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Abstract

Leading approaches to algorithmic fairness and policy-
induced distribution shift are often misaligned with long-
term objectives in sequential settings. We aim to correct these
shortcomings by ensuring that both the objective and fair-
ness constraints account for policy-induced distribution shift.
First, we motivate this problem using an example in which
individuals subject to algorithmic predictions modulate their
willingness to participate with the policy maker. Fairness in
this example is measured by the variance of group participa-
tion rates. Next, we develop a method for solving the result-
ing constrained, non-linear optimization problem and prove
that this method converges to a fair, locally optimal policy
given first-order information. Finally, we experimentally val-
idate our claims in a semi-synthetic setting.

Introduction
Organizations using historical data to optimize a policy
which impacts human populations encounter two significant
risks: bias and distribution shift. These hazards can inter-
act to amplify social disparity over time as the policy-maker
and population mutually adapt to each other. As organi-
zations adopt data-driven methods for socially consequen-
tial tasks, such dynamics threaten equitable access to health
care, justice, employment, housing, public services, educa-
tion, credit, and privacy (Crawford and Calo 2016; Chaney,
Stewart, and Engelhardt 2018; Ensign et al. 2018; Fuster
et al. 2018; Hao 2020; Metz and Satariano 2020; Newton
2021; Schwartz et al. 2022).

Recent research on long-term fairness has highlighted
the need to account for policy-induced distribution shift
when seeking to mitigate disparity (Coate and Loury 1993;
Heidari, Nanda, and Gummadi 2019; Wen, Bastani, and
Topcu 2019; Mouzannar, Ohannessian, and Srebro 2019;
D’Amour et al. 2020; Zhang et al. 2020; Liu et al. 2020;
Morik et al. 2020; Raab and Liu 2021; Ge et al. 2021). In
particular, it is now well-established that strategies that fail
to account for policy-induced distribution shift can actively
increase disparity and loss over time (Figure 1).

Despite this growing recognition, it is generally difficult
to model or predict distribution shift caused by the reaction
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of human populations to novel policies. Without robust mod-
els or existing data, policies that elicit a population response
must be deployed sequentially and learned online, i.e., based
on information local to the currently deployed policy.

In this paper, we consider long-term fairness as a con-
strained, generally nonconvex optimization problem that
must be solved by using sequential policies. In particular,
we study the setting in which each policy induces the dis-
tribution of individuals it serves. That is, in terms of policy
(which we denote by its parameters θ), an objective L, and
a disparity measure H, we consider the problem

minimize
θ

L(θ,D(θ))

subject to H(θ,D(θ)) ≤ 0 .
(1)

Critically, we assume that the data distribution D describing
the population is an (a priori unknown) function of the policy
θ. Treating the distribution as a function of policy in this way
is the key assumption of “performative prediction” as a set-
ting (Perdomo et al. 2021) for a single learner (and extended
to multiple learners in (Narang et al. 2022)), to which we add
fairness constraints. We additionally add convex constraints
to the decision variable θ in Fair Participation.

To solve Problem 1 using an iterative algorithm (that gen-
erates a sequence of policies), we adapt tools from non-
linear optimization that guarantee convergence to a fair, lo-
cal optimum (Theorem 1). Our strategy is to rely on first-
order information regarding currently deployed policy (As-
sumption 1) and to assume that H may be appropriately cho-
sen without affecting the feasible set of policies (Assump-
tion 2). We contrast our algorithm, both conceptually (See
Algorithm and Asymptotic Convergence) and through exper-
iments (See Experiments), to alternative sequential policies
featured in prior literature.

Importantly, because H accounts for distribution shift via
D(θ), our formulation is inclusive of disparity measures H
that are intrinsic to the distribution (i.e., defined indepen-
dently of the policy). That is, we can choose forms of H for
Problem 1 that depend only on the second argument. For ex-
ample, we are free to choose H representing the fraction of
individuals that choose to use an algorithmic service, which
would be independent of policy in a myopic formulation,
which assumes static distributions. We explore this differ-
ence more carefully in A Failure Mode of Myopia.



To be concrete, we now specialize our discussion to the
context of participation dynamics: Imagine an online ser-
vice that algorithmically recommends user-generated con-
tent (e.g., fixed-length videos) to other users based on in-
ferred preferences. The firm seeks to maximize user engage-
ment (e.g., the total daily number of videos watched on the
platform) in order to drive advertising revenue, while users
will only engage with the service if a sufficiently high per-
centage of recommended videos are personally interesting.
Suppose that the firm optimizes for the predicted engage-
ment of its current or induced user-base. In either case, the
resulting recommendations and induced user-base may be
biased towards large groups of users with similar interests
or towards users that can be strongly engaged (e.g., unsuper-
vised small children or those vulnerable to disinformation).
For our hypothetical content-recommendation service, the
resulting dynamics may encourage the proliferation of con-
tent targeting over-represented users, a decline in the diver-
sity of advertisers targeting the platform, and user interac-
tions that devolve into “echo chambers”. To mitigate such
risks, the firm may constrain its policies to maintain a di-
verse user-base, using a fairness constraint that is fundamen-
tally distribution shift-aware.

Related Work
Prior work has highlighted importance of dynamics for al-
gorithmic fairness by characterizing the outcomes induced
by myopic definitions of fairness. For example, early work
by Coate and Loury (1993) identified the potential for
nominally-fair hiring practices to result in amplified under-
lying inequalities when populations adapt rationally. Closely
related models explored by Mouzannar, Ohannessian, and
Srebro (2019); Liu et al. (2020); Raab and Liu (2021) reveal
similar failure modes, and the cited papers propose correc-
tions based on the model of population response.

More recent work has explored a broad array of potential
solutions to the misalignment of short-term and long-term
fairness. For example, Morik et al. (2020) identify interven-
tions for myopic optimization by adopting a feedback con-
trol mechanism, and Yin et al. (2023) adapt online learning
methods to provide probabilistic bounds on cumulative re-
gret and disparity. More generally, numerous authors have
considered methods based on reinforcement learning (Wen,
Bastani, and Topcu 2019; Liu et al. 2021; Ge et al. 2021),
though theoretical guarantees are more difficult to establish
with this approach.

Broadly, when the reaction of populations to policy are
not known in closed form but decisions can have socially
deleterious consequences, it remains an open problem to
improve sample efficiency and strengthen the theoretical
guarantees of online policies. To further progress towards
this end, we claim that our formulation of Problem 1 is
amenable to the reward-state-action setup of reinforcement
learning, but with added structure (actions always induce
the same state) that makes it approachable with more di-
rect tools from nonlinear optimization, with more familiar
performance guarantees.

In addition to general treatments of long-term fairness, we
further highlight prior work that specifically addresses group

participation dynamics: Hashimoto et al. (2018) study the
potential amplification of participation disparity with a pop-
ulation model based on monotonic rates of retention and new
arrivals in each group. Unlike our work, the intervention pro-
posed is based on controlling the worst-case group-specific
loss rather than more general and explict fairness definitions
such as the equality of group participation rates. In realis-
tic settings, such an intervention may be difficult to justify
to stakeholders, since it involves modifying the optimization
objective without making fairness targets explicit.

Zhang et al. (2019) also study fairness with participation
dynamics based on retention rates that vary with model ac-
curacy: The authors demonstrate that myopic interventions
can amplify disparity and call for fairness criteria that ac-
count for policy-induced distribution shift, but the proposed
method assumes full knowledge of dynamics to explicitly
construct the set of feasible policies prior to optimization.
Finally, Dean et al. (2022) consider a general family of risk-
reducing dynamics governing user participation and policy-
updates, but focus on the interaction of users with multiple
firms rather than a single algorithmic policy, and character-
ize the equilibria and stability of the dynamics without fair-
ness constraints.

Setting
Let us formalize the specific setting we consider in this pa-
per. Throughout our discussion, we adopt discrete-time se-
mantics, wherein the parameters θt and distribution Dt =
D(θt) evolve in time t ∈ {1, 2, ...} through repeated inter-
actions between the firm and the population of (potential)
users. Hereafter, let us write

L(θ) := L
(
θ,D(θ)

)
; Lt := L(θt); (2a)

H(θ) := H
(
θ,D(θ)

)
; Ht := H(θt); (2b)

∇Lt :=
∂L
(
θt,Dt

)

∂θ
+
∑

i

∂Di(θ
t)

∂θ

∂L
(
θt,Dt

)

∂Di
, (2c)

∇Ht :=
∂H
(
θt,Dt

)

∂θ
+
∑

i

∂Di(θ
t)

∂θ

∂H
(
θt,Dt

)

∂Di
, (2d)

where ∇ denotes the gradient with respect to θ accounting
for all arguments, and each Di is a vector component given
an orthonormal basis in the Hilbert space1 of distributions.
Assumption 1 (Gradients of Deployed Policy). At each time
t, the firm is able to observe ∇Lt and ∇Ht, i.e., the firm has
knowledge of the first-order dependence of L and H on θ at
the currently deployed policy θt.

Assumption 1 is reasonable when L corresponds to em-
pirical risk and H measures disparities between sets in the
population, as in Problem 3: With small, random perturba-
tions to policies over the set of individuals in the population,
first-order statistics can provide an estimate of the local de-
pendence of L and H on θ (i.e., via (conditional) correlations
between policy perturbations and outcomes). Conceptually,
the firm can estimate gradients from A/B testing.

1We notate this Hilbert space as finite-dimensional, for clarity,
though we do not require this assumption elsewhere.



θ parameter value.
D distribution of users.
L the objective function (total loss).
H disparity/fairness constraint function.
g discrete group index.
ℓg average loss for group g.
ρg participation rate for group g.
A set of achievable losses.
fg map from ℓg to ρg .

Table 1: Choice of notation

Assumption 2 (Properties of Disparity). H is an invex func-
tion; that is, every critical point of H is a global minimum.

Assumption 2 is easily satisfied by choosing a suitable H
that maintains the required zero-level set (e.g., as in Equa-
tion (4)).

Fair Participation
For a setting with group-based participation dynamics, we
will characterize policies by group-specific losses ℓg in-
dexed by demographic group g ∈ [k]. We replace the de-
cision variable θ with the decision variable ℓ ∈ A, such
that ∇L and ∇H denote gradients with respect to ℓ. For
this setting, we choose to measure disparity by the variance
of group participation rates ρg with g, where each group
modulates its participation rate in response to the current
value of ℓg . The problem we consider is to minimize the av-
erage loss, weighted by participation across the population,
while limiting the divergence of participation rates across
groups (Problem 3).

minimize
ℓ∈A

L(ℓ) :=
〈
ℓ,ρ
〉

subject to Var
g
[ρg] :=

1

k

k∑

g=1

∥ρg − ρ̄∥22 ≤ ε,

ρ = f(ℓ), ρ̄ :=
1

k

k∑

g=1

ρg.

(3)

Problem 3 is an instance of Problem 1 that summarizes the
distribution (in terms of ρ), augmented by constraints to the
decision variable, ℓ ∈ A. In this instance, we have chosen
to constrain a measure of disparity that is intrinsic to the
distribution (Equation (4)): This fundamentally requires that
the firm anticipates distribution shift in reaction to policy for
any attempt to constrain it to be meaningful.

To clarify what we mean by participation, we consider a
population of fixed size, wherein each user in the population
voluntarily chooses to interact with the firm as a function of
the expected loss for their group (Assumption 4). We define
participation rate as the fraction of prospective users in each
group that choose to interact with the firm. We additionally
assume that the firm can always select from the same profile
of average group-specific losses (Assumption 3).
Assumption 3 (Achievable Group Losses). Independent of
the distribution of participating agents, at each time t, the

firm is able to select from a set of group-specific losses
(ℓt1, ℓ

t
2, ..., ℓ

t
k) ∈ A, where we assume that A is convex. We

omit the t index for clarity where convenient.
The existence of a set of achievable losses in Assump-

tion 3 may be guaranteed when the profile of active users in
each group does not depend on the participation rate in the
group, i.e., when the users of each group are treated as in-
dependently and identically distributed according to a static,
group-specific distribution. The convexity of this set is well
justified by the ability of the firm to adopt mixed policies;
that is, for any two loss vectors a, b ∈ A, we assume that the
firm is free to deploy a stochastic mixture of the policies that
resulted in a and b, implying that A is closed under convex
combinations.
Assumption 4 (Participation rates). For each group g, the
absolute participation rate, which we denote as ρg for g ∈
[k], can be written as a strictly decreasing, differentiable
function of ℓg . That is, for each g we have ρg = fg(ℓg) such
that d

dℓg
fg < 0.

Intuitively, Assumption 4 states that the firm will lose
users from group g if its loss on that group increases.
Where appropriate, we write the (implicitly g-indexed) vec-
tor expressions ℓ,ρ = f(ℓ), ℓ = f−1(ρ), and f ′(ℓ) =
vec({f ′

i(ℓi)}).
Without loss of generality, we fix zero loss for each group

to correspond to zero participation with Assumption 5:
Assumption 5. To restrict interpretations of Problem 3 to
situations in which the firm has incentives to realize high
participation rates (as opposed to eliminating users that are
universally costly), we assume that

ℓ ⪯ 0 and f(0) = 0.

Finally, we identify the measure of disparity H in Prob-
lem 3 as

H(ℓ) = Var
g
[fg(ℓg)]− ε ≤ 0. (4)

We confirm that this example satisfies Assumption 2 in the
Technical Appendix2.

Standard Approaches
We contrast the algorithm presented in Algorithm and
Asymptotic Convergence for solving Problems 1 and 3 with
the most commonly considered approach, which involves a
sequence of instantaneously fair or instantaneously optimal
policy deployments that ignore distribution shift. This ap-
proach is referred to as (Fairness-Constrained) “Repeated
Risk Minimization” (RRM). In our setting, where H rep-
resents an inherent property of the distribution that is inde-
pendent of policy without accounting for distribution shift,
RRM remains ignorant of the fairness constraint. We there-
fore formalize RRM as a sequential quadratic program
equivalent to projected gradient decent on average loss for
step size η > 0:

ℓt+1 = argmin
ℓ∈A

〈
ℓ,ρt

〉
+

1

2η
(ℓ− ℓt)2. (RRM)

2The Technical Appendix and a link to the code repository as-
sociated with this paper will be made available on arXiv.



−1 0Group 1 loss `1

−1

0

G
ro

u
p

2
lo

ss
` 2

θ

`2
1 + `2

2 = 1

0 1Group 1 Participation Rate ρ1

0

1

G
ro

u
p

2
P

ar
ti

ci
p

at
io

n
R

at
e
ρ

2

−1 0Group 1 loss `1

0

1

G
ro

u
p

1
P

ar
ti

ci
p

at
io

n
R

at
e
ρ

1

1
1+exp[20(`g+0.62)]

0.00 1.57Parameter θ

−0.60

−0.45

T
ot

al
L

os
s
∑

g
` g
ρ
g
s g

Figure 1: Failures of RRM. In this figure, we consider two
policies, represented by the red triangle and the blue cir-
cle, which correspond to combinations of achievable group-
specific losses. In this example, the set A is defined by a
quadrant of the unit disk (lower left). These group-losses in-
duce corresponding group participation rates (upper right)
via ρ1 = f(ℓ1) (upper left). Because total loss has the form
of an inner product, we may interpret ρ as vector in the dual
space of ℓ, where we wish to increase the relative alignment
of corresponding ρ and ℓ vectors. For this figure, we see
that alternative values of ℓ would reduce loss if ρ were fixed
(i.e., under the assumption made by RRM). Due to decision-
induced distribution shift, however, the true form of the per-
formative loss (lower right) indicates that the policies se-
lected by RRM will actually increase loss (and disparity).

RRM is the typical benchmark policy for describing how
myopic fairness interventions, which do not account for
policy-induced distribution shift, can yield deleterious re-
sults. Nonetheless, RRM is also frequently considered for
our primary task (Problem 1) (Perdomo et al. 2021).

Despite its popularity, a gap exists between RRM and a
fair, locally optimal performative policy: RRM can actively
increase both loss and disparity, even when deployed near
fair, local minima of the objective function. We illustrate this
fact with an intuitive explanation inspired by the geometric
interpretation of our objective, in Figure 1. We emphasize
that this example is realistic: In Experiments, we provide
semi-synthetic examples with the same fundamental issues
based on real-world prediction tasks using US Census data
(Ding et al. 2021) data on movie preferences (Harper and
Konstan 2015) (Figures 2 to 4).

As a comparison to RRM, we consider an algorithm that
correctly account for policy-induced distribution shift in the
objective, but fails to account for the same in disparity. We
refer to this as “Myopic Projected Gradient” (MPG), which

we also formalize as a sequential quadratic program:

ℓt+1 = argmin
ℓ∈A

〈
ℓ,∇Lt

〉
+

1

2η
(ℓ− ℓt)2, (MPG)

where we recall that ∇Lt denotes a gradient with respect to
ℓ in our target setting. While MPG is well-constructed to op-
timize the objective function, we show in Experiments that
failure to account for the effect of policy-induced distribu-
tion shift on disparity measures that depend solely on the
distribution often results in violated constraints in practice.

A Failure Mode of Myopia
Let us examine Equation (2d) more carefully and decom-
pose ∇Ht as follows:

∇Ht :=
∂H
(
θt,Dt

)

∂θ︸ ︷︷ ︸
u

+
∑

i

∂Di(θ
t)

∂θ

∂H
(
θt,Dt

)

∂Di
︸ ︷︷ ︸

v

,

The myopic assumption of Equation (RRM) asserts that D
is constant, and so only considers the first term, u (i.e., as-
sumes v = 0). When ⟨u, u + v⟩ < 0 (i.e., when the myopic
approximation of the gradient opposes the true gradient), a
myopic first-order method will be misaligned with the true
direction of decreasing disparity u + v. For this reason, ex-
plicitly accounting for the second term in Equation (2d) is
needed to guarantee reductions of disparity with small up-
dates. Moreover, when H depends only on D(θ), u is iden-
tically zero, and myopic assumptions about (the absence of)
policy-induced distribution shift render us blind to attempt
to reduce disparity, just as RRM and MPG do when consid-
ering fair participation.

Algorithm and Asymptotic Convergence
To address Problems 1 and 3, we propose a method related
to Fletcher’s smooth exact penalty function (Fletcher 1973;
Conn, Gould, and Toint 2000). For futher background, we
also refer the reader to Nocedal and Wright (1999). Our
method involves solving a sequential quadratic program pa-
rameterized by step size η > 0 and a scale factor α > 0.
We refer to this method as “Constrained Projected Gradient”
(CPG), shown below, recalling that ∇Lt = ∇ℓL(ℓ)

∣∣
ℓ=ℓt

and ∇Ht = ∇ℓL(ℓ)
∣∣
ℓ=ℓt

.

ℓt+1 = argmin
ℓ∈A

〈
ℓ,∇Lt

〉
+

1

2η
(ℓ− ℓt)2.

subject to
〈
ℓ− ℓt,−∇Ht

〉
≥ αHt.

(CPG)

Assumption 6 (Feasibility). The fairness constraint is fea-
sible. That is, ∃ℓ⋆ ∈ A such that H(ℓ⋆) ≤ 0. Furthermore,
the subproblem in Equation (CPG) is feasible at each t.

The second stipulation of Assumption 6 eliminates the
possibility that, for example, ∇Ht = 0 and Ht > 0.
Theorem 1 (Asymptotic Convergence). Subject to Assump-
tions 1, 2 and 6, as (t → ∞), CPG (Equation (CPG)) con-
verges to a feasible local optimum of the objective when the
step size η is sufficiently small.



Proof Sketch. Our proof relies on establishing that CPG
first achieves fairness, then converges to a critical point of
the objective function. First, note that Ht > 0 =⇒

〈
ℓt+1−

ℓt,−∇Ht
〉
> 0, subject to the constraints imposed by A, by

the fairness constraint of Equation (CPG) and Assumption 6.
That is, when the current policy is unfair, the algorithm
makes progress towards fairness by decreasing disparity.
Second, we show that Ht ≤ 0 =⇒

〈
ℓt+1−ℓt,−∇L

〉
> 0.

That is, once the current policy is fair, the algorithm de-
creases loss. This second fact follows from the fact that
Ht ≤ 0 implies that the sign of

〈
ℓt+1 − ℓt,−∇H

〉
is un-

constrained, and minimization of the objective will naturally
ensure

〈
ℓt+1 − ℓt,∇L

〉
< 0 subject to the constraints of A.

We provide a rigorous proof in the Technical Appendix.
We briefly outline how CPG relates to Fletcher’s

smooth exact penalty function subject to convex constraints.
Fletcher’s penalty method (Fletcher 1973) is outlined by
Conn, Gould, and Toint (2000, Sec. 14.6) as a surrogate ob-
jective or “merit” function that we seek to minimize in order
to solve the constrained optimization problem (Problem 1),
which we notate in terms of general, unconstrained decision
variable θ:

Φ(θ) = L(θ) + λ(θ)H(θ), (5)
where, omitting explicit dependence on θ,

λ(θ) = argmin
z≥0

zH− 1

2σ

(
∇L+ z∇H

)2
(6a)

= max

(
0,

σH−
〈
∇L,∇H

〉
〈
∇H,∇H

〉
)
. (6b)

The standard approach is to minimize Φ(θ); however, the
potential non-differentiability of λ(θ) can be problematic
(Conn, Gould, and Toint 2000). To avoid this potential is-
sue, we interpret λ(θ) as a local estimate for the optimal dual
variable ν⋆ in the Lagrangian Λ associated with Problem 1:

Λ(θ, ν) := L(θ) + νH(θ) . (7)
To see this, observe that the Karush–Kuhn–Tucker condi-
tions guarantee that, at an optimal solution (denoted by ⋆),

∇(L⋆ + ν⋆H⋆) = 0 =⇒ ν⋆ = Ψ(θ⋆), where

Ψ(θ) := −
〈
∇L(θ),∇H(θ)

〉
〈
∇H(θ),∇H(θ)

〉 . (8)

In particular, the estimate λ(θ) given by Equation (6b) corre-
sponds to a gradient step taken with respect to ν in the max-
imization of the Lagrangian Λ away from an initial guess
Ψ(θ).

Thus, interpreting Equation (6b) as an estimate of the dual
variable in the Lagrangian, we propose to sequentially up-
date θ with a gradient update in the minimization of the La-
grangian Λ using the fixed estimate ν = λ(θt):

θt+1 − θt = −η∇Λt (9)

∇Λt = ∇Lt + λ(θt)∇Ht. (10)
Substituting Equation (6b) into Equation (10) and taking an
inner product with ∇H results in the relation

〈
∇Λt,∇Ht

〉
= max

(〈
∇Lt,∇Ht

〉
, σHt

)
.

Substituting ∇Λt as in Equation (9) then implies the con-
straint

〈
∇Λ,∇H

〉
=

1

η

〈
θt+1 − θt,−∇H

〉
≥ σH. (11)

Finally, let α = ση. Without additional constraints, CPG
updates θ by performing gradient descent on L subject to
the constraint of Equation (11):

θt+1 = argmin
θ

〈
θ,∇Lt

〉
+

1

2η
(θ − θt)2.

subject to
〈
θ − θt,−∇Ht

〉
≥ αHt.

(12)

Furthermore, if we can optimize over ℓ directly, we may add
constraints (e.g., ℓ ∈ A) to Equation (CPG) while retaining
convexity of the resulting subproblem.

Special Case: Concave Participation Rates
We consider the special case in which f(ℓ) is concave, in
addition to monotonically decreasing. In this case, we can
rewrite the objective in Problem 3 in terms of f−1 and treat ρ
as the decision variable for a concave minimization problem.
Assumption 7. fg(ℓg) is a concave function of ℓg for all g.

Additionally, we assume that we can arbitrarily degrade
the loss vector:
Assumption 8. The set A is “Pareto-closed”, i.e.

ℓ ∈ A, ℓ ≤ ℓ′ =⇒ ℓ′ ∈ A,

where the inequality is taken componentwise.
Assumption 4 implies that fg is invertible. With Assump-

tion 7, f−1
g is concave.

Proposition 1. Under Assumptions 3, 4, 7 and 8, the set
f(A) is convex.

Proof. Recall that A is a convex set of achievable losses ℓ
(Assumption 3). Given any two points ρ0,ρ1 ∈ f(A), we
wish to show that the point ρα := αρ1+(1−α)ρ0 ∈ f(A),
for any α ∈ [0, 1].

We see that the corresponding losses ℓ0, ℓ1 lie in A by
construction. Thus, by the above assumptions,

f−1(ρα) ≥ αℓ0 + (1− α)ℓ1 ∈ A,

so ρα ∈ f(A), and f(A) is convex.

We can express the “inverse” optimization problem to
Problem 3 as

minimize
ρ∈f(A)

⟨ρ, f−1(ρ)⟩ (13)

subject to H(ρ) ≤ 0 .

Problem 13 has a convex constraint and a concave objective,
since

∂2

∂ρ2g
ρgf

−1
g (ρg) =

(
f−1
g (ρg) + ρg

∂2

∂ρ2g
f−1
g (ρg)

)
≤ 0.

This problem is still nonconvex, but minimizing a concave
function over a convex set allows for a simple algorithm with
a very simple convergence proof: We can show that a simple
iterative linearization and minimization procedure over our
constraint set converges to a local minimum of the loss. The
details, convergence proof and an explicit example for our
choice of H is described in the Technical Appendix.



Experiments
We evaluate CPG against RRM and MPG in multiple semi-
synthetic settings.

Datasets
Our settings derive from binary classification tasks on the
American Community Survey Public Use Microdata Sample
(ACS PUMS) dataset3, as introduced by Ding et al. (2021),
for specific US states in 2018, or a recommendation task
on movie preferences using data (MovieLens) collected by
Harper and Konstan (2015). Each task gives samples of joint
feature (X), label (Y ∈ {0, 1}), and group (G ∈ [k]) vari-
ables, the joint distribution of which we summarize by writ-
ing S .

Model Class and Achievable Losses
For each task, we first define a set of achievable losses A.
We generate n = 100 different binary classifiers and record
the vector of group-specific losses ℓ achieved by the pre-
dicted labels Ŷ for each classifier, where we define ℓg as the
negative binary prediction accuracy conditioned on group g:

ℓg = − E
X,Y,G∼S

[
Ŷ = Y | G = g

]
. (14)

The set of achievable loss vectors A for the task is defined by
the convex hull of these samples A = Hull({ℓi : i ∈ [n]}).

In our experiments, we consider logistic classifiers trained
on different weighted logistic loss functions for the binary
classification task. That, for each classifier i ∈ [n], we sam-
ple a vector of objective function term weights β uniformly
at random from the (k − 1)-simplex (

∑k
g=1 βg = 1) and

solve the regularized logistic classification task

min
w

k∑

g=1

lg(w)βg +
1

2
|w|2;

lg(w) = E
X,Y,G∼S

[HY (hw(X)) | G = g] ;

Hp(q) = −p log q − (1− p) log(1− q);

hw(X) =
1

1 + e−⟨X,w⟩ ,

(15)

using the limited-memory method of Broyden, Fletcher,
Goldfarb, and Shanno (LBFGS) (Liu and Nocedal 1989), as
implemented by scikit-learn (Pedregosa et al. 2011).

Synthetic Distribution Shift
We model the function f that maps group loss to group par-
ticipation rate as a reversed logistic function parameterized
by bias and sensitivity parameters b ∈ (−1, 0) and s > 0,
respectively, and clipped to the interval [0, 1]. That is, we
model f as

f(x) = max
[
0,min[1, g(x)]

]
;

g(x) =
1

1 + es(x−b)
; x ∈ [−1, 0].

(16)

This same function is used in the upper-left panel of Figure 1
with parameters (s = 20, b = −0.62).

3https://github.com/socialfoundations/folktables

Hyperparameters
We use a learning rate that decays as a harmonic series:

ηt = η1/t; t ∈ {1, 2, ...}. (17)

All experiments follow the same decay schedule and run for
the same number of steps (i.e., 30), but the initial learning
rate η1 is equal to half of the diameter of A. Each experi-
ments run in less than 60 seconds on a typical laptop CPU.

We set initial conditions ℓ0, the participation function pa-
rameters (b, s) (See Synthetic Distribution Shift), and the
fairness slack parameter ε (refer to Problem 3) to demon-
strate qualitatively diverse simulation outcomes among our
included results.

Results
In all experiments, CPG achieved a feasible local optimum
of the objective, while RRM and MPG did so only rarely. In
(Figures 2 to 4), we highlight a few examples of our experi-
mental results on the following tasks:
• Income: “Income” task of Ding et al. (2021) with groups

redefined to coincide with the binary classification label
and restricted to data from Alabama.

• MovieLens: From user age, occupation, and gender, pre-
dict whether this user exhibits a stronger-than-median
preference for “mystery” rather than “adventure” films,
using zero-one loss and targeting equal user rates across
gender. The data for this task comes from Harper and
Konstan (2015).

• IncomeThree: “Income” task of Ding et al. (2021) with
groups expanded to three divisions of income (below
$60K, between $60K and $120K, above $120K) and re-
stricted to data from Alabama.

As our algorithms are deterministic, we do not consider
multiple runs for the same setting and leave characteriza-
tions of the robustness of these algorithms in terms of differ-
ent hyperparameters to future work (see Ethical Statement).

In Figures 2 to 4, the first pane visualizes the set of achiev-
able losses, A, and the samples used to generate it, where the
axes correspond to each group’s loss. The second pane visu-
alizes the corresponding set of achievable participation rates
ρ with axes corresponding to each group’s participation rate.
The last pane plots total loss and disparity vs. timestep for
all three methods in the given setting. In Figures 2 and 3, an
additional pane demonstrates the non-convexity of the total
loss and disparity surfaces along a curve corresponding to all
ℓ ∈ A which maximize distance from the origin, with angle
from the x-axis parameterized by ϕ. In all figures, a distinct
marker represents each method (i.e., RRM, MPG, CPG) and
their shared initialization across all panes.

Conclusion
We intend our work to push beyond the chorus of litera-
ture that highlights the failure of myopic fairness interven-
tions: We tractably address the problem of long-term fair-
ness by incorporating fairness constraints into the “perfor-
mative” setting (Perdomo et al. 2021), which explicitly ac-
counts for policy-induced distribution shift (Problem 1). We



Figure 2: Income task. This setting has a highly non-convex loss surface, shown in the third pane, and demonstrates a situation
in which CPG converges to the unique solution, MPG gets stuck in an unfair local minimum of the utility function, and RRM
diverges to the highest disparity.

Figure 3: MovieLens Task. This particular setting demonstrates application of our method to a recommendation task. Only our
proposed method, CPG, satisfies the fairness constraint, finding a solution to Problem 1 at the boundary of the feasible set,
where ⟨L,H⟩ < 0. Both RRM and MPG locally optimize local utility at the expense of fairness.

Figure 4: IncomeThree Task. This graphic is intended to showcase that Problem 3 and CPG are not restricted to only two groups,
and in general allow very large numbers of groups, though the resulting sets of achievable group losses and participation rates
are difficult to visualize. Inspecting the time-series, we see that CPG increases disparity at intermediate timesteps, despite
starting outside of the feasible (fair) set; we attribute this to the large initial step size, which is not guaranteed to eliminate
non-linear behaviors of L and H within the linear approximation trust-region.

show that this problem is amenable to tools derived from
non-linear optimization by proposing an algorithm (CPG)
which asymptotically solves the problem when restricted to
local, first-order information by generating a sequence of
policies (Theorem 1).

To provide a concrete setting for Problem 1 and CPG,
we have specialized our discussion for when group-specific
losses achieved by policy induce group-specific participa-

tion rates, thus extending the literature on fair participa-
tion dynamics. We compare CPG to standard, myopic ap-
proaches (RRM, MPG) in this setting with semi-synthetic
experiments informed by real-world classification tasks and
show that CPG consistently solves the problem where the
myopic baselines fail (See Experiments).



Ethical Statement
Because our work focuses on socially consequential applica-
tions of machine learning and optimization, it is important to
highlight its limitations.

First, it is important to note that asymptotic convergence
to fairness (Theorem 1) does not imply fairness at every
time step: In practice, the violations of fairness prior to con-
vergence may remain large over many time steps. For real-
world settings, this may be unacceptable, and alternative for-
mulations of the problem based on cumulative fairness vio-
lations or reinforcement learning (See Related Work) may be
more appropriate.

Second, Assumption 1 also introduces caveats: In realis-
tic settings, the gradients ∇L and ∇H cannot be observed
directly, but must be estimated from samples that introduce
additional noise. While noisy gradient estimates, when un-
biased, are still practically useful for gradient-based algo-
rithms such as stochastic gradient descent, the additional
noise may cause local increases in disparity and loss which
may translate to socially deleterious outcomes.
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