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ABSTRACT

We consider a federated learning (FL) system consisting of multiple clients and a server, where the
clients aim to collaboratively learn a common decision model from their distributed data. Unlike the
conventional FL framework that assumes the client’s data is static, we consider scenarios where the
clients’ data distributions may be reshaped by the deployed decision model. In this work, we leverage
the idea of distribution shift mappings in performative prediction to formalize this model-dependent
data distribution shift and propose a performative federated learning framework. We first introduce
necessary and sufficient conditions for the existence of a unique performative stable solution and
characterize its distance to the performative optimal solution. Then we propose the performative
FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T )
under both full and partial participation schemes. In particular, we use novel proof techniques and
show how the clients’ heterogeneity influences the convergence. Numerical results validate our
analysis and provide valuable insights into real-world applications.

1 Introduction

Traditional learning problems typically assume data distributions to be static. For applications such as face recognition,
this is largely true and designing algorithms under such an assumption in general does not impact learning efficacy. This,
however, is not true in many other domains. In some cases, there may be a natural evolution and shift in the distribution,
e.g., in weather and climate data, in which case new data need to be acquired periodically and the algorithm re-trained
to remain up to date. In other cases, the distribution shift is the result of the very learning outcome, when individuals
respond to the algorithmic decisions they are subjected to. For instance, when users with certain accents perceive
larger-than-acceptable errors from a speech recognition software and therefore stop using it, this can directly impact the
type of speech samples collected by the software used for training the next generation of the product. Another example
is “gaming the algorithm”, where users through honest or dishonest means attempt to improve critical features so as to
obtain a favorable decision by the algorithm (e.g., in loan approvals or job applications). This again can directly lead to
the distributional change in features and label that the algorithm relies on for decision making.

*These authors contributed equally to this work.
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This latter type of distribution shifts, one of particular interest, where the deployed model itself can trigger changes in
the data distribution and influence the objective, said to be performative. Performing prediction in the presence of such
distribution shift is called performative prediction Perdomo et al. [2020]. Typical scenarios of performative prediction
include strategic learning Hardt et al. [2016], Dong et al. [2018], Milli et al. [2019], Hu et al. [2019], Braverman
and Garg [2020], Chen et al. [2020], Miller et al. [2020], Shavit et al. [2020], Haghtalab et al. [2020], Kleinberg and
Raghavan [2020], Zrnic et al. [2021].

Performative prediction has been primarily studied in a centralized setting, with fruitful literature including the
convergence analysis Mendler-Dünner et al. [2020], Drusvyatskiy and Xiao [2020], Brown et al. [2020], Li and Wai
[2022], Wood et al. [2022] and algorithm development Izzo et al. [2021, 2022], Miller et al. [2021], Ray et al. [2022].

In modern large-scale machine learning, distributed learning offers greater privacy protection and better avoids the
computational resource bottlenecks compared to centralized learning, and federated learning (FL) is one of the most
popular examples. Here the issue of distribution shift is further compounded due to data heterogeneity in a distributed
setting. Specifically, the distributed data sources can be heterogeneous in nature, and their respective distribution shifts
can also be different. Prior works in FL systems that address data distribution shifts, such as Guo et al. [2021], Casado
et al. [2022], Rizk et al. [2020], Hosseinalipour et al. [2022], Zhu et al. [2021a], Eichner et al. [2019], Ding et al. [2020],
typically do not consider shifts in local distributions at the client end induced by the model. In this work, we propose
the performative federated learning framework to study and handle such data shifts in FL.

Extending the current results in performative prediction to the decentralized FL has a number of challenges. To highlight
a few: 1) Data heterogeneity: As already one of the major difficulties in FL, tackling data heterogeneity faces additional
challenges when taking the disparity of client distribution shift into consideration. 2) Central� Local: During training,
clients receive the aggregated model at certain steps and train from it. While fitting better as an entity, such aggregation
may fail to fit well on each client, which may lead to more severe shifting issues. 3) heterogeneity in shift: some
clients may be more sensitive to the deployed decisions and have more drastic data shifts than other clients, e.g., due to
different manipulation costs in strategic learning.

Toward this end, we formally introduce the performative FedAvg algorithm, or P-FedAvg, and establish its convergence.
Our main findings are as follows.

• We prove the uniqueness of the performative stable (PS) solution reached by the algorithm, and show that it is
a provable approximation to the performative optimal (PO) solution under mild conditions. Both solutions
will be formally defined in Section 2.1. More interestingly, we show that the stable solution has its own
game-theoretic interpretation as the fixed point of the best response dynamics.

• We show in Section 3.3 that the P-FedAvg algorithm converges to the performative stable solution and has a
O(1/T ) convergence rate with both the full and partial participation schemes under mild assumptions similar
to those in prior works.

• In doing so we also introduce some novel proof techniques: we prove convergence without a bounded
gradient assumption. This technique can be directly applied to conventional FL, which is a special case of the
performative setting.

1.1 Related Works

Federated Learning. Our work is strongly related to the literature on federated learning (FL). Although many studies
have tried to address client heterogeneity in FL through constrained gradient optimization and knowledge distillation
Li et al. [2020a], Karimireddy et al. [2020], Wang et al. [2020], Haddadpour et al. [2021], Zhu et al. [2021b], Li and
Wang [2019], Lin et al. [2020], most of them still assume the data is static without considering the distribution shifts.
To the best of our knowledge, only a few recent works consider distribution shifts in FL Guo et al. [2021], Casado et al.
[2022], Rizk et al. [2020], Hosseinalipour et al. [2022], Zhu et al. [2021a], Eichner et al. [2019], Ding et al. [2020]. For
example, Guo et al. [2021] considered FL with time-evolving clients where the time-drift of each client is modeled as a
time-independent additive noise with zero-mean and bounded variance. Casado et al. [2022] proposed an FL algorithm
adaptable to distribution drifts; it monitors the confidence scores of the model prediction throughout the learning process
and assumes the drift happens whenever there is a substantial drop in confidence scores. Rizk et al. [2020] also studied
dynamic FL and assumed the true model under time-evolving data follows a random walk. Hosseinalipour et al. [2022]
considered FL with dynamic clients and modeled the drift using the variation in local loss over two consecutive time
steps. Zhu et al. [2021a], Eichner et al. [2019], Ding et al. [2020] considered the periodical distribution shift of client
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population in FL; they assume the block-cyclic structure where the clients from two different time zones alternately
participate in training.

Performative Prediction. In addition to the one we discussed in the introduction that focuses on the centralized setting
for performative prediction, more recently, Li et al. [2022] formalize the multi-agent/player performative predictions
where agents try to learn a common decision rule but have heterogeneous distribution shifts (responses) to the model,
and study the convergence of decentralized algorithms to the PS solution. The decentralized performative predictions
capture the heterogeneity in agents’/clients’ responses to the decision model and avoid centralized data collection for
training. This work provides inspiration for our formulation of the performative federated learning framework, and our
proposed P-FedAvg can be viewed as a substantial algorithmic extension that supports unbalanced data, much less
frequent synchronizations, and partial device participation. Narang et al. [2022] propose a decentralized multi-player
performative prediction framework where the players react to competing institutions’ actions. Raab and Liu [2021]
proposes a replicator dynamics model with label shift.

Strategic Classification and Regression. As discussed in Perdomo et al. [2020], performative prediction can be used
to solve repeated strategic classification and regression problems. We can use Stackelberg games to model these
problems, where the decision maker moves in the first stage by designing, publishing, and committing to a decision rule,
then the agents move in the second stage, best responding to the decision rule by manipulating their features to get more
desirable decision outcomes, and such manipulation can be modeled by the distribution shift mappings. Conventional
strategic learning literature focus on finding the Stackelberg equilibrium Hardt et al. [2016], Kleinberg and Raghavan
[2020], Shavit et al. [2020], Haghtalab et al. [2020], i.e., the PO solution where the decision maker and the agents know
each others’ utilities, whereas performative prediction can find the PS solution in repeated strategic learning problems
regardless of the knowledge on the utilities.

2 Problem Formulation

In this section, we formulate the performative federated learning problem, define the learning objective, and introduce
our performative federated learning algorithm to optimize the objective function.

To help with the understanding of performative federated learning, we first recall the performative prediction problem
Perdomo et al. [2020]. Consider a typical loss minimization problem where the data distribution experiences a shift
induced by the model parameter, expressed as a mapping D(θ). The objective function is thus given by

f(θ) := EZ∼D(θ)[`(θ;Z)],

where ` denotes the loss function. Then the performative optimal (PO) solution is θPO := arg minθ f(θ). Perdomo
et al. [2020] also introduces a second, decoupled objective function, also called the performatively stable (PS) model,
which separates decision parameters (θ) from deployed parameters (θ̃):

f(θ; θ̃) := EZ∼D(θ̃)[`(θ;Z)].

Minimizing this objective achieves minimal risk for the distribution induced by the deployed parameters, eliminating
the need for retraining, which makes it more practical. The PS solution is defined as θPS := arg minθ f(θ;θPS).
Perdomo et al. [2020] showed that θPS 6= θPO in general. We next consider a distributed setting and introduce
performative federated learning.

2.1 System Settings and Objectives

Consider a system with N clients and a server, where the clients have feature distributions as Di(θ), supported on
Z ⊆ RM , and θ ∈ Rm denotes the decision (model) parameters deployed on the i-th client. We consider the general
case where clients can have heterogeneous distributions Di(θ) 6= Dj(θ), and each client represents a pi > 0 fraction of
the total data population,

∑N
i=1 pi = 1.

The system aims to minimize the weighted average loss across all agents, which is given by the performative optimal
objective as follows

θPO := arg min
θ∈Rm

N∑
i=1

piEZi∼Di(θ)[`(θ;Zi)]. (1)
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We note that our objective reduces to that in Li et al. [2022] when pi = 1
N for all i. This objective can typically

model the strategic learning problem with different sub-populations in the system, where each client corresponds to
a sub-population. Each sub-population may differ in some attributes so that they respond to the decision parameters
differently, e.g., due to different action costs Milli et al. [2019], Hu et al. [2019], Braverman and Garg [2020], Zhang
et al. [2022], Jin et al. [2022]. The decision maker uses a common decision rule for the entire population and aims to
minimize the expected loss, and pi represents the population fraction of each sub-population. Correspondingly, the
decoupled/performative stable objective is

fi(θ; θ̃) := EZi∼Di(θ̃)[`(θ;Zi)], f(θ; θ̃) :=
N∑
i=1

pifi(θ; θ̃),

where the first argument denotes the client’s decision parameter, and the second argument the deployed parameters,
which determine the distribution of the samples together with Di(·). The PS solution is

θPS := arg min
θ

N∑
i=1

piEZi∼Di(θPS)[`(θ;Zi)]

= arg min
θ
f(θ;θPS).

(2)

Note that this is a fixed point equation with θPS as a fixed point.

2.2 Key Assumptions

We make the following assumptions similar to Li et al. [2022], Perdomo et al. [2020]:

Assumption 2.1 (Strong Convexity). Given any θ̃ ∈ Rm, f(·, θ̃) is µ-strongly convex in θ, i.e., f(θ′; θ̃) ≥ f(θ; θ̃) +
〈∇f(θ; θ̃),θ′ − θ〉+ µ

2 ‖θ
′ − θ‖22, ∀θ

′,θ ∈ RK .

In Assumption 2.1, we do not require strong convexity for every single fi but only the weighted average f .

Assumption 2.2 (Smoothness). The loss function `(θ; z) is L-smooth, i.e.,

‖∇`(θ; z)−∇`(θ′; z′)‖2 ≤ L(‖θ − θ′‖2 + ‖z − z′‖2).

Assumption 2.3 (Distribution Mapping Sensitivity). For any i = 1, . . . , n there exists εi > 0 such that

W1(Di(θ),Di(θ′)) ≤ εi‖θ − θ′‖2, ∀θ′,θ ∈ Rm,

whereW1(D,D′)) is the 1-Wasserstein distance under L2 norm between the distributions D,D′.

Assumption 2.2 and 2.3 together induce the smoothness of fi(·, ·), which is a result of Lemma 2.1 in Drusvyatskiy and
Xiao [2022] and will be used in the later proofs.

Lemma 2.4 (Continuity of Ofi). Under Assumption 2.2 and 2.3, for any θ0,θ1,θ, θ̂ ∈ Rm,

‖∇fi(θ0;θ)−∇fi(θ1; θ̂)‖2 ≤ L‖θ0 − θ1‖2 + Lεi‖θ − θ̂‖2.

We introduce the following assumptions specifically made in decentralized performative predictions Li et al. [2022].

Assumption 2.5 (Stochastic Gradient Variance Bound). For any i = 1, . . . , N and θ ∈ Rm, there exists σ ≥ 0 such
that

EZi∼Di(θ)‖∇`(θ;Zi)−∇fi(θ;θ)‖22 ≤ σ2(1 + ‖θ − θPS‖22).

Assumption 2.6 (Local Gradient Bound). For any i = 1, . . . , N and θ ∈ Rm, there exists ς ≥ 0 such that

‖∇f(θ;θ)−∇fi(θ;θ)‖22 ≤ ς
2(1 + ‖θ − θPS‖22).
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Here we elaborate on Assumption 2.6, and explain reasons for using it over another commonly used assumption in
federated learning Li et al. [2020b], which is

EZi∼Di(θ)[‖∇`(θ;Zi)‖22] ≤ G2. (3)

First, it can be shown that (3) implies Assumption 2.6, thus Assumption 2.6 is weaker than (3). To see this: when (3)
holds, let ς2 = 4G2, then ‖∇f(θ;θ)−∇fi(θ;θ)‖22 ≤ 2

∥∥∇f(θ;θ)‖22 + 2‖∇fi(θ;θ)
∥∥2
2
≤ 4G2 = ς2.

We further give a concrete example where (3) does not hold but Assumption 2.6 holds.

Example 2.7. Suppose we have a two-client Gaussian mean estimation problem `(θ, Z) = 1
2 (θ−Z)2 where θ, Z ∈ R,

D1(θ) = N ( 1
2θ, σ

2), D2(θ) = N (− 1
2θ, σ

2), and p1 = p2 = 1
2 . Then EZ1∼D1(θ)[‖∇`(θ;Z1)‖22] = EZ1∼D1(θ)[(θ −

Z1)2] = σ2 + (EZ1∼D1(θ)[θ − Z1])2 = 1
4θ

2 + σ2 and EZ2∼D2(θ)[‖∇`(θ;Z2)‖22] = 9
4θ

2 + σ2 which all go to
infinity when θ goes to infinity. Thus (3) does not hold. On the other hand, ∇f1(θ; θ) = 1

8θ, ∇f2(θ; θ) = 9
8θ, and

∇f(θ; θ) = 5
8θ, θPS = 0, then by taking ς = 1

2 , we can verify Assumption 2.6 holds.

Secondly, (3) also implies Assumption 2.5: when (3) holds, letting σ2 = G2 leads to E[‖∇l(θ;Zi)−∇fi(θ,θ)‖22] ≤
E[‖∇l(θ;Zi)‖22] ≤ G2 = σ2. On the other hand, Assumption 2.6 does not imply Assumption 2.5.

It turns out that Assumption 2.6 better characterizes the system heterogeneity, as we show how the heterogeneity
impacts convergence (more details are in Theorem 3.1, 3.2, and 3.3).

2.3 Properties of the PS Solution

Define the average sensitivity as ε :=
∑N
i=1 piεi, and the mapping Φ(θ) := arg minθ′∈Rm f(θ′,θ). Then we can

establish the existence and uniqueness of the PS solution.

Proposition 2.8 (Uniqueness of θPS). Under Assumptions 2.1, 2.2 and 2.3, if ε < µ/L, then Φ(·) is a contraction
mapping with the unique fixed point θPS = Φ(θPS); if ε ≥ µ/L, then there is an instance where any sequence
generated by Φ(·) will diverge.

Proposition 2.8 establishes a sufficient and necessary condition for the existence of θPS , similar to Li et al. [2022].
This condition only depends on the average sensitivity ε, which implies that we may still have a unique performative
stable solution θPS for the whole system even if certain clients do not. The following proposition further validates the
quality of θPS in terms of its distance to θPO.

Proposition 2.9 (Distance ‖θPO − θPS‖2 Bound). Under Assumption 2.1 and 2.3, suppose that the loss `(θ;Z) is
Lz-Lipschitz in Z, then for every performative stable solution θPS and every performative optimal solution θPO, we
have ‖θPS − θPO‖2 ≤

(
2Lzε

)
/µ.

The proofs of Proposition 2.8 and 2.9 are in Appendix A.

2.4 The P-FedAvg Algorithm

In P-FedAvg, the clients communicate with the server every E local updates. Denote IE := {nE|n = 1, 2, . . . } as
the set of aggregation steps. Next, we formalize the full and partial participation schemes of the proposed P-FedAvg.

Full client participation. All clients communicate with the server at every aggregation step and update the local
models θt+1

i based on the following: let Zt+1
i ∼ Di(θti), then

wt+1
i = θti − ηt∇`(θ

t
i;Z

t+1
i );

θt+1
i =

{ ∑N
j=1 pjw

t+1
j if t+ 1 ∈ IE

wt+1
i o.w.

Partial client participation. A more realistic setting that does not require the response of all clients’ output at every
aggregation step. In this case, the central server only collects the outputs of the first K < N responded clients at the
aggregation step. Denote the first K < N responded clients in t-th step as a size-K set St := {i1, . . . , iK} ∈ [N ]. Let
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Zt+1
i ∼ Di(θti), then

wt+1
i = θti − ηt∇`(θ

t
i;Z

t+1
i );

θt+1
i =


(

samples St+1, and
average

{
wk
t+1

}
k∈St+1

)
if t+ 1 ∈ IE

wt+1
i o.w.

We further consider two schemes of partial participation:

1. (Scheme I) The server establishes St+1 by i.i.d. with replacement sampling an index k ∈ {1, · · · , N} with
probabilities p1, · · · , pN for K times. Hence St+1 is a multiset that allows an element to occur more than
once. Then the server averages the parameters by θt+1

i = 1
K

∑
k∈St+1

wt+1
k . This sampling scheme is first

proposed in Sahu et al. [2018] but the theoretical analysis was first done in Li et al. [2020b].
2. (Scheme II) The server samples St+1 uniformly without replacement. Hence each element in St+1 only

occurs once. Then the server averages the parameters by θt+1
i =

∑
k∈St+1

pk
N
Kw

t+1
k . Note that when the

probabilities {pk} are not the same, one cannot ensure
∑
k∈St+1

pk
N
K = 1 Li et al. [2020b].

Pseudo-codes of P-FedAvg are in Appendix ??.

Communication cost. The P-FedAvg requires two rounds of communications, aggregation, and broadcast for every
E iterations. So at time step T , the system completes 2bT/Ec communications. We follow the setting in Li et al.
[2020b] where the server aggregates based on the chosen scheme and broadcasts the aggregated parameters to all
clients.

Next, we will prove that P-FedAvg has O(1/T ) convergence rate under the above assumption. As a supplement, we
prove in Appendix D that P-FedAvg also has O(1/T ) convergence rate if we replace Assumption 2.6 with (3).

3 Convergence Analysis

In this section, we show that the P-FedAvg converges to the unique θPS at a rate of O(1/T ) under the assumptions
made in Section 2, which holds for all above-introduced schemes. The key observation is that for sufficiently small
and decaying learning rates, the effect of E steps is similar to a one-step update with a larger learning rate in the static
case, as stated in Li et al. [2020a] without the performative setting. Therefore, given appropriate sampling and updating
schemes that satisfy the above assumptions, the global update behaves similarly to the repeated performative SGD in
Perdomo et al. [2020]. We also show that partial device participation makes the averaged parameter sequence {θt} have
the same mean as but a larger variance than the full participation, where the variance can be controlled with carefully
chosen learning rates. It’s worth noting that the heterogeneity of clients plays a key role in the convergence analysis,
which we elaborate on below.

Quantifying the heterogeneity. The client heterogeneity can be quantified by the consensus error
∑N
i=1 pi‖θ

t
i − θ

t‖22,
which is dynamic due to the nature of performative prediction. It depends on both the shift mappingsDi and the decision
parameters. After every broadcast, the heterogeneity leads to heterogeneous distribution shifts, causing heterogeneous
local updates and eventually resulting in the consensus error. The ς value in Assumption 2.6 is also a good indicator for
heterogeneity.

Next, we will first present the convergence analysis of the full participation scheme and later extend the analysis to
partial participation schemes. Due to the complexity of analysis in the performative setting, we define the following
constants for ease of analysis and clarity of presentation.

Constants independent of system design.
ε :=

∑N
i=1 piεi, εmax := maxi εi,

µ̃ := µ− (1 + δ)εL, δ > 0,
c1 :=

(
L(1 + εmax)2

)
/(2δε),

c2 := 4
[
σ2 + L2(1 + εmax)2

]
,

c3 := 6
[
2σ2 + 3L2(1 + εmax)2

]
,

c4 := 16σ2 + 12ς2 + (8σ2 + 12ς2)/E‖θ0 − θPS‖22,
c5 := (48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2).
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Constants related to system design (e.g., E,K).
c6 := (2E2 + 3E + 1) log(E + 1),
η̃0 := µ̃/

(
2σ2 + (c1c3 + c2/6)c4c6

)
,

η̂0 := µ̃/
(
2σ2 + (c1c3 + c2/6)c4(2E2 − E) logE

)
,

B := 2σ2 + (4c1η̂0 + 4c2η̂
2
0)c5(2E2 − E) logE ,

B1 := 2σ2 + (4c1η̃0 + 4c2η̃
2
0 + 1/K)c5c6,

B2 := 2σ2 +
(
4c1η̃0 + 4c2η̃

2
0 + N−K

K(N−1)
)
c5c6.

3.1 Convergence of Full Participation

Theorem 3.1 (Full Participation). Consider P-FedAvg with full participation and diminishing step size ηt = 2
µ̃(t+γ) ,

where γ = max
{

2
µ̃η̂0

, E, 2
µ̃

√
(4E2 + 2E)c3

}
. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, the following holds

E[‖θt − θPS‖22] ≤ υ

γ + t
, ∀t

where υ = max
{

4B
µ̃2 , γE‖θ

0 − θPS‖22
}

.

The proof of Theorem 3.1 can be found in Appendix B. The key to the proof is that expected distance E‖θt − θPS‖22
and expected consensus error

∑N
i=1 piE‖θ

t−1
i − θt‖22 all depend on expected distance E‖θt−1 − θPS‖22 and expected

consensus error
∑N
i=1 piE‖θ

t−1
i − θt−1‖22 in the previous step. While we can establish a descent lemma for expected

distance including the expected consensus error, it is impossible to establish one for expected consensus error, which
makes it impossible to establish a joint descent lemma for expected distance and expected consensus error as in Li et al.
[2022]. Fortunately, consensus error will become zero at every aggregation step, which enables us to control expected
consensus error at every step within a constant with a novel double-iteration technique under small enough step sizes.
Then by relaxing the expected consensus error to the constant, we can establish a standard descent lemma in SGD
analysis for expected distance.

3.2 Convergence of Partial Participation

As mentioned in Section 2, the partial participation scheme is more realistic in federated learning Li et al. [2020b] and
is of more interest since it reduces the stragglers’ effect.

We first present the convergence result of Scheme I.

Theorem 3.2 (Partial Participation, Scheme I). Consider P-FedAvg with partial participation (scheme I) and a
diminishing step size ηt = 2

µ̃(t+γ) , where γ = max
{

2
µ̃η̃0

, E, 2
µ̃

√
(4E2 + 10E + 6)c3

}
. Under Assumption 2.1, 2.2,

2.3, 2.5, 2.6, the following holds

E[‖θt − θPS‖22] ≤ υ

γ + t
, ∀t

where υ = max
{

4B1

µ̃2 , γE‖θ
0 − θPS‖22

}
.

Then we present the convergence result of Scheme II. As discussed in Section 2, we need probabilities pi = 1
N , ∀i to

ensure
∑
i∈St pk

N
K = 1.

Theorem 3.3 (Partial Participation, Scheme II). Consider P-FedAvg with partial participation (scheme II) and a
diminishing step size 2

µ̃(t+γ) , where γ = max
{

2
µ̃η̃0

, E, 2
µ̃

√
(4E2 + 10E + 6)c5

}
. Under Assumption 2.1, 2.2, 2.3,

2.5, 2.6, the following holds

E[‖θt − θPS‖22] ≤ υ

γ + t
, ∀t

where υ = max
{

4B2

µ̃2 , γE‖θ
0 − θPS‖22

}
.
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The proofs of Theorem 3.2 and 3.3 can be found in Appendix C. Besides the technical difficulty as that of Theorem 3.1,
we also need to bound the variance of θ

t
at the aggregation step. Fortunately, it can be bounded by the consensus error.

Then by similar techniques as in the proof of Theorem 3.1, we can establish a standard descent lemma in SGD analysis
for the expected distance.

Scheme II requires pi = 1
N , ∀i, which violates the unbalanced nature of FL. One solution in Li et al. [2020b] is scaling

the local objectives to gi(θ; θ̃) = piNfi(θ; θ̃), and then the global objective is a simple average of the scaled local
objectives

f(θ; θ̃) :=
N∑
i=1

pifi(θ; θ̃) =
1

N

N∑
i=1

gi(θ; θ̃).

We need to be careful with the Assumptions in Section 2 since scaling the objective will change those properties. The
convergence theorems still hold if we replaceL, µ, σ, ς withL′ := qmaxL, µ

′ := qminµ, σ
′ :=
√
qmaxσ, ς

′ :=
√
qmaxς ,

where qmax := N ·maxi pi, qmin := N ·mini pi.

3.3 Discussions on the Algorithm and Solution

We will only discuss with respect to the aggregation step in this sub-section for convenience, denoted as T ∈ IE , then
we can simply use T

E when dividing E. Note for a general step t, we only need to use b tE c to obtain an integer.

Choice of E. We are interested in the total time we need to achieve an ε accuracy, and how this total time changes with
E. We use our results in Theorem 3.1, 3.2, and 3.3, and denote Tε := υ

ε − γ as the number of computation steps that
is sufficient to guarantee an ε-accuracy. To connect Tε to the total time needed, suppose the expected time for each
communication step is C times the expected time of each computation step, then the total time required for ε-accuracy
is linear in Tε + C · TεE . Below we separately analyze the influence of E on Tε

E and Tε, and then discuss how to choose
the optimal E for different C values.

Let B0 := B in Theorem 3.1 for full participation and γi (i = 0, 1, 2) denotes the γ in Theorem 3.1, 3.2, and 3.3
respectively. Then in Theorem 3.1, 3.2, and 3.3, Tε is dominated byO

(
4Bi/µ̃

2 +γiE[‖θ0−θPS‖22]
)

where i = 0, 1, 2.
From the definition, we know that Bi (i = 0, 1, 2) is almost a constant w.r.t. E and γi is of O(E2 logE). This means
that when E grows, the total update steps to reach ε-accuracy, Tε will grow, while the number of aggregation steps
needed, TεE will first grow and then decrease.

Now we consider Tε + C · TεE , the total time needed to reach ε-accuracy. From the above analysis, we know it is of
order O(E2 logE) + C · O(E logE) + C · O(logE/E). When communication is fast, i.e., C is small, O(E2 logE)
is the dominating term, and we can focus more on the number of computation iterations Tε, and smaller E values are
preferable. However, when C is large, C · O(E logE) +C · O(logE/E) becomes the dominating term, and we should
focus more on the number of communication rounds Tε

E and some middle E values are preferable.

Choice of K. Again Tε is dominated by O
(
4Bi/µ̃

2 + γiE[‖θ0 − θPS‖22]
)

where i = 1, 2. Then by the formulae of
Bi (i = 1, 2), we know Tε monotonically decreases with K, but the total communication time increases with K due
to more severe stragglers’ effect. Generally, as we show in Theorem 3.2 and 3.3, the convergence rate has a weak
dependence on K. We have empirically observed this phenomenon in Figure 3(a). Therefore, we can set KN to an
appropriate small value to reduce the straggler’s effect while keeping the convergence rate.

Choice of sampling schemes. We formalize the two sampling schemes in Section 2 and show their convergence
properties in Theorem 3.2 and 3.3. We note that Scheme I has a desirable property that it naturally supports unbalanced
clients, so if the server has control over the sampling, Scheme I should be chosen.

But as discussed in Li et al. [2020b], sometimes the server may have no control over the sampling and simply use
the first K received results for update. In this case, if the reception times from each client are IID random variables,
we can treat this process as uniformly sampling K out of N at random without replacement. Theorem 3.3 showed
the convergence, and the discussion on scaling the objectives provides instructions on how to make the system work
with arbitrary initial p1, . . . , pN values. However, it’s worth noting that when p1, . . . , pN are highly non-uniform, the
corresponding L′, σ′, ς ′ values will be much larger than from L, σ, ς , and µ′ will be much smaller than µ. Then by the
formula of η̂0 and η̃0, we have to use much smaller starting learning rates and thus slower convergence. However, such
a small learning rate may cause the model to fail to train at all. We also empirically show this in Figure 7.
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Figure 1: Distance to the performative stable solution vs. the number of iterations for full participation, Scheme I, and
Scheme II.

However, an interesting observation is that when pi = 1
N , we empirically show in Figure 4 and 5, Scheme II slightly

outperforms Scheme I.

Learning rate decay. The learning rate decay is a necessity for stochastic gradient descent (SGD) to converge, even
when clients have static, independent and individually distributed (IID) data. The decay is used in Li et al. [2022] in
decentralized performative prediction and the necessity for such decay is proved in FedAvg with static, non-IID clients.
We also empirically show that constant learning rates fail to converge in Figure 6.

θPS and θPO. Here we discuss the relationship between the θPS and θPO solutions more in depth. In the strategic
learning setting, Perdomo et al. [2020] showed that θPO is the Stackelberg equilibrium. It’s worth noting that θPS

is not merely an approximation to θPO, but a natural convergence point of the best response dynamics (BRD). More
specifically, when the clients and the decision maker have no information about others’ utilities, backward induction is
unavailable, and playing the Stackelberg equilibrium is unrealistic. In this case, treating others’ strategies in the previous
time step as constants, and optimizing one’s own strategy accordingly is a rational strategy. Such an optimization step is
a best response, and in multi-round sequential strategic learning problems Zrnic et al. [2021], the best responses can form
the BRD, and θPS is the convergence point of the BRD. Although the decision maker’s natural best response step is
a risk minimization step, the gradient-based P-FedAvg can find the same θPS . Another interesting observation of
θPS is that if we remove the sequential decision nature, then {θPS ,D1(θPS), . . . ,DN (θPS)} is a Nash equilibrium
since no participant has an incentive to unilaterally deviate.

4 Numerical Experiments

4.1 Weighted Gaussian mean performative prediction

As a numerical simulation, we perform P-FedAvg to estimate the mean of heterogeneous Gaussian data under
performative effects and examine the impact of the hyperparameters, the sampling schemes, and client heterogeneity.
We consider N = 25 clients, with the i-th client minimizing the loss function `(θ;Zi) := (θ − Z)2/2, θ, Z ∈ R on
data Zi ∼ Di(θ) := N (mi + εiθ, σ

2). For this loss function, we have µ = 1, L = 1. For ε ∈ [0, 1), the PS solution is

θPS =
∑N
i=1 pimi
1−ε ; while θPS does not exist when ε ≥ 1. Denote the weighted average of mi as m =

∑N
i=1 pimi and

the variance as Var(m) =
∑N
i=1 pi(mi −m)2. In experiment, we set ε = 0.9, m = 10.

Figure 1 shows P-FedAvg converges to the performative stable solution in all three communication settings: full
participation and the two schemes for the partial participation. Interestingly, partial participation with scheme II
converges the fastest in this experiment. Despite the full participation scheme having the lowest upper bound on the
number of iterations sufficient to convergence, our experimental results show that the actual convergence behaviors of
all three schemes are very similar and weakly depend on K, especially when pi = 1

N .
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Impact of E. We conduct an experiment to compare the performance of our algorithm with a variety of E values, under
a homogeneous system. Figure 2 shows the result on both sampling schemes, with K = 20. A slightly larger E leads
to faster convergence. However, an extremely large E(E = 50 in the experiment) can also cause slower convergence.
Since at this case, the clients deviate too much at each aggregation, which causes low efficiency issues. In real world
scenarios, as the communication cost changes, E should be carefully chosen.
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Figure 2: Impact of E on Scheme I and Scheme II. K = 20, Var(m) = 0.6, Var(ε) = 0.1 for both (a) and (b). For (b),
pi = 1

25 .

Impact of K. Figure 3 shows the convergence of FedAvg under different k values, For scheme I, larger k leads to faster
convergence. While for scheme II, as k increasing, the convergence rate will first increase and then decrease.
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Figure 3: Impact of K on Scheme I and Scheme II . E = 5, Var(m) = 0.6, Var(ε) = 0.1 for both (a) and (b). For (b),
pi = 1

25 .

Impact of sampling schemes. Figure 1 also compares different schemes. We can see if the clients’ data are uniformly
sampled (pi = 1

N ), then scheme II achieves a better convergence rate, which conforms to our theoretical result because
B1 > B2.

Data heterogeneity and shifting heterogeneity. In Figure 4 we test our algorithm under data heterogeneity. Specifi-
cally, we set m and ε to have large variances, respectively. In this example, m mainly captures the data heterogeneity
and ε capture the shifting heterogeneity. This experiment shows our algorithm still converges under a certain amount of

10



Performative Federated Learning:
A Solution to Model-Dependent and Heterogeneous Distribution Shifts A PREPRINT

heterogeneity. Comparing the performance of our algorithm on both figures, we can see shifting heterogeneity is the
main factor in performative federated learning.
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0 1 2 3 4 5 6
Iterations 1e5

10 3

10 2

10 1

100

101

102

Di
st

an
ce

 to
 th

e 
st

ab
le

 p
oi

nt

scheme I
scheme II
scheme I, heterogeneous
shceme II, heterogeneous

(b) Heterogeneity in εi

Figure 4: Impact of heterogeneity on the two schemes of partial participation. The impact of mi is shown in (a) and the
impact of εi is shown in (b). K = 20, pi = 1

25 and. In (a), Var(m) = 6 for hetergeneous case and 0 for homogeneous
case, Var(ε) = 0.1. In (b), Var(ε) = 0.6 for hetergeneous case and 0.1 for homogeneous case, Var(m) = 0.6.

4.2 Credit Score Strategic Classification

To show the performance of P-FedAvg on a real world dataset, we follow Perdomo et al. [2020] and use the same
Kaggle dataset *, where a bank predicts whether loan applicants are creditworthy. The features consist of the information
about an individual, and the target is 1 if the individual defaulted on a loan, and 0 otherwise. We use the same strategic
setting as in Perdomo et al. [2020] where the applicants can manipulate their features in (1) revolving utilization of
unsecured lines, (2) number of open credit lines and loans, and (3) number real estate loans or lines. The strength
of manipulation for the i-th population is controlled by εi. We equally partition the training set into 10 subsets and
distributed it to 10 clients, and thus pi = 0.1, ∀i. The sensitivities εi for the 10 clients are independently and uniformly
sampled from [0.9, 1.1]. We set K = 5 in partial participation. We train a logistic regression binary classifier. In each
round of P-FedAvg, we perform E = 5 gradient descent steps on a random minibatch of size 4. A discussion on the
effect of the batch size can be found in Appendix E.2.

Figure 5 shows the loss function and the distance to the PS solution as the number of deployment rounds increases. The
mean and 1 standard deviation error bar are generated from 5 experiments with different random seeds. Similar to the
numerical simulation, the actual convergence behaviors of all three schemes are very similar.

5 Conclusion

In this work, we leveraged the idea of distribution shift mappings in performative predictions to study federated
learning problems where data shifts exists and such shifts are induced by the decision parameters. We formulated the
performative federated learning problem and showed that a unique performative stable solution exists, which is a natural
equilibrium of the iterative updating process between the server and the clients. Then we formalized the P-FedAvg
algorithm and proved that both the full device participation and the partial device participation schemes have O(1/T )
convergence rate to the performative stable solution. We also thoroughly discussed the impact of how some of the key
system parameters influence the convergence, including the aggregation interval size, the number of sampled devices in
partial participation, the sampling schemes, and the heterogeneity among clients. Our numerical results validate our
theory and discussion, and provide valuable insights into the real-world applications of performative federated learning.

*www.kaggle.com/competitions/GiveMeSomeCredit/data
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Figure 5: The losses (a) and the distances to the PS solution (b) for the full participation, Scheme I and Scheme II.
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A Proof of Proposition 2.8 and 2.9

Proposition 2.5. (Uniqueness of θPS) Under Assumptions 2.1, 2.2 and 2.3, define the map Φ : Rm 7→ Rm

Φ(θ) := arg min
θ′∈RM

f(θ′,θ)

If ε :=
∑N
i=1 piεi < µ/L, then Φ(·) is a contraction mapping with the unique fixed point θPS = Φ(θPS). On the

contrary, if ε ≥ µ/L, then there is an instance where any sequence generated by Φ(·) will diverge.

Proof. This proof simulates the proof of Proposition 1 in Li et al. [2022].

Fix θ′,θ ∈ Rm, the optimality condition implies that

N∑
i=1

pi∇fi(Φ(θ); θ) = 0,
N∑
i=1

pi∇fi(Φ(θ′);θ′) = 0

where the gradients are taken w.r.t the first argument in fi. Then we have

0 =〈0,Φ(θ)− Φ(θ′)〉

=〈
N∑
i=1

pi
(
∇fi(Φ(θ);θ)−∇fi(Φ(θ′);θ′)

)
,Φ(θ)− Φ(θ′)〉.

Rearranging the above equation and adding
∑N
i=1 pifi(Φ(θ),θ′) to both hand sides leads to

〈
N∑
i=1

pi
(
∇fi(Φ(θ);θ′)−∇fi(Φ(θ);θ)

)
,Φ(θ)− Φ(θ′)〉

=〈
N∑
i=1

pi
(
∇fi(Φ(θ);θ′)−∇fi(Φ(θ′);θ′)

)
,Φ(θ)− Φ(θ′)〉.

By strong convexity in assumption 2.1, we have

f(Φ(θ);θ′) ≥ f(Φ(θ′);θ′) + 〈∇f(Φ(θ′);θ′),Φ(θ)− Φ(θ′)〉+
µ

2
‖Φ(θ)− Φ(θ′)‖22,

f(Φ(θ)′;θ′) ≥ f(Φ(θ);θ′) + 〈∇f(Φ(θ);θ′),Φ(θ)− Φ(θ′)〉+
µ

2
‖Φ(θ)− Φ(θ′)‖22,

and thus

〈∇f(Φ(θ);θ′)−∇f(Φ(θ′);θ′),Φ(θ)− Φ(θ′)〉 ≥ µ‖Φ(θ)− Φ(θ′)‖22. (4)

Applying Lemma 2.4, we have

N∑
i=1

pi〈∇fi(Φ(θ);θ′)−∇fi(Φ(θ′); θ′),Φ(θ)− Φ(θ′))〉 ≤
N∑
i=1

piLεi‖θ − θ′‖2 · ‖Φ(θ)− Φ(θ)‖2. (5)

Combine (4) and (5), we have

‖Φ(θ)− Φ(θ′)‖2 ≤
∑N
i=1 piεiL

µ
‖θ − θ′‖2 =

εL

µ
‖θ − θ′‖2. (6)

Therefore, if ε < L
µ , Φ(·) is a contraction mapping by Banach fixed point theorem and admits a unique fixed point θPS .

To show the divergence when ε ≥ L
µ , we consider the following example where θ ∈ R, Lµ = 1, γ :=

∑N
i=1 piγi 6= 0,

and
`(θ;Z) =

1

2
(θ − Z)2, Z ∼ Di(θ) = N (γi + εiθ, 1)
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we observe

fi(θ
′; θ) =EZ∼Di(θ)[

1

2
(θ − Z)2]

=EZ̃∼N (0,1)[
1

2
(θ′ − γi − εiθ − Z̃)2]

=
1

2
(θ′ − γi − εiθ)2 +

1

2
,

Φ(θ) = argminθ∈R

N∑
i=1

pi(θ
′ − γi − εiθ)2 = εθ + γ,

so by applying Φ(·) t times, we obtain

Φt(θ) = εtθ + (1 + ε+ · · ·+ ε(t−1))γ,

and since ε ≥ L
µ = 1, γ 6= 0, we have limt→∞ ‖Φt(θ)‖2 =∞.

Proposition 2.6. Under Assumption 2.1 and 2.3, suppose that the loss `(θ;Z) is Lz-Lipschitz in Z, let ε :=
∑N
i=1 piεi,

we have for every performative stable solution and every performative optimal solution θPO that

‖θPS − θPO‖2 ≤
2Lzε

µ
.

Proof. This proof simulates the proof of Theorem 4.3 in Perdomo et al. [2020].

First by the optimality of θPO, we have f(θPO;θPO) ≤ f(θPS ;θPS). By strong convexity in Assumption 2.1, we
have

f(θPO;θPS) ≥ f(θPS ;θPS) + 〈∇f(θPS ;θPS), θPO − θPS〉+
µ

2
‖θPO − θPS‖22 ≥

µ

2
‖θPO − θPS‖22.

Further by Assmption 2.3, the the loss `(θ;Z) is Lz-Lipschitz in Z, and Kantorovich-Rubinstein duality, we have

f(θPO;θPS)− f(θPO;θPO)

=
N∑
i=1

pi

(
EZi∼Di(θPS)[`(θ

PO;Zi)]− EZi∼Di(θPO)[`(θ
PO;Zi)]

)
≤

N∑
i=1

piLzW1(Di(θPS),Di(θPO))

=

N∑
i=1

piLzεi‖θPO − θPS‖2 = Lzε‖θPO − θPS‖2. (7)

where the inequality is a well-know conclusion in optimal tranport theory. Equation 7, we have Lzεεi‖θPO − θPS‖2 ≥
f(θPO,θPS)− f(θPO;θPO) ≥ f(θPO;θPS)− f(θPS ;θPS) ≥ µ

2 ‖θ
PO−θPS‖22, implying that ‖θPO−θPS‖2 ≤

2Lzε
µ .

B Proof of Theorem 3.1

B.1 Additional Notation

In our analysis, for the sake of convenience, we will define two additional sequences as wt :=
∑N
i=1 piw

t
i and

θ
t

:=
∑N
i=1 piθ

t
i, following that of Li et al. [2020b]. We note that wt results from a single step of SGD from θ

t
.

When t+ 1 /∈ IE , both wt and θ
t

are unaccessible. When t+ 1 ∈ IE , we can obtain θ
t
. In addition, we also define

gt :=
∑N
i=1 pi∇fi(θ

t
i;θ

t
i), gt :=

∑N
i=1 pi∇`(θ

t
i;Z

t+1
i ) where Zt+1

i ∼ Di(θti). It is clear that in full participation,
wt+1 = θ

t − ηtgt and Egt = gt. Clearly we have θ
t

= wt for any t.
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B.2 Key Lemmas

For clarity, we will present several lemmas for establishing our main theorem. In particular, we will present a descent
lemma for E[‖wt − θPS‖22] and an upper bound for

∑N
i=1 piE‖θ

t
i − θ

t‖22, which together gives a standard descent
lemma for E[‖θt+1 − θPS‖22] in SGD analysis and leads to O( 1

t ) convergence. The proof of the Lemmas will be
deferred.

In the following lemma, we aim to establish an upper bound for E[‖θt+1 − θPS‖22]. Because θ
t+1

= wt+1 in full
participation, this is equivalent to establishing an upper bound for E[‖wt+1 − θPS‖22].

Lemma B.1. (Descent Lemma) Under Assumptions 2.1, 2.2, 2.3, 2.5, in full participation

E[‖θt+1 − θPS‖22] = E[‖wt+1 − θPS‖22] ≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t + (c1ηt + c2η

2
t )

N∑
i=1

piE‖θti − θ
t‖22

for any t, where εmax := maxi εi, ε :=
∑N
i=1 piεi, c1 := L(1+εmax)

2

2δε , c2 := 4[σ2+L2(1+εmax)2], µ̃ := µ−(1+δ)εL.

Now we are going to establish an upper bound for
∑N
i=1 piE‖θ

t
i − θ

t‖22. Note that if t ∈ IE , the synchronization step,
we have θti = θ

t
for any i ∈ [N ], which implies that

∑N
i=1 piE‖θ

t
i − θ

t‖22 = 0. If t /∈ IE , the following lemma gives
an upper bound for

∑N
i=1 piE‖θ

t
i − θ

t‖22.

Lemma B.2. (Consensus Error) Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing, ηt ≤ 2ηt+E ,
t /∈ IE , η2t ≤ 1/

(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, and

η0 ≤ η̂0 :=
µ̃E‖θ0 − θPS‖22

2σ2 + (c1c3 + c2/6)(2E2 − E) logE
(
(16σ2 + 12ς2)E‖θ0 − θPS‖22 + (8σ2 + 12ς2)

) ,
then in full participation, we have

N∑
i=1

piE‖θti − θ
t‖22 ≤ 4η2t (2E2 − E) logE(48σ2 + 36ς2)E‖θ0 − θPS‖22 + 4η2t (2E2 − E) logE(24σ2 + 36ς2).

where for any t, where εmax := maxi εi, ε :=
∑N
i=1 piεi, c1 := L(1+εmax)

2

2δε , c2 := 4[σ2 + L2(1 + εmax)2], µ̃ :=
µ− (1 + δ)εL, c3 := 12σ2 + 18L2(1 + εmax)2.

(One should note that 4η2t , (48σ2 + 36ς2), and (24σ2 + 36ς2) comes from several times of applying ηt−1 ≤ 2ηt and
the real constants could be much smaller by choosing stepsizes carefully.)

The following lemma gives us a standard descent lemma in SGD analysis under technical conditions for establishing
the O( 1

T ) convergence in Theorem 3.1.

Lemma B.3. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing, ηt ≤ 2ηt+E , η2t ≤ 1/
(
2c3(t+ 1−

t0)(1 + 2(t+ 1− t0))
)
, and

η0 ≤ η̂0 :=
µ̃E‖θ0 − θPS‖22

2σ2 + (c1c3 + c2/6)(2E2 − E) logE
(
(16σ2 + 12ς2)E‖θ0 − θPS‖22 + (8σ2 + 12ς2)

) ,
then in full participation, we have

E[‖θt+1 − θPS‖22] ≤(1− µ̃ηt)E‖θ
t − θPS‖22 +Bη2t

where for any t, where εmax := maxi εi, ε :=
∑N
i=1 piεi, c1 := L(1+εmax)

2

2δε , c2 := 4[σ2 + L2(1 + εmax)2], µ̃ :=

µ−(1+δ)εL, c3 := 12σ2+18L2(1+εmax)2, andB := 2σ2+(4c1η̂0+4c2η̂
2
0)(2E2−E) logE

(
(48σ2+36ς2)E‖θ0−

θPS‖22 + (24σ2 + 36ς2)
)
.
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B.3 Completing the Proof of Theorem 3.1

We restate the definitions of all the constants here:

Constants independent of system design.
εmax := maxi εi,

ε :=
∑N
i=1 piεi,

µ̃ := µ− (1 + δ)εL,

c1 :=
(
L(1 + εmax)2

)
/(2δε),

c2 := 4
[
σ2 + L2(1 + εmax)2

]
,

c3 := 6
[
2σ2 + 3L2(1 + εmax)2

]
,

c4 := 16σ2 + 12ς2 + (8σ2 + 12ς2)/E‖θ0 − θPS‖22,

c5 := (48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2).

Constants related to system design (e.g., E,K).
η̂0 := µ̃/

(
2σ2 + (c1c3 + c2/6)c4(2E2 − E) logE

)
,

B := 2σ2 + (4c1η̂0 + 4c2η̂
2
0)c5(2E2 − E) logE ,

c6 := (2E2 + 3E + 1) log(E + 1),

η̃0 := µ̃/
(
2σ2 + (c1c3 + c2/6)c4c6

)
,

B1 := 2σ2 + (4c1η̃0 + 4c2η̃
2
0 + 1/K)c5c6,

B2 := 2σ2 +
(
4c1η̃0 + 4c2η̃

2
0 + N−K

KN(N−1)
)
c5c6.

Instead of proving Theorem 3.1 directly, we prove a more general version of convergence results suppose that some
conditions about the stepsize are satisfied. Then we will show that the stepsizes given in Theorem 3.1 satisfy the
conditions.

Theorem B.4. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, for a diminishing stepsize ηt = β
t+γ where β > 1

µ̃ , γ > 0 such
that η0 ≤ η̂0, ηt ≤ 2ηt+E , and η2t ≤ 1/

(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, then in full participation, we have for

any t

E[‖θt − θPS‖22] ≤ υ

γ + t

where υ = max
{

4B
µ̃2 , γE[‖θ0 − θPS‖22]

}
.

Proof. Let ∆t := E[‖θt − θPS‖22], then from Lemma B.3, we have

∆t+1 ≤ (1− µ̃ηt)E‖θ
t − θPS‖22 +Bη2t .

For a diminishing stepsize ηt = β
t+γ where β > 1

µ̃ , γ > 0 such that η2t ≤ 1/
(
2c3(t + 1 − t0)(1 + 2(t + 1 − t0))

)
,

η0 ≤ η̂0, and ηt ≤ 2ηt+E , we will prove that ∆t ≤ υ
γ+t where υ = max

{
β2B
βµ̃−1 , γ∆0

}
= max

{
4B
µ̃2 , γ∆0

}
by

induction.
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Firstly, ∆0 ≤ υ
γ by the definition of υ. Assume that for some 0 ≤ t, ∆t ≤ υ

γ+t , then

∆t+1 ≤ (1− ηtµ̃) ∆t + η2tB

≤
(

1− βµ̃

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ̃− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

Specifically, if we choose β = 2
µ̃ , γ = max{ 2

µ̃η̂0
, E, 2

µ̃

√
2E(2E + 1)(12σ2 + 18L2(1 + εmax)2)}, then we have

η0 =
β

γ
≤ 2

µ̃ 2
µ̃η̂0

= η̂0

and

ηt − 2ηt+E =
β

γ + t
− 2β

γ + t+ E
=

β(E − γ − t)
(γ + t)(γ + t+ E)

≤ β(E − γ)

(γ + t)(γ + t+ E)
≤ 0.

To prove that η2t ≤ 1/
(
2c3(t + 1 − t0)(1 + 2(t + 1 − t0))

)
for any t, it suffices to prove that for 0 ≤ t ≤ E − 1

because {ηt}, i.e., t0 = 0, is non-increasing and t+ 1− t0 is periodic with period E. When t0 = 0, we need to prove
η2t ≤ 1/

(
2c3(t+ 1)(1 + 2(t+ 1))

)
for 0 ≤ t ≤ E − 1, which is satisfied if

max
0≤t≤E−1

ηt ≤ min
0≤t≤E−1

√
1/
(
2c3(t+ 1)(1 + 2(t+ 1))

)
⇐⇒ η0 ≤

√
1

2E(2E + 1)c3

⇐⇒ γ ≥ β
√

2E(2E + 1)c3 =
2

µ̃

√
2E(2E + 1)c3 =

2

µ̃

√
2E(2E + 1)(12σ2 + 18L2(1 + εmax)2).

B.4 Deferred Proofs of Key Lemmas

Proof of Lemma B.1. This proof follows from Lemma 3 in Li et al. [2022]. We first decompose ‖wt+1 − θPS‖22 as

E‖wt+1 − θPS‖22 = E‖θt − ηtgt − θ
PS‖22 = E‖θt − θPS‖22 − 2ηtE〈θ

t − θPS , gt〉+ η2tE‖gt‖22. (8)

Next we present an upper bound for E‖gt‖22. By the definition of θPS , we have
∑N
i=1 pi∇fi(θ

PS ;θPS) = 0, and thus

E‖gt‖22 = E‖
N∑
i=1

pi[∇`(θti;Zt+1
i )−∇fi(θti;θ

t
i) +∇fi(θti;θ

t
i)−∇fi(θ

PS ;θPS)]‖22

≤ 2E‖
N∑
i=1

∇`(θti;Zt+1
i )−∇fi(θti;θ

t
i)‖22 + 2E‖

N∑
i=1

pi[∇fi(θti;θ
t
i)−∇fi(θ

PS ;θPS)]‖22

≤ 2
N∑
i=1

piE[‖∇`(θti;Zt+1
i )−∇fi(θti;θ

t
i)‖22] + 2

N∑
i=1

piE[‖∇fi(θti;θ
t
i)−∇fi(θ

PS ;θPS)‖22]

≤ 2
N∑
i=1

piσ
2
(

1 + E‖θti − θ
PS‖22

)
+ 2

N∑
i=1

piL
2(1 + εi)

2E‖θti − θ
PS‖22
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where the second inequality is due to the convexity of 2-norm and the last inequality is due to Assumption 2.5 and
Lemma 2.4. Since ‖θti − θ

PS‖22 ≤ 2‖θti − θ
t‖22 + 2‖θt − θPS‖22 and εi ≤ εmax, we have

E[‖gt‖22] ≤ 2σ2 + 4[σ2 + L2(1 + εmax)2]E‖θt − θPS‖22 + 4[σ2 + L2(1 + εmax)2]
N∑
i=1

piE‖θti − θ
t‖22

= 2σ2 + c2E‖θ
t − θPS‖22 + c2

N∑
i=1

piE‖θti − θ
t‖22. (9)

Next, we focus on establishing a lower bound for E[〈θt − θPS , gt〉]. By the law of total expectation and∑N
i=1 pi∇fi(θ

PS ;θPS) = 0, we have

E〈θt − θPS , gt〉 = E
[
Et〈θ

t − θPS , gt〉
]

= E[〈θt − θPS , gt〉]

= E
[ N∑
i=1

pi
〈
θ
t − θPS , ∇fi(θti;θ

t
i)−∇fi(θ

t
;θPS)

〉
︸ ︷︷ ︸

A

+

N∑
i=1

pi
〈
θ
t − θPS , ∇fi(θ

t
;θPS)−∇fi(θPS ;θPS)

〉
︸ ︷︷ ︸

B

]
.

On the one hand, applying Cauchy-Schwarz inequality and Lemma 2.4, we have

A ≥ − ‖θt − θPS‖2
N∑
i=1

pi
(
L‖θti − θ

t‖2 + Lεi‖θti − θ
PS‖2

)
≥ − ‖θt − θPS‖2

N∑
i=1

pi
(
L(1 + εi)‖θti − θ

t‖2 + Lεi‖θ
t − θPS‖2

)
≥ − Lε‖θt − θPS‖22 − L(1 + εmax)

N∑
i=1

pi‖θ
t − θPS‖2‖θti − θ

t‖2.

On the other hand, with the strong convexity in Assumption 2.1, we have B ≥ µ‖θt − θPS‖22. Therefore, for any
α > 0, using the lower bounds on A,B, and the Young’s inequality shows that

E[〈θt − θPS , gt〉]

≥ (µ− Lε)E‖θt − θPS‖22 − L(1 + εmax)

N∑
i=1

piE
[
‖θt − θPS‖2‖θti − θ

t‖2
]

≥
(
µ− Lε− α

2
L(1 + εmax)

)
E‖θt − θPS‖22 −

L(1 + εmax)

2α

N∑
i=1

piE‖θti − θ
t‖22

≥ (µ− (1 + δ)Lε)E‖θt − θPS‖22 −
L(1 + εmax)2

4δε

N∑
i=1

piE‖θti − θ
t‖22 (10)

where we have set α := 2δε
1+εmax

in the last line.

Recall that we denote

c1 :=
L(1 + εmax)2

2δε
, c2 := 4[σ2 + L2(1 + εmax)2], µ̃ := µ− (1 + δ)εL.
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Combining (8), (9), (10), we have

E
[
‖wt+1 − θPS‖22

]
≤ E‖θt − θPS‖22

− 2ηt

[
(µ− (1 + δ)Lε)E‖θt − θPS‖22 −

L(1 + εmax)

4δε

N∑
i=1

piE‖θti − θ
t‖22
]

+ η2t

[
2σ2 + c2E‖θ

t − θPS‖22 + c2

N∑
i=1

piE‖θti − θ
t‖22
]

= (1− 2µ̃ηt + c2η
2
t )E‖θt − θPS‖22 + (c1ηt + c2η

2
t )

N∑
i=1

piE‖θti − θ
t‖22 + 2σ2η2t

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + (c1ηt + c2η

2
t )

N∑
i=1

piE‖θti − θ
t‖22 + 2σ2η2t

where the last inequality is obtained by observing the condition ηt ≤ µ̃/c2.

Proof of Lemma B.2. In this proof, for convenience, we will discuss with respect to t+ 1 where we assume t+ 1 /∈ IE
and transfer back to t in the last. First by the update rule, we have

θt+1
i − θt+1

= θti − θ
t − ηt(∇`(θti;Zt+1

i )− gt).

Using Young’s inequality, we have

N∑
i=1

piE‖θt+1
i − θt+1‖22 =

N∑
i=1

piE‖θti − θ
t − ηt(∇`(θti;Zt+1

i )− gt)‖22

≤ (1 + αt)
N∑
i=1

piE‖θti − θ
t‖22 + η2t (1 + α−1t )

N∑
i=1

piE‖∇`(θti;Zt+1
i )− gt‖22︸ ︷︷ ︸

B

(11)
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where αt > 0 is a free chosen parameter. Next, we are going to establish an upper bound for B. Notice that

B =
N∑
i=1

piE‖∇`(θti;Zt+1
i )− gt‖22

= E
[ N∑
i=1

pi‖∇`(θti;Zt+1
i )−

N∑
j=1

pj∇`(θtj ;Zt+1
j )‖22

]

= E
[ N∑
i=1

pi‖∇`(θti;Zt+1
i )−∇fi

(
θti,θ

t
i

)
+∇fi

(
θti,θ

t
i

)
−

N∑
j=1

pj∇fj(θtj ;θ
t
j)

+
N∑
j=1

pj∇fj(θtj ;θ
t
j)−

N∑
j=1

pj∇`(θtj ;Zt+1
j )‖22

]

≤ 3E
[ N∑
i=1

pi‖∇`
(
θti;Z

t+1
i

)
−∇fi

(
θti,θ

t
i

)
‖22
]

+ 3E
[ N∑
i=1

pi‖∇fi
(
θti,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θtj ,θ

t
j

)
‖22
]

+ 3E
[ N∑
i=1

pi‖
N∑
j=1

pj∇fj(θtj ;θ
t
j)−

N∑
j=1

pj∇`(θtj ;Zt+1
j )‖22

]

≤ 3E
[ N∑
i=1

pi‖∇`
(
θti;Z

t+1
i

)
−∇fi

(
θti,θ

t
i

)
‖22
]

+ 3E
[ N∑
i=1

pi‖∇fi
(
θti,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θtj ,θ

t
j

)
‖22
]

+ 3E
[ N∑
i=1

pi

N∑
j=1

pj‖∇fj(θtj ;θ
t
j)−∇`(θ

t
j ;Z

t+1
j )‖22

]

= 3E
[ N∑
i=1

pi‖∇`
(
θti;Z

t+1
i

)
−∇fi

(
θti,θ

t
i

)
‖22
]

+ 3E
[ N∑
i=1

pi‖∇fi
(
θti,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θtj ,θ

t
j

)
‖22
]

+ 3E
[ N∑
j=1

pj‖∇fj(θtj ;θ
t
j)−∇`(θ

t
j ;Z

t+1
j )‖22

]

≤ 6σ2

(
1 + E

[ N∑
i=1

pi‖θti − θ
PS‖22

])

+ 3E
[ N∑
i=1

pi‖∇fi
(
θti,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θtj ,θ

t
j

)
‖22
]

where the last inequality is by Assumption 2.5. On the other hand, we have

3E
[ N∑
i=1

pi
∥∥∇fi(θti,θti)− N∑

j=1

pj∇fj(θtj ,θ
t
j)
∥∥2
2

]

= 3
N∑
i=1

piE
∥∥∇fi(θti,θti)−∇fi(θt,θt) +∇fi(θ

t
,θ
t
)−

N∑
j=1

pj∇fj(θ
t
,θ
t
)−

N∑
j=1

pj
(
∇fj(θtj ,θ

t
j)−∇fj(θ

t
,θ
t
)
)∥∥2

2

≤ 9
N∑
i=1

piE‖∇fi(θti,θ
t
i)−∇fi(θ

t
,θ
t
)‖22︸ ︷︷ ︸

B1

+ 9
N∑
i=1

piE‖∇fi(θ
t
,θ
t
)−

N∑
j=1

pj∇fj(θ
t
,θ
t
)‖22︸ ︷︷ ︸

B2

+ 9
N∑
i=1

piE‖
N∑
j=1

pj
(
∇fj(θtj ,θ

t
j)−∇fj(θ

t
,θ
t
)
)
‖22︸ ︷︷ ︸

B3

.
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Using Lemma 2.4, we have

B1 ≤ 9
N∑
i=1

piL
2(1 + εi)

2E‖θti − θ
t‖22 ≤ 9

N∑
i=1

piL
2(1 + εmax)2E‖θti − θ

t‖22.

Using Assumption 2.6, we have

B2 = 9
N∑
i=1

piE
∥∥∇fi(θt,θt)−∇f(θ

t
,θ
t
)
∥∥2
2

≤ 9
N∑
i=1

piς
2(1 + E‖θt − θPS‖22)

= 9ς2 + 9ς2E‖θt − θPS‖22.

Using Lemma 2.4, we have

B3 ≤ 9
N∑
i=1

pi

N∑
j=1

pjE‖∇fj(θtj ,θ
t
j)−∇fj(θ

t
,θ
t
)‖22 ≤ 9

N∑
i=1

piL
2(1 + εmax)2E‖θti − θ

t‖22.

Therefore,

B1 +B2 +B3 ≤ 18

N∑
i=1

piL
2(1 + εmax)2E‖θti − θ

t‖22 + 9ς2 + 9ς2
N∑
i=1

piE‖θ
t − θPS‖22,

which results in that

B ≤ 6σ2

(
1 + E

[ N∑
i=1

pi‖θti − θ
PS‖22

])
+ 18

N∑
i=1

piL
2(1 + εmax)2E‖θti − θ

t‖22+

9ς2 + 9ς2E‖θt − θPS‖22

≤ 6σ2

(
1 + 2

N∑
i=1

piE‖θti − θ
t‖22 + 2E‖θt − θPS‖22 + 18

N∑
i=1

piL
2(1 + εmax)2E‖θti − θ

t‖22+

9ς2 + 9ς2E‖θt − θPS‖22
)

= 6σ2 + 9ς2 +
(
12σ2 + 18L2(1 + εmax)2

) N∑
i=1

piE‖θti − θ
t‖22 + (12σ2 + 9ς2)E‖θt − θPS‖22.

Inserting this formula into (11), we obtain

N∑
i=1

piE‖θt+1
i − θt+1‖22

≤ (1 + αt)
N∑
i=1

piE‖θti − θ
t‖22

+ η2t (1 + α−1t )

(
6σ2 + 9ς2 +

(
12σ2 + 18L2(1 + εmax)2

) N∑
i=1

piE‖θti − θ
t‖22 + (12σ2 + 9ς2)E‖θt − θPS‖22

)

=
(
1 + αt + η2t (1 + α−1t )

(
12σ2 + 18L2(1 + εmax)2

)) N∑
i=1

piE‖θti − θ
t‖22 + η2t (1 + α−1t )(12σ2 + 9ς2)E‖θt − θPS‖22

+ η2t (1 + α−1t )(6σ2 + 9ς2)
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where αt > 0 is a free chosen parameter. Let t0 := max{s | s < t+ 1, s ∈ IE} and c3 := 12σ2 + 18L2(1 + εmax)2.
Then we choose αt = 1

2(t+1−t0) , if we have

η2t (1 + α−1t )
(
12σ2 + 18L2(1 + εmax)2

)
= η2t (1 + α−1t )c3 ≤

1

2(t+ 1− t0)

⇐⇒ η2t ≤
1

2c3(t+ 1− t0)
(
1 + 2(t+ 1− t0)

) , (12)

then note that 1 + α−1t = 1 + 2(t+ 1− t0) ≤ 2E − 1,

N∑
i=1

piE‖θt+1
i − θt+1‖22

≤ t+ 2− t0
t+ 1− t0

N∑
i=1

piE‖θti − θ
t‖22 + η2t (2E − 1)(12σ2 + 9ς2)E‖θt − θPS‖22 + η2t (2E − 1)(6σ2 + 9ς2).

Continuing the above expansion until t0 and leveraging ηs ≤ ηt0 ≤ 2ηt0+E ≤ 2ηt gives us

N∑
i=1

piE‖θt+1
i − θt+1‖22

≤ t+ 2− t0
t0 + 1− t0

N∑
i=1

piE‖θt0i − θ
t0‖22 +

t∑
s=t0

t+ 2− t0
s+ 2− t0

η2s(2E − 1)(12σ2 + 9ς2)E‖θs − θPS‖22

+

t∑
s=t0

t+ 2− t0
s+ 2− t0

η2s(2E − 1)(6σ2 + 9ς2)

=

t−t0∑
s=0

t+ 2− t0
s+ 2

η2s(2E − 1)(12σ2 + 9ς2)E‖θs − θPS‖22 +

t−t0∑
s=0

t+ 2− t0
s+ 2

η2s(2E − 1)(6σ2 + 9ς2)

≤
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E − 1)(48σ2 + 36ς2)E‖θs − θPS‖22 +

t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E − 1)(24σ2 + 36ς2). (13)

With the above formula and Lemma B.1, we now prove that if η0 is sufficiently small, the for any t, we have
E‖θt − θPS‖22 ≤ E‖θ0 − θPS‖22. We first derive the following inequality, which we will use later. Note that for any t
where t0 := max{s | s < t+ 1, s ∈ IE}, we have

t−t0∑
s=0

t+ 2− t0
s+ 2

= (t+ 2− t0)(
1

2
+ . . .+

1

t− t0 + 2
) ≤ (t+ 2− t0) log(t+ 2− t0) ≤ E logE. (14)

We prove E‖θt − θPS‖22 ≤ E‖θ0 − θPS‖22 by induction.
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First, this inequality clearly holds for t = 0. Suppose it holds for 0 ≤ s ≤ t where t ≤ E − 1. Then by Lemma B.1 and
(13), we have

E[‖θt+1 − θPS‖22]

= E[‖wt+1 − θPS‖22]

≤ (1− µ̃ηt)E‖θ
0 − θPS‖22 + 2σ2η2t + (c1ηt + c2η

2
t )

( t−t0−1∑
s=0

t+ 1− t0
s+ 2

η2t−1(2E − 1)(48σ2 + 36ς2)E‖θ0 − θPS‖22

+

t−t0−1∑
s=0

t+ 1− t0
s+ 2

η2t−1(2E − 1)(24σ2 + 36ς2)

)
= (1− µ̃ηt)E‖θ

0 − θPS‖22 + 2σ2η2t

+ (c1ηt + c2η
2
t )η2t−1(2E2 − E) logE

(
(48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2)

)
.

By (12), we need η0 ≤ 1
6c3

, together with ηt−1 ≤ 2ηt implies

(c1ηt + c2η
2
t )η2t−1 ≤ η2t (c1 + c2(6c3)−1)

c3
3
.

Therefore, we have

E[‖θt+1 − θPS‖22]

≤ (1− µ̃ηt)E‖θ
0 − θPS‖22 + 2σ2η2t

+ η2t (c1c3 + c2/6)(2E2 − E) logE

(
(16σ2 + 12ς2)E‖θ0 − θPS‖22 + (8σ2 + 12ς2)

)
whose right-hand side is no larger than E‖θ0 − θPS‖22 if

ηt ≤ η0

≤ µ̃E‖θ0 − θPS‖22
2σ2 + (c1c3 + c2/6)(2E2 − E) logE

(
(16σ2 + 12ς2)E‖θ0 − θPS‖22 + (8σ2 + 12ς2)

) = η̂0. (15)

Thus we have proved that for any 0 ≤ t ≤ E, if (15) holds, then E‖θt − θPS‖22 ≤ E‖θ0 − θPS‖22. The same
proof technique can be extended to any nE ≤ t ≤ (n + 1)E where n ∈ N+ and thus for any t, if (15) holds, then
E‖θt − θPS‖22 ≤ E‖θ0 − θPS‖22.

Therefore, under (12), (15) and ηt−1 ≤ 2ηt, by (11) and (13), if t /∈ IE , we have

N∑
i=1

piE‖θti − θ
t‖22 ≤ η2t−1(2E2 − E) logE(48σ2 + 36ς2)E‖θ0 − θPS‖22 + η2t−1(2E2 − E) logE(24σ2 + 36ς2)

≤ 4η2t (2E2 − E) logE(48σ2 + 36ς2)E‖θ0 − θPS‖22 + 4η2t (2E2 − E) logE(24σ2 + 36ς2).

Proof of Lemma B.3. We discuss in two cases, t ∈ IE and t /∈ IE . If t ∈ IE , then we have θti = θ
t
, and by Lemma

B.1,

E[‖θt+1 − θPS‖22]

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t + (c1ηt + c2η

2
t )

N∑
i=1

piE‖θti − θ
t‖22

= (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 +Bη2t .
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If t /∈ IE , combining Lemma B.1 and Lemma B.2, we have

E[‖θt+1 − θPS‖22]

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t + (c1ηt + c2η

2
t )

N∑
i=1

piE‖θti − θ
t‖22

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t

+ (4c1ηt + 4c2η
2
t )

(
η2t (2E2 − E) logE(48σ2 + 36ς2)E‖θ0 − θPS‖22 + η2t (2E2 − E) logE(24σ2 + 36ς2)

)
≤ (1− µ̃ηt)E‖θ

t − θPS‖22 + 2Bη2t .

C Proof of Theorem 3.2 and Theorem 3.3

C.1 Additional Notations

Similar to Appendix B, in our analysis, for the sake of convenience, we will define two additional sequences as
wt :=

∑N
i=1 piw

t
i and θ

t
:=
∑N
i=1 piθ

t
i, following that of Li et al. [2020b]. We note thatwt results from a single step

of SGD from θ
t
. When t+ 1 /∈ IE , bothwt and θ

t
are unaccessible. When t+ 1 ∈ IE , we can obtain θ

t
. In addition,

we also define gt :=
∑N
i=1 pi∇fi(θ

t
i;θ

t
i), gt :=

∑N
i=1 pi∇`(θ

t
i;Z

t+1
i ) where Zt+1

i ∼ Di(θti). It is clear that in full
participation,wt+1 = wt − ηtgt and Egt = gt. Notice now we do not have θ

t
= wt for any t. But we will show later

that they are equal with expectation to the choice of St.

In particular, in our analysis, there would be two types of randomness, one from the stochastic gradients and one from
the random sampling of the devices. All analysis in Appendix B only involves the former. To make a distinguishment,
we use ESt to denote the latter.

C.2 Key Lemmas

We show in this subsection the key lemmas for proving the convergence and defer proofs to later parts. We first show
that the sampling schemes I & II are unbiased.

Lemma C.1. Li et al. [2020b] (Unbiased sampling scheme). If t+ 1 ∈ IE , for Scheme I and Scheme II, we have

ESt
[
θ
t+1]

= wt+1.

Similar to Lemma B.1, we are going to establish an upper bound for E[‖θt+1 − θPS‖22]. When t+ 1 /∈ IE , we have
θ
t+1

= wt+1 for both schemes, and therefore this is equivalent to establishing an upper bound for E[‖wt+1 − θPS‖22].
However, when t+ 1 ∈ IE , we only have ESt

[
θ
t+1]

= wt+1 and we need other upper-bounding strategies.

Lemma C.2. Under Assumptions 2.1, 2.2, 2.3, 2.5, for scheme I & II:

1. if t+ 1 /∈ IE ,

E[‖θt+1 − θPS‖22] = E[‖wt+1 − θPS‖22] ≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t + (c1ηt + c2η

2
t )

N∑
i=1

piE‖θti − θ
t‖22.

2. if t+ 1 ∈ IE: for scheme I,

E[‖θt+1 − θPS‖22]

≤ 1

K

N∑
k=1

pkE‖wt+1
k −wt+1‖22 + (1− µ̃ηt)E‖θ

t − θPS‖22 + 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE‖θti − θ
t‖22,
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while for scheme II,

E[‖θt+1 − θPS‖22]

≤ N

K(N − 1)

(
1− K

N

) N∑
k=1

pkE‖wt+1
k −wt+1‖22 + (1− µ̃ηt)E‖θ

t − θPS‖22 + 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE‖θti − θ
t‖22.

where εmax := maxi εi, ε :=
∑N
i=1 piεi, c1 := L(1+εmax)

2

2δε , c2 := 4[σ2 + L2(1 + εmax)2], µ̃ := µ− (1 + δ)εL.

To really give a descent lemma as in SGD analysis, we have to bound
∑N
i=1 piE‖θ

t
i − θ

t‖22 for t /∈ IE and∑N
i=1 piE‖wt

i −wt‖22 for t ∈ IE , given by the following lemma.
Lemma C.3. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing, ηt ≤ 2ηt+E , t /∈ IE , η2t ≤
1/
(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, and

η0 ≤ η̃0 :=
µ̃E‖θ0 − θPS‖22

2σ2 + (c1c3 + c2/6)(2E2 + 3E + 1) log(E + 1)
(
(16σ2 + 12ς2)E‖θ0 − θPS‖22 + (8σ2 + 12ς2)

) ,
then

1. for scheme I,

E[‖θt+1 − θPS‖22]

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t

+ (4c1ηt + 4c2η
2
t +K−1)(2E2 + 3E + 1) log(E + 1)η2t

(
(48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2)

)
,

2. for scheme II,

E[‖θt+1 − θPS‖22]

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t

+

(
4c1ηt + 4c2η

2
t +

N −K
K(N − 1)

)
(2E2 + 3E + 1) log(E + 1)η2t

(
(48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2)

)
.

where for any t, where εmax := maxi εi, ε :=
∑N
i=1 piεi, c1 := L(1+εmax)

2

2δε , c2 := 4[σ2 + L2(1 + εmax)2], µ̃ :=
µ− (1 + δ)εL, c3 := 12σ2 + 18L2(1 + εmax)2.

(One should note that 4c1ηt + 4c2η
2
t , (48σ2 + 36ς2), and (24σ2 + 36ς2) comes from several times of applying

ηt−1 ≤ 2ηt and the real constants could be much smaller by choosing stepsizes carefully.)

The following lemma gives us a standard descent lemma in SGD analysis under technical conditions for establishing
the O( 1

T ) convergence in Theorem 3.2 and 3.3.
Lemma C.4. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing, ηt ≤ 2ηt+E , t /∈ IE , η2t ≤
1/
(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, and

η0 ≤ η̃0 :=
µ̃E‖θ0 − θPS‖22

2σ2 + (c1c3 + c2/6)(2E2 + 3E + 1) log(E + 1)
(
(16σ2 + 12ς2)E‖θ0 − θPS‖22 + (8σ2 + 12ς2)

) ,
then

1. for scheme I,

E[‖θt+1 − θPS‖22] ≤ (1− µ̃ηt)E‖θ
t − θPS‖22 +B1η

2
t ,

with

B1 := 2σ2 + (4c1ηt + 4c2η
2
t +K−1)(2E2 + 3E + 1) log(E + 1)

(
(48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2)

)
,
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2. for scheme II,

E[‖θt+1 − θPS‖22] ≤ (1− µ̃ηt)E‖θ
t − θPS‖22 +B2η

2
t

with

B2 := 2σ2 +

(
4c1ηt + 4c2η

2
t +

N −K
K(N − 1)

)
(2E2 + 3E + 1) log(E + 1)

(
(48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2)

)
,

where for any t, where εmax := maxi εi, ε :=
∑N
i=1 piεi, c1 := L(1+εmax)

2

2δε , c2 := 4[σ2 + L2(1 + εmax)2], µ̃ :=
µ− (1 + δ)εL, c3 := 12σ2 + 18L2(1 + εmax)2.

C.3 Completing the proof of Theorem 3.2 and 3.3

We restate the definitions of all the constants here:

Constants independent of system design.
εmax := maxi εi,

ε :=
∑N
i=1 piεi,

µ̃ := µ− (1 + δ)εL,

c1 :=
(
L(1 + εmax)2

)
/(2δε),

c2 := 4
[
σ2 + L2(1 + εmax)2

]
,

c3 := 6
[
2σ2 + 3L2(1 + εmax)2

]
,

c4 := 16σ2 + 12ς2 + (8σ2 + 12ς2)/E‖θ0 − θPS‖22,

c5 := (48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2).

Constants related to system design (e.g., E,K).
η̂0 := µ̃/

(
2σ2 + (c1c3 + c2/6)c4(2E2 − E) logE

)
,

B := 2σ2 + (4c1η̂0 + 4c2η̂
2
0)c5(2E2 − E) logE ,

c6 := (2E2 + 3E + 1) log(E + 1),

η̃0 := µ̃/
(
2σ2 + (c1c3 + c2/6)c4c6

)
,

B1 := 2σ2 + (4c1η̃0 + 4c2η̃
2
0 + 1/K)c5c6,

B2 := 2σ2 +
(
4c1η̃0 + 4c2η̃

2
0 + N−K

K(N−1)
)
c5c6.

Instead of proving Theorem 3.2 and 3.3 directly, we prove a more general version of convergence results suppose that
some conditions about the stepsize are satisfied. Then we will show that the stepsizes given in Theorem 3.2 and 3.3
satisfy the conditions. The proof of lemmas will be deferred

Theorem C.5. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, for a diminishing stepsize ηt = β
t+γ where β > 1

µ̃ , γ > 0 such
that η0 ≤ η̃0, ηt ≤ 2ηt+E , and η2t ≤ 1/

(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, then

1. for scheme I,

E[‖θt+1 − θPS‖22] ≤ υ

γ + t
,

where υ = max
{

4B1

µ̃2 , γE[‖θ0 − θPS‖22]
}

;
2. for scheme II,

E[‖θt+1 − θPS‖22] ≤ υ

γ + t

where υ = max
{

4B2

µ̃2 , γE[‖θ0 − θPS‖22]
}

.
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Proof. We give a proof for scheme I and the proof for scheme II follows exactly the same way.

Let ∆t := E[‖θt − θPS‖22], then from Lemma C.4, we have

∆t+1 ≤ (1− µ̃ηt)E‖θ
t − θPS‖22 +B1η

2
t .

For a diminishing stepsize ηt = β
t+γ where β > 1

µ̃ , γ > 0 such that η2t ≤ 1/
(
2c3(t + 1 − t0)(1 + 2(t + 1 − t0))

)
,

η0 ≤ η̂0, and ηt ≤ 2ηt+E , we will prove that ∆t ≤ υ
γ+t where υ = max

{
β2B1

βµ̃−1 , γ∆0

}
= max

{
4B1

µ̃2 , γ∆0

}
by

induction.

Firstly, ∆0 ≤ υ
γ by the definition of υ. Assume that for some 0 ≤ t, ∆t ≤ υ

γ+t , then

∆t+1 ≤ (1− ηtµ̃) ∆t + η2tB1

≤
(

1− βµ̃

t+ γ

)
v

t+ γ
+

β2B1

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B1

(t+ γ)2
− βµ̃− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

Specifically, if we choose β = 2
µ̃ , γ = max{ 2

µ̃η̃0
, E, 2

µ̃

√
(4E2 + 10E + 6)(12σ2 + 18L2(1 + εmax)2)}, then we have

η0 =
β

γ
≤ 2

µ̃ 2
µ̃η̃0

= η̂0

and

ηt − 2ηt+E =
β

γ + t
− 2β

γ + t+ E
=

β(E − γ − t)
(γ + t)(γ + t+ E)

≤ β(E − γ)

(γ + t)(γ + t+ E)
≤ 0.

To prove that η2t ≤ 1/
(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
for any t, it suffices to prove that for 0 ≤ t ≤ E because

{ηt}, i.e., t0 = 0, is non-increasing and t + 1 − t0 is periodic with period E. When t0 = 0, we need to prove
η2t ≤ 1/

(
2c3(t+ 1)(1 + 2(t+ 1))

)
for 0 ≤ t ≤ E, which is satisfied if

max
0≤t≤E

ηt ≤ min
0≤t≤E

√
1/
(
2c3(t+ 1)(1 + 2(t+ 1))

)
⇐⇒ η0 ≤

√
1

(4E2 + 10E + 6)c3

⇐⇒ γ ≥ β
√

(4E2 + 10E + 6)c3 =
2

µ̃

√
(4E2 + 10E + 6)c3 =

2

µ̃

√
(4E2 + 10E + 6)(12σ2 + 18L2(1 + εmax)2).

C.4 Deferred Proofs of Key Lemmas

Proof of C.1. Let {xi}Ni=1 denote any fixed deterministic sequence. We sample a multiset St with |St| = K by the
procedure where each sampling time, we sample xk with probability qk for each time. Note that two samples are not
necessarily independent. We only require each sampling distribution is identical. Let St = {i1, . . . , iK} ⊂ [N ] (some
ik’s may have the same value if sampling with replacement). Then

ESt
∑
k∈St

xk = ESt
K∑
k=1

xik = KEStxi1 = K
K∑
k=1

qkxk.

For Scheme I, qk = pk and for Scheme II, qk = 1
N , replacing the values into the above proves the lemma.
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Proof of Lemma C.2. When t+1 /∈ IE , because θ
t+1

= wt+1 for both schemes, by Lemma B.1, we got the conclusion.
When t+ 1 ∈ IE , we have

E‖θt+1 − θPS‖22 = E‖θt+1 −wt+1‖22 + E‖wt+1 − θPS‖22 + 2E〈θt+1 −wt+1,wt+1 − θPS〉.

By Lemma C.1 and the law of total expectation, we have

E〈θt+1 −wt+1,wt+1 − θPS〉 = E
[
ESt+1

〈θt+1 −wt+1,wt+1 − θPS〉
]

= 0.

Next we focus on upper bounding E[‖θt+1 −wt+1‖22] under two sampling schemes.

Denote St+1 = {i1, . . . , iK}, then for scheme I, θ
t+1

= 1
K

∑K
l=1w

t+1
il

. Thus by the law of total expectation, we have

E‖θt+1 −wt+1‖22 = E
[
ESt+1

‖θt+1 −wt+1‖22
]

= E
[
ESt+1‖

1

K

K∑
l=1

wt+1
il
−wt+1‖22

]
≤ E

[
ESt+1

1

K2

K∑
l=1

‖wt+1
il
−wt+1‖22

]
=

1

K

N∑
k=1

pkE‖wt+1
k −wt+1‖22.

Again with θ
t+1

= 1
K

∑K
l=1w

t+1
il

, for scheme II, by the law of total expectation, we have

E‖θt+1 −wt+1‖22 = E
[
ESt+1

‖θt+1 −wt+1‖22
]

= E
[
ESt+1

[
‖ 1

K

K∑
l=1

wt+1
il
−wt+1‖22

]]

= E
[

1

K2
ESt+1

[
‖
N∑
i=1

1{i ∈ St+1}(wt+1
i −wt+1)‖22

]]

≤ 1

K2
E
[ N∑
i=1

P(i ∈ St+1)‖wt+1
i −wt+1‖22 +

∑
j 6=i

P(i, j ∈ St+1)
〈
wt+1
i −wt+1, wt+1

j −wt+1
〉 ]

=
1

KN

N∑
i=1

E‖wt+1
i −wt+1‖22 +

K − 1

KN(N − 1)

∑
i6=j

E
〈
wt+1
i −wt+1, wt+1

j −wt+1
〉

=
N

K(N − 1)

(
1− K

N

) N∑
i=1

piE‖wt+1
i −wt+1‖22

where we use the following equalities: (1) P (i ∈ St+1) = K
N and P (i, j ∈ St+1) = K(K−1)

N(N−1) for all i 6= j and (2)∑N
i=1

∥∥wt
i −wt

∥∥2 +
∑
i6=j〈w

t+1
i −wt+1,wt+1

j −wt+1〉 = 0.

The conclusion follows from the above discussion.

Proof of Lemma C.4. In this proof, for convenience, we will discuss with respect to t+ 1 where we assume t+ 1 /∈ IE
and transfer back to t in the last. First by the update rule, we have when t+ 1 /∈ IE

θt+1
i − θt+1

= θti − θ
t − ηt(∇`(θti;Zt+1

i )− gt)

and when t+ 1 ∈ IE ,

wt+1
i −wt+1 = θti − θ

t − ηt(∇`(θti;Zt+1
i )− gt).
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Then with the same method in Lemma B.2, let t0 := max{s | s < t+ 1, s ∈ IE} and c3 := 12σ2 + 18L2(1 + εmax)2,
if η2t ≤ 1

2c3(t+1−t0)
(
1+2(t+1−t0)

) , we will have: if t+ 1 /∈ IE ,

N∑
i=1

piE‖θt+1
i − θt+1‖22

≤
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(48σ2 + 36ς2)E‖θs − θPS‖22 +

t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(24σ2 + 36ς2)

and if t+ 1 ∈ IE ,

N∑
i=1

piE‖wt+1
i −wt+1‖22

≤
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(48σ2 + 36ς2)E‖θs − θPS‖22 +

t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(24σ2 + 36ς2).

With the above formula and Lemma C.2, we now prove that if η0 is sufficiently small, then for any t, we have
E‖θt − θPS‖22 ≤ E‖θ0 − θPS‖22. We first derive the following inequality, which we will use later. Note that for any t
where t0 := max{s | s < t+ 1, s ∈ IE}, we have

t−t0∑
s=0

t+ 2− t0
s+ 2

= (t+ 2− t0)(
1

2
+ . . .+

1

t− t0 + 2
) ≤ (t+ 2− t0) log(t+ 2− t0) ≤ (E + 1) log(E + 1).

Then again by the same induction method in Lemma B.2, we have if

ηt ≤ η0

≤ µ̃E‖θ0 − θPS‖22
2σ2 + (c1c3 + c2/6)(2E2 + 3E + 1) log(E + 1)

(
(16σ2 + 12ς2)E‖θ0 − θPS‖22 + (8σ2 + 12ς2)

) = η̃0,

then for any t, we have E‖θt − θPS‖22 ≤ E‖θ0 − θPS‖22.

Under all these conditions, if t /∈ IE , we have

N∑
i=1

piE‖θti − θ
t‖22 ≤ η2t−1(2E2 + 3E + 1) log(E + 1)(48σ2 + 36ς2)E‖θ0 − θPS‖22

+ η2t−1(2E2 + 3E + 1) log(E + 1)(24σ2 + 36ς2)

≤ 4η2t (2E2 + 3E + 1) log(E + 1)(48σ2 + 36ς2)E‖θ0 − θPS‖22
+ 4η2t (2E2 + 3E + 1) log(E + 1)(24σ2 + 36ς2),

and if t+ 1 ∈ IE , we have

N∑
i=1

piE‖wt+1
i −wt+1‖22 ≤ η2t−1(2E2 + 3E + 1) log(E + 1)(48σ2 + 36ς2)E‖θ0 − θPS‖22

+ η2t−1(2E2 + 3E + 1) log(E + 1)(24σ2 + 36ς2).

Note that in Lemma C.2, the inequality for t /∈ IE is looser than the inequality for t ∈ IE . Therefore, we can apply the
inequality for t ∈ IE for all t. Combining this inequality with the above formula gives us that:
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1. for scheme I,

E[‖θt+1 − θPS‖22]

≤ 1

K

N∑
k=1

pkE‖wt+1
k −wt+1‖22 + (1− µ̃ηt)E‖θ

t − θPS‖22 + 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE‖θti − θ
t‖22

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t

+ (4c1ηt + 4c2η
2
t +K−1)(2E2 + 3E + 1) log(E + 1)η2t

(
(48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2)

)
,

2. for scheme II,

E[‖θt+1 − θPS‖22]

≤ N −K
KN(N − 1)

N∑
k=1

pkE‖wt+1
k −wt+1‖22 + (1− µ̃ηt)E‖θ

t − θPS‖22 + 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE‖θti − θ
t‖22

≤ (1− µ̃ηt)E‖θ
t − θPS‖22 + 2σ2η2t

+

(
4c1ηt + 4c2η

2
t +

N −K
K(N − 1)

)
(2E2 + 3E + 1) log(E + 1)η2t

(
(48σ2 + 36ς2)E‖θ0 − θPS‖22 + (24σ2 + 36ς2)

)
.

Proof of Lemma C.4. The conclusion follows directly from Lemma C.3.

D Proof of convergence under the alternative assumption in (3)

Assumption D.1. Suppose the following hold

EZi∼Di(θ)[‖∇`(θ;Zi)‖22] ≤ G2. (16)

Lemma D.2. (Bound on the divergence of parameters, i.e., consensus error bound)
When E > 1, under Assumption 2.1, 2.2, 2.3, 2.5, and if ηt is non-increasing and ηt ≤ 2ηt+E holds for all t ≥ 0, we
have

E
[ N∑
i=1

pi‖θti − θ
t‖22
]
≤ 4(E − 1)2η2tG

2 (17)

Proof. FedAvg requires a communication every E steps, so for any t ≥ 0, there exists a t0 ≤ t, t0 ∈ IE , such that
t− t0 ≤ E − 1 and θt0i = θ

t0
, ∀i. Also, we use the fact that ηt0 ≤ 2ηt for all t− t0 ≤ E − 1, then

E
[ N∑
i=1

pi‖θti − θ
t‖22
]

= E
[ N∑
i=1

pi‖(θti − θ
t0

)− (θ
t − θt0)‖22

]
≤ E

[ N∑
i=1

pi‖θti − θ
t0‖22

]
, (18)

since E‖X − EX‖22 ≤ E‖X‖22 where X = θti − θ
t0 . Using Jensen’s inequality, we further have

‖θti − θ
t0‖22 =

∥∥∥∥ t−1∑
s=t0

ηs∇`(θsi ;Zs+1
i )

∥∥∥∥2
2

≤ (t− t0)
t−1∑
s=t0

η2s
∥∥∇`(θsi ;Zs+1

i )
∥∥2
2
, (19)

E
[ N∑
i=1

pi‖θti − θ
t0‖22

]
= E

[∥∥∥∥ N∑
i=1

pi

t−1∑
s=t0

η2s∇`(θ
s
i ;Z

s+1
i )

∥∥∥∥2
2

]
≤ (t− t0)

t−1∑
s=t0

η2s

N∑
i=1

piE
[∥∥∇`(θsi ;Zs+1

i )
∥∥2
2

]
,

(20)
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E
[ N∑
i=1

pi‖θti − θ
t0‖2

]
= E

[∥∥∥∥ N∑
i=1

pi

t−1∑
s=t0

ηs∇`(θsi ;Zs+1
i )

∥∥∥∥
2

]
≤

t−1∑
s=t0

ηs

N∑
i=1

piE
[∥∥∇`(θsi ;Zs+1

i )
∥∥
2

]
, (21)

where we used ηs ≤ ηt0 . Therefore, based on A5, we have

E
[ N∑
i=1

pi‖θti − θ
t‖22
]
≤

N∑
i=1

piE
[ t−1∑
s=t0

(E − 1)η2s‖∇`(θ
s
i ;Z

s+1
i )‖22

]

≤
N∑
i=1

pi

[ t−1∑
s=t0

(E − 1)η2sG
2

]

≤
N∑
i=1

pi(E − 1)2η2t0G
2

≤ 4(E − 1)2η2tG
2 (22)

since ηs ≤ ηt0 ≤ 2ηt0+E ≤ 2ηt in the last two inequalities.

Lemma D.3. Li et al. [2022] Consider a sequence of non-negative, non-increasing step sizes {ηt}t≥1. Let a > 0, p ∈
Z+and η1 < 2/a. If ηpt /η

p
t+1 ≤ 1 + (a/2)ηpt+1 for any t ≥ 1, then

t∑
j=1

ηp+1
j

t∏
`=j+1

(1− η`a) ≤ 2

a
ηpt , ∀t ≥ 1 (23)

Lemma D.4. Under Assumptions 2.1, 2.2, 2.3, D.1 and the condition that ηt ≤ µ̃/c2, , ηt ≤ ηt0 ≤ 2ηt where
t0 = maxs{s ∈ N|Es ≤ t}, ηt+1 < ηt for any t ≥ 0, η1 < 2

µ̃ and ηqt /η
q
t+1 ≤ 1 + (µ̃/2)ηqt+1 for any t ≥ 0 and

q = 1, 2, 3.

E[‖wt+1 − θPS‖22] ≤
t∏
i=0

(1− µ̃ηi)
∥∥θ0 − θPS∥∥2

2
+

2c2c7
µ̃

η3t +
2c1c7
µ̃

η2t +
4σ2

µ̃
ηt, (24)

where c7 := 4(E − 1)G2.

Proof. From Lemma B.1, we have

E
[
‖wt+1 − θPS‖22

]
≤ (1− µ̃ηt)E

[∥∥θt − θPS∥∥2
2

]
+ (c1ηt + c2η

2
t )E
[ N∑
i=1

pi
∥∥θti − θt∥∥22]+ 2σ2η2t

≤ (1− µ̃ηt)E
[∥∥θt − θPS∥∥2

2

]
+ c2c7η

4
t + c1c7η

3
t + 2σ2η2t

=
t∏
i=0

(1− µ̃ηi)
∥∥θ0 − θPS∥∥2

2
+

t∑
s=1

t∏
i=s+1

(1− µ̃ηi)
(
c2c7η

4
s + c1c7η

3
s + 2σ2η2s

)
.

(25)

The second inequality holds because of Lemma D.2. Using Lemma D.3,

t∑
s=1

t∏
i=s+1

(1− µ̃ηi)
(
c2c7η

4
s + c1c7η

3
s + 2σ2η2s

)
≤ 2c2c7

µ̃
η3t +

2c1c7
µ̃

η2t +
4σ2

µ̃
ηt. (26)
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Theorem D.5. (Full participation convergence theorem, alternative assumption)
Under Assumption 2.1, 2.2, 2.3, 2.5, the full participation scheme has convergence rate O( 1

T ), i.e., denote ∆t :=

E[‖θt − θPS‖22], then for some γ > 0,

∆t ≤
υ

γ + t
, (27)

where υ := max{ c2c7β
4γ−2+c1c7β

3γ−1+2σ2β2

βµ−1 , (γ + 1)∆1}.

Proof. We will show it on the partial participation algorithm, and the proof for the full participation is similar.

For a diminishing step size ηt = β
t+γ for some β > 1

µ̃ and γ > 0 such that η1 ≤ min{ 1µ̃ ,
1
4L} = 1

4L and ηt ≤ 2ηt+E .

We will prove ∆t := E[‖θt − θPS‖22] ≤ v
γ+t , where v := max{ c2c7β

4γ−2+c1c7β
3γ−1+2σ2β2

βµ−1 , (γ + 1)∆1}. We prove

this by induction. Firstly, the definition if v ensures it holds for t = 1. Assume it holds for some t, i.e., ηt = β
t+γ , then

it follows from Lemma D.4 that

∆t+1 ≤ (1− ηtµ̃)∆t + c2c7η
4
t + c1c7η

3
t + 2σ2η2t

≤ (1− βµ̃

t+ γ
)

v

t+ γ
+

c2c7β
4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

2σ2β2

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

2σ2β2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)2γ2
+

c1c7β
3

(t+ γ)2γ
+

2σ2β2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
(28)

where µ̃, c1, c2, c3, c7 are defined the same as in earlier proofs, and thus the O(1/T ) convergence rate is shown.

Lemma D.6. (Bounding the difference wt+1 − θt+1
in partial participation)

Suppose Assumption 2.1, 2.2, 2.3, and 2.5 hold. For t+ 1 ∈ IE , assume that ηt is non-increasing and ηt ≤ 2ηt+E for
all t, then we have the following results

1. For Scheme I, the expected difference wt+1 − θt+1
is bounded by

ESt‖θ
t+1 −wt+1‖22 ≤

4

K
η2tE

2G2. (29)

2. For Scheme II, assuming p1 = p2 = · · · = pN = 1
N , the expected difference wt+1 − θt+1

is bounded by

ESt‖θ
t+1 −wt+1‖22 ≤

4(N −K)

K(N − 1)
η2tE

2G2 (30)

Proof. We prove the bound for Scheme I as follows. Since θ
t+1

= 1
K

∑K
l=1w

t
il

, taking expectation over St+1, we
have

ESt‖θ
t+1 −wt+1‖22 = ESt

1

K2

K∑
l=1

‖wt+1
il
−wt+1‖22 =

1

K

N∑
k=1

pk‖wt+1
k −wt+1‖22 (31)

We note that since t+ 1 ∈ IE , we know that the time t0 = t− E + 1 ∈ IE is the communication time, which implies
{θkt0} is identical. Then

N∑
k=1

pk‖wt+1
k −wt+1‖22 =

N∑
i=1

pk‖(wt+1
k − θt0)− (wt+1 − θt0)‖22 ≤

N∑
i=1

pk‖wt+1
k − θt0‖22 (32)
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Similar to Lemma D.2, the last inequality is due to E‖X − EX‖22 ≤ E‖X‖22 where X = wt+1
k − θt0 , and∑N

k=1 pk(wt+1
k − θt0) = wt+1 − θt0 . Similarly, we have

ESt
[
‖θt+1 −wt+1‖22

]
≤ 1

K

N∑
k=1

pkE
[
‖wt+1

k − θt0‖22
]

=
1

K

N∑
k=1

pkE
[
‖wt+1

k − θt0k ‖
2
2

]
=

1

K

N∑
k=1

pkE
[∥∥ t∑

s=t0

ηsOl(θ
s
k;Zs+1

k )
∥∥2
2

]

≤ 1

K

N∑
k=1

pkE
t∑

s=t0

E
[
‖ηsOl(θsk;Zs+1

k )‖22
]

≤ 1

K
E2η2t0G

2 ≤ 4

K
η2tE

2G2. (33)

Then we prove the bound for Scheme II. Since θ
t+1

= 1
K

∑K
l=1w

t+1
il

, we have

ESt
[
‖θt+1 −wt+1‖22

]
= ESt

[∥∥ 1

K

K∑
l=1

wt+1
il
−wt+1

∥∥2
2

]

=
1

K2
ESt
[∥∥ N∑

i=1

1{i ∈ St}(wt+1
i −wt+1)

∥∥2
2

]

=
1

K2

[ N∑
i=1

P(i ∈ St)‖wt+1
i −wt+1‖22 +

∑
j 6=i

P(i, j ∈ St)
〈
wt+1
i −wt+1, wt+1

j −wt+1
〉 ]

=
1

KN

N∑
i=1

‖wt+1
i −wt+1‖22 +

K − 1

KN(N − 1)

∑
i6=j

〈
wt+1
i −wt+1, wt+1

j −wt+1
〉

=
1

K(N − 1)
(1− K

N
)
N∑
i=1

‖wt+1
i −wt+1‖22. (34)

Note that the second last equality holds because P(i ∈ St) = K
N and P(i, j ∈ St) = K(K−1)

N(N−1) ; and the last equality
holds because

N∑
i=1

‖wt+1
i −wt+1‖22 +

∑
i6=j

〈
wt+1
i −wt+1, wt+1

j −wt+1
〉

=
N∑
i=1

〈
wt+1
i −wt+1,

( N∑
j=1

wt+1
j

)
−Nwt+1

〉
= 0.

Recall that

N∑
k=1

pk‖wt+1
k −wt+1‖22 ≤

N∑
i=1

pk‖wt+1
k − θt0‖22,
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we get

E
[
‖θt+1 −wt+1‖22

]
=

1

K(N − 1)
(1− K

N
)E
[ N∑
i=1

‖wt+1
i −wt+1‖22

]

≤ N

K(N − 1)
(1− K

N
)E
[ N∑
i=1

1

N
‖wt+1

i − θt0‖22
]

≤ N

K(N − 1)
(1− K

N
)4η2tE

2G2 =
4(N −K)

K(N − 1)
η2tE

2G2 (35)

where the last inequality can be found in (22) in the proof of Lemma D.2.

Lemma D.7. Under Under Assumption 2.1, 2.2, 2.3, 2.5, and the condition that ηt ≤ µ̃/c2, , ηt ≤ ηt0 ≤ 2ηt where
t0 = maxs{s ∈ N|Es ≤ t}, ηt+1 < ηt for any t ≥ 0, η1 < 2

µ̃ and ηqt /η
q
t+1 ≤ 1 + (µ̃/2)ηqt+1 for any t ≥ 0 and

q = 1, 2, 3, we have

ESt [||θ
t+1 − θPS ||22] ≤

t∏
i=0

(1− µ̃ηi)
∣∣∣∣θ0 − θPS∣∣∣∣2

2
+

2c2c3
µ̃

η3t +
2c1c3
µ̃

η2t +
2c8
µ̃
ηt, (36)

(c8 for Scheme I, replace c8 with c9 in Scheme II) where we define c8 := 2σ2 + 4
KE

2G2 in Scheme I, and c9 :=

2σ2 + 4(N−K)
K(N−1)E

2G2 in Scheme II.

Proof. Note that

||θt+1 − θPS ||22
= ||θt+1 −wt+1 +wt+1 − θPS ||22
= ||θt+1 −wt+1||22︸ ︷︷ ︸

T1

+ ||wt+1 − θPS ||22︸ ︷︷ ︸
T2

+ 2〈wt+1 − θt+1
, θ

t+1 − θPS〉︸ ︷︷ ︸
T3

(37)

When expectation is taken over St+1, the last term T3 vanishes due to Lemma C.1.

If t+ 1 /∈ IE , T1 vanishes since θ
t+1

= wt+1 by definition when t+ 1 is not a communication step. For term T2, it’s
not hard to see that we can use Lemma B.1 to derive one step bounds for it (and use (25) in Lemma D.4), and thus we
have

E
[
||θt+1 − θPS ||22

]
= E

[
||wt+1 − θPS ||22

]
≤ (1− µ̃ηt)E

∣∣∣∣θt − θPS∣∣∣∣2
2

+ c2c7η
4
t + c1c7η

3
t + 2σ2η2t , (38)

and we recall that c1 := L2(1+εmax)
2

2δε , c2 := 4[σ2 + L2(1 + εmax)2], c3 := 4(E − 1)2G2, µ̃ := µ− (1 + δ)εL.

If t+ 1 ∈ IE , then we have the following result from Lemma D.6,

E
[
||θt+1 − θPS ||22

]
= E

[
||θt+1 −wt+1||22

]
+ E

[
||wt+1 − θPS ||22

]
≤ (1− µ̃ηt)E

∣∣∣∣θt − θPS∣∣∣∣2
2

+ c2c7η
4
t + c1c7η

3
t + c8η

2
t , (39)

where we recall c8 := 2σ2 + 4
KE

2G2 in Scheme I, and c9 := 2σ2 + 4(N−K)
K(N−1)E

2G2 in Scheme II.
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The only difference between (26) and (39) is in (c8 − 2σ2)η2t . Therefore, we can use similar techniques to show the
convergence,

E[||θt+1 − θPS ||22] ≤ (1− µ̃ηt)E
∣∣∣∣θt − θPS∣∣∣∣2

2
+ c2c7η

4
t + c1c7η

3
t + c8η

2
t

=
t∏
i=0

(1− µ̃ηi)
∣∣∣∣θ0 − θPS∣∣∣∣2

2

+
t∑

s=1

t∏
i=s+1

(1− µ̃ηi)
(
c2c7η

4
s + c1c7η

3
s + c8η

2
s

)
≤

t∏
i=0

(1− µ̃ηi)
∣∣∣∣θ0 − θPS∣∣∣∣2

2
+

2c2c7
µ̃

η3t +
2c1c7
µ̃

η2t +
2c8
µ̃
ηt

(c8 for Scheme I, replace c8 with c9 in Scheme II).

Theorem D.8. (Full participation convergence theorem, alternative assumption)
Under Assumption 2.1, 2.2, 2.3, 2.5, the full participation scheme has convergence rate O( 1

T ), i.e., denote ∆t :=

E[‖θt − θPS‖22], then for some γ > 0,
∆t ≤

υ

γ + t
, (40)

where υ := max{ c2c7β
4γ−2+c1c7β

3γ−1+c8β
2

βµ−1 , (γ + 1)∆1} (c8 for Scheme I, replace c8 with c9 in Scheme II).

Proof. We will show it on the partial participation algorithm, and the proof for the full participation is similar.

For a diminishing step size ηt = β
t+γ for some β > 1

µ̃ and γ > 0 such that η1 ≤ min{ 1µ̃ ,
1
4L} = 1

4L and ηt ≤ 2ηt+E .

We will prove4t := E[||θt − θPS ||22] ≤ v
γ+t , where v := max{ c2c7β

4γ−2+c1c7β
3γ−1+c8β

2

βµ−1 , (γ + 1)41}. We prove

this by induction. Firstly, the definition if v ensures it holds for t = 1. Assume it holds for some t, i.e., ηt = β
t+γ , then

it follows that

4t+1 ≤ (1− ηtµ̃)4t + c2c7η
4
t + c1c7η

3
t + c8η

2
t

≤ (1− βµ̃

t+ γ
)

v

t+ γ
+

c2c7β
4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

c8β
2

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

c8β
2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)2γ2
+

c1c7β
3

(t+ γ)2γ
+

c8β
2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
(41)

(c8 for Scheme I, replace c8 with c9 in Scheme II), where µ̃, c1 to c9 are defined the same as in earlier proofs, and thus
the O(1/T ) convergence rate is shown.
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E Experiments

E.1 Numerical simulation

E.1.1 Learning rate decay (Figure 6)
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Figure 6: Constant learning rate on ExpGaussian. Full participation with E = 10. The learning rate is set to 0.02.

E.1.2 Scheme II with lower learning rate (Figure 7)
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Figure 7: Sampling without replacement on ExpGaussian. The variance of pi is set to 0.01. The learning rate is set
to 5

t+10000 .

E.2 Credit score strategic classification

Figure 8 shows the losses and distances to the PS solution for the full participation, Scheme I and Scheme II using
batch size 1 in client gradient descent. Figure 9 and 10 show the same figure with batch size 4 and 16, respectively.
The scales of y axes are set equal for convenience of comparison. Using a larger batch size improves the convergence
speed for all three schemes, especially for the two schemes of partial participation, both converging as fast as the full
participation with batch size 16.

To study how batch batch size affect the convergence, we initialize P-FedAvg with θPS , the solution that minimizes
the performative objective function. Due to the randomness of minibatch stochastic descent, we expect the parameter to
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Figure 8: The losses (a) and distances (b) to the PS solution for the full participation, Scheme I and Scheme II using
batch size 1 in client gradient descent.
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Figure 9: Same as Figure 8, but using batch size 4.
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Figure 10: Same as Figure 8, but using batch size 16.
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(a) Full participation, loss
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(b) Full participation, distance to PS solution
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(c) Scheme I, loss
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(d) Scheme I, distance to PS solution
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(e) Scheme II, loss
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(f) Scheme II, distance to PS solution

Figure 11: The loss functions and the distance to θPS of P-FedAvg initialized with θPS .

deviate from θPS and gradually stabilize back to θPS as the algorithm proceeds with decaying step sizes. It can be
seen from Figure 11 (b), (c) and (f) that it is indeed the case for batch sizes larger than 1. This motivates our choice of a
batch size larger than 1.
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