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Abstract

We present new algorithms for optimizing non-
smooth, non-convex stochastic objectives based
on a novel analysis technique. This improves the
current best-known complexity for finding a (9, €)-
stationary point from O(e~46~!) stochastic gra-
dient queries to O(e~35~1), which we also show
to be optimal. Our primary technique is a reduc-
tion from non-smooth non-convex optimization
to online learning, after which our results follow
from standard regret bounds in online learning.
For deterministic and second-order smooth objec-
tives, applying more advanced optimistic online
learning techniques enables a new complexity of
O(e=15§795). Our improved non-smooth analy-
sis also immediately recovers all optimal or best-
known results for finding e stationary points of
smooth or second-order smooth objectives in both
stochastic and deterministic settings.

1. Introduction

Algorithms for non-convex optimization are one of the most
important tools in modern machine learning, as training
neural networks requires optimizing a non-convex objective.
Given the abundance of data in many domains, the time to
train a neural network is the current bottleneck to having
bigger and more powerful machine learning models. Moti-
vated by this need, the past few years have seen an explosion
of research focused on understanding non-convex optimiza-
tion (Ghadimi & Lan, 2013; Carmon et al., 2017; Arjevani
et al., 2019; 2020; Carmon et al., 2019; Fang et al., 2018).
Despite significant progress, key issues remain unaddressed.

In this paper, we work to minimize a potentially non-convex
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objective F' : R? — R which we only accesss in some
stochastic or “noisy” manner. As motivation, consider
F(x) & Eu[f(x,z)], where x can represent the model
weights, z a minibatch of i.i.d. examples, and f the loss of
a model with parameters x on the minibatch z. In keeping
with standard empirical practice, we will restrict ourselves
to first order algorithms (gradient-based optimization).

The vast majority of prior analyses of non-convex optimiza-
tion algorithms impose various smoothness conditions on
the objective (Ghadimi & Lan, 2013; Carmon et al., 2017;
Allen-Zhu, 2018; Tripuraneni et al., 2018; Fang et al., 2018;
Zhou et al., 2018; Fang et al., 2019; Cutkosky & Orabona,
2019; Li & Orabona, 2019; Cutkosky & Mehta, 2020; Zhang
et al., 2020a; Karimireddy et al., 2020; Levy et al., 2021;
Faw et al., 2022; Liu et al., 2022). One motivation for
smoothness assumptions is that they allow for a convenient
surrogate for global minimization: rather than finding a
global minimum of a neural network’s loss surface (which
may be intractable), we can hope to find an e-stationary
point, i.e., a point x such that |VF(x)|| < e. By now, the
fundamental limits on first order smooth non-convex opti-
mization are well understood: Stochastic Gradient Descent
(SGD) will find an e-stationary point in O(e~*) iterations,
which is the optimal rate (Arjevani et al., 2019). Moreover,
if F" happens to be second-order smooth, SGD requires only
O(e~3) iterations, which is also optimal (Fang et al., 2019;
Arjevani et al., 2020). These optimality results motivate the
popularity of SGD and its variants in practice (Kingma &
Ba, 2014; Loshchilov & Hutter, 2016; 2018; Goyal et al.,
2017; You et al., 2019).

Unfortunately, many standard neural network architectures
are non-smooth (e.g., architectures incorporating ReLUs or
max-pools cannot be smooth). As a result, these analyses
can only provide intuition about what might occur when an
algorithm is deployed in practice: the theorems themselves
do not apply (see Patel & Berahas (2022) for examples of
failure of SGD in non-smooth settings, or Li et al. (2021) for
futher discussion of assumptions). Despite the obvious need
for non-smooth analyses, recent results suggest that even
approaching a neighborhood of a stationary point may be
impossible for non-smooth objectives (Kornowski & Shamir,
2022b). Nevertheless, optimization clearly is possible in
practice, which suggests that we may need to rethink our
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assumptions and goals in order to understand non-smooth
optimization.

Fortunately, Zhang et al. (2020b) recently considered an
alternative definition of stationarity that is tractable even
for non-smooth objectives and which has attracted much
interest (Davis et al., 2021; Tian et al., 2022; Kornowski
& Shamir, 2022a; Tian & So, 2022; Jordan et al., 2022).
Roughly speaking, instead of |[VF(x)| < ¢, we ask that
there is a random variable y supported in a ball of radius
d about x such that | E[VF(y)]|| < e. We call such an
x an (0, €)-stationary point, so that the previous definition
(IVF(x)|| < e)isa (0,€)-stationary point. The current
best-known complexity for identifying an (0, €) stationary
point is O(e~46~1) stochastic gradient evaluations.

In this paper, we significantly improve this result: we
can identify an (4, €)-stationary point with only O(¢=3§1)
stochastic gradient evaluations. Moreover, we also show
that this rate is optimal. Our primary technique is a novel
online-to-non-convex conversion: a connection between
non-convex stochastic optimization and online learning,
which is a classical field of learning theory that already
has a deep literature (Cesa-Bianchi & Lugosi, 2006; Hazan,
2019; Orabona, 2019). In particular, we show that an on-
line learning algorithm that provides a shifting regret bound
can be used to decide the update step, when fed with lin-
ear losses constructed using the stochastic gradients of the
function F'. By establishing this connection, we open new
avenues for algorithm design in non-convex optimization
and also motivate new research directions in online learning.

In sum, we make the following contributions:

* A reduction from non-convex non-smooth stochastic
optimization to online learning: better online learning
algorithms result in faster non-convex optimization.
Applying this reduction to standard online learning al-
gorithms allows us to identify an (9, €) stationary point
in O(e=36~1) stochastic gradient evaluations. The pre-
vious best-known rate in this setting was O(e~4571).

* We show that the O(¢~36 1) rate is optimal for all d, €
such that € < O(9).

Additionally, we prove important corollaries for smooth F":

e The O(e 36~1) complexity implies the optimal
O(e=*) and O(e=3-%) respective complexities for find-
ing (0, €)-stationary points of smooth or second-order
smooth objectives.

* For deterministic and second-order smooth objectives,
we obtain a rate of O(¢~3/2§=1/2), which implies the
best-known O(e~7/*) complexity for finding (0, ¢)-
stationary points.

1.1. Related Work

In addition to the papers discussed in the introduction, here
we discuss further related work.

In this paper we build on top of the definition of (4, €)-
stationary points proposed by (Zhang et al., 2020b). There,
they prove a complexity rate of O(e~#6~1) for stochastic
Lipschitz functions, which we improve to O(e3§~1) and
prove the optimality of this result.

The idea to reduce machine learning to online learning was
pioneered by Cesa-Bianchi et al. (2004) with the online-to-
batch conversion. There is also previous work exploring the
possibility of transforming non-convex problems into online
learning ones. Ghai et al. (2022) provides some conditions
under which online gradient descent on non-convex losses
is equivalent to a convex online mirror descent. Hazan et al.
(2017) defines a notion of regret which can be used to find
approximate stationary points of smooth objectives. Zhuang
et al. (2019) transform the problem of tuning of learning
rates in stochastic non-convex optimization into an online
learning problem. Our proposed approach differs from all
the ones above in applying to non-smooth objectives. More-
over, as discusses in the next section, we employ online
learning algorithms with shifting regret (Herbster & War-
muth, 1998) to generate the updates (i.e. the differences
between successive iterates), rather than the iterates them-
selves.

2. Definitions and Setup

Here, we formally introduce our setting and notation. We are
interested in optimizing real-valued functions F' : H — R
where H is a real Hilbert space (e.g., usually H = R%).
We assume F* 2 inf, F(x) > —oo. We assume that F is
differentiable, but we do not assume that F' is smooth. All
norms || - || are the Hilbert space norm (i.e., the 2-norm) un-
less otherwise specified. As mentioned in the introduction,
the motivating example to keep in mind in our development
is the case F(x) = E,[f(x,2)].

Our algorithms access information about F' through a
stochastic gradient oracle GRAD : H x Z — R. Given
a point x in H, the oracle will sample an i.i.d. random
variable z € Z and return GRAD(x,z) € H such that
E[GRAD(x,z)] = VF(x) and Var(GRAD(x,z)) < o2.

In the following, we only consider functions satisfying the
following mild regularity condition.

Definition 1. We define a differentiable function F' : H —
R to be well-behaved if for all x,y € H, it holds that
1
F(y) = F) = [ (VF(x+ tly = %)y = x) e
0

If F" happens to be differentiable and locally Lipschitz, then
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this assumption is simply the Fundamental Theorem of Cal-
culus. Under this assumption, our results can be applied
to improve the past results on non-smooth stochastic op-
timization. In fact, Proposition 2 (proof in Appendix A)
below shows that for the wide class of functions that are
locally Lipschitz (but possibly non-differentiable), applying
an arbitrarily small perturbation to the function is sufficient
to ensure both differentiability and well-behavedness. This
result works via standard perturbation arguments similar
to those used previously by Davis et al. (2021) (see also
Bertsekas (1973); Duchi et al. (2012); Flaxman et al. (2005)
for similar techniques in the convex setting). In practice
we suspect that such perturbation arguments are unneces-
sary: intuitively an algorithm is unlikely to query a point of
non-differentiability (see also Bianchi et al. (2022) for some
formal evidence for this idea).

Proposition 2. Letr F : R* — R be locally Lipschitz
with stochastic oracle GRAD such that E,|GRAD(x,z)] =
V F(x) whenever F is differentiable. We have two cases:

e If F' is differentiable everywhere, then F' is well-
behaved.

e If F' is not differentiable everywhere, let p > 0 be
an arbitrary number and let u be a random vector
in RY unlformly distributed on the unit ball. Define
F(x) & Eu[F(x + pu)]. Then, F is dlﬁ‘erentzable
and well-behaved, and the oracle GRAD( X, (z,u)) =
GRAD(x +pu, z) is a stochastic gradient oracle for F.
Moreover, F is differentiable at x4+ pu with probability
1 and if F is G-Lipschitz, then |F(x) — F(x)| < pG
forall x.

Remark 3. We explicitly note that our results cover the
case in which F is directionally differentiable and we have
access to a stochastic directional gradient oracle, as consid-
ered by Zhang et al. (2020b). This is a less standard oracle
GRAD(x, v, z) that outputs g such that E[(g, v)] is the di-
rectional derivative of F' in the direction v. This setting is
subtly different (although a directional derivative oracle is
a gradient oracle at all points for which F is continuously
differentiable). In order to keep technical complications to a
minimum, in the main text we consider the simpler stochastic
gradient oracle discussed above. In Appendix H, we show
that our results and techniques also apply using directional
gradient oracles with only superficial modification.

2.1. (4, ¢)-Stationary Points

Now, let us define our notion of (9, €)-stationary point. This
definition is essentially the same as used in Zhang et al.
(2020b); Davis et al. (2021); Tian et al. (2022). It is in fact
mildly more stringent since we restrict to distributions of
finite support and require an “unbiasedness” condition in

order to make eventual connections to second-order smooth
objectives easier.

Definition 4. A point x is an (0, €)-stationary point of an
almost-everywhere differentiable function F' if there is a
finite subset S of the ball of radius § centered at x such that
fory selected uniformly at random from S, Ely] = x and
IE[VF@)]]| <e

As a counterpart to this definition, we also define:

Definition 5. Given a point x, a number 6 > 0 and a
almost-everywhere differentiable function F, define

‘S|ZVF

IVF(x)||s = inf
SCB(x,0), \S\ Zyesy:x

Let’s also state an immediate corollary of Proposition 2 that
converts a guarantee on a randomized smoothed function to
one on the original function. This result is also immediate
from Theorem 3.1 of Lin et al. (2022).

Corollary 6. Let F : R* — R be G-Lipschitz. For e > 0,
let p < § and let u be a random vector in R® uniformly
distributed on the unit ball. Define F'(x) £ Eyu[F (x + pu).
If a point x satisfies |V F (x)||5 < €, then |[VF(x)||25 < €.

Our ultimate goal is to use N stochastic gradient evalua-
tions of F' to identify a point x with as small a value of
E[||VF(x)]s] as possible. For the rest of this paper we will
consider exclusively the case of well-behaved and differ-
entiable objectives F'. We focus our development on this
conceptually simpler case in order to simplify the proofs
as much as possible, however due to Proposition 2 and
Corollary 6, our results will immediately extend from dif-
ferentiable F' to those F' that are locally Lipschitz and for
which GRAD(x, z) returns a unbiased estimate of V F'(x)
whenever F' is differentiable at x.

2.2. Online Learning

Here, we very briefly introduce the setting of online lin-
ear learning with shifting competitors, that will be the core
of our online-to-non-convex conversion. We refer the in-
terested reader to Cesa-Bianchi & Lugosi (2006); Hazan
(2019); Orabona (2019) for a comprehensive introduction to
online learning. In the online learning setting, the learning
process goes on in rounds. In each round the algorithm
outputs a point A; in a feasible set V, and then receives a
linear loss function ¢;(-) = (g, -) and it pays £;(A;). The
goal of the algorithm is to minimize the static regret over
T rounds, defined as the difference between its cumulative
loss and the one of an arbitrary comparison vector u € V:

T
éth,At—u

t=1
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With no stochastic assumption, it is possible to design online
algorithms that guarantee that the regret is upper bounded
by O(\/T). In this work, we frequently make use of a more
challenging objective: minimizing the K-shifting regret.
This is the regret with respect to an arbitrary sequence of K
1 ...,uff € V that changes every T iterations:

vectors u-,
Z >

=(k—1)T+1

RT( <gna A, — uk> - (D

It should be intuitive that resetting the online algorithm every
T iterations can achieve a shifting regret of O(K~/T).

3. Online-to-Non-Convex Conversion

In this section, we explain the online-to-non-convex con-
version. The core idea transforms the minimization of
a non-convex and non-smooth function onto the prob-
lem of minimizing the shifting regret over linear losses.
In particular, consider an optimization algorithm that up-
dates a previous iterate x,,—; by moving in a direction
Ay X, = X1 + A,,. For example, SGD sets A,, =
—Ngn—1 = —1 - GRAD(X,,_1,%,_1) for a learning rate 7.
Instead, we let an online learning algorithm 4 decide the
update direction A,,, using linear losses ¢,,(x) = (g, X).

The motivation behind essentially all first order algorithms is
that F(x,,—1+A,) — F(Xp—1) = (g, A,). This suggests
that A,, should be chosen to minimize the inner product
(gn, Ay). However, we are faced with two difficulties. The
first difficulty is the the approximation error in the first-
order expansion. The second is the fact that A, needs to
be chosen before g, is revealed, so that A,, needs in some
sense to “predict the future”. Typical analysis of algorithms
such as SGD use the remainder form of Taylor’s theorem
to address both difficulties simultaneously for smooth ob-
jectives, but in our non-smooth case this is not a valid ap-
proach. Instead, we tackle these difficulties independently.
We overcome the first difficulty using the same random-
ized scaling trick employed by Zhang et al. (2020b): define
g, to be a gradient evaluated not at x,,_1 or X,—1 + A,
but at a random point along the line segment connecting
the two. Then for a well-behaved function we will have
F(xp_1 + A,) — F(xp-1) = E[{(gn, Ay)]. The second
difficulty is where online learning shines: online learning
algorithms are specifically designed to predict completely
arbitrary sequences of vectors as accurately as possible.

The previous intuition is formalized in Algorithm 1 and the
following result, which we will elaborate on in Theorem 8
before yielding our main result in Corollary 9.

Theorem 7. Suppose F' is well-behaved. Define V,, =
f01VF(Xn71 + sA,,) ds. Then, with the notation in Algo-
rithm 1 and for any sequence of vectors uy,...,uy, we

Algorithm 1 Online-to-Non-Convex Conversion
Input: Initial point xo, K € N, T € N, online learning
algorithm A.
Set M =K -T
forn=1...M do
Get A, from A
Setx, =xp-1+ A,
Generate s,, € [0, 1] // usually uniformly random, see
Theorem statements for precise settings.
Setw,, = X,—1 + snA,
Sample random z,,
Generate gradient g,, = GRAD (W, Z,)
Send g, to A as gradient

end for

Set wf = W_nrie for k = 1,...,K and t =
1,....T

Set w" TZt (wifork=1,...,K

Return {w',... w*}

have the equality:

F(sz

M
Z gn7 n - >
n=1

M M
+Z<Vn*gm Z gn, Uy .
n=1 n=1

Moreover, if we let s, be independent random variables
uniformly distributed in [0, 1], then we have

Z g'ru n—Uu >‘|
Z gn,un ] .

E[F(xm)] =

Proof. By the well-behaveness of F, we have

F(x,) — F(xp-1)

1
= / <VF(XTL—1 + S(Xn - X’n—l))axn - Xn—1> ds
0

1
= / (VF(xp—1+ sA,),Ay)ds
0
== <Vn>An>

= <gn7 An - un> + <Vn — 8n; An> + <gn; un> .

Now, sum over n and telescope to obtain the stated bound.

For the second statement, simply observe that by definition
we have E[g,] = fOVF Xp_1+ 8A,)ds = V,. O



Optimal, Stochastic, Non-smooth, Non-convex Optimization through Online-to-Non-convex Conversion

3.1. Guarantees for Non-Smooth Non-Convex Functions

The primary value of Theorem 7 is that the term
224:1 (gn, Ap—uy,) is exactly the regret of an online learn-
ing algorithm: lower regret clearly translates to a smaller
bound on F'(x,s). Next, by carefully choosing u,,, we will
be able to relate the term Eil(gn, u,) to the gradient
averages that appear in the definition of (4, €)-stationarity.
Formalizing these ideas, we have the following:

Theorem 8. Assume F' is well-behaved. With the nota-
tion in Algorithm 1, set s, to be a random variable sam-

pled uniformly from [0,1]. Set T,K € Nand M = KT.

Define u* = D% for some D > 0 for
k=1,..., K. Finally, suppose Var(g,) < o>. Then:
1|t
k
e p 3 |F o vreh
k=11" t=1
Fxo)—F*+IE[RT(u1, 7uK)]_’_L
=7 DM DM JT

Proof. From Theorem 7, we have

E[F(xm)] = F(x0) + E[Rp(u', ..., u™)]
M
+E Z<gn,un>] .
n=1
Now, since u* = —D X VE(w,) Elg,] =

=7 vRi
E[VF(w,)], and Var(g,) < o2, we have

[ (o)

oo

+ DoKVT .

M

Z<gmun>
Py

<E li va(wf),uk>
=E [—ZDT %ZVF(wf)

E

+E

T
Z(VF(Wf) - gT(k—1)+t)
t=1

+ DoKVT

Putting this all together, we have

F* <E[F(xum)] < F(XO> +E[Rr(u',...,u™)]

+0DK\FT7DTZ]E

o]

Dividing by K DT = DM and reordering, we have the
stated bound. O

We now instantiate Theorem 8 with the simplest online learn-
ing algorithm: online gradient descent (OGD) (Zinkevich,
2003). OGD takes input a radius D and a step size 1 and
makes the update A, 1 = IIja<p [An—ngn] with A =
0. The standard analysis shows that if E[|| gn|| ] < G? for
all n, then with n = e \F’ OGD will ensure! static regret

E[Rr(u)] < DGV/T for any u satisfying |Ju| < D. Thus,
by resetting the algorithm every 7' iterations, we achieve
E[Rr(u?,...u)] < KDGVT. This powerful guarantee
for all sequences is characteristic of online learning. We are
now free to optimize the remaining parameters K and D to
achieve our main result, presented in Corollary 9.

Corollary 9. Suppose we have a budget of N gradi-
ent evaluations. Under the assumptions of Theorem 8,
suppose in addition E[||g,||?] < G? and that A guar-
antees |A,|| < D for some user-specified D for all
n and ensures the worst-case K-shifting regret bound
E[Rr(ul,...,uf)] < DGKVT for all |u*|| < D (e.g.,
as achieved by the OGD algorithm that is reset every T iter-
ations). Let 6 > 0 be an arbitrary number. Set D = 6/T,

T = min([(%)wﬂ, ), and K = |2 ]. Then, for

all k and t, we have ||[W* — w¥

Moreover, we have the inequality

K T
1 1 2(F(xq) — F*)
&2 | vEe| | < TR
K~ |T 4 6N
e 5G?/3(F(x) — F¥)Y/3 6G
max ——
(N5)1/3 I’ /7N ?

which implies

2(F(x0) = F*)
= Z IVF(w ||5] < St

F*)l/S 6G>
’ \/N .

G*/3(F (xo) —
(N6)1/3

+max(

Before providing the proof, let us discuss the impli-
cations. Notice that if we select w at random from
{w!',...,wK}, then we clearly have E[|VF(W)|s] =

E|+ Zf{: IVE(w* )Hg} Therefore, the Corollary asserts

that for a function F' with F'(xq) — inf F'(x) < ~ with a
stochastic gradient oracle whose second moment is bounded
by G2, a properly instantiated Algorithm 1 finds a (9, €) sta-
tionary point in N = O(G~e 36~1) gradient evaluations.
In Section 7, we will provide a lower bound showing that
this rate is optimal essentially whenever 6G? > ey. To-
gether, the Corollary and the lower bound provide a nearly
complete characterization of the complexity of finding (9, €)-
stationary points in the stochastic setting.

"For completeness a proof of this statement is in Appendix B.
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It is also interesting to note that the bound does not appear
to improve if the gradients are deterministic. Specifically,
in the assumptions for Corollary 9, we could try to relax
Elllg:ll?] < G to |[VF(w,)|| < G and Var(g;) < o2 for
some o. We might then hope to improve the bound as
o — 0 by taking advantage of the o-dependency in The-
orem 8. However, it turns out that the o-dependency in
Corollary 9 is dominated by a dependency on G coming
from the regret bound of OGD. This highlights an interest-
ing open question: is it actually possible to improve in the
deterministic setting? It is conceivable that the answer is
“no”: in the non-smooth convex optimization setting, it is
well-known that the optimal rates for stochastic and deter-
ministic optimization are the same (see, e.g., Bubeck (2015)
for proofs of both upper and lower bounds).

Remark 10. We conjecture that by employing martingale
concentration, the above can be extended to identify a

G2/3 x0)— F*)1/3
(8, O( Tl
ability, although we do not establish such a result here.

))-stationary point with high prob-

It is also interesting to explicitly write the update of the
overall algorithm:

Xy = Xp—1+ An
gn = GRAD(X,, + (8, — 1)A,,, 2,,)
An+1 = ClipD(An + ngn)

where clipp (x) = xmin(H%H, 1). In words, the update is

reminiscent of the SGD update with momentum and clip-
ping. The primary different element is the fact that the
stochastic gradient is taken on a slightly perturbed x,,.

Proof of Corollary 9. Since A guarantees ||A,,|| < D, for
alln < n’ <n+T —1, we have

HWn - Wn/H = ||Xn — (1 — Sn)An — Xp/—1+ Sn’An’”

n'—1

S oA A+ A
i=n-+1

<D((n"—1)—(n+1)+1)+2D < DT.

IN

Therefore, we clearly have ||wF — W"| < DT = 4.

Note that from the choice of K and T we have M =
KT > N —T > N/2. So, for the second fact, notice
that Var(g,) < E[|g|?] < G? for all n. Thus, apply-
ing Theorem 8 in concert with the additional assumption

E[Rr(u!,...,uf)] < DGK VT, we have:
T

1 &
k
E EZ T VF(w;) ]
k=1 t=1
o Flx0) = F* KDGVT = G
DN DN VT
2T (F(x0) — F*) 3G
R S —— —
< 5N + Vs
5G2/3(F(x¢) — F¥)Y/3 6@
< max ) T =
(No)L/3 VN
2(F(x0) — F™)
TN

where the last inequality is due to the choice of 7.

Finally, observe that ||w¥ —w" || < § for all  and k, and also

that W* = 1 Zthl wF. Therefore S = {w¥f,..., wk}

satisfies the condijtions in the infimum in Definition 5 so that
- T

IVE)lls < |4 S0 VR(wh)|. O

4. Bounds for the L; Norm

It is a well-known trick in the online learning literature
that running a separate instance of an online learning algo-
rithm on each coordinate of A yields regret bounds with
respect to L; norms of the linear costs (e.g., as in Ada-
Grad (Duchi et al., 2010; McMahan & Streeter, 2010)).
For example, we can run the online gradient descent al-
gorithm with a separate learning rate for each coordinate:
A1 =I_p_ D [Ani — 1i8n,i]. The regret of this
procedure is simply the sum of the regrets of each of the
individual algorithms. In particular, if E[g%l] < G?, then

GPwT yields the regret bound E[Rr(u)] <

DOO\/TZf;l G; for any u satisfying ||ulcc < Do. By
employing such online algorithms with our online-to-non-
convex conversion, we can obtain a guarantee on the L
norm of the gradients.

setting 7; =

Definition 11. A point x is a (9, €)-stationary point with re-
spect to the Ly norm of an almost-everywhere differentiable
Sfunction F if there exists a finite subset S of the L, ball of
radius § centered at x such that if' y is selected uniformly at
random from S, Ely] = x and | E[VF(y)]|1 < e

As a counterpart to this definition, we define:

Definition 12. Given a point x, a number 6 > 0 and an
almost-everywhere differentiable function F, define

LS VEE)

IVF(x) inf .
SCBOO(X,(S)l,‘féI Eyesy:x |S| yeS

1,6 =

We now can state a theorem similar to Corollary 9. Given
that the proof is also very similar, we defer it to Appendix G.
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Theorem 13. Suppose we have a budget of N gradient
evaluations. Assume F : R? — R is well-behaved. With
the notation in Algorithm 1, set s, to be a random variable
sampled uniformly from [0,1]. Set T,K € Nand M =
KT. Assume that EBlg; ;] < G? fori = 1,...,d for all
n. Assume that A guarantees | Ayl < Do for some
user-specified Do, for all n and ensures the K-shifting
regret bound E[Rr(u?, ..., uf)] < DOOK\/TZ?:l G;
for all ||[u*||so < Doo. Let 6 > 0 be an arbitrary number.
Set Do = §/T, T = min([(50Z8=49)2/3] 4), and
K = | £]. Then we have:

=

2(F(x0) — F*)
ON

Z IVF(w

531, Gi)*/(F(xo)
(No)1/3 ’

MNls <

+max<

Let’s compare this result with Corollary 9. For a fair com-

parison, we set G; and G such that Zle G? = G?. Then,

we can lower bound || - || 5 with ﬁ || 1l1,s. Hence, under the
d

1Elon ] < 305, G = G2,

eatecy
(N6)1/3 .

VN

assumption Efgn|?] = Y2
Corollary 9 implies + 31 | |V F(w")

Now, let us see what would happen if we instead employed
the above Corollary 13. First, observe that Z:.izl G; <

Vd Z?:l G? < V/dG. Substituting this expression into

|l1,6 that is
q1/3G2/3 . . .
O(W)’ which is better than the one we could obtain

from Corollary 9 under the same assumptions.

Theorem 13 now gives an upper bound on || -

5. From Non-smooth to Smooth Guarantees

Let us now see what our results imply for smooth objectives.
The following two propositions show that for smooth F',
a (0, €)-stationary point is automatically a (0, €')-stationary
point for some appropriate €. The proofs are in Appendix E.

Proposition 14. Suppose that F' is H-smooth (that is, V F
is H-Lipschitz) and x also satisfies | VF (x)||s < e. Then,
I[VF(x)| < e+ Hd.

Proposition 15. Suppose that F is J-second-order-smooth
(x) = V2E(y)|lop < J||x —y|| for all x and
y). Suppose also that x satisfies |VF(x)||s < e. Then,
[VEx)|| < e+ 462

Now, recall that Corollary 9 shows that we can find a (4, €)
stationary point in O(¢=3§7!) iteration. Thus, Proposi-
tion 14 implies that by setting 6 = ¢/H, we can find a (0, ¢€)-
stationary point of an H-smooth objective F in O(e~%) it-
erations, which matches the (optimal) guarantee of standard

- F*)1/3 62?:1 Gi)

SGD (Ghadimi & Lan, 2013; Arjevani et al., 2019). Further,
Proposition 15 shows that by setting § = +/¢/J, we can
find a (0, €)-stationary point of a J-second order smooth
objective in O(e~3%) iterations. This matches the perfor-
mance of more refined SGD variants and is also known to
be tight (Fang et al., 2019; Cutkosky & Mehta, 2020; Arje-
vani et al., 2020). In summary: the online-to-non-convex
conversion also recovers the optimal results for smooth
stochastic losses.

6. Deterministic and Smooth Case

We will now consider the case of a non-stochastic oracle
(that is, GRAD(x,z) = VF(x) for all z, x) and F'is H-
smooth (i.e. VF is H-Lipschitz). We will show that opti-
mistic online algorithms (Rakhlin & Sridharan, 2013; Hazan
& Kale, 2010) achieve rates matching the optimal determin-
istic results. In particular, we consider online algorithms
that ensure static regret:

T
Rp(u) <O [ Dy |y —gell? |, 2)
t=1

for some “hint” vectors h;. In Appendix B, we provide
an explicit construction of such an algorithm for complete-
ness. The standard setting for the hints is h; = g;_1. As
explained in Section 2.2, to obtain a K -shifting regret it will
be enough to reset the algorithm every T iterations.

Theorem 16. Suppose we have a budget of N gradient
evaluations. and that we have an online algorithm Agiqtic
that guarantees ||Ay|| < D for all n and ensures the op-

timistic regret bound Rr(u) < C’D\/Zthl llg: — ge—1]1?
for some constant C, and we define gy = 0. In Algo-
rithm 1, set A to be Agyic that is reset every T rounds.
Let 6 > 0 be an arbitrary number. Set D = §/T,

. 2 2/5 .
T = mm([%], &), and K = |&]. Finally,

suppose that F' is H-smooth and that the gradient oracle is
deterministic (that is, g, = VF(wy,,)). Then we have:

— 2CG L 2F(x0) = F7)
k 1 0
ESS0ZE o)
(CH)?/%(F(xo) — F*)3/5 17C6vH
+ max (6 5175 N3/ T NB2 .

Note that the expectation here encompasses only the ran-
domness in the choice of sf , because the gradient oracle
is assumed to be deterministic. Theorem 16 finds a (4, €)
stationary point in O(e=%/3§=1/3) iteratations. Thus, by
setting 0 = ¢/ H, Proposition 14 shows we can find a (0, €)
stationary point in O(e~?) iterations, which matches the
standard optimal rate (Carmon et al., 2021).
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Proof. First, observe that for all k,t, |[W* — wF|| < 6.

This holds for precisely the same reason that it holds in
Corollary 9.

Next, observe that for £k = 1 we have

T
Rr(u*) <CD, | ligk — gk |2
t=1
T
<CD,| G} + ) IVF(wF) = VF(wi_)|?
t=2
T
< CD\ G+ H2|lwf —wh||?
t=2

< CDy/G? + 4H2TD? < CDG, + 2CD*HVT .

Similarly, for £ > 1, we observe that

T T
Z gt —gi 4| < Z IVE(wf) — VF(wy_ )|
t=1 t=2
+ IVF(w}) = VF(wi )|

T
< H(|wh = wh 2+ lwE = wi )

t=2
< ATH?D?.

Thus, we have

T
Rr(u®) <CD, | |lgk —gf 4|2

t=1
< CDV4H2T D2
< 2CD*HVT.

Now, applying Theorem 8§ in concert with the above bounds
on Ry (u*), we have

| 20DGy + ACKD*VHT
DN DN
2T (F(xo) — F*) N 206G, N 4C6vVH
SN N T3/2
2/5 _ *)\3/5
- ( o (CH)?/P(F (x0) — F*) 1705@)

IN

IN

51/5 N3/5 T TN3/2

+ QCGl Q(F(Xo) — F*)
N ON

Recalling that ||[wF —w"|| < §, the conclusion follows. []

Algorithm 2 Optimistic Mirror Descent with Careful Hints

Input: Learning rate 7, number @ (Q will be O(log N)),
function F', horizon T, radius D
Receive initial iterate x
Set Al =0
fort=1...Tdo
Set h? = VF(Xt_l)
fori=1...Qdo
Seth] = VF (x;—1 + $1Ijaj<p [A; — nh{'])
end for
Set h; = h?
Output A; =TIy aj<p[A; — nhy]
Receive tth gradient g;
Set Aty = Ija|<p[A} — 18]
end for

6.1. Better Results with Second-Order Smoothness

When F is J-second-order smooth (i.e., V2F is J-
Lipschitz) we can do even better. First, observe that by
Theorem 16, if F'is J-second-order-smooth, then by Propo-
sition 15, the O(e~%/3§~1/3) iteration complexity of Theo-
rem 16 implies an O (e~ 1/9) iteration complexity for find-
ing (0, ¢) stationary points by setting 6 = /¢/J. This
already improves upon the O(e~2) result for smooth losses,
but we can improve still further. The key idea is to generate
more informative hints h;. If we can make h; ~ gy, then by
(2), we can achieve smaller regret and so a better guarantee.

To do so, we abandon randomization: instead of choosing
s, randomly, we just set s, = 1/2. This setting still allows
F(x,) ~ F(xp—-1) + (gn, Ay,) with very little error when
F' is second-order-smooth. By inspecting the optimistic
mirror descent update formula, we can identify an h; with
|h; — gt < O(1/v/N) using O(log(N)) gradient queries.
This more advanced online learning algorithm is presented
in Algorithm 2 (full analysis in Appendix C).

Overall, Algorithm 2’s update has an “implicit” flavor:
gn

2H1’

gn = v}71(Xn—1 + An/z) .

An =Mjaj<p [An—l -

With this refined online algorithm, we can show the follow-
ing convergence guarantee, whose proof is in Appendix D.

Theorem 17. In Algorithm 1, assume that g, = VF(w,,),
and set s, = % Use Algorithm 2 restarted every T
rounds as A. Let § > 0 an arbitrary number. Set

. S2(H+J8)N)/?
T = mln((((},((x;;f}*))l/?ﬂ,]\f/m and K = L%J In
Algorithm 2, set n = 1/2H, D = §/T, and Q =
[logy(\/NG/HD)). Finally, suppose that F is J-second-

order-smooth. Then, the following facts hold:
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1. Forall k,t, |[W" — wF|| <.

2. We have the inequality

K T
1 1 4G
22 |7 2 VEWD)
k=1 t=1

< s . Q(F(inf)é_ F*)

S5(H + J5)

G (H + J8)1*(F(x) — F*)*/3

01/3N2/3 +10

+

N2

3. With § = T Ge) PG/

3TN , we have

K
1 ke JYTHIT (B (xg)— F*)A/T
7 DIVEEH)| < 0 (ST )
t=1

Moreover, the total number of gradient queries con-
sumed is NQ = O(N log(N))

This result finds a (4, €) stationary point in O(e~3/25=1/2)
iterations. Via Proposition 15, this translates to O(e~7/4)
iterations for finding a (0, €) stationary point, matching the
best known rate (up to a logarithmic factor) (Carmon et al.,
2017). Note that this may not be optimal: the best lower
bound is Q(e~'2/7) (Carmon et al., 2021). Intriguingly,
our technique seems distinct from previous work, which
usually relies on acceleration and detecting or exploiting
negative curvature (Carmon et al., 2017; Agarwal et al.,
2016; Carmon et al., 2018; Li & Lin, 2022).

7. Lower Bounds

In this section, we show that our O(e 3§~1) complexity
achieved in Corollary 9 is tight. We do this by a simple
extension of the lower bound for stochastic smooth non-
convex optimization of Arjevani et al. (2019). We provide
an informal statement and proof-sketch below. The formal
result (Theorem 28) and proof is provided in Appendix F.

Theorem 18 (informal). There is a universal constant C'
such that for any 9, €, v and G > C%, for any first-
order algorithm A, there is a G-Lipschitz, C*° function
F : R? — R for some d with F(0) — infy F(x) <y and a
stochastic first-order gradient oracle for F whose outputs
g satisfy E[||g|?] < G? such that such that A requires
Q(G?~/8€3) stochastic oracle queries to identify a point x
with E[||VF(x)]s] < e

Proof sketch. The construction of Arjevani et al. (2019) pro-
vides, for any o a function F' and stochastic oracle whose
outputs have norm at most o such that F' is H-smooth,
O(v/H7)-Lipschitz and A requires Q(c?H~/e*) oracle
queries to find a point x with ||[VF(x)|| < 2. By set-
ting H = $and 0 = G/\/i, this becomes an y/evy/0-
Lipschitz function, and so is at most G/ \/§—Lipschitz.

Thus, the second moment of the gradient oracle is at most
G?/2 + G?/2 = G*. Further, the algorithm requires
Q(G?v/6€®) queries to find a point x with ||V F (x)|| < 2e.
Now, if [|[VF(x)|[s < e, then since F'is H = §-smooth,
by Proposition 14, |VF(x)|| < ¢ + 6H = 2¢. Thus, we
see that we need 2(G?v/de3) queries to find a point with
IVF(x)|ls < € as desired. O

8. Conclusion

We have presented a new online-to-non-convex conversion
technique that applies online learning algorithms to non-
convex and non-smooth stochastic optimization. When
used with online gradient descent, this achieves the opti-
mal e 36! complexity for finding (6, €) stationary points.

These results suggest new directions for work in online
learning. Much past work is motivated by the online-to-
batch conversion relating static regret to convex optimiza-
tion. We employ switching regret for non-convex optimiza-
tion. More refined analysis may be possible via generaliza-
tions such as strongly adaptive or dynamic regret (Daniely
et al., 2015; Jun et al., 2017; Zhang et al., 2018; Jacobsen
& Cutkosky, 2022; Cutkosky, 2020; Lu et al., 2022; Luo
et al., 2022; Zhang et al., 2021; Baby & Wang, 2022; Zhang
et al., 2022). Moreover, our analysis assumes perfect tun-
ing of constants (e.g., D, T, K) for simplicity. In practice,
we would prefer to adapt to unknown parameters, moti-
vating new applications and problems for adaptive online
learning, which is already an area of active current investi-
gation (see, e.g., Orabona & Pdl, 2015; Hoeven et al., 2018;
Cutkosky & Orabona, 2018; Cutkosky, 2019; Mhammedi &
Koolen, 2020; Chen et al., 2021; Sachs et al., 2022; Zhang
& Cutkosky, 2022; Wang et al., 2022). We hope that this
expertise can be applied in the non-convex setting as well.

Finally, our results leave an important question unanswered:
the current best-known algorithm for deterministic non-
smooth optimization still requires O (e 3§~1) iterations to
find a (4, €)-stationary point (Zhang et al., 2020b). We
achieve this same result even in the stochastic case. Thus
it is natural to wonder if the deterministic rate is tight. For
example, is the O(e~3/26=1/2) complexity we achieve in
the smooth setting also achievable in the non-smooth set-
ting? Intriguingly, prior work (Kornowski & Shamir, 2022a;
Jordan et al., 2022) shows that randomization is necessary,
even if the gradient oracle itself is deterministic.
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A. Proof of Proposition 2

First, we state a technical lemma that will be used to prove Proposition 2.

Lemma 19. Let F : R? — R be locally Lipschitz. Then, F is differentiable almost everywhere, is Lipschitz on all compact
sets, and for all v € R?, x +— (VF(x),v) is integrable on all compact sets. Finally, for any compact measurable set
D C RY, the vector w = [,V F(x) dx is well-defined and the operator p(v) = [,(VF(x),v) dx is linear and equal to
(w,Vv).

Proof. First, observe that since F is locally Lipschitz, for every point x € R? with rational coordinates there is a
neighborhood Uy of x on which F' is Lipschitz. Thus, by Rademacher’s theorem, F' is differentiable almost everywhere
in Ux. Since the set of points with rational coordiantes is dense in R%, RY is equal to the countable union | Ux. Thus,
since the set of points of non-differentiability of F' in Uy is measure zero, the total set of points of non-differentability is a
countable union of sets of measure zero and so must be measure zero. Thus F' is differentiable almost everywhere. This
implies that F' is differentiable at x 4+ pu with probability 1.

Next, observe that for any compact set S C R?, for every point x € S with rational coordinates, F is Lipschitz on some
neighborhood Uy containing x with Lipschitz constant G. Since S is compact, there is a finite set x1, .. ., X such that
S = |J Uy, . Therefore, F is max; Gx,-Lipschitz on S and so F is Lipschitz on every compact set.

Now, for almost all x, for all v we have that the limit limg_,q

w exists and is equal to (VF'(x), v) by definition

of differentiability. Further, on any compact set S we have that w < L for some L for all x € S. Therefore, by
the bounded convergence theorem (see e.g., Stein & Shakarchi (2009, Theorem 1.4)), we have that (VF'(x), v) is integrable
on S.

Next, we prove the linearity of the operator p. Observe that for any vectors v and w, and scalar ¢, by linearity of integration,
we have

/(VF(X), ev+wydx = /(VF(X)7 ev) + (VF(x), w)dx
D D

_ /D (VF(x),v) + (VF(x), w) dx

- C/D<VF(X),V> dx + /D<VF(X),W> dx

For the remaining statement, given that R? is finite dimensional, there must exist w € R? such that p(v) = (w, v) for all v.
Further, w is uniquely determined by (w,e;) fori = 1, ..., d where e; indicates the ith standard basis vector. Then, since
VF(x); = (VF(x),e;) is integrable on compact sets, we have

<w,ei>:/D<VF(x),ei) dx:/VF(x)idx,

D

which is the definition of [, VF(x)dx when the integral is defined. O
‘We can now prove the Proposition.

Proof of Proposition 2. Since F' is locally Lipschitz, by Proposition 19, F' is Lipschitz on compact sets. Therefore, ' must
be Lipschitz on the line segment connecting x and y. Thus the function k(¢) = F(x +t(y — x)) is absolutely continuous on

[0,1]. As aresult, &’ is integrable on [0, 1] and F(y)— F(x) = k(1) —k(0) = fol K (t)dt = f01<VF(X+t(y—x)), y—x)dt
by the Fundamental Theorem of Calculus (see, e.g., Stein & Shakarchi (2009, Theorem 3.11)).

Now, we tackle the case that F' is not differentiable everywhere. Notice that the last statement of the Proposition is an
immediate consequence of Lipschitzness. So, we focus on showing the remaining parts.

Now, by Lemma 19, we have that F is differentiable almost everywhere. Further, gx = Eu[V F(x + pu)] exists and satisfies
for all v € R%:

(8 v) = E[(VF(x -+ pu).v)]

13
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Notice also that

[GRAD(x, (2,u))] = EE[GRAD(x + pu, z)] = IE[VF(X +pu)] = gx

z,u u z

So, it remains to show that F" is differentiable and VF(x) = g.

Now, let x be an arbitrary elements of R? and let v{, Vs, ... be any sequence of vectors such that lim,, o, v,, = 0 and
|lvi]| < p for all i. Then, since the ball of radius 2p centered at x is compact, F' is L-Lipschitz inside this ball for some L.
Then, we have

lim F(x+v,) — F(x) — (g, V) F(x+ v, +pu) — F(x+pu) — (VF(x+ pu),vy)

n=o0 [Vl o0 u [Vl

Now, observe FGtvitp “)[F(X'W Wl < L. Further, for all almost all u, F is differentiable at x + pu so that

Vi
F(x+vn+pu)—F(x+pu)—(VF (x+pu),vy)]
vl

lim,, o0 = 0 for almost all u. Thus, by the bounded convergence theorem, we have
lim F(x + Vi) — F(X) — (8x,Vn)

n—00 [[vnl

=0.

which shows that g, = VF(x).

Finally, observe that since F' is Lipschitz on compact sets, F must be also, and so by the first part of the proposition, Fis
well-behaved. [

B. Analysis of (Optimistic) Online Gradient Descent

Optimistic Online Gradient Descent (in its simplest form) is described by Algorithm 3. Here we collect the standard analysis
of the algorithm for completeness. None of this analysis is new, and more refined versions can be found in a variety of
sources (e.g. (Chen et al., 2021)).

Algorithm 3 Optimistic Mirror Descent

Input: Regularizer function ¢, domain V, time horizon 7.
w1 =0
fort=1...T do
Generate “hint” h;
Set wy = argmin, oy, (hy,x) + 3 [|x — W2
Output w; and receive loss vector g;
Set W41 = argminyy (g, X) + 3[|x — Wy|?
end for

We will analyze only a simple version of this algorithm, that is when V' is an L4 ball of radius D in some real Hilbert space
(such as R%). Then, Algorithm 3 satisfies the following guarantee.

Proposition 20. Let V = {x : |x|| < D} C H for some real Hilbert space H. Then, with for all u € V, Algorithm 3
ensures

T 2 X .
— — g — he*.
;(gt,wt u) 2 Z 2||gt ¢l

=1

Proof. Now, by Chen et al. (2021, Lemma 15) instantiated with the squared Euclidean distance as Bregman divergence, we
have

R 1 R 1 R R 1 R
(gt,wr —u) < (g —hy,wy — Wipq) + 5”u - wt||2 - §||u - Wt+1||2 - §||Wt+1 - WtH2 - §|\Wt - Wt||2

14
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From Young inequality:

nllge —hel* | llwe — W1 . 1 . .
< 5 + 2 +§||U—Wt||2—§||U—Wt+1||2—§||wt+1 — w2
e — WP
2n
nllge —hef* 1 . 1 .
572 ‘f'§||u—Wzt||2—§||11—Wt+1||2

Summing over ¢ and telescoping, we have

T
E gt7 Wi —
t=1

| AN

T
1 N . 2 nllg: — hy|?
§||11*W1|| *§||11*WT+1H +;f

IN

[u — v || nllg: — th2 nllg: — htll
Sl y e ohE D2y ol Tl -

In the case that the hints h; are not present, the algorithm becomes online gradient descent (Zinkevich, 2003). In this case,
assuming E[||g¢||?] < G? and setting n = G% we obtain the E[R7(u)] < DG+/T for all u such that |ju|| < D.

C. Algorithm 2 and Regret Guarantee

Theorem 21. Let F be an H-smooth and G- Lipschitz function. Then, when Q = [logy(\/NG/HD)], Algorithm 2 with
X = X¢_1 + %At and gi = VF(x;) and n < 557 ensuresfor all |[ul| <D

i A —u) HD2+2GTD
o gt7 t 2 N .

Furthermore, a total of at most T [log,(\/NG/HD)] gradient evaluations are required.
Proof. The count of gradient evaluations is immediate from inspection of the algorithm, so it remains only to prove the
regret bound.

First, we observe that the choices of A specified by Algorithm 2 correspond to the values of w, produced by Algorithm 3
2
when ¢ (w) = % |w||2. This can be verified by direct calculation (recalling that D, (x,y) = %)

Therefore, by Proposition 20, we have

S D?
th,At—u _7+Z*Hgt hy|?. &)
t=1

So, our primary task is to show that ||g, — h;|| is small. To this end, recall that g, = VF(w;) = VF(x;—1 + A;/2).

Now, we define h} ™! = VF (x¢—1 4+ 51 aj<p [Af — nh}']) (which simply continues the recursive definition of h! in
Algorithm 2 for one more step). Then, we claim that for all 0 < i < M, |h{™" —hi|| < & — hY||. We establish the
claim by induction on 4. First, for i = 0 the claim holds by definition. Now suppose ||h1 h; ' < 52 |hf — hf|| for
some 7. Then, we have

i 7 1 i 1 i—
i —hy| < HVF (Xt—l +5May<p [A] - Wht]> ~VF <Xt—1 +5Maj<p [A] —nh; 1}) H
Using the H-smoothness of F":

H i—
< 5 [Mjaj<n [A) = nhi] —Taj<p [A7 — by~ ]|

15
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Using the fact that projection is a contraction:

< 5 |
Using n < %:
1, . ‘
= 5 -
2
From the induction assumption:
1
< thi —h{|.

So that the claim holds.

Now, since h; = h¥, we have A, = Ia|<p [A] — nhi™']. Therefore g; = VF(x;) = VF(x¢—1 + A¢/2) = ho*t,
Thus,

2G

27Qa

where in the last inequality we used the fact that F' is G-Lipschitz. So, for Q = [log,(v/NG/HD)], we have ||g; —h?|| <

2GVHD
VNG

1
1
lg: — b|l = b — b7 < 5o lhi — by <

for all ¢. The result now follows by substituting into equation (3). O

D. Proof of Theorem 17

Proof of Theorem 17. Once more, the first part of the result is immediate from the fact that | A,,|| < D. So, we proceed to
show the second part.

Define V,, = f01VF(Xn,1 + sA,,) ds. Then, we have
||<Vn — 8n, An>H

1
= H</ VF(xp-1+sA,)—VF <xn1 + ;An> ds, An>H
0

1
<D ‘ / VF(x,-1+sA,)— VF <xn1 + ;An> ds
0

1
- D ‘ / (VF(xnl +sA,) — VF (xnl + ;An) _ViF (xnl + ;An> Anls — 1/2))
0

1
+V2F(xp 1 + 5An)An(s —1/2)ds

(observing that fols —1/2ds =0)

=D

! 1 1
/ VE(x,_1+8A,)—VEF(x,_ 1+ 5An) - V?F <xn_1 + 2An> A, (s—1/2)ds
0

(using second-order smoothness)
1 3
J JD
<D | Z|ALP(s —1/2)%ds < Z— .
<D [ SIAF - 12 < T

In Theorem 7, set u,, to be equal to u! for the first 7 iterations, u? for the second T iterations and so on. In other words,
u, = ul”TI+ forn =1,..., M. So, we have

M M
F(xar) = F(xo) = Rr(u',...,u™) + > (Vo — gn, Ap) + > (g, 1)
n=1 n=1
NID? X
1 K
< Rr(u,...,ut)+ 15 +";<gn,un>.
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k
Now, set uy, = _Dugﬁiﬁ%' Then, by Theorem 21, we have that R (uy,) < HQD? + ZLED  Therefore:
HD?K M.JD? K1 &
F(xn) < F(xo) + +26D + —— = DT | => VF(wf)
=117 =1
Hence, we obtain
" EK: % ET:VF(w’“) < Flxo) — Flxr)  HD | 2G| JD?
K&~ |T & e = MD o M 48

Note that from the choice of K and 7' we have M = KT > N — T > N/2. So, using D = §/T, we have can upper bound
the r.h.s. with
2M(Flx) = F*) | Hb 4G J¥
N6 2772 N 27?2

. . 2 1/3
and with T' = min ([%—‘ ,N/Q) :

1/3 _ 17%\2/3 _
< 3(H+ JO)3(F(xo) — F*) n 4G 2(F(xo) — F™) n 1O(S(H+ Jo) .
S1/3N2/3 N N§ N2
Now, the third fact follows by observing that Proposition 15 implies that

K K T

1 .k 1 1 & J§?

7 2 IVEGH < 23 |5 D VEwWD| + 5
k=1 k=1 t=1

Now, substituting the specified value of § completes the identity. Finally, the count of number of gradient evaluations is a
direct calculation. O

E. Proofs for Section 5

Proposition 14. Suppose that F' is H-smooth (that is, VF is H-Lipschitz) and x also satisfies |VF(x)|s < e. Then,
IVF(x)|| < e+ Hé.

Proof. Let S C B(x,0) withx = ﬁ >_yes Y- By H-smoothness, forally € S, [VF(y) - VF(x)|| < H|ly —x|| < H¢.
Therefore, we have

ﬁ SOVEy)| = (Ve + ﬁ SO (VF(y) - VF(x))
yeSs yEeS

> |[VEx)|| - H3 .
Now, since ||[VF(x)|s < ¢, for any p > 0, there is a set S such that Hl—é‘ > yes VF(y)H < e+ p. Thus, |[VF(x)|| <
€ + Ho + p for any p > 0, which implies |[VF(x)|| < e + HJ.

Proposition 15. Suppose that F is J-second-order-smooth (that is, | V2F(x) — V2F(y) |, < J||x — y| for all x and y).
Suppose also that x satisfies |V F(x)||s < €. Then, |VF(x)|| < e+ %62,

Proof. The proof is similar to that of Proposition 14. Let S C B(x,d) with x = ﬁ > yes Y- By J-second-order-
smoothness, for all y € S, we have

IVE(y) — VE(x) — VF)(y — %) = \ [ (7261t =) = P60y - x) dtH

o2 2
Iy —x|® _ J&*

1
< [ tJ|y—x|*dt = <
/0 2 2

17
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Further, since l—é‘ >_yes Y = X, we have ﬁ Y yes V2F(x)(y — x) = 0. Therefore, we have

LS VR | = ||[vEe + ﬁ SO (VF(y) - VF(x) — V2F(x)(y — x))

|S| yES yEeS
J§?
2 IVE) - —--
Now, since ||VF(x)||s < ¢, for any p > 0, there is a set S such that Hﬁ > yes VF(y)H < e+ p. Thus, |[VF(x)| <
€+ 242 + p for any p > 0, which implies | VF (x)|| < e + 262 O

F. Lower Bounds

Our lower bounds are constructed via a mild alteration to the arguments of Arjevani et al. (2019) for lower bounds on
finding (0, €)-stationary points of smooth functions with a stochastic gradient oracle. At a high level, we show that since a
d, e-stationary point of an H-smooth loss is also a (0, H§ + €)-stationary point, a lower bound on the complexity of the
latter implies a lower bound on the of complexity of the former. The lower bound of Arjevani et al. (2019) is proved by
constructing a distribution over “hard” functions such that no algorithm can quickly find a (0, €)-stationary point of a random
selected function. Unfortunately, these “hard” functions are not Lipschitz. Fortunately, they take the form F(x) + n||x||?
where F' is Lipschitz and smooth so that the “non-Lipschitz” part is solely contained in the quadratic term. We show that
one can replace the quadratic term ||x||? with a Lipschitz function that is quadratic for sufficiently small x but proportional
to ||x|| for larger values. Our proof consists of carefully reproducing the argument of Arjevani et al. (2019) to show that
this modification does not cause any problems. We emphasize that almost all of this development can be found with more
detail in Arjevani et al. (2019). We merely restate here the minimum results required to verify our modification to their
construction.

F.1. Definitions and Results from Arjevani et al. (2019)

A randomized first-order algorithm is a distribution Pg supported on a set S and a sequence of measurable mappings
Ai(s,g1,...,8i-1) — R4 withs € Sand g; € R Given a stochastic gradient oracle GRAD : R? x Z — R?, a
distribution Py supported on Z and an i.i.d. sample (z1,...,z,) ~ Pz, we define the iterates of A recursively by:

X1 = Al(S)
X; = Ai(S, GRAD(Xl, Zl), (}RAD(XQ7 Z2)7 ey (}RAD(XZ‘_l7 Zi—l)) .

So, x; is a function of s and zy, ..., z;_;. We define A4 to be the set of such sequences of mappings.

Now, in the notation of Arjevani et al. (2019), we define the “progress function”

prog.(x) = max{i : |x;| > c}.
Further, a stochastic gradient oracle GRAD can be called a probability-p zero-chain if prog,(GRAD(x, z)) = prog, /4 (x)+1
for all x with probability at least 1 — p, and prog,(GRAD(x, z)) < prog; ,,(x) + 1 with probability 1.

Next, let Fp : RT — R be the function defined by Lemma 2 of Arjevani et al. (2019). Restating their Lemma, this function
satisfies:

Lemma 22 (Lemma 2 of (Arjevani et al., 2019)). There exists a function Fr : RT — R satisfies that satisfies:
1. Fr(0) =0 and inf Fr(x) > =T for o = 12.
2. VFp(x) is Hy-Lipschitz, with Hy = 152.
3. Forallx, ||VFr(x)|eo < Go with Gy = 23

4. For all x, prog,(V Fr(x)) < prog, 5(VFr(x)) + L
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5. Ifprog,(x) < T, then ||V Fr(x)| > ‘VFT(X)prugl(x)-i-l' > 1.

We associate with this function Frr the stochastic gradient oracle Or(x, z) : RT x {0,1} — R? where z is Bernoulli(p):

VEr(x);, ifi# pr0g1/4(x)
GRAD7T(X,2); = 2V Fr(x): o
(x.2) { IVER:if i = prog, ()

It is clear that E,[Or(x,2z)] = VFr(x).

This construction is so far identical to that in Arjevani et al. (2019), and so we have by their Lemma 3:

Lemma 23 (Lemma 3 of Arjevani et al. (2019)). GRADr is a probability-p zero chain, has variance E[|| GRADT(x,z) —
VFr(x)|]?] < G3/p, and || GRADT(x, 2)|| < % + GoVT.

Proof. The probability p zero-chain and variance statements are directly from Arjevani et al. (2019). For the bound on
|IGRAD7||, observe that GRADy(x,z) = VFr(x) in all but one coordinate. In that one coordinate, GRADy(x, z) is at

most % = %. Thus, the bound follows by triangle inequality. O

Next, for any matrix U € R?*7 with orthonormal columns, we define Frr;; : R? — R by:
FT’U(X) = FT(UTX) .
The associated stochastic gradient oracle is:

GRAD7 7(x,2) = UGRAD(U 'x,2) .

Now, we restate Lemma 5 of Arjevani et al. (2019):
Lemma 24 (Lemma 5 of Arjevani et al. (2019)). Let R > 0 and suppose A € A,u,q is such that A produces iterates x;
with ||x¢|| < R. Letd > [18% log QP%Q—‘ Suppose U is chosen uniformly at random from the set of d x T matrices with

orthonormal columns. Let GRAD be an probability-p zero chain and let GRAD (x,z) = UGRAD(U ' x, z). Let X1,Xa, . . .
be the iterates of A when provided the stochastic gradient oracle GRADy;. Then with probability at least 1 — c (over the
randomness of U, the oracle, and also the seed s of A):

T —log(2/c)
—

P7081/4(UTXt) <T forallt < "

F.2. Defining the ‘“Hard” Instance

Now, we for the first time diverge from the construction of Arjevani et al. (2019) (albeit only slightly). Their construction
ll|

uses a “shrinking function” : R — R? given b x) = —=——=——as well as an additional quadratic term to
g PR.d given by pr.a(x) = —— s q
overcome the limitation of bounded iterates. We cannot tolerate the non-Lipschitz quadratic term, so we replace it with a
Lipschitz version gg 4(x) = X' pp.4(x). Intuitively, gz 4 behaves like [|x||? for small enough x, but behaves like ||x|| for
large ||x||. This pre-processed function is defined by:
Fru(x) = Pru(pra(x) + 148,70 (ppr(U " pra(x)))
= FPr(U" pra(x)) + napr(ppr(U" pra(x)))
= Fr(U" pr.a(x)) + ngp.a(X) -

To see the last line above, note that since g 4 and pp 4 are rotationally symmetric, and U has orthonormal columns, we
have U pr.a(x) = prr(U %) and g 7(U"x) = gp 4(x). Thus, we have qB?T(pE}T(UTpRyd(X))) = ¢B,q(x). The
stochastic gradient oracle associated with Fr 7 (x) is

GRADTVU(X, Z) = J[pR ]( )TUGRADT(UTpR d(X), Z)
= Jlpr.al(x) "UGRADL (U pR (%), 2)
+0J[pr.al(x) U gl (UT pra(x) " Vasr(0pr (U pra(x))) -

+nVgB,q(x)
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where J|f](x) indicates the Jacobian of the function f evaluated at (x).
A description of the relevant properties of ¢p is provided in Section F.3.

Next we produce a variant on Lemma 6 from Arjevani et al. (2019). This is the most delicate part of our alteration, although
the proof is still almost identical to that of Arjevani et al. (2019).

Lemma 25 (variant on Lemma 6 of (Arjevani et al., 2019)). Let R = B = 10Go\/T. Let n = 1/10 and ¢ € (0, 1) and
p € (0,1)and T € N. Setd = flS% log 2}%1 and let U be sampled uniformly from the set of d x T' matrices with

orthonormal columns. Define FT7U and GRAADUVT as above. Suppose A € A,uq and let x1,Xo, ... be the iterates of A
when provided with GRADy, T as input. Then with probability at least 1 — c:

7 T — log(2
IVEru(x:)|| > 1/2 forallt < # .
14

Proof. First, observe that GRAD is a probability p zero-chain. Next, ¢ is rotationally symmetric and pr(x) < X, we see
that Vgp(x)  x so that progO(J[pg}T}(X)TngyT(pl_%lT(x))) = prog,(x). Thus, the oracle

GRAD7(x,7z) = GRADT(X,2) + nJ[pE}T](X)TVqB,T(pE}T(x))

is a probability-p zero-chain. We define the rotated oracle:

GRADy 1 (y,z) = UGRAD7(U 'y, 2)
= UGRADL (U "y, 2) + nUJ[p5r /(U Ty) 'Vapr(ppr(UTy)) -

Following (Arjevani et al., 2019), we now define y; = pr(x;). Notice that:

GRADU,T (y, Z) = J[PR,d] (X)TGRADTyU(X, Z)

= Jlpr,d)(p5'4(¥))] T GRADT 1 (x,72) .

Therefore, we can view y1, ..., yr as the iterates of some different algorithm AY € A4 applied to the oracle GR~ADT7U
(since they are computed by measurable functions of the oracle outputs and previous iterates). However, since pg(||bz||) <

R, |lyill < R for all i. Thus, since GRAD7 is a probability-p zero-chain, by Lemma 24 we have that so long as

d> [18% log 2562], then with probability at least 1 — ¢, for all « < (T' — log(2/¢))/2p,

pr0g1/4(UTyZ-) <T.

Now, our goal is to show that ||V F'(x;)|| > 1/2. We consider two cases, either ||x;|| > R/2 or not.

First, observe that for x; with ||x;|| > R/2, we have:

IV Eru (xi)ll = 0l V(I = 1 [pr] (x:) [lopl VE (y3)l
T
> 3nB — Go\/f
Recalling B = R = 10Gov/T and 5 = 1/10:
=2GoVT
Recalling Gy = 23:

>1/2.
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Now, suppose ||x;|| < R/2. Then, let us set j = prog, (U "y;) + 1 < T (the inequality follows since prog, < prog; /4)-
Then, if v’ indicates the jth row of u, Lemma 22 implies:
[(u/,yi)| < 1,
(W, VP (yi))] = 1.

Next, by direct calculation we have J[pr|(x;) = Iﬁpj(lxﬁ‘pél(‘?;;/ﬁ = \j;fﬁyi‘él/%;

so that:

(0, VEpy(x:)) = (! J[pr)(x:) " VEru(y:)) + n(w/, Vap(x:))
(W, VFry(y:) (W,yi)(yi, VFru(y:))/R?

VPR VI xil?/ R

Now, by Proposition 29, we have Vgp(x;) = (2 — ”%lz) y; =. So, (with R = B):

+n(w, Vap(x:)) .

(o, VEry(xi)) = - B2

VI |xil?/ R VI |xil?/ R

Observing that ||y;| < ||z;]| < R/2 and |(u?,y;)| < 1:

. N 1 VF i
(W, VFry(x;))] > VP (yi)ll

—2
= Vit R 2R !

Using |(w/, VFry(y;))| > 1and |VF(y:)| < GoVT:

(W, VFru(y:) (w,yi){yi, VFru(yi))/ R +1 (2 - W) (0, y;)

2
Z*—GO\E—QU
V5 2R
With R = 10Go+/T and np = 1/10:
_2 11
V5 20 5
>1/2. O

With the settings of parameters specified in Lemma 25, we have:

Lemma 26 (variation on Lemma 7 in Arjevani et al. (2019)). With the settings of R, B, n in Lemma 25, the function FT,U
satisfies:

1. FT,U(O) - ianT,U(X) S ’}/0T = 12T

N

N Eru(x)|| < GoVT + 3nB < 92V/T for all x.

3. VEy(x) is Hy + 3 + 8n < 156-Lipschitz.

N

. |GRAD v (x,2)| < €2 + Gov/T + 30B < 2 + 92T with probability 1.

Gj<ﬁ

5. GRAD7 y has variance at most - >

Proof. 1. This property follows immediately from the fact that Frr(0) — inf Fr(x) < 7.
2. Since ppg is 1-Lipschitz for all R and ¢p is 3B-Lipschitz (see Proposition 29), FT7U(X) is Go/T + 3nB-Lipschitz.

3. By assumption, R > max (Ho, 1). Thus, by Arjevani et al. (2019, Lemma 16), VFr(pr(x)) is Ho + 3-Lipschitz and
so VFr y is Hy + 3 + 8n-Lipschitz by Proposition 29.
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4. Since ||Or|| < % + GoV/T, and J[pg)(x) " U has operator norm at most 1, the bound follows.

5. Just as in the previous part, since GRAD7 has variance GZ/p and J[pg](x) " U has operator norm at most 1, the bound
follows.

O

Now, we are finally in a position to prove:

Theorem 27. Given any v, H, €, and o such that 12'1}51% > 2, there exists a distribution over functions F' and stochastic
first-order oracles GRAD such that with probability 1, F' is H-smooth, F'(0) — inf F((x) < ~, F is 3y/H~-Lipschitz and
GRAD has variance o2, and for any algorithm in A g, with probability at least 1 — ¢, when provided a randomly selected

2
GRAD, A requires at least (71;14”

) iterations to output a point x with E[||[VF (x)||] < e

Proof. From Lemma 26 and Lemma 25, we have a distribution over functions F' and first-order oracles such that with
probability 1, F is Gov/T +3GovVT < 92v/T Lipschitz, F is Hy+3+47n < 156-smoooth, F(0) —inf F(x) < yT = 12T,
GRAD has variance at most G% /p= 232 /p, and with probability at least 1 — ¢,

T —log(2
IVF(x)|| >1/2 forallt < T = log(2/c) :

2p
Now, set A = 120 2¢, T = L%J and p = min((2 - 23 - €)2 /o2, 1). Then, define

2
Fy(x) = %F(x/)\) .

Then F is 22 &5 156 = H- smooth, F3 (0) — infy Fx(x) < 12-7- 22° < 4 and Fy is 92T 3 < 3\/H7- Lipschitz.
We can construct an oracle GRAD), from GRAD by:

GRAD)(x,2) = H—/\GRAD(x/)\,z) .

156
so that
H?2)? 232
2 _ 2
Further, since an oracle for F) can be constructed from the oracle for F, if we run A on F), with probability at least 1 — ¢,
HX T —log(2/c) _. H~o? _5 log(2/c)
IVEAG)I| = 756 I VE ()]l = € forallt < — <3107 == 51077 =5
Thus, there exists a constant K such that
H 2
E[|VF(x)|] > ¢ forallt < K= O

€

From this result, we have our main lower bound (the formal version of Theorem 18):
Theorem 28. Foranyd, ¢, y, G > 3 V\/%”, there is a distribution over G-Lipschitz C* functions F with F(0)—inf F'(x) < v

and stochastic gradient oracles GRAD with E[|GRAD(x,2z)||?] < G? such that for any algorithm A € Ay, if A is

provided as input a randomly selected oracle GRAD, A will require Q(G?v/¢e3) iterations to identify a point x with
E[IVF(x)[s] < e

Proof. From Theorem 27, for any H, €, 7, and o we have a distrubution over C* functions F and oracles GRAD such that
F is H-smooth, 3/H~-Lischitz and F(0) — inf F'(x) < ~ and GRAD has variance o2 such that A requires Q(H~o?/e'*)
iterations to output a point x such that E[||VF(x)||]] < €. Seto = G, H = ¢/¢ and €’ = 2¢. Then, we see that GRAD has

variance G2 /2, and F is 3/ H~y = 3\\/;? < G'/+/2-Lipschitz so that E[|| GRAD(x, z)||?] < G2. Further by Proposition!14,

if [VE(x)]|s < e then ||VF(x)|| < e+ H§ = 2e¢. Therefore, since A cannot output a point x with E[||VEF (x)]]] < € = 2¢
in less than Q(H~o?/e'*) iterations, we see that A also cannot output a point x with E[||VF(x)||s] < € in less than
Q(H~o? /) = Q(vG?/€36) iterations.
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F.3. Definition and Properties of ¢

Consider the function ¢p 4 : R¢ — R defined by

]2 _

VI+x|?/B?

qB,d(x) = x' ppa(x)

This function has the following properties, all of which follow from direct calculuation:

Proposition 29. qp 4 satisfies:

1.
2 2 2
Vanat) = e B S = (2 P et
2.
S B (21_ BT P T ) |
A= e B WP/B) B+ [XIP/BY) | B+ X[/
3.
J% < [Vas.a)l| < JH?)H% <38
4

IV2a5,a(x)llop <

8
- <8
V1+|x|2/B*
G. Proof of Theorem 13

First, we state and prove a theorem analogous to Theorem 8.

Theorem 30. Assume F : R? — R is well-behaved. In Algorithm 1, set s, to be a random variable sampled uniformly from

r oF(wh)
[0,1). SetT,K € Nand M = KT. Fori=1,...,d, setuf = —Dm%for some D, > 0. Finally, suppose
o,
Var(gn ;) < o? fori=1,...,d. Then, we have
K T d
1 1 F(xg) — F*  E[Rr(ul,...,u®)] Do 0
- — N VF(wF L =1 _* |
Elg 2 7 22 VEWI| | <=5 37 Do T
k=1 t=1 1

Proof. In Theorem 7, set u,, to be equal to u! for the first 7 iterations, u2 for the second 7 iterations and so on. In other
words, u,, = u™°4 1+ forp =1,... N.

From Theorem 7, we have

M

> (g, un)

n=1

E[F(xm)] = F(x0) + E[Rr(u',..., u")] + E
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N—

s, 2l

Now, since uy ; = — m%,
3

E[g.] = VF(w,,), and Var(g,, ;) < o? fori = 1,...,d, we have

o,

M
E gn7 un
n=1

Lk=1 \t=1
rOK 1 d
k

L k=1 t=1 1 i—1

Putting this all together, we have
1 X
F* <E[F(xy)] < F(x0) + E[Rp(ul, ..., uf)] + Dy K\FZUZ D TZE l =3 VF (wf) ] .
t=1 1

Dividing by KT'D, = Dy, M and reordering, we have the stated bound. O

We can now prove Theorem 13.

Proof of Theorem 13. Since A guarantees ||A,, || < Do, foralln < n’ < T +n — 1, we have

||Wn - Wn’”oo = ||Xn - (1 - Sn)An — Xp/—1+ Sn’An/Hoo

IN

oo

A + HAnHoo + HAn’Hoo
-1

)—(n+1)+1)+ 2Dy
—n+1)

n' —1
>
i=n-+1
((n’
(n’
T.

< Dy
Do
D

IN

Therefore, we clearly have |wWF — %" |0 < DooT = 4.

Note that from the choice of K and T' we have M = KT > N — T > N/2. Now, observe that Var(g, ;) < E[g2 ] < G7.
Thus, applying Theorem 30 in concert with the additional assumption E[Rr(u’, ..., u”)] < Do KT Zle G, we have

F(xo) —F* KD VTY! G, N S G

<2 + 2

o . Do N Do N VT
2T(F(xo) = F*) | 3 G
N SN VT
< o [ B G (Fxo) = F9)'* 65, Gi) |, 2(F(x0) = F*)
= Has (No)1/3 TUN SN

where the last inequality is due to the choice of T'.

Now to conclude, observe that |[wF — W*||c < ¢ for all ¢ and k, and also that W* = % Zt L wF. Therefore S =

{wh, ..., wh satisfies the conditions in the infimum in Definition 12 so that |V F(W")|, 5 < H T thl VE(wk H . g
1
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H. Directional Derivative Setting

In the main text, our algorithms make use of a stochastic gradient oracle. However, the prior work of (Zhang et al., 2020b)
instead considers a stochastic directional gradient oracle. This is a less common setup, and other works (e.g., (Davis et al.,
2021)) have also taken our route of tackling non-smooth optimization via an oracle that returns gradients at points of
differentiability.

Nevertheless, all our results extend easily to the exact setting of (Zhang et al., 2020b) in which F' is Lipschitz and directionally
differentiable and we have access to a stochastic directional gradient oracle rather than a stochastic gradient oracle. To
quantify this setting, we need a bit more notation which we copy directly from (Zhang et al., 2020b) below:

First, from (Clarke, 1990) and (Zhang et al., 2020b), the generalized directional derivative of a function F in a direction d is

FO(X,d) — limsup f(y + td) B f(y) ]
y—x tl0 t

4)

Further, the generalized gradient is the set

OF(x)={g: (g,d) < (F°(x,d),d) foralld} .

Finally, ' : R — R is Hadamard directionally differentiable in the direction v € R? if for any function ¢ : R, — R?
such that lim;_,q M = v and ¢¥(0) = x, the following limit exists:

i FO) — Fx)

t—0 t

If F' is Hadamard directionally differentiable, then the above limit is denoted F”(x, v). When F' is Hadamard directionally
differentiable for all x and v, then we say simply that F' is directionally differentiable.

With these definitions, a stochastic directional oracle for a Lipschitz, directionally differentiable, and bounded from below
function F' is an oracle GRAD(x, Vv, z) that outputs g € JF(x) such that (g, v) = F’(x,v). In this case, (Zhang et al.,
2020b) shows (Lemma 3) that F satisfies an alternative notion of well-behavedness:

1
Fly) = F(x) = [ (BIGRAD(x+ tly —x).y —x.2)L.y —x)dr. )

Next, we define:

Definition 31. A point x is a (0, €) stationary point of F for the generalized gradient if there is a set of points S contained
in the ball of radius § centered at x such that for'y selected uniformly at random from S, Ely] = x and for all y there is a
choice of gy, € OF (y) such that || E[gy]|| < e

Similarly, we have the definition:

Definition 32. Given a point x, and a number 6 > 0, define:

. 1
10F (x)]ls = inf 5] > ey

1 —
SCB(x,0),157 Xyes Y=X:8yEOF(y) yes

In fact, whenever a locally Lipschitz function F' is differentiable at a point x, we have that VF(x) € 0F(x), so that
|0F (x)||s < ||[VF(x)|ls. Thus our results in the main text also bound ||0F(x)||s. However, while a gradient oracle is also
directional derivative oracle, a directional derivative oracle is only guaranteed to be a gradient oracle if F' is continuously
differentiable at the queried point x. This technical issue means that when we have access to a directional derivative oracle
rather than a gradient oracle, we will instead only bound ||0F(x)||5 rather than |V F'(x)||s.

Despite this technical complication, our overall strategy is essentially identical. The key observation is that the only time at
which we used the properties of the gradient previously was when we invoked well-behavedness of /. When we have a
directional derivative instead of the gradient, the alternative notion of well-behavedness in (5) will play an identical role.
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Algorithm 4 Online-to-Non-Convex Conversion (directional derivative oracle version)
Input: Initial point xg, K € N, T' € N, online learning algorithm A, s,, for all n
Set M =K-T
forn=1...M do

Get A,, from A
Set Xp = Xp—1 + An
Setw, =xXp_1+ 8,4,
Sample random z,,
Generate directional derivative g,, = GRAD(wW,,, A,,, z,,)
Send g, to A as gradient
end for
Set wF =Wyt fork=1,... , Kandt=1,...,T
Set W = %Zlewf fork=1,...,K
Return {w',... WX}

Thus, our approach is simply to replace the call to GRAD(w,,, z,,) in Algorithm 1 with a call instead to GRAD(W,, A, Z,)
(see Algorithm 4). With this change, all of our analysis in the main text applies almost without modification. Essentially, we
only need to change notation in a few places to reflect the updated definitions.

To begin this notational update, the counterpart to Theorem 7 is:

Theorem 33. Suppose F' is Lipschitz and directionally differentiable. With the notation in Algorithm 4, if we let s, be

independent random variables uniformly distributed in [0, 1], then for any sequence of vectors uy, ..., uy, if we have the
equality:
M M
E[F(xam)] = F(x0) +E | Y {80, An —w) | +E [ (80, un>] :
n=1 n=1

Proof.

1
F(Xn) - F(Xn—l) = / <E[GRAD(X7’L—1 + 5(xn, - Xn—l)axn — Xn—1, Zn)]axn - Xn—1> ds
0

= E[(gn, Ay)]
= EKgm A, — ) + (8n, un>] .
Where in the second line we have used the definition g,, = GRAD(X,,—1 + $5(Xn — Xn—1),Xn — Xn_1, Zy ), the assumption

that s,, is uniform on [0, 1], and Fubini theorem (as GRAD is bounded by Lipschitzness of F'). Now, sum over n and
telescope to obtain the stated bound.

O

Next, we have the following analog of Theorem 8:
Theorem 34. With the notation in Algorithm 4, set s, to be a random variable sampled uniformly from [0,1]. Set T, K € N

k
and M = KT. Define Vf = E[g(k,l)T+t]. Define u* = —Dnggilgzn for some D > 0 fork = 1,..., K. Finally,
t=1 t

suppose Var(g,) = o Then:

35

k=1

1 SF(xo)fF*_»_]E[RT(UII,---,UK)]_|_L_
DM DM VT

el

T
2. Vi
t=1

Proof. The proof is essentially identical to that of Theorem 8. In Theorem 33, set u,, to be equal to u' for the first 7'
iterations, u? for the second T iterations and so on. In other words, u,, = ued(mT)+1 for p = 1,..., M. So, we have

M
Z<gnaun>‘| .

n=1

E[F (xa)] = F(x0) + E[Rr(u',...,u®)] + E
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|

Now, since u* = D”g’;ilvkn and Var(g, ) = o2, we have
t=1

E lz<gn>un>] <E Z

n=1

<Z Vf,uk> Z 8(k—1)T+t)
<E|Y, <Z Vf,uk>

ZV’“

K
D2
k=1

+ DaKNT

+ DoKVT.

Putting this all together, we have

K
F* <E[F(xum)] < F(xo) + E[Rr(u',...,u")]+ cDKVT - DT Y E

Dividing by K DT = DM and reordering, we have the stated bound. O

Finally, we instantiate Theorem 34 with online gradient descent to obtain the analog of Corollary 9. This result establishes
that the online-to-batch conversion finds an (4, €) critical point in O(1/€34) iterations, even when using a directional
derivative oracle. Further, our lower bound construction makes use of continuously differentiable functions, for which the
directional derivative oracle and the standard gradient oracle must coincide. Thus the O(1/e3§) complexity is optimal in
this setting as well.

Corollary 35. Suppose we have a budget of N gradient evaluations. Under the assumptions and notation of Theorem 34,
suppose in addition E[||g,||*] < G? and that A guarantees |A,,|| < D for some user-specified D for all n and ensures
the worst-case K -shifting regret bound E[Rr(u', ..., u)] < DGKVT for all |u*|| < D (e.g., as achieved by the OGD

algorithm that is reset every T iterations). Let 5 > 0 be an arbitrary number. Set D = § /T, T = min( ((%)2/3] A,

and K = | ]. wr
Moreover, we have the inequality
K T < <
1 1 5 2(F(xo) — F*) 5G*3(F(xo) — F*)Y/? 6G
_ il < N\ 7 T —
Kkgl T;Vt ] ~ 6N + max (N(S)l/'?’ ,\/N )
which implies
K
2UF _ F* 2/3 F — F* 1/3
Z”aF ||5 < ( (XO) ) + max 5G ( (XO) ) 7@ .
— SN (N§)L/3 VN

Proof. Since A guarantees | A, || < D, foralln <n’ <T +n — 1, we have

Wi = wWarll = [[%n — (1 = 80)Ap — Xnr—1 + S Ay |

’
n' —

Z Al + HAnH + ”An’H
1=n—+1
SD((n'—l)—(n—l—l)—i—l)-{-QD
=D(n —n+1)<DT.

IN

Therefore, we clearly have ||wF — W"*| < DT = 4.
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Note that from the choice of K and T'we have M = KT > N—T > N/2. So, for the second fact, notice that Var(g,,) < G?
for all . Thus, applying Theorem 34 in concert with the additional assumption E[Rz(u!,...,u”)] < DGK /T, we have:

K
1 1 k F(xo)— F* _KDGVT G
El=> [ Vi <2 +2 +—=
[K Pt T p DN DN VT
2 (F(x) = F*) | 3G
- ON vT
2/3 _ m*\1/3 _ F*
< max 5G*/3(F(xg) — F*) ’ 6G N 2(F(xo) — F )’
(N§)L/3 VN IN
where the last inequality is due to the choice of T'.
Finally, observe that |w¥ — W"|| < § for all ¢ and k, and also that W* = L "7 | wk. Therefore S = {w¥, ..., wk
satisfies the conditions in the infimum in Definition 32 so that [|0F(W")]||s < H T S, v H O
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