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Abstract

We present new algorithms for optimizing non-

smooth, non-convex stochastic objectives based

on a novel analysis technique. This improves the

current best-known complexity for finding a (δ, ǫ)-
stationary point from O(ǫ−4δ−1) stochastic gra-

dient queries to O(ǫ−3δ−1), which we also show

to be optimal. Our primary technique is a reduc-

tion from non-smooth non-convex optimization

to online learning, after which our results follow

from standard regret bounds in online learning.

For deterministic and second-order smooth objec-

tives, applying more advanced optimistic online

learning techniques enables a new complexity of

O(ǫ−1.5δ−0.5). Our improved non-smooth analy-

sis also immediately recovers all optimal or best-

known results for finding ǫ stationary points of

smooth or second-order smooth objectives in both

stochastic and deterministic settings.

1. Introduction

Algorithms for non-convex optimization are one of the most

important tools in modern machine learning, as training

neural networks requires optimizing a non-convex objective.

Given the abundance of data in many domains, the time to

train a neural network is the current bottleneck to having

bigger and more powerful machine learning models. Moti-

vated by this need, the past few years have seen an explosion

of research focused on understanding non-convex optimiza-

tion (Ghadimi & Lan, 2013; Carmon et al., 2017; Arjevani

et al., 2019; 2020; Carmon et al., 2019; Fang et al., 2018).

Despite significant progress, key issues remain unaddressed.

In this paper, we work to minimize a potentially non-convex
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objective F : Rd → R which we only accesss in some

stochastic or “noisy” manner. As motivation, consider

F (x) , Ez[f(x, z)], where x can represent the model

weights, z a minibatch of i.i.d. examples, and f the loss of

a model with parameters x on the minibatch z. In keeping

with standard empirical practice, we will restrict ourselves

to first order algorithms (gradient-based optimization).

The vast majority of prior analyses of non-convex optimiza-

tion algorithms impose various smoothness conditions on

the objective (Ghadimi & Lan, 2013; Carmon et al., 2017;

Allen-Zhu, 2018; Tripuraneni et al., 2018; Fang et al., 2018;

Zhou et al., 2018; Fang et al., 2019; Cutkosky & Orabona,

2019; Li & Orabona, 2019; Cutkosky & Mehta, 2020; Zhang

et al., 2020a; Karimireddy et al., 2020; Levy et al., 2021;

Faw et al., 2022; Liu et al., 2022). One motivation for

smoothness assumptions is that they allow for a convenient

surrogate for global minimization: rather than finding a

global minimum of a neural network’s loss surface (which

may be intractable), we can hope to find an ǫ-stationary

point, i.e., a point x such that ‖∇F (x)‖ ≤ ǫ. By now, the

fundamental limits on first order smooth non-convex opti-

mization are well understood: Stochastic Gradient Descent

(SGD) will find an ǫ-stationary point in O(ǫ−4) iterations,

which is the optimal rate (Arjevani et al., 2019). Moreover,

if F happens to be second-order smooth, SGD requires only

O(ǫ−3.5) iterations, which is also optimal (Fang et al., 2019;

Arjevani et al., 2020). These optimality results motivate the

popularity of SGD and its variants in practice (Kingma &

Ba, 2014; Loshchilov & Hutter, 2016; 2018; Goyal et al.,

2017; You et al., 2019).

Unfortunately, many standard neural network architectures

are non-smooth (e.g., architectures incorporating ReLUs or

max-pools cannot be smooth). As a result, these analyses

can only provide intuition about what might occur when an

algorithm is deployed in practice: the theorems themselves

do not apply (see Patel & Berahas (2022) for examples of

failure of SGD in non-smooth settings, or Li et al. (2021) for

futher discussion of assumptions). Despite the obvious need

for non-smooth analyses, recent results suggest that even

approaching a neighborhood of a stationary point may be

impossible for non-smooth objectives (Kornowski & Shamir,

2022b). Nevertheless, optimization clearly is possible in

practice, which suggests that we may need to rethink our
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assumptions and goals in order to understand non-smooth

optimization.

Fortunately, Zhang et al. (2020b) recently considered an

alternative definition of stationarity that is tractable even

for non-smooth objectives and which has attracted much

interest (Davis et al., 2021; Tian et al., 2022; Kornowski

& Shamir, 2022a; Tian & So, 2022; Jordan et al., 2022).

Roughly speaking, instead of ‖∇F (x)‖ ≤ ǫ, we ask that

there is a random variable y supported in a ball of radius

δ about x such that ‖E[∇F (y)]‖ ≤ ǫ. We call such an

x an (δ, ǫ)-stationary point, so that the previous definition

(‖∇F (x)‖ ≤ ǫ) is a (0, ǫ)-stationary point. The current

best-known complexity for identifying an (δ, ǫ) stationary

point is O(ǫ−4δ−1) stochastic gradient evaluations.

In this paper, we significantly improve this result: we

can identify an (δ, ǫ)-stationary point with only O(ǫ−3δ−1)
stochastic gradient evaluations. Moreover, we also show

that this rate is optimal. Our primary technique is a novel

online-to-non-convex conversion: a connection between

non-convex stochastic optimization and online learning,

which is a classical field of learning theory that already

has a deep literature (Cesa-Bianchi & Lugosi, 2006; Hazan,

2019; Orabona, 2019). In particular, we show that an on-

line learning algorithm that provides a shifting regret bound

can be used to decide the update step, when fed with lin-

ear losses constructed using the stochastic gradients of the

function F . By establishing this connection, we open new

avenues for algorithm design in non-convex optimization

and also motivate new research directions in online learning.

In sum, we make the following contributions:

• A reduction from non-convex non-smooth stochastic

optimization to online learning: better online learning

algorithms result in faster non-convex optimization.

Applying this reduction to standard online learning al-

gorithms allows us to identify an (δ, ǫ) stationary point

in O(ǫ−3δ−1) stochastic gradient evaluations. The pre-

vious best-known rate in this setting was O(ǫ−4δ−1).

• We show that the O(ǫ−3δ−1) rate is optimal for all δ, ǫ
such that ǫ ≤ O(δ).

Additionally, we prove important corollaries for smooth F :

• The O(ǫ−3δ−1) complexity implies the optimal

O(ǫ−4) and O(ǫ−3.5) respective complexities for find-

ing (0, ǫ)-stationary points of smooth or second-order

smooth objectives.

• For deterministic and second-order smooth objectives,

we obtain a rate of O(ǫ−3/2δ−1/2), which implies the

best-known O(ǫ−7/4) complexity for finding (0, ǫ)-
stationary points.

1.1. Related Work

In addition to the papers discussed in the introduction, here

we discuss further related work.

In this paper we build on top of the definition of (δ, ǫ)-
stationary points proposed by (Zhang et al., 2020b). There,

they prove a complexity rate of O(ǫ−4δ−1) for stochastic

Lipschitz functions, which we improve to O(ǫ−3δ−1) and

prove the optimality of this result.

The idea to reduce machine learning to online learning was

pioneered by Cesa-Bianchi et al. (2004) with the online-to-

batch conversion. There is also previous work exploring the

possibility of transforming non-convex problems into online

learning ones. Ghai et al. (2022) provides some conditions

under which online gradient descent on non-convex losses

is equivalent to a convex online mirror descent. Hazan et al.

(2017) defines a notion of regret which can be used to find

approximate stationary points of smooth objectives. Zhuang

et al. (2019) transform the problem of tuning of learning

rates in stochastic non-convex optimization into an online

learning problem. Our proposed approach differs from all

the ones above in applying to non-smooth objectives. More-

over, as discusses in the next section, we employ online

learning algorithms with shifting regret (Herbster & War-

muth, 1998) to generate the updates (i.e. the differences

between successive iterates), rather than the iterates them-

selves.

2. Definitions and Setup

Here, we formally introduce our setting and notation. We are

interested in optimizing real-valued functions F : H → R

where H is a real Hilbert space (e.g., usually H = Rd).

We assume F ⋆ , infx F (x) > −∞. We assume that F is

differentiable, but we do not assume that F is smooth. All

norms ‖ · ‖ are the Hilbert space norm (i.e., the 2-norm) un-

less otherwise specified. As mentioned in the introduction,

the motivating example to keep in mind in our development

is the case F (x) = Ez[f(x, z)].

Our algorithms access information about F through a

stochastic gradient oracle GRAD : H × Z → R. Given

a point x in H, the oracle will sample an i.i.d. random

variable z ∈ Z and return GRAD(x, z) ∈ H such that

E[GRAD(x, z)] = ∇F (x) and Var(GRAD(x, z)) ≤ σ2.

In the following, we only consider functions satisfying the

following mild regularity condition.

Definition 1. We define a differentiable function F : H →
R to be well-behaved if for all x,y ∈ H, it holds that

F (y)− F (x) =

∫ 1

0

〈∇F (x+ t(y − x)),y − x〉 dt .

If F happens to be differentiable and locally Lipschitz, then
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this assumption is simply the Fundamental Theorem of Cal-

culus. Under this assumption, our results can be applied

to improve the past results on non-smooth stochastic op-

timization. In fact, Proposition 2 (proof in Appendix A)

below shows that for the wide class of functions that are

locally Lipschitz (but possibly non-differentiable), applying

an arbitrarily small perturbation to the function is sufficient

to ensure both differentiability and well-behavedness. This

result works via standard perturbation arguments similar

to those used previously by Davis et al. (2021) (see also

Bertsekas (1973); Duchi et al. (2012); Flaxman et al. (2005)

for similar techniques in the convex setting). In practice

we suspect that such perturbation arguments are unneces-

sary: intuitively an algorithm is unlikely to query a point of

non-differentiability (see also Bianchi et al. (2022) for some

formal evidence for this idea).

Proposition 2. Let F : Rd → R be locally Lipschitz

with stochastic oracle GRAD such that Ez[GRAD(x, z)] =
∇F (x) whenever F is differentiable. We have two cases:

• If F is differentiable everywhere, then F is well-

behaved.

• If F is not differentiable everywhere, let p > 0 be

an arbitrary number and let u be a random vector

in Rd uniformly distributed on the unit ball. Define

F̂ (x) , Eu[F (x + pu)]. Then, F̂ is differentiable

and well-behaved, and the oracle ĜRAD(x, (z,u)) =
GRAD(x+pu, z) is a stochastic gradient oracle for F̂ .

Moreover, F is differentiable at x+pu with probability

1 and if F is G-Lipschitz, then |F̂ (x) − F (x)| ≤ pG
for all x.

Remark 3. We explicitly note that our results cover the

case in which F is directionally differentiable and we have

access to a stochastic directional gradient oracle, as consid-

ered by Zhang et al. (2020b). This is a less standard oracle

GRAD(x,v, z) that outputs g such that E[〈g,v〉] is the di-

rectional derivative of F in the direction v. This setting is

subtly different (although a directional derivative oracle is

a gradient oracle at all points for which F is continuously

differentiable). In order to keep technical complications to a

minimum, in the main text we consider the simpler stochastic

gradient oracle discussed above. In Appendix H, we show

that our results and techniques also apply using directional

gradient oracles with only superficial modification.

2.1. (δ, ǫ)-Stationary Points

Now, let us define our notion of (δ, ǫ)-stationary point. This

definition is essentially the same as used in Zhang et al.

(2020b); Davis et al. (2021); Tian et al. (2022). It is in fact

mildly more stringent since we restrict to distributions of

finite support and require an “unbiasedness” condition in

order to make eventual connections to second-order smooth

objectives easier.

Definition 4. A point x is an (δ, ǫ)-stationary point of an

almost-everywhere differentiable function F if there is a

finite subset S of the ball of radius δ centered at x such that

for y selected uniformly at random from S, E[y] = x and

‖E[∇F (z)]‖ ≤ ǫ.

As a counterpart to this definition, we also define:

Definition 5. Given a point x, a number δ > 0 and a

almost-everywhere differentiable function F , define

‖∇F (x)‖δ , inf
S⊂B(x,δ), 1

|S|

∑

y∈S y=x

∥

∥

∥

∥

∥

∥

1

|S|
∑

y∈S
∇F (y)

∥

∥

∥

∥

∥

∥

.

Let’s also state an immediate corollary of Proposition 2 that

converts a guarantee on a randomized smoothed function to

one on the original function. This result is also immediate

from Theorem 3.1 of Lin et al. (2022).

Corollary 6. Let F : Rd → R be G-Lipschitz. For ǫ > 0,

let p ≤ δ and let u be a random vector in Rd uniformly

distributed on the unit ball. Define F̂ (x) , Eu[F (x+ pu)].
If a point x satisfies ‖∇F̂ (x)‖δ ≤ ǫ, then ‖∇F (x)‖2δ ≤ ǫ.

Our ultimate goal is to use N stochastic gradient evalua-

tions of F to identify a point x with as small a value of

E[‖∇F (x)‖δ] as possible. For the rest of this paper we will

consider exclusively the case of well-behaved and differ-

entiable objectives F . We focus our development on this

conceptually simpler case in order to simplify the proofs

as much as possible, however due to Proposition 2 and

Corollary 6, our results will immediately extend from dif-

ferentiable F to those F that are locally Lipschitz and for

which GRAD(x, z) returns a unbiased estimate of ∇F (x)
whenever F is differentiable at x.

2.2. Online Learning

Here, we very briefly introduce the setting of online lin-

ear learning with shifting competitors, that will be the core

of our online-to-non-convex conversion. We refer the in-

terested reader to Cesa-Bianchi & Lugosi (2006); Hazan

(2019); Orabona (2019) for a comprehensive introduction to

online learning. In the online learning setting, the learning

process goes on in rounds. In each round the algorithm

outputs a point ∆t in a feasible set V , and then receives a

linear loss function ℓt(·) = 〈gt, ·〉 and it pays ℓt(∆t). The

goal of the algorithm is to minimize the static regret over

T rounds, defined as the difference between its cumulative

loss and the one of an arbitrary comparison vector u ∈ V :

RT (u) ,

T
∑

t=1

〈gt,∆t − u〉 .
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With no stochastic assumption, it is possible to design online

algorithms that guarantee that the regret is upper bounded

by O(
√
T ). In this work, we frequently make use of a more

challenging objective: minimizing the K-shifting regret.

This is the regret with respect to an arbitrary sequence of K
vectors u1, . . . ,uK ∈ V that changes every T iterations:

RT (u
1, . . . ,uK) ,

K
∑

k=1

kT
∑

n=(k−1)T+1

〈gn,∆n − uk〉 . (1)

It should be intuitive that resetting the online algorithm every

T iterations can achieve a shifting regret of O(K
√
T ).

3. Online-to-Non-Convex Conversion

In this section, we explain the online-to-non-convex con-

version. The core idea transforms the minimization of

a non-convex and non-smooth function onto the prob-

lem of minimizing the shifting regret over linear losses.

In particular, consider an optimization algorithm that up-

dates a previous iterate xn−1 by moving in a direction

∆n: xn = xn−1 + ∆n. For example, SGD sets ∆n =
−ηgn−1 = −η · GRAD(xn−1, zn−1) for a learning rate η.

Instead, we let an online learning algorithm A decide the

update direction ∆n, using linear losses ℓn(x) = 〈gn,x〉.
The motivation behind essentially all first order algorithms is

that F (xn−1+∆n)−F (xn−1) ≈ 〈gn,∆n〉. This suggests

that ∆n should be chosen to minimize the inner product

〈gn,∆n〉. However, we are faced with two difficulties. The

first difficulty is the the approximation error in the first-

order expansion. The second is the fact that ∆n needs to

be chosen before gn is revealed, so that ∆n needs in some

sense to “predict the future”. Typical analysis of algorithms

such as SGD use the remainder form of Taylor’s theorem

to address both difficulties simultaneously for smooth ob-

jectives, but in our non-smooth case this is not a valid ap-

proach. Instead, we tackle these difficulties independently.

We overcome the first difficulty using the same random-

ized scaling trick employed by Zhang et al. (2020b): define

gn to be a gradient evaluated not at xn−1 or xn−1 +∆n,

but at a random point along the line segment connecting

the two. Then for a well-behaved function we will have

F (xn−1 + ∆n) − F (xn−1) = E[〈gn,∆n〉]. The second

difficulty is where online learning shines: online learning

algorithms are specifically designed to predict completely

arbitrary sequences of vectors as accurately as possible.

The previous intuition is formalized in Algorithm 1 and the

following result, which we will elaborate on in Theorem 8

before yielding our main result in Corollary 9.

Theorem 7. Suppose F is well-behaved. Define ∇n =
∫ 1

0
∇F (xn−1 + s∆n) ds. Then, with the notation in Algo-

rithm 1 and for any sequence of vectors u1, . . . ,uN , we

Algorithm 1 Online-to-Non-Convex Conversion

Input: Initial point x0, K ∈ N, T ∈ N, online learning

algorithm A.

Set M = K · T
for n = 1 . . .M do

Get ∆n from A
Set xn = xn−1 +∆n

Generate sn ∈ [0, 1] // usually uniformly random, see

Theorem statements for precise settings.

Set wn = xn−1 + sn∆n

Sample random zn
Generate gradient gn = GRAD(wn, zn)
Send gn to A as gradient

end for

Set wk
t = w(k−1)T+t for k = 1, . . . ,K and t =

1, . . . , T
Set wk = 1

T

∑T
t=1 w

k
t for k = 1, . . . ,K

Return {w1, . . . ,wK}

have the equality:

F (xM ) = F (x0) +

M
∑

n=1

〈gn,∆n − un〉

+
M
∑

n=1

〈∇n − gn,∆n〉+
M
∑

n=1

〈gn,un〉 .

Moreover, if we let sn be independent random variables

uniformly distributed in [0, 1], then we have

E[F (xM )] = F (x0) + E

[

M
∑

n=1

〈gn,∆n − un〉
]

+ E

[

M
∑

n=1

〈gn,un〉
]

.

Proof. By the well-behaveness of F , we have

F (xn)− F (xn−1)

=

∫ 1

0

〈∇F (xn−1 + s(xn − xn−1)),xn − xn−1〉 ds

=

∫ 1

0

〈∇F (xn−1 + s∆n),∆n〉 ds

= 〈∇n,∆n〉
= 〈gn,∆n − un〉+ 〈∇n − gn,∆n〉+ 〈gn,un〉 .

Now, sum over n and telescope to obtain the stated bound.

For the second statement, simply observe that by definition

we have E[gn] =
∫ 1

0
∇F (xn−1 + s∆n) ds = ∇n.
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3.1. Guarantees for Non-Smooth Non-Convex Functions

The primary value of Theorem 7 is that the term
∑M
n=1〈gn,∆n−un〉 is exactly the regret of an online learn-

ing algorithm: lower regret clearly translates to a smaller

bound on F (xM ). Next, by carefully choosing un, we will

be able to relate the term
∑M
n=1〈gn,un〉 to the gradient

averages that appear in the definition of (δ, ǫ)-stationarity.

Formalizing these ideas, we have the following:

Theorem 8. Assume F is well-behaved. With the nota-

tion in Algorithm 1, set sn to be a random variable sam-

pled uniformly from [0, 1]. Set T,K ∈ N and M = KT .

Define uk = −D
∑T

t=1
∇F(wk

t )
‖∑T

t=1
∇F(wk

t )‖ for some D > 0 for

k = 1, . . . ,K. Finally, suppose Var(gn) ≤ σ2. Then:

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

]

≤ F (x0)− F ⋆

DM
+

E[RT (u
1, . . . ,uK)]

DM
+

σ√
T
.

Proof. From Theorem 7, we have

E[F (xM )] = F (x0) + E[RT (u
1, . . . ,uK)]

+ E

[

M
∑

n=1

〈gn,un〉
]

.

Now, since uk = −D
∑T

t=1
∇F (wk

t )

‖∑T
t=1

∇F (wk
t )‖ , E[gn] =

E[∇F (wn)], and Var(gn) ≤ σ2, we have

E

[

M
∑

n=1

〈gn,un〉
]

≤ E

[

K
∑

k=1

〈

T
∑

t=1

∇F (wk
t ),u

k

〉]

+ E

[

D

K
∑

k=1

∥

∥

∥

∥

∥

T
∑

t=1

(∇F (wk
t )− gT (k−1)+t)

∥

∥

∥

∥

∥

]

≤ E

[

K
∑

k=1

〈

T
∑

t=1

∇F (wk
t ),u

k

〉]

+DσK
√
T

= E

[

−
K
∑

k=1

DT

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F
(

wk
t

)

∥

∥

∥

∥

∥

]

+DσK
√
T .

Putting this all together, we have

F ⋆ ≤ E[F (xM )] ≤ F (x0) + E[RT (u
1, . . . ,uK)]

+ σDK
√
T −DT

K
∑

k=1

E

[∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F
(

wk
t

)

∥

∥

∥

∥

∥

]

.

Dividing by KDT = DM and reordering, we have the

stated bound.

We now instantiate Theorem 8 with the simplest online learn-

ing algorithm: online gradient descent (OGD) (Zinkevich,

2003). OGD takes input a radius D and a step size η and

makes the update ∆n+1 = Π‖∆‖≤D[∆n−ηgn] with ∆1 =
0. The standard analysis shows that if E[‖gn‖2] ≤ G2 for

all n, then with η = D
G
√
T

, OGD will ensure1 static regret

E[RT (u)] ≤ DG
√
T for any u satisfying ‖u‖ ≤ D. Thus,

by resetting the algorithm every T iterations, we achieve

E[RT (u
1, . . .uK)] ≤ KDG

√
T . This powerful guarantee

for all sequences is characteristic of online learning. We are

now free to optimize the remaining parameters K and D to

achieve our main result, presented in Corollary 9.

Corollary 9. Suppose we have a budget of N gradi-

ent evaluations. Under the assumptions of Theorem 8,

suppose in addition E[‖gn‖2] ≤ G2 and that A guar-

antees ‖∆n‖ ≤ D for some user-specified D for all

n and ensures the worst-case K-shifting regret bound

E[RT (u
1, . . . ,uK)] ≤ DGK

√
T for all ‖uk‖ ≤ D (e.g.,

as achieved by the OGD algorithm that is reset every T iter-

ations). Let δ > 0 be an arbitrary number. Set D = δ/T ,

T = min(⌈( GNδ
F (x0)−F⋆ )

2/3⌉, N2 ), and K = ⌊NT ⌋. Then, for

all k and t, we have ‖wk −wk
t ‖ ≤ δ.

Moreover, we have the inequality

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

]

≤ 2(F (x0)− F ⋆)

δN

+max

(

5G2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6G√
N

)

,

which implies

E

[

1

K

K
∑

t=1

‖∇F (wk)‖δ
]

≤ 2(F (x0)− F ⋆)

δN

+max

(

5G2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6G√
N

)

.

Before providing the proof, let us discuss the impli-

cations. Notice that if we select ŵ at random from

{w1, . . . ,wK}, then we clearly have E[‖∇F (ŵ)‖δ] =

E

[

1
K

∑K
t=1 ‖∇F (wk)‖δ

]

. Therefore, the Corollary asserts

that for a function F with F (x0) − inf F (x) ≤ γ with a

stochastic gradient oracle whose second moment is bounded

by G2, a properly instantiated Algorithm 1 finds a (δ, ǫ) sta-

tionary point in N = O(Gγǫ−3δ−1) gradient evaluations.

In Section 7, we will provide a lower bound showing that

this rate is optimal essentially whenever δG2 ≥ ǫγ. To-

gether, the Corollary and the lower bound provide a nearly

complete characterization of the complexity of finding (δ, ǫ)-
stationary points in the stochastic setting.

1For completeness a proof of this statement is in Appendix B.
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It is also interesting to note that the bound does not appear

to improve if the gradients are deterministic. Specifically,

in the assumptions for Corollary 9, we could try to relax

E[‖gt‖2] ≤ G to ‖∇F (wt)‖ ≤ G and Var(gt) ≤ σ2 for

some σ. We might then hope to improve the bound as

σ → 0 by taking advantage of the σ-dependency in The-

orem 8. However, it turns out that the σ-dependency in

Corollary 9 is dominated by a dependency on G coming

from the regret bound of OGD. This highlights an interest-

ing open question: is it actually possible to improve in the

deterministic setting? It is conceivable that the answer is

“no”: in the non-smooth convex optimization setting, it is

well-known that the optimal rates for stochastic and deter-

ministic optimization are the same (see, e.g., Bubeck (2015)

for proofs of both upper and lower bounds).

Remark 10. We conjecture that by employing martingale

concentration, the above can be extended to identify a

(δ,O(G
2/3(F (x0)−F⋆)1/3

(Nδ)1/3
))-stationary point with high prob-

ability, although we do not establish such a result here.

It is also interesting to explicitly write the update of the

overall algorithm:

xn = xn−1 +∆n

gn = GRAD(xn + (sn − 1)∆n, zn)

∆n+1 = clipD(∆n + ηgn)

where clipD(x) = xmin( D
‖x‖ , 1). In words, the update is

reminiscent of the SGD update with momentum and clip-

ping. The primary different element is the fact that the

stochastic gradient is taken on a slightly perturbed xn.

Proof of Corollary 9. Since A guarantees ‖∆n‖ ≤ D, for

all n < n′ ≤ n+ T − 1, we have

‖wn −wn′‖ = ‖xn − (1− sn)∆n − xn′−1 + sn′∆n′‖

≤

∥

∥

∥

∥

∥

∥

n′−1
∑

i=n+1

∆i

∥

∥

∥

∥

∥

∥

+ ‖∆n‖+ ‖∆n′‖

≤ D((n′ − 1)− (n+ 1) + 1) + 2D ≤ DT .

Therefore, we clearly have ‖wk
t −wk‖ ≤ DT = δ.

Note that from the choice of K and T we have M =
KT ≥ N − T ≥ N/2. So, for the second fact, notice

that Var(gn) ≤ E[‖gt‖2] ≤ G2 for all n. Thus, apply-

ing Theorem 8 in concert with the additional assumption

E[RT (u
1, . . . ,uK)] ≤ DGK

√
T , we have:

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

]

≤ 2
F (x0)− F ⋆

DN
+ 2

KDG
√
T

DN
+

G√
T

≤ 2T (F (x0)− F ⋆)

δN
+

3G√
T

≤ max

(

5G2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6G√
N

)

+
2(F (x0)− F ⋆)

δN
,

where the last inequality is due to the choice of T .

Finally, observe that ‖wk
t −wk‖ ≤ δ for all t and k, and also

that wk = 1
T

∑T
t=1 w

k
t . Therefore S = {wk

1 , . . . ,w
k
T }

satisfies the conditions in the infimum in Definition 5 so that

‖∇F (wk)‖δ ≤
∥

∥

∥

1
T

∑T
t=1 ∇F (wk

t )
∥

∥

∥.

4. Bounds for the L1 Norm

It is a well-known trick in the online learning literature

that running a separate instance of an online learning algo-

rithm on each coordinate of ∆ yields regret bounds with

respect to L1 norms of the linear costs (e.g., as in Ada-

Grad (Duchi et al., 2010; McMahan & Streeter, 2010)).

For example, we can run the online gradient descent al-

gorithm with a separate learning rate for each coordinate:

∆n+1,i = Π[−D∞,D∞][∆n,i − ηign,i]. The regret of this

procedure is simply the sum of the regrets of each of the

individual algorithms. In particular, if E[g2
n,i] ≤ G2

i , then

setting ηi = D∞

Gi

√
T

yields the regret bound E[RT (u)] ≤
D∞

√
T
∑N
i=1Gi for any u satisfying ‖u‖∞ ≤ D∞. By

employing such online algorithms with our online-to-non-

convex conversion, we can obtain a guarantee on the L1

norm of the gradients.

Definition 11. A point x is a (δ, ǫ)-stationary point with re-

spect to the L1 norm of an almost-everywhere differentiable

function F if there exists a finite subset S of the L∞ ball of

radius δ centered at x such that if y is selected uniformly at

random from S, E[y] = x and ‖E[∇F (y)]‖1 ≤ ǫ.

As a counterpart to this definition, we define:

Definition 12. Given a point x, a number δ > 0 and an

almost-everywhere differentiable function F , define

‖∇F (x)‖1,δ , inf
S⊂B∞(x,δ)|, 1

|S|

∑

y∈S y=x

∥

∥

∥

∥

∥

∥

1

|S|
∑

y∈S
∇F (y)

∥

∥

∥

∥

∥

∥

1

.

We now can state a theorem similar to Corollary 9. Given

that the proof is also very similar, we defer it to Appendix G.
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Theorem 13. Suppose we have a budget of N gradient

evaluations. Assume F : Rd → R is well-behaved. With

the notation in Algorithm 1, set sn to be a random variable

sampled uniformly from [0, 1]. Set T,K ∈ N and M =
KT . Assume that E[g2n,i] ≤ G2

i for i = 1, . . . , d for all

n. Assume that A guarantees ‖∆n‖∞ ≤ D∞ for some

user-specified D∞ for all n and ensures the K-shifting

regret bound E[RT (u
1, . . . ,uK)] ≤ D∞K

√
T
∑d
i=1Gi

for all ‖uk‖∞ ≤ D∞. Let δ > 0 be an arbitrary number.

Set D∞ = δ/T , T = min(⌈(Nδ
∑d

i=1
Gi

F (x0)−F⋆ )2/3⌉, N2 ), and

K = ⌊NT ⌋. Then we have:

1

K

K
∑

t=1

‖∇F (wk)‖1,δ ≤
2(F (x0)− F ⋆)

δN

+max

(

5(
∑d
i=1Gi)

2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6
∑d
i=1Gi√
N

)

.

Let’s compare this result with Corollary 9. For a fair com-

parison, we set Gi and G such that
∑d
i=1G

2
i = G2. Then,

we can lower bound ‖ · ‖δ with 1√
d
‖ · ‖1,δ . Hence, under the

assumption E[‖gn‖2] =
∑d
i=1 E[g

2
n,i] ≤

∑d
i=1G

2
i = G2,

Corollary 9 implies 1
K

∑K
t=1 ‖∇F (wk)‖1,δ ≤ O(G

2/3
√
d

(Nδ)1/3
).

Now, let us see what would happen if we instead employed

the above Corollary 13. First, observe that
∑d
i=1Gi ≤

√
d
√

∑d
i=1G

2
i ≤

√
dG. Substituting this expression into

Theorem 13 now gives an upper bound on ‖ · ‖1,δ that is

O(d
1/3G2/3

(Nδ)1/3
), which is better than the one we could obtain

from Corollary 9 under the same assumptions.

5. From Non-smooth to Smooth Guarantees

Let us now see what our results imply for smooth objectives.

The following two propositions show that for smooth F ,

a (δ, ǫ)-stationary point is automatically a (0, ǫ′)-stationary

point for some appropriate ǫ′. The proofs are in Appendix E.

Proposition 14. Suppose that F is H-smooth (that is, ∇F
is H-Lipschitz) and x also satisfies ‖∇F (x)‖δ ≤ ǫ. Then,

‖∇F (x)‖ ≤ ǫ+Hδ.

Proposition 15. Suppose that F is J-second-order-smooth

(that is, ‖∇2F (x)−∇2F (y)‖op ≤ J‖x−y‖ for all x and

y). Suppose also that x satisfies ‖∇F (x)‖δ ≤ ǫ. Then,

‖∇F (x)‖ ≤ ǫ+ J
2 δ

2.

Now, recall that Corollary 9 shows that we can find a (δ, ǫ)
stationary point in O(ǫ−3δ−1) iteration. Thus, Proposi-

tion 14 implies that by setting δ = ǫ/H , we can find a (0, ǫ)-
stationary point of an H-smooth objective F in O(ǫ−4) it-

erations, which matches the (optimal) guarantee of standard

SGD (Ghadimi & Lan, 2013; Arjevani et al., 2019). Further,

Proposition 15 shows that by setting δ =
√

ǫ/J , we can

find a (0, ǫ)-stationary point of a J-second order smooth

objective in O(ǫ−3.5) iterations. This matches the perfor-

mance of more refined SGD variants and is also known to

be tight (Fang et al., 2019; Cutkosky & Mehta, 2020; Arje-

vani et al., 2020). In summary: the online-to-non-convex

conversion also recovers the optimal results for smooth

stochastic losses.

6. Deterministic and Smooth Case

We will now consider the case of a non-stochastic oracle

(that is, GRAD(x, z) = ∇F (x) for all z, x) and F is H-

smooth (i.e. ∇F is H-Lipschitz). We will show that opti-

mistic online algorithms (Rakhlin & Sridharan, 2013; Hazan

& Kale, 2010) achieve rates matching the optimal determin-

istic results. In particular, we consider online algorithms

that ensure static regret:

RT (u) ≤ O



D

√

√

√

√

T
∑

t=1

‖ht − gt‖2


 , (2)

for some “hint” vectors ht. In Appendix B, we provide

an explicit construction of such an algorithm for complete-

ness. The standard setting for the hints is ht = gt−1. As

explained in Section 2.2, to obtain a K-shifting regret it will

be enough to reset the algorithm every T iterations.

Theorem 16. Suppose we have a budget of N gradient

evaluations. and that we have an online algorithm Astatic

that guarantees ‖∆n‖ ≤ D for all n and ensures the op-

timistic regret bound RT (u) ≤ CD
√

∑T
t=1 ‖gt − gt−1‖2

for some constant C, and we define g0 = 0. In Algo-

rithm 1, set A to be Astatic that is reset every T rounds.

Let δ > 0 be an arbitrary number. Set D = δ/T ,

T = min(⌈ (Cδ2
√
HN)2/5

(F (x0)−F⋆)2/5
⌉, N2 ), and K = ⌊NT ⌋. Finally,

suppose that F is H-smooth and that the gradient oracle is

deterministic (that is, gn = ∇F (wn)). Then we have:

[

1

K

K
∑

t=1

‖∇F (wk)‖δ
]

≤ 2CG1

N
+

2(F (x0)− F ⋆)

δN

+max

(

6
(CH)2/5(F (x0)− F ⋆)3/5

δ1/5N3/5
,
17Cδ

√
H

N3/2

)

.

Note that the expectation here encompasses only the ran-

domness in the choice of skt , because the gradient oracle

is assumed to be deterministic. Theorem 16 finds a (δ, ǫ)
stationary point in O(ǫ−5/3δ−1/3) iteratations. Thus, by

setting δ = ǫ/H , Proposition 14 shows we can find a (0, ǫ)
stationary point in O(ǫ−2) iterations, which matches the

standard optimal rate (Carmon et al., 2021).
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Proof. First, observe that for all k, t, ‖wk − wk
t ‖ ≤ δ.

This holds for precisely the same reason that it holds in

Corollary 9.

Next, observe that for k = 1 we have

RT (u
k) ≤ CD

√

√

√

√

T
∑

t=1

‖gkt − gkt−1‖2

≤ CD

√

√

√

√G2
1 +

T
∑

t=2

‖∇F (wk
t )−∇F (wk

t−1)‖2

≤ CD

√

√

√

√G2
1 +

T
∑

t=2

H2‖wk
t −wk

t−1‖2

≤ CD
√

G2
1 + 4H2TD2 ≤ CDG1 + 2CD2H

√
T .

Similarly, for k > 1, we observe that

T
∑

t=1

‖gkt − gkt−1‖2 ≤
T
∑

t=2

‖∇F (wk
t )−∇F (wk

t−1)‖2

+ ‖∇F (wk
1)−∇F (wk−1

T )‖2

≤ H2(‖wk
1 −wk−1

T ‖2 +
T
∑

t=2

‖wk
t −wk

t−1‖2)

≤ 4TH2D2 .

Thus, we have

RT (u
k) ≤ CD

√

√

√

√

T
∑

t=1

‖gkt − gkt−1‖2

≤ CD
√
4H2TD2

≤ 2CD2H
√
T .

Now, applying Theorem 8 in concert with the above bounds

on RT (u
k), we have

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

]

≤ 2(F (x0)− F ⋆)

DN
+

2CDG1 + 4CKD2
√
HT

DN

=
2T (F (x0)− F ⋆)

δN
+

2CG1

N
+

4Cδ
√
H

T 3/2

≤ max

(

6
(CH)2/5(F (x0)− F ⋆)3/5

δ1/5N3/5
,
17Cδ

√
H

N3/2

)

+
2CG1

N
+

2(F (x0)− F ⋆)

δN
.

Recalling that ‖wk
t −wk‖ ≤ δ, the conclusion follows.

Algorithm 2 Optimistic Mirror Descent with Careful Hints

Input: Learning rate η, numberQ (Q will beO(logN)),
function F , horizon T , radius D
Receive initial iterate x0

Set ∆′
1 = 0

for t = 1 . . . T do

Set h0
t = ∇F (xt−1)

for i = 1 . . . Q do

Set hit = ∇F
(

xt−1 +
1
2Π‖∆‖≤D

[

∆′
t − ηhi−1

t

])

end for

Set ht = h
Q
t

Output ∆t = Π‖∆‖≤D[∆
′
t − ηht]

Receive tth gradient gt
Set ∆′

t+1 = Π‖∆‖≤D[∆
′
t − ηgt]

end for

6.1. Better Results with Second-Order Smoothness

When F is J-second-order smooth (i.e., ∇2F is J-

Lipschitz) we can do even better. First, observe that by

Theorem 16, if F is J-second-order-smooth, then by Propo-

sition 15, the O(ǫ−5/3δ−1/3) iteration complexity of Theo-

rem 16 implies an O(ǫ−11/6) iteration complexity for find-

ing (0, ǫ) stationary points by setting δ =
√

ǫ/J . This

already improves upon the O(ǫ−2) result for smooth losses,

but we can improve still further. The key idea is to generate

more informative hints ht. If we can make ht ≈ gt, then by

(2), we can achieve smaller regret and so a better guarantee.

To do so, we abandon randomization: instead of choosing

sn randomly, we just set sn = 1/2. This setting still allows

F (xn) ≈ F (xn−1) + 〈gn,∆n〉 with very little error when

F is second-order-smooth. By inspecting the optimistic

mirror descent update formula, we can identify an ht with

‖ht − gt‖ ≤ O(1/
√
N) using O(log(N)) gradient queries.

This more advanced online learning algorithm is presented

in Algorithm 2 (full analysis in Appendix C).

Overall, Algorithm 2’s update has an “implicit” flavor:

∆n = Π‖∆‖≤D
[

∆n−1 −
gn

2H

]

,

gn = ∇F (xn−1 +∆n/2) .

With this refined online algorithm, we can show the follow-

ing convergence guarantee, whose proof is in Appendix D.

Theorem 17. In Algorithm 1, assume that gn = ∇F (wn),
and set sn = 1

2 . Use Algorithm 2 restarted every T
rounds as A. Let δ > 0 an arbitrary number. Set

T = min(⌈ (δ2(H+Jδ)N)1/3

(F (x0)−F⋆)1/3
⌉, N/2) and K = ⌊NT ⌋. In

Algorithm 2, set η = 1/2H , D = δ/T , and Q =
⌈log2(

√

NG/HD)⌉. Finally, suppose that F is J-second-

order-smooth. Then, the following facts hold:

8



Optimal, Stochastic, Non-smooth, Non-convex Optimization through Online-to-Non-convex Conversion

1. For all k, t, ‖wk −wk
t ‖ ≤ δ.

2. We have the inequality

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

≤ 4G

N
+

2(F (x0)− F ⋆)

Nδ

+ 3
(H + Jδ)1/3(F (x0)− F ⋆)2/3

δ1/3N2/3
+ 10

δ(H + Jδ)

N2
.

3. With δ = H1/7(F (x0)−F (xN ))2/7

J3/7N2/7 , we have

1

K

K
∑

t=1

‖∇F (wk)‖ ≤ O
(

J1/7H2/7(F (x0)−F⋆)4/7

N4/7

)

.

Moreover, the total number of gradient queries con-

sumed is NQ = O(N log(N))

This result finds a (δ, ǫ) stationary point in Õ(ǫ−3/2δ−1/2)
iterations. Via Proposition 15, this translates to Õ(ǫ−7/4)
iterations for finding a (0, ǫ) stationary point, matching the

best known rate (up to a logarithmic factor) (Carmon et al.,

2017). Note that this may not be optimal: the best lower

bound is Ω(ǫ−12/7) (Carmon et al., 2021). Intriguingly,

our technique seems distinct from previous work, which

usually relies on acceleration and detecting or exploiting

negative curvature (Carmon et al., 2017; Agarwal et al.,

2016; Carmon et al., 2018; Li & Lin, 2022).

7. Lower Bounds

In this section, we show that our O(ǫ−3δ−1) complexity

achieved in Corollary 9 is tight. We do this by a simple

extension of the lower bound for stochastic smooth non-

convex optimization of Arjevani et al. (2019). We provide

an informal statement and proof-sketch below. The formal

result (Theorem 28) and proof is provided in Appendix F.

Theorem 18 (informal). There is a universal constant C

such that for any δ, ǫ, γ and G ≥ C
√
ǫγ√
δ

, for any first-

order algorithm A, there is a G-Lipschitz, C∞ function

F : Rd → R for some d with F (0)− infx F (x) ≤ γ and a

stochastic first-order gradient oracle for F whose outputs

g satisfy E[‖g‖2] ≤ G2 such that such that A requires

Ω(G2γ/δǫ3) stochastic oracle queries to identify a point x

with E[‖∇F (x)‖δ] ≤ ǫ.

Proof sketch. The construction of Arjevani et al. (2019) pro-

vides, for any σ a function F and stochastic oracle whose

outputs have norm at most σ such that F is H-smooth,

O(
√
Hγ)-Lipschitz and A requires Ω(σ2Hγ/ǫ4) oracle

queries to find a point x with ‖∇F (x)‖ ≤ 2ǫ. By set-

ting H = ǫ
δ and σ = G/

√
2, this becomes an

√

ǫγ/δ-

Lipschitz function, and so is at most G/
√
2-Lipschitz.

Thus, the second moment of the gradient oracle is at most

G2/2 + G2/2 = G2. Further, the algorithm requires

Ω(G2γ/δǫ3) queries to find a point x with ‖∇F (x)‖ ≤ 2ǫ.
Now, if ‖∇F (x)‖δ ≤ ǫ, then since F is H = ǫ

δ -smooth,

by Proposition 14, ‖∇F (x)‖ ≤ ǫ + δH = 2ǫ. Thus, we

see that we need Ω(G2γ/δǫ3) queries to find a point with

‖∇F (x)‖δ ≤ ǫ as desired.

8. Conclusion

We have presented a new online-to-non-convex conversion

technique that applies online learning algorithms to non-

convex and non-smooth stochastic optimization. When

used with online gradient descent, this achieves the opti-

mal ǫ−3δ−1 complexity for finding (δ, ǫ) stationary points.

These results suggest new directions for work in online

learning. Much past work is motivated by the online-to-

batch conversion relating static regret to convex optimiza-

tion. We employ switching regret for non-convex optimiza-

tion. More refined analysis may be possible via generaliza-

tions such as strongly adaptive or dynamic regret (Daniely

et al., 2015; Jun et al., 2017; Zhang et al., 2018; Jacobsen

& Cutkosky, 2022; Cutkosky, 2020; Lu et al., 2022; Luo

et al., 2022; Zhang et al., 2021; Baby & Wang, 2022; Zhang

et al., 2022). Moreover, our analysis assumes perfect tun-

ing of constants (e.g., D,T,K) for simplicity. In practice,

we would prefer to adapt to unknown parameters, moti-

vating new applications and problems for adaptive online

learning, which is already an area of active current investi-

gation (see, e.g., Orabona & Pál, 2015; Hoeven et al., 2018;

Cutkosky & Orabona, 2018; Cutkosky, 2019; Mhammedi &

Koolen, 2020; Chen et al., 2021; Sachs et al., 2022; Zhang

& Cutkosky, 2022; Wang et al., 2022). We hope that this

expertise can be applied in the non-convex setting as well.

Finally, our results leave an important question unanswered:

the current best-known algorithm for deterministic non-

smooth optimization still requires O(ǫ−3δ−1) iterations to

find a (δ, ǫ)-stationary point (Zhang et al., 2020b). We

achieve this same result even in the stochastic case. Thus

it is natural to wonder if the deterministic rate is tight. For

example, is the O(ǫ−3/2δ−1/2) complexity we achieve in

the smooth setting also achievable in the non-smooth set-

ting? Intriguingly, prior work (Kornowski & Shamir, 2022a;

Jordan et al., 2022) shows that randomization is necessary,

even if the gradient oracle itself is deterministic.
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A. Proof of Proposition 2

First, we state a technical lemma that will be used to prove Proposition 2.

Lemma 19. Let F : Rd → R be locally Lipschitz. Then, F is differentiable almost everywhere, is Lipschitz on all compact

sets, and for all v ∈ Rd, x 7→ 〈∇F (x),v〉 is integrable on all compact sets. Finally, for any compact measurable set

D ⊂ Rd, the vector w =
∫

D
∇F (x) dx is well-defined and the operator ρ(v) =

∫

D
〈∇F (x),v〉 dx is linear and equal to

〈w,v〉.

Proof. First, observe that since F is locally Lipschitz, for every point x ∈ Rd with rational coordinates there is a

neighborhood Ux of x on which F is Lipschitz. Thus, by Rademacher’s theorem, F is differentiable almost everywhere

in Ux. Since the set of points with rational coordiantes is dense in Rd, Rd is equal to the countable union
⋃

Ux. Thus,

since the set of points of non-differentiability of F in Ux is measure zero, the total set of points of non-differentability is a

countable union of sets of measure zero and so must be measure zero. Thus F is differentiable almost everywhere. This

implies that F is differentiable at x+ pu with probability 1.

Next, observe that for any compact set S ⊂ Rd, for every point x ∈ S with rational coordinates, F is Lipschitz on some

neighborhood Ux containing x with Lipschitz constant Gx. Since S is compact, there is a finite set x1, . . . ,xK such that

S =
⋃

Uxi . Therefore, F is maxiGxi -Lipschitz on S and so F is Lipschitz on every compact set.

Now, for almost all x, for all v we have that the limit limδ→0
F (x+δv)−F (x)

δ exists and is equal to 〈∇F (x),v〉 by definition

of differentiability. Further, on any compact set S we have that
|F (x+δv)−F (x)|

δ ≤ L for some L for all x ∈ S. Therefore, by

the bounded convergence theorem (see e.g., Stein & Shakarchi (2009, Theorem 1.4)), we have that 〈∇F (x),v〉 is integrable

on S.

Next, we prove the linearity of the operator ρ. Observe that for any vectors v and w, and scalar c, by linearity of integration,

we have
∫

D

〈∇F (x), cv +w〉 dx =

∫

D

〈∇F (x), cv〉+ 〈∇F (x),w〉 dx

=

∫

D

c〈∇F (x),v〉+ 〈∇F (x),w〉 dx

= c

∫

D

〈∇F (x),v〉 dx+

∫

D

〈∇F (x),w〉 dx .

For the remaining statement, given that Rd is finite dimensional, there must exist w ∈ Rd such that ρ(v) = 〈w,v〉 for all v.

Further, w is uniquely determined by 〈w, ei〉 for i = 1, . . . , d where ei indicates the ith standard basis vector. Then, since

∇F (x)i = 〈∇F (x), ei〉 is integrable on compact sets, we have

〈w, ei〉 =
∫

D

〈∇F (x), ei〉 dx =

∫

D

∇F (x)i dx,

which is the definition of
∫

D
∇F (x) dx when the integral is defined.

We can now prove the Proposition.

Proof of Proposition 2. Since F is locally Lipschitz, by Proposition 19, F is Lipschitz on compact sets. Therefore, F must

be Lipschitz on the line segment connecting x and y. Thus the function k(t) = F (x+ t(y−x)) is absolutely continuous on

[0, 1]. As a result, k′ is integrable on [0, 1] and F (y)−F (x) = k(1)−k(0) =
∫ 1

0
k′(t) dt =

∫ 1

0
〈∇F (x+t(y−x)),y−x〉 dt

by the Fundamental Theorem of Calculus (see, e.g., Stein & Shakarchi (2009, Theorem 3.11)).

Now, we tackle the case that F is not differentiable everywhere. Notice that the last statement of the Proposition is an

immediate consequence of Lipschitzness. So, we focus on showing the remaining parts.

Now, by Lemma 19, we have that F is differentiable almost everywhere. Further, gx = Eu[∇F (x+pu)] exists and satisfies

for all v ∈ Rd:

〈gx,v〉 = E
u
[〈∇F (x+ pu),v〉] .
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Notice also that

E
z,u

[ ˆGRAD(x, (z,u))] = E
u
E
z
[GRAD(x+ pu, z)] = E

u
[∇F (x+ pu)] = gx .

So, it remains to show that F̂ is differentiable and ∇F̂ (x) = gx.

Now, let x be an arbitrary elements of Rd and let v1,v2, . . . be any sequence of vectors such that limn→∞ vn = 0 and

‖vi‖ ≤ p for all i. Then, since the ball of radius 2p centered at x is compact, F is L-Lipschitz inside this ball for some L.

Then, we have

lim
n→∞

F̂ (x+ vn)− F̂ (x)− 〈gx,vn〉
‖vn‖

= lim
n→∞E

u

[

F (x+ vn + pu)− F (x+ pu)− 〈∇F (x+ pu),vn〉
‖vn‖

]

.

Now, observe
|F (x+vi+pu)−F (x+pu)|

‖vi‖ ≤ L. Further, for all almost all u, F is differentiable at x + pu so that

limn→∞
F (x+vn+pu)−F (x+pu)−〈∇F (x+pu),vn〉]

‖vn‖ = 0 for almost all u. Thus, by the bounded convergence theorem, we have

lim
n→∞

F̂ (x+ vn)− F̂ (x)− 〈gx,vn〉
‖vn‖

= 0 .

which shows that gx = ∇F̂ (x).
Finally, observe that since F is Lipschitz on compact sets, F̂ must be also, and so by the first part of the proposition, F̂ is

well-behaved.

B. Analysis of (Optimistic) Online Gradient Descent

Optimistic Online Gradient Descent (in its simplest form) is described by Algorithm 3. Here we collect the standard analysis

of the algorithm for completeness. None of this analysis is new, and more refined versions can be found in a variety of

sources (e.g. (Chen et al., 2021)).

Algorithm 3 Optimistic Mirror Descent

Input: Regularizer function φ, domain V , time horizon T .

ŵ1 = 0

for t = 1 . . . T do

Generate “hint” ht
Set wt = argminx∈V 〈ht,x〉+ 1

2‖x− ŵt‖2
Output wt and receive loss vector gt
Set ŵt+1 = argminx∈V 〈gt,x〉+ 1

2‖x− ŵt‖2
end for

We will analyze only a simple version of this algorithm, that is when V is an L2 ball of radius D in some real Hilbert space

(such as Rd). Then, Algorithm 3 satisfies the following guarantee.

Proposition 20. Let V = {x : ‖x‖ ≤ D} ⊂ H for some real Hilbert space H. Then, with for all u ∈ V , Algorithm 3

ensures

T
∑

t=1

〈gt,wt − u〉 ≤ D2

2η
+

T
∑

t=1

η

2
‖gt − ht‖2 .

Proof. Now, by Chen et al. (2021, Lemma 15) instantiated with the squared Euclidean distance as Bregman divergence, we

have

〈gt,wt − u〉 ≤ 〈gt − ht,wt − ŵt+1〉+
1

2
‖u− ŵt‖2 −

1

2
‖u− ŵt+1‖2 −

1

2
‖ŵt+1 −wt‖2 −

1

2
‖wt − ŵt‖2
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From Young inequality:

≤ η‖gt − ht‖2
2

+
‖wt − ŵt+1‖2

2η
+

1

2
‖u− ŵt‖2 −

1

2
‖u− ŵt+1‖2 −

1

2
‖ŵt+1 −wt‖2

− ‖wt − ŵt‖2
2η

≤ η‖gt − ht‖2
2

+
1

2
‖u− ŵt‖2 −

1

2
‖u− ŵt+1‖2 .

Summing over t and telescoping, we have

T
∑

t=1

〈gt,wt − u〉 ≤ 1

2
‖u− ŵ1‖2 −

1

2
‖u− ŵT+1‖2 +

T
∑

t=1

η‖gt − ht‖2
2

≤ ‖u− ŵ1‖2
2η

+

T
∑

t=1

η‖gt − ht‖2
2

≤ D2

2η
+

T
∑

t=1

η‖gt − ht‖2
2

.

In the case that the hints ht are not present, the algorithm becomes online gradient descent (Zinkevich, 2003). In this case,

assuming E[‖gt‖2] ≤ G2 and setting η = D
G
√
T

we obtain the E[RT (u)] ≤ DG
√
T for all u such that ‖u‖ ≤ D.

C. Algorithm 2 and Regret Guarantee

Theorem 21. Let F be an H-smooth and G-Lipschitz function. Then, when Q = ⌈log2(
√

NG/HD)⌉, Algorithm 2 with

xt = xt−1 +
1
2∆t and gt = ∇F (xt) and η ≤ 1

2H ensures for all ‖u‖ ≤ D

T
∑

t=1

〈gt,∆t − u〉 ≤ HD2

2
+

2GTD

N
.

Furthermore, a total of at most T ⌈log2(
√

NG/HD)⌉ gradient evaluations are required.

Proof. The count of gradient evaluations is immediate from inspection of the algorithm, so it remains only to prove the

regret bound.

First, we observe that the choices of ∆t specified by Algorithm 2 correspond to the values of wt produced by Algorithm 3

when ψ(w) = 1
2η‖w‖2. This can be verified by direct calculation (recalling that Dψ(x,y) =

‖x−y‖2

2η ).

Therefore, by Proposition 20, we have

T
∑

t=1

〈gt,∆t − u〉 ≤ D2

2η
+

T
∑

t=1

η

2
‖gt − ht‖2 . (3)

So, our primary task is to show that ‖gt − ht‖ is small. To this end, recall that gt = ∇F (wt) = ∇F (xt−1 +∆t/2).

Now, we define hM+1
t = ∇F

(

xt−1 +
1
2Π‖∆‖≤D

[

∆′
t − ηhMt

])

(which simply continues the recursive definition of hit in

Algorithm 2 for one more step). Then, we claim that for all 0 ≤ i ≤ M , ‖hi+1
t − hit‖ ≤ 1

2i ‖h1
t − h0

t‖. We establish the

claim by induction on i. First, for i = 0 the claim holds by definition. Now suppose ‖hit − hi−1
t ‖ ≤ 1

2i−1 ‖h1
t − h0

t‖ for

some i. Then, we have

‖hi+1
t − hit‖ ≤

∥

∥

∥

∥

∇F
(

xt−1 +
1

2
Π‖∆‖≤D

[

∆′
t − ηhit

]

)

−∇F
(

xt−1 +
1

2
Π‖∆‖≤D

[

∆′
t − ηhi−1

t

]

)∥

∥

∥

∥

Using the H-smoothness of F :

≤ H

2

∥

∥Π‖∆‖≤D
[

∆′
t − ηhit

]

−Π‖∆‖≤D
[

∆′
t − ηhi−1

t

]∥

∥
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Using the fact that projection is a contraction:

≤ Hη

2

∥

∥hit − hi−1
t

∥

∥

Using η ≤ 1
H :

=
1

2

∥

∥hit − hi−1
t

∥

∥

From the induction assumption:

≤ 1

2i
‖h1

t − h0
t‖ .

So that the claim holds.

Now, since ht = h
Q
t , we have ∆t = Π‖∆‖≤D

[

∆′
t − ηhi−1

t

]

. Therefore gt = ∇F (xt) = ∇F (xt−1 +∆t/2) = h
Q+1
t .

Thus,

‖gt − h
Q
t ‖ = ‖hQ+1

t − h
Q
t ‖ ≤ 1

2Q
‖h1

t − h0
t‖ ≤ 2G

2Q
,

where in the last inequality we used the fact that F is G-Lipschitz. So, for Q = ⌈log2(
√

NG/HD)⌉, we have ‖gt−h
Q
t ‖ ≤

2G
√
HD√
NG

for all t. The result now follows by substituting into equation (3).

D. Proof of Theorem 17

Proof of Theorem 17. Once more, the first part of the result is immediate from the fact that ‖∆n‖ ≤ D. So, we proceed to

show the second part.

Define ∇n =
∫ 1

0
∇F (xn−1 + s∆n) ds. Then, we have

‖〈∇n − gn,∆n〉‖

=

∥

∥

∥

∥

〈∫ 1

0

∇F (xn−1 + s∆n)−∇F
(

xn−1 +
1

2
∆n

)

ds, ∆n

〉∥

∥

∥

∥

≤ D

∥

∥

∥

∥

∫ 1

0

∇F (xn−1 + s∆n)−∇F
(

xn−1 +
1

2
∆n

)

ds

∥

∥

∥

∥

= D

∥

∥

∥

∥

∫ 1

0

(

∇F (xn−1 + s∆n)−∇F
(

xn−1 +
1

2
∆n

)

−∇2F

(

xn−1 +
1

2
∆n

)

∆n(s− 1/2)

)

+∇2F (xn−1 +
1

2
∆n)∆n(s− 1/2) ds

∥

∥

∥

∥

(observing that
∫ 1

0
s− 1/2 ds = 0)

= D

∥

∥

∥

∥

∫ 1

0

∇F (xn−1 + s∆n)−∇F (xn−1 +
1

2
∆n)−∇2F

(

xn−1 +
1

2
∆n

)

∆n(s− 1/2) ds

∥

∥

∥

∥

(using second-order smoothness)

≤ D

∫ 1

0

J

2
‖∆n‖2(s− 1/2)2 ds ≤ JD3

48
.

In Theorem 7, set un to be equal to u1 for the first T iterations, u2 for the second T iterations and so on. In other words,

un = u⌊n/T⌋+1 for n = 1, . . . ,M . So, we have

F (xM )− F (x0) = RT (u
1, . . . ,uK) +

M
∑

n=1

〈∇n − gn,∆n〉+
M
∑

n=1

〈gn,un〉

≤ RT (u
1, . . . ,uK) +

NJD3

48
+

M
∑

n=1

〈gn,un〉 .
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Now, set uk = −D
∑T

t=1
∇F (wk

t )

‖
∑T

t=1
∇F (wk

t )‖
. Then, by Theorem 21, we have that RT (uk) ≤ HD2

2 + 2TGD
N . Therefore:

F (xM ) ≤ F (x0) +
HD2K

2
+ 2GD +

MJD3

48
−DT

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

.

Hence, we obtain

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

≤ F (x0)− F (xM )

MD
+
HD

2T
+

2G

M
+
JD2

48
.

Note that from the choice of K and T we have M = KT ≥ N − T ≥ N/2. So, using D = δ/T , we have can upper bound

the r.h.s. with

2T (F (x0)− F ⋆)

Nδ
+
Hδ

2T 2
+

4G

N
+
Jδ2

2T 2

and with T = min
(⌈

(δ2(H+Jδ)N)1/3

(F (x0)−F⋆)1/3

⌉

, N/2
)

:

≤ 3
(H + Jδ)1/3(F (x0)− F ⋆)2/3

δ1/3N2/3
+

4G

N
+

2(F (x0)− F ⋆)

Nδ
+ 10

δ(H + Jδ)

N2
.

Now, the third fact follows by observing that Proposition 15 implies that

1

K

K
∑

k=1

∥

∥∇F (wk)
∥

∥ ≤ 1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

+
Jδ2

2
.

Now, substituting the specified value of δ completes the identity. Finally, the count of number of gradient evaluations is a

direct calculation.

E. Proofs for Section 5

Proposition 14. Suppose that F is H-smooth (that is, ∇F is H-Lipschitz) and x also satisfies ‖∇F (x)‖δ ≤ ǫ. Then,

‖∇F (x)‖ ≤ ǫ+Hδ.

Proof. Let S ⊂ B(x, δ) with x = 1
|S|
∑

y∈S y. By H-smoothness, for all y ∈ S, ‖∇F (y)−∇F (x)‖ ≤ H‖y−x‖ ≤ Hδ.

Therefore, we have
∥

∥

∥

∥

∥

∥

1

|S|
∑

y∈S
∇F (y)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∇F (x) + 1

|S|
∑

y∈S
(∇F (y)−∇F (x))

∥

∥

∥

∥

∥

∥

≥ ‖∇F (x)‖ −Hδ .

Now, since ‖∇F (x)‖δ ≤ ǫ, for any p > 0, there is a set S such that

∥

∥

∥

1
|S|
∑

y∈S ∇F (y)
∥

∥

∥ ≤ ǫ + p. Thus, ‖∇F (x)‖ ≤
ǫ+Hδ + p for any p > 0, which implies ‖∇F (x)‖ ≤ ǫ+Hδ.

Proposition 15. Suppose that F is J-second-order-smooth (that is, ‖∇2F (x)−∇2F (y)‖op ≤ J‖x− y‖ for all x and y).

Suppose also that x satisfies ‖∇F (x)‖δ ≤ ǫ. Then, ‖∇F (x)‖ ≤ ǫ+ J
2 δ

2.

Proof. The proof is similar to that of Proposition 14. Let S ⊂ B(x, δ) with x = 1
|S|
∑

y∈S y. By J-second-order-

smoothness, for all y ∈ S, we have

‖∇F (y)−∇F (x)−∇2F (x)(y − x)‖ =

∥

∥

∥

∥

∫ 1

0

(∇2F (x+ t(y − x))−∇2F (x))(y − x) dt

∥

∥

∥

∥

≤
∫ 1

0

tJ‖y − x‖2 dt = J‖y − x‖2
2

≤ Jδ2

2
.
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Further, since 1
|S|
∑

y∈S y = x, we have 1
|S|
∑

y∈S ∇2F (x)(y − x) = 0. Therefore, we have

∥

∥

∥

∥

∥

∥

1

|S|
∑

y∈S
∇F (y)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∇F (x) + 1

|S|
∑

y∈S
(∇F (y)−∇F (x)−∇2F (x)(y − x))

∥

∥

∥

∥

∥

∥

≥ ‖∇F (x)‖ − Jδ2

2
.

Now, since ‖∇F (x)‖δ ≤ ǫ, for any p > 0, there is a set S such that

∥

∥

∥

1
|S|
∑

y∈S ∇F (y)
∥

∥

∥ ≤ ǫ + p. Thus, ‖∇F (x)‖ ≤
ǫ+ J

2 δ
2 + p for any p > 0, which implies ‖∇F (x)‖ ≤ ǫ+ J

2 δ
2.

F. Lower Bounds

Our lower bounds are constructed via a mild alteration to the arguments of Arjevani et al. (2019) for lower bounds on

finding (0, ǫ)-stationary points of smooth functions with a stochastic gradient oracle. At a high level, we show that since a

δ, ǫ-stationary point of an H-smooth loss is also a (0, Hδ + ǫ)-stationary point, a lower bound on the complexity of the

latter implies a lower bound on the of complexity of the former. The lower bound of Arjevani et al. (2019) is proved by

constructing a distribution over “hard” functions such that no algorithm can quickly find a (0, ǫ)-stationary point of a random

selected function. Unfortunately, these “hard” functions are not Lipschitz. Fortunately, they take the form F (x) + η‖x‖2
where F is Lipschitz and smooth so that the “non-Lipschitz” part is solely contained in the quadratic term. We show that

one can replace the quadratic term ‖x‖2 with a Lipschitz function that is quadratic for sufficiently small x but proportional

to ‖x‖ for larger values. Our proof consists of carefully reproducing the argument of Arjevani et al. (2019) to show that

this modification does not cause any problems. We emphasize that almost all of this development can be found with more

detail in Arjevani et al. (2019). We merely restate here the minimum results required to verify our modification to their

construction.

F.1. Definitions and Results from Arjevani et al. (2019)

A randomized first-order algorithm is a distribution PS supported on a set S and a sequence of measurable mappings

Ai(s,g1, . . . ,gi−1) → Rd with s ∈ S and gi ∈ Rd. Given a stochastic gradient oracle GRAD : Rd × Z → Rd, a

distribution PZ supported on Z and an i.i.d. sample (z1, . . . , zn) ∼ PZ , we define the iterates of A recursively by:

x1 = A1(s)

xi = Ai(s,GRAD(x1, z1),GRAD(x2, z2), . . . ,GRAD(xi−1, zi−1)) .

So, xi is a function of s and z1, . . . , zi−1. We define Arand to be the set of such sequences of mappings.

Now, in the notation of Arjevani et al. (2019), we define the “progress function”

progc(x) = max{i : |xi| ≥ c} .

Further, a stochastic gradient oracle GRAD can be called a probability-p zero-chain if prog0(GRAD(x, z)) = prog1/4(x)+1
for all x with probability at least 1− p, and prog0(GRAD(x, z)) ≤ prog1/4(x) + 1 with probability 1.

Next, let FT : RT → R be the function defined by Lemma 2 of Arjevani et al. (2019). Restating their Lemma, this function

satisfies:

Lemma 22 (Lemma 2 of (Arjevani et al., 2019)). There exists a function FT : RT → R satisfies that satisfies:

1. FT (0) = 0 and inf FT (x) ≥ −γ0T for γ0 = 12.

2. ∇FT (x) is H0-Lipschitz, with H0 = 152.

3. For all x, ‖∇FT (x)‖∞ ≤ G0 with G0 = 23

4. For all x, prog0(∇FT (x)) ≤ prog1/2(∇FT (x)) + 1.
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5. If prog1(x) < T , then ‖∇FT (x)‖ ≥ |∇FT (x)prog
1
(x)+1| ≥ 1.

We associate with this function FT the stochastic gradient oracle OT (x, z) : R
T × {0, 1} → Rd where z is Bernoulli(p):

GRADT (x, z)i =

{

∇FT (x)i, if i 6= prog1/4(x)
z∇FT (x)i

p , if i = prog1/4(x)

It is clear that Ez[OT (x, z)] = ∇FT (x).
This construction is so far identical to that in Arjevani et al. (2019), and so we have by their Lemma 3:

Lemma 23 (Lemma 3 of Arjevani et al. (2019)). GRADT is a probability-p zero chain, has variance E[‖GRADT (x, z)−
∇FT (x)‖2] ≤ G2

0/p, and ‖GRADT (x, z)‖ ≤ G0

p +G0

√
T .

Proof. The probability p zero-chain and variance statements are directly from Arjevani et al. (2019). For the bound on

‖GRADT ‖, observe that GRADT (x, z) = ∇FT (x) in all but one coordinate. In that one coordinate, GRADT (x, z) is at

most
‖∇FT (x)‖∞

p = G0

p . Thus, the bound follows by triangle inequality.

Next, for any matrix U ∈ Rd×T with orthonormal columns, we define FT,U : Rd → R by:

FT,U (x) = FT (U
⊤x) .

The associated stochastic gradient oracle is:

GRADT,U (x, z) = UGRADT (U
⊤x, z) .

Now, we restate Lemma 5 of Arjevani et al. (2019):

Lemma 24 (Lemma 5 of Arjevani et al. (2019)). Let R > 0 and suppose A ∈ Arand is such that A produces iterates xt

with ‖xt‖ ≤ R. Let d ≥
⌈

18R
2T
p log 2T 2

pc

⌉

Suppose U is chosen uniformly at random from the set of d× T matrices with

orthonormal columns. Let GRAD be an probability-p zero chain and let GRADU (x, z) = UGRAD(U⊤x, z). Let x1,x2, . . .
be the iterates of A when provided the stochastic gradient oracle GRADU . Then with probability at least 1− c (over the

randomness of U , the oracle, and also the seed s of A):

prog1/4(U
⊤xt) < T for all t ≤ T − log(2/c)

2p
.

F.2. Defining the “Hard” Instance

Now, we for the first time diverge from the construction of Arjevani et al. (2019) (albeit only slightly). Their construction

uses a “shrinking function” ρR,d : R
d → Rd given by ρR,d(x) =

‖x‖√
1+‖x‖2/R2

as well as an additional quadratic term to

overcome the limitation of bounded iterates. We cannot tolerate the non-Lipschitz quadratic term, so we replace it with a

Lipschitz version qB,d(x) = x⊤ρB,d(x). Intuitively, qB,d behaves like ‖x‖2 for small enough x, but behaves like ‖x‖ for

large ‖x‖. This pre-processed function is defined by:

F̂T,U (x) = FT,U (ρR,d(x)) + ηqB,T (ρ
−1
R,T (U

⊤ρR,d(x)))

= FT (U
⊤ρR,d(x)) + ηqB,T (ρ

−1
R,T (U

⊤ρR,d(x)))

= FT (U
⊤ρR,d(x)) + ηqB,d(x) .

To see the last line above, note that since qB,d and ρR,d are rotationally symmetric, and U has orthonormal columns, we

have U⊤ρR,d(x) = ρR,T (U
⊤x) and qB,T (U

⊤x) = qB,d(x). Thus, we have qB,T (ρ
−1
R,T (U

⊤ρR,d(x))) = qB,d(x). The

stochastic gradient oracle associated with F̂T,U (x) is

ĜRADT,U (x, z) = J [ρR,d](x)
⊤UGRADT (U

⊤ρR,d(x), z) + η∇qB,d(x)
= J [ρR,d](x)

⊤UGRADT (U
⊤ρR,d(x), z)

+ ηJ [ρR,d](x)
⊤U⊤J [ρ−1

R,T ](U
⊤ρR,d(x))

⊤∇qB,T (ρ−1
R,T (U

⊤ρR,d(x))) .
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where J [f ](x) indicates the Jacobian of the function f evaluated at (x).

A description of the relevant properties of qB is provided in Section F.3.

Next we produce a variant on Lemma 6 from Arjevani et al. (2019). This is the most delicate part of our alteration, although

the proof is still almost identical to that of Arjevani et al. (2019).

Lemma 25 (variant on Lemma 6 of (Arjevani et al., 2019)). Let R = B = 10G0

√
T . Let η = 1/10 and c ∈ (0, 1) and

p ∈ (0, 1) and T ∈ N. Set d = ⌈18R2T
p log 2T 2

pc ⌉ and let U be sampled uniformly from the set of d × T matrices with

orthonormal columns. Define F̂T,U and ˆGRADU,T as above. Suppose A ∈ Arand and let x1,x2, . . . be the iterates of A

when provided with ˆGRADU,T as input. Then with probability at least 1− c:

‖∇F̂T,U (xt)‖ ≥ 1/2 for all t ≤ T − log(2/c)

2p
.

Proof. First, observe that GRADT is a probability p zero-chain. Next, qB is rotationally symmetric and ρR(x) ∝ X , we see

that ∇qB(x) ∝ x so that prog0(J [ρ
−1
R,T ](x)

⊤∇qB,T (ρ−1
R,T (x))) = prog0(x). Thus, the oracle

G̃RADT (x, z) = GRADT (x, z) + ηJ [ρ−1
B,T ](x)

⊤∇qB,T (ρ−1
R,T (x))

is a probability-p zero-chain. We define the rotated oracle:

G̃RADU,T (y, z) = U G̃RADT (U
⊤y, z)

= UGRADT (U
⊤y, z) + ηUJ [ρ−1

B,T ](U
⊤y)⊤∇qB,T (ρ−1

R,T (U
⊤y)) .

Following (Arjevani et al., 2019), we now define yi = ρR(xi). Notice that:

G̃RADU,T (y, z) = J [ρR,d](x)
⊤ĜRADT,U (x, z)

= J [ρR,d](ρ
−1
R,d(y))]

⊤ĜRADT,U (x, z) .

Therefore, we can view y1, . . . ,yT as the iterates of some different algorithm Ay ∈ Arand applied to the oracle ˜GRADT,U

(since they are computed by measurable functions of the oracle outputs and previous iterates). However, since ρR(‖bx‖) ≤
R, ‖yi‖ ≤ R for all i. Thus, since G̃RADT is a probability-p zero-chain, by Lemma 24 we have that so long as

d ≥ ⌈18R2T
p log 2T 2

pc ⌉, then with probability at least 1− c, for all i ≤ (T − log(2/c))/2p,

prog1/4(U
⊤yi) < T .

Now, our goal is to show that ‖∇F (xi)‖ ≥ 1/2. We consider two cases, either ‖xi‖ > R/2 or not.

First, observe that for xi with ‖xi‖ > R/2, we have:

‖∇F̂T,U (xi)‖ ≥ η‖∇qB(‖xi‖)‖ − ‖J [ρR](xi)‖op‖∇F̂ (yi)‖

≥ η
‖xi‖

√

1 + ‖xi‖2/B2
−G0

√
T

≥ 3ηB −G0

√
T

Recalling B = R = 10G0

√
T and η = 1/10:

= 2G0

√
T

Recalling G0 = 23:

≥ 1/2 .
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Now, suppose ‖xi‖ ≤ R/2. Then, let us set j = prog1(U
⊤yi) + 1 ≤ T (the inequality follows since prog1 ≤ prog1/4).

Then, if uj indicates the jth row of u, Lemma 22 implies:

|〈uj ,yi〉| < 1,

|〈uj ,∇FT,U (yi)〉| ≥ 1 .

Next, by direct calculation we have J [ρR](xi) =
I−ρR(xi)ρR(xi)

⊤/R2√
1+‖xi‖2/R2

=
I−yiy

⊤
i /R

2√
1+‖xi‖2/R2

so that:

〈uj ,∇F̂T,U (xi)〉 = 〈ujJ [ρR](xi)⊤∇FT,U (yi)〉+ η〈uj ,∇qB(xi)〉

=
〈uj ,∇FT,U (yi)〉
√

1 + ‖xi‖2/R2
− 〈uj ,yi〉〈yi,∇FT,U (yi)〉/R2

√

1 + ‖xi‖2/R2
+ η〈uj ,∇qB(xi)〉 .

Now, by Proposition 29, we have ∇qB(xi) =
(

2− ‖yi‖2

B2

)

yi =. So, (with R = B):

〈uj ,∇F̂T,U (xi)〉 =
〈uj ,∇FT,U (yi)〉
√

1 + ‖xi‖2/R2
− 〈uj ,yi〉〈yi,∇FT,U (yi)〉/R2

√

1 + ‖xi‖2/R2
+ η

(

2− ‖yi‖2
B2

)

〈uj ,yi〉

Observing that ‖yi‖ ≤ ‖xi‖ ≤ R/2 and |〈uj ,yi〉| < 1:

|〈uj ,∇F̂T,U (xi)〉| ≥
1

√

1 + ‖xi‖2/R2
− ‖∇FT,U (yi)‖

2R
− 2η

Using |〈uj ,∇FT,U (yi)〉| ≥ 1 and ‖∇F (yi)‖ ≤ G0

√
T :

≥ 2√
5
− G0

√
T

2R
− 2η

With R = 10G0

√
T and η = 1/10:

=
2√
5
− 1

20
− 1

5

> 1/2 .

With the settings of parameters specified in Lemma 25, we have:

Lemma 26 (variation on Lemma 7 in Arjevani et al. (2019)). With the settings of R,B, η in Lemma 25, the function F̂T,U
satisfies:

1. F̂T,U (0)− inf F̂T,U (x) ≤ γ0T = 12T

2. ‖F̂T,U (x)‖ ≤ G0

√
T + 3ηB ≤ 92

√
T for all x.

3. ∇F̂U (x) is H0 + 3 + 8η ≤ 156-Lipschitz.

4. ‖ĜRADT,U (x, z)‖ ≤ G0

p +G0

√
T + 3ηB ≤ 23

p + 92
√
T with probability 1.

5. GRADT,U has variance at most
G2

0

p ≤ 232

p

Proof. 1. This property follows immediately from the fact that FT (0)− inf FT (x) ≤ γ0T .

2. Since ρR is 1-Lipschitz for all R and qB is 3B-Lipschitz (see Proposition 29), F̂T,U (x) is G0

√
T + 3ηB-Lipschitz.

3. By assumption, R ≥ max (H0, 1). Thus, by Arjevani et al. (2019, Lemma 16), ∇FT (ρR(x)) is H0 + 3-Lipschitz and

so ∇F̂T,U is H0 + 3 + 8η-Lipschitz by Proposition 29.
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4. Since ‖OT ‖ ≤ G0

p +G0

√
T , and J [ρR](x)

⊤U has operator norm at most 1, the bound follows.

5. Just as in the previous part, since GRADT has variance G2
0/p and J [ρR](x)

⊤U has operator norm at most 1, the bound

follows.

Now, we are finally in a position to prove:

Theorem 27. Given any γ, H , ǫ, and σ such that
Hγ

12·156·4ǫ2 ≥ 2, there exists a distribution over functions F and stochastic

first-order oracles GRAD such that with probability 1, F is H-smooth, F (0)− inf F (x) ≤ γ, F is 3
√
Hγ-Lipschitz and

GRAD has variance σ2, and for any algorithm in Arand, with probability at least 1− c, when provided a randomly selected

GRAD, A requires at least Ω
(

γHσ2

ǫ4

)

iterations to output a point x with E[‖∇F (x)‖] ≤ ǫ.

Proof. From Lemma 26 and Lemma 25, we have a distribution over functions F and first-order oracles such that with

probability 1, F isG0

√
T+3G0

√
T ≤ 92

√
T Lipschitz, F isH0+3+4η ≤ 156-smoooth, F (0)−inf F (x) ≤ γ0T = 12T ,

GRAD has variance at most G2
0/p = 232/p, and with probability at least 1− c,

‖∇F (xt)‖ ≥ 1/2 for all t ≤ T − log(2/c)

2p
.

Now, set λ = 156
H · 2ǫ, T = ⌊ Hγ

12·156·(2ǫ)2 ⌋ and p = min((2 · 23 · ǫ)2/σ2, 1). Then, define

Fλ(x) =
Hλ2

156
F (x/λ) .

Then Fλ is Hλ2

H0

· 1
λ2 ·156 = H- smooth, Fλ(0)− infx Fλ(x) ≤ 12 ·T · Hλ2

156 ≤ γ, and Fλ is 92
√
T Hλ

156 ≤ 3
√
Hγ- Lipschitz.

We can construct an oracle GRADλ from GRAD by:

GRADλ(x, z) =
Hλ

156
GRAD(x/λ, z) .

so that

E[‖GRADλ(x, z)−∇Fλ(x)‖2] ≤
H2λ2

1562
· 23

2

p
= σ2 .

Further, since an oracle for Fλ can be constructed from the oracle for F , if we run A on Fλ, with probability at least 1− c,

‖∇Fλ(xt)‖ =
Hλ

156
‖∇F (xt)‖ ≥ ǫ for all t ≤ T − log(2/c)

2p
≤ 3 · 10−7 · Hγσ

2

ǫ4
− 5 · 10−3 · log(2/c)

ǫ2
.

Thus, there exists a constant K such that

E[‖∇Fλ(xt)‖] ≥ ǫ for all t ≤ K
Hγσ2

ǫ4
.

From this result, we have our main lower bound (the formal version of Theorem 18):

Theorem 28. For any δ, ǫ, γ,G ≥ 3
√
2ǫγ√
δ

, there is a distribution overG-LipschitzC∞ functions F with F (0)−inf F (x) ≤ γ

and stochastic gradient oracles GRAD with E[‖GRAD(x, z)‖2] ≤ G2 such that for any algorithm A ∈ Arand, if A is

provided as input a randomly selected oracle GRAD, A will require Ω(G2γ/δǫ3) iterations to identify a point x with

E[‖∇F (x)‖δ] ≤ ǫ.

Proof. From Theorem 27, for any H , ǫ′, γ, and σ we have a distrubution over C∞ functions F and oracles GRAD such that

F is H-smooth, 3
√
Hγ-Lischitz and F (0)− inf F (x) ≤ γ and GRAD has variance σ2 such that A requires Ω(Hγσ2/ǫ′4)

iterations to output a point x such that E[‖∇F (x)‖] ≤ ǫ′. Set σ = G, H = ǫ/δ and ǫ′ = 2ǫ. Then, we see that GRAD has

variance G2/2, and F is 3
√
Hγ =

3
√
ǫγ√
δ

≤ G/
√
2-Lipschitz so that E[‖GRAD(x, z)‖2] ≤ G2. Further by Proposition!14,

if ‖∇F (x)‖δ ≤ ǫ, then ‖∇F (x)‖ ≤ ǫ+Hδ = 2ǫ. Therefore, since A cannot output a point x with E[‖∇F (x)‖] ≤ ǫ′ = 2ǫ
in less than Ω(Hγσ2/ǫ′4) iterations, we see that A also cannot output a point x with E[‖∇F (x)‖δ] ≤ ǫ in less than

Ω(Hγσ2/ǫ′4) = Ω(γG2/ǫ3δ) iterations.
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F.3. Definition and Properties of qB

Consider the function qB,d : R
d → R defined by

qB,d(x) =
‖x‖2

√

1 + ‖x‖2/B2
= x⊤ρB,d(x) .

This function has the following properties, all of which follow from direct calculuation:

Proposition 29. qB,d satisfies:

1.

∇qB,d(x) =
2x

√

1 + ‖x‖2/B2
− x‖x‖2
B2(1 + ‖x‖2/B2)3/2

=

(

2 +
‖ρB(x)‖2

B2

)

ρB(x) .

2.

∇2qB,d(x) =
1

√

1 + ‖x‖2/B2

(

2I − 3xx⊤

B2(1 + ‖x‖2/B2)
− ‖x‖2I
B2(1 + ‖x‖2/B2)

+
2‖x‖2xx⊤

B4(1 + ‖x‖2/B2)2

)

.

3.

‖x‖
√

1 + ‖x‖2/B2
≤ ‖∇qB,d(x)‖ ≤ 3‖x‖

√

1 + ‖x‖2/B2
≤ 3B .

4.

‖∇2qB,d(x)‖op ≤ 8
√

1 + ‖x‖2/B2
≤ 8 .

G. Proof of Theorem 13

First, we state and prove a theorem analogous to Theorem 8.

Theorem 30. Assume F : Rd → R is well-behaved. In Algorithm 1, set sn to be a random variable sampled uniformly from

[0, 1]. Set T,K ∈ N and M = KT . For i = 1, . . . , d, set uki = −D∞

∑T
t=1

∂F(wk
t )

∂xi
∣

∣

∣

∣

∣

∑T
t=1

∂F(wk
t )

∂xi

∣

∣

∣

∣

∣

for some D∞ > 0. Finally, suppose

Var(gn,i) ≤ σ2
i for i = 1, . . . , d. Then, we have

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

1

]

≤ F (x0)− F ⋆

D∞M
+

E[RT (u
1, . . . ,uK)]

D∞M
+
D∞

∑d
i=1 σi√
T

.

Proof. In Theorem 7, set un to be equal to u1 for the first T iterations, u2 for the second T iterations and so on. In other

words, un = umod(n,T )+1 for n = 1, . . . , N .

From Theorem 7, we have

E[F (xM )] = F (x0) + E[RT (u
1, . . . ,uK)] + E

[

M
∑

n=1

〈gn,un〉
]

.
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Now, since uk,i = −D∞

∑T
t=1

∂F(wk
t )

∂xi
∣

∣

∣

∣

∣

∑T
t=1

∂F(wk
t )

∂xi

∣

∣

∣

∣

∣

, E[gn] = ∇F (wn), and Var(gn,i) ≤ σ2
i for i = 1, . . . , d, we have

E

[

M
∑

n=1

〈gn,un〉
]

≤ E

[

K
∑

k=1

〈

T
∑

t=1

∇F (wk
t ),u

k

〉

+D∞

K
∑

k=1

∥

∥

∥

∥

∥

T
∑

t=1

(∇F (wk
t )− gn)

∥

∥

∥

∥

∥

1

]

≤ E

[

K
∑

k=1

〈

T
∑

t=1

∇F (wk
t ),u

k

〉]

+D∞K
√
T

d
∑

i=1

σi

= E

[

−
K
∑

k=1

D∞T

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F
(

wk
t

)

∥

∥

∥

∥

∥

1

]

+D∞K
√
T

d
∑

i=1

σi .

Putting this all together, we have

F ⋆ ≤ E[F (xN )] ≤ F (x0) + E[RT (u
1, . . . ,uk)] +D∞K

√
T

d
∑

i=1

σi −D∞T
K
∑

k=1

E

[∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F
(

wk
t

)

∥

∥

∥

∥

∥

1

]

.

Dividing by KTD∞ = D∞M and reordering, we have the stated bound.

We can now prove Theorem 13.

Proof of Theorem 13. Since A guarantees ‖∆n‖∞ ≤ D∞, for all n < n′ ≤ T + n− 1, we have

‖wn −wn′‖∞ = ‖xn − (1− sn)∆n − xn′−1 + sn′∆n′‖∞

≤

∥

∥

∥

∥

∥

∥

n′−1
∑

i=n+1

∆i

∥

∥

∥

∥

∥

∥

∞

+ ‖∆n‖∞ + ‖∆n′‖∞

≤ D∞((n′ − 1)− (n+ 1) + 1) + 2D∞

= D∞(n′ − n+ 1)

≤ D∞T .

Therefore, we clearly have ‖wk
t −wk‖∞ ≤ D∞T = δ.

Note that from the choice of K and T we have M = KT ≥ N − T ≥ N/2. Now, observe that Var(gn,i) ≤ E[g2ni
] ≤ G2

i .

Thus, applying Theorem 30 in concert with the additional assumption E[RT (u
1, . . . ,uK)] ≤ D∞K

√
T
∑d
i=1Gi, we have

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F (wk
t )

∥

∥

∥

∥

∥

1

]

≤ 2
F (x0)− F ⋆

D∞N
+ 2

KD∞
√
T
∑d
i=1Gi

D∞N
+

∑d
i=1Gi√
T

=
2T (F (x0)− F ⋆)

δN
+

3
∑d
i=1Gi√
T

≤ max

(

5(
∑d
i=1Gi)

2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6
∑d
i=1Gi√
N

)

+
2(F (x0)− F ⋆)

δN
,

where the last inequality is due to the choice of T .

Now to conclude, observe that ‖wk
t − wk‖∞ ≤ δ for all t and k, and also that wk = 1

T

∑T
t=1 w

k
t . Therefore S =

{wk
1 , . . . ,w

k
T } satisfies the conditions in the infimum in Definition 12 so that ‖∇F (wk)‖1,δ ≤

∥

∥

∥

1
T

∑T
t=1 ∇F (wk

t )
∥

∥

∥

1
.
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H. Directional Derivative Setting

In the main text, our algorithms make use of a stochastic gradient oracle. However, the prior work of (Zhang et al., 2020b)

instead considers a stochastic directional gradient oracle. This is a less common setup, and other works (e.g., (Davis et al.,

2021)) have also taken our route of tackling non-smooth optimization via an oracle that returns gradients at points of

differentiability.

Nevertheless, all our results extend easily to the exact setting of (Zhang et al., 2020b) in which F is Lipschitz and directionally

differentiable and we have access to a stochastic directional gradient oracle rather than a stochastic gradient oracle. To

quantify this setting, we need a bit more notation which we copy directly from (Zhang et al., 2020b) below:

First, from (Clarke, 1990) and (Zhang et al., 2020b), the generalized directional derivative of a function F in a direction d is

F ◦(x,d) = lim sup
y→x t↓0

f(y + td)− f(y)

t
. (4)

Further, the generalized gradient is the set

∂F (x) = {g : 〈g,d〉 ≤ 〈F ◦(x,d),d〉 for all d} .

Finally, F : Rd → R is Hadamard directionally differentiable in the direction v ∈ Rd if for any function ψ : R+ → Rd

such that limt→0
ψ(t)−ψ(0)

t = v and ψ(0) = x, the following limit exists:

lim
t→0

F (ψ(t))− F (x)

t
.

If F is Hadamard directionally differentiable, then the above limit is denoted F ′(x,v). When F is Hadamard directionally

differentiable for all x and v, then we say simply that F is directionally differentiable.

With these definitions, a stochastic directional oracle for a Lipschitz, directionally differentiable, and bounded from below

function F is an oracle GRAD(x,v, z) that outputs g ∈ ∂F (x) such that 〈g,v〉 = F ′(x,v). In this case, (Zhang et al.,

2020b) shows (Lemma 3) that F satisfies an alternative notion of well-behavedness:

F (y)− F (x) =

∫ 1

0

〈E[GRAD(x+ t(y − x),y − x, z)],y − x〉dt . (5)

Next, we define:

Definition 31. A point x is a (δ, ǫ) stationary point of F for the generalized gradient if there is a set of points S contained

in the ball of radius δ centered at x such that for y selected uniformly at random from S, E[y] = x and for all y there is a

choice of gy ∈ ∂F (y) such that ‖E[gy]‖ ≤ ǫ.

Similarly, we have the definition:

Definition 32. Given a point x, and a number δ > 0, define:

‖∂F (x)‖δ , inf
S⊂B(x,δ), 1

|S|

∑

y∈S y=x,gy∈∂F (y)

∥

∥

∥

∥

∥

∥

1

|S|
∑

y∈S
gy

∥

∥

∥

∥

∥

∥

.

In fact, whenever a locally Lipschitz function F is differentiable at a point x, we have that ∇F (x) ∈ ∂F (x), so that

‖∂F (x)‖δ ≤ ‖∇F (x)‖δ . Thus our results in the main text also bound ‖∂F (x)‖δ . However, while a gradient oracle is also

directional derivative oracle, a directional derivative oracle is only guaranteed to be a gradient oracle if F is continuously

differentiable at the queried point x. This technical issue means that when we have access to a directional derivative oracle

rather than a gradient oracle, we will instead only bound ‖∂F (x)‖δ rather than ‖∇F (x)‖δ .
Despite this technical complication, our overall strategy is essentially identical. The key observation is that the only time at

which we used the properties of the gradient previously was when we invoked well-behavedness of F . When we have a

directional derivative instead of the gradient, the alternative notion of well-behavedness in (5) will play an identical role.

25



Optimal, Stochastic, Non-smooth, Non-convex Optimization through Online-to-Non-convex Conversion

Algorithm 4 Online-to-Non-Convex Conversion (directional derivative oracle version)

Input: Initial point x0, K ∈ N, T ∈ N, online learning algorithm A, sn for all n
Set M = K · T
for n = 1 . . .M do

Get ∆n from A
Set xn = xn−1 +∆n

Set wn = xn−1 + sn∆n

Sample random zn
Generate directional derivative gn = GRAD(wn,∆n, zn)
Send gn to A as gradient

end for

Set wk
t = w(k−1)T+t for k = 1, . . . ,K and t = 1, . . . , T

Set wk = 1
T

∑T
t=1 w

k
t for k = 1, . . . ,K

Return {w1, . . . ,wK}

Thus, our approach is simply to replace the call to GRAD(wn, zn) in Algorithm 1 with a call instead to GRAD(wn,∆n, zn)
(see Algorithm 4). With this change, all of our analysis in the main text applies almost without modification. Essentially, we

only need to change notation in a few places to reflect the updated definitions.

To begin this notational update, the counterpart to Theorem 7 is:

Theorem 33. Suppose F is Lipschitz and directionally differentiable. With the notation in Algorithm 4, if we let sn be

independent random variables uniformly distributed in [0, 1], then for any sequence of vectors u1, . . . ,uN , if we have the

equality:

E[F (xM )] = F (x0) + E

[

M
∑

n=1

〈gn,∆n − un〉
]

+ E

[

M
∑

n=1

〈gn,un〉
]

.

Proof.

F (xn)− F (xn−1) =

∫ 1

0

〈E[GRAD(xn−1 + s(xn − xn−1),xn − xn−1, zn)],xn − xn−1〉 ds

= E[〈gn,∆n〉]
= E[〈gn,∆n − un〉+ 〈gn,un〉] .

Where in the second line we have used the definition gn = GRAD(xn−1+ sn(xn−xn−1),xn−xn−1, zn), the assumption

that sn is uniform on [0, 1], and Fubini theorem (as GRAD is bounded by Lipschitzness of F ). Now, sum over n and

telescope to obtain the stated bound.

Next, we have the following analog of Theorem 8:

Theorem 34. With the notation in Algorithm 4, set sn to be a random variable sampled uniformly from [0, 1]. Set T,K ∈ N

and M = KT . Define ∇
k
t = E[g(k−1)T+t]. Define uk = −D

∑T
t=1

∇
k
t

‖∑T
t=1

∇k
t ‖ for some D > 0 for k = 1, . . . ,K. Finally,

suppose Var(gn) = σ2. Then:

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇
k
t

∥

∥

∥

∥

∥

]

≤ F (x0)− F ⋆

DM
+

E[RT (u
1, . . . ,uK)]

DM
+

σ√
T
.

Proof. The proof is essentially identical to that of Theorem 8. In Theorem 33, set un to be equal to u1 for the first T
iterations, u2 for the second T iterations and so on. In other words, un = umod(n,T )+1 for n = 1, . . . ,M . So, we have

E[F (xM )] = F (x0) + E[RT (u
1, . . . ,uK)] + E

[

M
∑

n=1

〈gn,un〉
]

.
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Now, since uk = −D
∑T

t=1
∇

k
t

‖∑T
t=1

∇k
t ‖ , and Var(gn) = σ2, we have

E

[

M
∑

n=1

〈gn,un〉
]

≤ E

[

K
∑

k=1

〈

T
∑

t=1

∇
k
t ,u

k

〉]

+ E

[

D

K
∑

k=1

∥

∥

∥

∥

∥

T
∑

t=1

(∇k
t − g(k−1)T+t)

∥

∥

∥

∥

∥

]

≤ E

[

K
∑

k=1

〈

T
∑

t=1

∇
k
t ,u

k

〉]

+DσK
√
T

= E

[

−
K
∑

k=1

DT

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇
k
t

∥

∥

∥

∥

∥

]

+DσK
√
T .

Putting this all together, we have

F ⋆ ≤ E[F (xM )] ≤ F (x0) + E[RT (u
1, . . . ,uK)] + σDK

√
T −DT

K
∑

k=1

E

[∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇F
(

wk
t

)

∥

∥

∥

∥

∥

]

.

Dividing by KDT = DM and reordering, we have the stated bound.

Finally, we instantiate Theorem 34 with online gradient descent to obtain the analog of Corollary 9. This result establishes

that the online-to-batch conversion finds an (δ, ǫ) critical point in O(1/ǫ3δ) iterations, even when using a directional

derivative oracle. Further, our lower bound construction makes use of continuously differentiable functions, for which the

directional derivative oracle and the standard gradient oracle must coincide. Thus the O(1/ǫ3δ) complexity is optimal in

this setting as well.

Corollary 35. Suppose we have a budget of N gradient evaluations. Under the assumptions and notation of Theorem 34,

suppose in addition E[‖gn‖2] ≤ G2 and that A guarantees ‖∆n‖ ≤ D for some user-specified D for all n and ensures

the worst-case K-shifting regret bound E[RT (u
1, . . . ,uK)] ≤ DGK

√
T for all ‖uk‖ ≤ D (e.g., as achieved by the OGD

algorithm that is reset every T iterations). Let δ > 0 be an arbitrary number. SetD = δ/T , T = min(⌈( GNδ
F (x0)−F⋆ )

2/3⌉, N2 ),
and K = ⌊NT ⌋. Then, for all k and t, ‖wk −wk

t ‖ ≤ δ.

Moreover, we have the inequality

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇
k
t

∥

∥

∥

∥

∥

]

≤ 2(F (x0)− F ⋆)

δN
+max

(

5G2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6G√
N

)

,

which implies

1

K

K
∑

t=1

‖∂F (wk)‖δ ≤
2(F (x0)− F ⋆)

δN
+max

(

5G2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6G√
N

)

.

Proof. Since A guarantees ‖∆n‖ ≤ D, for all n < n′ ≤ T + n− 1, we have

‖wn −wn′‖ = ‖xn − (1− sn)∆n − xn′−1 + sn′∆n′‖

≤

∥

∥

∥

∥

∥

∥

n′−1
∑

i=n+1

∆i

∥

∥

∥

∥

∥

∥

+ ‖∆n‖+ ‖∆n′‖

≤ D((n′ − 1)− (n+ 1) + 1) + 2D

= D(n′ − n+ 1) ≤ DT .

Therefore, we clearly have ‖wk
t −wk‖ ≤ DT = δ.
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Note that from the choice ofK and T we haveM = KT ≥ N−T ≥ N/2. So, for the second fact, notice that Var(gn) ≤ G2

for all n. Thus, applying Theorem 34 in concert with the additional assumption E[RT (u
1, . . . ,uK)] ≤ DGK

√
T , we have:

E

[

1

K

K
∑

k=1

∥

∥

∥

∥

∥

1

T

T
∑

t=1

∇
k
t

∥

∥

∥

∥

∥

]

≤ 2
F (x0)− F ⋆

DN
+ 2

KDG
√
T

DN
+

G√
T

≤ 2T (F (x0)− F ⋆)

δN
+

3G√
T

≤ max

(

5G2/3(F (x0)− F ⋆)1/3

(Nδ)1/3
,
6G√
N

)

+
2(F (x0)− F ⋆)

δN
,

where the last inequality is due to the choice of T .

Finally, observe that ‖wk
t − wk‖ ≤ δ for all t and k, and also that wk = 1

T

∑T
t=1 w

k
t . Therefore S = {wk

1 , . . . ,w
k
T }

satisfies the conditions in the infimum in Definition 32 so that ‖∂F (wk)‖δ ≤
∥

∥

∥

1
T

∑T
t=1 ∇

k
t

∥

∥

∥
.
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