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Abstract

We propose a new class of online learning
algorithms, generalized implicit Follow-The-
Regularized-Leader (FTRL), that expands the
scope of FTRL framework. Generalized implicit
FTRL can recover known algorithms, such as
FTRL with linearized losses and implicit FTRL,
and it allows the design of new update rules, as ex-
tensions of aProx and Mirror-Prox to FTRL. Our
theory is constructive in the sense that it provides
a simple unifying framework to design updates
that directly improve the worst-case upper bound
on the regret. The key idea is substituting the
linearization of the losses with a Fenchel-Young
inequality. We show the flexibility of the frame-
work by proving that some known algorithms,
like the Mirror-Prox updates, are instantiations of
the generalized implicit FTRL. Finally, the new
framework allows us to recover the temporal vari-
ation bound of implicit OMD, with the same com-
putational complexity.

1. Introduction

Online learning is a setting where the learner receives an
arbitrary sequence of loss functions, selects points before
knowing the loss functions, and is evaluated on the values
of the loss functions on the points it selects (Cesa-Bianchi
& Lugosi, 2006; Orabona, 2019; Cesa-Bianchi & Orabona,
2021). More in detail, at round ¢ the learner outputs a point
x; in a feasible set V' C R?. Then, it receives a loss function
¢, 1 V — Rand it pays the value ¢;(x;). Given the arbitrary
nature of the losses, the learner cannot guarantee to have
a small cumulative loss, Zthl ¢ (x¢). On the other hand,
it is possible to minimize the regret, that is the difference
between the cumulative loss of the algorithm and the one of
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any arbitrary comparator u € V:

T T
Regret,(u) = Zét(zct) - Zét(u) .
t=1 t=1
In particular, a successful online learning algorithm must
guarantee a regret that grows sublinearly in time for any
u € V. In this way, its average performance approaches the
one of the best comparator in hindsight.

There are two families of online learning algorithms: Online
Mirror Descent (OMD) (Nemirovskij & Yudin, 1983; War-
muth & Jagota, 1997) and Follow-the-Regularized-Leader
(FTRL) (Shalev-Shwartz, 2007; Abernethy et al., 2008;
Hazan & Kale, 2008). They stem from two similar but
complementary approaches: the update of OMD aims at
minimizing a linearization of the current loss without go-
ing too far from its previous prediction x;, while FTRL
minimizes the sum of all the losses (or their linear approxi-
mation) plus a regularization term. On the contrary to the
first approaches in online learning that focused on specific
algorithms (e.g., the Winnow algorithm (Littlestone, 1988)),
the theory of these two frameworks is particularly interest-
ing because it allows both the design and the analysis of
generic online learning algorithms.

While FTRL and OMD provide similar bounds in most sit-
uations, they are not completely equivalent. For example,
FTRL has an advantage over OMD in unbounded domains,
where it allows to use time-varying regularizers. In fact,
OMD allows the use of time-varying stepsizes only in do-
mains where its associated Bregman divergence is bounded.
On the other hand, in the cases where we can use time-
varying stepsizes, OMD can achieve a superior adaption to
the gradients (see, e.g., Theorem 2 in Streeter & McMahan
(2010) versus Theorem 2 in Orabona & Pal (2015)). In this
view, these two frameworks are complementary.! Moreover,
there exists another orthogonal axis on the use of the actual
loss functions or a linear surrogate for both frameworks. We
summarize all the variants of OMD and FTRL in Table 1.

Our motivation stems from the fact that in practical cases,
all the variants that use full losses offer a big advantage
in terms of empirical performance at the cost of a higher

'See also the blog post on this topic by Tim van
Erven at https://www.timvanerven.nl/blog/
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Table 1. Summary of implicit and linearized updates for FTRL and OMD. (The Bregman divergence By (x; y) is defined as ¢ (x) —

P(y) — (VY(y), © — y). The * denotes the Fenchel conjugate.)

Algorithm

Update

OMD (Warmuth & Jagota, 1997)
Implicit OMD (Warmuth & Jagota, 1997)

Typ1 = argmingcy By (@5 @) + (@) + (g, @ — x4))

Tip1 = argming .y By (x; @) + nily(x)

FTRL (linearized) (Abernethy et al., 2008)
FTRL (full losses) (McMahan, 2017)
Implicit FTRL (McMahan, 2010)

Ty = argmingey Y (@) + i, (@) + (g5, @ —

Ty = argmingey Yo (@) + G(x) + S0 (li(m) + (g, @ —

z;))
Ty = argmingey G (@) + 20, L)

z;))

Generalized Implicit FTRL [This work]

Typ1 = argmingey Y (x) + Zf:ﬂz/li’ x)
zisuch that 7, (375 25) + 05 (20) < ¥5 v (i1 25 — 90) +45(9,)

computational complexity. On the theoretical side, the sit-
uation is not so clear given that in the worst case using the
full losses can be equivalent to their linearized version, as
it should be clear considering linear losses. In particular,
the standard theoretical framework for FTRL does not allow
a clear analysis of the implicit case. Moreover, while for
implicit OMD it has been proven that one can achieve lower
regret if the temporal variation of the losses is small, it is
unclear if the same guarantee can be achieved for FTRL
without the computational cost of using full losses.

In this paper, we aim at bridging this gap by proposing
a generalized version of implicit FTRL. We go beyond
implicit and linearized updates: we directly construct the
update rule in a way that minimizes an upper bound on
the regret. Our framework effectively expands the scope of
the FTRL framework, fully retaining its coupling between
design and analysis. Also, our updates come with a worst-
case guarantee to never be worse than the standard linearized
ones.

We show the flexibility of our framework recovering known
update schemes, like the Mirror-Prox update (Nemirovski,
2004), or extending updates specifically designed for OMD
to the FTRL case, like the aProx one (Asi & Duchi, 2019).
Moreover, for the first time, we show an implicit version of
FTRL that recovers the temporal variation bound of implicit
OMD (Campolongo & Orabona, 2020), but with the same
computational complexity of implicit OMD.

Related Work While there are many works on implicit
mirror descent in both the online and offline setting (see, e.g.,
Moreau, 1965; Martinet, 1970; Rockafellar, 1976; Kivinen
& Warmuth, 1997; Parikh & Boyd, 2014; Campolongo &
Orabona, 2020; Shtoff, 2022), the number of works that
deal with implicit updates for FTRL is quite limited. We
are only aware of McMahan (2010), which quantifies a gain
only for specific regularizers. However, the framework in
McMahan (2010) is non-constructive in the sense that it is
difficult to see how to generalize implicit updates. Joulani
et al. (2017) extends this last result, but it does not provide a
link with the maximization of the dual function that governs

the regret upper bound.

The closest approach to our framework is the one of Shalev-
Shwartz & Singer (2007a;b), which develop a theory of
FTRL updates as maximization of a dual function. However,
their framework is limited to a specific shape of regularizers
and it does not deal with implicit updates.

For implicit OMD, Campolongo & Orabona (2020) showed
that implicit updates give rise to regret guarantees that de-
pend on the temporal variability of the losses, so that con-
stant regret is achievable if the variability of the losses is
zero. They suggest that FTRL with full losses can achieve
the same guarantee, but they also point out that given its
computational complexity it would be “not worth pursuing.’
Here, we show how to achieve the same bound of implicit
OMD with our generalized implicit FTRL, while retaining
the same computational complexity of implicit OMD.

i

Proximal updates on truncated linear models were intro-
duced in Asi & Duchi (2019) for the OMD algorithm. Chen
et al. (2022b) used gradient flow on the same truncated linear
models with a coin-betting algorithm (Orabona & Pdl, 2016),
but their approach does not seem to satisfy a regret guaran-
tee. Chen et al. (2022a) have used truncated linear models in
an FTRL-based parameter-free algorithm (Orabona & Pdl,
2021) with a novel decomposition of the regret. However,
their approach is ad-hoc and seems difficult to generalize.

2. Definitions and Basic Tools

We define here some basic concepts and tools of convex
analysis, we refer the reader to, e.g., Rockafellar (1970);
Bauschke & Combettes (2011) for a complete introduction
to this topic. We will consider extended value function that
can assume infinity values too. A function f is proper if it
is nowhere —oo and finite somewhere. A function f : V' C
R? — [—o0, +00] is closed if {z : f(z) < a} is closed for
every a € R. For a proper function f : R? — (—o0, +00],
we define a subgradient of f in & € R? as a vector g € R?
that satisfies f(y) > f(z) + (g,y — z), Yy € R% We
denote the set of subgradients of f in x by Jf(x). The
indicator function of the set V, iy : RY — (—o0, +00],
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has value 0 for x € V and +oo otherwise. We denote the
dual norm of a norm || - || by || - ||x. A proper function
f: R = (—o0, +00] is p-strongly convex over a convex
setV Cintdom f wrt. ||| if Ve, y € V and Vg € Of (),
we have f(y) > f(x)+(g, y—z)+5 ||z —y]/*. Afunction
f 'V — R, differentiable in an open set containing V, is L-
smoothwar. |1|[if f(y) < (@) +(Vf(2), y—a)+ L |z—
y||? for all &,y € V. For a function f : R? — [—o0, o0],
we define the Fenchel conjugate f* : R — [—00,00] as
[*(0) = supgyepa (0, x) — f(x). From this definition, we
immediately have the Fenchel-Young inequality: f(x) +
f*(0) > (0,x), Vx,0. We will also make use of the
following properties of Fenchel conjugates.

Theorem 2.1 ((Orabona, 2019, Theorem 5.7)). Let f :
R? — (—o0,+00] be proper. Then, the following con-
ditions are equivalent:

(a) 0 € Of (x).

(b) (0,y) — f(y) achieves its supremum in y at y = .
(c) f(z)+ [*(0) = (0,x).

Moreover; if f is also convex and closed, we have an addi-
tional equivalent condition

(d) z € Of*(0).

Theorem 2.2 ((Orabona, 2019, Theorem 6.11)). Let ¢ :
R? — (=00, +00] be a proper, closed, convex function, and
dom 0 be non-empty. Then, 1) is A > 0 strongly convex
wrt. || - || iff ¥* is $-smooth w.rt. || - || on R

3. Generalized Implicit FTRL

In this section, we introduce our novel generalized formu-
lation of the implicit FTRL algorithm. The main idea is to
depart from the implicit or linearized updates, and directly
design updates that improve the upper bound on the regret.
More in detail, the basic analysis of most of the online learn-
ing algorithms is based on the definition of subgradients:

by(e) — Li(u) < (g, T — u), Vg, € 0ly(zy) . (1)

This allows to study the regret on the linearized losses as a
proxy for the regret on the losses ¢;. However, we can do
better. We introduce a new fundamental and more general
strategy: using the Fenchel-Young inequality, we have

ft(mt) — ft(u) S ft(wt) — (zt,u> +£:(Zt)7 Vzt .

In particular, the algorithm will choose z; to make a certain
upper bound involving this quantity to be tighter. This
is a better inequality than (1) because when we select
zy = g, € Oli(xt), using Theorem 2.1, we recover (1).
So, this inequality subsumes the standard one for subgradi-
ents, but, using z; € ¢;(x4y1), it also subsumes the similar
inequality used in the implicit case, as we show in Sec-
tion 3.1. Moreover, we will see in Section 6 that it covers
cases where z; is not a subgradient of (4.

Algorithm 1 Generalized Implicit FTRL

Require: Non-empty closed set V C R¢, a sequence of
regularizers ¢y, . .., ¢ : R? — (—o0, +00]
1: 01 =0
2: fort =1toT do
3:  Output x; € argming oy ¥4 (x) — (64, )
Receive ¢; : V — R and pay ¢;(x;)
Set g, € 0l;(x4)
Set z; such that Hy(z;) < H(g,) or H{(z;) <
H/(g,) where H; and H] are defined in (2) and (3)
7: Set 0t+1 = 075 — Zt
8: end for

AN AN

The analysis shows that the optimal setting of z; is the one
that minimizes the function

Hi(z) 247, v (00 — 2) + 17 (2) )

or

H{(z) & ;v (0, — 2) + (5 (2), 3)
where 1), v is the restriction of the regularizer used at time
t on the feasible set V, ie., ¥y = ¢ + iy. How-
ever, we can show that any setting of z; that guarantees
H:(z) < Hy(g,) (or H/(z) < H{(g,)) guarantee a strict
improvement in the worst-case regret w.r.t. using the lin-
earized losses.

One might wonder why the need for two different updates
using H; or HJ. The reason is that when using time-varying
regularizers that depend on the data, like in the FTRL ver-
sion of AdaGrad (McMahan & Streeter, 2010; Duchi et al.,
2011), if A\;+1 depends on z, it might make the calculation
of the update particularly difficult. This can be avoided
using the update involving Hj.

Once we have the z;, we treat them as the subgradient of sur-
rogate linear losses. So, putting it all together, Algorithm 1
shows the final algorithm. We now show a regret guarantee
for this algorithm. First, we state a general Lemma and then
instantiate it in a few interesting cases.

Theorem 3.1. Let V. C R? be closed and non-empty
and V. — R. With the notation in Algo-
rithm 1, define by Fy(x) = i(x) + Y'Z1(zi,x), 50
that x; € argmingcy Fy(x). Finally, assume that
argmingcy, Fy(x) and 0l (x¢) are not empty for all t.

e Forany z, € R? and any u € RY, we have

Regrety(u) < ¢r41(u) — min ¢1(x)
T

+ ZW:H,V(Bt —g:) — Tﬁ,v(et) + (¢, 9;) — O]
t=1

+ Fryi(eri1) — Frya(u),

where 6; = Hy(g,) — Hy(2¢).
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o If hir1(x) > (@) for any x € V, then, for any
z; € RY we have

Regret,(u) < ¢ri1(u)

T

— min ¢y (x)

S W (60— 9,) — 61y (8) + (@irg,) — )
t=1
+ Fry1(eri1) — Frya(u),
where 5, = H/(g,) — H](z).

Proof. The proof is composed of simple but not obvious
steps. The first important observation is that the definition
of =, in the algorithm corresponds exactly to the one of
FTRL on the linear losses (z, ). Hence, we can use the
FTRL equality in Orabona (2019, Lemma 7.1):

T T
Z Zy, U Z [Fi(xt) — Frp1(2e41)]) + Yy (u)
t=1 t=1

— min Yi(x) + Proy(®re1) — Froa(u),

where we have cancelled out the terms (z;, ;) on both
sides.

Now, use Fenchel-Young inequality, to have (z;,u) <
¢ (u) + €5 (z¢). Hence, we have

T
,th
t=1

T
Z Fy(xt) — Frpa(megr) + 0 (21)]

¢T+1(U) - Imnelg Y1 (x)

+ Fry(xrsr) — Froa(u) .
Observe that
t—1
Fy(x,) = min (x) + ) (2, )

i=1

— V() = =y (01) -

= 0

In the same way, we have —Fy1(xt+1) = ¥5 4 v (0i41)-
Also, for any g, € 0¢;(x;), by Theorem 2.1 we have
0x(g,) = (x+,9,) — l+(x:). Hence, each term in the sum
can be written as

Fy(xy) — Frya(@eg) + 6(20)
=1 v(0er1) — Y5y (00) +
= Hy(z:) — 7 v (6:) -
Now, we just add and subtract H;(g,)
(g, +) — ¢(x¢) to obtain the stated bound.

The second case is similar. We just have to observe that if
Yip1,v 2> Yy v, then ¥y, < 9f . Hence, each term in

i (z1)

=¢rv(0i—g,)+

the sum can be upper bounded as

Fi(xe) — Froa(mig1) + 6 (21)
< Pry (1) — ULy (01) + 65 (24)
= Hi(z:) — ¢y (6:) -

As before, adding and subtracting Hj(g;) = 97, (0; —
g;) + (x:,9;) — () gives the stated bound. O

The Theorem is stated with very weak assumption to show
its generality, but it is immediate to obtain concrete regret
guarantees just assuming, for example, strongly convex
regularizers and convex and Lipschitz losses and using well-
known methods as Orabona (2019, Lemma 7.8)

However, we can already understand why this is an interest-
ing guarantee. Let’s first consider the case that z; = g,. In
this case, we exactly recover the linearized FTRL algorithm.
Even the guarantee in the Theorem exactly recovers the best
known one (Orabona, 2019, Corollary 7.9), with §; = 0
and §; = 0. Now, if we set z; such that H;(z;) < H:(g,)
or H/(z:) < Hj{(g,) we will have that 6; > 0 or J; > 0.
Hence, in each single term of the sum we have a negative
factor that makes the regret bound smaller. While it might
be difficult to give a lower bound to d; and ¢; without ad-
ditional assumptions, the main value of this analysis is in
giving a unifying way to design generalized implicit updates
for FTRL. In fact, in the next sections we will show a number
of possibilities that this framework enables.

Next, we will gain more understanding on the updates in
Algorithm 1, comparing them to implicit OMD.

3.1. Comparison with Implicit Online Mirror Descent

In this section, we show that when z; is set to minimize
H(z) or H/(z), we recover different variants of implicit
updates.

Assume that the ¢; are closed and convex. Also, assume that
w;v is differentiable, that is true, for example, when v is
strongly convex by Theorem 2.2. Then, observe that by the
first-order optimality condition and Theorem 2.1, we have

zy = argmin Hy(z)
z

& VUi v(0: — z¢) € 047 (21)

=z € aft(vwaly(@t — Zt)) = (‘%t(le) . (4)
Hence, in this case, we have that the optimal z; is the gra-
dient at the next point x;;. This is exactly what happens
in the implicit updates. This condition that depends on
the gradient in the next iterate is similar to other implicit
updates.
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Under the same assumptions, we also have

zy = argmin Hj(z) & Vi (0, — z;) € 907 ()

& 2t € 8€t(th*V(0t+1)) )]

In this other case, the update also has an implicit flavor but
the subgradient is queried on a point different from the next
point, where the difference depends on how much Vi,
differs from Vpy, ; 1.

Let’s see this connection even more precisely, considering
proximal updates. Hence, for simplicity, let’s consider the
case that V = R?, similar considerations hold in the con-
strained case. Consider the case that ¢;(z) = 3¢ ||z||3. In
this case, the update can be written with the proximal opera-
tor of the loss functions. In particular, the proximal operator

of nf, is defined as

Pross(y) & argmin = — y| + /()
zcR4

If the function f is differentiable we have that Prox, s (y) =
y — nV f(Prox,(y)). In words, the proximal update
moves by a quantity that depends on the gradient on the
updated point. The implicit nature of these updates justi-
fies the name “implicit updates” used in the online learn-
ing literature. More generally, we have that Prox, ;(y) €
y — ndf(Prox,s(y)). We list some common proximal
operators in Appendix A.

Assuming A,y does not depend on z;, using the proximal
operator we can rewrite the update in (4) as

Gt 1 et
Tip1 = X 1 — Prox 0
t+1 A1 t+1

)\ta:t
. 6
(At+1> ©

Similarly, we can rewrite the update in (5) as

= Prox ¢,
At41

01 0 2z 2 1
=5 Ty T T — = * (0
At A M Tt A\ € Ty N t (Vi v (0i41))
1 0t+1
=z — —OL
. At ' < At
Hence, we have that 9;\+1 = Prox, () and we get
t )\t
0 A
Tyl = a2 A Prox ¢ (x¢) . (7
At+1 At xt

It is instructive to compare both updates with the one of

Implicit Online Mirror Descent using ¢(x) = 3||||3 as

distance generating function and stepsizes /\% In this case,
we would update with

1
)\jgt(w)

= Proxiit(:ct) . (8)

t

1 9
Ty = argmin — ||, — x||5 +
x 2

Comparing (4) and (5) to (8), we see, when Ay < A\;11 as
it is usual, the two updates above shrink a bit towards the
zero vector, that is the initial point x;, before or after the
proximal operator. This shrinking is given by the FTRL
update and it is the key difference with Implicit OMD up-
date. The different update also corresponds to a different
guarantee: the regret of the generalized implicit FTRL holds
for unbounded domains too, while in Implicit OMD with
time-varying stepsizes can have linear regret on unbounded
domains (Orabona & Pal, 2018). Interestingly, a similar
shrinking has been proposed in Fang et al. (2020) to fix the
unbounded issue in OMD. Clearly, the updates (4) and (5)
become equivalent to (8) for A; constant in ¢, that is exactly
the only case when implicit/proximal online mirror descent
works for unbounded domains.

4. Temporal Variability Bound

In this section, we quantify the advantage of the general-
ized implicit FTRL updates in the case of slow temporal
variability of the loss functions.

It was observed in Campolongo & Orabona (2020) that
implicit OMD satisfies regret guarantees that depend on the
temporal Variability Vr:

T
Vr & Zglea‘ic b(x) —li_q1(x) .
t=2

In Campolongo & Orabona (2020, Appendix E) they also
show that FTRL with full losses guarantees a similar guaran-
tee, but at a much higher computational price. Indeed, FTRL
with full losses requires solving a finite sum optimization
problem at each step, whose size increases with the number
of iterations. Such computational burden induced Campo-
longo & Orabona (2020) to say that such approach is “not
worth of pursuing.”

Here, we show that the Algorithm 1 can satisfy the same
guarantee of implicit OMD with the same computational
complexity too. First, we show the following Lemma.

Lemma 4.1. Under the assumptions of Theorem 3.1, further
assume V' to be convex, ¥y : V — R closed, \;-strongly
convex w.rt. || - ||, and subdifferentiable in V, {; closed,
convex, and subdifferentiable in V, and A\iy1 > A Set
z¢ € argmin, Hi(z). Then, we have

Regrety (u) < ¢r41(u) — min y(z)

T
A
+) <€t(mt) — l(®e11) — 5t||$t+1 - mt|2) Vu e V.
t=1

Proof. First of all, the existence and unicity of x; is guar-
anteed by ¢/, being closed and strongly convex (see, e.g.,
Orabona, 2019, Theorem 6.8).
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From Theorem 2.1, for any g; € 0f;(x:+1), we have
x(g;) = (@441, 9,) — €i(x411). Hence, from (4), we have

Viv1v(0er1) — ¥Viv(00) + £ (21)

=i v (00 — 2z¢) — 7y (0) + (Tig1, 20) — Le(®eg1) -

Using this identity, we have

Viv1v (00 — 2) — ¥y v (1) + (Tig1, 24)
= (01 — 2z, Try1) — Vi1 (Tes1) — (01, @) + Pe()
+ (@411, 2¢)
< ap(@r) = Ye(Tig1) + (O, i1 — )

From the first-order optimality condition of a;, we have that
0: € Oy (xt) + Oiy (x+). Moreover, for all g} € Jiy (x:),
by definition we have (g}, y — ;) < Oforally € V.
Hence, for g; € 0y (x) and g} € iy (x;) such that
0: = g, + g}, we have

V() — Ye(xpq1) + (O, Tep1 — )
= Pi(@s) — Ye(@t11) + () + G Te1 — x4)

A
< —éHthH —xy|?,

where in the inequality we also used the strong convexity of
1¢. Using this inequality in Theorem 3.1 and summing over
time, we have

Do bil@en) = Y li(u)

T
A
< Yy (u) — 51613 P1(x) — ; ?t

[ thQ .

By adding and subtracting Zthl £:(x¢) to both sides and
reordering the terms, we have the stated bound. O

This Lemma mirrors Theorem 5.2 in Campolongo &
Orabona (2020), with the important difference that here
we do not need the Bregman divergence to be bounded on
the feasible set V/, thanks to the use of FTRL instead of
OMD. We can now state the immediate corollary on a regret
bound that depends on the temporal variation.

Corollary 4.2. Under the assumptions of Lemma 4.1, for
any u € V, we have

Regrety (u) < ¢r41(u) — min 1 (x)

+ 0 (x1) — br(Tri0) + V.

From this result, following (Campolongo & Orabona, 2020),
it is relatively easy to obtain the following adaptive regret
guarantee. The only difficulty is the fact that we need ;1
to be independent of z; to have a simpler update rule. We

solve this problem using an increasing regularizer that is
“behind of two steps”. In this way, we have that )\, de-
pends on quantities that are all known at the beginning of
round ¢. The proof is in Appendix B.

Corollary 4.3. Under the assumptions of Lemma 4.1, fur-
ther assume ||g,||« < G for all t. Define v = {y(xs) —

(1) =3 @1 —m4]|* and A, = 7 (Gﬁ +302 'Yi>'
Assume that ) is closed and 1-strongly convex w.r.t. || - ||
and set Uy = \yp. Then, for any uw € V, we have

Regret,(u) < min (;(51 (1) = br(x741) + V1),

G+

jénmz (15).

5. Two-step Updates

The choice of z; that minimizes the regret upper bound
requires solving the optimization problem min, H;(z) or
min, Hj(z). We have seen in Section 3.1 that this corre-
sponds to (some variant) of a implicit/proximal update and,
depending on /4, it can be of difficult calculation. However,
as we said, any choice better than g, will cause a provable
gain. Hence, a viable solution is to approximately solve for
the optimal z;.

Here, we propose a simple approximation: set z; as

2y € 0Uy(VYiy v(0r — gy)) )

or as
zy € 0L(Vy v (0 — gy)) - (10)

In words, we set z; to be a subgradient after one fake update.
This is exactly the approach used in the Mirror-Prox algo-
rithm (Nemirovski, 2004), an offline optimization algorithm.
In the next theorem, when the loss functions #; are smooth
and the regularizer is chosen appropriately, we show that
this choice can be used in the generalized implicit FTRL
too and it cannot be worse than using g,.

Theorem 5.1. Assume .(x) proper, closed, and \:-
strongly convex with respect to || - ||. Assume {;(x) closed
and A¢-smooth w.rt. || - ||« for all t. Then, using (9) and
assuming \i+1 > Ly, we have Hy(z;) < Hy(g,). On the
other hand, when using (10) and assuming Ay > L; we have
Hi(z¢) < Hi(g,).

Proof. We only prove that statement for (9), the other one
is similar. We would like to prove that

Hy(z1) = i v (0 — z0) + £ (24)
< ¢;+1,V(9t -g:)+ g:(gt) = Hi(g,) -
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This is equivalent to prove

i v (0r = 20) = Vit v (0 — g0) < 61(gy) — 6 (24) -

Given that ;11 () is A¢r1-strongly convex, by Theo-
rem 2.2, we have ¢;(6) is 1/\;;1-smooth with respect
to || - ||« By the definition of smoothness, we have

¢t*+1,v(9t —z) — ¢t*+1,v(9t - 9)
1

< <V¢:+1(0t —9:),9: — %) + 59 — Zt”i .
2M 41

Given that ¢4 () is Ly-smooth w.r.t || - ||, by Theorem 2.2
¢x(g) is 1/ Ly strongly convex w.r.t. || - ||. So, by the defini-
tion of the strong convexity, we have

1
i(gy) — Ui (zt) > (qy, 9, — 2¢) + Eugt - zt”i’

for all q, € 0} (z,). Defining =, ,, = V7 (0: — g,),
by Theorem 2.1, we have x; | € 9¢;(z;). Hence, we can
select g, such that =}, ; = q,. Finally, using the assumption
on A\¢4+1 > L, we have the stated bound. O

6. Going Beyond Subgradients with aProx

Till now, in all the updates we have considered z, was set
to be a subgradient of ¢; in a specific point. In this section,
we show that we can go beyond this idea.

Asi & Duchi (2019) introduced aProx updates, that is proxi-
mal updates on surrogate loss functions. In particular, they
used truncated linear lower bounds to the loss functions as
surrogate functions. These simple surrogates are motivated
by the fact that they are strictly better than linear approxima-
tion and at the same time they allow writing the proximal
update in a closed form. Moreover, they showed empirically
that in certain situations the performance of the algorithms
becomes much more resistant to the tuning of the stepsizes.

One might just use the same truncated lower bounds in
implicit FTRL, but it would not be clear why this should give
any advantage in the theoretical bound. Indeed, even in Asi
& Duchi (2019) it is not completely clear what part of the
theory tells us that we should expect a better performance
from these updates.

Here, we show how the updates in the generalized implicit
FTRL are actually a generalization of the aProx ones. In
particular, we generalize the aProx updates to arbitrary regu-
larizers and show that all of them satisfy H;(z:) < H:(g,)
and H{(z;) < Hj(g,). In words, the aProx updates are
guaranteed to be at least as good as the subgradient g, in
minimizing the worst-case regret.

In order to consider truncated linear lower bounds to the
functions /;, in this section we will assume that the loss

functions ¢, are lower bounded. Given that the regret is
invariant to additive constants in the losses, without loss of
generality we can assume the lower bound to be O for all
the loss functions. Hence, define the truncated linear model
ét : V' — R around x; to be

Et(w) £ max ({y(x1) + <gt7 T — xt>70)7

where g, € 0¢(x). For brevity of notation, our notation
does not stress the fact that the truncated linear model de-
pends on x; and the specific subgradient g,.

The idea to extend aProx to the case of generalized implicit
FTRL, we use the truncated linear lower bound in the update
of z;. So, we define

zy = argmin ¥y, (0 — 2¢) + g:(zt) (11)

or
zy = argmin ¥y (0 — z¢) + 07 (24) - (12)

Theorem 6.1. Assume the loss functions €y : V — R to be
convex, closed, and subdifferentiable in V' for all t. Set z,
using (11) or (12). Then, we have that H;(z:) < H(g,) or
H{(z:) < H{(g,) respectively.

Proof. We consider the update (11), the other case is very
similar and we omit it.

First, we derive some inequalities on the quantities of in-
terest. From Theorem 2.1, given that g, € 9Z;(x,) and
g, € 0l:(x;) we have both ¢(x;) + £*(g,) = (g, x+)
and (;(x;) + *(g,) = (g,, ;). Moreover, given that
ly(x) < £,(x) for any x, we have /¥ (z) > £} (z) for any z.
Finally, by the definition of truncated linear lower bound,
we have ft ($t) = gt (mt)

Hence, we have
Vi v (0 — 2z¢) + 5 (24)
<Y v (0 — z1) + 5 (24)
= min P,y (6, — 2) + 07 (2)

< ¢:+1,V(0t gt) + Z:(gt)

= Y5 (01— g) + {9y, ) — L)

=i v(0r —gy) + (g, @) — Le(@0)

= 'Q[JZ(Jrl,V(at —gy)+ @(Qt) = Hy(g,) O

We can also immediately write closed form updates for gen-
eralized implicit FTRL with regularizer ¢ (z) = 3t || z||%,
that mirror the ones of aProx. The proof is in Section C.
Corollary 6.2. Set 1y = 2t||z||3 and g, € 9y (x;). Set-
ting z; as in (11), we have that the update of generalized
implicit FTRL is

1 Zt(wt)) g,

t .
iyl = T ¢ —Iin
Aty (/\t+1’ lg: 11>
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Figure 1. Hinge loss, averaged loss vs. hyperparameter .

On the other hand, setting z as in (12), the update is

A T — min < ! M gt(wt)) g
t— ’ :
)\t+1 )\t+1 )‘tJrl ||gt||2 '

Ti41 =

7. Empirical Evaluation

As we said, in the worst case scenario any kind of implicit
update cannot give any advantage over the usual updates.
However, in practice it is well-known that things are vastly
different. Hence, in this section, we compare the perfor-
mance of different choices of z; in Algorithm 1 when
Yi(z) = 3t||x||3. In particular, we consider:

e FTRL with linearized losses (Linear): z; = g,;
e Implicit FTRL with aProx updates (Trunc): z; =

a%a
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Figure 2. Logistic loss, averaged loss vs. hyperparameter .

. Ale () .
min {17 Ta.l? } gi:

e Implicit FTRL with two-step updates (Twostep): z; =
Oy (T — gi/ Me);

e Implicit FTRL with (6) when the proximal operator
has a closed form (Proximal).

We adopt the choice of \; from Corollary 4.3.

We conduct linear prediction experiments on datasets from
LibSVM (Chang & Lin, 2011). We show here experiments
on classification tasks using the hinge loss and the logistic
loss, and regression tasks with absolute loss. We normalize
the datasets and added a constant bias term to the features.
Given that in the online learning setting, we do not have the
training data and validation data to tune the 3, we will plot
the averaged loss, 1 3°_, £;(x;), versus different choice of
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B, that at the same time show the algorithms’ sensitivity to
the hyperparameter 3 and their best achievable performance.
We consider 3 € [10~3, 10%] for hinge loss and logistic loss,
and 3 € [1073,10%] for the absolute loss. Each algorithm
is run 15 times, we plot the average of the averaged losses
and the 95% confidence interval. Note that the confidence
intervals so small to be invisible, but for the larger values of
the 3 for the Linear updates.

Figure 1 and Figure 2 show the averaged loss versus differ-
ent selections of hyperparameter 3 for classification tasks
with hinge loss and logistic loss respectively. Note that
with the hinge loss aProx updates and proximal updates
are completely equivalent. In all experiments, FTRL with
linearized updates is more sensitive to the setting of 3, and

its performance is almost uniformly worse than all the other
generalized implicit updates. This is in line with previous
results in Asi & Duchi (2019) in the offline setting. With the
logistic loss, the proximal operator does not have a closed-
form solution. In all the classification experiments, the
performance of generalized implicit FTRL with two-step
updates seems remarkable and a possible viable alternative
to aProx. The confidence intervals for all implicit updates
have a width smaller than 0.01, making them too narrow to
be visible in the figures. In contrast, when using hinge loss,
the performance of FTRL with linear models exhibits signif-
icant fluctuations across different repetitions when a large
learning rate is used. This observation provides evidence
supporting our assertion that the selection of hyperparame-
ter B greatly affects the performance of FTRL with linear
models, while implicit updates demonstrate robustness.

Figure 3 shows that FTRL with linearized updates is very
sensitive to the choice of the hyperparameter 3, while the
implicit FTRL updates are robust. Again, Implicit FTRL
with two-step updates achieves essentially the best perfor-
mance. The confidence intervals in the regression tasks lead
to a similar conclusion as in the classification tasks.

8. Conclusion and Future Work

In this work, we propose a new framework: generalized
implicit Follow-the-Regularized-Leader. We show that gen-
eralized implicit FTRL can not only recover known algo-
rithms, e.g., implicit FTRL and FTRL with linearized losses,
but it also provides a theoretical guideline to design new
algorithms, such as the extensions of aProx and Mirror-Prox.
Indeed, we believe that the main contribution of our work
lies precisely in the fact that it provides a unifying frame-
work that is general, flexible, and theoretically grounded.

In the future, we plan to explore further this framework
designing new z; with low computational complexity. This
is a promising direction because the two-step update seems
to be already a valid alternative to the aProx updates, even
if it comes at the computational expense of querying an
additional gradient in each round.
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A. Update Rule for Common Losses

In this section, we report the proximal operator of common losses for easy referencing. These formulas are well-known and
they can be found, for example, in Crammer et al. (2006); Kulis & Bartlett (2010).

li(x) = max(1 — y¢(st, x),0) = Proxy, () =  + min

1 max(l — y:(s¢, x),0)
G e

>

&

1 _
li(x) = |(st, ) — y¢| = Proxs, () =  — min ()\, W) Sy
t

- 1 B ((St,w> - yt)st
(@) = 5({s0,@) —y)* = Prox (w) =@ = =™

&

B. Proof of Corollary 4.3

Proof. From the regret guarantee in Lemma 4.1, we have that

T
Regrety(u) < ¥rea(u) + 52 ) 7 < Ara(¥(u) + 5%), Vu € V.
t=1

Now, we upper bound Zle v in two different ways. In the first upper bound, we have

)\ T
Z% S (o)~ o) = Fllwen ~ @) = @) = brorin) + 3 (fen) ~ (i)
t=2

=1
<li(x1) —br(xr41) + VI .

For the second upper bound, we have

At At
Ve = li(@e) = U(@e41) — *||33t+1 —x||* < gy, — ®ep) — *||33t+1 —z?
by 2
< ”g;\”* ||mt+1 th2 _ Etht-‘rl _ -'Bt”z Hgt” < ﬂ”gtH*
where we used Fenchel-Young inequality and the second lower bound is obtained by using the fact that \; > A\ = %
Hence, we have
lgells lg:ll
A1 =M+ == <A .
=t g 7 < t+mm< 28 72632\,
Using Lemma 6.1 in Campolongo & Orabona (2020) and taking into account the fact that A\; = % we have
T
G 5
A1 < — + 4| 153 g.l3 -
a <G+ gm Lla
Putting all together, we have the stated bound. O

C. Proof of Corollary 6.2

Proof. The proximal operator of %‘ is

1 b )>
Prox;, (x) = * — min g, -
4 (5 Tz ) o
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Hence, from (7), we have

N ( . (1 ét(mt)> ) At . ( 1 At ft(%))
L1 = ¢ — min g; ry — min g; .

At41 A llg.l? A A1 At (g l?

Instead, from (6), we have

Tyl = 7)\16 Ty — min ( 1 Et(wt)) g
* At41 )\t+17 ||Qt||2 !
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