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Abstract

We consider the problem of estimating the mean of a sequence of random elements f(θ,X1) , . . . ,
f(θ,Xn) where f is a fixed scalar function, S = (X1, . . . , Xn) are independent random variables,

and θ is a possibly S-dependent parameter. An example of such a problem would be to estimate

the generalization error of a neural network trained on n examples where f is a loss function.

Classically, this problem is approached through concentration inequalities holding uniformly over

compact parameter sets of functions f , for example as in Rademacher or VC type analysis. How-

ever, in many problems, such inequalities often yield numerically vacuous estimates. Recently, the

PAC-Bayes framework has been proposed as a better alternative for this class of problems for its

ability to often give numerically non-vacuous bounds. In this paper, we show that we can do even

better: we show how to refine the proof strategy of the PAC-Bayes bounds and achieve even tighter

guarantees. Our approach is based on the coin-betting framework that derives the numerically

tightest known time-uniform concentration inequalities from the regret guarantees of online gam-

bling algorithms. In particular, we derive the first PAC-Bayes concentration inequality based on

the coin-betting approach that holds simultaneously for all sample sizes. We demonstrate its tight-

ness showing that by relaxing it we obtain a number of previous results in a closed form including

Bernoulli-KL and empirical Bernstein inequalities. Finally, we propose an efficient algorithm to

numerically calculate confidence sequences from our bound, which often generates nonvacuous

confidence bounds even with one sample, unlike the state-of-the-art PAC-Bayes bounds.

Keywords: Concentration inequalities, PAC-Bayes, confidence sequences, coin-betting.

1. Introduction

Suppose that S = (X1, . . . , Xn) ∈ X are random elements distributed identically and inde-

pendently from each other, on a probability space (X ,Σ(X ), PX). For illustration, assume that

X = R: A classical problem in probability and statistics is to quantify how quickly an average

(X1 + · · ·+Xn)/n converges to the mean E[X1], and over the decades this problem was success-

fully attacked under various assumptions on the probability space through concentration inequali-

ties (Boucheron et al., 2013). The key assumption which enables these concentration inequalities to

exhibit fast convergence to the mean is independence. However, in many learning-theoretic prob-

lems we are interested in the concentration of random elements which themselves depend on the
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sample S, and therefore are not independent. In this paper, we formalize the above by assuming

that we are given a fixed measurable function f : Θ × X → [0, 1], where Θ is a parameter space,

and so now we are interested in the concentration of (f(θ,X1)+· · ·+f(θ,Xn))/n around its mean,

where θ is potentially S-dependent. For example, f(θ,Xi) could be the loss incurred by a learning

algorithm on the i-th example, where the parameters θ are generated based on the sample S. In the

context of this example, the mean E[f(θ,X1)] is called the statistical risk.

To this end, the classical approach to alleviating the dependence nuance is to derive uniform

concentration inequalities that hold simultaneously for all parameters in a compact set Θ. For

example, consider the following concentration inequality that holds with probability at least 1− δ,1

sup
θ∈Θ

∣
∣
∣
∣
∣
∣

1

n

n∑

i=1

f(θ,Xi)− E[f(θ,X1)]

∣
∣
∣
∣
∣
∣

≲

√

capacity(Θ) + ln 1
δ

n
.

Here the capacity term, such as VC dimension, metric entropy, or Rademacher complexity (Wain-

wright, 2019), scales with the “size” of the set Θ. Mentioned notions accurately capture the capacity

in many learning problems, such as with linear parameterizations (Bartlett and Mendelson, 2002;

Kakade et al., 2008). However, in some other problems, e.g., in learning with overparameterized

neural networks, the pessimistic nature of uniform bounds makes them vacuous (Zhang et al., 2017).

On the other hand, in recent years, there has been a strong interest in the alternative to the uni-

form bounds, based on the PAC-Bayes analysis (Shawe-Taylor and Williamson, 1997; McAllester,

1998), which, remarkably, on some instances demonstrates non-vacuous bounds for the generaliza-

tion ability of deep learning algorithms (Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021; Zhou

et al., 2019). In the PAC-Bayes analysis instead of taking supθ∈Θ as in the uniform approach, we

assume that the parameters θ are now random and follow a data-dependent, so-called, posterior

distribution Pn. In this paper, we are interested in estimating an expected mean
∫
µθ dPn(θ) with

µθ :=
∫
f(θ, x) dPX(x), uniformly over all data-dependent posteriors Pn. This setting covers the

one considered in the PAC-Bayes literature (Alquier, 2021) where usually the function f represents

the loss of a predictor parameterized by θ from a parameter space Θ. In this view, we can think

of µθ as the risk of a predictor parameterized by θ, while
∫
µθ dPn(θ) is the risk of a randomized

predictor that uses a random θ drawn from the distribution Pn. The second important component

of the PAC-Bayes model is a prior distribution P0 which does not depend on S and captures our

prior belief about the inductive bias in the problem instance. A basic PAC-Bayes concentration

inequality (McAllester, 1998) then takes the form of
∣
∣
∣
∣
∣

∫
1

n

n∑

i=1

f(θ,Xi) dPn −
∫

µθ dPn(θ)

∣
∣
∣
∣
∣
≲

√

KL(Pn∥P0) + ln 1
δ

n

with probability at least 1− δ, where instead of the capacity term we have a Kullback-Leibler (KL)

divergence between the posterior and the prior. Numerically speaking, PAC-Bayes bounds tend to

give much tighter bounds than their uniform counterparts, largely because the KL term is typically

smaller than the capacity term (such as VC dimension), for an appropriate (user’s) choice of Pn, P0.

Our contributions: PAC-Bayes meets coin-betting In this paper, we show that we can obtain

even tighter PAC-Bayes bounds using recent advances in the theory of concentration inequalities

through gambling algorithms (Orabona and Jun, 2021). In particular, we show that it is possible to

obtain a new coin-betting based PAC-Bayes bound that directly implies a number of previous results.

1. The notation ≲ hides universal constants and logarithmic factors.
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Moreover, numerically evaluating this new upper bound, we show that it is numerically tighter than

all previous approaches. In Section 5 we present our main result, a concentration inequality of

the following form, which holds with probability at least 1 − δ, simultaneously for all n ∈ N, all

data-dependent posteriors Pn, and all data-free priors P0:
∫

max
λ∈[− 1

1−µθ
, 1

µθ
]

n∑

i=1

ln
(
1 + λ(f(θ,Xi)− µθ)

)
dPn(θ) ≤ KL(Pn∥P0) + ln

c
√
n

δ
. (1)

Moreover, the confidence interval for
∫
µθ dPn(θ) is obtained by solving the optimization problems

[

min
h∈M

∫

h(θ) dPn(θ), max
h∈M

∫

h(θ) dPn(θ)

]

, (2)

where M is a class of mean functions (µθ)θ∈Θ that satisfy the constraint given by Eq. (1), which

is the first of its kind in the PAC-Bayes literature. We formalize these optimization problems in

Section 5.1 and show that the constraint is convex, making them efficiently solvable in some cases.

In Section 6 we also experimentally validate our approach.

In addition, we show that Eq. (1) is tighter than some well-known PAC-Bayes inequalities,

such as McAllester’s inequality (McAllester, 1998), Maurer’s inequality for Bernoulli KL diver-

gence (Maurer, 2004), and PAC-Bayes empirical Bernstein’s inequality (Tolstikhin and Seldin,

2013). This is done by relaxing inequality in Eq. (1) by simple lower bounds of the logarithmic

term. We show that even relaxing Eq. (1) leads to a tighter bound than Maurer’s one that is known

to be very tight numerically.

The observation above implies that from our result we can derive all these versions, obtain

bounds, and then take an intersection of all of them without having to split δ. This is in stark contrast

to empirical Bernstein’s bounds (Tolstikhin and Seldin, 2013) that are often numerically looser than

KL bounds, while being orderwise tighter than KL bounds like Maurer’s one. Attempting to take an

intersection with KL bounds requires splitting δ, which undesirably inflates the bound. This is not

the case for our method – our result can be seen as “the right” type of concentration inequality that

is superior to the rest up to constant factors inside an additive logarithmic term. Finally, Eq. (1) (and

all its corollaries) holds simultaneously for all sample sizes, delivering time-uniform PAC-Bayes

confidence sequences.

Organization of the paper After a discussion of related work (Section 2) and notations (Sec-

tion 3), in Section 4 we briefly present the idea behind concentration through coin-betting. In

Section 5 we present our main results, discuss some implications, and include the proof of a new

concentration inequality in Section 5.2. In Section 5.1, we discuss how to compute our concentra-

tion inequality numerically (without any relaxations). Finally, in Section 6 we present numerical

simulations comparing our inequality to a number of baselines from the PAC-Bayes literature.

2. Related Work

Concentration from coin-betting The coin-betting formalism considered here (see Section 4)

goes back to Ville (1939) and Kelly betting system (Kelly, 1956) and has an intimate connection to

the Universal Portfolio theory (Cover, 1991). Building on the ideas of Ville (1939), Shafer and Vovk

(2001) introduced a general framework aiming at giving a foundation to the theory of probability

rooted in gambling strategies. However, their framework is very general and it does not suggest

specific methods to construct the betting strategies. The first paper to introduce the idea of using

3
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the regret of online betting algorithms to produce new concentration inequalities was in Jun and

Orabona (2019), which in turn builds on Rakhlin and Sridharan (2017) that showed the equivalence

between the regret guarantees of generic online linear algorithms and martingale tail bounds.

PAC-Bayes Since the introduction of PAC-Bayes bounds by McAllester (1998), there has been

significant growth and development in both theory and applications; see Alquier (2021) for a com-

prehensive survey. Early papers focused on tightening the bound of McAllester (1998), which can be

seen as a PAC-Bayes version of Hoeffding’s inequality. In particular, Langford and Caruana (2001);

Seeger (2002); Maurer (2004) focused on the setting of a binary classification where the goal is to

bound KL divergence between Bernoulli distributions. Such bounds are tighter than the mere differ-

ence of the risk and empirical risk due to Pinsker’s inequality, and the numerically tightest known

inequality within this group is Maurer’s inequality (Maurer, 2004) (see for instance experiments of

Mhammedi et al. (2019)). In this paper, we recover the result of Maurer (2004) by relaxing Eq. (1).

Towards data-dependent bounds, Tolstikhin and Seldin (2013) adapted an empirical Bernstein’s

inequality (Audibert et al., 2007; Maurer and Pontil, 2009) to the PAC-Bayes setting, making gener-

alization bounds variance dependent. Once again, we recover the PAC-Bayes empirical Bernstein’s

inequality by relaxing our main result of Eq. (1) without any plug-in arguments, through a relatively

straightforward proof. Several works went further in making bounds data-dependent by manipulat-

ing the KL term. Ambroladze et al. (2006) explored the idea of splitting the sample and deriving the

prior from a held-out sample while obtaining the posterior from the remaining part. This technique

proved very fruitful in making PAC-Bayes bounds much tighter. Indeed, recent non-vacuous gen-

eralization bounds for deep neural networks are largely attributed to this technique (Dziugaite and

Roy, 2018; Pérez-Ortiz et al., 2021). Clearly, the results developed in this paper can be readily ap-

plied together with the splitting technique. The splitting technique was also investigated beyond the

KL term. In particular, Mhammedi et al. (2019); Wu and Seldin (2022) developed intricate bounds

akin to empirical Bernstein’s inequalities where the splitting is done with respect to the sample vari-

ance (two variance terms) in addition to the KL term. These are among the numerically tightest

known PAC-Bayes bounds. However, due to their highly problem-dependent nature, it is challeng-

ing to compare these bounds theoretically. Several other works, such as (Rivasplata et al., 2020;

Awasthi et al., 2020) explored proof techniques (e.g. differential privacy and stability of resulting

measures) allowing to derive PAC-Bayes bounds with data-dependent priors without splitting the

sample.

The proof of our main result relies on showing that the exponential moment of the optimal

log-wealth with respect to θ is a martingale. Several papers in PAC-Bayes literature have shown

results exploiting (super-)martingale concentration, which allowed them to relax the independence

assumption in the data sequence (Seldin et al., 2012) or to replace boundedness of f() by weaker

assumptions (Kuzborskij and Szepesvári, 2019; Haddouche and Guedj, 2022). To this end, Had-

douche and Guedj (2022) exploited Ville’s inequality (as in our proof), which allowed them to show

a bound that holds uniformly over n ∈ N.

Finally, it is known that solving the classical PAC-Bayes bound of McAllester (1998) for the

posterior results in a Gibbs posterior Pn(θ) ∝ e−
1

n

∑

i f(θ,Xi) dP0(θ). A large body of literature

has looked at learning-theoretic properties of Gibbs predictors (Catoni, 2007; Alquier et al., 2016;

Raginsky et al., 2017; Kuzborskij et al., 2019; Grünwald and Mehta, 2019). The concentration

inequality we develop here (Eq. (1)) is of a very different shape compared to (McAllester, 1998),
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though it can be easily relaxed to obtain it. As such, the Gibbs predictor might be a suboptimal

solution to Eq. (1), and it is an interesting open problem to characterize such a solution.

3. Definitions

We denote by (x)+ = max{x, 0}. If P and Q are probability measures over Θ such that P ≪ Q,

the KL divergence between P and Q is defined as KL(P,Q) :=
∫
P (dx) ln dP

dQ(x). With a slight

abuse of notation, we also write KL(p∥q) where p = dP/ dλ and q = dQ/ dλ are densities of

P and Q with respect to some common σ-finite measure λ. If a set X is uniquely equipped with

a σ-algebra, the underlying σ-algebra will be denoted by Σ(X ). We formalize a “data-dependent

distribution” through the notion of a probability kernel (see, e.g., Kallenberg, 2017) which is defined

as a map K : X n × Σ(Θ) → [0, 1] such that for each B ∈ Σ(Θ) the function s 7→ K(s,B) is

measurable and for each s ∈ X n the function B 7→ K(s,B) is a probability measure over Θ. We

write K(X n,Θ) to denote the set of all probability kernels from X n to distributions over Θ. In that

light, when P ∈ K(X n,Θ) is evaluated on S ∈ X n we use the shorthand notation Pn = P (S).

4. Warm-up: From Betting To Concentrations

In this section, we briefly explain how to obtain new concentration inequalities from betting algo-

rithms, following Orabona and Pál (2016); Rakhlin and Sridharan (2017); Jun and Orabona (2019).

Let ct ∈ [−1, 1] be a sequence of “continuous coin” outcomes chosen arbitrarily. In each round,

the bettor bets |xt| money on the outcome SGN(xt). Then, ct is revealed and the bettor wins/loses

xtct money. Define the initial wealth Wealth0 := 1 and the wealth at the end of round t as

Wealtht := Wealtht−1+ctxt = 1 +
t∑

s=1

csxs .

We also assume that the algorithm guarantees Wealtht ≥ 0, hence we must have xt ∈ [−Wealtht−1,
Wealtht−1]. Given that no assumptions are made on how ct is generated, this is essentially an on-

line game (Cesa-Bianchi and Lugosi, 2006; Orabona, 2019). So, our aim is to achieve an amount of

money close to the one of a fixed comparator. In particular, let Wealtht(λ) be the wealth obtained

by a bettor that bets λWealtht−1(λ) in round t with initial wealth equal to Wealth0(λ) := 1 and

Wealtht(λ) := Wealtht−1(λ) + ctλWealtht−1(λ) =
t∏

s=1

(1 + csλ) .

We can now formally define the regret of the betting algorithm as

RegretT :=
maxλ∈[−1,1]WealthT (λ)

WealthT
.

It is well-known that it is possible to design optimal online betting algorithms where the regret is

polynomial in T (Cesa-Bianchi and Lugosi, 2006, Chapters 9 and 10).

Closed form concentration, following Rakhlin and Sridharan (2017) Here, we summarize the

basic idea of Rakhlin and Sridharan (2017) used to obtain concentration inequalities from online

learning algorithms, specializing it to online betting algorithms as in Jun and Orabona (2019).

ConsiderXt to be a sequence of i.i.d. random variables supported on [0, 1] such that E[Xt] = µ.

Set ct = Xt−µ ∈ [−1, 1], so that regardless of the online betting algorithm we have E[Wealtht] =
1. Also, assume that RegretT ≤ R(T ), where R : N → R+. Let’s now lower bound WealthT (λ)

5
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to obtain a familiar quantity. Using the inequality 1 + x ≥ exp(x− x2) for x ≥ −0.68, we obtain

max
λ∈[−1,1]

WealthT (λ) ≥ max
λ∈[−1/2,1/2]

WealthT (λ) = max
λ∈[−1/2,1/2]

T∏

t=1

(1 + λ(Xt − µ))

≥ max
λ∈[−1/2,1/2]

exp



λ
T∑

t=1

(Xt − µ− λ(Xt − µ)2)



 ≥ max
λ∈[−1/2,1/2]

exp



λ
T∑

t=1

(Xt − µ− λ)



 .

Putting it all together and using Markov’s inequality, for any λ ∈ [−1/2, 1/2] we get

P






λ

T∑

t=1

(Xt − µ− λ) ≥ ln
R(T )

δ






≤ P

{

WealthT (λ) ≥
R(T )

δ

}

≤ P

{

WealthT ≥ 1

δ

}

≤ δ.

Choosing λ with the proper sign and of the order of 1√
T

, we get roughly Hoeffding inequality when

the Regret is O(1), which is possible for fixed T and for this specific lower bound to the optimal

wealth. Even better concentrations can be obtained carrying around the (Xt − µ)2 terms, resulting

in an empirical Bernstein-style bound.

It is important to stress that we do not need to run the betting algorithm to obtain the concentra-

tion. Instead, we only need the existence of a betting algorithm and its associated regret guarantee.

Tighter concentration inequalities From the above reasoning, it should be clear that we can

obtain a tighter bound by giving up the closed-form expression by avoiding to lower bound the

wealth:

P






max

λ∈[−1,1]

T∑

t=1

ln(1 + λ(Xt − µ)) ≥ ln
R(T )

δ






= P

{

max
λ∈[−1,1]

WealthT (λ) ≥
R(T )

δ

}

≤ δ .

In this case, we can numerically invert this inequality and obtain a tighter concentration.

Now, we depart from Rakhlin and Sridharan (2017) and, instead of using Markov’s inequality,

we follow Jun and Orabona (2019) using Ville’s inequality (Theorem 10). We can do it because,

by the assumptions on the betting algorithm, the wealth is a non-negative martingale. The use

of Ville’s inequality gives the uniformity over time for free and gives us a high-probability time-

uniform concentration inequality. Namely, with probability at least 1− δ, we have

max
t

max
λ∈[−1,1]

t∑

s=1

ln(1 + λ(Xs − µ)) ≤ ln
R(t)

δ
. (3)

Note that to obtain upper and lower bounds for µ it is enough to find the set of values of µ that

satisfies Eq. (3). This can be done efficiently because the argument of the max can be proved to be a

quasi-convex one-dimensional function in µ (Orabona and Jun, 2021). The concentration inequality

above can be seen as a tight and implicit version of the empirical Bernstein’s inequality for bounded

random variables, just like how the KL-divergence concentration inequality is an implicit and tight

version of the Bernstein’s inequality for Bernoulli random variables.

5. Main Results

The concentration inequality of Eq. (3) holds for i.i.d. random variables S = (X1, . . . , Xn). How-

ever, in many learning-theoretic applications, we are interested in providing confidence intervals for

the mean of some data-dependent function (such as the generalization error). To this end, in this sec-
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tion, we explore a scenario where X1, . . . , Xn are replaced by a sequence f(θ,X1), . . . , f(θ,Xn)
such that f is a fixed scalar function and θ is a data-dependent parameter. Clearly, elements of such

a sequence are not independent, since dependence is introduced through parameter θ. Following

the PAC-Bayes viewpoint (McAllester, 1998; Alquier, 2021), θ is now random and distributed ac-

cording to some user-chosen data-dependent distribution Pn called posterior. In addition, unlike in

the traditional PAC-Bayes literature, our inequalities hold uniformly not only in Pn, but also in the

sample size n. Thus, we construct a high-probability PAC-Bayes confidence sequence.

The next theorem, proved in Section 5.2, is the main result of our paper, which generalizes the

concentration analysis of Section 4 to the PAC-Bayes setting.

Theorem 1 Let S = (X1, . . . , Xn) be a tuple of i.i.d. random variables taking values in some

measurable space X . Let Pn be a data-dependent distribution over some measurable space Θ and

let P0 be any probability measure over Θ independent from sample S. Let f : Θ × X → [0, 1] be

any fixed measurable function, let its mean be denoted by µθ =
∫
f(θ, x) dPX(x), and introduce

ψ⋆
n(θ,M) := max

λ∈[− 1

1−M
, 1

M
]

n∑

i=1

ln
(
1 + λ(f(θ,Xi)−M)

)
, (θ ∈ Θ,M ∈ [0, 1]) .

Then, for all P0 and for any δ ∈ (0, 1], we have2

P

{

∃n ∈ N , ∃Pn :

∫

ψ⋆
n(θ, µθ) dPn(θ)− KL(Pn∥P0)− ln

√
π Γ(n+ 1)

Γ(n+ 1
2)

≥ ln
1

δ

}

≤ δ . (4)

Now we discuss some of the implications of Eq. (4) and compare it to existing PAC-Bayes results.

The important feature of Eq. (4) is that it holds simultaneously for all posterior distributions, so

we can freely choose the one that depends on the data. At the same time, Eq. (4) is similar in

shape to the concentration inequality of Eq. (3). In particular, ψ⋆
n is an optimal log-wealth discussed

in Section 4, while Γ(n + 1)/Γ(n + 1/2) ∼ √
n is the regret bound (R(n)) of a certain betting

algorithm. Observe that unlike Eq. (3), the left-hand side of the inequality is now integrated over

θ ∼ Pn, and the term KL(Pn∥P0) appears on the right-hand side. In particular, the term KL(Pn∥P0)
captures the capacity of the class of posterior distributions with respect to the prior P0, and it is a

standard component in PAC-Bayes analyses.

Obtaining known PAC-Bayes inequalities by relaxing Eq. (4) By relaxing Eq. (4), we demon-

strate that Theorem 1 gives a tighter concentration inequality compared to some inequalities in PAC-

Bayes literature (proofs are deferred to Section A). Importantly, our results extend these bounds as

our relaxations hold uniformly over n ∈ N, whereas previous results hold for a fixed n. Abbreviate

µ̂θ :=
1

n

n∑

i=1

f(θ,Xi) and Cn := KL(Pn∥P0) + ln

√
π Γ(n+ 1)

Γ(n+ 1
2)

.

As a basic sanity-check, we first recover a classical result of McAllester (1998) through the elemen-

tary inequality ln(1 + x) ≥ x− x2 for x ≥ −0.68 (similarly as in Section 4), proof in Section A.1.

Corollary 2 (McAllester’s inequality) Set δ ∈ (0, 1]. Under conditions of Theorem 1, for all

priors P0, with probability at least 1−δ over the sample S, for all n ∈ N and for all data-dependent

2. Here ∃n ∈ N , ∃Pn is a shorthand notation for ∃n ∈ N , ∃P ∈ K(Xn,Θ) where K() is a set of probability kernels

as defined in Section 3.
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distributions Pn simultaneously we have

∣
∣
∣
∣

∫

µθ dPn(θ)−
∫

µ̂θ dPn(θ)

∣
∣
∣
∣
≤ 2

√

Cn + ln 1
δ

n
.

Note that, up to constants, the above matches the result of McAllester (1998), and extends it — now

the bound holds simultaneously for all n ∈ N.

Now we turn our attention to a type of PAC-Bayes inequality, where we the bound is given on

a KL divergence between Bernoulli distributions. Such bounds are useful in a setting of a binary

classification, where the parameter of a Bernoulli distribution models a conditional probability of a

positive class label. In particular, relaxing Eq. (4) gets a well-known inequality of Maurer (2004):

Corollary 3 (Maurer’s inequality) For p, q ∈ [0, 1] let kl(p, q) := p ln(p/q) − (1 − p) ln((1 −
p)/(1−q)), i.e., the KL divergence between Bernoulli distributions with parameters p and q respec-

tively. Set δ ∈ (0, 1]. Under the conditions of Theorem 1, for all priors P0, with probability at least

1− δ over the sample S, for all n ∈ N and for all data-dependent distributions Pn simultaneously,

kl

(∫

µ̂θ dPn(θ),

∫

µθ dPn(θ)
)

≤ Cn + ln 1
δ

n
.

The above inequality matches Maurer’s bound up to a constant inside a logarithmic factor. Fur-

thermore, the proof of Corollary 3 in Section A.2 reveals that even relaxing Theorem 1 to have
∫
kl(µ̂, µθ) dPn(θ) in place of ψ⋆

n(θ, µθ) on the LHS results in a bound that is tighter than Maurer’s

inequality. We confirm this numerically in Section 6.

We now consider a more sophisticated, sample variance-dependent concentration inequality,

which exhibits a faster rate of order 1/n whenever the sample variance is sufficiently small. In the

non-PAC Bayes form, such a empirical Bernstein’s inequality was shown by Audibert et al. (2007);

Maurer and Pontil (2009), whereas the PAC-Bayes version was first presented by Tolstikhin and

Seldin (2013). The following result recovers their result up to constants through a much simpler

proof by relaxing Theorem 1:

Corollary 4 (PAC-Bayes empirical Bernstein’s inequality) Set δ ∈ (0, 1]. Introduce

V̂ (Pn) :=
1

n

∫ n∑

i=1

(f(θ,Xi)− µ̂θ)
2 dPn(θ) , Cn,δ := Cn + ln

1

δ
.

Under the conditions of Theorem 1, for all priors P0, with probability at least 1− δ over the sample

S, for all n ∈ N and for all data-dependent distributions Pn simultaneously we have

∣
∣
∣
∣

∫

µθ dPn(θ)−
∫

µ̂θ dPn(θ)

∣
∣
∣
∣
≤

√

2 Cn,δ V̂ (Pn)
(√
n− 2√

n
Cn,δ

)

+

+
2 Cn,δ

(
n− 2 Cn,δ

)

+

.

Note that the inequality is fully empirical and non-vacuous as long as Cn,δ ≤ n/2 — similar (empir-

ically verifiable) requirement is also present in (Tolstikhin and Seldin, 2013, Theorem 4). Clearly,

the fact that we relaxed Theorem 1 to get Corollary 4 implies that our inequality is tighter.

Finally we show that our inequality is tighter than the ‘Un-expected’ Bernstein’s inequality

derived by Mhammedi et al. (2019). In particular, they presented a rather intricate data-dependent

inequality for the purpose of numerical evaluation. However, at the core of their proof lies the

following exponential moment inequality (Mhammedi et al., 2019, Lemma 13), which states that

8
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for a random variable Z ∈ [0, 1] and some fixed λ ∈ [0, 1],

E exp
(

λ(E[Z]− Z)− α(λ)(λZ)2
)

≤ 1 , (5)

where α(λ) := (− ln(1 − λ) − λ)/λ2. Here, the key observation is that Z2 appears outside of

the expectation compared to the standard Bernstein’s inequality, which might make concentration

inequalities derived from Eq. (5) numerically tighter. Next, we present essentially a corollary of

Theorem 1, shown in Section A.4, which is obtained by relaxing our results:

Corollary 5 (‘Un-expected’ PAC-Bayes Bernstein’s inequality) Let ∆i(θ) = f(θ,Xi) − µθ.

Then,

E exp



sup
Pn

∫

max
λ∈[0,1]

n∑

i=1

(

−λ∆i(θ)− α(λ)(λ∆i(θ))
2
)

dPn(θ)− Cn



 ≤ 1 .

Note that Corollary 5 is strictly more general compared Eq. (5) as it is a PAC-Bayes result and

involves a KL term within Cn. However, we can compare this inequality to Eq. (5) in a standard

concentration setting (choose Pn, P0 to have KL(Pn, P0) = 0). In such a case, Cn ≤ ln(n)/2 (due

to incurred regret) and so Corollary 5 matches Eq. (5) up to a logarithmic term.

5.1. How to compute confidence intervals from Eq. (4) numerically

So far we discussed analytically computable relaxations of our inequality. Now we turn our atten-

tion to numerical computation of Eq. (4) which does not require any relaxation. Given a concrete

posterior and prior pair (Pn, P0), we propose to obtain confidence bounds for the mean
∫
µθ dPn(θ)

by solving the following optimization problem:

Proposition 6 Set δ ∈ (0, 1]. Consider the optimization problem

MU = max
h∈H

∫

h(θ) dPn(θ) subject to

∫

ψ⋆
n(θ, h(θ)) dPn(θ) ≤ Cn + ln

1

δ
, (6)

where H is the class of mean functions over supp(Pn) and Cn+ln 1
δ is the right hand side of Eq. (4).

Moreover, assume that ML be obtained by replacing max with min. Then, under the conditions of

Theorem 1 and with probability at least 1− δ, we have

ML ≤
∫

µθ dPn(θ) ≤MU .

In other words, the optimization in Eq. (6) is carried out over the class of means of a given distri-

bution, and the solution gives us a valid confidence interval since Theorem 1 holds for any data-

dependent posterior, and so it must hold for some posteriors with means within the class. Moreover,

surprisingly enough, the optimization problem is convex since ψ⋆
n(θ,M) appearing in the constraint

is convex in M , thanks to the following lemma proven in Section A.5.

Lemma 7 (Convexity of the constraint) Let c ∈ [0, 1]. Define f(x) = max− 1

1−x
≤λ≤ 1

x
ln(1 +

λ(c− x)). Then, f(x) is convex for x ∈ [0, 1].

In Section 6 we present synthetic experiments validating the numerical tightness of the confidence

intervals obtained by solving the problem in Proposition 6.

9
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5.1.1. MONTE CARLO APPROXIMATION OF THE INTEGRAL

The confidence intervals of Proposition 6 can be obtained efficiently as long as we can efficiently

compute or estimate integrals over parameters. When Θ is finite we can clearly replace integrals by

summations. On the other hand, for continuous (or prohibitively large finite) Θ we can employ a

Monte Carlo approximation of the integral. In particular, we can use the procedure in Algorithm 1.

Algorithm 1 Monte Carlo Approximation

1: Input: Failure probability δ, sample size parameters K,m ∈ N, posterior Pn, prior P0

2: Sample K tuples independently (θi)i∈Bk
∼ Pm

n for k ∈ [K] where

Bk = {(k − 1)m+ 1, . . . , km}
3: Solve the following optimization problem for every k ∈ [K]:

ν̄U (k) := max
{νθi}i∈Bk

1

m

∑

i∈Bk

νθi s.t.
1

em

∑

i∈Bk

ψ⋆
n(θi, νθi) ≤ Cn + ln

1

δ
(7)

4: Repeat the above while replacing max with min. Call the resulting optimal objective function

as ν̄L(k), ∀k ∈ [K]
5: Let k̂U = argmaxk∈[K] ν̄U (k) and k̂L = argmink∈[K] ν̄L(k)
6: Compute

MU =max

{

µ : kl
(

ν̄U (k̂U ), µ
)

≤ ln K
2δ

m

}

, ML=min

{

µ : kl
(

ν̄L(k̂L), µ
)

≤ ln K
2δ

m

}

(8)

7: Output: ML and MU

The following corollary of Theorem 1 (proved in Section A.7) states its correctness.

Corollary 8 Set δ ∈ (0, 1]. Under the assumptions of Theorem 1, let K = ⌈ln(1/δ)⌉. Then, with

probability at least 1− 3δ, the outputs ML and MU of Algorithm 1 satisfy

ML ≤
∫

µθ dPn(θ) ≤MU .

Algorithm 1 works by carefully controlling the Monte Carlo approximation through the deviation

of the sample average over parameters from the integral. In fact, while this is straightforward for

bounded random variables, ψ⋆
n considered here is not bounded. One may attempt to make it bounded

by clipping ψ∗
n(θi, µθi) or reducing the range of λ in the max operator in the definition of ψ∗

n, but

these both lead to nonconvex constraints in Eq. (7). Alternatively, since Eq. (6) suggests that we

need to lower bound an integral, we could right away get a “low-probability” bound arising from

Markov’s inequality: 1
δ

∫
ψ⋆
n(θ, µθ) dPn(θ) ≥ 1

m

∑

i∈Bk
ψ⋆
n(θi, µi) . Since this is unsatisfactory,

here we resort to the “boosting-the-confidence” method (Schapire, 1990; Shalev-Shwartz et al.,

2010) which allows to convert polynomial concentration bounds into exponential ones at the ex-

pense of sample partitioning and running the algorithm multiple times, as described in Corollary 8.

Note that in our case this just translates into extra computation (running Monte Carlo approximation

on K independent parameter tuples), because we can always sample more parameter observations

from Pn. Corollary 8 is then justified through the use of the following inequality shown in Sec-

tion A.6:

10
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Proposition 9 Under conditions of Corollary 8, with probability at least 1− e−K ,
∫

ψ⋆
n(θ, µθ) dPn(θ) ≥ min

k∈[K]

1

em

∑

i∈Bk

ψ⋆
n(θi, µθi) . (9)

How largem needs to be? One question not discussed so far is the choice of Monte Carlo sample

size m. Technically, Proposition 9 holds for any m ∈ N, but we can expect that choosing small m
will result in overly loose constraints in Eq. (9) and so the final confidence intervals will be wide.

To gauge a good choice of m we consider a lower tail Bernstein’s inequality (Maurer, 2003), which

lower bounds the left-hand side of the constraint Eq. (9):

1

m

m∑

i=1

ψn(θi, µθi) ≥





∫

ψ⋆
n(θ, µθ) dPn(θ)−

√

2 ln 1
δ

m

∫

ψ⋆
n(θ, µθ)

2 dPn(θ)





+

. (10)

Thus, having a raw second moment of ψ⋆
n of order o(m) guarantees asymptotic convergence of the

sample average to the integral in the constraint (9). Having a finite raw second moment suggests

that the constraint is tight and a reasonable choice, is, for instance, m = n2. On the other hand,

for “hard” problems (e.g., heavy-tailed) such moment is infinite and Monte Carlo estimation is

infeasible.

5.2. Proof of Theorem 1

Let ∆i(θ) := f(θ,Xi) − E[f(θ,X1)] and notably E[∆i(θ)] = 0 for any θ ∈ Θ. Consider an

algorithm betting a signed fraction of its wealth equal to Bi(θ) at step i and observing the outcome

∆i(θ). Note thatBi(θ) is Σ(X1, . . . , Xi−1, θ)-measurable. Let the following be the cumulative loss

(log-wealth) of the algorithm and the optimal cumulative loss, respectively

ψn(θ) :=

n∑

i=1

ln(1 +Bi(θ)∆i(θ)) , ψ⋆
n(θ) := max

λ∈
[

− 1

1−µθ
, 1

µθ

]

n∑

i=1

ln
(
1 + λ∆i(θ)

)
.

We are interested in showing an upper bound on
∫
ψ⋆
n(θ) dPn(θ) which holds for all data-dependent

distribution Pn simultaneously, and with high probability over the data. To this end, Orabona and

Jun (2021) show that, for any θ ∈ Θ, there exists a betting algorithm which guarantees that3

ψ⋆
n(θ)− ψn(θ) ≤ ln

√
πΓ(n+ 1)

Γ(n+ 1
2)

. (11)

So it remains to give a bound on ψn(Pn). We will need the following concentration inequality.

Theorem 10 (Ville’s inequality (Ville, 1939, p. 84)) Let ∆1, . . . ,∆n be a sequence of non-negative

random variables such that E[∆i | ∆1, . . . ,∆i−1] = 0. Let Mt > 0 be Σ(∆1, . . . ,∆t−1)-
measurable such that M0 = 1, and moreover assume that E[Mt | ∆1, . . . ,∆t−1] ≤ Mt−1. Then,

for any δ ∈ (0, 1], P
{

maxtMt ≥ 1
δ

}

≤ δ.

The proof will also require the following well-known change-of-measure inequality:

Lemma 11 (Donsker and Varadhan (1975); Dupuis and R. S. Ellis (1997)) Let p and q be prob-

ability measures on Θ such that p≪ q. Then, for any measurable function f : Θ → R, we have
∫

f(θ) dp(θ) ≤ KL(p∥q) + ln

∫

ef(θ) dq(θ) .

3. Data-dependent bounds on the regret were also shown by Orabona and Jun (2021).
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Applying the above with p = Pn, q = P0, f = ψn, and taking maxn∈N, we obtain

max
n∈N

sup
Pn

∫

ψn(θ) dPn(θ)− KL(Pn∥P0) ≤ lnmax
n∈N

∫ n∏

i=1

(
1 +Bi(θ)∆i(θ)

)
dP0(θ)

︸ ︷︷ ︸

Mn

, (12)

where supPn
= supPn∈K(Xn,Θ) and where we exchanged ln and maxn∈N. Now, the plan is to

apply Theorem 10 to Mn, which requires to show that Mn is a martingale. Using the notation

Ei[·] = E[· |∆1(θ), . . . ,∆i(θ), θ], we have

En−1[Mn] = En−1

∫ n∏

i=1

(
1 +Bi(θ)∆i(θ)

)
dP0(θ)

(a)
=

∫

En−1

n∏

i=1

(
1 +Bi(θ)∆i(θ)

)
dP0(θ)

=

∫

En−1

[(
1 +Bn(θ)∆n(θ)

)]
n−1∏

i=1

(
1 +Bi(θ)∆i(θ)

)
dP0(θ)

=

∫ n−1∏

i=1

(
1 +Bi(θ)∆i(θ)

)
dP0(θ) =Mn−1,

where (a) comes using the fact that P0 is independent from the sample S and by Fubini’s theorem.

Thus, applying Theorem 10 to Eq. (12), we obtain

P

{

max
n∈N

sup
Pn∈K(Xn,Θ)

∫

ψn(θ) dPn(θ)− KL(Pn∥P0) ≤ ln
1

δ

}

≥ 1− δ (δ ∈ (0, 1]) .

Finally, using Eq. (11) gives the statement and completes the proof.

6. Experiments

In this section, we validate the numerical tightness of Theorem 1. Additional experiments are in

Section B.4 We perform experiments on simple synthetic scenarios where the parameter space is

finite, and we fix the posterior and prior distributions. We evaluated all the bounds on a sample size

range n ∈ {2c : c = 1, . . . , 15}, and we averaged the bound over 20 repetitions for each sample size.

In particular, we compare Corollary 8 to several PAC-Bayes baselines such as McAllester (1998),

London and Sandler (2019), Maurer (2004) and Tolstikhin and Seldin (2013), and one additional

algorithm KL-ver under several synthetic environments.

KL-ver, the KL version of our algorithm, uses n · KL(µ̂θ, µθ) for the optimization problem in

Eq. (6), instead of ψ∗
n(θ, µθ). Theoretically, the log-wealth function ψ⋆

n(θ, µθ) is always greater than

n · KL(µ̂θ, µθ) by Proposition 3. On the other hand, Maurer’s bound is looser than KL-ver, which

is shown in the proof of Proposition 3 in Appendix A.2. Hence, KL-ver is an ablation study on our

novel optimization problem – KL-ver is looser than our proposed method of Eq. (6) but tighter than

Maurer’s bound that is known to be very tight numerically.

The first experiment, reported in Figure 1, represents the case whereXi ∼ Bernoulli(1/2) i.i.d.,

P0 = Bernoulli(0.8), Pn = Bernoulli(0.9), and f(θ, x) = xθ. The second experiment, in Figure 2,

represents the case whereXi ∼ N(0, 1) i.i.d., P0 = (Bin(6, 0.7)−3)/4, Pn = (Bin(6, 0.8)−3)/4,

and f(θ, x) = (erf(xθ)+ 1)/2. Here, erf is the Gaussian error function and Bin(n, p) is a binomial

distribution, with n ∈ N being the number of samples, and p ∈ [0, 1] the probability of success.

4. Code can be found at: https://github.com/jajajang/coin_betting_pac_bayes
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Figure 1: Bernoulli case. Figure 2: Binomial case.

Since Θ is finite, we can explicitly calculate the means without resorting to the Monte Carlo

simulation. Hence, the optimization problem of Proposition 6 reduces to (and similarly for the

lower bound by replacing max with min)

max
{µθ:θ∈supp(Pn)}

∑

θ∈Θ
µθ · Pn(θ) subject to

∑

θ∈Θ
ψ⋆
n(θ, µθ) · Pn(θ) ≤ Cn + ln

1

δ
. (13)

This is a convex optimization problem as we showed before, so we can use any off-the-shelf solver.5

Both figures show that our confidence intervals are consistently tighter than the ones of the

baselines. Moreover, our guarantee and the one of KL-ver hold uniformly over time, while it holds

for a fixed number of samples for the baselines. Furthermore, for the Bernoulli case, KL-ver is

the same as our bound and still better than Maurer’s, and in the Binomial case, it is worse than

ours and very close to Maurer’s bound. This confirms our theoretical finding that our approach is

“two-inequalities away” from Maurer’s bound. For the case of continuous Θ, check Appendix B.

7. Conclusions, limitations, and future work

We have presented a new PAC-Bayes bound based on a concentration technique derived from the

coin-betting formalism. Our new upper bound implies some previous results from PAC-Bayes liter-

ature, and at the same time, we have shown that it is tighter in numerical simulations.

One limitation of our result is that it lacks a closed-form minimizer of the upper bound, such as

the Gibbs measure in the standard PAC-Bayes analysis. While this is not surprising, it introduces a

trade-off between computational complexity and tightness of the bound that was absent in previous

approaches. In the future, we aim at precisely characterizing this trade-off, possibly delineating its

Pareto frontier. Another interesting venue is to investigate the numerical minimization of our upper

bound over data-dependent distributions for risk minimization problems.
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I. Kuzborskij and Cs. Szepesvári. Efron-Stein PAC-Bayesian Inequalities. arXiv:1909.01931, 2019.

I. Kuzborskij, N. Cesa-Bianchi, and Cs. Szepesvári. Distribution-Dependent Analysis of Gibbs-

ERM Principle. In Conference on Computational Learning Theory (COLT), volume 99, pages

2028–2054. PMLR, 2019.

J. Langford and R. Caruana. (Not) bounding the true error. In Advances in Neural Information

Processing Systems, pages 809–816, 2001.
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Appendix A. Remaining proofs

A.1. Proof of Corollary 2

Consider the left hand side of Eq. (3) without maxn∈N. Then, we have the following inequalities:
∫

max
λ∈[− 1

1−µθ
, 1

µθ
]

n∑

i=1

ln
(
1 + λ(f(θ,Xi)− µθ)

)
dPn(θ)

(a)

≥
∫

max
λ∈[−1,1]

n∑

i=1

ln
(
1 + λ(f(θ,Xi)− µθ)

)
dPn(θ)

≥
∫

max
λ∈[−1,1]

{

λ

n∑

i=1

(f(θ,Xi)− µθ)− λ2
n∑

i=1

(f(θ,Xi)− µθ)
2
}

dPn(θ)

≥
∫

max
λ∈[−1,1]

{

λ

n∑

i=1

(f(θ,Xi)− µθ)− λ2n
}

dPn(θ)

=
1

4n

∫ ( n∑

i=1

(f(θ,Xi)− µθ)
)2

dPn(θ) (Maximizing in λ; note that optimal λ ∈ [−1, 1])

≥ 1

4n

(∫ n∑

i=1

(f(θ,Xi)− µθ) dPn(θ)
)2
, (Jensen’s inequality)

where step (a) comes since [−1, 1] ⊂ [− 1
1−µθ

, 1
µθ
] since µθ ∈ [0, 1] almost surely. Now, applying

Theorem 1 gives

P






∃n ∈ N , ∃Pn :

1

4n

(∫ n∑

i=1

(f(θ,Xi)− µθ) dPn(θ)
)2

− Cn ≥ ln
1

δ






≤ δ

and the statement follows.

18



TIGHTER PAC-BAYES BOUNDS THROUGH COIN-BETTING

A.2. Proof of Corollary 3

The proof is based on the following proposition:

Proposition 12 ((Orabona and Jun, 2021, Proposition 1)) Let X1, . . . , Xn ∈ [0, 1], let µ̂ :=
(X1 + · · ·+Xn)/n, and moreover let µ := E[X1] ∈ [0, 1]. Then,

max
λ∈[− 1

1−µ
, 1
µ
]

n∑

i=1

ln
(
1 + λ(Xi − µ)

)
≥ n kl(µ̂, µ) .

Moreover, if X1, . . . , Xn ∈ {0, 1}, we achieve equality in the above.

Then, Proposition 12 combined with Theorem 1 gives that with probability at least 1 − δ, simulta-

neously for all n ∈ N and all Pn, we have

ln 1
δ + Cn
n

≥
∫

kl(µ̂θ, µθ) dPn(θ)

=

∫
∑

x∈{0,1}
ln

(

Bern(x | µ̂θ)
Bern(x | µθ)

)

Bern(x | µ̂θ) dPn(θ)

(a)

≥
∑

x∈{0,1}
ln

(∫
Bern(x | µ̂θ) dPn(θ)

∫
Bern(x | µθ) dPn(θ)

)
∫

Bern(x | µ̂θ) dPn(θ)

= kl

(∫

µ̂θ dPn(θ),

∫

µθ dPn(θ)
)

,

where (a) comes by exchanging summation and integration and applying the log-sum inequality.

A.3. Proof of Corollary 4

The proof largely follows that of Orabona and Jun (2021, Theorem 6). Set ϵθ = µθ − µ̂θ, and so

ϵθ + µ̂θ ∈ [0, 1]. Then, we have

ψ⋆(θ, µθ) ≥ max
λ∈[−1,1]

n∑

i=1

ln
(
1 + λ(f(θ,Xi)− (µ̂θ + ϵθ))

)
,

and applying Jensen’s inequality
∫

ψ⋆(θ, µθ) dPn ≥ max
λ∈[−1,1]

∫ n∑

i=1

ln
(
1 + λ(f(θ,Xi)− (µ̂θ + ϵθ))

)
dPn . (14)

Now, we further relax the above by taking a lower bound. In particular, (Fan et al., 2015, Eq. 4.12)

shows that for any |x| ≤ 1 and |λ| ≤ 1,

ln(1 + λx) ≥ λx+
(
ln(1− |λ|) + |λ|

)
x2 . (15)

The above is combined with the following lemma:

Lemma 13 ((Orabona and Jun, 2021, Lemma 5)) Let f(λ) = aλ+b
(
ln(1−|λ|)+|λ|

)
for some

a ∈ R, b ≥ 0. Then, maxλ∈[−1,1] f(λ) ≥ a2

(4/3)|a|+2b .
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Thus,
∫

ψ⋆(θ, µθ) dPn

(a)

≥ λ

∫ n∑

i=1

(
f(θ,Xi)− (µ̂θ + ϵθ)

)
dPn

+
(
ln(1− |λ|) + |λ|

)
∫ n∑

i=1

(
f(θ,Xi)− (µ̂θ + ϵθ)

)2
dPn

= −nλ
∫

ϵθ dPn

+
(
ln(1− |λ|) + |λ|

)





∫ n∑

i=1

(f(θ,Xi)− µ̂θ)
2 dPn + n

∫

ϵ2θ dPn





(b)

≥ −nλ
∫

ϵθ dPn

+
(
ln(1− |λ|) + |λ|

)





∫ n∑

i=1

(f(θ,Xi)− µ̂θ)
2 dPn + n

(∫

ϵθ dPn

)2




(c)

≥ n2
(∫
ϵθ dPn

)2

(4/3)n
∣
∣
∫
ϵθ dPn

∣
∣+ 2

∫ ∑n
i=1(f(θ,Xi)− µ̂θ)2 dPn + 2n

(∫
ϵθ dPn

)2 ,

where step (a) comes by application of Eqs. (14) and (15), step (b) comes by Jensen’s inequality,

and step (c) comes by application of Lemma 13. Now, the above combined with Theorem 1 gives

n2
(∫

ϵθ dPn

)2

≤ n

(

Cn + ln
1

δ

) (

4

3

∣
∣
∣
∣

∫

ϵθ dPn

∣
∣
∣
∣
+ 2V̂ (Pn) + 2

(∫

ϵθ dPn

)2
)

.

Finally, solving the above for
∫
ϵθ dPn, using subadditivity of square root, and relaxing some nu-

merical constants we get

∣
∣
∣
∣

∫

ϵθ dPn

∣
∣
∣
∣
≤

√

2
(

Cn + ln 1
δ

)

V̂ (Pn)
(√

n− 2√
n

(

Cn + ln 1
δ

))

+

+
2
(

Cn + ln 1
δ

)

(

n− 2
(

Cn + ln 1
δ

))

+

.

A.4. Proof of Corollary 5

Recall that Cn = KL(Pn∥P0)+ ln
√
πΓ(n+1)

Γ(n+ 1

2
)

. We will use several facts from the proof of Theorem 1

appearing in Section 5.2. Consider Eq. (12) (without taking maxn∈N ·) combined with Eq. (11),

which gives us

sup
Pn

∫

ψ⋆
n(θ) dPn(θ)− Cn ≤ ln

∫ n∏

i=1

(
1 +Bi(θ)∆i(θ)

)
dP0(θ)

︸ ︷︷ ︸

Mn

,
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and taking exponential and expectation on both sides,

E exp

(

sup
Pn

∫

ψ⋆
n(θ) dPn(θ)− Cn

)

≤ EMn = 1

since M0 = 1.

Now we will lower bound the left hand side in the above by using (Fan et al., 2015, Eq. 4.11)

(which also appears in (Mhammedi et al., 2019, Eq. 15)): namely for x ∈ [0, 1],

exp(−λx− λ2α(λ)x2) ≤ 1− λx (λ ∈ (0, 1))

where α(λ) = (− ln(1− λ)− λ)/λ2. Recalling definition of ψ⋆
n and using the above inequality,

ψ⋆
n(θ) = max

λ∈
[

− 1

1−µθ
, 1

µθ

]

n∑

i=1

ln
(
1 + λ∆i(θ)

)

≥ max
λ∈[0,1]

n∑

i=1

ln
(
1 + λ∆i(θ)

)

≥ max
λ∈[0,1]

n∑

i=1

(

−λ∆i(θ)− α(λ)λ2∆i(θ)
2
)

which completes the proof.

A.5. Proof of Lemma 7

We can rewrite f as

f(x) = max
0≤b≤1

ln



1 + (c− x)

(

− 1

1− x
+

(
1

1− x
+

1

x

)

b

)

 .

Now, consider the argument of the max. We claim that it is convex in x for any b ∈ [0, 1]. In fact,

the second derivative is

1

x2
+

1

(1− x)2
− (b+ c− 1)2

(−x(b+ c) + bc+ x)2
=

1

x2
+

1

(1− x)2
− 1

(x+ bc
1−b−c)

2
(16)

We claim that for b, c ∈ [0, 1], we have g(b, c) := bc
1−b−c ∈ (−∞,−1] ∪ [0,∞). To see this, fix b

and consider c ≤ 1 − b. In this regime, g(b, 0) = 0 and g(b, c) is increasing to infinity as c goes

from 0 to 1− b. In the other regime of c > 1− b, we have g(b, 1) = −1 and g(b, c) is decreasing as

c decreases from 1 to 1− b. This proves the claim.

Therefore, to lower bound (16) we need to lower bound (x+z)2 where z ∈ (−∞,−1]∪ [0,∞).
Since (x + z)2 is minimized at −x but the range of z never includes −x (except for the boundary

case), we have that minz∈(−∞,−1]∪[0,∞)(x+ z)2 = min{(x− 1)2, x2}. Therefore,

− (b+ c− 1)2

(−x(b+ c) + bc+ x)2
≥ −max

{
1

(x− 1)2
,
1

x2

}

≥ − 1

(x− 1)2
− 1

x2
.

Hence, f is a maximum of convex functions, that concludes the proof.
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A.6. Proof of Proposition 9

It is clear that the optimal log-wealth ψ⋆
n(θ, µθ) is non-negative over all arguments, because the

maximization range includes 0. Then, for a fixed block Bk, by the non-negativity of ψ⋆
n, Markov’s

inequality gives

P






e

∫

ψ⋆
n(θ, µθ) dPn(θ) ≤

1

m

∑

i∈Bk

ψ⋆
n(θi, µθi)






≤ 1/e .

Since all blocks are independent,

P







⋂

k∈[K]

{

e

∫

ψ⋆
n(θ, µθ) dPn(θ) ≤

1

m

∑

i∈Bk

ψ⋆
n(θi, µθi)

}






≤ e−K

and so there exists at least one Bk such that with probability at least 1− e−K ,
∫

ψ⋆
n(θ, µθ) dPn(θ) ≥

1

em

∑

i∈Bk

ψ⋆
n(θi, µθi) .

Thus, with probability at least 1− e−K ,
∫

ψ⋆
n(θ, µθ) dPn(θ) ≥ min

k∈[K]

1

em

∑

i∈Bk

ψ⋆
n(θi, µθi) .

Note that we can change e to any other constant C > 1. Then, with probability 1− C−K ,
∫

ψ⋆
n(θ, µθ) dPn(θ) ≥ min

k∈[K]

1

Cm

∑

i∈Bk

ψ⋆
n(θi, µθi) .

A.7. Proof of Corollary 8

Recall that (θi)i∈Bk
∼ Pm

n for any k ∈ [K] and µθi = E[f(θi, X1)], ∀i ∈ [Km]. Our goal is to find

an upper and lower bound for µ∗ :=
∫
µθ dPn(θ). Given Pn(θ), Theorem 1 gives us

P

{

∃n ∈ N, ∃Pn :

∫

ψ⋆
n(θ, µθ) dPn(θ)− Cn ≤ ln

1

δ

}

≥ 1− δ . (17)

Moreover, using the union bound and the standard KL-divergence concentration inequality for [0, 1]-
bounded random variable, we have

P







max
k∈[K]

kl




1

m

∑

i∈Bk

µθi , µ
∗



 ≤ ln
K

2δ







≥ 1− δ . (18)

Furthermore, Proposition 9 states that

P






min
k∈[K]

1

m

∑

i∈Bk

ψ⋆
n(θi, µθi) ≤

∫

ψ⋆
n(θ, µθ) dPn(θ)

∣
∣
∣
∣
∣
∣

X1, . . . , Xn






≥ 1− e−K . (19)

By the union bound, and assuming setting K = ⌈ln(1/δ)⌉ one can see that with probability at least

1 − 3δ, the concentration events in the three inequalities are all true. Assume that these events are

true. It suffices to show µ∗ ≤MU since the proof of µ∗ ≥ML is symmetric.

Denote by νUθi the solutions of the optimization problem in (7).
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Let k∗ = argmink∈[K]
1
m

∑

i∈Bk
ψ⋆
n(θi, µθi). By the events in (17) and (19), we have that

(µθi)i∈Bk∗
is a feasible solution of (7) with k = k∗. This implies that

µ̄(k∗) :=
1

m

∑

i∈Bk∗

µθi ≤
1

m

∑

i∈Bk∗

νUθi ≤
1

m

∑

i∈B
k̂U

νUθi = ν̄U (k̂U ) =: ν∗. (20)

Consider the following two cases:

• Case 1: ν∗ ≥ µ∗.

We just need to verify that ν∗ ≤MU . This holds by the definition of MU .

• Case 2: ν∗ < µ∗.

We have

kl(ν∗, µ∗) ≤ kl(µ̄(k∗), µ∗) ≤ ln
K

2δ

(8)
= kl(ν∗,MU ) .

where the first inequality is due to µ̄(k∗) ≤ ν∗ < µ∗. Applying the monotonicity of kl in the

second argument to kl(ν∗, µ∗) ≤ kl(ν∗,MU ), we have µ∗ ≤MU .

This concludes the proof.

Appendix B. Monte Carlo experiment

In this section, we investigate numerically the Monte Carlo approximation discussed in Section 5.1.1.

In particular, we want to validate the claim that the confidence intervals calculated with Algorithm 1

are better than the ones of Maurer (2003) when enough Monte Carlo sample are used.

Here is the list of parameters in our experiment:

• The number of samples: n = 32 (Figure 3), n ∈ {2c : c ∈ {1, . . . , 4}} (Figure 4).

• The number of groups: K = 4, the corresponding multiplier: C = 2.1147 (check the end of

Appendix A.6).

• The number of Monte Carlo samples in each group: m ∈ {2c : c = 1, . . . , 10} (Figure 3),

m = 256 (Figure 4).

• Parameter space Θ = R.

• Prior distribution P0 is N(0, 1).

• Posterior distribution Pn is N(0, 0.25).

• Samples: X1, . . . , Xn drawn from N(0, 1), i.i.d.

• f(θ, x) = (erf(xθ) + 1)/2.

• Failure probability δ = 0.05.

For the fair use of parameters, we ensure that the total number of MC samples used in Maurer’s

bound matches that of ours. That is, when ours usemMonte Carlo samples for each group k ∈ [K],
Maurer’s bound use M = m · K Monte Carlo samples. We describe how we compute Maurer’s

bound numerically in Algorithm 2.
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Algorithm 2 Monte Carlo Approximation for Maurer’s Bound

1: Input: Failure probability δ, sample size parameters M ∈ N, posterior Pn, prior P0

2: Sample (θi)i∈[M ] ∼ PM
n

3: µ̂M = 1
M

∑M
j=1 µ̂θi =

1
Mn

∑M
j=1

∑n
i=1 f(θi, Xi)

4: Let w =

√
ln( 2

δ
)

M
5: Compute the monte-carlo error bound.

k̂U =max
{
µ : kl (µ̂M , µ) ≤w

}
, k̂L=min

{
µ : kl (µ̂M , µ) ≤w

}
(21)

6: Compute

MU =max

{

µ : kl
(

k̂U , µ
)

≤ Cn + ln 2
δ

n

}

, ML=min

{

µ : kl
(

k̂L, µ
)

≤ Cn + ln 2
δ

n

}

(22)

7: Output: ML and MU

The value w in Algorithm 2 is the confidence width of the Monte Carlo error between µ̂m and
∫
µ̂θ dPn(θ) based on the following Proposition 14 that can be shown using the standard Chernoff

technique (e.g., Corollary 10.4 of Lattimore and Szepesvári (2020)).

Proposition 14 (Binomial Chernoff bound) Let δ ∈ (0, 1]. Let A1, . . . , AM ∈ [0, 1] be a se-

quence of i.i.d. random variables with mean µ = E[A]. Let Ā = 1
M

∑M
i=1Ai. With probability at

least 1− δ, we have

kl
(
Ā, µ

)
≤

√

ln(2δ )

M
.

When the parameter space Θ is discrete, we can precisely compute
∫
µ̂θ dPn(θ), and from this

value we can use Maurer’s bound to obtain the confidence bound. However, in our current setting

we only have [k̂L, k̂U ] that is a confidence interval for
∫
µ̂θ dPn(θ). In this case, the confidence

bound of actual
∫
µθ dPn(θ) is the union of all possible confidence intervals, or formally,

∪µ′∈[k̂L,k̂U ]

{

µ : kl(µ′, µ) ≤ Cn + ln 1
δ

n

}

.

Thanks to the property of the kl, we only need to check two endpoints k̂L and k̂U to get the final

Maurer’s bound (ML,MU ).
Figure 3 shows that our Algorithm 1 outperforms the Maurer’s bound with sufficient amount of

Monte Carlo samples. Even with the increasing number of data samples (Figure 4), our algorithm

steadily outperforms the Maurer’s bound.
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Figure 3: Confidence width vs Monte Carlo

samples (m).

Figure 4: Confidence width vs the number of

samples (n).
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