
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/372391123

Learning Dual Mean Field Games on Graphs

Conference Paper · September 2023

CITATION

1
READS

132

3 authors, including:

Shuo Liu

Columbia University

5 PUBLICATIONS 8 CITATIONS

SEE PROFILE

All content following this page was uploaded by Shuo Liu on 12 September 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/372391123_Learning_Dual_Mean_Field_Games_on_Graphs?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/372391123_Learning_Dual_Mean_Field_Games_on_Graphs?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuo-Liu-96?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuo-Liu-96?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Columbia-University?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuo-Liu-96?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuo-Liu-96?enrichId=rgreq-6ec3bc5cff92aa3d4ee7c0bf4abcbd41-XXX&enrichSource=Y292ZXJQYWdlOzM3MjM5MTEyMztBUzoxMTQzMTI4MTE4ODIyMjQyNUAxNjk0NTI4OTgxNzAz&el=1_x_10&_esc=publicationCoverPdf

Learning Dual Mean Field Games on Graphs
Xu Chena, Shuo Liua and Xuan Dia;*

aColumbia University

Abstract. Reinforcement learning (RL) has been developed for
mean field games over graphs (G-MFG) in social media and network
economics, in which the transition of agents between a node pair
incurs an instantaneous reward. However, agents’ en-route choices
on edges are largely neglected that incur an experienced reward de-
pending on agents’ actions and population evolution along edges.
Here we focus on a broader class of MFGs, named “dual MFG on
graphs” (G-dMFG), which models two interacting MFGs, namely,
one on edges and one at nodes over a graph. In this setting, agents
select travel speed along edges and next-go-to edge at nodes for a
minimum cumulative cost, which arises from the congestion effect
when many agents compete for the same resource. This has vari-
ous implications for autonomous driving navigation, spatial resource
allocation, and internet packet routing. We establish formally that
G-dMFG is a generic G-MFG, encompassing a more complex cost
structure (that is nonseparable between states and actions) and with
no need to pre-specify a termination time horizon. RL algorithms are
designed to solve mean field equilibria (MFE) on large networks.

1 Introduction

Modeling the decision-making processes of a large number of inter-
acting agents in a multi-agent system (MAS) has gained increasing
traction, for its widespread applications in engineering, economics,
and finance. However, the computation of an equilibrium state for
an MAS could be intractable. Mean field games (MFGs) are de-
veloped to solve a large amount of self-interested agents’ dynamic
decision-making behaviors, using a population distribution to repre-
sent the state of interacting individual agents [18, 17, 7, 8]. At mean
field equilibria (MFE), an agent’s optimal strategy coincides with the
population density, characterized by two coupled partial differential
equations (PDEs):

1. Agent dynamic: individuals’ dynamics solved by optimal control,
i.e, a backward Hamilton-Jacobi-Bellman (HJB) equation;

2. Mass dynamic: system evolution arising from individual choices,
i.e, a forward Fokker-Planck-Komogorov (FPK) equation.

MFE is generally challenging to solve due to its forward-backward
structure. The numerical methods of solving MFE include fixed
point, Newton’s method, and the variational method [1, 4, 10], which
require a good initial guess and could fail with a complex cost struc-
ture. Reinforcement learning (RL) algorithms have recently gained
traction in learning MFEs [21, 13, 26, 11, 22, 29, 19, 2] by exploit-
ing the forward-backward structure, in which RL solves the optimal
control of a representative agent backward and population dynamics
are propagated forward.

∗ Corresponding Author. Email: sharon.di@columbia.edu

MFG on graphs (G-MFG) depict a class of MFGs [17, 18, 7] where
the state space of the agent population is a graph and agents select a
sequence of nodal transitions with a minimum individual cost [12].
G-MFG has been applied to social networks and opinion dynamics
[30], as well as transportation systems [6, 15, 5].

There are two streams of literature related to G-MFGs in which
graph representation and agents’ sequential decision making differ.
The first stream primarily models when agents make a transition
decision at a node resulting in an instantaneous transition between
node pairs, where nodes here for example represent opinion topics
and agents are social media users [30]. The second stream of stud-
ies model mean field routing games on networks where each agent
makes en-route choices at nodes connecting an origin to a destina-
tion [3, 6, 24, 27, 5, 25]. In these studies, the graph representation
is for example a road network where nodes are junction points and
edges are road segments. The former stream of studies cannot model
agents’ decisions that incur an implicit delayed reward (i.e., agents
do not know the actual reward till reaching a destination or target
node), while the latter dismisses the agents’ transition velocity deci-
sions on edges.

In this paper, we aim to integrate the aforementioned two streams
of research and study a broader class of MFGs named “dual MFG on
graphs" (G-dMFG), which models not only agents’ en-route choices
at nodes, but also transition velocity decisions on edges subject to
congestion effects. It is inspired by autonomous driving navigation
on networks [15] where autonomous vehicles have to determine their
speed control on edges and routing choices at nodes while moving
from its origin to destination. In particular, the speed control of agent
population on edges belongs to spatiotemporal MFGs defined over a
continuous space and time domain [9] .

For modeling a large number of agents’ route choices in particular,
the MFE is essentially dynamic Wardrop equilibrium [28], a concept
extensively studied by the community of dynamic traffic assignment.
It has been solved using iterative fixed point [14], mean field multi-
agent RL [25], and online mirror descent [5]. Overall, solving MFE
on graph, especially on our proposed game, is even more challenging,
due to the high-dimensional state and action spaces. [30] recasts G-
MFG as a population-based Markov decision process (MDP) without
iteratively solving a forward-backward process. We will augment this
algorithm that can efficiently solve the proposed G-dMFG.

Our main contributions are: (1) we develop dual MFGs on graphs
(G-dMFG), which integrates two interacting G-MFGs over a graph,
one on edges and one at nodes, (2) Through a reformulation of MFG
systems on graphs, we provide theoretical analysis that establishes
a linkage between G-dMFG and existing G-MFGs, demonstrating
that the latter are special cases of the former when one type of agent
choices is fixed, and (3) We develop a RL algorithm to solve a pop-

ulation MDP with an augmented state and action spaces inspired by
[30]. The efficiency of the proposed RL algorithm is demonstrated
on autonomous driving navigation over networks with different sizes
and cost structures.

The rest of this paper is organized as follows: Section 2 presents
a motivating example and preliminaries on G-MFG. Section 3 intro-
duces G-dMFG and demonstrates how to transform G-dMFG to a
population MDP. Section 4 provides theoretical analysis to study the
linkage between G-dMFG and G-MFG. Section 5 presents the solu-
tion approach for MFE. Section 6 shows numerical results. Section 7
concludes.

2 Preliminary
Dual MFGs on graphs (G-dMFG) model two interacting MFGs, one
on edges and one at nodes. These two MFGs are coupled via agents’
decisions at nodes, in other words, on the boundary of edges. The
mathematical formulation of G-dMFG will be detailed in Section 3.1.
Below we will first present two motivating examples.

2.1 Motivating example

1 4

2

3

𝑥

(a) AV navigation

𝒎𝟏
𝝉(𝒙)

𝑥 𝜷𝟏𝟐𝝉

1

2

3

4

(b) Ride-sourcing

Figure 1: Motivating examples for Dual MFGs

A direct application of G-dMFG is autonomous navigation where a
large number of autonomous vehicles (AVs) select continuous-time-
space (or spatiotemporal dynamic) driving velocity on edges and a
sequence of edges connecting an origin to a destination, with an ob-
jective to minimize a total cost subject to the congestion effect. To be
specific, we will elaborate on the optimal control of a representative
agent and population dynamics in this context. A population of AVs
navigate a road network (e.g., the Braess network shown in Fig. 1a),
denoted by a directed graph G = {N ,L}. At origin node 1, the rep-
resentative agent first selects edge (1, 2) at continuous time instant
t with probability β(1, l12, t) (marked in green). Along edge (1, 2),
the agent selects a speed choice ul12(x, t), which is the driving speed
at position x at time t on edge (1, 2) (marked in blue). The agent then
repeats her next-go-to edge choice at node 2 and continues doing so
until reaching destination node 4. The route and speed choices trig-
ger the evolution of population density over the network. The goal of
an AV is to minimize its individual travel cost from node 1 to node 4,
which arises from both the agent’s decision and population density.

Beyond autonomous navigation, G-dMFG has broader engineer-
ing applications, such as spatial resource allocation and internet
packet routing. We take spatial resource management in a ride-
sourcing system as an example, shown in Fig. 1b. At a location x in
zone 1, a generic driver is matched with a passenger with probability
mτ

1(x) at a discretized time step τ , which represents the in-service
rate. The driver then selects her next-go-to zone 2 with probability
βτ
12. Drivers aim to maximize their own net profits, determined by

the spatiotemporal matching choice and drivers’ route choice.
In a nutshell, investigating G-dMFG is beneficial for a variety of

real-world applications, ranging from assisting road planners to de-

vise efficient congestion management strategies, to enabling trans-
portation network companies (such as Uber or Lyft platforms) to pro-
vide real-time navigation guidance to their drivers.

2.2 Mean field game on graph (G-MFG)

We first introduce discrete-time G-MFG proposed in [12, 30] where
agents only make transitions at nodes to minimize their cost. Agents
are initially located at an arbitrary node i ∈ N on a graph G =
{N ,L}. At each node i, agents take an action aτ

i at time τ =
{1, 2, · · · }. τ denotes the discretized time step. The action triggers
a state transition (i.e., population dynamics) to a new node j ∈ N .
The population density of agents at node i at time step τ is denoted
by ρτi , while V τ

i represents the value function at node i at time step
τ . The instantaneous cost or negative reward corresponding to action
aτ
i is denoted by rτi . The transition matrix over the graph G, which

is determined by agents’ actions, is denoted by P τ . Specifically, P τ
ij

is the probability of an agent located at node i switching to node j at
time τ , where (i, j) ∈ L and L is a subset ofN ×N .

Definition 2.1. A G-MFG with discrete time graph states is:

[G-MFG] :

(FPK) ρτ+1 = [P τ]Tρτ , (1a)

(HJB) V τ = min
a

P τV τ+1 + rτ , (1b)

where, ρτ = [ρτ1 , ..., ρ
τ
N]T ,V τ = [V τ

1 , ..., V τ
N]T ,aτ =

[aτ
1 , ..., a

τ
N]T , rτ = [rτ1 , ..., r

τ
N]T . N = |N | is the total number

of nodes in the graph.

To elaborate on the above two equations, the population dynamics
is captured by a Fokker-Planck (FPK) equation (1a), which describes
the evolution of population density ρ according to the control a of
agents. The relationship between agents’ decision and the optimal
cost is captured by a Hamilton-Jacobi (HJB) equation (1b). [G-MFG]
is a coupled equation system where FPK and HJB share the same
transition matrix (with a transpose).

2.3 Population MDP

A Markov decision process for a population of agents is referred to
as a population MDP.

Definition 2.2. A population MDP for the G-MFG is given by:

• State: ρτ , the population density over G at time τ .
• Actions: P τ , the transition matrix at time τ , depending on action

ai at each node i ∈ N .
• Reward: R(ρτ , P τ) =

∑N
i=1 ρ

τ
i

∑N
j=1 P

τ
ijrij(ρ

τ , P τ).
• State transition: ρτ+1 = [P τ]Tρτ (Equ. 1a).

Solving a population MDP is shown in [30] to be equivalent to
solving a G-MFG defined in Definition 2.1. This facilitates the design
of an MDP-based algorithm that only requires the propagation of
the population density forward without the need to solve a forward-
backward system.

3 Methodology

In this section, we first present a G-dMFG in continuous space and
time that encompasses both the optimal control of a representative
agent and the population dynamics. We then demonstrate how to re-
cast G-dMFG into a population MDP.

3.1 Dual mean field games on graph (G-dMFG)

Definition 3.1. Continuous-time-space G-dMFG
Optimal control of a representative agent: On a graph G, a generic

agent moves from her initial position to a destination, aiming to solve
optimal control to minimize its cost connecting its origin to the desti-
nation. Assume there is a single destination s ∈ N for all the agents.
One with multiple destinations forms a multi-population MFG and
will be left for future research. The agent’s state at time t can be
specified by two scenarios, either in the interior of an edge or at a
node.

In the interior of edge l ∈ L:

• State (x, t) is the agent’s position on edge l at time t where x ∈
[0, len(l)] and len(l) is the length of edge l.

• Action ul(x, t) is the velocity of the agent at position x at time
t when navigating edge l. Note that G-dMFG is non-stationary,
thus, the optimal velocity evolves as time progresses.

• Reward rl(u, ρ) is the congestion cost arising from the agent pop-
ulation on edge l, which is increasingly monotone in ρ indicating
the congestion effect.

• Value function Vl(x, t) is the minimum cost of the representative
agent starting from position x at time t. Vl(x, t) is modeled by a
HJB equation: ∀l ∈ L,

∂tVl(x, t) + min
u
{rl(u, ρ) + u∂xVl(x, t)} = 0, (2)

Vl(len(l), t) = πi(t), l ∈ IN(i),

where ∂tVl(x, t), ∂xVl(x, t) are partial derivatives of Vl(x, t)
with respect to t, x, respectively. IN(i) represent the edges go-
ing into node i. πi is the minimum travel cost of agents staring
from node i (i.e., the end of edge l) at time t, which is also the
boundary condition of Equ. 2. The terminal condition of V will
be introduced in Equ. 6.

At node i ∈ N :

• Action β(i, l, t) represents the probability of choosing the next-
go-to edge l ∈ OUT (i) where OUT (i) represent the edges com-
ing out of node i. We have

∑
l∈LO(i) β(i, l, t) = 1. β(i, l, t) can

be interpreted as the proportion of agents selecting edge l (or turn-
ing ratio) at node i at time t. β determines the boundary condition
of population evolution on edges, which will be defined in Equ. 5.

• Value function πi(t) is the minimum traverse cost starting from
node i at time t. πi(t) satisfies

πi(t) = min
β

∑
l∈OUT (i)

β(i, l, t) · Vl(0, t), (3)

πs(t) = 0.

Vl(0, t) is the minimum cost entering edge l (i.e., x = 0) at time
t. πs(t) is the terminal cost at destination s.

Population dynamics: When all agents follow the optimal con-
trol, the population density distribution on edge l, denoted as
ρl(x, t),∀l ∈ L, evolves over the graph. It is solved by a deter-
ministic (or first-order) FPK, given the velocity control ul(x, t) of
agents:

∂tρl(x, t) + ∂x[ρl(x, t) · ul(x, t)] = 0, (4)

ρl(x, 0) = ρ0(x),

where ∂tρl(x, t), ∂xρl(x, t) are partial derivatives of ρl(x, t) with
respect to t, x, respectively. Since agents may not appear or disappear

randomly, there is no stochasticity in this equation. ρl(x, 0) is the
initial population density.

At the starting node of edge l or the starting position on edge
l, agents move to the next-go-to edge based on their route choice.
Therefore, the boundary condition is:

ρl(0, t) = β(i, l, t){
∑

h∈IN(i)

[ρh(len(h), t) · uh(len(h), t)}, (5)

where, l ∈ OUT (i) and ρl(0, t) is the influx entering edge l at
time t. For a source node where new agents appear, this node can
be treated as a dummy edge where agents exit this edge at a speed of
umax to enter a downstream edge. In the above boundary condition,
there is no need to distinguish between an intermediate and a source
node explicitly without loss of generality.

Game termination condition: The termination condition depends
on when the agent population arrives at their destinations. We denote
the time when the last agent reaches the destination as t∗. Here we
propose two options:

1. In a non-stationary MFG, the common approach is to specify a
finite time horizon T = [0, T] to ensure that all agents reach the
destination by a sufficiently large time. Assume t∗ ⩽ T . The ter-
minal cost becomes

Vl(len(l), t∗) = 0, l ∈ IN(s). (6)

However, this condition could increase the problem size and com-
putational time.

2. Here we propose that as long as the last agent reaches its destina-
tion, which is when all the edge densities are emptied and there
is no new agent entering the network. Those who have already
reached destinations incur no extra cost. This condition is adopted
in Algorithm 1. This trick can be potentially extended to station-
ary MFGs with infinite time horizons (i.e., no terminal state for
the agent population).

3.2 Reformulation of G-dMFG via population MDP

In this subsection, we introduce how to reformulate G-dMFG as a
population MDP. To obtain the population MDP, we first focus on
G-dMFG with discrete time and space, denoted as GD-dMFG. On
a spatiotemporal mesh grid, denote ∆x,∆t as the spatial and tem-
poral mesh sizes, respectively. Denote GD = {ND,LD} as the
discretized representation of G. To construct GD from G, we first
discretize edges on a graph (Fig. 2). Each edge l = (i, j) ∈ L
is divided into a sequence of adjacent edge cells, denoted as lD =
{(i, i1), (i1, i2), ...(i|lD|−1, j)}, where |lD| = len(l)

∆x
is the number

of adjacent edge cells. The node set ND is created by augmenting
N with auxiliary nodes i1, i2, · · · , |LD|−1 that separate newly split
edge cells. In summary, a spatially discretized directed graph GD is a
collection of edge cells and augmented nodes linked by directed ar-
rows. It preserves the topology of the original graph G but with more
edges and nodes. GD-dMFG is a discretization of G-dMFG based on
the subdivision of edges in a graph.

We discretize the time interval into [· · · , τ∆t, · · ·], τ = 0, 1, ...,
where τ represents the discretized time instant. The relation be-
tween the spatial and temporal resolutions needs to fulfill the
Courant–Friedrichs–Lewy (CFL) condition to ensure numerical sta-
bility [20]: ∆t · umax ⩽ ∆x, where umax is the maximum velocity.

2

1

5 7

4

8

3

9

6

Figure 2: Space-Discretized Braess Network GD = {ND,LD}

Proposition 3.1. On a spatiotemporal mesh grid, a G-dMFG (Defi-
nition. 3.1) is discretized to the following GD-dMFG:

[GD-dMFG] : ∀(i, j) ∈ LD,

ρτ+1
ij = ρτij +

∆t

∆x
(βτ

ij

∑
m:(m,i)∈LD

ρτmiu
τ
mi − ρτiju

τ
ij), (7a)

V τ
ij = min

u
{V τ+1

ij (1− ∆t

∆x
uτ
ij) + πτ+1

j

∆t

∆x
uτ
ij + rτij}, (7b)

πτ+1
i = min

β

∑
j:(i,j)∈LD

βτ
ij · V τ+1

ij , ∀i ∈ ND. (7c)

where, ρτij ∈ R denotes the population density on edge cell (i, j) ∈
LD at time τ . uτ

ij ∈ R is the speed on edge cell (i, j) at time
τ . βτ

ij is the probability of agents at node i,∀i ∈ ND choosing
node j at time τ . V τ

ij is the minimum instantaneous travel cost
on edge cell (i, j) to the destination. πτ

i is the minimum experi-
enced travel cost from node i to the destination. The proof is in Ap-
pendix. We provide a toy example in Appendix to demonstrate GD-
dMFG. We denote the mean field equilibria (MFE) of [GD-dMFG]
as SOL([GD-dMFG]) = {ρ,V ,π,u,β}.

Theorem 3.1. [GD-dMFG] in Proposition 3.1 can be recast into the
following coupled MFG system:

(FPK) ρτ+1 = [P τ]Tρτ , (8a)

(HJB) V τ = min
u,β

P τV τ+1 + rτ , (8b)

where, ρτ = [ρτij]
T ,V τ = [V τ

ij]
T , rτ = [rτij]

T , ∀(i, j) ∈ LD .

P τ
|LD|×|LD| =


...
... ∆t

∆x
uτ
miβ

τ
ij ...

...

... ∆t
∆x

uτ
ijβ

τ
jk ... 1− ∆t

∆x
uτ
ij ...

...

. (9)

where, (j, k) is a successor edge cell of (i, j) ∈ LD . P τ is a transi-
tion matrix satisfying: (1) each element is between 0 and 1, and (2)
the sum of elements in each row equals 1. The proof can be found in
Appendix.

We can further decompose the transition matrix P τ into:

P τ = Uτ ·Bτ + (I − Uτ), (10)

where Uτ a diagonal matrix computed as:

Uτ
|LD|×|LD| =


... ∆t

∆x
uτ
ij ...

...

, (11)

and

Bτ
|LD|×|LD| =


0
...
... βτ

jk
... 0

. (12)

The two terms in P τ can be interpreted as:

1. Uτ · Bτ denotes the population proportion who are out of the
present edge cell and into the next-go-to cell according to route
choice.

2. I − Uτ denotes the population proportion who have not gone out
of the present edge cell.

Corollary 3.1. A population MDP for GD-dMFG is constructed as:

• State: ρτ , the population density over GD at time τ .
• Actions: P τ , the transition matrix at time τ (Equ. 9), depending

on route choice βτ at nodes and velocity control uτ on edges.
• Reward: R(ρτ , P τ) =

∑
(i,j)∈LD ρτijr

τ
ij(u

τ
ij , ρ

τ
ij).

• State transition: ρτ+1 = [P τ]Tρτ (Equ. 8a).

Then SOL([GD-dMFG]) is a solution to this MDP. The proof can be
found in Appendix.

Remark 1. Proposition 3.1, Theorem 3.1 and Corollary 3.1 demon-
strate how to recast G-dMFG into a population MDP, which facili-
tate our analysis on the relationship between G-dMFG and existing
G-MFGs (Section 4), as well as the algorithm design (Section 5).

4 Linkage between GD-dMFG and G-MFG
In this section, we discuss the connection between GD-dMFG and
various G-MFGs.

4.1 GD-dMFG conditional on known velocity

We demonstrate that GD-dMFG with pre-specified driving velocity
on edge is G-MFG.

Proposition 4.1. Given the speed control ∀(i, j) ∈ LD, τ ⩾
0, uτ

ij ≡ umax where umax = ∆x
∆t

, [GD-dMFG] becomes a G-MFG,
which is formulated as

[GD-MFG-Route] :

(FPK) ρτ+1 = [Bτ]Tρτ , (13a)

(HJB) πτ = min
β

Bτπτ+1 + rτR, (13b)

where, ∀i ∈ ND,πτ = [πτ+1
i],ρτ = [ρτi], ρ

τ
i =

∑
m ρτmi,

Bτ
|ND|×|ND| =


0
...
... βτ

ij βτ
ik ...

... 0

 (14)

It is straightforward that Bτ is a transition matrix (Theorem 3.1) sat-
isfying (1) 0 ⩽ βτ

ij ⩽ 1, (2)
∑

j β
τ
ij = 1,∀i ∈ ND . The proof can

be found in Appendix. We also have ∀i ∈ ND, βτ
ii ≡ 0. βτ

ij ≡ 1
if i /∈ N and i ∈ ND , indicating that agents are moving from one
edge cell to its successor edge cell on an edge l ∈ L. The assumption
u ≡ umax = ∆x

∆t
in Proposition 4.1 indicates that transitions of the

agent population only happen between node pairs, which means the
population state in GD is specified as each node.

The reward in Equ.13b can be specified as following cases: (1) In
GD-dMFG, the reward is the aggregate travel cost along edges de-
termined by agents’ speed control. (2) [25] utilizes the experienced
travel cost determined by various mechanisms in dynamic network-
ing loading as the reward. (3) [6] predetermines the reward function
regarding the population density on each node. The equilibrium solu-
tion of [GD-MFG-Route] is dynamic Wardrop equilibrium. Readers
can refer to [6] for detailed proof.

Table 1: Summary of GD-dMFG and G-MFG

MFG
Representative Agent Population

State Action Reward Value Function State

[GD-dMFG] edge cell (i, j)
speed uτ

ij ,
route βτ

ij
congestion costs

minimum travel cost
to destination

population density ρτij

[GD-MFG-Route] node i route βτ
ij

travel cost
on edge (i, j)

minimum travel cost
to destination

population entering node
ρτi =

∑
m ρτmi

[GD-MFG-Speed] edge cell (i, j) speed uτ
ij instantaneous reward

minimum travel cost
of navigation

population density ρτij

[G-MFG] node i action aτ
i instantaneous reward

minimum travel cost
in a finite horizon

population density
at node ρτi

4.2 GD-dMFG conditional on known route choices

Here we demonstrate that GD-dMFG with pre-assigned turning ra-
tiors or routing choices is G-MFG.

Proposition 4.2. Given the agent population entering an edge l ∈ L
(i.e., β is fixed), GD-dMFG on edge l becomes a G-MFG, which is
given by:

[GD-MFG-Speed] :

(FPK) ρτ+1 = [Uτ]Tρτ , (15a)

(HJB) V τ = min
u

UτV τ+1 + rτ , (15b)

where, ρτ = [ρτij],V
τ = [V τ

ij], (i, j) ∈ lD, lD ⊂ LD and

Uτ
|lD|×|lD| =


...
... 1− ∆t

∆x
uτ
ij

∆t
∆x

uτ
ij ...

... ... 1− ∆t
∆x

uτ
ik ...

...

 (16)

Uτ is a transition matrix (Theorem 3.1): (1) 0 ⩽ 1 −
∆t
∆x

uτ
ij ,

∆t
∆x

uτ
ij ⩽ 1, (2) 1 − ∆t

∆x
uτ
ij +

∆t
∆x

uτ
ij = 1. The proof is in

Appendix. In the [GD-MFG-speed], the movement agents along an
edge can be treated as the speed control on each edge cell (i, j) ∈ lD .
βij ≡ 1 if i /∈ N . ρτij · ∆t

∆x
uτ
ij means agents exiting the edge cell

(i, j) and ρτij · (1− ∆t
∆x

uτ
ij) indicates agents stuck on the edge cell.

Proposition 4.3. If ∀i ∈ ND, ∃j ∈ {j : (i, j) ∈ LD}, s.t. βτ
ij = 1,

GD-dMFG becomes a G-MFG, which is given by:

[GD-MFG-Speed] :

(FPK) ρτ+1 = [Uτ]Tρτ , (17a)

(HJB) V τ = min
u

UτV τ+1 + rτ , (17b)

where, ρτ = [ρτij],V
τ = [V τ

ij], (i, j) ∈ L̃D ⊂ LD and L̃D =
{(i, j) : (i, j) ∈ LD, βτ

ij = 1}. The proof can be found in Ap-
pendix. The transition matrix Uτ is similar to the one in Equ. 16
and the dimension of Uτ is |L̃D| × |L̃D|. The edge cell set L̃D ex-
tends the [GD-MFG-Speed] on one edge defined in Proposition 4.2 to
[GD-MFG-Speed] along a sequence of edges (e.g., a chain network)
on a graph G.

4.3 Summary

We summarize the linkage between GD-dMFG and existing G-MFGs
in Fig. 3. By recasting G-dMFG into MDP, we demonstrate the capa-
bility of G-dMFG to encompass existing G-MFGs. Table. 1 presents

G ‐dMFG

G‐MFG

G ‐MFG‐Speed G ‐MFG‐Route

[Calderone & Sastry, 2017][Huang et al., 2019]
[Chen et al., 2023]

[Gueant, 2015; Yang et al., 2018]

[This paper]
[Huang et al., 2021]
[Cabannes et al., 2022]

Figure 3: Linkage between GD-dMFG and G-MFG variants

Table 2: Comparison of existing works on GD-dMFG

This work Huang et
al., 2021

Cabannes
et al., 2022

Problem
Dynamic
routing+

speed choice

Dynamic
routing+

speed choice

Dynamic
routing

with delay

Model Population
MDP

Forward
-backward

systems

Forward
-backward

systems

Theoretical
analysis

GD-dMFG
& MDP

& G-MFGs
— —

Solution
Approach

RL for
MDP

Numerical
method

Fixed point
algorithm

So
lv

ab
ili

ty Network
size

Braess &
Sioux Fall Braess Braess &

Sioux Fall
Cost

structure
Sep &

Non-Sep Sep Sep

Game
termination ! — —

the set-up of all G-MFG models: [GD-dMFG] models two inter-
acting MFGs: [GD-MFG-Route] and [GD-MFG-Speed]. The former
depicts a generic mean field dynamic routing game where agents
at nodes take discrete actions regarding the next-go-to link on net-
works. The latter depicts a generic MFG regarding spatiotemporal
velocity control on ring roads with periodic conditions [16, 9]. Both
[GD-MFG-Route] and [GD-MFG-Speed] are G-MFGs.

In Table. 2, we make a comparison of existing works on GD-
dMFG: [15] solves a dynamic route and velocity control problem
for autonomous vehicles (AV) using a numerical method. However,
this numerical method is not scalable to large systems. This work
generalizes the AVs’ control problem as a G-dMFG. We recast the
G-dMFG into a generic MDP (Theorem 3.1, Corollary 3.1). This
extension provides significant improvements in terms of theoreti-

cal analysis and the solvability of solution approaches. We thus de-
velop an RL algorithm to handle more complex scenarios. [5] stud-
ies a dynamic routing problem with departure delay and only models
action on nodes. By our theoretical analysis (Proposition 4.1-4.3),
we can reinterpret and generalize the model in [5] as a G-dMFG in
which agents’ departure choice denotes the exit rate of population on
dummy edges (i.e., source nodes). [5] utilizes a fixed point algorithm
to iteratively solve the forward and backward processes. The fixed
point algorithm cannot determine when the game ends, so it needs to
be repeatedly implemented until we find a time horizon for termina-
tion. In addition, it adopts a simple cost structure that cannot reflect
congestion effects in real-world scenarios. Our proposed algorithm
in Section 5 tackles these issues.

5 Solution Approach

We develop Algorithm. 1 (aka. Our Algorithm) to solve a population
MDP according to Corollary 3.1. The MDP-based algorithm updates
the agent policy and population distribution simultaneously without
computing agents’ policies over the entire horizon in the forward and
backward process. Line 2-12 solves a deterministic MDP. We first
initialize V ,π on all edge cells from τ = 0 to τ = Nt − 1 where
Nt = T

∆t
. At each time step τ , the agent policy uτ and βτ are

updated according to Equ. 7b and 7c, respectively (Line 6-9). Line 10
utilizes fictitious play (FP) to stabilize policy learning by computing
the historical average policy [23]. The agent policy at time τ over
the graph GD triggers the evolution of the population. With the FPK
equation in one time step, we obtain the population density at time
τ+1 (Line 11). The terminal condition of the MDP is when all agents
have arrived at the destination.

We also tried two other algorithms that solve a coupled forward-
backward system for general MFGs. In the rest of the paper, we refer
these baseline algorithms (See Appendix) as Alg. 2.1 and Alg. 2.2,
respectively. In Alg. 2.1, we first select a long time horizon T =
[0, T] to make sure agents can arrive at the destination before time
T . We then initialize the policy of agents (i.e., u(0) and β(0)). Line
3-14 solves the forward and backward process iteratively. The for-
ward process is to update population density (Line 4). The backward
process is to solve the HJB equation for the generic agent given the
population density ρ(n). Alg. 2.1 uses value iteration method while
Alg. 2.2 uses backward induction to solve the HJB equation. Com-
pared to baselines, our proposed algorithm does not require a pre-
specified time horizon nor policy initialization (because the MDP
propagates the population density instead of agents’ optimal control).

6 Numerical Experiments

In this section, we apply algorithms to autonomous driving navi-
gation over networks (i.e., the motivating example in Section 2.1).
We compare the performance of algorithms on two networks: the
Braess network (Fig. 1a) and Sioux Falls network with 24 nodes
and 76 links. The topology of the network is downloadable (https:
//github.com/bstabler/TransportationNetworks).

We consider GD-dMFG with three cost functional forms. (1)
[GD-dMFG-Sep]: The separable cost function is written as the sum
of two univariate functions with respect to action u and population
density ρ. Mathematically, r(u, ρ) = 1

2
(u
umax

)2 − u
umax

+ ρ
ρjam

.
ρjam is the jam density. In this work, we assume umax = 1 and
ρjam = 1. (2) [GD-dMFG-Non-Sep1]: The non-separable cost func-
tion has a cross term of the agent action u and the population den-
sity ρ. Mathematically, r(u, ρ) = 1

2
(u
umax

)2 − u
umax

(1− ρ
ρjam

) +

Algorithm 1 GD-dMFG-MDP

1: Input: The initial distribution of agent population, Convergence
threshold ϵ = 10−4;

2: Initialize: V τ,0,πτ,0, τ = 0, 1, ..., Nt − 1.
3: for n← 0 to W do
4: τ = 0
5: while population at destination < total population do
6: Update uτ and V τ (Equ. 7b): ∀(i, j) ∈ GD ,

7: V τ,n+1
ij = minuτ

ij
{r + V τ+1,n

ij +
uτ
ij∆t

∆x
[πτ+1,n

j −
V τ+1,n
ij]}

8: Update βτ and πτ (Equ. 7c): ∀i ∈ ND ,
9: πτ+1,n+1

i = minβτ
ij

∑
j β

τ
ijV

τ+1,n
ij

10: Store policy into buffer and obtain average policy
ūτ , β̄

τ . uτ ← ūτ ,βτ ← β̄
τ . –Fictitious play

11: Obtain ρτ+1 (Equ. 7a).
12: τ ← τ + 1
13: end while
14: Check convergence.
15: end for
16: Output u, V, β, π, ρ

1
2
(1 − ρ

ρjam
)2. (3) [GD-dMFG-Non-Sep2]: Another non-separable

cost function is r(u, ρ) = 1
2
(u
umax

)2 − u
umax

+ uρ
umaxρjam

. The
majority of literature that solves MFGs focuses on the separable
cost function, which makes the MFG a potential game. Note that
[GD-dMFG-Non-Sep1] and [GD-dMFG-Non-Sep2] are not poten-
tial games. The physical meaning of each cost functional form can
be found in [16].

0 50 100 150 200

iterations

0

2

4

6

8

c
o

n
v
e

rg
e

n
c
e

 g
a

p

10
-4

(a) Convergence gap (Alg. 1.)

0 50 100 150 200

iterations

0

2

4

6

8

W
1

-d
is

ta
n

c
e

10
-4

(b) W1-distance (Alg. 1.)

0 10 20 30 40 50

iterations

0

2

4

6

8

c
o

n
v
e

rg
e

n
c
e

 g
a

p

10
-3

(c) Convergence gap (Alg. 2.1)

0 10 20 30 40 50

iterations

0

2

4

6

8

W
1

-d
is

ta
n

c
e

10
-3

(d) W1-distance (Alg. 2.1)

Figure 6: Performance on Braess Network - [G-dMFG-Non-Sep1]

Table 3: Computational time (s)

Network ∆t,

∆x
Cost Alg. 2.1 Alg. 2.2. Alg. 1.

(Ours)

Braess

1
4

Sep 3.87 1.64 2.89
Non-Sep1 3.35 1.33 3.62
Non-Sep2 3.90 1.87 1.52

1
8

Sep 8.87 4.66 6.82
Non-Sep1 7.23 4.45 11.69
Non-Sep2 8.23 4.59 3.52

Sioux-Falls

1
4

Sep 44.81 30.24 23.66
Non-Sep1 41.14 28.52 16.87
Non-Sep2 45.84 32.53 14.46

1
8

Sep 116.28 62.12 87.68
Non-Sep1 108.37 63.20 46.51
Non-Sep2 121.53 67.74 49.10

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks

(a) ρ : 1 → 2 → 3 → 4 (b) ρ : 1 → 2 → 4 (c) ρ : 1 → 3 → 4

Figure 4: Population density ρ of GD-dMFG-Non-Sep1 on Braess Network (Its topology is defined in Fig. 1a.)

agents entering edge (1-3)
at origin 1 at time 0

agents stuck on edge (1-3)
at time 1 with speed 0.2

Edge (1,3) is empty after time 2
(agents have exited (1,3))

All agents have arrived
at destination 20 by time 10

(a) ρ : 1 → 3 → 4 → 5 → 9 → 10 → 16 → 17 →
19 → 20. All agents starting from node 1 choose 1 → 3
as their next-go-to-edge at time 0. At time τ = 1, the
majority of agents staring from origin 1 get stuck on edge
1 → 3 with speed 0.2 (i.e., a low exit rate). This is the
same for agents starting from nodes 3, 4, 5, 9, 10, 16.

Agents at origin 1 do not choose (1-2) as their route.

25% of agents at origin 8
select edge (8-7) at time 0

(b) ρ : 1 → 2 → 6 → 8 → 7 → 18 → 20. The dark
blue region along edge 1 → 2 at time 0 indicates that
no one chooses 1 → 2 as their route choices. At node 8,
around 25 % (0.2 of 0.8 demand) agents choose 8 → 7
as their next-go-to-edge at time 0

Figure 5: Population density ρ on the Sioux Fall Network with GD-dMFG-Non-Sep2

We first look into the convergence performance of Algo-
rithm GD-dMFG-FB and Algorithm 1 (GD-dMFG-MDP). For sim-
plicity, we present the algorithm performance on the Braess net-
work in [G-dMFG-Non-Sep1]. The solution granularity is: ∆x =
∆t = 0.125. The convergence performance on the Sioux Falls net-
work with other cost functional forms can be found in Appendix.
In Fig. 6, we use the convergence gap (e.g., |ρ(n) − ρ(n−1)|) and
the 1-Wasserstein distance (W1-distance) as metrics, where W1-
distance measures the closeness between the MFE and our results
[19]. The x-axis represents the number of iterations n. For Algo-
rithm GD-dMFG-FB, n is also the number of outer loops for the
forward-backward process. It is shown that the number of outer loops
the baseline algorithms takes to converge is similar to that of Al-
gorithm 1. However, our proposed algorithm does not require inner
loops to solve the forward-backward process, which reduce the com-
putational time. In Table 3, we compare the computational time of
different algorithms on two granularities, ∆x = ∆t = 0.25 and
∆x = ∆t = 0.125. The results demonstrate that our algorithm out-
performs the baseline algorithms on the large-scale Sioux Fall net-
work in terms of computational efficiency.

Fig. 4 demonstrates the population density at equilibrium along
three paths in the Braess Network: (1 → 2 → 3 → 4), (1 →
2 → 4), (1 → 3 → 4) for [GD-dMFG-Non-Sep1]. The x-axis
is the position on the path and the y-axis represents the time. The z-
axis represents the population density ρ. The population departs from
node 1, and arrives at destination 4 with three route choices. Fig. 5
shows the population density on the Sioux Fall network in [GD-
dMFG-Non-Sep2]. Origins are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 17, 19.
All agents move from their origins to destination 20. The solution

granularity is: ∆x = ∆t = 0.25. The x-axis denotes the path. Ap-
pendix contains additional visuals regarding equilibrium results with
other cost functional forms.

7 Conclusion
In this paper, we propose GD-dMFG, which is a broader class of
MFGs modeling two interacting MFGs on graphs. One is the rout-
ing at nodes and the other is the velocity control along edges. The
major contribution of our work lies in the recasting of the coupled
system in GD-dMFG (Theorem 3.1), which facilitates not only the
linkage between GD-dMFG and existing models, but also the de-
sign of the solution approach. We demonstrate that GD-dMFG is a
generic G-MFG and the routing game and velocity control are both
G-MFGs. Our proposed model encompasses existing G-MFGs. We
develop an MDP algorithm to find MFE without solving the forward
and backward processes of general MFGs. Numerical results show
that the MDP algorithm is faster than baselines in large-sized net-
works with non-separable cost structure between agent policy and
population state.

This work can be extended in the following ways: (1) We will
study how to incorporate more complex game settings (e.g. multi-
class MFGs) into GD-dMFG in order to handle interactions between
different types of agent population distributed on graphs. (2) We will
extend the MDP algorithm to solve GD-dMFG with infinite time
horizons.

Acknowledgements
This work is sponsored by NSF CAREER award CMMI-1943998.

References

[1] Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta, ‘Mean field
games: numerical methods for the planning problem’, SIAM Journal on
Control and Optimization, 50(1), 77–109, (2012).

[2] Andrea Angiuli, Jean-Pierre Fouque, and Mathieu Laurière, ‘Unified
reinforcement q-learning for mean field game and control problems’,
Mathematics of Control, Signals, and Systems, 1–55, (2022).

[3] Dario Bauso, Xuan Zhang, and Antonis Papachristodoulou, ‘Density
flow in dynamical networks via mean-field games’, IEEE Transactions
on Automatic Control, 62(3), (2017).

[4] Jean-David Benamou and Guillaume Carlier, ‘Augmented Lagrangian
methods for transport optimization, mean field games and degenerate
elliptic equations’, Journal of Optimization Theory and Applications,
167(1), 1–26, (2015).

[5] Theophile Cabannes, Mathieu Laurière, Julien Perolat, Raphael
Marinier, Sertan Girgin, Sarah Perrin, Olivier Pietquin, Alexandre M.
Bayen, Eric Goubault, and Romuald Elie, ‘Solving n-player dynamic
routing games with congestion: A mean-field approach’, in Proceed-
ings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’22, (2022).

[6] Dan Calderone and S. Shankar Sastry, ‘Markov decision process rout-
ing games’, in Proceedings of the 8th International Conference on
Cyber-Physical Systems, ICCPS ’17. Association for Computing Ma-
chinery, (2017).

[7] Pierre Cardaliaguet, Notes on mean field games, 2010.
[8] Pierre Cardaliaguet, ‘Weak solutions for first order mean field games

with local coupling’, in Analysis and geometry in control theory and its
applications, 111–158, Springer, (2015).

[9] Xu Chen, Shuo Liu, and Xuan Di, ‘A hybrid framework of reinforce-
ment learning and physics-informed deep learning for spatiotemporal
mean field games’, in Proceedings of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS ’23,
(2023).

[10] Yat Tin Chow, Wuchen Li, Stanley Osher, and Wotao Yin, ‘Algorithm
for Hamilton-Jacobi equations in density space via a generalized Hopf
formula’, arXiv preprint arXiv:1805.01636, (2018).

[11] Kai Cui and Heinz Koeppl, ‘Approximately solving mean field games
via entropy-regularized deep reinforcement learning’, in AISTATS,
(2021).

[12] Olivier Guéant, ‘Existence and uniqueness result for mean field games
with congestion effect on graphs’, Applied Mathematics and Optimiza-
tion, 72(2), 291–303, (2015).

[13] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang, ‘Learning mean-
field games’, in Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., (2019).

[14] Ke Han, Gabriel Eve, and Terry L Friesz, ‘Computing dynamic user
equilibria on large-scale networks with software implementation’, Net-
works and Spatial Economics, 19(3), 869–902, (2019).

[15] Kuang Huang, Xu Chen, Xuan Di, and Qiang Du, ‘Dynamic driving
and routing games for autonomous vehicles on networks: A mean field
game approach’, Transportation Research Part C: Emerging Technolo-
gies, 128, 103189, (2021).

[16] Kuang Huang, Xuan Di, Qiang Du, and Xi Chen, ‘A game-theoretic
framework for autonomous vehicles velocity control: Bridging micro-
scopic differential games and macroscopic mean field games’, Discrete
and Continuous Dynamical Systems - Series B, 25(12), 4869–4903,
(2020).

[17] Minyi Huang, Roland P Malhamé, and Peter E Caines, ‘Large popu-
lation stochastic dynamic games: closed-loop Mckean-Vlasov systems
and the Nash certainty equivalence principle’, Communications in In-
formation & Systems, 6(3), 221–252, (2006).

[18] Jean-Michel Lasry and Pierre-Louis Lions, ‘Mean field games’,
Japanese journal of mathematics, 2(1), 229–260, (2007).

[19] Mathieu Lauriere, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush
Jain, Theophile Cabannes, Georgios Piliouras, Julien Perolat, Romuald
Elie, Olivier Pietquin, and Matthieu Geist, ‘Scalable deep reinforce-
ment learning algorithms for mean field games’, in Proceedings of the
39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 12078–12095. PMLR,
(2022).

[20] Randall J LeVeque, Finite volume methods for hyperbolic problems,
volume 31, Cambridge university press, 2002.

[21] David Mguni, Joel Jennings, and Enrique Munoz de Cote, ‘Decen-

tralised learning in systems with many, many strategic agents’, Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 32, (03
2018).

[22] Sarah Perrin, Mathieu LauriÃšre, Julien PÃ©rolat, Romuald Ãlie,
Matthieu Geist, and Olivier Pietquin, ‘Generalization in mean field
games by learning master policies’, Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 36, 9413–9421, (Jun. 2022).

[23] Sarah Perrin, Julien Perolat, Mathieu Laurière, Matthieu Geist, Ro-
muald Elie, and Olivier Pietquin, ‘Fictitious play for mean field games:
Continuous time analysis and applications’, in Proceedings of the 34th
International Conference on Neural Information Processing Systems,
NIPS’20, (2020).

[24] Rabih Salhab, Jerome Le Ny, and Roland P. Malhamé, ‘A mean field
route choice game model’, in 2018 IEEE Conference on Decision and
Control (CDC), pp. 1005–1010, (2018).

[25] Zhenyu Shou, Xu Chen, Yongjie Fu, and Xuan Di, ‘Multi-agent re-
inforcement learning for markov routing games: A new modeling
paradigm for dynamic traffic assignment’, Transportation Research
Part C: Emerging Technologies, 137, (2022).

[26] Jayakumar Subramanian and Aditya Mahajan, ‘Reinforcement learn-
ing in stationary mean-field games’, in Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’19, p. 251–259, (2019).

[27] Takashi Tanaka, Ehsan Nekouei, Ali Reza Pedram, and Karl Johansson,
Linearly Solvable Mean-Field Traffic Routing Games, 03 2019.

[28] John Glen Wardrop, ‘Road paper. some theoretical aspects of road traf-
fic research.’, Proceedings of the institution of civil engineers, 1(3),
325–362, (1952).

[29] Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, and Andreea Minca,
‘Learning while playing in mean-field games: Convergence and opti-
mality’, in Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Re-
search. PMLR, (2021).

[30] Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan
Zha, ‘Deep mean field games for learning optimal behavior policy of
large populations’, in International Conference on Learning Represen-
tations, (2018).

A Proof

A.1 Proposition 3.1

Proof. We first reformulate Equ. 2 on spatiotemporal grids where
∆t · umax ⩽ ∆x as follows

Vl(x, t+∆t)− Vl(x, t)

∆t
+min

u
{fl(u, ρ)+

u
Vl(x+∆x, t+∆t)− Vl(x, t+∆t)

∆x
} = 0

→ Vl(x, t) = min
u
{fl(u, ρ)∆t+ (1− ∆t

∆x
u)Vl(x, t+∆t)

+ uVl(x+∆x, t+∆t).}, u ≡ u(x, t)

On the graph GD = {ND,LD}, ∀(i, j) ∈ LD, j /∈ N . We have
Vl(x, t) = V τ

ij , Vl(x, t + ∆t) = V τ+1
ij , Vl(x + ∆x, t + ∆t) =

V τ+1
jk = πτ+1

j where (j, k) is the successor edge cell of (i, j) in the
interior of an edge. Therefore,

V τ
ij = min

u
{V τ+1

ij (1− ∆t

∆x
uτ
ij) + V τ+1

jk

∆t

∆x
uτ
ij + rτij}

where, rτij = ∆tf(uτ
ij , ρ

τ
ij).

Edge cell (i, j) ∈ LD, j ∈ N are the last cell on an edge and j
is the end node of the edge. It means j is also the start node of the
next-go-to edge. We have V (x+∆x, t+∆t) = πτ+1

j . Accordingly,
∀(i, j) ∈ LD,

V τ
ij = min

u
{V τ+1

ij (1− ∆t

∆x
uτ
ij) + πτ+1

j

∆t

∆x
uτ
ij + rτij}

Therefore, Equ.7b holds. Readers can refer to [9] for more interpre-
tation about Equ.2.

We then look into Equ. 3. We denote βi,l,t = βτ
ij and we assume

that agents entering node i and making route choice at time τ will
exist the node at time τ +1. We then have πi(t) = πτ+1

i , Vl(0, t) =
V ijτ+1. Therefore, Equ. 7c holds.

We reformulate Equ. 4 as

ρl(x, t+∆t)− ρl(x, t)

∆t

=
ρl(x−∆x, t)ul(x−∆x, t)− ρl(x, t)ul(x, t)

∆x

ρl(x, t+∆t) = ρl(x, t)

+
∆t

∆x
[ρl(x−∆x, t)ul(x−∆x, t)− ρl(x, t)ul(x, t)]

We denote ρl(x, t+∆t) = ρτ+1
ij , ρl(x, t) = ρτij , ∀(i, j) ∈ LD, i /∈

N . ρl(x−∆x, t) represents agents entering edge cell (i, j). If i /∈ N ,
ρl(x−∆x, t) = βτ

miρ
τ
mi, β

τ
mi ≡ 1. If i ∈ N , agents entering (i, j)

is calculated as βτ
ij

∑
m:(m,i)∈LD ρτmiu

τ
mi. Therefore,

ρτ+1
ij = ρτij +

∆t

∆x
(βτ

ij

∑
m:(m,i)∈LD

ρτmiu
τ
mi − ρτiju

τ
ij) (18)

Equ. 7a holds. Accordingly, Proposition 3.1 holds.

A.2 Theorem 3.1

Proof. We first show the derivation from Equ. 7a to Equ. 8a, and
then from Equ. 7b-7c to Equ. 8b.

1. Equ. 7a can be reformulated as

ρτ+1
ij = ρτij(1−

∆t

∆x
uτ
ij) + βτ

ij

∑
m:(m,i)∈LD

ρτmi
∆t

∆x
uτ
mi, (19)

where, (i, j) is a successor edge cell of (m, i) ∈ LD . Equ. 19
says that the population density on an edge cell (i, j) at time τ+1
come from two sources: agents who are stuck on (i, j) and those
entering (i, j) at time τ from upstream cells.
Regroup the elements of population density on all edge cells into
a vector, i.e., ρτ = [ρτij]

T , ∀(i, j) ∈ LD , and we have

ρτ+1 = P τ,T · ρτ , (20)

where

P τ
|LD|×|LD| =


...
... ∆t

∆x
uτ
miβ

τ
ij ...

...

... ∆t
∆x

uτ
ijβ

τ
jk ... 1− ∆t

∆x
uτ
ij ...

...

.
(21)

where (j, k) is a successor edge cell of (i, j) and {k : ∀(j, k) ∈
LD}. Below we show that P τ is a transition matrix building on
the CFL condition.
For diagonal elements of P τ , ∀(i, j) ∈ LD , we have

1− ∆t

∆x
uτ
ij ⩽ 1,

1− ∆t

∆x
uτ
ij ⩾ 1− ∆t

∆x
umax ⩾ 1− 1 = 0.

For off-diagonal elements,

0 ⩽
∆t

∆x
uτ
ij · βτ

jk ⩽
∆t

∆x
umax · 1 ⩽ 1, (i, j), (j, k) ∈ LD.

The sum of elements in each row is:

1− ∆t

∆x
uτ
ij +

∑
k:(j,k)∈LD

∆t

∆x
uτ
ij · βτ

jk = 1,∀(i, j) ∈ LD.

2. By substituting πj in Equ. 7b into 7c, we have

V τ
ij =min

u,β
{(1− ∆t

∆x
uτ
ij)V

τ+1
ij (22)

+
∆t

∆x
uτ
ij

∑
k:(j,k)∈LD

βτ
jkV

τ+1
jk + rτij}, (23)

Define V τ = [Vij]
T , ∀(i, j) ∈ LD , and we have

V τ = min
u,β

P τV τ+1 + rτ .

Here we provide another generic formulation of G-dMFG in which
agents are distributed on nodes not edge cells. In this case, β repre-
sents route choice regarding the next-go-to node and u represents
departure rate.

Proposition A.1. G-dMFG can be reformulated as:

[GD-dMFG-2]

ρτ+1
i = ρτi +

∆t

∆x
(
∑
(m,i)

ρτmβτ
miu

τ
mi︸ ︷︷ ︸

entering

− ρτi
∑
j

βτ
iju

τ
ij)︸ ︷︷ ︸

exiting

πτ
i = min

β

∑
j:(i,j)∈LD

βτ
ij · [rτij

+ πτ+1
i (1− ∆t

∆x
)uτ

ij +
∆t

∆x
uτ
ijπ

τ+1
j], ∀i ∈ ND

Theorem A.1. The GD-dMFG-2 can be recast as:

(FPK) ρτ+1 = [P τ]Tρτ ,

(HJB) πτ = min
β

P τπτ+1 + rτ

where,

P τ
|ND|×|ND| =


...
...

βτ
ij

∆t
∆x

uτ
ij ... 1−

∑
j β

τ
ij

∆t
∆x

uτ
ij ...

...


P τ is also a transition matrix.

The physical meaning of βτ
ij

∆t
∆x

uτ
ij is turning ratio × departure

rate. It is straightforward that when uτ
ij ≡ umax = ∆x

∆t
, P τ becomes

Bτ
|ND|×|ND| (i.e., the routing game).

A.3 Corollary 3.1

Proof. We define the value function given the population state over
graph GD as V (ρτ).

V ∗(ρτ)

=
∑

(i,j)∈LD

ρτijV
τ
ij

=
∑

(i,j)∈LD

{ρτij min
u,β

[(1− ∆t

∆x
uτ
ij)V

τ+1
ij (Equ.8b)

+
∆t

∆x
uτ
ij

∑
k:(j,k)∈LD

βτ
jkV

τ+1
jk + rτij]}

= min
u,β
{

∑
(i,j)∈LD

ρτijr
τ
ij +

∑
(i,j)∈LD

ρτij(1−
∆t

∆x
uτ
ij)V

τ+1
ij

+
∑

(i,j)∈LD

ρτij
∆t

∆x
uτ
ij

∑
k:(j,k)∈LD

βτ
jkV

τ+1
jk }

= min
u,β
{

∑
(i,j)∈LD

ρτijr
τ
ij +

∑
(i,j)∈LD

ρτij(1−
∆t

∆x
uτ
ij)V

τ+1
ij

+
∑

(i,j)∈LD

βτ
ij

∑
m:(m,i)∈LD

∆t

∆x
ρτmiu

τ
miV

τ+1
ij }

= min
u,β
{

∑
(i,j)∈LD

ρτijr
τ
ij +

∑
(i,j)∈LD

[ρτij(1−
∆t

∆x
uτ
ij)

+
∑

(i,j)∈LD

βτ
ij

∑
m:(m,i)∈LD

∆t

∆x
ρτmiu

τ
mi] · V τ+1

ij }(Equ. 8a)

= min
u,β
{

∑
(i,j)∈LD

ρτijr
τ
ij +

∑
(i,j)∈LD

ρτ+1
ij V τ+1

ij }

= min
u,β
{

∑
(i,j)∈LD

ρτijr
τ
ij + V ∗(ρτ+1)}

= min
u,β
{R(ρτ , P τ) + V ∗(ρτ+1)}

Therefore, Corollary 3.1 holds.

A.4 Proposition 4.1

Proof. Given uτ
ij ≡ umax = ∆x

∆t
, GD-dMFG (Equation 7) be-

comes:

ρτ+1
ij = ρτij + (βτ

ij

∑
m:(m,i)∈LD

ρτmi − ρτij),

πτ+1
i = min

β

∑
j:(i,j)∈LD

βτ
ij · {rτ+1

ij + πτ+2
j }.

We denote ρτi =
∑

m:(m,i)∈LD ρτmi. We have ∀i ∈ ND

ρτ+1
i =

∑
m:(m,i)∈LD

ρτ+1
mi

=
∑

m:(m,i)∈LD

βτ
mi

∑
j:(j,m)∈LD

ρτjm

=
∑

m:(m,i)∈LD

βτ
mi

∑
j:(j,m)∈LD

ρτjm

=
∑

m:(m,i)∈LD

βτ
miρ

τ
m

Therefore, we have

ρτ+1 = [Bτ]Tρτ

where ρτ = [ρτi] and

Bτ
|ND|×|ND| =


0
...
... βτ

mi
... 0


Below we show that Bτ is a transition matrix.
Diagonal elements of Bτ are all 0. For other elements,

0 ⩽ βτ
mi ⩽ 1

The sum of elements in each row is:∑
i

βτ
mi = 1, ∀i ∈ ND

Define πτ = [πτ+1
i], ∀i ∈ ND , and we have

πτ = min
β

Bτπτ+1 + rτ

Therefore, Proposition 4.1 holds.

A.5 Proposition 4.2

Proof. The FPK equation on an edge l is reformulated as

ρτ+1
ij = ρτij +

∆t

∆x
[ρτmi ∗ uτ

mi︸ ︷︷ ︸
entering

− ρτij ∗ uτ
ij︸ ︷︷ ︸

exiting

]

where, (m, i), (i, j) ∈ lD . Denote ρτ = [ρτij]
T , (i, j) ∈ lD . We

then have:

ρτ+1 = [Uτ]Tρτ

where,

Uτ =


...
... 1− ∆t

∆x
uτ
ij

∆t
∆x

uτ
ij ...

...

...


We denote the transition matrix as Uτ . Similarly,the HJB equation
on edge is reformulated as:

V τ
ij = minu{(1−

∆t

∆x
uτ
ij)V

τ+1
ij +

∆t

∆x
uτ
ijV

τ+1
jk + rτij},

We denote V τ = [V τ
ij]

T and r = [rτij]
T . Therefore, we have

V τ = minu{UτV τ+1 + r}

According to the CFL condition, 0 ⩽ ∆t
∆x

uτ
ij ⩽ ∆t

∆x
umax ⩽ 1, we

have

0 ⩽ 1− ∆t

∆x
uτ
ij ⩽ 1,

1 − ∆t
∆x

uτ
ij + ∆t

∆x
uτ
ij = 1. Accordingly Uτ is a transition matrix.

Accordingly, Proposition 4.2 holds.

A.6 Proposition 4.3

Proof. Note that there is no route choice in the interior of an edge.
Agents move from one edge cell to the successor edge cell. We have

βτ
ij ≡ 1, ∀(i, j) ∈ LD, i /∈ N

According to the condition ∀i ∈ ND, ∃j ∈ {j : (i, j) ∈
LD}, s.t. βτ

ij = 1 and Proposition 3.1, G-MFG on one edge is ex-
tended to G-MFG along a sequence of edge where L̃D = {(i, j) :
(i, j) ∈ LD, βτ

ij = 1} and L̃D ⊂ LD . Therefore, Proposition 4.3
holds.

B GD-dMFG on a toy example
To further demonstrate the linkage of these MFGs on graphs, below
we present a toy network (Figure 7) and show how each model is
formulated on this network.

1

2

3

0
𝑉"#$,𝜌"#$, 𝑢"#$

𝜋#$

𝜋)$

𝜋*$

Figure 7: Toy example

B.1 GD-dMFG

The GD-dMFG on the toy network is first presented. We assume
πτ+1
2 = Ṽ τ+1

2 and πτ+1
3 = Ṽ τ+1

3 . We have

ρτ+1
01 = (1− ∆t

∆x
uτ
01)ρ

τ
01

ρτ+1
12 = (1− ∆t

∆x
uτ
12)ρ

τ
12 + βτ

12ρ
τ
01

∆t

∆x
uτ
01

ρτ+1
13 = (1− ∆t

∆x
uτ
13)ρ

τ
13 + βτ

13ρ
τ
01

∆t

∆x
uτ
01

V τ
01 = min

u
{rτ01 + (1− ∆t

∆x
uτ
01)V

τ+1
01 +

∆t

∆x
uτ
01π

τ+1
1 }

V τ
12 = min

u
{rτ12 + (1− ∆t

∆x
uτ
12)V

τ+1
12 +

∆t

∆x
uτ
12π

τ+1
2 }

V τ
13 = min

u
{rτ13 + (1− ∆t

∆x
uτ
13)V

τ+1
13 +

∆t

∆x
uτ
13π

τ+1
3 }

πτ+1
1 = min

β
{βτ

12V
τ+1
12 + βτ

13V
τ+1
13 }

πτ+1
2 = Ṽ τ+1

2

πτ+1
3 = Ṽ τ+1

3

According to Theorem 3.1, we have

[GD-dMFG]

(FPK) ρτ+1 = [P τ]Tρτ ,

(HJB) V τ = min
u,β

P τV τ+1 + rτ ,

P τ
5×5 =
1− ∆t

∆x
uτ
01

∆t
∆x

uτ
01β

τ
12

∆t
∆x

uτ
01β

τ
13 0 0

0 1− ∆t
∆x

uτ
12 0 ∆t

∆x
uτ
12 0

0 0 1− ∆t
∆x

uτ
13 0 ∆t

∆x
uτ
13

0 0 0 1 0
0 0 0 0 1



B.2 GD-MFG-Route

We now present a mean field dynamic routing game on the toy net-
work. We fix the speed on each link, i.e., uτ

01 = uτ
12 = uτ

13 ≡ 1.
According to Proposition 4.1, we have

[GD-MFG-Route]

(FPK) ρτ+1 = [Bτ]Tρτ ,

(HJB) πτ = min
u,β

Bτπτ+1 + rτ ,

Bτ
3×3 = 0 βτ

12 βτ
13

0 1 0
0 0 1



B.3 GD-MFG-Speed

We show the MFG regarding velocity control on the toy network.
We assume βτ

12 ≡ 1, which means vehicles navigate link (0, 1) and
(1, 2). According to Proposition 4.3, we have

[GD-MFG-Speed]

(FPK) ρτ+1 = [Uτ]Tρτ ,

(HJB) V τ = min
u,β

UτV τ+1 + rτ ,

Uτ
3×3 = 1− ∆t

∆x
uτ
01

∆t
∆x

uτ
01 0

0 1− ∆t
∆x

uτ
12

∆t
∆x

uτ
12

0 0 1



C Algorithms

Algorithm 2 GD-dMFG-FB (baseline Alg. 2.1)

1: Input: A predetermined time horizon T ; The initial distribution
of agent population; Convergence threshold ϵ = 10−4;

2: Initialize poliy:u(0) = [u
τ(0)
ij],β(0) = [β

τ(0)
ij].

3: for n← 0 to W do
4: Calculate ρ(n) = [ρ

τ(n)
ij],∀(i, j) ∈ LD, τ = 0, ..., Nt − 1

according to FPK equation. –Forward
5: Initialization: V τ,0

ij , πτ,0
i , τ = 0, 1, ..., Nt − 1.

6: for m← 0 to M do
7: Update u and V : ∀τ = 0, 1..., Nt − 1

8: V τ,m+1
ij = minuτ

ij
{r(uτ

ij , ρ
k(n)
ij) + V τ+1,m

ij +
uτ
ij∆t

∆x
[πτ+1,m

j − V τ+1,m
ij]}

9: Update β and π: ∀τ = 0, 1..., Nt − 1
10: πτ+1,m+1

i = minβτ
ij

∑
j β

τ
ijV

τ+1,m
ij

11: end for –Backward
12: Store u(n),β(n) into buffer and obtain average policy ū(n),

β̄
(n). u(n) ← ū(n),β(n) ← β̄

(n). –Fictitious play
13: Check convergence.
14: end for
15: Output u, V, β, π, ρ

Algorithm 3 GD-dMFG-FB-backward induction (baseline Alg. 2.2)

1: Input: T ; ∀(i, j) ∈ LD, ρ0ij ;
2: Initialize poliy:u(0) = [u

τ(0)
ij], β(0) = [β

τ(0)
ij].

3: for n← 0 to W do
4: Calculate ρ(n) = [ρ

τ(n)
ij],∀(i, j) ∈ LD, τ = 0, ..., Nt − 1

according to FPK equation. –Forward
5: for τ → Nt − 1, ..., 0 do
6: Compute uτ

ij and V τ
ij according to Equ. 7b

7: Compute βτ
ij and πτ+1

i according to Equ. 7c
8: end for –Backward
9: Store u(n), β(n) into buffer and obtain average policy ū(n),

β̄(n). u(n) ← ū(n), β(n) ← β̄(n). –Fictitious play
10: Check convergence.
11: end for
12: Output u, V, β, π, ρ

D Numerical Experiment

D.1 Braess Network

0 20 40 60 80 100

iterations

0

0.01

0.02

0.03

0.04

0.05

0.06

c
o

n
v
e

rg
e

n
c
e

 g
a

p

(a) Convergence gap (Alg. 1.)

0 20 40 60 80 100

iterations

0

0.02

0.04

0.06

0.08

0.1

W
1

-d
is

ta
n

c
e

(b) W1-distance (Alg. 1.)

Figure 8: Performance on Braess Network-[G-dMFG-Sep]

0 10 20 30 40 50

iterations

0

0.01

0.02

0.03

0.04

0.05

0.06

c
o

n
v
e

rg
e

n
c
e

 g
a

p

(a) Convergence gap (Alg. 1.)

0 10 20 30 40 50

iterations

0

0.01

0.02

0.03

0.04

c
o

n
v
e

rg
e

n
c
e

 g
a

p

(b) Convergence gap (Alg. 2.1)

Figure 9: Performance on Braess Network- [G-dMFG-Non-Sep2]

D.2 Sioux Fall Network

Fig. 10, 11 and 12 demonstrate the algorithm performance on the
Sioux Fall network. The algorithm performance on the Braess net-
work has been shown in Section 5.

0 20 40 60 80 100

iterations

0

0.02

0.04

0.06

0.08

c
o
n
v
e
rg

e
n
c
e
 g

a
p

(a) Alg. 1

0 10 20 30 40 50

iterations

0

0.005

0.01

0.015

0.02

c
o
n
v
e
rg

e
n
c
e
 g

a
p

(b) Alg. 2.1

0 10 20 30 40 50

iterations

0

0.002

0.004

0.006

0.008

0.01

c
o
n
v
e
rg

e
n
c
e
 g

a
p

(c) Alg. 2.2

Figure 10: Convergence gap- [GD-dMFG-Sep]

0 10 20 30 40 50

iterations

0

2

4

6

8

c
o
n
v
e
rg

e
n
c
e
 g

a
p

10
-4

(a) Alg. 1

0 10 20 30 40 50

iterations

0

0.002

0.004

0.006

0.008

0.01

0.012

c
o
n
v
e
rg

e
n
c
e
 g

a
p

(b) Alg. 2.1

0 10 20 30 40 50

iterations

0

1

2

3

4

5

6

c
o
n
v
e
rg

e
n
c
e
 g

a
p

10
-3

(c) Alg. 2.2

Figure 11: Convergence gap - [GD-dMFG-Non-Sep1]

0 10 20 30 40 50

iterations

0

0.02

0.04

0.06

0.08

c
o
n
v
e
rg

e
n
c
e
 g

a
p

(a) Alg. 1

0 10 20 30 40 50

iterations

0

0.005

0.01

0.015

0.02

c
o
n
v
e
rg

e
n
c
e
 g

a
p

(b) Alg. 2.1

0 10 20 30 40 50

iterations

0

0.002

0.004

0.006

0.008

0.01

c
o
n
v
e
rg

e
n
c
e
 g

a
p

(c) Alg. 2.2

Figure 12: Convergence gap - [GD-dMFG-Non-Sep2]

(a) ρ : 1 → 2 → 3 → 4 (Sep) (b) ρ : 1 → 2 → 4 (Sep) (c) ρ : 1 → 3 → 4 (Sep)

(d) ρ : 1 → 2 → 3 → 4 (Non-Sep2) (e) ρ : 1 → 2 → 4 (Non-Sep2) (f) ρ : 1 → 3 → 4 (Non-Sep2)

Figure 13: Population density at equilibrium along three paths in the Braess Network for [GD-dMFG-Sep] and [GD-dMFG-Non-Sep2] (Its
topology is defined in Fig. 1a.)

(a) −u : 1 → 2 → 3 → 4 (Sep) (b) −u : 1 → 2 → 4 (Sep) (c) −u : 1 → 3 → 4 (Sep)

(d) −u : 1 → 2 → 3 → 4 (Non-Sep1) (e) −u : 1 → 2 → 4 (Non-Sep1) (f) −u : 1 → 3 → 4 (Non-Sep1)

(g) −u : 1 → 2 → 3 → 4 (Non-Sep2) (h) −u : 1 → 2 → 4 (Non-Sep2) (i) −u : 1 → 3 → 4 (Non-Sep2)

Figure 14: The speed choice u along three paths at equilibrium in [GD-dMFG-Sep], [GD-dMFG-Non-Sep1] and [GD-dMFG-Non-Sep2]. Note
that the z-axis is −u for better visualization. The darker color indicates a higher speed. It is shown that the speed has a negative relationship
with the population density. When the population density ρ is 0 (i.e., empty edge), the speed becomes umax = 1 (dark blue).

View publication stats

https://www.researchgate.net/publication/372391123

	Introduction
	Preliminary
	Motivating example
	Mean field game on graph (G-MFG)
	Population MDP

	Methodology
	Dual mean field games on graph (G-dMFG)
	Reformulation of G-dMFG via population MDP

	Linkage between GD-dMFG and G-MFG
	GD-dMFG conditional on known velocity
	GD-dMFG conditional on known route choices
	Summary

	Solution Approach
	Numerical Experiments
	Conclusion
	Proof
	Proposition 3.1
	Theorem 3.1
	Corollary 3.1
	Proposition 4.1
	Proposition 4.2
	Proposition 4.3

	GD-dMFG on a toy example
	GD-dMFG
	GD-MFG-Route
	GD-MFG-Speed

	Algorithms
	Numerical Experiment
	Braess Network
	Sioux Fall Network

