Session 3D: Learning in Games AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

L)
Py A Hybrid Framework of Reinforcement Learning and Physics-

Informed Deep Learning for Spatiotemporal Mean Field Games

Shuo Liu
Columbia University
New York, United States
sl4921@columbia.edu

Xuan Di
Columbia University
New York, United States
sharon.di@columbia.edu

Xu Chen
Columbia University
New York, United States
xc2412@columbia.edu

ABSTRACT

Mean field games (MFG) are developed to solve equilibria in multi-
agent systems (MAS) with many agents. The majority of literature
on MFGs is focused on finite states and actions. In many engineer-
ing applications such as autonomous driving, however, each agent
(e.g., an autonomous vehicle) makes a continuous-time-space (or
spatiotemporal dynamic) decision to optimize a nonlinear cumula-
tive reward. In this paper, we focus on a class of generic MFGs with
continuous states and actions defined over a spatiotemporal do-
main for a finite horizon, named “spatiotemporal MFG (ST-MFG)."
The mean field equilibria (MFE) for such games are challenging to
solve using numerical methods to meet a satisfactory resolution
in time and space, while it is critical to deploy smooth dynamic
control in autonomous driving. Thus, we propose two methods, one
is a joint reinforcement learning (RL) and machine learning frame-
work, which iteratively solves agents’ optimal policies using RL,
and propagates population density using physics-informed deep
learning (PIDL). The other is a pure PIDL framework that updates
agents’ states and population density altogether using deep neu-
ral networks. Both the proposed methods are mesh-free (i.e., not
restricted by mesh granularity), and have shown to be efficient in
learning equilibria in autonomous driving MFGs. The PIDL method
alone is faster to train than the RL-PIDL integrated method, when
the environment dynamic is known.

KEYWORDS

Reinforcement Learning; Physics-Informed Deep Learning; Mean
Field Games

ACM Reference Format:

Xu Chen, Shuo Liu, and Xuan Di. 2023. A Hybrid Framework of Reinforce-
ment Learning and Physics- Informed Deep Learning for Spatiotemporal
Mean Field Games. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 — June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION

With a large number of interacting agents in a multi-agent system
(MAS), agents’ decision-making processes could be computationally
intractable. Mean field games (MFGs) are developed to solve agents’
dynamic decision-making behaviors with conflicting goals, using a
population distribution to represent the state of many individual
agents [9, 10, 26, 29]. At mean field equilibria (MFE), an agent’s
optimal strategy coincides with the population density. MFGs have

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

been widely studied in engineering, economics, and finance since
its inception. Readers can refer to [2] for more details.

In this paper, we focus on a class of generic MFGs with continu-
ous state and action spaces defined over a spatiotemporal domain
for a finite horizon, named “spatiotemporal MFG (ST-MFG)." It
models the continuous-time decision making of agents and their
interactions across a continuous space over a finite horizon. It be-
longs to non-stationary mean field games where optimal policies of
agents evolve with time. This is motivated by engineering and robot-
ics applications such as autonomous driving [22, 24, 25], in which
agents (e.g., autonomous vehicles) make dynamic decisions in time
and space to optimize a nonlinear and possibly non-separable (i.e.,
a cross term between agents’ control and the mass density in the
cost functional) cumulative reward. The mean field equilibria (MFE)
for such games are challenging to solve using numerical methods
due to its infinite number of states and actions. In order to solve
the spatiotemporal (ST) dynamics of population state and agents’
decision-making, we adopt a hybrid framework, i.e., reinforcement
learning (RL) coupled with physics-informed deep learning (PIDL),
which combines both model-driven and data-driven neural net-
works.

Assuming agents are anonymous, mean field approximation can
be applied to exploit the “smoothing” effect of large numbers of
interacting individuals. At equilibrium, each player interacts and
reacts only to a “mass” which results from the aggregate effect of
all the players nearby. The MFG is thus a micro-macro model that
allows one to define individuals on a microscopic level as rational,
utility-optimizing agents while translating their rich microscopic
behaviors to a macroscopic scale. It consists of two coupled partial
differential equations (PDEs):

(1) Agent dynamic: individuals’ dynamics using optimal control, i.e, a
backward Hamilton-Jacobi-Bellman (HJB) equation;

(2) Mass dynamic: system evolution arising from each individual’s
choices, i.e, a forward Fokker-Planck-Komogorov (FPK) equation.

These two coupling equations characterize the evolution of the
system’s dynamics. At MFE, an agent’s optimal strategy coincides
with the population density.

MEE is challenging to solve due to its forward-backward struc-
ture. The existing literature primarily employs three types of numer-
ical methods, namely, fixed-point iteration [13, 15, 48], variational
method [6, 14, 28], and Newton’s method [1, 3]. The former two
require special structures of MFGs, which do not directly apply
to ST-MFGs [24]. While the Newton’s method does not impose
requirements on the length of planning horizon nor the cost func-
tion, it may fail to converge if one does not have a good initial
guess to the solution. So tricks such as a multigrid preconditioned
algorithm [24] are needed to improve the convergence. All the

http://crossmark.crossref.org/dialog/?doi=10.5555%2F3545946.3598748&domain=pdf&date_stamp=2023-05-30

Session 3D: Learning in Games

aforementioned numerical methods require the spatial-temporal
discretization of a dynamic system, and accordingly, the mesh size
of the discretized system could influence computational efficiency
and accuracy. Thus, these methods could suffer from the complexity
and dimension of state and action spaces [31].

To tackle the above challenges, we resort to learning based meth-
ods to solve MFE for its mesh-free scheme and efficiency in handling
interactions among agents in complex environments.

The main contributions of this paper include:

o Propose two methods to solve time-dependent non-stationary
control policies with continuous states and actions in MFGs:
a joint framework of RL and PIDL and a pure PIDL frame-
work; We establish the linkage between two methods with
known dynamics in the MFG system.

Develop two algorithms [MFG-RL-PIDL] and [MFG-pure-
PIDL] for proposed frameworks to find MFE in ST-MFGs;
[MFG-RL-PIDL] unifies the training of a physics-informed
neural networks (PINN), actor and policy networks in the
RL module; [MFG-pure-PIDL] replaces the RL module with
a PIDL module to speed up the training.

Validate developed algorithms in autonomous driving games
with different cost functional forms, including Monotone
MFGs and Non-monotone MFGs.

The rest of this paper is organized as follows: Section 2 presents
related work and preliminaries about ST-MFG. Section 3 proposes
a RL-PIDL framework for ST-MFGs. Section 4 proposes a pure
PIDL framework. Section 5 discusses the linkage between proposed
methods. Section 6 demonstrates numerical experiments conducted
on autonomous driving games. Section 7 concludes.

2 BACKGROUND

2.1 Related Work

There is a growing trend of applying RL methods to find equilib-
ria in MFGs [27, 46, 47]. To accommodate continuous population
states and agent actions, deep deterministic policy gradient (DDPG)
[16], normalizing Flow (NF) [36], actor and critic (A2C) [32, 42] are
adopted. To stabilize the agent’s policy learning, fictitious play (FP)
is introduced into the learning framework for MFGs by incorpo-
rating empirical best responses during the learning process into
the decision making [11, 31, 35-37, 44]. Other methods to stabilize
agents’ behavior include regularization [4, 45], policy evaluation
[20, 34], and population-based training [33].

Deep learning (DL) methods have also been applied to MFGs
[12, 18] with neural networks to approximate system dynamics in
a mesh-free scheme [38]. Various neural architectures have been
leveraged to solve high-dimensional PDE problems [40, 43].

The majority of aforementioned studies that used machine learn-
ing methods to solve MFGs, however, relies on stringent assump-
tions such as stationarity [19, 41], discrete actions or states [5, 7, 8,
21], as well as reward monotonicity [17, 37].

2.2 Spatiotemporal MFG (ST-MFG)

Spatiotemporal MFG (ST-MFQG) refers to a class of MFGs with both
the population state and agents’ actions defined in a spatiotemporal
domain over a finite horizon. The reward or cost arising from agents’

1080

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

actions negatively depend on the population density, indicating a
congestion effect. ST-MFG is non-stationary because optimal policies
of agents evolve with time.

Definition 2.1. ST-MFG

Define a finite planning horizon 7~ = [0,T] where T € [0, c0). A
total of N agents, indexed by n = {1,2,--- , N}, are moving in a 1-
or 2-dimension space, denoted by X. Their positions at time ¢ are
denoted as x(t) = [x1(¢), x2(t),--- ,xn(¢)]. Agent n € N controls
up(t) € A where A is the feasible action set to minimize its cost
functional: Vn=1,--- N,

T
I i) = [0500, 5-n(0) dt 4 Ve (3n(D)
0 —
cost function terminal cost
(1)

A Nash equilibrium of the N-player mean field type differential
game is a tuple of controls u (¢), u;(t), ..., uy(t) satisfying

],y(u,’;,ufn) <],Il\’(un, u’,),Vvn=1,---,N.

@)
As N — oo, the optimal cost of a generic agent from x at time ¢
becomes:

T
V(x,t) = minu{/t fu(x(z), 1), p(x(7),7))dr + V(x(T), T)}
®)

where, u(x(7), 7) is the control of a generic agent. The agent state
x(r),Yr € T is updated based on the agent dynamics x(r) =
u(x(r), 7). x(r) is the agent position by time 7 and we denote
x = x(r),x € X. p(x,1),V(x,t) € X X T is the population den-
sity of all agents in the system (i.e., mean-field state). f(u, p) is the
cost function. V(x, t), Y(x, t) € X X7 is the value function for each
individual agent, which can be interpreted as the minimum cost
of an agent when starting from position x by time ¢. V(x(T), T)
denotes the terminal cost. We have V(x, T) = V(x), Vx € X.

We denote partial derivatives of p(x, t) with respect to x,t as
px and p;, respectively. It is the same for V and u. The population
dynamics can be captured by a Fokker-Planck equation (FPK):

(FPK) pr + (p - u)x = 0, ©)

which describes the evolution of population density p(x, t) accord-
ing to the control u(x, t) of agents. The population density starts
from initial density p(x,0) = p(x),Vx € X. Equation 3 can be
reformulated as a Hamilton-Jacobi equation:

(HJB) V; + min{f (u. p) + uV} = 0,)

which captures the relationship between the cost V(x, t) and the
agent’s control u(x, t).
We reformulate the MFG system as:

[ST-MFG] :

T
rr}lin/t fu(x(r),7), p(x(7),7))dr + V(x(T), T),V(x, 1) e X X T

s.tx(8) = u(x(t), 1), x(1) = x,Vt € T, (agent dynamics)
pr+(p-u)x =0,Y(x,t) € X X T, (population dynamics)
p(x,0) = p(x),Vx € X, (initial density)

V(x,T) = V(x),Vx € X. (terminal cost) (6)

Session 3D: Learning in Games

Denote the equilibrium solution by p*(x,t) and u*(x,t). The
optimal velocity field u*(x, t) is our primary focus and will thus
be referred as the mean field equilibrium (MFE) in the subsequent
analysis.

The ST-MFG can be categorized based on the following critera:

(1) Non-stationarity: Note that ST-MFG is non-stationary, or
“evolutive MFG" [30]. The policy of the representative agent
and the mean field state evolve as time progresses.

(2) Finite time horizon: We study ST-MFG with finite time hori-
zon. It is challenging to solve ST-MFG with infinite time
horizon. This is because for non-stationary MFGs with in-
finite time horizon, the value function V(x, c0) could go to
infinity [29]. We leave this for future work.

(3) First-order MFG: Since agents like autonomous cars or robots
may not appear or disappear randomly in a conserved sys-
tem, there is no stochasticity in the FPK equation. Thus,
The FPK equation is reduced to a first-order deterministic
continuity/transport equation.

2.3 Solution Concepts

Definition 2.2. Mean Field Equilibrium (MFE)
In ST-MFG, (u*(x,t), p*(x,1)),Y(x,t) € X X T is called an MFE if
following conditions hold:

(FPK) pf+(p* u")x=0 (72)
(HB) V* +u"V + f(u",p*) = 0 (7b)
u* =gy (V¢ p*) (7¢)

where g;‘,(Vx, p) = argminp{f(p, p) + pVx}, Vx € R. For simplicity,
we omit discussion on solution properties. Readers can refer to
[23, 24] for more details.

Definition 2.3. Monotone MFG
An MFG is called a monotone MFG [37] is following conditions

holds:
{wwmwm fwp) = fw +f(p)
Vo.p's(p=p") - (f(p) = f(p") >0
Equation 8a indicates that the cost function f(u, p) has a separable
structure. There is no cross product between u and p.

In this paper, we also consider another structure of the cost func-
tion: non-separable cost. We introduce a cross product into the cost
functional between the agent action u and the population density
p to reflect the congestion effect, demonstrating the punishment to
the agents who select the same actions or end up in close proximity
under a policy. The more the agents stay in the same neighborhood,
the more congested that area is. This also renders the ST-MFG not
as a potential game, and thus, existing ML methods to solve poten-
tial MFGs do not apply. We investigate ST-MFGs with three cost
functions in numerical results (Section 6) where one is a Monotone
MFG and the remaining two are not Monotone MFGs.

(8a)

(Monotone) (8b)

2.4 Numerical Method

To solve ST-MFG, [24] discretized the spatiotemporal domain X X
7 by solution granularity Ax and At according to the Courant

1081

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Friedrichs Lewy (CFL) condition where umgx - At < Ax, and then
solved a system of equations in MATLAB. However, the numerical
method encounters several issues: First, it cannot meet a satisfactory
resolution in time and space. A small spatiotemporal granularity
Ax and At would significantly increase the problem scale, making
the ST-MFG not solvable. The numerical method with satisfactory
resolution only works in small-size domains. Second, the structure
of cost functions may impact the performance of numerical meth-
ods to find game equilibria. To tackle these challenges, this paper
leverages learning frameworks to solve ST-MFG.

3 RL-PIDL FRAMEWORK OVERVIEW

In this section, we propose a joint framework of RL and PIDL
to learn ST-MFG. In this framework, the evolution of population
density (i.e., mean-field state) is approximated by physics-informed
neural networks (PINN) while the decision making of the generic
agent is captured by a single-agent RL module.

Figure 1 demonstrates the working flow of the RL-PIDL method:
Three neural networks p-Net, u-Net and V-Net are utilized to rep-
resent the population density, the agent’s control and cost, respec-
tively. u-Net and V-Net are actor and critic networks in a single-
agent RL module given the population distribution p and agent
dynamics in the environment. p-Net is approximated by a PIDL
module given the physical rule (FPK) regarding the relationship
between the evolution of population and the agent control. The
RL and PIDL modules internally depend on each other. The policy
learning of the generic agent triggers the update of system dynam-
ics, which in turn influences the learning process of the agent. A
fictitious play module is adopted to stabilize policy learning. We
now introduce RL and PIDL modules separately.

3.1 RL for Agent Optimal Control

Given the population density p(x,t),VY(x,t) € X X 7 (mean-field
state), the dynamic control problem of the generic agent can be
formulated into the following RL scheme.

(1) State s € S: The state of the representative agent s = (x, t)
indicates that at time ¢, the agent arrives at position x.

(2) Action u € U: u(x,t) is the control of the agent at position

x by time t. U = [Umin, Umax]- In this paper, we assume the

agent adopts a deterministic policy. The u-Net is a determin-

istic policy network (Figure 1), parameterized by w. In this
work, we apply Deep Deterministic Policy Gradient (DDPG)
method to the RL module.

Transition s — s’: The agent’s action triggers the state

transition (x,t) — (x’,t’), where x’ = x + u(x,t) - 8¢, t' =

t + &t. Ot is the time interval in the decision making process

of the agent.

Reward r: The reward is the congestion cost incurred by

interaction with population in the system, ie., r(u, p) =

Flutx,), p(x,))ot.

(5) Value function V: The value function V(x, t) represents
the total cost of the agent starting from location x by time ¢.
V(x,t) is captured the critic network V-Net, parameterized
by 1. Mathematically,

4)

V¥(x,t) = muin[r(u(x, 1), p(x, 1)) + V*(x',)] 9)

Session 3D: Learning in Games

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

i
: Environment h

_________ fp

Population
Py (xt)

Actor
U, (@) (x, t)

Critic
V,0(x,t)

s‘(dn)an's

l

Tz ar
/ @bvuvapy

Loss: residual + MSE

E Policy gradient: Advantage - V,,u, (s) E i value gradient: TD error - 1,15 (s) :

i, axf

I

Fictitious Play

Buffer: u,,cu) (X, 01, (6,), ., 1,0 (%, 8) |

Figure 1: RL-PIDL Framework

where V* is the minimum cost of the agent.

3.2

We now introduce physics-informed deep learning (PIDL) to approx-
imate population dynamics in the MFG system. The PIDL module
adopts a hybrid deep learning framework, which combines both
model-driven and data-driven neural networks [39]. The neural
network architecture in PIDL to capture system dynamics is illus-
trated in Figure 1. p-Net is parameterized by 6. The input is (x, t)
and output is the population density at location x by time t.

The training of p-Net is guided by two parts in the loss function:
residual and the mean square errors (MSE). The residual (marked
in red) leverages physical rules that exist in the dynamic system
while MSE (marked in blue) is obtained by the gap between PINN
and observed data points.

In ST-MFG, the evolution of population state given the control
of agents u(x, t) follows the FPK equation (4), which indicates the
physical rule regarding the spatiotemporal distribution of popula-
tion. We use the physical rule to guide the training of pg(x, t) by
the following residual:

PIDL for Population Density Propagation

dpo(x.t) olpg(x.t)a(x,1)] (10)
ot ox

The PINN calculates the residual gg(x, t). When pg(x, t) becomes

close to p(x, t) satisfying the FPK equation, the residual gets close

to zero. @i(x, t) represents the average policy of the agent obtained

by historical policies in the fictitious play module.

The observed data in the PIDL framework comes from the initial
distribution of population p(x, 0) = p(x), Vx € X (marked in blue
circles in Figure 1). The training of pg(x,t) based on observed
data follows the traditional supervised learning scheme. The mean
square errors (MSEs) are:

qo(x,t) =

No
1 .
MSEo = = > (po(x5,0) = pGb))Exf e X ()
0 k=1

where N, is the size of data sample. /S(xlg, 0) is the observed popu-
lation density at position xlg by time 0.

1082

The loss function used in the PIDL module is computed as:

Loss = foMSE, + fcre (12)

where f, and f. are hyperparameters, representing the weight
of MSE and residual in the loss function, respectively. o MSE,
measures the data discrepancy and f.r. denotes the physical dis-
crepancy in the training of PIDL. Note that the observed data can
only be sampled from the state space when ¢ = 0 given the fact that
the initial condition of the FPK equation is known.

3.3 Fictitious Play for Policy Stabilization

Fictitious play (FP) is utilized to stabilize policy learning. We add
an FP buffer between the policy and population network. The FP
buffer is used to store all historical policies from the actor. The
residual (Equation 10) for the training of the population network is
calculated based on the average policy from the FP buffer. Mathe-
matically,

i
(1) = > uy) (60, Y(x, 1) € X X T
=

(13)

where u () (x, t) is the agent policy (i.e., u-Net) at the jth iteration
during the training process.

3.4 Learning Algorithm

In this subsection, we develop a learning algorithm where the train-
ing of p-Net in the PIDL module is coupled with u-Net and V-Net
in the RL module. We first discuss the solution granularity in the
learning scheme.
Solution granularity

We use finite difference based on the CFL condition (i.e., umgx At <
Ax) instead of autograd mechanism, to denote the partial derivative
information of neural networks and calculate residuals for PIDL.

Session 3D: Learning in Games

Therefore, equation 10 can be formulated as

po(x,t + ¢At) — pg(x,t) .

qp(x,1) = At (ie., pr)
+ p@(x’ t)u(x’ t) - Pe(;A_ (]SAX', t)L_t(x - QSAX, t) (i.e., (pu)x)
X
(14)

where Ax and At represent the spatiotemporal granularity. In this
work, we assume Umax = 1 and Ax = At. ¢ € [1, #] is a random
step size when calculating partial derivatives in the residual, which
can help stabilize the training of the PINN without sampling too
many states s = (x, t) from state space.

Algorithm 1 MFG-RL-PIDL

1: Initialization: Population network p-Net: py) (s); Actor net-
work u-Net: u, () (s) and critic network V-Net: V'I(O’ (s).

2. fori«— 0toIdo

3 Sample a batch of states s from state space X X 7;

4 for each state s; in s do —RL - the representative agent

5 Select u according u, (i) (s7);

6: Obtain p according py) (s7);

7

8

9

Execute u and observe reward r(u, p);
Update state s; — s;;
Obtain value function: Vo (s), Vo (s).

10: end for

1 Calculate the advantage (Equation 15);

12: Store the actor network u, ; (s) into buffer. —FP

13: Compute # (Equation 13);

14: Obtain MSE, (Equation 11); —PIDL - Population

15: Obtain residual (Equation 14 and 16);

16: Update p-Net, u-Net and V-Net and obtain pgy) (s),
Uy (in) (8) and V) (5);

17: Check convergence (Equation 17).

18: end for
19: Output u, p

We now look into the proposed learning algorithm [MFG-RL-
PIDL], which is summarized in Algorithm (1). We first initialize
p-Net, u-Net and V-Net, parameterized by 9(0), »© and 17(0), re-
spectively. During the ith iteration of the training process, we first
sample a batch of states s from state space X x 7. For simplicity,
we assume agents are moving in a 1-dimension space X = [0, X].
We divide X and 7 into n same pieces:

0=x0<x1<--<xp=2X,
O=ty<thi <---<th =T,

A batch of states s with size n X n is constructed as follows: VI, k =
1,2, ..n, (xl %) is sampled from [x;_1, x7] X [tg_1, tx] and we as-
sume x! and ¥ are uniformly distributed on [x;_1, x;] and [tx_1, t¢].
For each state s; in the batch, the agent’s action generated by u-Net
triggers the state transition s; — s;. Accordingly, the advantage in
the RL module is calculated as:

K(s)

ﬁ ; [r(u(sp). p(sp) + Vi (s)) = Vy(sp)] (15)

1083

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

where K(s) is the batch size and s; € s. s;,l =1,...,K(s) is the new
state after the agent selects her action at state s;. A fictitious play
buffer is utilized to store historical policy networks. We calculate
the average policy based on the fictitious play buffer and obtain the
MSE and residual in the loss function. The residual of p-net in the
PIDL module based on the batch of states is calculated as:

K(s)

xKGs) ; qo(s1)
We then update p-Net, u-Net and V-Net according to loss function,

policy and value gradient, respectively. We check the following
convergence conditions for population-agent pair (p, u):

1 N N
k ik k 4k
| 200 &) = 3 0 R)] < e
k=1 k=1

(16)

N N

1 k Lk k Lk

N1 2P0) = 3 pgun K. < (17)
k=1 k=1

The training process moves on to the next iteration till the conver-
gence conditions hold. The algorithm is implemented in PyTorch.

4 PURE PIDL FRAMEWORK OVERVIEW

Vo (1)

Loss: residual + MSE E Loss: residual + MSE

Tﬁ,ax

Buffer: u®, u®, ., u® |

| Fictitious Play

Figure 2: Pure PIDL Framework

In this section, we propose another learning framework by lever-
aging the PIDL method alone. This framework adopts two PINNs:
p-Net and V-Net for FPK and HJB equations, respectively. Figure 2
demonstrates the working flow of the pure PIDL framework. The
left p-Net approximates the population propagation and the right V-
Net approximates the cost of the generic agent given the population
distribution and agent control over the environment.

4.1 PIDL for Population Density Propagation

In the pure PIDL framework, p-Net works as same as the PIDL
module in Section 3.2. We omit discussion for simplicity.

4.2 PIDL for Agent Optimal Control

In ST-MFG, the cost of the generic agent follows the HJB equation
(7b and 7c). We use the physical rule to guide the training of V;, (x, t)
by the following residual:
Vy(x,t) Vy(x,t)
+u
ot ox

+f(up) (18)

qf](xs t) =

Session 3D: Learning in Games

When Vj,(x, t) becomes close to V(x, t) satisfying the HJB equa-
tion, the residual gets close to zero. The observed data in the
PIDL framework comes from the condition about terminal cost
V(x,T) = V(x),Vx € X (marked in blue circles in Figure 2). The
mean square errors (MSEs) are:

No
1 A
MSEo = = > (B (6. 1) = V)Pl e X (19)
k=1

The loss function used to train the V-Net consists of the MSE and
residual defined in Equation 18 and 19.

Remark. According to Equation 7c (u = argminy{f(p, p) + pVx}),
the agent control u can be directly obtained by the cost function and
the partial derivative Vi of V-Net. We store u() at the ith iteration
into the fictitious play module during the training process.

4.3 Learning Algorithm

We briefly introduce the learning algorithm for the pure PIDL frame-
work, which is summarized in Algorithm (2). We first initialize p-
Net and V-Net, parameterized by 0 and ry(o) , respectively. During
the ith iteration of the training process, we first sample a batch of
states s from state space X X 7. The residual and MSE for V — net
are calculated according to Equation 18 and 19, respectively. We
calculate the average policy based on the fictitious play buffer and
then obtain the residual and MSE for p-Net. p-Net and V-Net are up-
dated according to their loss functions. We check the convergence
according to Equation 17.

Algorithm 2 MFG-Pure-PIDL

1: Initialization: p-Net: py) (s) and V-Net: V,](o) (s).
2: fori « 0toIdo
3 Sample a batch of state s from X X 7~;

4: Obtain MSE, (Equ 19) and residual (Equ 18); — PIDL-V-Net
5 Calculate u() (Equ 7c¢);

6: Store u() into buffer and compute ; —FP

7 Obtain MSE, and residual for p-Net — PIDL-p-Net
8:

Update p-Net and V-Net according to loss function and
obtain pgi+) (s) and Vq(m) (s);
9: Check convergence.
10: end for
11: Output u, p

5 LINKAGE BETWEEN TWO METHODS

The difference between two proposed frameworks lies in how to
denote the HJB equation in the MFG system. The RL-PIDL module
leverages an agent-based learning scheme to study the optimal
control problem while the PIDL module adopts a PINN to approxi-
mate the HJB equation. In this section, we investigate the linkage
between these two methods.

Proposition 5.1. If the spatiotemporal granularity satisfies CFL
condition (i.e., Umax At < Ax), the residual V; +uVy + f(u, p) = 0 of
the PINN is equivalent to r+V (s”) =V (s) = 0 where r+V (s") =V (s)
is the advantage for the critic network in the RL module.

1084

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Proor.
r+V(s')-V(s)=0
—V(x,t) = f(u,p)At +V(x', 1)
-V (x,t) = f(u, p)At

At
+V(x, t+At)+ U [V(x+ Ax,t + At) = V(x, t + At)]

Approximate V (x’, t") by linear interpolation [24]

0< u% < 1 holds because u% < umax% < 1 (CFL condition).
We then have
V(x,t) = V(x,t+At) V(x+ Ax,t+At) = V(x,t + At)
=flup)+u
At Ax
When At, Ax — 0, =V; = f(u, p) + uVx. Therefore, Proposition 5.1
holds.]

Remark. (1) Proposition 5.1 shows that the critic network in
the RL module works as same as the V-net in the PIDL mod-
ule. It means that the RL module captures the physical rule
regarding the relationship between the agent control and
total cost.

(2) The RL-PIDL framework can be replaced by the pure PIDL
framework if the dynamics are known. With Equation 7c,
the control of the generic agent can be directly obtained by
V-Net in the PIDL module without utilizing a policy network,
which speeds up the training process.

6 NUMERICAL EXPERIMENTS

In this section, we apply proposed methods to autonomous driving
system. We first introduce an ST-MFG regarding the speed control
of autonomous vehicles (AVs) and implement algorithms [MFG-
RL-PIDL] and [MFG-Pure-PIDL] on the speed control problem
with different cost structures. We then make a comparison of the
numerical method (Section 2.4) and our methods.

6.1 Problem Statement

Generic AV:
r
I/(u(x(t).t)vﬂ(x(t),t))dr+VT(x(T),T)

(s) = u(s), x() =x

Traffic Density:
oo+ (), =0

Figure 3: Speed control for AVs

In Fogure 3, we consider a generic AV staring from position x at time
t. The vehicle’s speed control is denoted by u and the goal of the
generic AV is to minimize total travel cost V(x,t),V(x,t) e X X T
by selecting optimal speed. The decision making of the generic AV
follows the HJB equation (5). When all cars follow the optimal speed
control, the aggregated density distribution p(x, t) (i.e., population

Session 3D: Learning in Games

state) evolves. Density p follows the FPK equation (4), which is also
called continuity equation [24], demonstrating the road density in
traffic flow models. In this work, we adopts a ring road with length 1
(i.e., X = [0, 1]) as the traffic environment. It means positions x = 0
and x = 1 are the same. Vehicles are allowed to keep moving along
the ring road until time T. The ring road scenario can be easily
extended to any road segments/links. We implement our methods
on the ST-MFG with three cost functions:

(1) LWR: The Lighthill-Whitham-Richards (LWR) model is a
traditional traffic flow model where the driving objective is
to maintain some desired speed. The cost function is:

fwp) =5 U(p) -) (20)

where U(p) is an arbitrary desired speed function with re-
spect to density p. It is straightforward to find that the ana-
lytical solution of the LWR model is u = U(p), which means
at MFE, vehicles maintain the desired speed on roads. We
denote the ST-MFG as [ST-MFG-LWR]

(2) Separable: The separable cost function can be written as the
sum of two univariate functions with respect to u and p:
1. u u P
fu.p)=()" - + : (21)
2 Umax Umax Pjam
energy efficiency safety

where pjgm is the jam density. The first term represents
AVS’ kinetic energy. The second term denotes the driving
efficiency by speed magnitude. The third term is driving
safety using a congestion penalty on density p, implying
that AVs avoid to stay in high density areas. We denote the
ST-MFG as [ST-MFG-Sep]

(3) Non-separable: The cost function is

1 u 2 u up
f(u, P) = _()= + . (22)
2 Umax Umax UmaxpPjam
S — N—— | ——
energy efficiency safety

The difference between non-separable and separable costs
is the cross product of density and velocity. It means AVs
tend to decelerate in high density areas and accelerate in low
density areas. We denote the ST-MFG as [ST-MFG-Non-Sep]

Proposition 6.1. [ST-MFG-Sep] is a Monotone MFG.

ProoF. The cost function in [ST-MFG-Sep] has a separable struc-
ture (Definition 2.3):

fup) = 5

u u

)2~ flup) =

Umax Umax Pjam

We have Vp. p", (p = p') (f(u.p) = f(u.p") = 5o (p = p')? > 0.
Therefore, Proposition 6.1 holds. Note that both [ST-MFG-LWR] and
[ST-MFG-Non-Sep] contain the cross product of u and p, which do

not satisfy the separable structure defined in Monotone MFG. O

6.2 Numerical Results

Figure 4 demonstrates the algorithm performance to solve [ST-MFG-
LWR]. We assume U(p) = 1 — p. Solution granularity is Ax = At =
1073, The x-axis represents the iteration index during the training.
Figure 4a and 4b plot the convergence gap (i.e., |p(i) —p(i_l) [, Ju® -

1085

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

u(=1) |). MFE solved by the numerical method (Section 2.4) is used
as our benchmark.

0.10 e -yt 0.10

. | . | Ui —yl-)
8008 | 109 -0 | & 0,08 : 1o = pli=)
@ 1 v |

2006 I 20.06{ |

8004 | 80.04] |

g 0041 2004 |

H ! H]

£0.02] | £0.02{ fi

" 0.00] beam 000!

0 25 50 75 100 125 150 175 200 0 100 200 300 400 500
iterations iterations

(a) Convergence gap (Pure-PIDL) (b) Convergence gap (RL-PIDL)

0.10 010
— -yt] — i —ut)
0.08 : e | 008f | 109 —p°]
0.06] 1 0.06] |\
n \ u |
2 \ 2
80.04] N\ 80.04f |t
N \
N \
0.02 SeeeL 0.02{ \“._
000f == 000{ T———=RSiTomsmssssszas
0 25 50 75 100 125 150 175 200 0 100 200 300 400 500
iterations iterations

(c) Loss (Pure-PIDL) (d) Loss (RL-PIDL)

Figure 4: Algorithm performance on [ST-MFG-LWR]

010{ ! o iyt 0.10 o ity
2 I 0 _ -y | & () _ i1
50.08{ | 10" =p"= 11| & 0.08 1P = pt =1
@ 1 o |
20.06{ | 20.06{ |
2 00l | 2 el |
§ 0.04 I E 0.041 |
£ 0.02 £0.02{ | |
o Y l oY 1
S S A

0.00] et e et e 0.00] “

0 25 50 75 100 125 150 175 200 [100 200 300 400 500
iterations iterations

(a) Convergence gap (Pure-PIDL) (b) Convergence gap (RL-PIDL)

0.10— 0.10
i o uO—ut
0.08{ | —pW—pt | 008
006 \ 0.06
o \ a
a a
20.041 Y 20.04
SN
0.02 S e 0.02
N e
0.00 — e 0.00
0 25 50 75 100 125 150 175 200 0 100 200 300 400 500
iterations iterations

(c) Loss (Pure-PIDL) (d) Loss (RL-PIDL)

Figure 5: Algorithm performance on [ST-MFG-Sep]

0.10 e U — gD 0.10 U =yt
o a
80.08{ | 10" =p" 1] | 8 0,08 100 = pti-1)]
9 1 1]
£0.06) 1 £ 0.06
©o.04] | S0.04] |
g ! g |
]
£0.02{ | £ 0.02 ;‘
°© [, s X
0.00 e e s e 0.00
0 50 100 150 200 250 300 0 100 200 300 400 500
iterations iterations

(a) Convergence gap (Pure-PIDL) (b) Convergence gap (RL-PIDL)

0.107— 0.101—
] -yt] =yt
0081 | — 1p"=p"| 0081 | — 1p"=p"|
0.06] \ 0.06] |\
u \ u \
2 2
20.04 i 2 0.04 AN
~ N
N N
0.02{ N\ S~ 0.02 ™ Seo
0.00 N~—— e 0.00 VY NP e ? VL U LT T
0 50 100 150 200 250 300 0 100 200 300 400 500
iterations iterations

(c) Loss (Pure-PIDL) (d) Loss (RL-PIDL)
Figure 6: Algorithm performance on [ST-MFG-Non-Sep]
Figure 4c and 4d visualize the closeness between the benchmark
and results at each iteration (i.e., |p(i) - p*l, lu® — y*|). Figure 5

Session 3D: Learning in Games

demonstrates the algorithm performance to solve [ST-MFG-Sep].
Parameters in the cost function are: #;ax = 1, pjam = 1. Solution
granularity is Ax = At = 1073, Figure 6 demonstrates the algorithm
performance on [ST-MFG-Non-Sep]. Parameters remain the same
as [ST-MFG-Sep]. It is shown that the pure PIDL method is faster
to train than the RL-PIDL method.

Figures 7, 8, 9 demonstrate MFE (p*,u*) of [ST-MFG-LWR],
[ST-MFG-Sep] and [ST-MFG-Non-Sep], respectively. The x-axis
represents position x and the y-axis represents ¢. Compared to [ST-
MFG-LWR], the initial density in [ST-MFG-Sep] and [ST-MFG-Non-
Sep] quickly dissipate. The density of [ST-MFG-Non-Sep] keeps
smooth and no wave forms.

(a) Density-p (b) Speed-u

Figure 7: MFE of [ST-MFG-LWR]

(b) Speed-u

(a) Density-p

Figure 8: MFE of [ST-MFG-Sep]

0.4 0.8
<03 " _07 A
0.6
0'12 ~ > 1 L >l
- _— 1 T~ _— 1
05 ~~_—" 05 05 ™~ _—" 05
T 0 t T 0o t
(a) Density-p (b) Speed-u

Figure 9: MFE of [ST-MFG-Non-Sep]

In Table 1, we make a comparison of different methods with two
solution granularities: At = Ax = 1073 and At = Ax = 107°. The
computational time of our learning methods is the training time.
The numerical method does not work on ST-MFGs with solution
granularity Ax = At = 107 because the size of state space X X 7~
becomes 10°-10°. Our methods provide MFEs with better resolution
in time and space.

1086

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

7 CONCLUSION

In this study, we establish a hybrid framework of RL and PIDL
to learn MFGs, which has a generalization capability to handle
large multi-agent systems in engineering and robotics application.
We propose two methods: RL-PIDL and pure PIDL, and develop
algorithms to solve ST-MFGs. Our methods are applied to Monotone
and Non-monotone MFGs in autonomous driving systems. The
overall findings include: (1) The joint framework of RL and PIDL
can be replaced by the pure PIDL framework when the dynamics
in the environment are known. The pure PIDL method is faster to
train than the RL-PIDL method. (2) Both learning frameworks can
handle ST-MFGs with finer solution granularity while numerical
methods cannot. Our methods provide MFE with a satisfactory
resolution in time and space.

At,Ax | Cost Metric Numerical PIDL RL + PIDL
Time 10.23 39.17 173.06
Iterations 80 200 500
Gap u | 437-107° [498-107%F | 6.16-107F
LWR p | 259-107 | 1.35-107% | 2.04-107%
u 6.44-1073 | 2.94-1073
Loss - —3 =
P 2.97 - 10 4.01-10
Time 12.64 85.93 193.12
Iterations 80 300 500
1 u | 1.26-107° [1.02-1073 | 7.85-107%
s | Nom | Gap = 125 1077 | 457 1077
Sep u 436-107 | 4.29-10°3
Loss - =3 =3
p 1.37 - 10 1.46 - 10
Time 11.57 57.66 171.42
Iterations 80 200 500
Gap u | 3.98-107° [1.46-107° | 4.11-107F
Sep p | 237-1071 | 239-107% | 4.75-107%
u 4281073 | 8.30-1073
Loss - —3 —7
P 1.59 - 10 9.06 - 10
Time 59.46 181.21
Iterations 200 500
u 1.19-1073 | 1.73-1073
LWR | Gap = 7.84-10°5 | 5.83- 102
Loss -
Time 91.15 197.89
Iterations 300 500
w5 | Non- Gap |2 NA 3.08-10° | 1.31-10°
sep P 6.72-107% | 4.89-107*
Loss -
Time 70.08 186.06
Iterations 200 500
Sep | Gap u 2.19-1073 | 6.10-107°
p 3.52-107% | 1.28-1073
Loss -

Table 1: Comparison of different methods

Our methods can be extended in many ways for future work:
First, the flexibility of our PIDL module provides a more efficient
learning scheme in optimal control problems where agent or system
dynamics can be captured by physical rules. Second, we will study
how to apply proposed learning frameworks to non-stationary
MFGs with infinite time horizon.

ACKNOWLEDGMENTS
This work is partially supported by the NSF CMMI-1943998.

Session 3D: Learning in Games

REFERENCES

(1]

(2]
(3]

[9

=

[10

[11]

[12]

[13

[14]

[15]

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23]

[24]

[25]

[26

Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta. 2012. Mean field games:
numerical methods for the planning problem. SIAM Journal on Control and
Optimization 50, 1 (2012), 77-109.

Yves Achdou and Mathieu Lauriére. 2020. Mean Field Games and Applications:
Numerical Aspects. Springer International Publishing, Cham, 249-307.

Yves Achdou and Victor Perez. 2012. Iterative strategies for solving linearized
discrete mean field games systems. Networks Heterog. Media 7 (2012), 197-217.
Berkay Anahtarc, Can Kariksiz, and Naci Saldi. 2023. Q-Learning in Regularized
Mean-field Games. Dynamic Games and Applications 13, 1 (2023), 89-117.
Dario Bauso, Xuan Zhang, and Antonis Papachristodoulou. 2017. Density Flow
in Dynamical Networks via Mean-Field Games. IEEE Trans. Automat. Control 62,
3 (2017), 1342-1355.

Jean-David Benamou and Guillaume Carlier. 2015. Augmented Lagrangian meth-
ods for transport optimization, mean field games and degenerate elliptic equations.
Journal of Optimization Theory and Applications 167, 1 (2015), 1-26.

Theophile Cabannes, Mathieu Lauriére, Julien Perolat, Raphael Marinier, Sertan
Girgin, Sarah Perrin, Olivier Pietquin, Alexandre M. Bayen, Eric Goubault, and
Romuald Elie. 2022. Solving N-Player Dynamic Routing Games with Congestion:
A Mean-Field Approach. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems.

Dan Calderone and S. Shankar Sastry. 2017. Markov Decision Process Routing
Games. In 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems
(Icees).

Pierre Cardaliaguet. 2010. Notes on mean field games. Technical Report. Stanford
University.

Pierre Cardaliaguet. 2015. Weak solutions for first order mean field games with
local coupling. Springer, Cham, 111-158.

Pierre Cardaliaguet and Saeed Hadikhanloo. 2015. Learning in Mean Field Games:
the Fictitious Play. ESAIM: Control, Optimisation and Calculus of Variations 23
(07 2015). https://doi.org/10.1051/cocv/2016004

René Carmona and Mathieu Lauriere. 2021. Convergence Analysis of Machine
Learning Algorithms for the Numerical Solution of Mean Field Control and
Games I: The Ergodic Case. SIAM J. Numer. Anal. 59, 3 (2021), 1455-1485.
Geoffroy Chevalier, Jerome Le Ny, and Roland Malhamé. 2015. A micro-macro
traffic model based on mean-field games. In 2015 American Control Conference
(ACC). IEEE.

Yat Tin Chow, Wuchen Li, Stanley Osher, and Wotao Yin. 2019. Algorithm for
Hamilton-Jacobi Equations in Density Space Via a Generalized Hopf Formula. J.
Sci. Comput. 80, 2 (Aug 2019), 1195-1239.

Romain Couillet, Samir M Perlaza, Hamidou Tembine, and Mérouane Debbah.
2012. Electrical vehicles in the smart grid: A mean field game analysis. IEEE
Journal on Selected Areas in Communications 30, 6 (2012), 1086—1096.

Romuald Elie, Julien Perolat, Mathieu Lauriére, Matthieu Geist, and Olivier
Pietquin. 2020. On the convergence of model free learning in mean field games.
In Proceedings of the AAAI Conference on Artificial Intelligence.

Matthieu Geist, Julien Pérolat, Mathieu Lauriére, Romuald Elie, Sarah Perrin,
Oliver Bachem, Rémi Munos, and Olivier Pietquin. 2022. Concave Utility Rein-
forcement Learning: The Mean-Field Game Viewpoint. In Proceedings of the 21st
International Conference on Autonomous Agents and Multiagent Systems.
Maximilien Germain, Joseph Mikael, and Xavier Warin. 2022. Numerical res-
olution of McKean-Vlasov FBSDEs using neural networks. Methodology and
Computing in Applied Probability 24, 4 (2022), 1-30.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. 2019. Learning Mean-Field
Games. In Advances in Neural Information Processing Systems, Vol. 32.

Saeed Hadikhanloo. 2017. Learning in anonymous nonatomic games with applica-
tions to first-order mean field games.

Vincent Hsiao and Dana Nau. 2022. A Mean Field Game Model of Spatial Evolu-
tionary Games. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems.

Kuang Huang, Xu Chen, Xuan Di, and Qiang Du. 2021. Dynamic driving and
routing games for autonomous vehicles on networks: A mean field game approach.
Transportation Research Part C: Emerging Technologies 128 (2021), 103189.
Kuang Huang, Xuan Di, Qiang Du, and Xi Chen. 2019. Stabilizing Traffic via
Autonomous Vehicles: A Continuum Mean Field Game Approach. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC).

Kuang Huang, Xuan Di, Qiang Du, and Xi Chen. 2020. A game-theoretic frame-
work for autonomous vehicles velocity control: Bridging microscopic differential
games and macroscopic mean field games. Discrete and Continuous Dynamical
Systems - B 25, 12 (2020), 4869-4903.

Kuang Huang, Xuan Di, Qiang Du, and Xi Chen. 2020. Scalable traffic stability
analysis in mixed-autonomy using continuum models. Transportation Research
Part C: Emerging Technologies 111 (2020), 616—630.

Minyi Huang, Roland P Malhamé, and Peter E Caines. 2006. Large population
stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash

1087

[27

(28]

[29

@
=

[31

[32

[33

&
=

[38

[39

S
=

[41

[42

[43

[44

[45

[46

[47

[48

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

certainty equivalence principle. Communications in Information & Systems 6, 3
(2006), 221-252.
Arman C. Kizilkale and Peter E. Caines. 2013. Mean Field Stochastic Adaptive

Control. IEEE Trans. Automat. Control 58, 4 (2013), 905-920. https://doi.org/10.
1109/TAC.2012.2228032

Aimé Lachapelle and Marie-Therese Wolfram. 2011. On a mean field game
approach modeling congestion and aversion in pedestrian crowds. Transportation
research part B: methodological 45, 10 (2011), 1572-1589.

Jean-Michel Lasry and Pierre-Louis Lions. 2007. Mean field games. Japanese
Jjournal of mathematics 2, 1 (2007), 229-260.

Mathieu Lauriére, Sarah Perrin, Matthieu Geist, and Olivier Pietquin. 2022. Learn-
ing Mean Field Games: A Survey.

Mathieu Lauriere, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile
Cabannes, Georgios Piliouras, Julien Perolat, Romuald Elie, Olivier Pietquin, and
Matthieu Geist. 2022. Scalable Deep Reinforcement Learning Algorithms for
Mean Field Games. In Proceedings of the 39th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 162).

David Mguni, Joel Jennings, and Enrique Munoz de Cote. 2018. Decentralised
learning in systems with many, many strategic agents. In Thirty-second AAAI
conference on artificial intelligence.

Paul Muller, Mark Rowland, Romuald Elie, Georgios Piliouras, Julien Perolat,
Mathieu Lauriere, Raphael Marinier, Olivier Pietquin, and Karl Tuyls. 2022. Learn-
ing Equilibria in Mean-Field Games: Introducing Mean-Field PSRO. In Proceedings
of the 21st International Conference on Autonomous Agents and Multiagent Systems.
Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Lauriére, Georgios Piliouras,
Matthieu Geist, Karl Tuyls, and Olivier Pietquin. 2022. Scaling Mean Field Games
by Online Mirror Descent. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’22).

Sarah Perrin, Mathieu Lauriére, Julien P’erolat, Romuald Elie, Matthieu Geist,
and Olivier Pietquin. 2022. Generalization in Mean Field Games by Learning
Master Policies. In AAAI Conference on Artificial Intelligence.

Sarah Perrin, Mathieu Lauriére, Julien Pérolat, Matthieu Geist, Romuald Elie, and
Olivier Pietquin. 2021. Mean Field Games Flock! The Reinforcement Learning
Way. In International Joint Conference on Artificial Intelligence (IJCAI-21).

Sarah Perrin, Julien Perolat, Mathieu Lauriére, Matthieu Geist, Romuald Elie, and
Olivier Pietquin. 2020. Fictitious Play for Mean Field Games: Continuous Time
Analysis and Applications. In Proceedings of the 34th International Conference on
Neural Information Processing Systems (NIPS’20).

Lars Ruthotto, Stanley J. Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu
Fung. 2020. A machine learning framework for solving high-dimensional mean
field game and mean field control problems. Proceedings of the National Academy
of Sciences 117, 17 (2020), 9183-9193.

Rongye Shi, Zhaobin Mo, and Xuan Di. 2021. Physics-Informed Deep Learning for
Traffic State Estimation: A Hybrid Paradigm Informed By Second-Order Traffic
Models. Proceedings of the AAAI Conference on Artificial Intelligence 35, 1 (May
2021), 540-547.

Justin Sirignano and Konstantinos Spiliopoulos. 2018. DGM: A deep learning
algorithm for solving partial differential equations. J. Comput. Phys. 375 (2018),
1339-1364.

Jayakumar Subramanian and Aditya Mahajan. 2019. Reinforcement Learning in
Stationary Mean-Field Games. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS ’19).

Sriram Subramanian, Matthew Taylor, Mark Crowley, and Pascal Poupart. 2022.
Decentralized Mean Field Games. In Proceedings of the AAAI Conference on
Artificial Intelligence.

E Weinan, Jiequn Han, and Arnulf Jentzen. 2017. Deep Learning-Based Numeri-
cal Methods for High-Dimensional Parabolic Partial Differential Equations and
Backward Stochastic Differential Equations. Communications in Mathematics
and Statistics 5 (2017), 349-380.

Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, and Andreea Minca. 2021. Learning
While Playing in Mean-Field Games: Convergence and Optimality. In Proceedings
of the 38th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 139).

Thaleia Zariphopoulou Xin Guo, Renyuan Xu. 2022. Entropy Regularization for
Mean Field Games with Learning. In Mathematics of Operations Research.
Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan Zha. 2018.
Deep Mean Field Games for Learning Optimal Behavior Policy of Large Popula-
tions. In International Conference on Learning Representations.

Huibing Yin, Prashant G. Mehta, Sean P. Meyn, and Uday V. Shanbhag. 2014.
Learning in Mean-Field Games. IEEE Trans. Automat. Control 59, 3 (2014), 629-644.
https://doi.org/10.1109/TAC.2013.2287733

Zihe Zhang, Lixin Li, Wei Liang, Hao Li, Ang Gao, Wei Chen, and Zhu Han. 2018.
Downlink Interference Management in Dense Drone Small Cells Networks Using
Mean-Field Game Theory. In International Conference on Wireless Communications
and Signal Processing.

https://doi.org/10.1051/cocv/2016004
https://doi.org/10.1109/TAC.2012.2228032
https://doi.org/10.1109/TAC.2012.2228032
https://doi.org/10.1109/TAC.2013.2287733

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Spatiotemporal MFG (ST-MFG)
	2.3 Solution Concepts
	2.4 Numerical Method

	3 RL-PIDL Framework Overview
	3.1 RL for Agent Optimal Control
	3.2 PIDL for Population Density Propagation
	3.3 Fictitious Play for Policy Stabilization
	3.4 Learning Algorithm

	4 Pure PIDL Framework Overview
	4.1 PIDL for Population Density Propagation
	4.2 PIDL for Agent Optimal Control
	4.3 Learning Algorithm

	5 Linkage between Two Methods
	6 Numerical Experiments
	6.1 Problem Statement
	6.2 Numerical Results

	7 Conclusion
	Acknowledgments
	References

