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Abstract

We propose a new class of online learning

algorithms, generalized implicit Follow-The-

Regularized-Leader (FTRL), that expands the

scope of FTRL framework. Generalized implicit

FTRL can recover known algorithms, such as

FTRL with linearized losses and implicit FTRL,

and it allows the design of new update rules, as ex-

tensions of aProx and Mirror-Prox to FTRL. Our

theory is constructive in the sense that it provides

a simple unifying framework to design updates

that directly improve the worst-case upper bound

on the regret. The key idea is substituting the

linearization of the losses with a Fenchel-Young

inequality. We show the flexibility of the frame-

work by proving that some known algorithms,

like the Mirror-Prox updates, are instantiations of

the generalized implicit FTRL. Finally, the new

framework allows us to recover the temporal vari-

ation bound of implicit OMD, with the same com-

putational complexity.

1. Introduction

Online learning is a setting where the learner receives an

arbitrary sequence of loss functions, selects points before

knowing the loss functions, and is evaluated on the values

of the loss functions on the points it selects (Cesa-Bianchi

& Lugosi, 2006; Orabona, 2019; Cesa-Bianchi & Orabona,

2021). More in detail, at round t the learner outputs a point

xt in a feasible set V ⊆ R
d. Then, it receives a loss function

ℓt : V → R and it pays the value ℓt(xt). Given the arbitrary

nature of the losses, the learner cannot guarantee to have

a small cumulative loss,
∑T
t=1 ℓt(xt). On the other hand,

it is possible to minimize the regret, that is the difference

between the cumulative loss of the algorithm and the one of
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any arbitrary comparator u ∈ V :

RegretT (u) ,

T
∑

t=1

ℓt(xt)−

T
∑

t=1

ℓt(u) .

In particular, a successful online learning algorithm must

guarantee a regret that grows sublinearly in time for any

u ∈ V . In this way, its average performance approaches the

one of the best comparator in hindsight.

There are two families of online learning algorithms: Online

Mirror Descent (OMD) (Nemirovskij & Yudin, 1983; War-

muth & Jagota, 1997) and Follow-the-Regularized-Leader

(FTRL) (Shalev-Shwartz, 2007; Abernethy et al., 2008;

Hazan & Kale, 2008). They stem from two similar but

complementary approaches: the update of OMD aims at

minimizing a linearization of the current loss without go-

ing too far from its previous prediction xt, while FTRL

minimizes the sum of all the losses (or their linear approxi-

mation) plus a regularization term. On the contrary to the

first approaches in online learning that focused on specific

algorithms (e.g., the Winnow algorithm (Littlestone, 1988)),

the theory of these two frameworks is particularly interest-

ing because it allows both the design and the analysis of

generic online learning algorithms.

While FTRL and OMD provide similar bounds in most sit-

uations, they are not completely equivalent. For example,

FTRL has an advantage over OMD in unbounded domains,

where it allows to use time-varying regularizers. In fact,

OMD allows the use of time-varying stepsizes only in do-

mains where its associated Bregman divergence is bounded.

On the other hand, in the cases where we can use time-

varying stepsizes, OMD can achieve a superior adaption to

the gradients (see, e.g., Theorem 2 in Streeter & McMahan

(2010) versus Theorem 2 in Orabona & Pál (2015)). In this

view, these two frameworks are complementary.1 Moreover,

there exists another orthogonal axis on the use of the actual

loss functions or a linear surrogate for both frameworks. We

summarize all the variants of OMD and FTRL in Table 1.

Our motivation stems from the fact that in practical cases,

all the variants that use full losses offer a big advantage

in terms of empirical performance at the cost of a higher

1See also the blog post on this topic by Tim van
Erven at https://www.timvanerven.nl/blog/

ftrl-vs-omd/.
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Table 1. Summary of implicit and linearized updates for FTRL and OMD. (The Bregman divergence Bψ(x;y) is defined as ψ(x) −
ψ(y)− 〈∇ψ(y),x− y〉. The ⋆ denotes the Fenchel conjugate.)

Algorithm Update

OMD (Warmuth & Jagota, 1997) xt+1 = argminx∈V Bψ(x;xt) + ηt(ℓt(xt) + 〈gt,x− xt〉)
Implicit OMD (Warmuth & Jagota, 1997) xt+1 = argminx∈V Bψ(x;xt) + ηtℓt(x)

FTRL (linearized) (Abernethy et al., 2008) xt+1 = argminx∈V ψt+1(x) +
∑t
i=1(ℓi(xi) + 〈gi,x− xi〉)

FTRL (full losses) (McMahan, 2017) xt+1 = argminx∈V ψt+1(x) +
∑t
i=1 ℓi(x)

Implicit FTRL (McMahan, 2010) xt+1 = argminx∈V ψt+1(x) + ℓt(x) +
∑t−1
i=1(ℓi(xi) + 〈gi,x− xi〉)

Generalized Implicit FTRL [This work] xt+1 = argminx∈V ψt+1(x) +
∑t
i=1〈zi,x〉

zi such that ψ⋆i+1,V (
∑i
j=1 zj) + ℓ⋆i (zi) ≤ ψ⋆i+1,V (

∑i−1
j=1 zj − gi) + ℓ⋆i (gi)

computational complexity. On the theoretical side, the sit-

uation is not so clear given that in the worst case using the

full losses can be equivalent to their linearized version, as

it should be clear considering linear losses. In particular,

the standard theoretical framework for FTRL does not allow

a clear analysis of the implicit case. Moreover, while for

implicit OMD it has been proven that one can achieve lower

regret if the temporal variation of the losses is small, it is

unclear if the same guarantee can be achieved for FTRL

without the computational cost of using full losses.

In this paper, we aim at bridging this gap by proposing

a generalized version of implicit FTRL. We go beyond

implicit and linearized updates: we directly construct the

update rule in a way that minimizes an upper bound on

the regret. Our framework effectively expands the scope of

the FTRL framework, fully retaining its coupling between

design and analysis. Also, our updates come with a worst-

case guarantee to never be worse than the standard linearized

ones.

We show the flexibility of our framework recovering known

update schemes, like the Mirror-Prox update (Nemirovski,

2004), or extending updates specifically designed for OMD

to the FTRL case, like the aProx one (Asi & Duchi, 2019).

Moreover, for the first time, we show an implicit version of

FTRL that recovers the temporal variation bound of implicit

OMD (Campolongo & Orabona, 2020), but with the same

computational complexity of implicit OMD.

Related Work While there are many works on implicit

mirror descent in both the online and offline setting (see, e.g.,

Moreau, 1965; Martinet, 1970; Rockafellar, 1976; Kivinen

& Warmuth, 1997; Parikh & Boyd, 2014; Campolongo &

Orabona, 2020; Shtoff, 2022), the number of works that

deal with implicit updates for FTRL is quite limited. We

are only aware of McMahan (2010), which quantifies a gain

only for specific regularizers. However, the framework in

McMahan (2010) is non-constructive in the sense that it is

difficult to see how to generalize implicit updates. Joulani

et al. (2017) extends this last result, but it does not provide a

link with the maximization of the dual function that governs

the regret upper bound.

The closest approach to our framework is the one of Shalev-

Shwartz & Singer (2007a;b), which develop a theory of

FTRL updates as maximization of a dual function. However,

their framework is limited to a specific shape of regularizers

and it does not deal with implicit updates.

For implicit OMD, Campolongo & Orabona (2020) showed

that implicit updates give rise to regret guarantees that de-

pend on the temporal variability of the losses, so that con-

stant regret is achievable if the variability of the losses is

zero. They suggest that FTRL with full losses can achieve

the same guarantee, but they also point out that given its

computational complexity it would be “not worth pursuing.”

Here, we show how to achieve the same bound of implicit

OMD with our generalized implicit FTRL, while retaining

the same computational complexity of implicit OMD.

Proximal updates on truncated linear models were intro-

duced in Asi & Duchi (2019) for the OMD algorithm. Chen

et al. (2022b) used gradient flow on the same truncated linear

models with a coin-betting algorithm (Orabona & Pál, 2016),

but their approach does not seem to satisfy a regret guaran-

tee. Chen et al. (2022a) have used truncated linear models in

an FTRL-based parameter-free algorithm (Orabona & Pál,

2021) with a novel decomposition of the regret. However,

their approach is ad-hoc and seems difficult to generalize.

2. Definitions and Basic Tools

We define here some basic concepts and tools of convex

analysis, we refer the reader to, e.g., Rockafellar (1970);

Bauschke & Combettes (2011) for a complete introduction

to this topic. We will consider extended value function that

can assume infinity values too. A function f is proper if it

is nowhere −∞ and finite somewhere. A function f : V ⊆
R
d → [−∞,+∞] is closed if {x : f(x) ≤ α} is closed for

every α ∈ R. For a proper function f : Rd → (−∞,+∞],
we define a subgradient of f in x ∈ R

d as a vector g ∈ R
d

that satisfies f(y) ≥ f(x) + 〈g,y − x〉, ∀y ∈ R
d. We

denote the set of subgradients of f in x by ∂f(x). The

indicator function of the set V , iV : Rd → (−∞,+∞],
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has value 0 for x ∈ V and +∞ otherwise. We denote the

dual norm of a norm ‖ · ‖ by ‖ · ‖⋆. A proper function

f : Rd → (−∞,+∞] is µ-strongly convex over a convex

set V ⊆ int dom f w.r.t. ‖·‖ if ∀x,y ∈ V and ∀g ∈ ∂f(x),
we have f(y) ≥ f(x)+〈g,y−x〉+ µ

2 ‖x−y‖2. A function

f : V → R, differentiable in an open set containing V , is L-

smooth w.r.t. ‖·‖ if f(y) ≤ f(x)+〈∇f(x),y−x〉+L
2 ‖x−

y‖2 for all x,y ∈ V . For a function f : Rd → [−∞,∞],
we define the Fenchel conjugate f⋆ : Rd → [−∞,∞] as

f⋆(θ) = supx∈Rd 〈θ,x〉 − f(x). From this definition, we

immediately have the Fenchel-Young inequality: f(x) +
f⋆(θ) ≥ 〈θ,x〉, ∀x,θ. We will also make use of the

following properties of Fenchel conjugates.

Theorem 2.1 ((Orabona, 2019, Theorem 5.7)). Let f :
R
d → (−∞,+∞] be proper. Then, the following con-

ditions are equivalent:

(a) θ ∈ ∂f(x).
(b) 〈θ,y〉 − f(y) achieves its supremum in y at y = x.

(c) f(x) + f⋆(θ) = 〈θ,x〉.

Moreover, if f is also convex and closed, we have an addi-

tional equivalent condition

(d) x ∈ ∂f⋆(θ).

Theorem 2.2 ((Orabona, 2019, Theorem 6.11)). Let ψ :
R
d → (−∞,+∞] be a proper, closed, convex function, and

dom ∂ψ be non-empty. Then, ψ is λ > 0 strongly convex

w.r.t. ‖ · ‖ iff ψ⋆ is 1
λ

-smooth w.r.t. ‖ · ‖⋆ on R
d.

3. Generalized Implicit FTRL

In this section, we introduce our novel generalized formu-

lation of the implicit FTRL algorithm. The main idea is to

depart from the implicit or linearized updates, and directly

design updates that improve the upper bound on the regret.

More in detail, the basic analysis of most of the online learn-

ing algorithms is based on the definition of subgradients:

ℓt(xt)− ℓt(u) ≤ 〈gt,xt − u〉, ∀gt ∈ ∂ℓt(xt) . (1)

This allows to study the regret on the linearized losses as a

proxy for the regret on the losses ℓt. However, we can do

better. We introduce a new fundamental and more general

strategy: using the Fenchel-Young inequality, we have

ℓt(xt)− ℓt(u) ≤ ℓt(xt)− 〈zt,u〉+ ℓ⋆t (zt), ∀zt .

In particular, the algorithm will choose zt to make a certain

upper bound involving this quantity to be tighter. This

is a better inequality than (1) because when we select

zt = gt ∈ ∂ℓt(xt), using Theorem 2.1, we recover (1).

So, this inequality subsumes the standard one for subgradi-

ents, but, using zt ∈ ℓt(xt+1), it also subsumes the similar

inequality used in the implicit case, as we show in Sec-

tion 3.1. Moreover, we will see in Section 6 that it covers

cases where zt is not a subgradient of ℓt.

Algorithm 1 Generalized Implicit FTRL

Require: Non-empty closed set V ⊆ R
d, a sequence of

regularizers ψ1, . . . , ψT : Rd → (−∞,+∞]
1: θ1 = 0

2: for t = 1 to T do

3: Output xt ∈ argminx∈V ψt(x)− 〈θt,x〉
4: Receive ℓt : V → R and pay ℓt(xt)
5: Set gt ∈ ∂ℓt(xt)
6: Set zt such that Ht(zt) ≤ Ht(gt) or H ′

t(zt) ≤
H ′
t(gt) where Ht and H ′

t are defined in (2) and (3)

7: Set θt+1 = θt − zt
8: end for

The analysis shows that the optimal setting of zt is the one

that minimizes the function

Ht(z) , ψ⋆t+1,V (θt − z) + ℓ⋆t (z) (2)

or

H ′
t(z) , ψ⋆t,V (θt − z) + ℓ⋆t (z), (3)

where ψt,V is the restriction of the regularizer used at time

t on the feasible set V , i.e., ψt,V , ψt + iV . How-

ever, we can show that any setting of zt that guarantees

Ht(zt) < Ht(gt) (or H ′
t(zt) < H ′

t(gt)) guarantee a strict

improvement in the worst-case regret w.r.t. using the lin-

earized losses.

One might wonder why the need for two different updates

using Ht or H ′
t. The reason is that when using time-varying

regularizers that depend on the data, like in the FTRL ver-

sion of AdaGrad (McMahan & Streeter, 2010; Duchi et al.,

2011), if λt+1 depends on zt it might make the calculation

of the update particularly difficult. This can be avoided

using the update involving H ′
t.

Once we have the zt, we treat them as the subgradient of sur-

rogate linear losses. So, putting it all together, Algorithm 1

shows the final algorithm. We now show a regret guarantee

for this algorithm. First, we state a general Lemma and then

instantiate it in a few interesting cases.

Theorem 3.1. Let V ⊆ R
d be closed and non-empty

and ψt : V → R. With the notation in Algo-

rithm 1, define by Ft(x) = ψt(x) +
∑t−1
i=1〈zi,x〉, so

that xt ∈ argminx∈V Ft(x). Finally, assume that

argminx∈V Ft(x) and ∂ℓt(xt) are not empty for all t.

• For any zt ∈ R
d and any u ∈ R

d, we have

RegretT (u) ≤ ψT+1(u)−min
x∈V

ψ1(x)

+

T
∑

t=1

[ψ⋆t+1,V (θt − gt)− ψ⋆t,V (θt) + 〈xt, gt〉 − δt]

+ FT+1(xT+1)− FT+1(u),

where δt , Ht(gt)−Ht(zt).
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• If ψt+1(x) ≥ ψt(x) for any x ∈ V , then, for any

zt ∈ R
d, we have

RegretT (u) ≤ ψT+1(u)−min
x∈V

ψ1(x)

+

T
∑

t=1

[ψ⋆t,V (θt − gt)− ψ⋆t,V (θt) + 〈xt, gt〉 − δ′t]

+ FT+1(xT+1)− FT+1(u),

where δ′t , H ′
t(gt)−H ′

t(zt).

Proof. The proof is composed of simple but not obvious

steps. The first important observation is that the definition

of xt in the algorithm corresponds exactly to the one of

FTRL on the linear losses 〈zt, ·〉. Hence, we can use the

FTRL equality in Orabona (2019, Lemma 7.1):

−
T
∑

t=1

〈zt,u〉 =
T
∑

t=1

[Ft(xt)− Ft+1(xt+1)] + ψT+1(u)

−min
x∈V

ψ1(x) + FT+1(xT+1)− FT+1(u),

where we have cancelled out the terms 〈zt,xt〉 on both

sides.

Now, use Fenchel-Young inequality, to have 〈zt,u〉 ≤
ℓt(u) + ℓ⋆t (zt). Hence, we have

−
T
∑

t=1

ℓt(u) ≤
T
∑

t=1

[Ft(xt)− Ft+1(xt+1) + ℓ⋆t (zt)]

+ ψT+1(u)−min
x∈V

ψ1(x)

+ FT+1(xT+1)− FT+1(u) .

Observe that

Ft(xt) = min
x∈V

ψt(x) +

t−1
∑

i=1

〈zi,x〉

= −max
x∈V

〈θt,x〉 − ψt(x) = −ψ⋆t,V (θt) .

In the same way, we have −Ft+1(xt+1) = ψ⋆t+1,V (θt+1).
Also, for any gt ∈ ∂ℓt(xt), by Theorem 2.1 we have

ℓ⋆t (gt) = 〈xt, gt〉 − ℓt(xt). Hence, each term in the sum

can be written as

Ft(xt)− Ft+1(xt+1) + ℓ⋆t (zt)

= ψ⋆t+1,V (θt+1)− ψ⋆t,V (θt) + ℓ⋆t (zt)

= Ht(zt)− ψ⋆t,V (θt) .

Now, we just add and subtract Ht(gt) = ψ⋆t+1,V (θt−gt)+
〈gt,xt〉 − ℓt(xt) to obtain the stated bound.

The second case is similar. We just have to observe that if

ψt+1,V ≥ ψt,V , then ψ⋆t+1,V ≤ ψ⋆t,V . Hence, each term in

the sum can be upper bounded as

Ft(xt)− Ft+1(xt+1) + ℓ⋆t (zt)

≤ ψ⋆t,V (θt+1)− ψ⋆t,V (θt) + ℓ⋆t (zt)

= H ′
t(zt)− ψ⋆t,V (θt) .

As before, adding and subtracting H ′
t(gt) = ψ⋆t,V (θt −

gt) + 〈xt, gt〉 − ℓt(xt) gives the stated bound.

The Theorem is stated with very weak assumption to show

its generality, but it is immediate to obtain concrete regret

guarantees just assuming, for example, strongly convex

regularizers and convex and Lipschitz losses and using well-

known methods as Orabona (2019, Lemma 7.8)

However, we can already understand why this is an interest-

ing guarantee. Let’s first consider the case that zt = gt. In

this case, we exactly recover the linearized FTRL algorithm.

Even the guarantee in the Theorem exactly recovers the best

known one (Orabona, 2019, Corollary 7.9), with δt = 0
and δ′t = 0. Now, if we set zt such that Ht(zt) < Ht(gt)
or H ′

t(zt) < H ′
t(gt) we will have that δt > 0 or δ′t > 0.

Hence, in each single term of the sum we have a negative

factor that makes the regret bound smaller. While it might

be difficult to give a lower bound to δt and δ′t without ad-

ditional assumptions, the main value of this analysis is in

giving a unifying way to design generalized implicit updates

for FTRL. In fact, in the next sections we will show a number

of possibilities that this framework enables.

Next, we will gain more understanding on the updates in

Algorithm 1, comparing them to implicit OMD.

3.1. Comparison with Implicit Online Mirror Descent

In this section, we show that when zt is set to minimize

Ht(z) or H ′
t(z), we recover different variants of implicit

updates.

Assume that the ℓt are closed and convex. Also, assume that

ψ⋆t,V is differentiable, that is true, for example, when ψt is

strongly convex by Theorem 2.2. Then, observe that by the

first-order optimality condition and Theorem 2.1, we have

zt = argmin
z

Ht(z)

⇔ ∇ψ⋆t+1,V (θt − zt) ∈ ∂ℓ⋆t (zt)

⇔ zt ∈ ∂ℓt(∇ψ
⋆
t+1,V (θt − zt)) = ∂ℓt(xt+1) . (4)

Hence, in this case, we have that the optimal zt is the gra-

dient at the next point xt+1. This is exactly what happens

in the implicit updates. This condition that depends on

the gradient in the next iterate is similar to other implicit

updates.
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Under the same assumptions, we also have

zt = argmin
z

H ′
t(z) ⇔ ∇ψ⋆t,V (θt − zt) ∈ ∂ℓ⋆t (zt)

⇔ zt ∈ ∂ℓt(∇ψ
⋆
t,V (θt+1)) . (5)

In this other case, the update also has an implicit flavor but

the subgradient is queried on a point different from the next

point, where the difference depends on how much ∇ψ⋆t,V
differs from ∇ψ⋆t+1,V .

Let’s see this connection even more precisely, considering

proximal updates. Hence, for simplicity, let’s consider the

case that V = R
d, similar considerations hold in the con-

strained case. Consider the case that ψt(x) =
λt

2 ‖x‖22. In

this case, the update can be written with the proximal opera-

tor of the loss functions. In particular, the proximal operator

of ηf , is defined as

Proxηf (y) , argmin
x∈Rd

1

2
‖x− y‖22 + ηf(x) .

If the function f is differentiable we have that Proxηf (y) =
y − η∇f(Proxηf (y)). In words, the proximal update

moves by a quantity that depends on the gradient on the

updated point. The implicit nature of these updates justi-

fies the name “implicit updates” used in the online learn-

ing literature. More generally, we have that Proxηf (y) ∈
y − η∂f(Proxηf (y)). We list some common proximal

operators in Appendix A.

Assuming λt+1 does not depend on zt, using the proximal

operator we can rewrite the update in (4) as

xt+1 =
θt+1

λt+1
= Prox ℓt

λt+1

(

θt

λt+1

)

= Prox ℓt

λt+1

(

λtxt
λt+1

)

. (6)

Similarly, we can rewrite the update in (5) as

θt+1

λt
=

θt

λt
−

zt

λt
= xt −

zt

λt
∈ xt −

1

λt
∂ℓt(∇ψ

⋆
t,V (θt+1))

= xt −
1

λt
∂ℓt

(

θt+1

λt

)

.

Hence, we have that
θt+1

λt
= Prox ℓt

λt

(xt) and we get

xt+1 =
θt+1

λt+1
=

λt
λt+1

Prox ℓt

λt

(xt) . (7)

It is instructive to compare both updates with the one of

Implicit Online Mirror Descent using ψ(x) = 1
2‖x‖

2
2 as

distance generating function and stepsizes 1
λt

. In this case,

we would update with

xt+1 = argmin
x

1

2
‖xt − x‖22 +

1

λt
ℓt(x)

= Prox ℓt

λt

(xt) . (8)

Comparing (4) and (5) to (8), we see, when λt ≤ λt+1 as

it is usual, the two updates above shrink a bit towards the

zero vector, that is the initial point x1, before or after the

proximal operator. This shrinking is given by the FTRL

update and it is the key difference with Implicit OMD up-

date. The different update also corresponds to a different

guarantee: the regret of the generalized implicit FTRL holds

for unbounded domains too, while in Implicit OMD with

time-varying stepsizes can have linear regret on unbounded

domains (Orabona & Pál, 2018). Interestingly, a similar

shrinking has been proposed in Fang et al. (2020) to fix the

unbounded issue in OMD. Clearly, the updates (4) and (5)

become equivalent to (8) for λt constant in t, that is exactly

the only case when implicit/proximal online mirror descent

works for unbounded domains.

4. Temporal Variability Bound

In this section, we quantify the advantage of the general-

ized implicit FTRL updates in the case of slow temporal

variability of the loss functions.

It was observed in Campolongo & Orabona (2020) that

implicit OMD satisfies regret guarantees that depend on the

temporal Variability VT :

VT ,

T
∑

t=2

max
x∈V

ℓt(x)− ℓt−1(x) .

In Campolongo & Orabona (2020, Appendix E) they also

show that FTRL with full losses guarantees a similar guaran-

tee, but at a much higher computational price. Indeed, FTRL

with full losses requires solving a finite sum optimization

problem at each step, whose size increases with the number

of iterations. Such computational burden induced Campo-

longo & Orabona (2020) to say that such approach is “not

worth of pursuing.”

Here, we show that the Algorithm 1 can satisfy the same

guarantee of implicit OMD with the same computational

complexity too. First, we show the following Lemma.

Lemma 4.1. Under the assumptions of Theorem 3.1, further

assume V to be convex, ψt : V → R closed, λt-strongly

convex w.r.t. ‖ · ‖, and subdifferentiable in V , ℓt closed,

convex, and subdifferentiable in V , and λt+1 ≥ λt. Set

zt ∈ argminz Ht(z). Then, we have

RegretT (u) ≤ ψT+1(u)−min
x∈V

ψ1(x)

+

T
∑

t=1

(

ℓt(xt)− ℓt(xt+1)−
λt
2
‖xt+1 − xt‖

2

)

, ∀u ∈ V.

Proof. First of all, the existence and unicity of xt is guar-

anteed by ψt being closed and strongly convex (see, e.g.,

Orabona, 2019, Theorem 6.8).
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From Theorem 2.1, for any g′
t ∈ ∂ℓt(xt+1), we have

ℓ⋆t (g
′
t) = 〈xt+1, g

′
t〉 − ℓt(xt+1). Hence, from (4), we have

ψ⋆t+1,V (θt+1)− ψ⋆t,V (θt) + ℓ⋆t (zt)

= ψ⋆t+1,V (θt − zt)− ψ⋆t,V (θt) + 〈xt+1, zt〉 − ℓt(xt+1) .

Using this identity, we have

ψ∗
t+1,V (θt − zt)− ψ∗

t,V (θt) + 〈xt+1, zt〉

= 〈θt − zt,xt+1〉 − ψt+1(xt+1)− 〈θt,xt〉+ ψt(xt)

+ 〈xt+1, zt〉

≤ ψt(xt)− ψt(xt+1) + 〈θt,xt+1 − xt〉 .

From the first-order optimality condition of xt, we have that

θt ∈ ∂ψt(xt) + ∂iV (xt). Moreover, for all g′′
t ∈ ∂iV (xt),

by definition we have 〈g′′
t ,y − xt〉 ≤ 0 for all y ∈ V .

Hence, for g′
t ∈ ∂ψt(xt) and g′′

t ∈ ∂iV (xt) such that

θt = g′
t + g′′

t , we have

ψt(xt)− ψt(xt+1) + 〈θt,xt+1 − xt〉

= ψt(xt)− ψt(xt+1) + 〈g′
t + g′′

t ,xt+1 − xt〉

≤ −
λt
2
‖xt+1 − xt‖

2,

where in the inequality we also used the strong convexity of

ψt. Using this inequality in Theorem 3.1 and summing over

time, we have

T
∑

t=1

ℓt(xt+1)−

T
∑

t=1

ℓt(u)

≤ ψT+1(u)−min
x∈V

ψ1(x)−
T
∑

t=1

λt
2
‖xt+1 − xt‖

2 .

By adding and subtracting
∑T
t=1 ℓt(xt) to both sides and

reordering the terms, we have the stated bound.

This Lemma mirrors Theorem 5.2 in Campolongo &

Orabona (2020), with the important difference that here

we do not need the Bregman divergence to be bounded on

the feasible set V , thanks to the use of FTRL instead of

OMD. We can now state the immediate corollary on a regret

bound that depends on the temporal variation.

Corollary 4.2. Under the assumptions of Lemma 4.1, for

any u ∈ V , we have

RegretT (u) ≤ ψT+1(u)−min
x∈V

ψ1(x)

+ ℓ1(x1)− ℓT (xT+1) + VT .

From this result, following (Campolongo & Orabona, 2020),

it is relatively easy to obtain the following adaptive regret

guarantee. The only difficulty is the fact that we need ψt+1

to be independent of zt to have a simpler update rule. We

solve this problem using an increasing regularizer that is

“behind of two steps”. In this way, we have that λt+1 de-

pends on quantities that are all known at the beginning of

round t. The proof is in Appendix B.

Corollary 4.3. Under the assumptions of Lemma 4.1, fur-

ther assume ‖gt‖⋆ ≤ G for all t. Define γt = ℓt(xt) −

ℓt(xt+1)−
λt

2 ‖xt+1−xt‖
2 and λt =

1
β2

(

Gβ +
∑t−2
i=1 γi

)

.

Assume that ψ is closed and 1-strongly convex w.r.t. ‖ · ‖
and set ψt = λtψ. Then, for any u ∈ V , we have

RegretT (u) ≤ min

(

1

β
(ℓ1(x1)− ℓT (xT+1) + VT ),

G+

√

√

√

√

5

4

T
∑

t=1

‖gt‖
2
⋆





(

ψ(u)

β
+ β

)

.

5. Two-step Updates

The choice of zt that minimizes the regret upper bound

requires solving the optimization problem minz Ht(z) or

minz H ′
t(z). We have seen in Section 3.1 that this corre-

sponds to (some variant) of a implicit/proximal update and,

depending on ℓt, it can be of difficult calculation. However,

as we said, any choice better than gt will cause a provable

gain. Hence, a viable solution is to approximately solve for

the optimal zt.

Here, we propose a simple approximation: set zt as

zt ∈ ∂ℓt(∇ψ
⋆
t+1,V (θt − gt)) (9)

or as

zt ∈ ∂ℓt(∇ψ
⋆
t,V (θt − gt)) . (10)

In words, we set zt to be a subgradient after one fake update.

This is exactly the approach used in the Mirror-Prox algo-

rithm (Nemirovski, 2004), an offline optimization algorithm.

In the next theorem, when the loss functions ℓt are smooth

and the regularizer is chosen appropriately, we show that

this choice can be used in the generalized implicit FTRL

too and it cannot be worse than using gt.

Theorem 5.1. Assume ψt(x) proper, closed, and λt-
strongly convex with respect to ‖ · ‖. Assume ℓt(x) closed

and λt-smooth w.r.t. ‖ · ‖⋆ for all t. Then, using (9) and

assuming λt+1 ≥ Lt, we have Ht(zt) ≤ Ht(gt). On the

other hand, when using (10) and assuming λt ≥ Lt we have

H ′
t(zt) ≤ H ′

t(gt).

Proof. We only prove that statement for (9), the other one

is similar. We would like to prove that

Ht(zt) = ψ⋆t+1,V (θt − zt) + ℓ⋆t (zt)

≤ ψ⋆t+1,V (θt − gt) + ℓ⋆t (gt) = Ht(gt) .

6
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This is equivalent to prove

ψ⋆t+1,V (θt − zt)− ψ⋆t+1,V (θt − gt) ≤ ℓ⋆t (gt)− ℓ⋆t (zt) .

Given that ψt+1(xt) is λt+1-strongly convex, by Theo-

rem 2.2, we have ψ⋆t (θ) is 1/λt+1-smooth with respect

to ‖ · ‖⋆. By the definition of smoothness, we have

ψ⋆t+1,V (θt − zt)− ψ⋆t+1,V (θt − gt)

≤ 〈∇ψ⋆t+1(θt − gt), gt − zt〉+
1

2λt+1
‖gt − zt‖

2
⋆ .

Given that ℓt(xt) is Lt-smooth w.r.t ‖ · ‖⋆, by Theorem 2.2

ℓ⋆t (g) is 1/Lt strongly convex w.r.t. ‖ · ‖. So, by the defini-

tion of the strong convexity, we have

ℓ⋆t (gt)− ℓ⋆t (zt) ≥ 〈qt, gt − zt〉+
1

2Lt
‖gt − zt‖

2
⋆,

for all qt ∈ ∂ℓ⋆t (zt). Defining x′
t+1 , ∇ψ⋆t+1(θt − gt),

by Theorem 2.1, we have x′
t+1 ∈ ∂ℓ⋆t (zt). Hence, we can

select qt such that x′
t+1 = qt. Finally, using the assumption

on λt+1 ≥ Lt, we have the stated bound.

6. Going Beyond Subgradients with aProx

Till now, in all the updates we have considered zt was set

to be a subgradient of ℓt in a specific point. In this section,

we show that we can go beyond this idea.

Asi & Duchi (2019) introduced aProx updates, that is proxi-

mal updates on surrogate loss functions. In particular, they

used truncated linear lower bounds to the loss functions as

surrogate functions. These simple surrogates are motivated

by the fact that they are strictly better than linear approxima-

tion and at the same time they allow writing the proximal

update in a closed form. Moreover, they showed empirically

that in certain situations the performance of the algorithms

becomes much more resistant to the tuning of the stepsizes.

One might just use the same truncated lower bounds in

implicit FTRL, but it would not be clear why this should give

any advantage in the theoretical bound. Indeed, even in Asi

& Duchi (2019) it is not completely clear what part of the

theory tells us that we should expect a better performance

from these updates.

Here, we show how the updates in the generalized implicit

FTRL are actually a generalization of the aProx ones. In

particular, we generalize the aProx updates to arbitrary regu-

larizers and show that all of them satisfy Ht(zt) ≤ Ht(gt)
and H ′

t(zt) ≤ H ′
t(gt). In words, the aProx updates are

guaranteed to be at least as good as the subgradient gt in

minimizing the worst-case regret.

In order to consider truncated linear lower bounds to the

functions ℓt, in this section we will assume that the loss

functions ℓt are lower bounded. Given that the regret is

invariant to additive constants in the losses, without loss of

generality we can assume the lower bound to be 0 for all

the loss functions. Hence, define the truncated linear model

ℓ̂t : V → R around xt to be

ℓ̂t(x) , max(ℓt(xt) + 〈gt,x− xt〉, 0),

where gt ∈ ∂ℓt(xt). For brevity of notation, our notation

does not stress the fact that the truncated linear model de-

pends on xt and the specific subgradient gt.

The idea to extend aProx to the case of generalized implicit

FTRL, we use the truncated linear lower bound in the update

of zt. So, we define

zt = argmin
z

ψ⋆t+1,V (θt − zt) + ℓ̂⋆t (zt) (11)

or

zt = argmin
z

ψ⋆t,V (θt − zt) + ℓ̂⋆t (zt) . (12)

Theorem 6.1. Assume the loss functions ℓt : V → R to be

convex, closed, and subdifferentiable in V for all t. Set zt
using (11) or (12). Then, we have that Ht(zt) ≤ Ht(gt) or

H ′
t(zt) ≤ H ′

t(gt) respectively.

Proof. We consider the update (11), the other case is very

similar and we omit it.

First, we derive some inequalities on the quantities of in-

terest. From Theorem 2.1, given that gt ∈ ∂ℓ̂t(xt) and

gt ∈ ∂ℓt(xt) we have both ℓt(xt) + ℓ⋆(gt) = 〈gt,xt〉

and ℓ̂t(xt) + ℓ̂⋆(gt) = 〈gt,xt〉. Moreover, given that

ℓ̂t(x) ≤ ℓt(x) for any x, we have ℓ̂⋆t (z) ≥ ℓ⋆t (z) for any z.

Finally, by the definition of truncated linear lower bound,

we have ℓt(xt) = ℓ̂t(xt).

Hence, we have

ψ⋆t+1,V (θt − zt) + ℓ⋆t (zt)

≤ ψ⋆t+1,V (θt − zt) + ℓ̂⋆t (zt)

= min
z

ψ⋆t+1,V (θt − z) + ℓ̂⋆t (z)

≤ ψ⋆t+1,V (θt − gt) + ℓ̂⋆t (gt)

= ψ⋆t+1,V (θt − gt) + 〈gt,xt〉 − ℓ̂t(xt)

= ψ⋆t+1,V (θt − gt) + 〈gt,xt〉 − ℓt(xt)

= ψ⋆t+1,V (θt − gt) + ℓ⋆t (gt) = Ht(gt) .

We can also immediately write closed form updates for gen-

eralized implicit FTRL with regularizer ψt(x) =
λt

2 ‖x‖2,

that mirror the ones of aProx. The proof is in Section C.

Corollary 6.2. Set ψt =
λt

2 ‖x‖22 and gt ∈ ∂ℓt(xt). Set-

ting zt as in (11), we have that the update of generalized

implicit FTRL is

xt+1 =
λt
λt+1

xt −min

(

1

λt+1
,
ℓt(xt)

‖gt‖
2

)

gt .

7
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Figure 1. Hinge loss, averaged loss vs. hyperparameter β.

On the other hand, setting zt as in (12), the update is

xt+1 =
λt
λt+1

xt −min

(

1

λt+1
,
λt
λt+1

ℓt(xt)

‖gt‖
2

)

gt .

7. Empirical Evaluation

As we said, in the worst case scenario any kind of implicit

update cannot give any advantage over the usual updates.

However, in practice it is well-known that things are vastly

different. Hence, in this section, we compare the perfor-

mance of different choices of zt in Algorithm 1 when

ψt(x) =
λt

2 ‖x‖22. In particular, we consider:

• FTRL with linearized losses (Linear): zt = gt;

• Implicit FTRL with aProx updates (Trunc): zt =

Figure 2. Logistic loss, averaged loss vs. hyperparameter β.

min
{

1, λtℓt(xt)
‖g

t
‖2

}

gt;

• Implicit FTRL with two-step updates (Twostep): zt =
∂ℓt(xt − gt/λt);

• Implicit FTRL with (6) when the proximal operator

has a closed form (Proximal).

We adopt the choice of λt from Corollary 4.3.

We conduct linear prediction experiments on datasets from

LibSVM (Chang & Lin, 2011). We show here experiments

on classification tasks using the hinge loss and the logistic

loss, and regression tasks with absolute loss. We normalize

the datasets and added a constant bias term to the features.

Given that in the online learning setting, we do not have the

training data and validation data to tune the β, we will plot

the averaged loss, 1
t

∑t
i=1 ℓi(xi), versus different choice of

8
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Figure 3. Absolute loss, averaged loss vs. hyperparameter β.

β, that at the same time show the algorithms’ sensitivity to

the hyperparameter β and their best achievable performance.

We consider β ∈ [10−3, 103] for hinge loss and logistic loss,

and β ∈ [10−3, 108] for the absolute loss. Each algorithm

is run 15 times, we plot the average of the averaged losses

and the 95% confidence interval. Note that the confidence

intervals so small to be invisible, but for the larger values of

the β for the Linear updates.

Figure 1 and Figure 2 show the averaged loss versus differ-

ent selections of hyperparameter β for classification tasks

with hinge loss and logistic loss respectively. Note that

with the hinge loss aProx updates and proximal updates

are completely equivalent. In all experiments, FTRL with

linearized updates is more sensitive to the setting of β, and

its performance is almost uniformly worse than all the other

generalized implicit updates. This is in line with previous

results in Asi & Duchi (2019) in the offline setting. With the

logistic loss, the proximal operator does not have a closed-

form solution. In all the classification experiments, the

performance of generalized implicit FTRL with two-step

updates seems remarkable and a possible viable alternative

to aProx. The confidence intervals for all implicit updates

have a width smaller than 0.01, making them too narrow to

be visible in the figures. In contrast, when using hinge loss,

the performance of FTRL with linear models exhibits signif-

icant fluctuations across different repetitions when a large

learning rate is used. This observation provides evidence

supporting our assertion that the selection of hyperparame-

ter β greatly affects the performance of FTRL with linear

models, while implicit updates demonstrate robustness.

Figure 3 shows that FTRL with linearized updates is very

sensitive to the choice of the hyperparameter β, while the

implicit FTRL updates are robust. Again, Implicit FTRL

with two-step updates achieves essentially the best perfor-

mance. The confidence intervals in the regression tasks lead

to a similar conclusion as in the classification tasks.

8. Conclusion and Future Work

In this work, we propose a new framework: generalized

implicit Follow-the-Regularized-Leader. We show that gen-

eralized implicit FTRL can not only recover known algo-

rithms, e.g., implicit FTRL and FTRL with linearized losses,

but it also provides a theoretical guideline to design new

algorithms, such as the extensions of aProx and Mirror-Prox.

Indeed, we believe that the main contribution of our work

lies precisely in the fact that it provides a unifying frame-

work that is general, flexible, and theoretically grounded.

In the future, we plan to explore further this framework

designing new zt with low computational complexity. This

is a promising direction because the two-step update seems

to be already a valid alternative to the aProx updates, even

if it comes at the computational expense of querying an

additional gradient in each round.
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A. Update Rule for Common Losses

In this section, we report the proximal operator of common losses for easy referencing. These formulas are well-known and

they can be found, for example, in Crammer et al. (2006); Kulis & Bartlett (2010).

ℓt(x) = max(1− yt〈st,x〉, 0) ⇒ Prox ℓt

λ

(x) = x+min

(

1

λ
,
max(1− yt〈st,x〉, 0)

‖st‖2

)

ytst

ℓt(x) = |〈st,x〉 − yt| ⇒ Prox ℓt

λ

(x) = x−min

(

1

λ
,
|〈st,x〉 − yt|

‖st‖2

)

st

ℓt(x) =
1

2
(〈st,x〉 − yt)

2 ⇒ Prox ℓt

λ

(x) = x−
(〈st,x〉 − yt)st
λ+ ‖st‖22

.

B. Proof of Corollary 4.3

Proof. From the regret guarantee in Lemma 4.1, we have that

RegretT (u) ≤ ψT+1(u) + β2
T
∑

t=1

γt ≤ λT+1(ψ(u) + β2), ∀u ∈ V .

Now, we upper bound
∑T
t=1 γt in two different ways. In the first upper bound, we have

T
∑

t=1

γt =

T
∑

t=1

(

ℓt(xt)− ℓ(xt+1)−
λt
2
‖xt+1 − xt‖

2

)

= ℓ1(x1)− ℓT (xT+1) +

T
∑

t=2

(ℓt(xt)− ℓt−1(xt))

≤ ℓ1(x1)− ℓT (xT+1) + VT .

For the second upper bound, we have

γt = ℓt(xt)− ℓ(xt+1)−
λt
2
‖xt+1 − xt‖

2 ≤ 〈gt,xt − xt+1〉 −
λt
2
‖xt+1 − xt‖

2

≤
‖gt‖

2
⋆

2λt
+
λt
2
‖xt+1 − xt‖

2 −
λt
2
‖xt+1 − xt‖

2 =
‖gt‖

2
⋆

2λt
≤ β

‖gt‖⋆
2

,

where we used Fenchel-Young inequality and the second lower bound is obtained by using the fact that λt ≥ λ1 = G
β

.

Hence, we have

λt+1 = λt +
γt
β2

≤ λt +min

(

‖gt‖⋆
2β

,
‖gt‖

2
⋆

2β2λt

)

.

Using Lemma 6.1 in Campolongo & Orabona (2020) and taking into account the fact that λ1 = G
β

, we have

λT+1 ≤
G

β
+

√

√

√

√

5

4β2

T
∑

t=1

‖gt‖
2
⋆ .

Putting all together, we have the stated bound.

C. Proof of Corollary 6.2

Proof. The proximal operator of ℓ̂t
λ

is

Prox ℓ̂t

λ

(x) = x−min

(

1

λ
,
ℓt(xt)

‖gt‖
2

)

gt .
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Hence, from (7), we have

xt+1 =
λt
λt+1

(

xt −min

(

1

λt
,
ℓt(xt)

‖gt‖
2

)

gt

)

=
λt
λt+1

xt −min

(

1

λt+1
,
λt
λt+1

ℓt(xt)

‖gt‖
2

)

gt .

Instead, from (6), we have

xt+1 =
λt
λt+1

xt −min

(

1

λt+1
,
ℓt(xt)

‖gt‖
2

)

gt .
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