ∈ G such that ρ(g)ei = ±ej .
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i.e., ρHK is just defined in terms of its permutation action on G/H. On the other hand,
suppose |H : K| = 2. Then we have the quotient group H/K = {K,hK}. Define e−i = −ei
and g−i = gih for i ∈ {1, . . . , n}. Then we define ρHK(g)ei = ej iff ggiK = gjK for i, j ∈
{±1, . . . ,±n}. Intuitively, ρHK still acts on G/H via permutations; however, if the cosets
in H/K are swapped under this action, then a sign flip is incurred in the representation.
For more details on these constructions, see Sec. 2 of Agrawal and Ostrowski (2022).

Every signed perm-irrep is either type 1 or type 2. A signed perm-rep is type 1 if it is
equivalent to an ordinary permutation representation (ordinary perm-rep) π : G 7→ P(n); it
is type 2 otherwise. Sign flips in a type 1 signed perm-rep are thus artifacts as they can be
removed by a change of basis. An important characterization is that a signed perm-irrep
ρHK has type |H : K|.

Finally, as general notation, throughout this paper let In denote the n × n identity
matrix and 0⃗n (resp. 1⃗n) the n-dimensional vector with all elements 0 (resp. 1).

2.2 Central hypothesis

Previous works in the equivariant deep learning literature, to our knowledge, primarily
employ type 1 signed perm-reps—and in particular, ordinary perm-reps—to enforce lay-
erwise G-equivariance in ReLU networks. The goal of this paper is to show that type 2
signed perm-reps can also be implemented for this purpose (although it is trickier as it
requires layers to be coupled), and the central hypothesis of this work is that type 2 signed
perm-reps can indeed be beneficial for DNN performance. In this section, we motivate
this hypothesis with theory and discussions that suggest that type 2 signed perm-reps can
help boost expressive power without necessarily sacrificing generalization power. We note
that the CReLU activation function has previously been used to incorporate certain type 2
signed perm-reps (see Sec. 1), but we take a top-down approach that lets us study all such
architectures.

Our first theorem states that two inequivalent signed perm-irreps induced from different
reps of the same subgroup H ≤ G correspond to G-equivariant matrices that are in a sense
orthogonal.3

Theorem 1 (Corollary to Prop. 6 of Agrawal and Ostrowski (2022)) Let ρHK1 and
ρHK2 be inequivalent signed perm-irreps of degree n of G. For each i ∈ {1, 2}, letWi ∈ Rn×m

such that ρHKi(g)Wi =Wig∀g ∈ G. Then there exists P ∈ P(n) such that

diag(PW1W
⊤
2 ) = 0.

Theorem 1 will be important in Sec. 4, where we will use it to construct a key baseline
G-DNN architecture for our experiments. We discuss Thm. 1 further in the context of an
example group G later in this section.

Our second theorem describes how a signed perm-rep can be “unraveled” into an ordi-
nary perm-rep of twice the degree, by essentially mapping sign flips to transpositions of two
dimensions. This unraveling is particularly meaningful for type 2 signed perm-irreps, which
remain irreducible even after unraveling; in contrast, type 1 signed perm-irreps merely un-
ravel into reducible copies of themselves. Let H be the elementwise Heaviside step function,
where we let H(0) = 0.

3. All proofs can be found in the supplementary material.
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W(6,1)

W(3,1) W(3,2)

Figure 1: Weightsharing patterns of equivariant matrices for three example signed perm-
irreps of the group G of 6× 6 cyclic permutation matrices (see main text for de-
tails). In each pattern, weights of the same color and texture (solid vs. hatched)
are constrained to be equal; weights of the same color but different texture are
constrained to be opposites (colors should not be compared across different ma-
trices).

Theorem 2 Let ρ : G 7→ PZ(n) be a signed perm-rep. Then:

(a) The function4

πρ(g) = H
([

1 −1
−1 1

]
⊗ ρ(g)

)
defines an ordinary perm-rep πρ : G 7→ P(2n).

(b) Let W ∈ Rn×m such that ρ(g)W =Wg∀g ∈ G. Then

πρ(g)

[
W
−W

]
=

[
W
−W

]
g∀g ∈ G.

(c) Suppose ρ is irreducible. Then πρ is irreducible iff ρ is type 2.

(d) Suppose ρ is type 2 irreducible and ρ = ρHK . Then πρ = ρKK .

To understand Thms. 1-2 and their implications for the expressive and generalization
powers of a G-DNN with type 2 signed perm-reps, consider the example group G of all 6×6
cyclic permutation matrices (see Sec. 4.1 of Agrawal and Ostrowski (2022) for a detailed
discussion of this example). For this example, the signed perm-irreps of G are completely
characterized in terms of their degrees and types; we thus let ρ(n,t) denote the irrep ρHK

where n = 6
|H| is the degree and t = |H : K| is the type. Alternatively, if G ∼= Z6, then

ρ(n,t) denotes the irrep ρHK where H ∼= Z 6
n
and K ∼= Z 6

nt
. In this notation, the signed

perm-irreps of G are ρ(6,1), ρ(3,1), ρ(3,2), ρ(2,1), ρ(1,1), and ρ(1,2).
For each irrep ρ(n,t), let W(n,t) ∈ Rn×m such that ρ(n,t)W(n,t) = W(n,t)g∀g ∈ G. The

irreps ρ(3,1) and ρ(3,2) satisfy the hypotheses of Thm. 1, and indeed we see—in terms of their

4. In the expression for πρ, the operation ⊗ is the Kronecker product.
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weightsharing patterns—each row of W(3,1) is orthogonal to the corresponding row of W(3,2)

(Fig. 1). In practice, this means if we were given a dataset sampled from a G-invariant
shallow neural network (G-SNN)

f(x) = a1⃗⊤ReLU(Wx+ b⃗1) + c⊤x+ d,

with W = W(3,2) as the ground truth weight matrix, then a G-SNN with weight matrix
with the weightsharing pattern of W(3,1) would not have the expressive power to fit the
ground truth, regardless of the number of “channels” (i.e., independent copies of W(3,1))
used. With a limited budget of three hidden neurons per channel, type 2 signed perm-reps
thus help to increase expressive power.

On the other hand, if we double our budget of hidden neurons, then Thm. 2 suggests
W(6,1) has the capacity to express W(3,2); indeed, if we constrain the first row of W(6,1)

to have the same weightsharing pattern as the first row of W(3,2) (Fig. 1), then W(6,1)

effectively becomes equivalent to W(3,2). The problem is, however, that W(6,1) can similarly
be constrained to match W(3,1), and with probability 1 (e.g., under a Gaussian), W(6,1) is
equivalent to neither W(3,1) nor W(3,2). Thus, while this approach allows us to use a type
1 signed perm-rep with the capacity to express the ground truth, it comes at the cost of
generalization power, as W(6,1) may have multiple configurations consistent with a finite
training set.

To ensure these concepts are made clear, we present one more very simple example. For
any even input dimension n ≥ 2, consider the G-SNN architectures

fi(x) = 1⃗⊤ReLU(Wix)−
1

2
1⃗⊤Wix∀i ∈ {1, 2, 3},

where

W1 =
[
u u · · · u u

]
W2 =

[
u −u · · · u −u

]
W3 =

[
u v · · · u v

]
,

and where 1⃗ is a vector of 1’s of the appropriate length (either 1 or 2). Here G is the group
of cyclic permutations on n elements. To fix a global scale, without loss of generality, let us
set u = 1. Now suppose we take the type 2 architecture f2 as the ground truth, and draw a
sample dataset. We then observe that the type 1 architecture f1 does not have the capacity
to fit this dataset; in fact, f1 and f2 have orthogonal level sets. On the other hand, the
unraveled architecture f3 does have the capacity to fit the data, but it is a weaker model
compared to f2 (with respect to this dataset) as it must learn v = −u from the data.

In sum, type 2 signed perm-reps may help to refine the range of expressive powers
available to us; they help to express functions different from type 1 signed perm-reps of the
same degree without sacrificing generalization power the way larger type 1 signed perm-reps
would.
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3. G-invariant deep neural networks

3.1 Parameterization redundancies

In this section, we define densely connected deep neural networks, or simply deep neural
networks, and we list some of the so-called parameterization redundancies of such net-
works that will be key to enforcing G-invariance. All notation introduced here will persist
throughout the paper.

Let f : Rm 7→ R be a deep neural network (DNN) of depth d constructed as follows:
Let {n1, . . . , nd+1} be a set of d+ 1 positive integers where5 n1 = m and nd+1 = 1, and let
Ni = n1 + · · ·+ ni for every i ∈ {1, . . . , d}. Let W (i) ∈ Rni+1×Ni and b(i) ∈ Rni+1 for every
i ∈ {1, . . . , d}. Define f (1) : Rm 7→ Rn1 by f (1)(x) = x. For every i ∈ {1, . . . , d − 1}, define
f (i+1) : Rm 7→ RNi+1 by

f (i+1)(x) =

[
ReLU(W (i)f (i)(x) + b(i))

f (i)(x)

]
. (3)

Then, let f(x) =W (d)f (d)(x) + b(d).

We thus define a DNN to be a feedforward ReLU network having all possible skip connec-
tions. We call the W (i) weight matrices, their rows weight vectors, and the b(i) bias vectors.
The numbers n2, . . . , nd are the widths of the hidden layers, and the numbers N2, . . . , Nd are
the cumulative widths accounting for the skip connections. Note the traditional definition
of a DNN can be recovered by setting all skip connections to zero.

Our first proposition below establishes a set of parameterization redundancies (i.e.,
reparameterizations of the DNN leaving the input-output function invariant) enjoyed by
the above DNN architecture. For every positive integer n, let C(n) be the group of n × n
diagonal matrices with positive diagonal entries.

Proposition 3 Let i ∈ {1, . . . , d− 1}, C ∈ C(ni+1), P ∈ P(ni+1), and Z ∈ Z(ni+1). Then
the DNN f is invariant under the transformation

W (i) → CPZW (i)

b(i) → CPZb(i)

W (i+1) →W (i+1)

[
(CP )−1 H(−Z)W (i)

0 INi

]
b(i+1) → b(i+1) +W (i+1)

[
H(−Z)b(i)

0

]
.

Proposition 3 is the key to understanding how signed perm-reps can be used in G-DNNs.
Specificly, if we want the parameters (W (i), b(i)) of the ith layer to transform by a signed
perm-rep, then the parameters (W (i+1), b(i+1)) of the subsequent layer must transform as in
Prop. 3 to compensate and maintain invariance. This idea is the basis of the next section.

5. Note the input dimension n1 = m is the same number as the degree of the matrix group G in Sec. 2.
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3.2 G-invariant architectures

The following lemma gives a sufficient condition for each f (i) (the subnetwork comprising
the first i − 1 layers of f and acting as input of the ith layer) to be G-equivariant; the
sufficient condition takes the form of equivariant constraints on the network parameters.

Lemma 4 Let {ρ(1), . . . , ρ(d)} be a set of signed perm-reps ρ(i) : G 7→ PZ(ni+1) with ρ(d)

the trivial rep. For each i ∈ {1, . . . , d}, let π(i) : G 7→ P(ni+1) and ζ(i) : G 7→ Z(ni+1) be
the unique functions such that ρ(i)(g) = π(i)(g)ζ(i)(g)∀g ∈ G. Let {ψ(1), . . . , ψ(d)} be a set
of reps ψ(i) : G 7→ GL(Ni) defined as:

ψ(1)(g) = g

ψ(i+1)(g) =

[
π(i)(g) 1

2(W
(i)ψ(i)(g)− π(i)(g)W (i))

0 ψ(i)(g)

]
∀i ∈ {1, . . . , d− 1}.

Suppose ρ(i)(g)W (i) = W (i)ψ(i)(g) and ρ(i)(g)b(i) = b(i) for all g ∈ G and i ∈ {1, . . . , d}.
Then f (i)(gx) = ψ(i)(g)f (i)(x) for all g ∈ G, x ∈ Rm, and i ∈ {1, . . . , d}.

Since f (d)(gx) = ψ(d)f (d)(x) and W (d)ψ(d)(g) =W (d) for all g ∈ G and x ∈ Rm, then we
see that Lemma 4 gives a sufficient condition for f to be a G-invariant deep neural network
(G-DNN). Note the sequence of signed perm-reps {ρ(1), . . . , ρ(d)} completely determines the
G-DNN architecture (i.e., depth, number of hidden neurons per layer, and weightsharing
patterns), and hence we will also refer to such sequences of reps as G-DNN architectures.
Observe that the rep ψ(i) depends on the weight matrix W (i−1), and hence the equivariance
condition on W (i) introduces a coupling between W (i−1) and W (i). This coupling makes it
difficult to implement the equivariance constraints on the weight matrices directly, and we
thus proceed to find a reparameterization admitting uncoupled equivariant weight matrices.
To do this, we first state another lemma below, which gives an explicit formula for the reps
ψ(i) (as opposed to a recursive formula) and shows each ψ(i) to be equivalent to a direct
sum of layerwise reps.

For every i ∈ {1, . . . , d}, decompose W (i) into blocks as

W (i) =
[
W

(i)
i W

(i)
i−1 · · · W

(i)
1

]
,

where W
(i)
j ∈ Rni+1×nj . Define the block matrix

A(i) =


Ini+1 −1

2W
(i)
i −1

2W
(i)
i−1 · · · −1

2W
(i)
1

0 Ini −1
2W

(i−1)
i−1 · · · −1

2W
(i−1)
1

0 0 Ini−1 · · · −1
2W

(i−2)
1

0 0 0
. . .

...
0 0 0 0 In1

 .

Define the rep Π(i) : G 7→ O(Ni+1) by

Π(i)(g) = diag(π(i)(g), π(i−1)(g), . . . , π(1)(g), g).
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Lemma 5 For every i ∈ {1, . . . , d− 1}, we have6

ψ(i+1)(g) = A(i)−1Π(i)(g)A(i)∀g ∈ G.

Let π(0) : G 7→ P(n1) be the identity rep π(0)(g) = g, and let A(0) = In1 . Then Lemma 5
holds for i = 0 as well.

We are now ready to state this section’s key theorem, which gives a reparameterization
of a G-DNN in which it admits uncoupled equivariant weight matrices.

Theorem 6 Let f be G-invariant, with its parameters {(W (1), b(1)), . . . , (W (d), b(d))} sat-
isfying the conditions of Lemma 4 with respect to the signed perm-reps {ρ(1), . . . , ρ(d)}.

(a) For every i ∈ {1, . . . , d}, there exists V (i) ∈ Rni+1×Ni with block structure

V (i) =
[
V

(i)
i V

(i)
i−1 · · · V

(i)
1

]
where V

(i)
j ∈ Rni+1×nj such that

ρ(i)(g)V
(i)
j = V

(i)
j π(j−1)(g)∀g ∈ G

W (i) = V (i)A(i−1).

(b) For every i ∈ {1, . . . , d}, define g(i) : Rm 7→ Rni+1 by g(i)(x) = W (i)f (i)(x) and
h(i) : Rm 7→ RNi by h(i)(x) = A(i−1)f (i)(x). Then we have the recursion

g(i)(x) = V (i)h(i)(x)∀i ∈ {1, . . . , d}

h(i+1)(x) =

[
ReLU(g(i)(x) + b(i))− 1

2g
(i)(x)

h(i)(x)

]
∀i ∈ {1, . . . , d− 1}.

The V (i) are the latent weight matrices, and in Thm. 6 (a) we see that each V (i) satisfies a
linear equivariant condition that is easy to implement. The apparent weight matrices W (i)

can then be reconstructed as W (i) = V (i)A(i−1). In practice, however, there is no need
to perform this reconstruction; instead, we implement the recursion in Thm. 6 (b) as the
forward pass of the G-DNN, where the final network output is f(x) = g(d)(x)+b(d). Observe
that the recursion is given directly in terms of the V (i) as opposed to theW (i). This recursion
leverages the block-triangular structure of A(i−1) in the transformation W (i) = V (i)A(i−1).
We describe a concrete implementation of the equivariance condition and the forward pass
of the G-DNN in App. B.2.1.

3.3 Admissible architectures

Theorem 6 tells us how to construct a G-DNN, but it first requires us to select a sequence
of reps or “architecture” ρ(1), . . . , ρ(d). Selecting the optimal sequence is the problem of
G-invariant neural architecture design, which is beyond the scope of this work. At the very
least, however, we would like to avoid sequences that correspond to “degenerate” network

6. The notation A(i)−1 is shorthand for (A(i))−1, the matrix inverse of A(i).
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architectures. In particular, we require that (1) every row of each weight matrix W (i) be
nonzero and (2) no two rows of the augmented weight matrix [W (i) | b(i)] be parallel. The
first condition ensures there are no neurons disconnected from all previous layers, and the
second condition ensures no two hidden neurons in a given layer can be combined into
a single hidden neuron or skip connection. We call a sequence of reps ρ(1), . . . , ρ(d) an
admissible architecture if it admits a G-DNN with weight matrices satisfying these two
conditions. Below, Thm. 7 provides a characterization of admissible architectures that we
implement in practice. First, however, we introduce additional notions and notation.

For every A ∈ Rm×m, let stG(A) be the stabilizer subgroup

stG(A) = {g ∈ G : gA = A},

and for every finite orthogonal matrix group Γ, let PΓ be the orthogonal projection operator
onto the vector subspace pointwise-invariant under the action of Γ:

PΓ =
1

|Γ|
∑
g∈Γ

g.

Let S(G) denote the set of all subgroups of G. Then, we define the function θ : {(H,K, J) ∈
S(G)3 : |H : K| ≤ 2} 7→ S(G) by

θ(H,K, J) = π−1
J [stπJ (G)(PπJ (K) − (|H : K| − 1)PπJ (H))]

= {g ∈ G : πJ(g)(PπJ (K) − (|H : K| − 1)PπJ (H)) = PπJ (K) − (|H : K| − 1)PπJ (H)},

where the ordinary perm-rep πJ : G 7→ P(|G/J |) is defined as usual– i.e., defined to be
equivalent to the action of G on G/J . Note πJ is defined only up to conjugation by a perm-
matrix, since no ordering on the cosets in G/J is specified. It turns out, however, that θ is
invariant under conjugation of πJ , and more generally θ is invariant and equivariant with
respect to certain conjugations of the input subgroups (see Prop. 8 in App. B.3).

Let f : Rm 7→ R be a G-DNN with sequence of signed perm-reps ρ(1), . . . , ρ(d). For every
i ∈ {1, . . . , d}, the signed perm-rep ρ(i) admits the following decomposition into irreducibles:

ρ(i) =
r(i)⊕
j=1

k
(i)
j ρ

(i)
j , ρ

(i)
j = ρ

(i)

H
(i)
j K

(i)
j

.

The irreps ρ
(i)
1 , . . . , ρ

(i)

r(i)
are inequivalent, and each k

(i)
j is a positive integer where we define

the notation

k
(i)
j ρ

(i)
j =

k
(i)
j⊕

k=1

ρ
(i)
j .

We say the ith layer of the G-DNN f has r(i) distinct irreps and k
(i)
1 + · · ·+ k

(i)

r(i)
channels.

Now for every i ∈ {1, . . . , d}, we define the functions ϕ(i) : {(H,K) ∈ S(G)2 : |H : K| ≤
2} 7→ S(G) recursively by

ϕ(1)(H,K) = stG(PK − (|H : K| − 1)PH)

ϕ(i+1)(H,K) = ϕ(i)(H,K) ∩
r(i)⋂
j=1

θ(H,K,H
(i)
j )∀i ∈ {1, . . . , d− 1}.

11
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Following from the equivariance of θ (Prop. 8) and that inner automorphisms respect sub-
group intersection, we have the important property that each ϕ(i) is equivariant with respect
to pairwise conjugation:

ϕ(i)(gHg−1, gKg−1) = gϕ(i)(H,K)g−1∀g ∈ G.

We are ready to state the theorem characterizing single-channel admissible architectures;
note the following is a generalization of Thm. 4a of Agrawal and Ostrowski (2022).

Theorem 7 Maintain the notation introduced in the last paragraph, and suppose k
(i)
j =

1∀i, j (single-channel architecture). Then the architecture7 {ρ(1), . . . , ρ(d)} is admissible iff
the following conditions hold:

1. ϕ(i)(H
(i)
j ,K

(i)
j ) = K

(i)
j ∀i, j.

2. If H
(1)
j = G for some j, then PG ̸= 0.8

Theorem 7 gives us a practical way to build admissible G-DNN architectures layer-by-
layer as follows: Suppose we have already built the first i layers– i.e., we have selected the
signed perm-reps ρ(1), . . . , ρ(i) satisfying Thm. 7. Then the function ϕ(i+1) is defined. We
enumerate all signed perm-irreps ρHK , up to equivalence,9 such that ϕ(H,K) = K, and we
then select a subset to comprise ρ(i+1). In terms of implementation, the computation of

ϕ(i)(H,K) boils down to the computation of θ(H,K,H
(i−1)
j ) for each j, which can be accom-

plished using Alg. 2 (see App. B.3 for details). We should think of the outputs θ(H,K, J)
as entries of a precomputed table with a row for each (H,K) (up to pairwise conjugation)
and a column for each J (up to conjugation). We give additional implementation details
in the next section, including how we accomodate multiple input and output channels per
layer.

To gain some intuition about Thm. 7, we briefly consider its application to G-SNN
(i.e., depth d = 2) architectures, which are completely characterized in terms of the single
signed perm-rep by which the weight matrix in the first layer transforms. In this case,
Thm. 7 reduces to Thm. 4 (a) of Agrawal and Ostrowski (2022); a signed perm-rep ρHK is
admissible for a G-SNN iff ϕ(1)(H,K) = K, or more explicitly,

stG(PK − (|H : K| − 1)PH) = K.

Here the weight vectors of the G-SNN are {gw : gH ∈ G/H}, where w is fixed under K
and flips sign under H \K. The weight vectors are pairwise nonparallel if stG(w) = K; if,
however, stG(w) > K, then the G-orbit of w is smaller than the number of weight vectors,
forcing some weight vectors to be equal up to sign. Theorem 7 serves to eliminate such
degenerate architectures.

7. By definition of G-DNN architecture, ρ(d) is trivial; see Lemma 4 and the discussion immediately pro-
ceeding it.

8. This condition is trivially satisfied if G is a permutation matrix group.
9. The equivariance of ϕ is why enumeration of the signed perm-irreps only up to equivalence is sufficient.
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Table 1: Ratio of the number of admissible G-DNN architectures to the total number of
architectures for every depth and every group G, |G| = 8, up to isomorphism. Only
architectures corresponding to sequences of irreps of strictly decreasing degree are
considered.

Depth C8 C2 × C4 C3
2 D4 Q8

2 5/5 8/15 11/43 14/21 9/9
3 8/8 30/62 93/434 65/104 20/20
4 4/4 48/48 392/392 84/84 12/12

The number of admissible architectures can be significantly less than the total number
of architectures. For example, we consider one particular permutation representation of ev-
ery group of order 8 up to isomorphism, following the constructions described in App. C.1
of Agrawal and Ostrowski (2022). For each group, we only count the architectures cor-
responding to sequences of irreps of strictly decreasing degree, and we report the fraction
of these that are admissible (Table 1). Observe that the reduction from the total number
of architectures to only the admissible ones is often significant, which could be exploited
perhaps in a future implementation of G-NAS. Note also that all architectures of maximum
depth are admissible; we speculate this is because as depth increases and each new weight
matrixW (i) grows in width (due to more skip connections to previous layers), the conditions
under which two weight vectors are parallel become harder to satisfy. A complete answer,
however, is left for future investigation.

3.4 Additional remarks

Channels The G-DNN supports multiple channels in a way generalizing the notion from
traditional convolutional neural networks. As already mentioned in Sec. 3.3, the ith layer of

the G-DNN f is said to have k
(i)
j output channels or copies of the irrep ρ

(i)
j and k

(i−1)
j input

channels from the irrep ρ
(i−1)
j . As a simpler case, suppose ρ(i) contains the same number

k(i) of copies of each of its constituant irreps, and suppose the input x has k(0) channels.
Then the ith layer can be said to have k(i) output channels and k(i−1) input channels. In

practice, we implement the G-DNN assuming only one copy of each irrep ρ
(i)
j , and then we

regard each element of the input x as a k(0)-dimensional vector and each element of the

latent weight matrix block V
(i)
j (see Thm. 6 (a) for notation) as a k(i) × k(j−1) matrix.

Batch normalization It is possible to apply batch normalization (batchnorm) immedi-
ately after ReLU in aG-DNN without breaking G-invariance. That batchnorm is compatible
with G-DNNs, and in particular type 2 signed perm-reps, out-of-the-box is not obvious, and
we verify the compatibility in Prop. 10 (see App. B.4). The proof relies on the facts that
(1) the first ni columns of W (i) and V (i) are equal and (2) the first ni columns of V (i) sum
to zero if ρ(i) is a type 2 signed perm-irrep.

13
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4. Examples

4.1 Concatenated ReLU

G-invariant architectures with signed perm-reps have previously been constructed without
skip connections (Cohen and Welling, 2017) by replacing ReLU with the CReLU activation
function defined in Eq. (2). The upshot is that for every signed perm-rep ρ : G 7→ PZ(n),
CReLU enjoys the equivariance property

CReLU(ρ(g)x) = πρ(g) CReLU(x)∀g ∈ G, x ∈ Rn,

where πρ is the unraveled ordinary perm-rep appearing in Thm. 2; CReLU architectures
are thus compatible with signed perm-reps. The following example, however, establishes
that CReLU architectures are strictly special cases of the G-DNN architectures presented
in this paper.

Example 1 Let f : Rm 7→ R be a DNN of the form

f(x) = U (d)CReLU(U (d−1) · · ·CReLU(U (1)x) · · · ),

where U (1) ∈ Rn2×n1 and U (i) ∈ Rni+1×2ni∀i ∈ {2, . . . , d} are equivariant weight matrices
satisfying

ρ(1)(g)U (1) = U (1)π(0)(g)∀g ∈ G
ρ(i)(g)U (i) = U (i)πρ(i−1)(g)∀g ∈ G, i ∈ {2, . . . , d},

where πρ(i−1) is the unraveling of ρ(i−1) as defined in Thm. 2. Then f admits an expression
as a G-DNN of depth d whose latent weight matrices are given by the recursion

V (1) = U (1)

V (i+1) =
[
U

(i+1)
1 + U

(i+1)
2

1
2(U

(i+1)
1 − U (i+1)

2 )V (i)
]
∀i ∈ {1, . . . , d− 1}.

Although Ex. 1 holds for any sequence of signed perm-reps ρ(1), . . . , ρ(d) with ρ(d) trivial,
the primary case of interest is when each ρ(i), i ≤ d−1, is a direct sum only of type 2 signed
perm-irreps; otherwise, if we had a subset of weight vectors that transformed by a type 1
signed perm-irrep, then we would apply ordinary RELU to their respective preactivations
instead of CReLU. This is why it is also sufficient to consider CReLU networks without
bias vectors, as type 2 signed perm-irreps constrain bias vectors to be zero.

Example 1 implies that the G-DNN architectures introduced in this paper are at least
as powerful as (G-invariant) CReLU-based architectures, whose utility has already been
demonstrated in the literature (Shang et al., 2016; Cohen and Welling, 2017). More-
over, we recover CReLU architectures only when the latent weight matrices V (i) take a
very special form; this suggests that there may exist G-DNN architectures that cannot be
constructed with CReLU alone. To investigate this possibility, we count the numbers of
admissible CReLU architectures for various groups following the same setup used to ob-
tain the results in Table 1. As before, we consider every sequence of signed perm-irreps
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Table 2: Ratio of the number of admissible CReLU architectures to the total number of
architectures for every depth and every group G, |G| = 8, up to isomorphism. Only
architectures corresponding to sequences of irreps of strictly decreasing degree are
considered.

Depth C8 C2 × C4 C3
2 D4 Q8

2 5/5 8/15 11/43 14/21 9/9
3 8/8 30/62 88/434 65/104 20/20
4 4/4 34/48 238/392 66/84 12/12

Table 3: Numbers of admissible CReLU and G-DNN architectures at every depth for the
symmetry group G of the icosahedron. Only architectures corresponding to se-
quences of irreps of strictly decreasing degree are considered. We do not report
the total number of such sequences as we found every sequence to correspond to
an admissible G-DNN architecture.

Depth CReLU G-DNN

2 20 20
3 136 142
4 441 516
5 776 1089
6 769 1392
7 407 1064
8 90 448
9 0 80

Total 2639 4751

ρH(1)K(1) , . . . , ρH(d)K(d) of strictly decreasing degree terminating with the trivial rep. In con-
trast to G-DNNs, however, the criterion for a CReLU architecture to be admissible is much
simpler; since there are no explicit skip connections, then the function ϕ(i+1) in Thm. 7 no
longer depends recursively on ϕ(i). The resulting condition for a CReLU architecture with
signed perm-irreps ρ(H(1)K(1) , . . . , ρH(d)K(d) to be admissible is

θ(H(i+1),K(i+1), H(i)) = K(i+1)∀i ∈ {1, . . . , d− 1}.

Based on this, we report fractions of admissible CReLU architectures (Table 2) in direct
analogy to Table 1. At depth 4, there are fewer admissible CReLU architectures than
admissible G-DNN architectures.

As a more striking example, we consider the symmetry group of the icosahedron used
later for 3D object classification in Sec. 4.3. We report the numbers of admissible CReLU
andG-DNN architectures for this group (Table 3). There are about 1.8× as many admissible
G-DNN architectures as there are admissible CRELU architectures, including nine-layer
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G-DNNs with no CRELU architectures of the same depth. We conclude that while the
CRELU activation function gives a simple way to implement equivariance with respect to
signed perm-reps, our G-DNNs grant us access to large parts of G-invariant architecture
space previously unreachable.

4.2 Binary multiplication

Our first example application is an exact result and demonstrates that G-DNNs with type
2 signed perm-reps occur even in the context of simple mathematical operations.

Example 2 For d ≥ 3, let m = 2d and

X = {x ∈ {0, 1}m : x2i−1 + x2i = 1∀i ∈ {1, . . . ,m/2}}.

For {e1, . . . , em} the standard orthonormal basis, Let G < P(m) be the subgroup of all even
permutation matrices that only transpose e2i−1 and e2i. Define the function f : X 7→ {−1, 1}
by

f(x) =

m/2∏
i=1

(x2i−1 − x2i).

Then f admits an expression as a G-DNN of depth d where:

(a) For i ∈ {1, . . . , d} and j ∈ {1, . . . , i}, the blocks V
(i)
j of the latent weight matrices (see

Thm. 6 (a)) are given by

V
(i)
j =


Im/2i+1 ⊗

[
1 −1 1 −1
1 −1 −1 1

]
, if 1 ≤ i = j < d[

1 −1
]
, if i = j = d

0, otherwise.

(b) For i ∈ {1, . . . , d− 1}, the ith layer transforms by the signed perm-rep

ρ(i) =


⊕m/2i+1

j=1 ρ
H

(i)
j K

(i)
j

, if i ≤ d− 2

ρ
H

(d−1)
1 K

(d−1)
1

⊕ ρ
H

(d−1)
1 K

(d−1)
1

, if i = d− 1,

where

K
(1)
j = {g ∈ G : gvj = vj}

H
(1)
j = {g ∈ G : gvj = ±vj},

where vj = e4j−3 − e4j−2 + e4j−1 − e4j, and

K
(i+1)
j = H

(i)
2j−1 ∩H

(i)
2j

H
(i+1)
j = (H

(i)
2j−1 ∩H

(i)
2j ) ∪ ((G \H(i)

2j−1) ∩ (G \H(i)
2j )),

for i ∈ {1, . . . , d− 2}. The rep ρ(d) is trivial as usual.
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Table 4: Binary cross-entropy losses (mean and standard deviation over 24 random initial-
ization seeds) of four G-DNN architectures (see main text) on the binary mul-
tiplication problem. We report both the training loss and validation loss before
training (initial) and after 5 epochs of training (final). Training and validation
losses are equal because each of the two class labels corresponds to exactly one
G-orbit, over which each G-DNN is constant– regardless of the dataset split. All
values correspond to a classification accuracy of 50%, except the final losses of zero
for the type 2 architecture corresponding to 100% accuracy.

Architecture Initial train Initial val Final train Final val

Type 1 5.11± 4.68 5.11± 4.68 0.71± 0.04 0.71± 0.04
Type 2 1.33± 0.60 1.33± 0.60 0.00 0.00

Unraveled (random init) 11.36±12.34 11.36±12.34 0.71± 0.03 0.71± 0.03
Unraveled (type 2 init) 1.33± 0.60 1.33± 0.60 0.70 0.70

Here, f(x) is the product of m
2 binary elements in {−1, 1} but where the elements are

each represented as 2D one-hot vectors and are then concatenated into the m-dimensional
input x. From the perspective of multiplication of elements in {−1, 1}, the group G cor-
responds to an even number of sign flips, which clearly leaves the final product invariant.
Example 2 gives an explicit construction of a G-DNN that implements the function f . Each
layer of the G-DNN partitions its input into pairs and takes each of their products; the net-
work thus iteratively coarsegrains the input until the final scalar product is returned.10

Each latent weight matrix of the G-DNN has a block-diagonal structure and no latent skip
connections; however, by Thm. 6 (a), the G-DNN does have skip connections in terms of the
apparent weight matrices. All signed perm-irreps in the network–except ρ(d) which must be
trivial–are type 2, and the image of each one is isomorphic to the Klein-4 group. The image
of the penultimate rep ρ(d−1) is also isomorphic to the Klein-4 group, but the rep itself is
not irreducible and decomposes into two copies of a type 2 scalar irrep.

We investigate Ex. 2 empirically by generating the complete dataset {(x, f(x)) : x ∈ X}
for m = 16. Since f(x) = ±1, then we regard the estimation of f as a binary classifica-
tion problem. We use a random 20% of the dataset (with class stratification) for training
and the rest for validation. We instantiate the “type 2” architecture with the type 2
signed perm-irreps in Ex. 2 (b) and randomly initialize its weights. We compare the type
2 architecture to two type 1 baselines: (1) the “type 1” architecture obtained by send-
ing11 ρHK → ρHH (see Thm. 1) and (2) the “unraveled” architecture obtained by sending
ρHK → ρKK (seeThm. 2 (d)). The type 1, type 2, and unraveled architectures are thus

10. Although f is a simple function, we were unable to construct a G-DNN—in particular, a shallower G-
invariant architecture that (1) has G-equivariant preactivations and (2) does not have an exponential
number of hidden neurons per layer—simpler than the one given in Ex. 2 that fits f . For example, one
could compute f(x) with a shallow network that first maps x linearly into {−1, 1}

m
2 , then takes the sum

1⃗⊤x, and finally returns the parity of the sum using a suitable combination of ReLU neurons; however,
the function x → 1⃗⊤x is not G-equivariant.

11. This transformation is called topological tunneling in the literature (Agrawal and Ostrowski, 2022)
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analogous to the three weightsharing patterns in Fig. 1 (see Sec. 2.2); i.e., the type 1 ar-
chitecture has the same number of hidden neurons as the type 2 architecture but expresses
different functions, and the unraveled architecture has double the number of hidden neurons
and the capacity to express both the smaller two architectures as well as much more.

We trained all architectures for 5 epochs with the Adam optimizer with minibatch size
64, learning rate 0.01, and learning rate decay 0.99 per step. Starting at 50% classification
accuracy, the type 2 architecture quickly achieves 100% training and validation accuracy
as well as a final binary cross-entropy loss of 0.00 (Table 4). All other architectures remain
stuck at 50% accuracy even after training. To explain these results, we first note that in
the type 2 architecture, the latent weight matrices for i ∈ {1, . . . , d− 1} are constrained to
have the form

V
(i)
j =

Im/2i+1 ⊗

[
u
(i)
j −u(i)j v

(i)
j −v(i)j

u
(i)
j −u(i)j −v(i)j v

(i)
j

]
, if 1 ≤ j = i < d

0, if 1 ≤ j < i < d,

where the u
(i)
j and v

(i)
j are free learnable parameters. In the type 1 architecture, the negative

signs in front of v
(i)
j are omitted, and the off-diagonal blocks are no longer zero but are

instead constrained in the same way as the diagonal blocks. As a result, the very first
linear transformation g(1)(x) = V (1)x in the architecture is invariant to every transposition
(x2i−1, x2i) → (x2i, x2i−1)– not just even numbers of them; the rest of the architecture is
thus unable to distinguish the two classes of inputs, resulting in a flat 50% accuracy. The
type 1 architecture simply does not have the capacity to solve the binary classification
problem.

In contrast to the type1 and type 2 architectures, the latent weight matrices V
(i)
i of

the unraveled architectures are not even constrained to be block-diagonal, and the V
(i)
j

for j < i are not constrained to be zero. The unraveled architecture thus has about 6.5×
the number of free learnable parameters compared to the type 2 architecture, and it must
learn the block-diagonal weight structure from data alone. Based on the training loss, the
complete failure of the unraveled architecture is likely due to a severe trainability issue. To
confirm the unraveled architecture indeed has the capacity to express the solution and in
particular the type 2 architecture, we loaded the trained weights of the type 2 architecture
into the unraveled architecture by an appropriate mapping and confirmed that the resulting
architecture indeed achieves 100% training and validation accuracy. To test if the failure
to train is due to poor initialization, we implemented the unraveled architecture with both
random initialization (called “random init” in Table 4) and with the randomly initialized
weights of the type 2 architecture (called “type 2 init” in Table 4). While initialization
with the initial weights of the type 2 architecture reduces the initial loss of the unraveled
architecture to match the type 2 architecture, it does not solve the trainability issue. We
thus conclude the unraveled architecture simply does not have sufficient inductive bias to
solve the binary classification problem.

4.3 3D object classification
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Figure 2: Validation classification accuracies
(mean and standard deviation over
24 random initialization seeds) for
three G-DNN architectures (see
main text) on the ModelNet40
dataset using different percentages
of the full training data. The mixed
architecture—the only one includ-
ing type 2 signed perm-irreps—
clearly outperforms the two base-
lines, with the performance gap in-
creasing as less training data is
available.

Our second example application demon-
strates that G-DNNs with type 2 signed
perm-reps carry inductive bias that can be
useful “in the wild”. We consider the Mod-
elNet40 dataset(Wu et al., 2015), which
contains 9843 training and 2468 validation
samples of 3D CAD mesh representations of
40 different objects ranging from airplanes
to toilets. The problem is to predict the ob-
ject class given an input mesh. We prepro-
cess the data in identical fashion to Jiang
et al. (2019).12 Specifically, we first bound
each mesh in the unit sphere and discretize
the sphere into an icosahedron. To increase
resolution, we include the midpoint on each
icosahedral edge as a vertex, normalize all
vertices to have unit norm, and then re-
peat once more on the new polyhedron; this
yields 162 vertices in all. From each of these
vertices, we perform ray-tracing to the ori-
gin; we record the distance from the sphere
to the mesh as well as the sine and cosine
of the incident angle. The representation
is further augmented with the three chan-
nels corresponding to the convex hull of the
input mesh, yielding a 6-channel input rep-
resentation over 162 points.

The relevant symmetry group G is the
symmetry group of the icosahedron, generated by (1) the order-3 rotation about the normal
vector to one of the faces and (2) the order-5 rotation about one of the vertices; the group
has 60 elements and is isomorphic to the alternating group A5. We consider G-DNN archi-
tectures with four layers and 16, 32, 64, and 40 output channels per rep in each respective
layer. We specify apriori the degrees of the signed perm-irreps to be used in each layer as
30, 15, 10, and 1; we then enumerate the admissible architectures as described after Thm. 7,
and we select the following designs: For the “mixed” architecture, we select one type 1 and
one type 2 signed perm-irrep in each of the first three layers13we select the trivial rep in
the last layer, as always. We compare the mixed architecture to the corresponding “type
1” and “unraveled” architectures, which are constructed exactly as done in Sec. 4.2.

12. Jiang et al. (2019) perform five iterations of refinement to increase resolution, whereas we only perform
two. This is because our current G-DNN implementation is based on fully-connected linear layers and
thus does not scale well to high resolution. We plan to remedy this in future work by introducing local
kernel windows. We attribute the difference in accuracy reported in Fig. 2 and that reported by Jiang
et al. (2019) to this difference in resolution.

13. In each layer, the selected type 1 and type 2 signed perm-irreps are cohomologous as defined in Agrawal
and Ostrowski (2022); i.e., they have the forms ρHH and ρHK respectively.
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We trained all architectures for 500 epochs with the Adam optimizer with minibatch
size 64, learning rate 0.01, and learning rate decay 0.99 per step. We included batchnorm
as described in Sec. 3.4 after each ReLU layer. In each run, we performed retroactive
early stopping by recording the highest validation accuracy achieved over all epochs. We
find that the mixed architecture—the only one containing type 2 signed perm-irreps—
significantly outperforms the two baseline architectures in terms of validation accuracy,
with the performance gap increasing as less training data is used. This suggests that the
mixed architecture carries stronger inductive bias, still consistent with the ground truth, as
compared to the baselines.

5. Conclusion

We have introduced the G-DNN, a G-invariant densely connected DNN architecture. In
contrast to previous G-invariant architectures in the literature such as the G-CNN (Cohen
and Welling, 2016), the G-DNN is built with signed perm-reps that do not require individual
layers of the network to be G-equivariant. The result is a richer family of G-invariant
architectures never seen before (carefully quantified in terms of admissible architecture
count), and we have demonstrated with both theoretical and empirical examples that some
of these novel architectures can boost predictive performance.

To be clear, we do not claim the G-DNN to be a new state-of-the-art (SOTA) for
G-invariant deep learning. Rather, our work is a demonstration that signed perm-reps,
combined with skip connections, are mathematically natural building blocks for deep G-
invariant architectures with practical potential. Indeed, we suspect that the structures and
ideas presented in this paper, once extended and combined with domain-specific bells and
whistles, could in fact help to boost the performance of SOTA G-invariant architectures.

Even at the domain-agnostic level, however, several open questions remain for future
research. First, can we extend G-DNNs from G-invariance to G-equivariance? The only
obstacle here is the construction of architectures guaranteed to be admissible. Second, can
we perform G-NAS to find the optimal signed perm-irreps to use in each layer? Third and fi-
nally, are there ways of enforcing G-invariance that go even beyond the G-DNN architectures
described in this paper? A complete classification of all G-invariant architectures would
give us the finest possible control on inductive bias, thereby allowing us—in principle—to
optimize predictive performance on G-invariant problems.
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Appendix A. Signed permutation representations

A.1 Central hypothesis

Proof [Proof of Thm. 1] For every J ≤ G, let PJ be the m × m orthogonal projection
operator onto the subspace of Rm pointwise-invariant under the action of J :

PJ =
1

|J |
∑
g∈J

g.

By Thm. 4b of Agrawal and Ostrowski (2022), there exists w2 ∈ ran(PK2−(|H : K2|−1)PH)
and a transversal {g1, . . . , gn} of G/H such that

W2 =
[
g1w2 g2w2 · · · gnw2

]⊤
.

Moreover, there exists w1 ∈ ran(PK1 − (|H : K1| − 1)PH) and P ∈ P(n) such that

PW1 =
[
g1w1 g2w1 · · · gnw1

]⊤
.

(The permutation matrix P is in general necessary so we can use the same transversal of
G/H.) We have

diag(PW1W
⊤
2 ) = {(giw1)

⊤giw2}ni=1

= {w⊤
1 g

⊤
i giw2}ni=1

= {w⊤
1 w2}ni=1

= 0,

where the last step follows by Prop. 6 of Agrawal and Ostrowski (2022).

Proof [Proof of Thm. 2] (a) Let π : G 7→ P(n) and ζ : G 7→ Z(n) be the unique functions
satisfying ρ(g) = π(g)ζ(g)∀g ∈ G (note π should not be confused with πρ appearing in the
theorem statement). Evaluating the Kronecker product, the function πρ can be rewritten
as

πρ(g) = H
([

ρ(g) −ρ(g)
−ρ(g) ρ(g)

])
= H

([
π(g)ζ(g) −π(g)ζ(g)
−π(g)ζ(g) π(g)ζ(g)

])
= H

([
π(g) 0
0 π(g)

] [
ζ(g) −ζ(g)
−ζ(g) ζ(g)

])
=

[
π(g) 0
0 π(g)

]
H
([

ζ(g) −ζ(g)
−ζ(g) ζ(g)

])
,
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where in the last step we exploited the permutation-equivariance of elementwise operations.
Now since H(z) = 1+z

2 for z ∈ {−1, 1}, then we have

πρ(g) =

[
π(g) 0
0 π(g)

]
1

2

([
In In
In In

]
+

[
ζ(g) −ζ(g)
−ζ(g) ζ(g)

])
=

1

2

([
π(g) π(g)
π(g) π(g)

]
+

[
π(g)ζ(g) −π(g)ζ(g)
−π(g)ζ(g) π(g)ζ(g)

])
=

1

2

[
π(g) + ρ(g) π(g)− ρ(g)
π(g)− ρ(g) π(g) + ρ(g)

]
.(∗)

Now, let π(g)ij (resp. ρ(g)ij) be the unique nonzero element in the ith row of π(g) (resp.
ρ(g)). Since ρ(g)ij = ±π(g)ij , then exactly one of 1

2 [π(g)ij ±ρ(g)ij ] is unity, while the other
is zero. Thus, every row of (*) is a one-hot vector. The same argument can be made for
the columns, and hence (*) is a bona fide permutation matrix; i.e., πρ : G 7→ P(2n) is a
well-defined function.

All that remains is to show πρ is a homomorphism. We rewrite (*) as

πρ(g) =
1

2

([
In
In

]
π(g)

[
In In

]
+

[
In
−In

]
ρ(g)

[
In −In

])
.

Then for g, h ∈ G, it is easy to verify that

πρ(g)πρ(h) =
1

4

([
In
In

]
π(g)

[
In In

]
+

[
In
−In

]
ρ(g)

[
In −In

])([In
In

]
π(h)

[
In In

]
+

[
In
−In

]
ρ(h)

[
In −In

])
=

1

4

(
2

[
In
In

]
π(g)π(h)

[
In In

]
+ 0 + 0 + 2

[
In
−In

]
ρ(g)ρ(h)

[
In −In

])
= πρ(gh).

(b) Using (*) from part (a), we have

πρ(g)

[
W
−W

]
=

1

2

[
π(g) + ρ(g) π(g)− ρ(g)
π(g)− ρ(g) π(g) + ρ(g)

] [
W
−W

]
=

1

2

[
π(g)W + ρ(g)W − π(g)W + ρ(g)W
π(g)W − ρ(g)W − π(g)W − ρ(g)W

]
=

1

2

[
2ρ(g)W
−2ρ(g)W

]
= ρ(g)

[
W
−W

]
=

[
W
−W

]
g,

proving the claim.
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(c) For the forward implication, we prove its contrapositive; suppose ρ is type 1. Then
π = ρ so that (*) implies

πρ =
1

2

[
2π(g) 0
0 2π(g)

]
=

[
π(g) 0
0 π(g)

]
,

which is clearly reducible.
For the reverse implication, suppose ρ is type 2. To show πρ is irreducible, we will show

it is transitive on the standard orthonormal basis {ω1, . . . , ω2n}. Let i, j ∈ {1, . . . , 2n}, and
without loss of generality suppose i ≤ n.

Case 1: Suppose j ≤ n. Then ωi is just ei (the ith standard orthonormal basis vector
of dimension n) concatenated with 0⃗n, and similar for ωj . Now since ρ is irreducible, then
there exists g ∈ G such that ρ(g)ei = ej ; note π(g)ei = ej as well. We thus have

πρ(g)ωi =
1

2

[
π(g) + ρ(g) π(g)− ρ(g)
π(g)− ρ(g) π(g) + ρ(g)

] [
ei
0⃗n

]
=

1

2

[
π(g)ei + ρ(g)ei
π(g)ei − ρ(g)ei

]
=

1

2

[
ej + ej
ej − ej

]
=

[
ej
0⃗n

]
= ωj ,

establishing transitivity in this case.
Case 2: Suppose instead j > n. Then ωj is the concatenation of 0⃗n and ej−n. Since

ρ is irreducible, then there exists g ∈ G such that ρ(g)ei = −en−j . The rest of the proof
proceeds in analogy to case 1.

(d) For every v ∈ Rn and linear rep τ : G 7→ GL(n,R), define the stabilizer subgroup

stτ (v) = {g ∈ G : τ(g)v = v}.

Since ρ = ρHK , then stρ(e1) = K. Since πρ is an ordinary perm-rep, then all we must show
is stπρ(ω1) = K to establish the claim. Similar to part (c), stπρ(ω1) is the set of all g ∈ G
such that

πρ(g)ω1 = ω1

1

2

[
π(g) + ρ(g) π(g)− ρ(g)
π(g)− ρ(g) π(g) + ρ(g)

] [
e1
0⃗n

]
=

[
e1
0⃗n

]
1

2

[
π(g)e1 + ρ(g)e1
π(g)e1 − ρ(g)e1

]
=

[
e1
0⃗n

]
.

Taking the difference of the two rows, we obtain ρ(g)e1 = e1; hence, stπρ(ω1) = stρ(e1) = K,
completing the proof.
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Appendix B. G-invariant deep neural networks

B.1 Parameterization redundancies

To understand the inclusion of skip connections as a reparameterization, we rewrite Eq. 3
as

f (i+1)(x) =

[
ReLU(W (i)f (i)(x) + b(i))

ReLU(f (i)(x))− ReLU(−f (i)(x))

]

=

[
Ini+1 0 0
0 INi −INi

]
ReLU

W (i)

INi

−INi

 f (i)(x) +
b(i)0

0

 .

The outer matrix in the last equation can be combined with the matrix in the next layer;
the result is a DNN having the same depth as the original—and representing the same
input-output function—but with no skip connections, as they have been transformed into
additional ReLU neurons.
Proof [Proof of Prop. 3] We will show W (i+1)f (i+1)(x) + b(i+1) is invariant under the
transformation. The function f (i+1) transforms as

f (i+1)(x)→
[
ReLU(CPZW (i)f (i)(x) + CPZb(i))

f (i)(x)

]
=

[
CP 0
0 INi

] [
ReLU(Z(W (i)f (i)(x) + b(i))

f (i)(x)

]
=

[
CP 0
0 INi

]([
ReLU(W (i)f (i)(x) + b(i))

f (i)(x)

]
−
[
H(−Z)(W (i)f (i)(x) + b(i))

0

])
=

[
CP 0
0 INi

]([
Ini+1 −H(−Z)W (i)

0 INi

] [
ReLU(W (i)f (i)(x) + b(i))

f (i)(x)

]
−
[
H(−Z)b(i)

0

])
=

[
CP 0
0 INi

]([
Ini+1 −H(−Z)W (i)

0 INi

] [
ReLU(W (i)f (i)(x) + b(i))

f (i)(x)

]
−
[
Ini+1 −H(−Z)W (i)

0 INi

] [
H(−Z)b(i)

0

])
=

[
CP 0
0 INi

] [
Ini+1 −H(−Z)W (i)

0 INi

]([
ReLU(W (i)f (i)(x) + b(i))

f (i)(x)

]
−
[
H(−Z)b(i)

0

])
=

[
CP −CPH(−Z)W (i)

0 INi

](
f (i+1)(x)−

[
H(−Z)b(i)

0

])
.

We thus have

W (i+1)f (i+1)(x) + b(i+1) →W (i+1)

[
(CP )−1 H(−Z)W (i)

0 INi

] [
CP −CPH(−Z)W (i)

0 INi

](
f (i+1)(x)

−
[
H(−Z)b(i)

0

])
+ b(i+1) +W (i+1)

[
H(−Z)b(i)

0

]
=W (i+1)

(
f (i+1)(x)−

[
H(−Z)b(i)

0

])
+W (i+1)

[
H(−Z)b(i)

0

]
+ b(i+1)

=W (i+1)f (i+1)(x) + b(i+1).

24



G-invariant Deep Neural Networks

B.2 G-invariant architectures

Proof [Proof of Lemma 4] Since f (1) and ψ(1) are both the identity functions, then the
claim is immediate for i = 1. Suppose the claim is true for some i ∈ {1, . . . , d − 1}. We
have for all g ∈ G and x ∈ Rm:

f (i+1)(gx) =

[
ReLU(W (i)f (i)(gx) + b(i))

f (i)(gx)

]
=

[
ReLU(W (i)ψ(i)(g)f (i)(x) + b(i))

ψ(i)(g)f (i)(x)

]
=

[
ReLU(ρ(i)(g)W (i)f (i)(x) + b(i))

ψ(i)(g)f (i)(x)

]
=

[
ReLU(ρ(i)(g)W (i)f (i)(x) + ρ(i)(g)b(i))

ψ(i)(g)f (i)(x)

]
=

[
π(i)(g)ReLU(ζ(i)(g)(W (i)f (i)(x) + b(i)))

ψ(i)(g)f (i)(x)

]
=

[
π(i)(g)ReLU(W (i)f (i)(x) + b(i))

ψ(i)(g)f (i)(x)

]
−
[
π(i)(g)H(−ζ(i)(g))W (i)f (i)(x)

0

]
−
[
π(i)(g)H(−ζ(i)(g))b(i)

0

]
=

[
π(i)(g) −π(i)(g)H(−ζ(i)(g))W (i)

0 INi

]
f (i+1)(x) +

[
−π(i)(g)H(−ζ(i)(g))b(i)

0

]
.

Note that

−π(i)(g)H(−ζ(i)(g)) = −1

2
π(i)(g)(Ini+1 − ζ(i)(g))

=
1

2
π(i)(g)(ζ(i)(g)− Ini+1)

=
1

2
(ρ(i)(g)− π(i)(g)).

We thus have

−π(i)(g)H(−ζ(i)(g))W (i) =
1

2
(ρ(i)(g)− π(i)(g))W (i)

=
1

2
(ρ(i)(g)W (i) − π(i)(g)W (i))

=
1

2
(W (i)ψ(i)(g)− π(i)(g)W (i)).
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For the bias term, let ρ(i) = ρ
(i)
1 ⊕ · · · ⊕ ρ

(i)
k be the decomposition of ρ(i) into irreducibles;

decompose π(i) and b(i) correspondingly. Then we have

−π(i)(g)H(−ζ(i)(g))b(i) = 1

2
(ρ(i)(g)− π(i)(g))b(i)

=
1

2

k⊕
j=1

(ρ
(i)
j (g)− π(i)j (g))b

(i)
j .

If ρ
(i)
j is type 1, then ρ

(i)
j = π

(i)
j so that the jth term in the above direct sum is zero. On

the other hand, if ρ
(i)
j is type 2, then ρ

(i)
j (g)b

(i)
j = b

(i)
j implies b

(i)
j = 0, so that again the jth

summand is zero. Therefore, −π(i)(g)H(−ζ(i)(g))b(i) = 0∀g ∈ G. We thus have

f (i+1)(gx) =

[
π(i)(g) 1

2(W
(i)ψ(i)(g)− π(i)(g)W (i))

0 INi

]
f (i+1)(x) + 0

= ψ(i+1)(g)f (i+1)(x).

The conclusion follows by induction.

Proof [Proof of Lemma 5] We will verify that ψ(i+1) defined as claimed satisfies the recursion
in Lemma 4. For i = 1, we have

ψ(2)(g) = A(1)−1Π(1)(g)A(1)

=

[
In2 −1

2W
(1)

0 In1

]−1 [
π(1)(g) 0

0 g

] [
In2 −1

2W
(1)

0 In1

]
=

[
In2

1
2W

(1)

0 In1

] [
π(1)(g) 0

0 g

] [
In2 −1

2W
(1)

0 In1

]
=

[
π(1)(g) 1

2(W
(1)g − π(1)(g)W (1))

0 g

]
=

[
π(1)(g) 1

2(W
(1)ψ(1)(g)− π(1)(g)W (1))

0 ψ(1)(g)

]
,

which indeed agrees with Lemma 4.

Now suppose the claim holds for some i ∈ {2, . . . , d− 1}. Observe that

A(i) =

[
Ini+1 −1

2W
(i)

0 A(i−1)

]
Π(i)(g) =

[
π(i)(g) 0

0 Π(i−1)(g)

]
.
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We thus have

ψ(i+1)(g) = A(i)−1Π(i)(g)A(i)

=

[
Ini+1 −1

2W
(i)

0 A(i−1)

]−1 [
π(i)(g) 0

0 Π(i−1)(g)

] [
Ini+1 −1

2W
(i)

0 A(i−1)

]
=

[
Ini+1

1
2W

(i)A(i−1)−1

0 A(i−1)−1

] [
π(i)(g) 0

0 Π(i−1)(g)

] [
Ini+1 −1

2W
(i)

0 A(i−1)

]
=

[
π(i)(g) 1

2(W
(i)A(i−1)−1Π(i−1)(g)A(i−1) − π(i)(g)W (i))

0 A(i−1)−1Π(i−1)(g)A(i−1)

]
=

[
π(i)(g) 1

2(W
(i)ψ(i)(g)− π(i)(g)W (i))

0 ψ(i)(g)

]
.

The conclusion follows by induction.

Proof [Proof of Thm. 6] (a) By Lemmas 4-5, we have

ρ(i)(g)W (i) =W (i)ψ(i)(g)

ρ(i)(g)W (i) =W (i)A(i−1)−1Π(i−1)(g)A(i−1)

ρ(i)(g)W (i)A(i−1)−1 =W (i)A(i−1)−1Π(i−1)(g).

Let V (i) =W (i)A(i−1)−1. Thus, W (i) = V (i)A(i−1).

All that is left is to establish equivariance of the blocks of V (i). We have

ρ(i)(g)V (i) = ρ(i)(g)W (i)A(i−1)−1

=W (i)ψ(i)(g)A(i−1)−1

=W (i)A(i−1)−1Π(i−1)(g)A(i−1)A(i−1)−1

= V (i)Π(i−1)(g).

Since Π(i−1)(g) is a block-diagonal matrix, then blockwise equivariance follows.

(b) By part (a), we have

g(i)(x) =W (i)f (i)(x)

= V (i)A(i−1)f (i)(x)

= V (i)h(i)(x).

To establish the recursion for h(i), first observe that A(i) satisfies the recursion

A(i) =

[
Ini+1 −1

2W
(i)

0 A(i−1)

]
.
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We thus have

h(i+1)(x) = A(i)f (i+1)(x)

=

[
Ini+1 −1

2W
(i)

0 A(i−1)

] [
ReLU(W (i)f (i)(x) + b(i))

f (i)(x)

]
=

[
ReLU(W (i)f (i)(x) + b(i))− 1

2W
(i)f (i)(x)

A(i−1)f (i)(x)

]
=

[
ReLU(g(i)(x) + b(i))− 1

2g
(i)(x)

h(i)(x)

]
,

which completes the proof.

B.2.1 Implementation

Here we describe how Thm. 6 translates into a concrete implementation. First, indepen-

dently for every i ∈ {1, . . . , d} and j ∈ {1, . . . , i}, we construct a basis set B(i)j for the space
of all matrix solutions to the linear system

ρ(i)(g)X = Xπ(j−1)(g)∀g ∈ G.

This construction is done just once at the time of architecture initialization. We describe
the construction below; for now, however, let us assume we have found such basis sets.

Then we next constrain each latent weight matrix block V
(i)
j to be a linear combination in

B(i)j . The linear coefficients are randomly initialized and are the trainable parameters of
the G-DNN model. The forward pass is then a direct implementation of Thm. 6 (b), and
its pseudocode is presented in Alg. 1.

Algorithm 1 Implementation of Thm. 6 (b) for the forward pass of a G-DNN f . Here
g(i)(x) and h(i)(x) should be regarded as variable names.

1: function f(x)
2: h(1)(x)← x
3: for i ∈ {1, . . . , d− 1} do
4: g(i)(x)← V (i)h(i)(x)

5: h(i+1)(x)←
[
ReLU(g(i)(x) + b(i))− 1

2g
(i)(x)

h(i)(x)

]
6: return V (d)g(d)(x) + b(d)

All that remains is to describe the construction of the basis sets B(i)j . We phrase this as
the following general problem. Given a signed perm-rep ρ, an ordinary perm-rep π, and a
generating set G0 for the group G, we seek a basis set for the space of matrix solutions to
the linear system

ρ(g)Xπ(g)⊤ = X∀g ∈ G0.

While we could proceed with standard methods of numerical linear algebra, there is a risk
that numerical instabilities in the computation of the rank could lead to an incorrect number
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of basis matrices, which could break equivariance. We thus take a combinatorial approach
to obtain an exact basis set as described next.

We construct a simple directed graph Γ to encode the (signed) permutation of matrix
elements under the mapping X → ρ(g)Xπ(g)⊤∀g ∈ G0. The nodes of Γ are the ordered
pairs (i, j) indexing the elements in X, and we draw an arc from (i, j) to (k, ℓ) iff the former
is sent to the latter under the above mapping for some g ∈ G0; moreover, we assign the
arc a value zij,kℓ ∈ {−1, 1} to indicate whether a sign flip is incurred. With the graph Γ
in hand, a matrix X is a solution to the linear equivariance condition iff all constraints
xij = zij,kℓxkℓ are satisfied. We are thus able to assign node values xij independently
across the connected components of Γ; based on this, we generate the desired basis set by
processing each connected component C as follows:

Case 1. Suppose C is 2-colorable, meaning that each node (i, j) ∈ C can be assigned a
value xij ∈ {−1, 1} such that the constraints xij = zij,kℓxkℓ are satisfied within C.
Then we select such an assignment (by greedy 2-coloring), and we assign all nodes
outside C the value zero. These values together yield a basis matrix.

Case 2. Suppose C is not 2-colorable. Then the only consistent assignment of values inside
C is all zeros, and no basis matrix is returned for this component.

Observe that no two basis matrices share a nonzero value in the same position, and hence
the matrices are indeed linearly independent.

B.3 Admissible architectures

B.3.1 The θ function

The following proposition establishes the invariance and equivariance of the function θ with
respect to certain conjugations.

Proposition 8 The function θ satisfies the following properties:

(a) For every A ∈ P(|G/J |), define the ordinary perm-rep πAJ (g) = AπJ(g)A
−1. Then

θ(·, ·, J) is invariant under the conjugation πJ 7→ πAJ .

(b) θ(H,K, gJg−1) = θ(H,K, J)∀g ∈ G.

(c) θ(gHg−1, gKg−1, J) = gθ(H,K, J)g−1.

Proof (a) For brevity, let κ = |H : K| − 1. Define the function θA in identical fashion
to θ, but replace πJ with πAJ . We wish to prove θA = θ. Since the map Γ 7→ PΓ from finite
orthogonal matrix groups to orthogonal projection operators is equivariant with respect to
conjugation, then we have

θA(H,K, J) = {g ∈ G : πAJ (g)(PπA
J (K) − κPπA

J (H)) = PπA
J (K) − κPπA

J (H)}

= {g ∈ G : AπJ(g)A
−1(PAπJ (K)A−1 − κPAπJ (H)A−1) = PAπJ (K)A−1 − κPAπJ (H)A−1}

= {g ∈ G : AπJ(g)A
−1(APπJ (K)A

−1 − κAPπJ (H)A
−1) = APπJ (K)A

−1

− κAPπJ (H)A
−1}

= {g ∈ G : πJ(g)(PπJ (K) − κPπJ (H)) = PπJ (K) − κPπJ (H)}
= θ(H,K, J).
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(b) The theory of ordinary perm-irreps and their correspondence to group action on
cosets is well-understood (Burnside, 1911; Bouc, 2000), and it is known that the conjugation
of J in πJ is equivalent to the conjugation of πJ itself. The claim thus follows by part (a).

(c) Let a ∈ G. We will show θ(aHa−1, aKa−1, J) = θ(H,K, J). Note κ = |H : K|−1 is
invariant under the conjugation of (H,K) by a. Also note πJ(aHa

−1) = πJ(a)πJ(H)πJ(a)
−1

and similar for K. Letting A = πJ(a) and proceeding in analogy to part (a), we have

θ(aHa−1, aKa−1, J) = {g ∈ G : πJ(g)(PπJ (aKa−1) − κPπJ (aHa−1)) = PπJ (aKa−1)

− κPπJ (aHa−1)}
= {g ∈ G : πJ(g)(PπA

J (K) − κPπA
J (H)) = PπA

J (K) − κPπA
J (H)}

= {g ∈ G : πJ(g)(APπJ (K)A
−1 − κAPπJ (H)A

−1) = APπJ (K)A
−1

− κAPπJ (H)A
−1}

= {g ∈ G : A−1πJ(g)A(PπJ (K) − κPπJ (H)) = PπJ (K) − κPπJ (H)}
= {g ∈ G : πJ(a

−1ga)(PπJ (K) − κPπJ (H)) = PπJ (K) − κPπJ (H)}.

By the change of variables g → aga−1, we have

θ(aHa−1, aKa−1, J) = {aga−1 ∈ G : πJ(g)(PπJ (K) − κPπJ (H)) = PπJ (K) − κPπJ (H)}
= a{g ∈ G : πJ(g)(PπJ (K) − κPπJ (H)) = PπJ (K) − κPπJ (H)}a−1

= aθ(H,K, J)a−1,

establishing the claim.

Algorithm 2 Implementation of the function θ that exploits existing functions in GAP.

1: function θ(H, K, J)
2: def η : K \G/J 7→ power(G/J) by
3: η(KxJ) = {kxJ ∈ G/J : k(K ∩ xJx−1) ∈ K/(K ∩ xJx−1)}
4: if |H : K| = 2 then
5: let h ∈ H \K
6: S ← {KxJ ∈ K \G/J : hx ∈ KxJ}
7: else
8: S ← ∅
9: if S = ∅ then

10: T ← {η(KxJ) : KxJ ∈ K \G/J}
11: else
12: T ← {η(KxJ) : KxJ ∈ (K \G/J) \ S} ∪

{⋃
KxJ∈S η(KxJ)

}
13: return stG(T )

Algorithm 2 gives the pseudocode for an implementation of the function θ that can
be accomplished in the GAP language (GAP) for computational group theory. Although
the definition of the θ function involves orthogonal projection operators, Alg. 2 completely
circumvents these operators by taking a pure group-theoretic approach in terms of double
cosets. The following proposition verifies that Alg. 2 is a correct implementation.
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Proposition 9 Algorithm 2 correctly implements the function θ.

Proof Observe that the function η in Alg. 2 sends each double coset KxJ ∈ K \G/J to
the set of cosets in G/J whose disjoint union is KxJ .

Let H,K, J ≤ G such that K ≤ H and |H : K| ≤ 2. Let w ∈ ran(PπJ (K) − (|H :
K| − 1)Pπ(H)). We regard w as a function w : G/J 7→ R. Since w ∈ ran(PK), then w is
K-invariant in the sense that w(kxJ) = w(xJ) for all k ∈ K and xJ ∈ G/J . Thus, w is
constant over the set η(KxJ) for every KxJ ∈ K \G/J .

If |H : K| = 2, then let h ∈ H \K. Since w ∈ ran(PπJ (K) − PπJ (H)), then w(hKxJ) =
−w(KxJ) for every KxJ ∈ K \ G/J . Thus, if hKxJ = KxJ , then w(KxJ) = 0. Since
K ⊴ H, then hKxJ = KxJ is equivalent to KhxJ = KxJ , or just hx ∈ KxJ . We thus
have the constraint

w(KxJ) = 0∀KxJ ∈ K \G/J | hx ∈ KxJ.

Now select w such that it takes a different nonzero value over each η(KxJ) for all
KxJ ∈ K \G/J such that, if |H : K| = 2, then hx /∈ KxJ . Then

θ(H,K, J) = stG(PπJ (K) − (|H : K| − 1)PπJ (H))

= stG(w)

= {g ∈ G : w(gKxJ) = w(KxJ)∀KxJ ∈ K \G/J}.

This means θ(H,K, J) is exactly the subgroup of G that leaves the level sets of w invariant.
Observe, however, that the sets in the collection T in Alg. 2 are exactly the level sets of w,
and hence θ(H,K, J) = stG(T ).

B.3.2 The ϕ function

Proof [Proof of Prop. 7] The necessity of condition (2) is only because if H
(1)
j = G for

any j, then at least one row w of W (1) satisfies w ∈ ran(PG) by Thm. 4a of Agrawal and
Ostrowski (2022). For w to be nonzero, we thus require PG ̸= 0. We assume condition (2)
to be satisfied for the remainder of the proof.

Before proving the claim itself, we first derive a closed-form expression for ϕ(i+1). For
notational convenience, for every K ≤ H ≤ G, |H : K| ≤ 2, and linear rep τ : G 7→
GL(n,R), define

θ(H,K; τ) = {g ∈ G : τ(g)(Pτ(K) − (|H : K| − 1)Pτ(H)) = Pτ(K) − (|H : K| − 1)Pτ(H)}.

Thus, θ(H,K, J) can be equivalently written as θ(H,K;πJ). For two reps τ1 and τ2, observe
that Pτ1⊕τ2 = Pτ1 ⊕ Pτ2 and hence

θ(H,K; τ1 ⊕ τ2) = θ(H,K; τ1) ∩ θ(H,K; τ2).
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This property extends to more than two reps in the obvious way. With this notation, and
recalling the identity rep π(0) : G 7→ G, the function ϕ(i+1) can be rewritten as

ϕ(i+1)(H,K) = stG(PK − (|H : K| − 1)PH) ∩
i⋂

j=1

r(j)⋂
r=1

θ(H,K,H(j)
r )

= θ(H,K;π(0)) ∩
i⋂

j=1

r(j)⋂
r=1

θ(H,K;π(j)r )

= θ(H,K;π(0)) ∩ θ

H,K;
i⊕

j=1

r(j)⊕
r=1

π(j)r


= θ

H,K;π(0) ⊕
i⊕

j=1

π(j)


= θ

H,K;
i⊕

j=0

π(j)


= θ(H,K; Π(i)).

This is explicitly

ϕ(i+1)(H,K) = {g ∈ G : Π(i)(g)(PΠ(i)(K) − (|H : K| − 1)PΠ(i)(H)) = PΠ(i)(K)

− (|H : K| − 1)PΠ(i)(H)},

and it is equivalent to

ϕ(i+1)(H,K) = {g ∈ G : Π(i)(g)(PΠ(i)(K) − (|Π(i)(H) : Π(i)(K)| − 1)PΠ(i)(H)) = PΠ(i)(K)

− (|Π(i)(H) : Π(i)(K)| − 1)PΠ(i)(H)}. (*)

To see that |Π(i)(H) : Π(i)(K)| = |H : K|, by the First Isomorphism Theorem we have

|Π(i)(H) : Π(i)(K)| = |H|/|H ∩ ker(Π(i))|
|K|/|K ∩ ker(Π(i))|

.

Since Π(i) includes in its direct sum decomposition the identity rep π(0), then ker(Π(i)) must
be trivial, and so the above expression reduces to |H|/|K| = |H : K|.

We finally prove the claim. By definition, the G-DNN architecture {ρ(1), . . . , ρ(d)} is
admissible iff each row of W (i) is nonzero and no two rows of [W (i) | b(i)] are parallel,
for i ∈ {1, . . . , d}. By Thm. 6 (a), since W (i) = V (i)A(i−1), then we obtain an equivalent

definition if we replace W (i) with V (i). Let V
(i)
(j) be the submatrix comprising the rows (and

all columns) of V (i) that together transform by ρ
(i)
j :

ρ
(i)
j (g)V

(i)
(j) = V

(i)
(j)Π

(i−1)(g)∀g ∈ G.
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(We include the parentheses in the subscript of V
(i)
(j) to distinguish it from V

(i)
j appearing

in Thm. 6 (a)). Then Thm. 4a of Agrawal and Ostrowski (2022) implies we have an

admissible architecture (specifically, that the rows of V
(i)
(j) are nonzero and no two rows of

the corresponding augmented weight matrix are parallel) iff

stΠ(i−1)(G)(PΠ(i−1)(K
(i)
j )
− (|Π(i−1)(H

(i)
j ) : Π(i−1)(K

(i)
j )| − 1)P

Π(i−1)(H
(i)
j )

) = Π(i−1)(K
(i)
j ),

or equivalently,

(Π(i−1))−1[stΠ(i−1)(G)(PΠ(i−1)(K
(i)
j )
− (|Π(i−1)(H

(i)
j ) : Π(i−1)(K

(i)
j )| − 1)P

Π(i−1)(H
(i)
j )

) = K
(i)
j

{g ∈ G : Π(i−1)(g)(P
Π(i−1)(K

(i)
j )
− (|Π(i−1)(H

(i)
j ) : Π(i−1)(K

(i)
j )| − 1)P

Π(i−1)(H
(i)
j )

) = P
Π(i−1)(K

(i)
j )

− (|Π(i−1)(H
(i)
j ) : Π(i−1)(K

(i)
j )| − 1)P

Π(i−1)(H
(i)
j )

= K
(i)
j .

Recalling (*), we recognize the last equation as nothing but ϕ(i)(H
(i)
j ,K

(i)
j ) = K

(i)
j , there

proving that condition (1) is (together with condition (2)) is equivalent to admissibility.

B.4 Additional remarks

The following proposition establishes the compatibility of batchnorm with G-DNNs.

Proposition 10 The addition of batchnorm immediately after any ReLU layer in a G-DNN
preserves G-invariance of the network.

Proof Suppose we apply batchnorm immediately after the ith ReLU layer of the G-DNN
f , for some i ∈ {1, . . . , d − 1}. Then the activations r(i)(x) = ReLU(W (i)f (i)(x) + b(i)) of
the ith ReLU layer transform as

r(i)(x)→ γ

(
r(i)(x)− µ1⃗

σ + ε

)
+ β1⃗,

where µ ≥ 0, σ ≥ 0, ε > 0, γ, and β are all scalars. For each i ∈ {1, . . . , d}, let W (i)
i

and V
(i)
i be the blocks comprising the first ni columns of W (i) and V (i) respectively; these

represent the weights of the ith layer without the skip connections. Then the above affine
transformation of r(i)(x) is equivalent to the transformation

W
(i+1)
i+1 → CW

(i+1)
i+1

b(i+1) → b(i+1) +DW
(i+1)
i+1 1⃗,

where

C =
γ

σ + ε

D = β − γµ

σ + ε
.
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By Thm. 6 (a), W (i+1) = V (i+1)A(i). Since A(i) is upper block-triangular with the top left

block Ini+1 , thenW
(i+1)
i+1 = V

(i+1)
i+1 . By the above transformation ofW

(i+1)
i+1 under batchnorm,

V
(i+1)
i+1 also transforms only by the scalar factor C, and hence it remains equivariant as in

Thm. 6a.
All that remains is to show the bias b(i+1) satisfies the sufficient condition in Lemma 4

even after the batchnorm transformation, and this will establish G-invariance of the network
with batchnorm.

Case 1: Suppose ρ(i+1) is type 1 irreducible. Then Lemma 4 implies b(i+1) is parallel

to 1⃗. Under batchnorm, b(i+1) transforms by the addition of DV
(i+1)
i+1 1⃗ and thus remains

parallel to 1⃗. The claim follows by Lemma 4.
Case 2: Suppose ρ(i+1) is type 2 irreducible. Then Lemma 4 implies b(i+1) = 0.

Under batchnorm, the bias thus transforms to 0 + DV
(i+1)
i+1 1⃗. It turns out, however, that

V
(i+1)
i+1 1⃗ = 0; to see this, by Thm. 6 (a), we have

ρ(i+1)(g)V
(i+1)
i+1 = V

(i+1)
i+1 π(i)(g)∀g ∈ G.

Since i ≥ 1 so that π(i) is type 1, then without loss of generality, by selecting an appropriate
basis, we assume π(i) is an ordinary perm-irrep. Averaging both sides over all g ∈ G, we
obtain

Pρ(i+1)V
(i+1)
i+1 = V

(i+1)
i+1 Pπ(i) .

Since ρ(i+1) is type 2, then its only fixed point is the zero vector, and hence the orthogonal
projection operator Pρ(i+1) is itself zero. Moreover, since π(i) is an ordinary perm-irrep and

since 1⃗ is fixed under all permutations, then it is fixed under the orthogonal projection

operator Pπ(i) as well– hence V
(i+1)
i+1 1⃗ = 0.

Case 3: Suppose ρ(i+1) is reducible. Then decompose it into type1 and type 2 irreps
and apply Cases 1-2 separately to each irrep.

The extension of Prop. 10 to multiple channels is trivial. Batchnorm is typically applied
independently to each channel. Thus, if the ReLU activations r(i)(x) had c channels (which
could be achieved by having c copies of every irrep in ρ(i)), then the variables µ, σ, γ,
and β would be c-dimensional vectors. The proof would then proceed by selecting a single
arbitrary channel.

Appendix C. Examples

C.1 Concatenated ReLU

Proof [Proof of Ex. 1] For every i ∈ {1, . . . , d}, the function

x→ U (i)CReLU(U (i−1) · · ·CReLU(U (1)x) · · · )

is G-equivariant with its output transforming by ρ(i). We thus identify it with the function
g(i) appearing in Thm. 6 (b). We now have the recursion

g(i+1)(x) = U (i+1)CReLU(g(i)(x))∀i ∈ {1, . . . , d− 1}.
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By definition of CReLU(·) and the block structure of U (i+1), we have

g(i+1)(x) =
[
U

(i+1)
1 U

(i+1)
2

]
ReLU

([
g(i)(x)

−g(i)(x)

])
= U

(i+1)
1 ReLU(g(i)(x)) + U

(i+1)
2 ReLU(−g(i)(x))

= U
(i+1)
1 ReLU(g(i)(x)) + U

(i+1)
2 ReLU(g(i)(x))− U (i+1)

2 g(i)(x)

= (U
(i+1)
1 + U

(i+1)
2 )ReLU(g(i)(x))− U (i+1)

2 g(i)(x)

= (U
(i+1)
1 + U

(i+1)
2 )ReLU(g(i)(x))− 1

2
(U

(i+1)
1 + U

(i+1)
2 )g(i)(x) +

1

2
(U

(i+1)
1 − U (i+1)

2 )g(i)(x)

=
[
U

(i+1)
1 + U

(i+1)
2

1
2(U

(i+1)
1 − U (i+1)

2 )
] [ReLU(g(i)(x))− 1

2g
(i)(x)

g(i)(x)

]
.

Since g(i)(x) = V (i)h(i)(x) in Thm. 6 (b) and since all bias vectors in this example are zero,
then we can write the above as

g(i+1)(x) =
[
U

(i+1)
1 + U

(i+1)
2

1
2(U

(i+1)
1 − U (i+1)

2 )V (i)
] [ReLU(g(i)(x) + b(i))− 1

2g
(i)(x)

h(i)(x)

]
.

Comparing this to the definitions of g(i+1) and h(i+1) appearing in Thm. 6 (b), we obtain
the expression for V (i+1) as claimed.

C.2 Binary multiplication

Proof [Proof of Ex. 2] (a) For x1, x2 ∈ {−1, 1}, it can be verified by hand that

x1x2 =
[
1 −1

]
ReLU

([
1 1
1 −1

] [
x1
x2

])
− x2

=
[
1 −1 0 −1

] ReLU
([

1 1
1 −1

] [
x1
x2

])
[
x1
x2

]
 .(∗)

We can extend this to the product of more than two elements as follows: For i ∈ {1, . . . , d},
define the block-diagonal matrices

A(i) = Im/2i
[
1 −1

]
B(i) = Im/2i

[
0 −1

]
C(i) = Im/2i

[
1 1
1 −1

]
,

and define the functions p(i) : X 7→ {−1, 1}m/2i by

p(1)(x) = A(1)x

p(i)(x) =
[
A(i) B(i)

] [ReLU(C(i)p(i−1)(x))

p(i−1)(x)

]
∀i ∈ {2, . . . , d}.(∗∗)
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The function p(1) maps each pair of elements (x2i−1, x2i) in the input x to x2i−1 − x2i ∈
{−1, 1}. Then p(i) (1) partitions p(1)(x) into blocks, each of two elements; (2) takes the
product of each pair of elements using (*); (3) iterates this procedure i − 1 times. The
output p(d)(x) is then the product of the elements in p(1)(x).

Now for i ∈ {1, . . . , d − 1}, the function g(i) (as in Thm. 6 (b)) as given by g(i)(x) =
C(i+1)p(i)(x). By (**), we thus have

g(i)(x) =
[
C(i+1)A(i) C(i+1)B(i)

] [ReLU(g(i−1)(x))

p(i−1)(x)

]
=
[
C(i+1)A(i) C(i+1)B(i)

] [ReLU(g(i−1)(x))− 1
2g

(i−1)(x) + 1
2g

(i−1)(x)

p(i−1)(x)

]
=
[
C(i+1)A(i) C(i+1)B(i)

] [ReLU(g(i−1)(x))− 1
2g

(i−1)(x)

p(i−1)(x)

]
+
[
C(i+1)A(i) C(i+1)B(i)

] [1
2g

(i−1)(x)
0

]
=
[
C(i+1)A(i) C(i+1)B(i)

] [ReLU(g(i−1)(x))− 1
2g

(i−1)(x)

p(i−1)(x)

]
+

1

2
C(i+1)A(i)g(i−1)(x)

=
[
C(i+1)A(i) C(i+1)B(i)

] [ReLU(g(i−1)(x))− 1
2g

(i−1)(x)

p(i−1)(x)

]
+

1

2
C(i+1)A(i)C(i)p(i−1)(x)

=
[
C(i+1)A(i) C(i+1)B(i) + 1

2C
(i+1)A(i)C(i)

] [ReLU(g(i−1)(x))− 1
2g

(i−1)(x)

p(i−1)(x)

]
=
[
C(i+1)A(i) 0

] [ReLU(g(i−1)(x))− 1
2g

(i−1)(x)

p(i−1)(x)

]
=
[
C(i+1)A(i) 0

] [ReLU(g(i−1)(x))− 1
2g

(i−1)(x)

h(i−1)(x)

]
.

Comparing this to the equations in Thm. 6 (b), we establish the claimed expression for V
(i)
j

for i ∈ {1, . . . , d− 1}.
For the case i = d, we simply observe that the last weight matrix must be the outer

weight vector in (*). The G-invariance of the constructed DNN is clear; the action of any
g ∈ G on an input x ∈ X corresponds to an even number of sign flips in p(1)(x), which
leaves the parity of the product p(d)(x) invariant. Layerwise G-equivariance is established
next.

(b) By part (a), The first weight matrix is

C(2)A(1) = Im/4 ⊗
[
1 −1 1 −1
1 −1 −1 1

]
.

The jth pair of rows in this weight matrix is the jth channel, whose first row is vj and

which transforms by ρ
H

(1)
j K

(1)
j

. The expressions for H
(1)
j and K

(1)
j are thus established by

definition.
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Now for i ∈ {1, . . . , d}, part (a) implies

ρ
H

(i+1)
j K

(i+1)
j

(g)

[
1 −1 1 −1
1 −1 −1 1

]
=

[
1 −1 1 −1
1 −1 −1 1

]πH(i)
2j−1

(g) 0

0 π
H

(i)
2j

(g)

 ∀g ∈ G,
where each π

H
(i)
k

is the ordinary perm-rep part of ρ
H

(i)
k K

(i)
k

. By definition, K
(i+1)
j is the

subgroup of all g ∈ G such that

ρ
H

(i+1)
j K

(i+1)
j

(g)e1 = e1

1

2
ρ
H

(i+1)
j K

(i+1)
j

(g)

[
1 −1 1 −1
1 −1 −1 1

]
1
0
1
0

 = e1

1

2

[
1 −1 1 −1
1 −1 −1 1

]πH(i)
2j−1

(g) 0

0 π
H

(i)
2j

(g)

 ∀g ∈ G

1
0
1
0

 = e1.

Since ordinary perm-reps cannot flip signs, then the last equation is equivalent to

π
H

(i)
2j−1

e1 = e1 and π
H

(i)
2j

e1 = e1.

We thus have

K
(i+1)
j = {g ∈ G : π

H
(i)
2j−1

e1 = e1} ∩ {g ∈ G : π
H

(i)
2j

e1 = e1}

= H
(i)
2j−1 ∩H

(i)
2j .

Similarly, by definition we have

H
(i+1)
j = {g ∈ G : ρ

H
(i+1)
j K

(i+1)
j

(g)e1 = ±e1}.

Proceeding analogously as above, we find that g ∈ G is contained in H
(i+1)
j iff

(π
H

(i)
2j−1

(g)e1 = e1 and π
H

(i)
2j

(g)e1 = e1) or (πH(i)
2j−1

(g)e1 = e2 and π
H

(i)
2j

(g)e1 = e2).

The first term in the disjunction corresponds to H
(i)
2j−1 ∩H

(i)
2j , and the second term in the

disjunction corresponds to the intersection of the complements, as claimed.

In the case of the (d− 1)st layer, the product output p(d−1)(x) is 2D and thus can only
transform by ±1. The rep ρ(d−) thus decomposes into two copies of a scalar rep. Finally,
that the final rep ρ(d) is trivial follows from the G-invariance of the network, thereby com-
pleting the proof.

37



Agrawal and Ostrowski

References

Devanshu Agrawal and James Ostrowski. A classification of G-invariant shallow neural
networks. Advances in Neural Information Processing Systems, 35, 2022.

Devanshu Agrawal, Adrian Del Maestro, Steven Johnston, and James Ostrowski. Group-
equivariant autoencoder for identifying spontaneously broken symmetries. Physical Re-
view E, 107(5):054104, 2023.

Kenneth Atz, Francesca Grisoni, and Gisbert Schneider. Geometric deep learning on molec-
ular representations. Nature Machine Intelligence, 3(12):1023–1032, 2021.

Michael Baake. Structure and representations of the hyperoctahedral group. Journal of
mathematical physics, 25(11):3171–3182, 1984.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian
McWilliams. The shattered gradients problem: If resnets are the answer, then what is
the question? In International Conference on Machine Learning, pages 342–350. PLMR,
2017.

Sourya Basu, Akshayaa Magesh, Harshit Yadav, and Lav R Varshney. Autoequivariant
network search via group decomposition. arXiv preprint arXiv:2104.04848, 2021.

Serge Bouc. Burnside rings. In Handbook of algebra, volume 2, pages 739–804. Elsevier,
2000.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
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