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Abstract
We consider the problem of estimating the mean of a sequence of random elements f (6, X1) ,. ..,
f(0, X,,) where f is a fixed scalar function, S = (X7, ..., X,,) are independent random variables,

and 6 is a possibly S-dependent parameter. An example of such a problem would be to estimate
the generalization error of a neural network trained on n examples where f is a loss function.
Classically, this problem is approached through concentration inequalities holding uniformly over
compact parameter sets of functions f, for example as in Rademacher or VC type analysis. How-
ever, in many problems, such inequalities often yield numerically vacuous estimates. Recently, the
PAC-Bayes framework has been proposed as a better alternative for this class of problems for its
ability to often give numerically non-vacuous bounds. In this paper, we show that we can do even
better: we show how to refine the proof strategy of the PAC-Bayes bounds and achieve even tighter
guarantees. Our approach is based on the coin-betting framework that derives the numerically
tightest known time-uniform concentration inequalities from the regret guarantees of online gam-
bling algorithms. In particular, we derive the first PAC-Bayes concentration inequality based on
the coin-betting approach that holds simultaneously for all sample sizes. We demonstrate its tight-
ness showing that by relaxing it we obtain a number of previous results in a closed form including
Bernoulli-KL and empirical Bernstein inequalities. Finally, we propose an efficient algorithm to
numerically calculate confidence sequences from our bound, which often generates nonvacuous
confidence bounds even with one sample, unlike the state-of-the-art PAC-Bayes bounds.

Keywords: Concentration inequalities, PAC-Bayes, confidence sequences, coin-betting.

1. Introduction

Suppose that S = (X3,...,X,) € X are random elements distributed identically and inde-
pendently from each other, on a probability space (X', ¥(X'), Px). For illustration, assume that
X = R: A classical problem in probability and statistics is to quantify how quickly an average
(X1 + -+ X,)/n converges to the mean E[X], and over the decades this problem was success-
fully attacked under various assumptions on the probability space through concentration inequali-
ties (Boucheron et al., 2013). The key assumption which enables these concentration inequalities to
exhibit fast convergence to the mean is independence. However, in many learning-theoretic prob-
lems we are interested in the concentration of random elements which themselves depend on the
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sample S, and therefore are not independent. In this paper, we formalize the above by assuming
that we are given a fixed measurable function f : © x X — [0, 1], where © is a parameter space,
and so now we are interested in the concentration of (f (¢, X1)+---+ f(0, X,,))/n around its mean,
where 6 is potentially S-dependent. For example, f(60, X;) could be the loss incurred by a learning
algorithm on the ¢-th example, where the parameters 6 are generated based on the sample S. In the
context of this example, the mean E[f (0, X;)] is called the statistical risk.

To this end, the classical approach to alleviating the dependence nuance is to derive uniform
concentration inequalities that hold simultaneously for all parameters in a compact set ©. For
example, consider the following concentration inequality that holds with probability at least 1 — J,'

\/ capacity(©) + In

n

sup |~ 37 70, %) — ELF(0, X1)]| S

n
o | i

Here the capacity term, such as VC dimension, metric entropy, or Rademacher complexity (Wain-
wright, 2019), scales with the “size” of the set ©. Mentioned notions accurately capture the capacity
in many learning problems, such as with linear parameterizations (Bartlett and Mendelson, 2002;
Kakade et al., 2008). However, in some other problems, e.g., in learning with overparameterized
neural networks, the pessimistic nature of uniform bounds makes them vacuous (Zhang et al., 2017).

On the other hand, in recent years, there has been a strong interest in the alternative to the uni-
form bounds, based on the PAC-Bayes analysis (Shawe-Taylor and Williamson, 1997; McAllester,
1998), which, remarkably, on some instances demonstrates non-vacuous bounds for the generaliza-
tion ability of deep learning algorithms (Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021; Zhou
et al., 2019). In the PAC-Bayes analysis instead of taking supycg as in the uniform approach, we
assume that the parameters 6 are now random and follow a data-dependent, so-called, posterior
distribution P,,. In this paper, we are interested in estimating an expected mean [ iy dP,(6) with
wo == [ f(0,z) dPx(x), uniformly over all data-dependent posteriors P,. This setting covers the
one considered in the PAC-Bayes literature (Alquier, 2021) where usually the function f represents
the loss of a predictor parameterized by 6 from a parameter space ©. In this view, we can think
of g as the risk of a predictor parameterized by 6, while [ 119 dP,(6) is the risk of a randomized
predictor that uses a random 6 drawn from the distribution P,. The second important component
of the PAC-Bayes model is a prior distribution Fy which does not depend on S and captures our
prior belief about the inductive bias in the problem instance. A basic PAC-Bayes concentration
inequality (McAllester, 1998) then takes the form of

/iif(@,Xi)dPn = /uedPn(9)
1=1

with probability at least 1 — §, where instead of the capacity term we have a Kullback-Leibler (KL)
divergence between the posterior and the prior. Numerically speaking, PAC-Bayes bounds tend to
give much tighter bounds than their uniform counterparts, largely because the KL term is typically
smaller than the capacity term (such as VC dimension), for an appropriate (user’s) choice of Py, Fp.

) \/KL(Pn\Po) +Inl
n

Our contributions: PAC-Bayes meets coin-betting In this paper, we show that we can obtain
even tighter PAC-Bayes bounds using recent advances in the theory of concentration inequalities
through gambling algorithms (Orabona and Jun, 2021). In particular, we show that it is possible to
obtain a new coin-betting based PAC-Bayes bound that directly implies a number of previous results.

1. The notation < hides universal constants and logarithmic factors.
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Moreover, numerically evaluating this new upper bound, we show that it is numerically tighter than
all previous approaches. In Section 5 we present our main result, a concentration inequality of
the following form, which holds with probability at least 1 — &, simultaneously for all n € N, all
data-dependent posteriors F,,, and all data-free priors Fp:

/ max S In (14 A(F(0, X) — ) dPa(8) < KL(Pa|[Py) + n X2 (1)
)\e[flfl‘uevi] =1 5

Moreover, the confidence interval for [ p19 dP, () is obtained by solving the optimization problems

[min/h(@) dP,(0), max [ h(0)dP,(0)], (2)

heM heM

where M is a class of mean functions (ug)gceo that satisfy the constraint given by Eq. (1), which
is the first of its kind in the PAC-Bayes literature. We formalize these optimization problems in
Section 5.1 and show that the constraint is convex, making them efficiently solvable in some cases.
In Section 6 we also experimentally validate our approach.

In addition, we show that Eq. (1) is tighter than some well-known PAC-Bayes inequalities,
such as McAllester’s inequality (McAllester, 1998), Maurer’s inequality for Bernoulli KL diver-
gence (Maurer, 2004), and PAC-Bayes empirical Bernstein’s inequality (Tolstikhin and Seldin,
2013). This is done by relaxing inequality in Eq. (1) by simple lower bounds of the logarithmic
term. We show that even relaxing Eq. (1) leads to a tighter bound than Maurer’s one that is known
to be very tight numerically.

The observation above implies that from our result we can derive all these versions, obtain
bounds, and then take an intersection of all of them without having to split §. This is in stark contrast
to empirical Bernstein’s bounds (Tolstikhin and Seldin, 2013) that are often numerically looser than
KL bounds, while being orderwise tighter than KL bounds like Maurer’s one. Attempting to take an
intersection with KL bounds requires splitting §, which undesirably inflates the bound. This is not
the case for our method — our result can be seen as “the right” type of concentration inequality that
is superior to the rest up to constant factors inside an additive logarithmic term. Finally, Eq. (1) (and
all its corollaries) holds simultaneously for all sample sizes, delivering time-uniform PAC-Bayes
confidence sequences.

Organization of the paper After a discussion of related work (Section 2) and notations (Sec-
tion 3), in Section 4 we briefly present the idea behind concentration through coin-betting. In
Section 5 we present our main results, discuss some implications, and include the proof of a new
concentration inequality in Section 5.2. In Section 5.1, we discuss how to compute our concentra-
tion inequality numerically (without any relaxations). Finally, in Section 6 we present numerical
simulations comparing our inequality to a number of baselines from the PAC-Bayes literature.

2. Related Work

Concentration from coin-betting The coin-betting formalism considered here (see Section 4)
goes back to Ville (1939) and Kelly betting system (Kelly, 1956) and has an intimate connection to
the Universal Portfolio theory (Cover, 1991). Building on the ideas of Ville (1939), Shafer and Vovk
(2001) introduced a general framework aiming at giving a foundation to the theory of probability
rooted in gambling strategies. However, their framework is very general and it does not suggest
specific methods to construct the betting strategies. The first paper to introduce the idea of using
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the regret of online betting algorithms to produce new concentration inequalities was in Jun and
Orabona (2019), which in turn builds on Rakhlin and Sridharan (2017) that showed the equivalence
between the regret guarantees of generic online linear algorithms and martingale tail bounds.

PAC-Bayes Since the introduction of PAC-Bayes bounds by McAllester (1998), there has been
significant growth and development in both theory and applications; see Alquier (2021) for a com-
prehensive survey. Early papers focused on tightening the bound of McAllester (1998), which can be
seen as a PAC-Bayes version of Hoeffding’s inequality. In particular, Langford and Caruana (2001);
Seeger (2002); Maurer (2004) focused on the setting of a binary classification where the goal is to
bound KL divergence between Bernoulli distributions. Such bounds are tighter than the mere differ-
ence of the risk and empirical risk due to Pinsker’s inequality, and the numerically tightest known
inequality within this group is Maurer’s inequality (Maurer, 2004) (see for instance experiments of
Mhammedi et al. (2019)). In this paper, we recover the result of Maurer (2004) by relaxing Eq. (1).

Towards data-dependent bounds, Tolstikhin and Seldin (2013) adapted an empirical Bernstein’s
inequality (Audibert et al., 2007; Maurer and Pontil, 2009) to the PAC-Bayes setting, making gener-
alization bounds variance dependent. Once again, we recover the PAC-Bayes empirical Bernstein’s
inequality by relaxing our main result of Eq. (1) without any plug-in arguments, through a relatively
straightforward proof. Several works went further in making bounds data-dependent by manipulat-
ing the KL term. Ambroladze et al. (2006) explored the idea of splitting the sample and deriving the
prior from a held-out sample while obtaining the posterior from the remaining part. This technique
proved very fruitful in making PAC-Bayes bounds much tighter. Indeed, recent non-vacuous gen-
eralization bounds for deep neural networks are largely attributed to this technique (Dziugaite and
Roy, 2018; Pérez-Ortiz et al., 2021). Clearly, the results developed in this paper can be readily ap-
plied together with the splitting technique. The splitting technique was also investigated beyond the
KL term. In particular, Mhammedi et al. (2019); Wu and Seldin (2022) developed intricate bounds
akin to empirical Bernstein’s inequalities where the splitting is done with respect to the sample vari-
ance (two variance terms) in addition to the KL term. These are among the numerically tightest
known PAC-Bayes bounds. However, due to their highly problem-dependent nature, it is challeng-
ing to compare these bounds theoretically. Several other works, such as (Rivasplata et al., 2020;
Awasthi et al., 2020) explored proof techniques (e.g. differential privacy and stability of resulting
measures) allowing to derive PAC-Bayes bounds with data-dependent priors without splitting the
sample.

The proof of our main result relies on showing that the exponential moment of the optimal
log-wealth with respect to € is a martingale. Several papers in PAC-Bayes literature have shown
results exploiting (super-)martingale concentration, which allowed them to relax the independence
assumption in the data sequence (Seldin et al., 2012) or to replace boundedness of f() by weaker
assumptions (Kuzborskij and Szepesvari, 2019; Haddouche and Guedj, 2022). To this end, Had-
douche and Gued;j (2022) exploited Ville’s inequality (as in our proof), which allowed them to show
a bound that holds uniformly over n € N.

Finally, it is known that solving the classical PAC-Bayes bound of McAllester (1998) for the
posterior results in a Gibbs posterior P, (6) o e~ w i F(0.X3) dPy(0). A large body of literature
has looked at learning-theoretic properties of Gibbs predictors (Catoni, 2007; Alquier et al., 2016;
Raginsky et al., 2017; Kuzborskij et al., 2019; Griinwald and Mehta, 2019). The concentration
inequality we develop here (Eq. (1)) is of a very different shape compared to (McAllester, 1998),
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though it can be easily relaxed to obtain it. As such, the Gibbs predictor might be a suboptimal
solution to Eq. (1), and it is an interesting open problem to characterize such a solution.

3. Definitions

We denote by (z)+ = max{x,0}. If P and () are probability measures over © such that P < @),
the KL divergence between P and @ is defined as KL(P, Q) := [ P(dz)In %(:ﬂ). With a slight
abuse of notation, we also write KL(p||q) where p = dP/d\ and ¢ = d@Q/ d\ are densities of
P and @) with respect to some common o-finite measure A. If a set X" is uniquely equipped with
a o-algebra, the underlying o-algebra will be denoted by ¥(X’). We formalize a “data-dependent
distribution” through the notion of a probability kernel (see, e.g., Kallenberg, 2017) which is defined
asamap K : X" x ¥(0) — [0, 1] such that for each B € 3(0) the function s — K (s, B) is
measurable and for each s € X" the function B — K (s, B) is a probability measure over ©. We
write IC(X™, ©) to denote the set of all probability kernels from X to distributions over ©. In that
light, when P € (X", ©) is evaluated on S € X" we use the shorthand notation P,, = P(S5).

4. Warm-up: From Betting To Concentrations

In this section, we briefly explain how to obtain new concentration inequalities from betting algo-
rithms, following Orabona and Pél (2016); Rakhlin and Sridharan (2017); Jun and Orabona (2019).

Let ¢; € [—1, 1] be a sequence of “continuous coin” outcomes chosen arbitrarily. In each round,
the bettor bets |z;| money on the outcome SGN(x;). Then, ¢; is revealed and the bettor wins/loses
xrc; money. Define the initial wealth Wealthg := 1 and the wealth at the end of round ¢ as

t
Wealth; := Wealth;_1 +c¢x; =1+ Z CsTs -
s=1
We also assume that the algorithm guarantees Wealth; > 0, hence we must have z; € [— Wealth;_1,
Wealth;_1]. Given that no assumptions are made on how ¢; is generated, this is essentially an on-
line game (Cesa-Bianchi and Lugosi, 2006; Orabona, 2019). So, our aim is to achieve an amount of
money close to the one of a fixed comparator. In particular, let Wealth;(\) be the wealth obtained
by a bettor that bets A Wealth;_1(\) in round ¢ with initial wealth equal to Wealthy(\) := 1 and
t
Wealthy(\) := Wealthy_1 () + A Wealth,—1(\) = H(l + csA) .
s=1
We can now formally define the regret of the betting algorithm as
maxye[-1,1] Wealthr(\)
Wealthp
It is well-known that it is possible to design optimal online betting algorithms where the regret is
polynomial in 7" (Cesa-Bianchi and Lugosi, 2006, Chapters 9 and 10).

Regrety :=

Closed form concentration, following Rakhlin and Sridharan (2017) Here, we summarize the
basic idea of Rakhlin and Sridharan (2017) used to obtain concentration inequalities from online
learning algorithms, specializing it to online betting algorithms as in Jun and Orabona (2019).
Consider X; to be a sequence of i.i.d. random variables supported on [0, 1] such that E[X;| = p.
Set ¢; = X; — p € [—1, 1], so that regardless of the online betting algorithm we have E[Wealth;| =
1. Also, assume that Regret < R(T), where R : N — R . Let’s now lower bound Wealthr(\)
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to obtain a familiar quantity. Using the inequality 1 + 2 > exp(x — 22) for x > —0.68, we obtain
T

Wealthy(A) > Wealthy (1) = 1+ (X, —
sy Wealthr(A) 2 | max ) Wealthr(3) = | 8% o tHl( X = )

T T
> A (Xe—p—AXe—p)?) | > A (Xy—p—A
> | max exp ;( emp=MXe—p)) | 2 max | exp ;( P— =)
Putting it all together and using Markov’s inequality, for any A € [—1/2,1/2] we get

<P {WealthT()\) > R((ST)} <P {WealthT > (15} <.

T
PoAY (Xp—p—A)>In R((ST)
t=1

Choosing A with the proper sign and of the order of ﬁ we get roughly Hoeffding inequality when

the Regret is O(1), which is possible for fixed 7" and for this specific lower bound to the optimal
wealth. Even better concentrations can be obtained carrying around the (X; — p)? terms, resulting
in an empirical Bernstein-style bound.

It is important to stress that we do not need to run the betting algorithm to obtain the concentra-
tion. Instead, we only need the existence of a betting algorithm and its associated regret guarantee.

Tighter concentration inequalities From the above reasoning, it should be clear that we can
obtain a tighter bound by giving up the closed-form expression by avoiding to lower bound the
wealth:
T
P<{ max In(1+ XX —p))>1n @ = IP{ max Wealthp(\) > R(T)} <94.
Ae[-11] ) Ae[-1,1] 1)
In this case, we can numerically invert this inequality and obtain a tighter concentration.

Now, we depart from Rakhlin and Sridharan (2017) and, instead of using Markov’s inequality,
we follow Jun and Orabona (2019) using Ville’s inequality (Theorem 10). We can do it because,
by the assumptions on the betting algorithm, the wealth is a non-negative martingale. The use
of Ville’s inequality gives the uniformity over time for free and gives us a high-probability time-
uniform concentration inequality. Namely, with probability at least 1 — §, we have

¢
max max In(1+AMXs—p)) <In Bl . 3)
toel-11] = o

Note that to obtain upper and lower bounds for p it is enough to find the set of values of y that
satisfies Eq. (3). This can be done efficiently because the argument of the max can be proved to be a
quasi-convex one-dimensional function in p (Orabona and Jun, 2021). The concentration inequality
above can be seen as a tight and implicit version of the empirical Bernstein’s inequality for bounded
random variables, just like how the KL.-divergence concentration inequality is an implicit and tight
version of the Bernstein’s inequality for Bernoulli random variables.

5. Main Results

The concentration inequality of Eq. (3) holds for i.i.d. random variables S = (X7,..., X,,). How-
ever, in many learning-theoretic applications, we are interested in providing confidence intervals for
the mean of some data-dependent function (such as the generalization error). To this end, in this sec-
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tion, we explore a scenario where X1, ..., X,, are replaced by a sequence f(0, X1),..., f(0,X,,)
such that f is a fixed scalar function and @ is a data-dependent parameter. Clearly, elements of such
a sequence are not independent, since dependence is introduced through parameter 6. Following
the PAC-Bayes viewpoint (McAllester, 1998; Alquier, 2021), 6 is now random and distributed ac-
cording to some user-chosen data-dependent distribution P, called posterior. In addition, unlike in
the traditional PAC-Bayes literature, our inequalities hold uniformly not only in P,, but also in the
sample size n. Thus, we construct a high-probability PAC-Bayes confidence sequence.

The next theorem, proved in Section 5.2, is the main result of our paper, which generalizes the
concentration analysis of Section 4 to the PAC-Bayes setting.

Theorem 1 Let S = (X1,...,X,,) be a tuple of i.i.d. random variables taking values in some
measurable space X. Let Py, be a data-dependent distribution over some measurable space © and
let Py be any probability measure over © independent from sample S. Let f : © x X — [0, 1] be
any fixed measurable function, let its mean be denoted by g = [ f(0,x) dPx(z), and introduce
n
Un(0,M) == max > In(1+A(f(6, X)) - M), (#€O,Me0,1]).

1
Ael==mr31] =1

Then, for all Py and for any § € (0, 1], we have?

>1ln—

L'(n+3) )

P {Eln eN,dP,: /¢:L(9’,U/9) dPn(e) - KL(PnHPO)
2

VTt 1) 1}§6. @)

Now we discuss some of the implications of Eq. (4) and compare it to existing PAC-Bayes results.
The important feature of Eq. (4) is that it holds simultaneously for all posterior distributions, so
we can freely choose the one that depends on the data. At the same time, Eq. (4) is similar in
shape to the concentration inequality of Eq. (3). In particular, 1% is an optimal log-wealth discussed
in Section 4, while I'(n + 1)/I'(n + 1/2) ~ \/n is the regret bound (R(n)) of a certain betting
algorithm. Observe that unlike Eq. (3), the left-hand side of the inequality is now integrated over
0 ~ P,, and the term KL(P, || P) appears on the right-hand side. In particular, the term KL(P, || P)
captures the capacity of the class of posterior distributions with respect to the prior Py, and it is a
standard component in PAC-Bayes analyses.

Obtaining known PAC-Bayes inequalities by relaxing Eq. (4) By relaxing Eq. (4), we demon-
strate that Theorem 1 gives a tighter concentration inequality compared to some inequalities in PAC-
Bayes literature (proofs are deferred to Section A). Importantly, our results extend these bounds as
our relaxations hold uniformly over n € N, whereas previous results hold for a fixed n. Abbreviate

+1nﬁf‘(n+1)

L(n+3)

As a basic sanity-check, we first recover a classical result of McAllester (1998) through the elemen-
tary inequality In(1 + 2) > = — 22 for z > —0.68 (similarly as in Section 4), proof in Section A.1.

1 n
[lg == — 0, X; d n = KL(P,|| P
o= L JOX)  and Gy KRR

Corollary 2 (McAllester’s inequality) Setr § € (0,1]. Under conditions of Theorem 1, for all
priors Py, with probability at least 1 — 6 over the sample S, for all n € N and for all data-dependent

2. Here 3n € N, 3P, is a shorthand notation for 3n € N, 3P € K(X™, ©) where K() is a set of probability kernels
as defined in Section 3.
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distributions P,, simultaneously we have

‘/p,gdPn(G)—/ﬂgdPn(Q)‘ < 2\/6”21“35.

Note that, up to constants, the above matches the result of McAllester (1998), and extends it — now
the bound holds simultaneously for all n € N.

Now we turn our attention to a type of PAC-Bayes inequality, where we the bound is given on
a KL divergence between Bernoulli distributions. Such bounds are useful in a setting of a binary
classification, where the parameter of a Bernoulli distribution models a conditional probability of a
positive class label. In particular, relaxing Eq. (4) gets a well-known inequality of Maurer (2004):

Corollary 3 (Maurer’s inequality) For p,q € [0,1] let kl(p,q) := pln(p/q) — (1 — p)In((1 —
p)/(1—q)), i.e., the KL divergence between Bernoulli distributions with parameters p and q respec-
tively. Set § € (0, 1]. Under the conditions of Theorem 1, for all priors Py, with probability at least
1 — 0 over the sample S, for all n € N and for all data-dependent distributions P,, simultaneously,

A( [ war.e). [mar.e) < CotIng

n

The above inequality matches Maurer’s bound up to a constant inside a logarithmic factor. Fur-
thermore, the proof of Corollary 3 in Section A.2 reveals that even relaxing Theorem 1 to have
[ KI(fi, po) AP, () in place of 1% (6, 1ug) on the LHS results in a bound that is tighter than Maurer’s
inequality. We confirm this numerically in Section 6.

We now consider a more sophisticated, sample variance-dependent concentration inequality,
which exhibits a faster rate of order 1/n whenever the sample variance is sufficiently small. In the
non-PAC Bayes form, such a empirical Bernstein’s inequality was shown by Audibert et al. (2007);
Maurer and Pontil (2009), whereas the PAC-Bayes version was first presented by Tolstikhin and
Seldin (2013). The following result recovers their result up to constants through a much simpler
proof by relaxing Theorem 1:

Corollary 4 (PAC-Bayes empirical Bernstein’s inequality) Ser d € (0, 1]. Introduce

. 1 [& . 1
V(Pn) =~ / D (f(0,X:) — 19)*dP(0),  Cpgi=Cp+1In 5
=1

Under the conditions of Theorem 1, for all priors Py, with probability at least 1 — § over the sample
S, for all n € N and for all data-dependent distributions P,, simultaneously we have

2Cp5 V(P) L 20
V= ZCus),  (n—2Cag),

‘/ue AP.(6) - [ dPn<9>' <

Note that the inequality is fully empirical and non-vacuous as long as C,, 5 < n/2 — similar (empir-
ically verifiable) requirement is also present in (Tolstikhin and Seldin, 2013, Theorem 4). Clearly,
the fact that we relaxed Theorem 1 to get Corollary 4 implies that our inequality is tighter.

Finally we show that our inequality is tighter than the ‘Un-expected’ Bernstein’s inequality
derived by Mhammedi et al. (2019). In particular, they presented a rather intricate data-dependent
inequality for the purpose of numerical evaluation. However, at the core of their proof lies the
following exponential moment inequality (Mhammedi et al., 2019, Lemma 13), which states that
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for a random variable Z € [0, 1] and some fixed A € [0, 1],
Eexp (AE[Z] - 2) - a(N)(A2)?) <1, )

where a()) := (—In(1 — X) — X\)/A\2. Here, the key observation is that Z2 appears outside of
the expectation compared to the standard Bernstein’s inequality, which might make concentration
inequalities derived from Eq. (5) numerically tighter. Next, we present essentially a corollary of
Theorem 1, shown in Section A.4, which is obtained by relaxing our results:

Corollary 5 (‘Un-expected’ PAC-Bayes Bernstein’s inequality) Ler A;(0) = f(0,X;) — ue.
Then,

Eexp | sup / i Z; (—)\AZ-(G) —a(A)(AAi(e))Q) dP,(0) —Cn | < 1.

Note that Corollary 5 is strictly more general compared Eq. (5) as it is a PAC-Bayes result and
involves a KL term within C,,. However, we can compare this inequality to Eq. (5) in a standard
concentration setting (choose P, Py to have KL(P,,, Py) = 0). In such a case, C,, < In(n)/2 (due
to incurred regret) and so Corollary 5 matches Eq. (5) up to a logarithmic term.

5.1. How to compute confidence intervals from Eq. (4) numerically

So far we discussed analytically computable relaxations of our inequality. Now we turn our atten-
tion to numerical computation of Eq. (4) which does not require any relaxation. Given a concrete
posterior and prior pair (P, Py), we propose to obtain confidence bounds for the mean | 119 d P, (6)
by solving the following optimization problem:

Proposition 6 Setr § € (0, 1]. Consider the optimization problem

My = max /h(@) dP,(0) subject to /1/1,’;(9, h(0))dP,(0) <C, + ln% , (6)

where H is the class of mean functions over supp(P,) and C,,+1n % is the right hand side of Eq. (4).
Moreover, assume that My, be obtained by replacing max with min. Then, under the conditions of
Theorem 1 and with probability at least 1 — 9, we have

Mi < [ o dPu(6) < My

In other words, the optimization in Eq. (6) is carried out over the class of means of a given distri-
bution, and the solution gives us a valid confidence interval since Theorem 1 holds for any data-
dependent posterior, and so it must hold for some posteriors with means within the class. Moreover,
surprisingly enough, the optimization problem is convex since 1 (6, M ) appearing in the constraint
is convex in M, thanks to the following lemma proven in Section A.S.

A — x)). Then, f(x) is convex for z € [0, 1].

In Section 6 we present synthetic experiments validating the numerical tightness of the confidence
intervals obtained by solving the problem in Proposition 6.
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5.1.1. MONTE CARLO APPROXIMATION OF THE INTEGRAL

The confidence intervals of Proposition 6 can be obtained efficiently as long as we can efficiently
compute or estimate integrals over parameters. When © is finite we can clearly replace integrals by
summations. On the other hand, for continuous (or prohibitively large finite) © we can employ a
Monte Carlo approximation of the integral. In particular, we can use the procedure in Algorithm 1.

Algorithm 1 Monte Carlo Approximation
1: Input: Failure probability §, sample size parameters K, m € N, posterior P, prior Fy
2: Sample K tuples independently (6;);cp, ~ Py for k € [K]| where
By={(k—1)m+1,...,km}
3: Solve the following optimization problem for every k € [K]|:

1 1 1
Z = — ; St — (0, vp,) < Cp <
vy (k) max Z vp, S.t - Z Py (6i,v9,) < Cp +1In 5 7

{ve; Yiem, ™ o5 i€ By,

4: Repeat the above while replacing max with min. Call the resulting optimal objective function
as v (k), Vk € [K] )
5: Let ky = arg maxy¢(k) Py (k) and kr, = arg ming¢ (g V()

6: Compute
~ In & . In &
My =max {Mi kl (ﬂU(kU),M) Sm%} , M7 =min {Mi kl (ﬂL(kL),@ gTrf‘S } (8)

7: Output: My, and My,

The following corollary of Theorem 1 (proved in Section A.7) states its correctness.

Corollary 8 Ser § € (0,1]. Under the assumptions of Theorem 1, let K = [In(1/§)]. Then, with
probability at least 1 — 30, the outputs My, and My of Algorithm 1 satisfy

My, < /Me dP,(0) < My .

Algorithm 1 works by carefully controlling the Monte Carlo approximation through the deviation
of the sample average over parameters from the integral. In fact, while this is straightforward for
bounded random variables, 5 considered here is not bounded. One may attempt to make it bounded
by clipping 17 (6;, g, ) or reducing the range of \ in the max operator in the definition of ¢}, but
these both lead to nonconvex constraints in Eq. (7). Alternatively, since Eq. (6) suggests that we
need to lower bound an integral, we could right away get a “low-probability” bound arising from
Markov’s inequality: § [ 47 (6, pug) dP,(0) > L > ien, (0, pi) - Since this is unsatisfactory,
here we resort to the “boosting-the-confidence” method (Schapire, 1990; Shalev-Shwartz et al.,
2010) which allows to convert polynomial concentration bounds into exponential ones at the ex-
pense of sample partitioning and running the algorithm multiple times, as described in Corollary 8.
Note that in our case this just translates into extra computation (running Monte Carlo approximation
on K independent parameter tuples), because we can always sample more parameter observations
from P,. Corollary 8 is then justified through the use of the following inequality shown in Sec-

tion A.6:

10
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Proposition 9 Under conditions of Corollary 8, with probability atleast 1 — e K,
(6 dP,(0) > — 0;, 9
/wn( 10) APy (0) 2 min Z W (0, 1o,) ©9)

How large m needs to be? One question not discussed so far is the choice of Monte Carlo sample
size m. Technically, Proposition 9 holds for any m € N, but we can expect that choosing small m
will result in overly loose constraints in Eq. (9) and so the final confidence intervals will be wide.
To gauge a good choice of m we consider a lower tail Bernstein’s inequality (Maurer, 2003), which
lower bounds the left-hand side of the constraint Eq. (9):

2In }
—zﬂhww ﬁﬁm@ww>¢;?/m@mmm@ . a0

n
Thus, having a raw second moment of ¢ of order o(m) guarantees asymptotic convergence of the
sample average to the integral in the constraint (9). Having a finite raw second moment suggests
that the constraint is tight and a reasonable choice, is, for instance, m = n?. On the other hand,
for “hard” problems (e.g., heavy-tailed) such moment is infinite and Monte Carlo estimation is
infeasible.

5.2. Proof of Theorem 1

Let A;(6) := f(0,X;) — E[f(0,X1)] and notably E[A;(#)] = 0 for any § € ©. Consider an
algorithm betting a signed fraction of its wealth equal to B;(6) at step i and observing the outcome
A;(6). Note that B;(0) is X(X1, ..., X;_1, 0)-measurable. Let the following be the cumulative loss
(log-wealth) of the algorithm and the optimal cumulative loss, respectively

=> In(1+Bi(0)A(0),  ¥h(0):= [max } > I (14 AA(6)) .
i=1 € 7171%,% i=1

We are interested in showing an upper bound on [ ¢ (0) d P, (6) which holds for all data-dependent
distribution P,, simultaneously, and with high probability over the data. To this end, Orabona and
Jun (2021) show that, for any § € O, there exists a betting algorithm which guarantees that?
I'(n+1)
“(0) — thn(0) < In YLD
So it remains to give a bound on ¢, (P,,). We will need the following concentration inequality.

1)

Theorem 10 (Ville’s inequality (Ville, 1939, p. 84)) Let A1, ..., A, be a sequence of non-negative
random variables such that E[A; | Aq,...,A;—1] = 0. Let My > 0 be X(Aq,..., A 1)-
measurable such that My = 1, and moreover assume that E[M; | Ay, ..., Ai—1] < My_1. Then,

forany 6 € (0,1], P{maxt M; > %} <.
The proof will also require the following well-known change-of-measure inequality:

Lemma 11 (Donsker and Varadhan (1975); Dupuis and R. S. Ellis (1997)) Letp and q be prob-
ability measures on © such that p < q. Then, for any measurable function f : © — R, we have

/}wmmmSKumw+m/émma@.

3. Data-dependent bounds on the regret were also shown by Orabona and Jun (2021).

11
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Applying the above with p = P,,, ¢ = Py, f = 1, and taking max,,cn, we obtain

rgggslgf/wn(@) AP, (0) — KL(F,[|1Po) < lm’%)’(/g (1+ Bi(0)Ai(0)) dPo(0), (12

My,
where supp, = supp, cx(xn @) and where we exchanged In and max,ecn. Now, the plan is to
apply Theorem 10 to M,,, which requires to show that M,, is a martingale. Using the notation
Ei[] =E[|A1(0),...,A;0),0], we have

En1[My] = Eng / ﬁ (1 + Bi(0)Ai(0)) dPy(0) 2 / 1 f[ (1+ B;(0)A4(6)) dPy(0)
=1 =1

n—1

= /Enl [(1 + Bn(H)An(G))] T (1 + Bi(0)2i(6)) APy (6)

i=1
n—1
_ / [T (1 + Bi(6)A:(0)) dPy(8) = My,
=1

where (a) comes using the fact that P is independent from the sample S and by Fubini’s theorem.
Thus, applying Theorem 10 to Eq. (12), we obtain

Plmax sup /zpn(e)dPn(G)—KL(PnHPO)glnl >1-6  (5e(0,1]).
neN PoeK(X™,0) 0

Finally, using Eq. (11) gives the statement and completes the proof. |

6. Experiments

In this section, we validate the numerical tightness of Theorem 1. Additional experiments are in
Section B.* We perform experiments on simple synthetic scenarios where the parameter space is
finite, and we fix the posterior and prior distributions. We evaluated all the bounds on a sample size
rangen € {2°: ¢ =1,...,15}, and we averaged the bound over 20 repetitions for each sample size.
In particular, we compare Corollary 8 to several PAC-Bayes baselines such as McAllester (1998),
London and Sandler (2019), Maurer (2004) and Tolstikhin and Seldin (2013), and one additional
algorithm KL-ver under several synthetic environments.

KL-ver, the KL version of our algorithm, uses n - KL(/ig, u¢) for the optimization problem in
Eq. (6), instead of ¢" (0, ng). Theoretically, the log-wealth function 1% (0, ug) is always greater than
n - KL(fig, 119) by Proposition 3. On the other hand, Maurer’s bound is looser than KL-ver, which
is shown in the proof of Proposition 3 in Appendix A.2. Hence, KL-ver is an ablation study on our
novel optimization problem — KL-ver is looser than our proposed method of Eq. (6) but tighter than
Maurer’s bound that is known to be very tight numerically.

The first experiment, reported in Figure 1, represents the case where X; ~ Bernoulli(1/2) i.i.d.,
Py = Bernoulli(0.8), P, = Bernoulli(0.9), and f (0, z) = x6. The second experiment, in Figure 2,
represents the case where X; ~ N(0,1) i.i.d., Py = (Bin(6,0.7)—3)/4, P,, = (Bin(6,0.8) —3) /4,
and f(0,x) = (erf(z0) + 1) /2. Here, erf is the Gaussian error function and Bin(n, p) is a binomial
distribution, with n € N being the number of samples, and p € [0, 1] the probability of success.

4. Code can be found at: https://github.com/jajajang/coin_betting pac bayes

12
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ours
Mcaliister | |
London
Maurer
———Empbem || 08l
— — True value
Kl-ver

ours
Mcaliister | |
London
Maurer
———Empbem ||
— — True value
Kl-ver

log,(n) log,,(n)
Figure 1: Bernoulli case. Figure 2: Binomial case.

Since O is finite, we can explicitly calculate the means without resorting to the Monte Carlo
simulation. Hence, the optimization problem of Proposition 6 reduces to (and similarly for the
lower bound by replacing max with min)

max > po-Pu(0) subjectto Y (0, pg) - Po(0) < Cp + e (13)
{no:6supp(Pn)} §=2 o 0
This is a convex optimization problem as we showed before, so we can use any off-the-shelf solver.’

Both figures show that our confidence intervals are consistently tighter than the ones of the
baselines. Moreover, our guarantee and the one of KL-ver hold uniformly over time, while it holds
for a fixed number of samples for the baselines. Furthermore, for the Bernoulli case, KL-ver is
the same as our bound and still better than Maurer’s, and in the Binomial case, it is worse than
ours and very close to Maurer’s bound. This confirms our theoretical finding that our approach is
“two-inequalities away” from Maurer’s bound. For the case of continuous O, check Appendix B.

7. Conclusions, limitations, and future work

We have presented a new PAC-Bayes bound based on a concentration technique derived from the
coin-betting formalism. Our new upper bound implies some previous results from PAC-Bayes liter-
ature, and at the same time, we have shown that it is tighter in numerical simulations.

One limitation of our result is that it lacks a closed-form minimizer of the upper bound, such as
the Gibbs measure in the standard PAC-Bayes analysis. While this is not surprising, it introduces a
trade-off between computational complexity and tightness of the bound that was absent in previous
approaches. In the future, we aim at precisely characterizing this trade-off, possibly delineating its
Pareto frontier. Another interesting venue is to investigate the numerical minimization of our upper
bound over data-dependent distributions for risk minimization problems.
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Appendix A. Remaining proofs
A.1. Proof of Corollary 2

Consider the left hand side of Eq. (3) without max, cn. Then, we have the following inequalities:

/Ae max Zm (14 A(F(0,X:) — pg)) AP (6)

ugug =1

/ max ' In (14 A(f(0, Xi) — po)) dPa(6)

> — )2 N 2
mafl]{)\iz ~ ) — A ;(f(Q,XZ) 10) }dPn(H)

> )2

> [ max, {)\Z ) — A n} AP, (6)

_ L n(f(eX) )) dP,(8) (Maximizing in A; note that optimal A € [—1, 1]

=0 (; i —u9> n (Maximizing in A; note that optima —1,1])

> 4n / Z f(0,X;) — pg)dP, (6)) , (Jensen’s inequality)
where step (a) comes since [—1,1] C [—3 1#0 #10] since pp € [0, 1] almost surely. Now, applying

Theorem 1 gives
PJdneN,3P '(/En(f(GX»)—u)dP(H))Q—C >ln= 3 <4
b n - ]n ‘ I K3 0 n n - S —=

and the statement follows. |
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A.2. Proof of Corollary 3
The proof is based on the following proposition:

Proposition 12 ((Orabona and Jun, 2021, Proposition 1)) Ler X1,...,X,, € [0,1], let fi :=
(X1 + -+ X,,)/n, and moreover let i1 := E[X1] € [0, 1]. Then,

,f,zln (14 MY — ) > ni(i )

1—ppd 9=1

Moreover, if X1, ..., X, € {0,1}, we achieve equality in the above.

Then, Proposition 12 combined with Theorem 1 gives that with probability at least 1 — §, simulta-
neously for all n € N and all P, we have

0l
AL [ WG o) 4P 0)

/ Z (EZiE } /;(3) Bern(x | f1p) dP,(0)

z€{0,1}

(;) Z I <fBern(x | f19) dPn(9)> /Bern(z | f1g) AP, (0)

_ kl(/ﬂgdPn(H),/Me dPn(9)> :

where (a) comes by exchanging summation and integration and applying the log-sum inequality. l

A.3. Proof of Corollary 4

The proof largely follows that of Orabona and Jun (2021, Theorem 6). Set €9 = g — jig, and so
€9 + fig € [0, 1]. Then, we have

n

(0, o) > \nax In (1+A(f(0, X;) — (f16 +€0))) ,
i=1
and applying Jensen’s inequality
n
[ @mar, = max [ ST (14 270.X) ot @))aP,. (4
i=1
Now, we further relax the above by taking a lower bound. In particular, (Fan et al., 2015, Eq. 4.12)
shows that for any || < 1 and || < 1,
In(1+ Az) > Az + (In(1 — |A) + [A])2?. (15)

The above is combined with the following lemma:

Lemma 13 ((Orabona and Jun, 2021, Lemma 5)) Let f()\) = aA+b(In(1—|X|)+|\|) for some

a2
a < R, b Z 0. Then, maX)\e[_l’l} f()\) Z W.
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Thus,

/1/} (0, po) dP, >>\/Z f(0,X:) — (g + €9)) AP,

4 (In(1 — A + [A] /Z F(0,X3) = (g + e0)) AP,

= —n)\/eg dP,

+ (In(1 — A +|A]) /Z(f(e,xi) —,19)2dpn+n/e%; dpP,
=1
®)
> —m/e@ dp,

(= W)+ ) | [ 300X o ar o ( [ aar,)
n’ (fﬁadP )"

(4/3)n | [ epdPu| +2 [ S0, (F(0, X:) — f19)? APy + 20 ([ e dP,)*

where step (a) comes by application of Egs. (14) and (15), step (b) comes by Jensen’s inequality,
and step (c) comes by application of Lemma 13. Now, the above combined with Theorem 1 gives

n? (/egdPn>2§n (Cn—i-ln;) (;1 /egdPn +2V(Pn)+2(/69dpn>2> :

Finally, solving the above for | €y dP,, using subadditivity of square root, and relaxing some nu-

merical constants we get
\/2 (C” +1n %) V(Py) 2 (Cn +1In %)

‘/egdpn < +
<n—2 (Cn—l-ln(l;))

_(\/ﬁ 2 (c. —|—ln(15>

—

Cc

>

=

+ +

A.4. Proof of Corollary 5

Recall that C,, = KL(P,,||Py) +1n % We will use several facts from the proof of Theorem 1
appearing in Section 5.2. Consider Eq. 2(12) (without taking max,¢cn -) combined with Eq. (11),

which gives us

sup [ 43(6)dP(6) - €, < n / H + Bi(0)Ai(6)) APy (6),

P’IL

My
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and taking exponential and expectation on both sides,

Eexp (sup/@b )dP,(0) —C ) <EM,=1

since My = 1.
Now we will lower bound the left hand side in the above by using (Fan et al., 2015, Eq. 4.11)
(which also appears in (Mhammedi et al., 2019, Eq. 15)): namely for z € [0, 1],

exp(=Az — N2a(N)z?) <1 -z (A€ (0,1))
where a(\) = (—In(1 — \) — X\)/A%. Recalling definition of 1% and using the above inequality,
Yp0) = max ) In(14XA(0))

NS [7 — L] i=1

Y

In (14 A2 (6
e 2 n (1+244(0))

n

> “AA;(0) — a(MN2A;(0)?
_g[%ﬁ]“( () — a(A2A(6)?)

which completes the proof. |

A.5. Proof of Lemma 7

We can rewrite f as

1 1 1
f(x):orgl?é(l i1+ (e ) <_1—w+<1—x+x>b>

Now, consider the argument of the max. We claim that it is convex in x for any b € [0, 1]. In fact,
the second derivative is
1 1 b+c— 1) 1 1 1
( ) =—+ - (16)

22 + (1-2)2 (—z(b+c)+bc+2)? 22 (1—=z)? (z + 1_bbc_c)2

We claim that for b, ¢ € [0, 1], we have g(b, c) := -2 - € (00, —1] U0, 00). To see this, fix b
and consider ¢ < 1 — b. In this regime, g(b,0) = 0 and g(b, ¢) is increasing to infinity as ¢ goes
from 0 to 1 — b. In the other regime of ¢ > 1 — b, we have ¢g(b,1) = —1 and g(b, c¢) is decreasing as
¢ decreases from 1 to 1 — b. This proves the claim.

Therefore, to lower bound (16) we need to lower bound (z + z)? where z € (—o00, —1]U[0, c0).
Since (x + z)? is minimized at —x but the range of z never includes —z (except for the boundary
case), we have that min, ¢ (_ oo _1]ujo,00) ( + 2)* = min{(x — 1)?, 2*}. Therefore,

(b+c—1)2 - 1 1o 1 1
— —max4 ————, 5 > ————— — — .
(—z(b+c)+bc+a)? (x —1)%" 22 (x—1)% 22
Hence, f is a maximum of convex functions, that concludes the proof. |
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A.6. Proof of Proposition 9

It is clear that the optimal log-wealth )% (6, 1g) is non-negative over all arguments, because the
maximization range includes 0. Then, for a fixed block By, by the non-negativity of ¢, Markov’s
inequality gives

P [0r6.0) APL(O) < o 5 UilBion) p < Ve

i€B k
Since all blocks are independent,

P ﬂ e [0 APAO) < Y UiBipa)} b <

i€By,

and so there exists at least one By, such that with probablhty atleast 1 — e X,

[ 6.0 aPs0) = S 0B

1€ By

Thus, with probability at least 1 — e~ %,

/@Z)Z(evﬂ@)dpn(g > min — Z@Z) zaHG

kelK] em

Note that we can change e to any other constant C > 1. Then, with probability 1 — C~X,

[ 6.0 aPs0) = min 2 0505 10,

ke[K]

A.7. Proof of Corollary 8

Recall that (6;),cp, ~ P, forany k € [K] and pg, = E[f(6;, X1)], Vi € [Km]. Our goal is to find
an upper and lower bound for p* := [ p19 dP,(6). Given P, (), Theorem 1 gives us

1
]P’{En €N, 3P, : /1/1,*1(0,/19) dP,(0) —C, < lnd} >1-9. (17)
Moreover, using the union bound and the standard KL-divergence concentration inequality for [0, 1]-

bounded random variable, we have

1 K
P< max kl | — ol <ln—3>1-96. 18
max miEZBkual w| <ngs o> (18)

Furthermore, Proposition 9 states that

mmfqun (0, 119,) /Qpneug AP, (0) | X1,..., Xpp 21— K. (19)
By the union bound, and assuming setting K = [In(1/0)| one can see that with probability at least
1 — 34, the concentration events in the three inequalities are all true. Assume that these events are

true. It suffices to show p* < My since the proof of p* > M is symmetric.
Denote by Vg{, the solutions of the optimization problem in (7).
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Let k* = argming¢ g L > ien, Yn(0i, po;). By the events in (17) and (19), we have that

m

(16, )ie B, is a feasible solution of (7) with k = k*. This implies that

1 1 1 .
a(k*) = — < — U<— U_p =: "
pk™) = — E po, < — E Vo < > vl =wy(ky) = v (20)
ZGBk* ZEBk* ZEB];U

Consider the following two cases:

Case 1: v* > u*.
We just need to verify that v* < My;. This holds by the definition of M.

Case 2: v* < u*.
We have
K
K", 1) < KGR, 1) < In o € K, M)

where the first inequality is due to i(k*) < v* < p*. Applying the monotonicity of kl in the
second argument to kl(v*, u*) < kl(v*, My ), we have pu* < M.

This concludes the proof. |

Appendix B. Monte Carlo experiment

In this section, we investigate numerically the Monte Carlo approximation discussed in Section 5.1.1.
In particular, we want to validate the claim that the confidence intervals calculated with Algorithm 1
are better than the ones of Maurer (2003) when enough Monte Carlo sample are used.

Here is the list of parameters in our experiment:

The number of samples: n = 32 (Figure 3), n € {2°: c € {1,...,4}} (Figure 4).

The number of groups: K = 4, the corresponding multiplier: C' = 2.1147 (check the end of
Appendix A.6).

The number of Monte Carlo samples in each group: m € {2¢: ¢ = 1,...,10} (Figure 3),
m = 256 (Figure 4).

Parameter space © = R.

Prior distribution Py is N (0, 1).

Posterior distribution P, is N (0,0.25).
Samples: X, ..., X, drawn from N (0, 1), i.i.d.
f(0,z) = (erf(z0) +1)/2.

Failure probability 6 = 0.05.

For the fair use of parameters, we ensure that the total number of MC samples used in Maurer’s
bound matches that of ours. That is, when ours use m Monte Carlo samples for each group k € [K],
Maurer’s bound use M = m - K Monte Carlo samples. We describe how we compute Maurer’s
bound numerically in Algorithm 2.
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Algorithm 2 Monte Carlo Approximation for Maurer’s Bound
1: Input: Failure probability §, sample size parameters M € N, posterior P,,, prior Py
2: Sample (6;);e(ar) ~ pM
3 v = 57 Ej]\il fio, = 1 Ej]vil >y f(0i, X5)

) B ln(%)
4: Letw = ™M

5: Compute the monte-carlo error bound.

ky =max {p: Kl (ar, 1) <w} k;, =min {p: Kl (fnr, p) <w} (21)

6: Compute

" Cn+1n 5 Cn+1n2
MU:maX{M: kl (k:U,,u) §—;n§} ,ML:min{,u: kl (k‘L,,u> §—;n5} 22)

\]

: Output: My, and My;

The value w in Algorithm 2 is the confidence width of the Monte Carlo error between fi,, and
[ fig AP, () based on the following Proposition 14 that can be shown using the standard Chernoff
technique (e.g., Corollary 10.4 of Lattimore and Szepesvdri (2020)).

Proposition 14 (Binomial Chernoff bound) Let § € (0,1]. Let Ay,
quence of i.i.d. random variables with mean i = E[A]. Let A = ﬁ >
least 1 — 0, we have

..., Ay € [0,1] be a se-
i]\il A;. With probability at

_ In(2)
kI (A, p) <22,
(A1) <\ =5
When the parameter space © is discrete, we can precisely compute [ fig dP,(6), and from this
value we can use Maurer’s bound to obtain the confidence bound. However, in our current setting
we only have [k, k]| that is a confidence interval for [ jig dP,(6). In this case, the confidence
bound of actual [ ppdP,(6) is the union of all possible confidence intervals, or formally,

Cn—l—ln(ls}

Uiy o] {u k(s p) < -

Thanks to the property of the kl, we only need to check two endpoints ky and ky to get the final
Maurer’s bound (M, My).

Figure 3 shows that our Algorithm 1 outperforms the Maurer’s bound with sufficient amount of
Monte Carlo samples. Even with the increasing number of data samples (Figure 4), our algorithm
steadily outperforms the Maurer’s bound.
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Figure 3: Confidence width vs Monte Carlo

Figure 4: Confidence width vs the number of
samples (m).

samples (n).
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