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Abstract

Minimax optimization has seen a surge in interest with the advent of modern applications
such as GANs, and it is inherently more challenging than simple minimization. The difficulty
is exacerbated by the training data residing at multiple edge devices or clients, especially
when these clients can have heterogeneous datasets and heterogeneous local computation
capabilities. We propose a general federated minimax optimization framework that subsumes
such settings and several existing methods like Local SGDA. We show that naive aggregation
of model updates made by clients running unequal number of local steps can result in
optimizing a mismatched objective function — a phenomenon previously observed in standard
federated minimization. To fix this problem, we propose normalizing the client updates by
the number of local steps. We analyze the convergence of the proposed algorithm for classes
of nonconvex-concave and nonconvex-nonconcave functions and characterize the impact of
heterogeneous client data, partial client participation, and heterogeneous local computations.
For all the function classes considered, we significantly improve the existing computation and
communication complexity results. Experimental results support our theoretical claims.

1 Introduction

The massive surge in machine learning (ML) research in the past decade has brought forth new applications that
cannot be modeled as simple minimization problems. Many of these problems, including generative adversarial
networks (GANs) Goodfellow et al. (2014); Arjovsky et al. (2017); Sanjabi et al. (2018), adversarial neural
network training Madry et al. (2018), robust optimization Namkoong & Duchi (2016); Mohajerin Esfahani
& Kuhn (2018), and fair machine learning Madras et al. (2018); Mohri et al. (2019), have an underlying
min-max structure. However, the underlying problem is often nonconvex, while classical minimax theory
deals almost exclusively with convex-concave problems.

Another feature of modern ML applications is the inherently distributed nature of the training data Xing
et al. (2016). The data collection is often outsourced to edge devices or clients. However, the clients may
then be unable (due to resource constraints) or unwilling (due to privacy concerns) to share their data with a
central server. Federated Learning (FL) Koneény et al. (2016); Kairouz et al. (2019) was proposed to alleviate
this problem. In exchange for retaining control of their data, the clients shoulder some of the computational
load, and run part of the training process locally, using only their own data. The communication with the
server is infrequent, leading to further resource savings. Since its introduction, FL. has been an active area of
research, with some remarkable successes Li et al. (2020); Wang et al. (2021). Research has shown practical
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Table 1: Comparison of (per client) stochastic gradient complexity and the number of communication
rounds needed to reach an e-stationary solution (Definition 1), for different classes of nonconvex minimax
problems. Here, n is the total number of clients. For a fair comparison with existing works, our results in
this table are specialized to the case when all clients (i) have equal weights (p; = 1/n), (ii) perform equal
number of local updates (7; = 7), and (iii) use the same local update algorithm SGDA. See Table 2 for
comparison under more general settings, when (i)-(iii) do not hold.

Setting and Assumptions Full Client Participation (FCP)
Work System Partial Client | Stochastic Gradient ~Communication

Heterogeneity®| Participation Complexity Rounds

Nonconvex-Strongly-concave (NC-SC)/Nonconvex-Polyak-Fojasiewicz (NC-PL): Theorem 1

(n = 1) Lin et al. (2020a) - - O(1/eh) -
Sharma et al. (2022) X X 0(1/(ne*)) O(1/€*)
Yang et al. (2022a) X v 0(1/(ne*)) O(1/€%)
Ours: (Corollary 1.2, Remark 3) v v (@] (1/(71,64)) O (1/62)

Nonconvex-Concave (NC-C): Theorem 2

(n=1) Lin et al. (2020a) - - O(1/é -
Sharma et al. (2022) X X 0(1/(ne®)) O(1/€")
Ours: (Corollary 2.2) v v (@) (1/(n68)) (@] (1/64)

Nonconvex-One-point-concave (NC-1PC): Theorem 2
Deng & Mahdavi (2021) X X O(1/€") O(n'/5 /%)

Sharma et al. (2022) X X O(1/e®) O(1/€")
Ours: (Remark 5) v v (@) (1/(’(7,68)) (@] (1/64)

# Individual clients can run an unequal number of local iterations, using different local optimizers (see Section 4).

benefits of, and provided theoretical justifications for commonly used practical techniques, such as, multiple
local updates at the clients Stich (2018); Khaled et al. (2020); Koloskova et al. (2020); Wang & Joshi (2021),
partial client participation Yang et al. (2021), communication compression Hamer et al. (2020); Chen et al.
(2021). Further, impact of heterogeneity in the clients’ local data Zhao et al. (2018); Sattler et al. (2019), as
well as their system capabilities Wang et al. (2020); Mitra et al. (2021) has been studied. However, all this
research has been focused almost solely on simple minimization problems.

With its increasing usage in large-scale applications, FL systems must adapt to a wide range of clients. Data
heterogeneity has received significant attention from the community. However, system-level heterogeneity
remains relatively unexplored. The effect of client variability or heterogeneity can be controlled by forcing all
the clients to carry out an equal number of local updates and utilize the same local optimizer Yu et al. (2019);
Haddadpour et al. (2019). However, this approach is inefficient if the client dataset sizes are widely different.
Also, it would entail faster clients sitting idle for long durations Reisizadeh et al. (2022); Tziotis et al. (2022),
waiting for stragglers to finish. Additionally, using the same optimizer might be inefficient or expensive for
clients, depending on their system capabilities. Therefore, adapting to system-level heterogeneity forms a
desideratum for real-world FL schemes.

Contributions. We consider a general federated minimax optimization framework, in the presence of both
inter-client data and system heterogeneity. System heterogeneity means the participating clients can run
an unequal number of local steps, and utilize different local solvers. We consider the problem

1 — n . f.
Juin max {F(x,y) =3 .ioy Pifi(%,¥)} (1)
where f; is the local loss of client i, p; is the weight assigned to client ¢ (e.g., the relative sample size), and n is
the total number of clients. We study several classes of nonconvex minimax problems (see Table 1). Further,

e In our proposed algorithm, the participating clients may each perform different number of local steps, with
different local optimizers. In this setting, naive aggregation of local model updates (as done in existing
methods like Local Stochastic Gradient Descent Ascent) may lead to convergence in terms of a mismatched
global objective (Corollaries 1.1, 2.1). We propose a simple normalization strategy to fix this problem.
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¢ We achieve order-optimal or state-of-the-art computation complexity and significantly improve the com-
munication complexity of existing methods (Corollaries 1.2, 2.2).

o Under the special case where all the clients (i) are assigned equal weights p; = 1/n in (1), (ii) carry out
equal number of local updates (7; = 7 for all i), and (iii) utilize the same local-update algorithm, our
results become directly comparable with existing work (see Table 1) and improve upon them as follows.

1. For nonconvex-strongly-concave (NC-SC - Corollary 1.2) and nonconvex-PL (NC-PL - Remark 3)
problems, our method has the order-optimal gradient complexity O(1/(ne*)). Further, we improve
the communication from O(1/€3) in Sharma et al. (2022) to O(1/¢?).!

2. For nonconvex-concave (NC-C - Corollary 2.2) and nonconvex-one-point-concave (NC-1PC - Re-
mark 5) problems, we achieve state-of-the-art gradient complexity, while significantly improving the
communication costs from O(1/€7) in Sharma et al. (2022) to O(1/e*). For NC-1PC functions, we
prove the linear speedup in gradient complexity with n that was conjectured in Sharma et al. (2022).

3. As an intermediate result in our proof, we prove the theoretical convergence of Local SGD for
one-point-convex function minimization (see Lemma C.5 in Appendix C.4). The achieved convergence
rate is the same as that shown for convex minimization in the existing literature Khaled et al. (2020).

It is worth pointing out that our proof technique is different from existing minimax literature (e.g., Sharma
et al. (2022); Yang et al. (2022b)). With all the clients carrying out the same number of local steps, the
existing federated analyses rely on virtual sequences of average iterates, to mimic the proof steps in centralized
settings Lin et al. (2020a); Yang et al. (2022¢). In our case, since different clients run different number of
local steps, this strategy is no longer viable (see Remark 9).

2 Related Work

2.1 Single-client minimax

Nonconvex-Strongly-concave (NC-SC). To our knowledge, Lin et al. (2020a) is the first work to analyze
a single-loop algorithm for stochastic (and deterministic) NC-SC problems. Although the O(x3/€*) complexity
shown is optimal in e, the algorithm required O(e~2) batch-size. Qiu et al. (2020) utilized momentum to
achieve O(e~*) convergence with O(1) batch-size. Recent works Yang et al. (2022c); Sharma et al. (2022)
achieve the same rate without momentum. Yang et al. (2022c¢) also improved the dependence on the condition
number k. Second-order stationarity for NC-SC has been recently studied in Luo & Chen (2021). Lower
bounds for this problem class have appeared in Luo et al. (2020); Li et al. (2021); Zhang et al. (2021).

Nonconvex-Concave (NC-C). Again, Lin et al. (2020a) was the first to analyze a single-loop algorithm
for stochastic NC-C problems, proving O(e~®) complexity. In deterministic problems, this has been improved
using nested Nouiehed et al. (2019); Thekumparampil et al. (2019) as well as single-loop Xu et al. (2020);
Zhang et al. (2020) algorithms. For stochastic problems, Rafique et al. (2021) and the recent work Zhang
et al. (2022) improved the complexity to O(¢~%). However, both the algorithms have a nested structure,
which at every step, solve a simpler problem iteratively. Achieving O(e~%) complexity with a single-loop
algorithm has so far proved elusive.

2.2 Distributed/Federated Minimax

Recent years have also seen an increasing body of work in distributed minimax optimization. Some of this
work is focused on decentralized settings, as in Rogozin et al. (2021); Beznosikov et al. (2021b,c); Metelev
et al. (2022).

Of immediate relevance to us is the federated setting, where clients carry out multiple local updates between
successive communication rounds. The relevant works which focused on convex-concave problems include
Reisizadeh et al. (2020); Hou et al. (2021); Liao et al. (2021); Sun & Wei (2022). Special classes of nonconvex

IThe recent work Yang et al. (2022a) proposes FSGDA algorithm and also achieves O(1/€?) communication cost for NC-PL
functions. However, our work is more general since we allow different number of local steps and different local solvers at the
clients.
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minimax problems in the federated setting have been studied in recent works, such as, nonconvex-linear Deng
et al. (2020), nonconvex-PL Deng & Mahdavi (2021); Xie et al. (2021), and nonconvex-one-point-concave
Deng & Mahdavi (2021). The complexity guarantees for several function classes considered in Deng &
Mahdavi (2021) were further improved in Sharma et al. (2022). However, all these works consider specialized
federated settings, either assuming full-client participation, or system-wise identical clients, each carrying out
equal number of local updates. As we see in this paper, partial client participation is the most source of error
in simple FL algorithms. Also, system-level heterogeneity can have crucial implications on the algorithm
performance.

Comparison with Wang et al. (2020); Sharma et al. (2022); Yang et al. (2022a). Wang et al.
(2022a) was, to our knowledge, the first work to consider the problem of system heterogeneity in simple
minimization problems, and proposed a normalized averaging scheme to avoid optimizing an inconsistent
objective. Compared to Wang et al. (2020), we consider a more challenging problem and achieve higher
communication savings (Table 1)?. Sharma et al. (2022) studied minimax problems in the federated setting
but assumed an equal number of SGDA-like local updates, with full client participation. The recent work
Yang et al. (2022a) considers NC-SC problem with full and partial client participation and achieves similar
communication savings as ours. In comparison, our work considers a more general minimax FL framework
with partial client participation, clients running an unequal number of local updates, and using different local
solvers. Further, we analyze multiple classes of nonconvex-concave and nonconvex-nonconcave functions,
improving the communication and computation complexity of existing minimax methods.

3 Preliminaries

Notations. We let ||| denote the Euclidean norm ||-||2. Given a positive integer m, the set {1,2,...,m} is de-
noted by [m]. Vectors at client i are denoted with subscript 4, e.g., x;, while iteration indices are denoted using

superscripts, e.g., y(*) or y(*¥) . Given a function g, we define its gradient vector as [Vzg(x, y) ', Vya(x, y)T] T,
and its stochastic gradient as Vg(x,y; &), where £ denotes the randomness.

Convergence Metrics. In the presence of nonconvexity, we can only prove convergence to an approximate
stationary point, which is defined next.

Definition 1 (e-Stationarity). A point x is an e-stationary point of a differentiable function g if [|[Vg(x)| < e.
Definition 2. Stochastic Gradient (SG) complexity is the total number of gradients computed by all the

clients during the course of the algorithm.

In special cases, where all the clients are weighted equally (p; = 1/n, for all i € [n]) and carry out equal
number of local steps 7, we state the per-client gradient complexity for comparison with existing work. See
Table 1 and Corollaries 1.2 and 2.2.

Definition 3 (Communication Rounds). During a single communication round, the server sends its global
model to a set of clients, which carry out multiple local updates starting from the same model, and return
their local vectors to the server. The server then aggregates these local vectors to arrive at a new global
model. Throughout this paper, we denote the number of communication rounds by 7.

Next, we discuss some assumptions used in the paper.

Assumption 1 (Smoothness). Each local function f; is differentiable and has Lipschitz continuous gradients.
That is, there exists a constant Ly > 0 such that at each client i € [n], for all x,x’ € R® and y,y’ € Y,

IVfi(x,y) = VAEL Y < L ll(x,y) = (¥

Assumption 2 (Bounded Diameter). The constraint set ) is convex and bounded.

2Under the conditions p; = 1/n,7; = 7 for all i, for smooth minimization problems, Wang et al. (2020) requires O(1/¢3)
communication rounds. For NC-SC problems (a harder problem class), we show an improved O(1/€?) communication rounds.
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Assumption 3 (Local Variance). The stochastic gradient oracle at each client is unbiased. Also, there exist
constants o, B > 0 such that at each client i € [n], for all x,y,

Eii [vfl (X> Y €l>] =Vfi (Xa y)?

Assumption 4 (Global Heterogeneity). For any set of non-negative weights {w;}?; such that >, w; = 1,
there exist constants Sg > 1,04 > 0 such that for all x,y,

n n 2

D wil[Vafi o ¥)I° < B> wiVafi(x,y)| + 08,
1=1 =1

n n 2

S wi|Vyfi o y)I1* < B> wiVyfi (x,y)|| + 0
=1 i=1

If all f;’s are identical, we have g =1, and og = 0.

Most existing work uses simplified versions of Assumptions 3, 4, assuming §;, = 0 and/or Sg = 0.

4 Algorithm for Heterogeneous Federated Minimax Optimization

In this section, we propose a federated minimax algorithm to handle system heterogeneity across clients.

4.1 Limitations of Local SGDA

Following the success of FedAvg McMahan et al. (2017) in FL, Deng & Mahdavi (2021) was the first to
explore a simple extension Local stochastic gradient descent-ascent (SGDA) in minimax problems. Between
successive communication rounds, clients take multiple simultaneous descent/ascent steps to respectively
update the min-variable x and max-variable y. Subsequent work in Sharma et al. (2022) improved the
convergence results and showed that LocalSGDA achieves optimal gradient complexity for several classes
of nonconvex minimax problems. However, existing work on LocalSGDA also assumes the participation of
all n clients in every communication round. More crucially, as observed with simple minimization problems
Wang et al. (2020), if clients carry out an unequal number of local updates, or if their local optimizers are
not all the same, LocalSGDA (like FedAvg) might converge to the stationary point of a different objective.
This is further discussed in Sections 5.1 and 5.2, and illustrated in Figure 1, where the learning process gets
disproportionately skewed towards the clients carrying out more local updates.

x(E0) (—foz> xy
<y(t,0)> +Vyfo yét'l) Heterogeneous

®. tti <
o P
+Vyfi

th'fl)
yl(t'fl) TR

Figure 1: FedAvg with heterogeneous local updates. The green (red) triangle represents the local optimizer
of f1(f2), while (x*,y*) is the global optimizer. The number of local updates at the clients is 773 = 2, 79 = 5.




Published in Transactions on Machine Learning Research (12/2023)

Generalized Local SGDA Update Rule. To understand this mismatched convergence phenomenon
with naive aggregation in local SGDA, recall that Local SGDA updates are of the form

XD — 5@ 4 s Zp’ xz, yrD = y® 4 4 szA(yZ

i=1

® ©)
where 73, v, are the server learning rates, A)(f)l = n% (XG’Ti ) _ x(t)), A;t)l = 77% (ygt’ﬂ' ) _ y(t)) are the scaled
, B ; °

(t,m") (t)

local updates. x; is the iterate at client ¢ after taking 7, local steps, and 7z, 1y, are the client learning

t . o
%07 Ag)l are linear combinations
,

of local stochastic gradients computed by client i, as Ag,t’i = Zki:o_ a(t’k)Vyf,-(xZ(-t’k),ygt’k);{gt’k)), where

K3

rates. Let us consider a generalized version of this update rule Where A

aﬁt’k) > 0. Commonly used client optimizers, such as, SGD, local momentum, variable local learning rates
can be accommodated in this general form (see Appendix A.1 for some examples). For this more general
form, we can rewrite the x,y updates at the server as follows

1 6 al
X —x® —5p 3 G Sl
®) g®
pilla”ll,  Gyla;
(ijl\a ) Z n ® ® 2)
= > iipillay’ll, lla; I’ (
\_\,_/H/—/
R w; gl
t
= )
) . . .
where G( = [V fi(x\PF) gk, ¢t k))] voo € R%=X7" contains the 7" stochastic gradients stacked column-
“_
wise, a(t) [al ,aﬁ’l, . ,a?n 1]T, g)(: )z, gi,)z are the normalized aggregates of the stochastic gradients and

Téﬁ) is the effective number of local steps. Note that for simplicity, we assume that the constraint set )) has a

large diameter. However, our algorithm can be easily modified to accommodate projection steps. Similar to

x(t+1,0) \“\\ <72
Seae 2
y(t+1,0) ~ <y(t’T2)>
2

Figure 2: Generalized update rule in (2). Note that (g)(:)l7 gi,t)l) - (Afz)i7 Ag,t)l) Also, at the server, the

) . gets scaled by T,

weighted sum >, Wigy
the observation for simple minimization problems in Wang et al. (2020), we see in Theorems 1, 2 that the
resulting iterates of this general algorithm end up converging to the stationary point of a different objective
F =" w;f;. Further, in Corollary 1.1, we observe that this mismatch is a result of using weights w; in
(2) to weigh the clients’ contribution.

4.2 Proposed Normalized Federated Minimax Algorithm

From the generalized update rule, we can see that setting the weights w; equal to p; will ensure that the
surrogate objective F' matches with the original global objective F'. Setting w; = p; results in normalization
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Algorithm 1 Fed-Norm-SGDA and Fed-Norm-SGDA+

1: Input: initialization x(©), y(®) Number of communication rounds 7', learning rates: client {ns, 7733}, server

s ~31, #local-updates 7 ity 9, 8=—1
{ve vk # p i Y,
2: fort=0toT —1do

3: Server selects client set C(*); sends them (x(), y®)
4: if tmod S =0 then
5: s+ s+1
6: Server sends X(*) = x®) to clients in C®*)
7 end if
8: xgt’o) =x, ygt’o) =y® foriec®
9: fOI‘k:O,...,Ti(t)*ldO
10: (t,k—i—l) o (t,k) T]; gt k) \VA fz( (t k) Yy (t,k).f(t,k))
11: yft kL) yit k) Mya; (kg W Fi(X ,yzt k), §(t ®) ) # y-update for Fed-Norm-SGDA -+
12: YD = R e BRI g £ (xR y R Ry # y-update for Fed-Norm-SGDA
13: end for
14: Client ¢ aggregates its gradients to compute gg)l, g)(,t)l

01 alth k k k
15: g,((t)l *Zk 0 la (t)H Ifl( (t ) Et’ );gl‘(t’ ))

1

7P af® S(5) (), A(8R)
16: gy, =Y io I (t)” =V i X,y 677)
L 1

A0 tk) _(t,k). (tk
17 g;,) Yo a (t)” Vyfi(x; o )’yz(‘ )in( ))
1
18: Clients i € C®® communicate {gx i gi,t)z} to the server
19: Server computes aggregate vectors {gx , g } using (3)
20: Server step: {X(tJrl) = x® — 7 Qy2g®), yt+D) = 3O 4 7 sgl®

21: end for
22: Return: x(T) drawn uniformly at random from {x®}7_,

of the local progress at each client before their aggregation at the server. As a result, we can preserve
convergence to a stationary point of the original objective function F, even with heterogeneous {Ti(t)}, as we
see in Theorem 1 and Theorem 2.

The algorithm follows the steps given in Algorithm 1. In each communication round ¢, the server selects a
client set C®) and communicates its model parameters (x*), y(*)) to these clients. The selected clients then

run multiple local stochastic gradient steps. The number of local steps {7‘ ) } can vary across clients and across

rounds. At the end of 7; ® Jocal steps, client 7 aggregates its local stochastic gradlents into {gx - g;)z} which

are then sent to the server. Note that the gradients at client i, {V f;(-, -; fz-(t’k )}k;o7 are normalized by ||dgt) [

(t)
—(t) _ [ai ab! 47y 1}T

A, is the vector of weights assigned to individual stochastic gradients in

the local updates.® The server aggregates these local vectors to compute global direction estimates g,(f ), g§,t),

which are then used to update the server model parameters (X(t), y(t)).

where a;

(t k)

3For LocalSGDA Deng & Mahdavi (2021); Sharma et al. (2022), a =1forallie [n],t€[T),ke€lr (t)] and ||a(t)\| = ‘r(t).
(t) (t>

Therefore, g 8y i1 By A€ simply the average of the stochastic grad1ents computed in the ¢-th round.
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Client Selection. In each round ¢, the server samples |C (t)\ clients uniformly at random without replacement
(WOR). While aggregating client updates at the server, client i update is weighed by w; = w;n/|CP], i.e.,

=Y agl, g = @l (3)

ieC(t) ieC(®)

Note that Eq)[g ¢ )] =3, wlg,(c)l,IECm[ (t )] Dy wlg;t)l

5 Convergence Results

Next, we present the convergence results for different classes of nonconvex minimax problems. For simplicity,
throughout this section we assume the parameters utilized in Algorithm 1 to be fixed across t. Therefore,
agt’k) = agk)7 &Et) = a;, 78 = T, Tc(ﬁf) = 7.¢ and |C| = P, for all ¢.

5.1 Non-convex-Strongly-Concave (NC-SC) Case
Assumption 5 (u-Strong-concavity (SC) in y). A function f is p-strong concave (g > 0) in y if

2, for all x € R% | and y,y € R%.

—f(X,S’) 2 —f(X,S’) - <Vyf(xvy)>y - y> + %Hy - S”

General Convergence Result. We first show that the iterates of Algorithm 1 converge to the stationary
point of a surrogate objective F, where F/(x,y) = >0, w; f;(x,y). {w;}?_; are the aggregation weights used
by the server (Line 19). See Appendix B for the full statement and proof.

Theorem 1. Suppose the local loss functions {f;}; satisfy Assumptions 1, 2, 3, 4, 5. Suppose the server
selects |C(t)| = P clients in each round t. Given appropriate choices of client and server learning rates, (nS, 775)
and (7;,7,) respectively (see Appendiz B.2), the iterates generated by Fed-Norm-SGDA satisfy

“PE A=+ Ayo? + By fi0 Cwo% + Do?
min E|[|[Ve(x®)||* < O [ x? n= bw O | k2 @ L L O 2Zw2L 776 )
e [vee <0 N ier ) TO" ProgT O\ T =T

Local updates error
(4)

where, k = Ly /p is the condition number, P(x) 2 maxy F(x,y) is the envelope function, Az £ P(x(0) —

Partial participation

error Error with full synchronization

wy HG“IH2

= . . 2
min ®(x), 7 = LY, 7, Tep = Lisy pillailly, Aw 2 nrep YL, SHE By, £ argmax, 51502, G,
S0 willlas) = (@8 7V12), DA maxy (82 a1 ]2 + las,-1[l), where a; -1 2 [0l 0!, ,a" )T and
E, £ nmax; w;.

(1>

Remark 1. The first term in (4) results from client subsampling (P < n). This explains its dependence on
the data heterogeneity og. The second term represents the optimization error for a centralized algorithm
(see Appendix C.3 in Lin et al. (2020a)). The last term represents client-drift, the error if the client(s) run
multiple local updates.

Theorem 1 states convergence for a surrogate objective F. Next, we see convergence for the true objective F'.

Corollary 1.1 (Convergence in terms of F). Given ®(x) £ maxy F(x,y), under the conditions of Theorem 1,

2 41> T—1 * ~% 2
i [900) [ 2 (24 1) o+ g+ 0 T [y ) - T O )
where X12>HW 2 S (”2}7%)2, Eopt = % t o HVQ) ®) H denotes the optimization error in (4). If p; = w;

for alli € [n], then x2,,, = 0. Also, then F(x,y) = F(x,y). Therefore, y*(x) = arg max, F(x,y) and

pllw
y*(x) = arg max,, F(x,y) are identical, for all x. Hence, (5) yields min, e[y HV(I)(X(t))HQ < 2€4pt-
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It follows from Corollary 1.1 that if in Algorithm 1, the server aggregation weights {w;} (Line 19) are the
same as {p; }, we get convergence to a stationary point of the true objective F. For the rest of this subsection,
we assume w; = p; for all ¢ € [n].

Table 2: Comparison of convergence rates of Fed-Norm-SGDA (Theorem 1) and Fed-Norm-SGDA+ (Theo-

rem 2), if all the clients run SGDA/SGDA+ based local updates, i.e., a(t k) = =1, for all 4, k, t. The results are
stated for (i) (p; = 1/n, 7 =7,V i € [n]); and (ii) (p; # p;), (7 # 7). The additional factors in (ii) relative to
(i) are highlighted in blue. We state the results under partial-client participation (PCP). FCP results follow
by choosing P = n. For simplicity, we assume uniformly bounded local variance (87, = 0 in Assumption 3).

Nonconvex-Strongly-concave (NC-SC)/Nonconvex-Polyak-Fojasiewicz (NC-PL): (Theorem 1, Remark 3)

System Setting Convergence Rate

Sharma et al. (2022) with P =n: O ( oL 4 o o? + o2 )
pi= Vi€ nl Yang et al. (2022a) with P < n: (’)( e (leT)—l-T[[l—i—UL]—i—a D
=7, i¢€ n] s ek ver U= %)+ 757 G

Ours with P < n: O (/120(; (75711)PP?T NR il . {‘LL + U%D

Ours:

fa2
T
(n—P)n max; p; K2op n  p? K U% Z": PiT: 2
pi # Pj, Ti # T (H ¢ nDPT T JProgm \ VTeft Yici T %Sl f ogmax;

:521 1 Ti

Nonconvex-Concave (NC-C)/Nonconvex-One-Point-Concave (NC-1PC): (Theorem 2, Remark 5)
System Setting Convergence Rate

Sharma et al. (2022) with P =n: O (W) +0 ((n\f/); 2)
. 1/4
p=vich 0 (vas (k) "+ var ()" ) +
=T,V i€ [n] Ours with P < n:
. (rP)M/* _p\ V4 1 [of 2 2
O\ F=m (1+ 1) +@<m [T+(GX+UG)D
O n—P nmax; p; 174 NTeff 1/4 8 1 n 2
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In Table 2, we specialize the bound in (4) to SGDA-based local updates. We compare the bound under two
cases: Case 1: equally-weighted clients (p; = 1/n, for all ¢), all running 7; = 7 local updates; and Case
2: unequally weighted clients (p; # p;), running unequal local updates (7; # 7;). The setting in Case 1
has previously been considered in Sharma et al. (2022) (under full participation) and Yang et al. (2022a)".
Compared to Sharma et al. (2022), our bound has a smaller local-updates error term. This results in improved
communication cost (see Corollary 1.2). The additional factors going from Case 1 to the more general Case
2 are highlighted in blue. The following insights can be drawn from Table 2.

¢ Partial Client Participation Error: (9(7\/0%)

Unlike the other two errors, it does not decrease with increasing local updates Teg. Consequently, we do
not observe communication savings by performing multiple local updates at the clients. It remains an
open problem to achieve speedup in terms of local updates in partial participation settings.

is the most significant component of convergence error.

e Unequal client weights: if the clients are weighted disparately, we observe an increase in the stochastic

gradient complexity. To see this, let 7; = 7. The resulting bound is (9(0(;\/ (n(nP){;!)p,JU% + GL\;?‘;% +

2
T3 —I—aé]). Since ||p|| . |||, < 1, in the worst case (when only one of the clients has all the weight), the

4The condition number x dependence is not explicitly stated in the results in Yang et al. (2022a).
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complexity is worse by a factor of n. This happens because the client sampling is not done in proportion
to their weights. Rather, the server first samples the clients uniformly, and then scales their updates to get
an unbiased estimator (3). We leave exploring non-uniform WOR sampling further as a future direction.

Corollary 1.2 (Improved Communication Cost). Suppose all the clients are weighted equally (p; = 1/n for
all i), with each carrying out T local steps of SGDA. Further, assume ® is bounded from below. Then, to
reach x such that E||VO(x)|| <,

o Under full participation, the per-client gradient complexity of Fed-Norm-SGDA is Tt = O(k*/(ne*)). The
number of communication rounds required is T = O(k?/€?).

e Under partial participation, the per-client gradient complexity of Fed-Norm-SGDA is O(k*/(Pe)). In
general, running multiple local updates does not yield any communication savings. However, in the special
case when inter-client data heterogeneity o = 0, the communication cost is O(k%/€?).

Remark 2. The gradient complexity in Corollary 1.2 is optimal in €, and achieves linear speedup in the
number of participating clients. The communication complexity improves the corresponding results in Deng
& Mahdavi (2021); Sharma et al. (2022). We match the communication cost in the recent work Yang et al.
(2022a). In addition, our work considers a more general FL setting with unequally weighted clients (p; # p,),
running unequal local updates (7; # 7;), using distinct local solvers (a; # a;).

Extending the Results to Nonconvex-PL Functions

Assumption 6. A function f satisfies p-PL condition in y (p > 0), if for any fixed x: 1) maxy f(x,y’) has
a nonempty solution set; and 2) for all y

IV, f G, y)II° > 2n(max f(x,y) = F(x,¥)).

Remark 3. If Assumptions 1, 2, 3, 4 hold, and the global function F' satisfies Assumption 6, then for
appropriately chosen learning rates (Appendix B.5), the bound in Theorem 1 holds.

5.2 Non-convex-Concave (NC-C) Case

In this subsection, we consider smooth nonconvex functions which satisfy the following assumptions.

Assumption 7 (Concavity). The function f is concave in y if for a fixed x € R%, for all y,y’ € Rz,

fxy) < fxy)+(Vyf(xy),y-y).

Assumption 8 (Lipschitz continuity in x). Given a function f, there exists a constant G, such that for
each y € R% and all x,x’ € R%,

1f(xy) = f( ¥l < G llx =X

The envelope function ®(x) = maxy f(x,y) used so far, may no longer be smooth in the absence of a unique
maximizer. However, ®(-) is weakly convex (Lin et al., 2020a, Lemma 4.7). Therefore, we use the alternate
definition of stationarity, proposed in Davis & Drusvyatskiy (2019), utilizing the Moreau envelope of ®.

Definition 4 (Moreau Envelope). The function ¢, is the A-Moreau envelope of ¢, for A > 0, if for all
x € Ré=,

Oa(x) = min o(x') + o+ x" = x|I".

Drusvyatskiy & Paquette (2019) showed that a small |V (x)| indicates the existence of some point X in the
vicinity of x, that is nearly stationary for ¢. Hence, in our case, we focus on minimizing ||[V®y(x)]|.

10
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Proposed Algorithm. For nonconvex-concave functions, we use Fed-Norm-SGDA+. The x-updates
are identical to Fed-Norm-SGDA. For the y updates however, the clients compute stochastic gradients
V, fi(x), (t ®) §(t k)) keeping the z-component fixed at X(*) for S communication rounds. This trick,
originally proposed in Deng & Mahdavi (2021), gives the analytical benefit of a double-loop algorithm (which
updates y several times before updating x once) while also updating x simultaneously.

Theorem 2. Suppose the local loss functions {f;} satisfy Assumptions 1, 2, 3, 4, 7, 8, the y iterates are
bounded, and the server selects |C(t)| = P clients for all t. With appropriate client and server learning rates,
(ng,my) and (v3,7,) respectively (see Appendiz C.2), the iterates of Fed-Norm-SGDA+ satisfy

_ 1/4 Crpo? DG,Q( o2
mm]EHV‘I)l/% (x" )HQSO(( <I>PTVl+F) )+O< LJ;2T(?’/4+ G)>

te[T)
Partial participation error Local updates error (6)
A~c2 A /4 A~(14 Fy) P 1/4
Lw w T
10 (L, /1 Jer) 4+ e s ( eff ) :
‘I'effPT T Aw + Tsﬁ Ew

Error with full synchronization

where ®1)51,, is the Moreau envelope of ®, and Ag £ ~1/2Lf (x0) — ming 61/2Lf(x). The constants
A

Ay, Cy, D, Ey, T, Teg are defined in Theorem 1, and F, "((7; I;)) S wi

See Appendix C for the proof. Theorem 2 states convergence for a surrogate objective F. Next, we see
convergence for the true objective F'.

Corollary 2.1 (Convergence in terms of F). Given envelope functions ®(x) £ maxy F(x,y), ®(x)

(1>

maxy ﬁ(x, y), under the conditions of Theorem 2,

i[9, (O < ey S I [0 -0
te[T)
where q)l/%f is the Moreau envelope of ®, xt) £ arg minx,{&;(x’)-kaHX' —X(t)HQ}, x(t) & arg min,, {®(x) +

Ly|jx' - x(t)||2}, for all t, €,,, is the error bound in (6).

Similar to Corollary 1.1, if we replace {w;} with {p;} for all i € [n] in the server updates in Algorithm 1,
then F = F , and X®) and x(*) are identical for all ¢. Consequently, Theorem 2 gives us convergence in terms
of the true objective F. For the rest of this subsection, we assume w; = p; for all i € [n].

Remark 4. Some existing works do not require Assumption 8 for NC-C functions, and also improve the
convergence rate. However, these methods either have a double-loop structure Rafique et al. (2021); Zhang
et al. (2022), or work with deterministic problems Xu et al. (2020); Zhang et al. (2020). Proposing a single-loop
method for stochastic NC-C problems with the same advantages is an open problem.

Again, in Table 2, we specialize the bound in (6) to SGDA+ based local updates. As in the last section

o Partial client participation is the most significant source of convergence error.
o Unequal client weights (p; # p;) can increase the stochastic gradient complexity, due to the presence of
2
n|[plly . nllpll; factors.

Corollary 2.2 (Improved Communication Cost). Suppose all the clients are weighted equally (p; = 1/n for
all i), with each carrying out T local steps of SGDA+. Further, assume that @121, is bounded from below.
Then, to reach x such that E||V®y /5 (x)| <€,

o Under full participation, the per-client gradient complezity of Fed-Norm-SGDA+ is Tt = O(1/(ne®)). The

number of communication rounds required is T = O(1/€*).
e Under partial participation, the per-client gradient complexity of Fed-Norm-SGDA+ is O(1/(Pe®)). In

general, running multiple local updates does not yield any communication savings. However, in the special
case when inter-client data heterogeneity o = 0, the communication cost is O(1/e?).

11
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In terms of communication requirements, we achieve massive savings (compared to O(1/€”) in Sharma et al.
(2022)). Our gradient complexity results achieve linear speedup in the number of participating clients. Further,
as stated earlier, our work considers a more general FL setting with unequally weighted clients (p; # p;),
running unequal local updates (7; # 7;), using distinct local solvers (a; # a;).

Extending the Results to Nonconvex-One-Point-Concave Functions. One-point-convexity has been
observed in SGD dynamics during neural network training Li & Yuan (2017); Kleinberg et al. (2018).

Assumption 9 (One-point-Concavity in y). The function f is said to be one-point-concave in y if fixing
x € R4, for all y € R%,

<Vyf(x,y'),y - y*(X)> S f(Xa y) - f(X, y*(x)),
where y*(x) € argmax, f(x,y).

It turns out, Theorem 2 holds for the more general class of nonconvex-one-point-concave (NC-1PC) functions.
See Appendix C.4 for more details.

Remark 5. Suppose Assumptions 1, 3, 2, 4, 8 hold. Suppose for all x, all the f;’s satisfy Assumption 9 at a
common global minimizer y*(x). Then, the bound in Theorem 2 holds.

Remark 6. Hence, we settle the conjecture posed in Sharma et al. (2022) that linear speedup can be achieved
for NC-1PC functions. As an intermediate step in our proof, we show convergence of Local SGD for
one-point-convex functions. This extends the convex result for Local SGD to a larger class of functions.

6 Experiments

In this section, we evaluate the empirical performance of the proposed algorithms. We consider a robust
neural training problem Sinha et al. (2017); Nouiehed et al. (2019), and a fair classification problem Mohri
et al. (2019); Deng et al. (2020). Due to space constraints, additional details of our experiments, and some
additional results are included in Appendix D. Our experiments were run on a network of n = 15 clients,
each equipped with an NVIDIA TitanX GPU. We model data heterogeneity across clients using Dirichlet
distribution Wang et al. (2019) with parameter «, Dir,(«). Small o = higher heterogeneity across clients.

Robust NN training. We consider the following robust neural network (NN) training problem.

N
min max l(hx(a; +y),b;), (7)

x ylP<1ez

where x denotes the NN parameters, (a;, b;) denote the feature and label of the i-th sample, y denotes the
adversarially added feature perturbation, and hyx denotes the NN output.

Impact of system heterogeneity. In Figure 3, we compare the effect of heterogeneous number of local
updates across clients, on the performance of our proposed Fed-Norm-SGDA+. We compare with Local
SGDA+ Deng & Mahdavi (2021), and Local SGDA+ with momentum Sharma et al. (2022). Clients sample
the number of epochs they run locally via uniform sampling over the set {2..., E}, i.e., 7, ~ Unif[2: E]. We
observe that Fed-Norm-SGDA+ adapts well to system heterogeneity and outperforms both existing methods.

Impact of partial participation and heterogeneity. Next, we compare the impact of different levels
of partial client participation on performance. We compare the full participation setting (n = 15) with
P =5,10. Clients sample the number of epochs they run locally via 7; ~ Unif[2,5]. We plot the results for
two different values of the data heterogeneity parameter a = 0.1,1.0. As seen in all our theoretical results
where partial participation was the most significant component of convergence error, smaller values of P
result in performance loss. Further, higher inter-client heterogeneity (modeled by smaller values of «) results
in worse performance. We further explore the impact of a on performance in Appendix D.

12
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Test Accuracy
w A O
o O O

—— Local SGDA+
—— Local SGDA+ (M)
—— Fed-Norm_SGDA+

Figure 3: Comparison of the effect of heterogeneous number of local updates {;} on the performance of
Fed-Norm-SGDA+ (Algorithm 1), Local SGDA+, and Local SGDA+ with momentum, while solving (7) on
CIFARI10 dataset, with VGG11 model. The solid (dashed) curves are for E =5 (F =7), and o = 0.1.
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Figure 4: Comparison of the effects of partial client participation (PCP) on the performance of Fed-Norm-
SGDA+, for the robust NN training problem on the CIFAR10 dataset, with the VGG11 model. The figure
shows the robust test accuracy. The solid (dashed) curves are for a = 0.1 (o = 1.0).

Test Accuracy

Figure 5: Comparison of Local SGDA, Local SGDA with momentum, and Fed-Norm-SGDA, for the fair
classification task on the CIFARI0 dataset, with the VGG11 model. The solid (dashed) curves are for E =5

(E=T7),a=0.1.

Fair Classification.
Nouiehed et al. (2019).

0

100 150 200 250 300 350 400
Number of Communications

50

—— LocalSGDA
—— LocalSGDA (M)
—— Fed-Norm-SGDA

40 60 80 100 120 140

Number of Communications

20

We consider minimax formulation of the fair classification problem Mohri et al. (2019);
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where x denotes the parameters of the NN, {F.}¢_, denote the loss corresponding to class ¢, and Ac is the
C-dimensional probability simplex. In Figure 5, we plot the worst distribution test accuracy achieved by
Fed-Norm-SGDA, Local SGDA Deng & Mahdavi (2021) and Local SGDA with momentum Sharma et al.
(2022). As in Figure 3, clients sample 7; ~ Unif[2, E]. We plot the test accuracy on the worst distribution in
each case. Again, Fed-Norm-SGDA outperforms existing methods.

7 Conclusion

In this work, we considered nonconvex minimax problems in the federated setting, where in addition to
inter-client data heterogeneity and partial client participation, there is system heterogeneity as well. Clients
may run unequal number of local update steps, using different local solvers. In such settings, we observed
that existing methods, such as Local SGDA, might converge to the stationary point of an objective quite
different from the original intended objective. We showed that normalizing individual client contributions
solves this problem. Using our generalized framework, we analyzed several classes of nonconvex minimax
functions and significantly improved existing computation and communication complexity results. Potential
future directions include analyzing federated systems with unpredictable client presence Yang et al. (2022b).
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Appendix

The appendix are organized as follows. In Section A we mention some basic mathematical results and
inequalities which are used throughout the paper. In Appendix B we prove the non-asymptotic convergence
of Fed-Norm-SGDA (Algorithm 1) for smooth nonconvex-strongly-concave (and nonconvex-PL) functions,
and derive gradient complexity and communication cost of the algorithm to achieve an e-stationary point.
In Appendix C, we prove the non-asymptotic convergence of Fed-Norm-SGDA+ (Algorithm 1) for smooth
nonconvex-concave and nonconvex-one-point-concave functions. Finally, in Appendix D we provide the details
of the additional experiments we performed.

A Background

A.1 Gradient Aggregation with Different Solvers at Clients

Local SGDA. Suppose Ti(t) = Tgf) =7 for all i € [n], t € [T]. Also, agt’k) =1 for all k£ € [7],t. Then, the
local iterate updates in Algorithm 1-Fed-Norm-SGDA reduce to (the updates for Fed-Norm-SGDA+ are
analogous)

K (EEHD) _ (60) oy g

(2

(t). (tk7§tk))

~A NA

ygt,k+1) (t k) +77yv fz( t,k)7yz(_t,k ;glgt,k))7

®)

for k € {0,...,7 — 1} and the gradient aggregate vectors (g, ;, 8,

gradients

) are simply the average of individual

(f) Z V. fi(x (f k) z(t,k);glgt,k) ), (f) Z v, fi(x (t k) (f k)7§(t k))

Note that these are precisely the iterates of LocalSGDA proposed in Deng & Mahdavi (2021); Sharma et al.

(2022), with the only difference that in LocalSGDA, the clients communicate the iterates {x(t T), ylt 7')} to
the server, which averages them to compute {x(t“) y(t+1) }. While here, the clients communicate {gx o g§,t)z .
Also, in Fed-Norm-SGDA, the clients and server use separate learning rates, which results in tighter bounds

on the local-updates error.

With Momentum in Local Updates. Suppose each local client uses a momentum buffer with momentum
scale p. Then, for k € {0,. (t) -1}

dt k-+1 dt k + v, fz( (t k) (t k) 5(t lc))7 X(t k+1) _ X(t k) ‘dt k41

Z XZ

k) k k k1 k ¢
dtk+1 dtk+vyf@( (t l(t )’Ei(t ))7 ygt +)_ylt )_|_ yd;lj—i-l’

Simple calculations show that the coefficient of V, fl( (¢ k) (t *) ,5 (t, k)) and V, fi(x; (on 2““); fi(t’k)) in the

gradient aggregate vectors (gi)z, g§, )z) is

Tl.(t’)—l

T(t)—k
Z :1—|—p++p‘r1(t)_1_k:i
ik L=r
. (1) o) S0
Therefore, the aggregation vector is a; ' = [1 e ..., 1= pl, and
T;t)—l (t) (t)

CRI. L—pn h 1w (=T )|

() 1 —~ 1— p 1— p ) 1— P
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A.2 Auxiliary Results

Remark 7 (Impact of heterogeneity oG even with 7 = 1). Consider two simple minimization problems:
1 n
(P1): m)in - Z; fi(x) and (P2): rr;in f(z).

(P1) is a simple distributed minimization problem, with n clients, which we solve using synchronous distributed
SGD. At iteration t, each client i computes stochastic gradient V f; (x(t);fi(t)), and sends it to the server,
which averages these, and takes a step in the direction % SV (x®; fi(t)). On the other hand, (P1) is
a centralized minimization problem, where at each iteration ¢, the agent computes a stochastic gradient

estimator with batch-size n, %Z?:l Vf (X(t);@(t)). We compare the variance of the two global gradient
estimators as follows.

(P1) (P2)
B L S, 0 60) - v B L S, vre; ) - v 60|
<ETL [ AEVACOI] T = s mereie®) - vieo)|
<%y Pl m)| v ()| + 03] < %y Bggpo)|.

Since almost all the existing works consider the local variance bound (Assumption 3) with 8, = 0, the global
gradient estimator in both synchronous distributed SGD (P1) and single-agent minibatch SGD (P2) have

the same ‘:—? variance bound. Therefore, in most existing federated works on minimization Wang et al. (2020);
Yang et al. (2021) and minimax problems Sharma et al. (2022), the full synchronization error only depends on
the local variance O’%. However, as seen above, for 8, > 0, this apparent equivalence breaks down. Koloskova
et al. (2020), which considers similar local variance assumption as ours for minimization problems, also show
similar dependence on heterogeneity o¢.

Lemma A.1 (Young’s inequality). Given two same-dimensional vectors u,v € R, the Buclidean inner
product can be bounded as follows:
2 2
[l vl
< W=
(wv) < 5 E+ 1

for every constant v > 0.

Lemma A.2 (Strong Concavity). A function g : X x Y is strongly concave in'y, if there exists a constant
u >0, such that for all x € X, and for all y,y’ € Y, the following inequality holds.

1% 2
9(x,y) < g(x,y) + (Vyg(x,¥),y —y) — 5 lly - y'lI”-

Lemma A.3 (Jensen’s inequality). Given a convex function f and a random variable X, the following holds.

FEX]) <E[f(X)].

Lemma A.4 (Sum of squares). For a positive integer K, and a set of vectors X1, ..., Xk, the following holds:
K 2 K
2
Doxk| <K il
k=1 k=1

Lemma A.5 (Quadratic growth condition Karimi et al. (2016)). If function g satisfies Assumptions 1, 5,
then for all x, the following conditions holds

. H 2
9(x) —ming(z) 2 3 |x, — x|,

IV9() > > 20 (9(x) — ming(z))
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Lemma A.6. For L-smooth, convex function g, the following inequality holds

E|Vg(y) — Vax)|* < 2L [g(y) — g(x) — Vg(x) " (y — x)] . (9)

Lemma A.7 (Proposition 6 in Cho & Yun (2022)). For L-smooth function g which is bounded below by g*,
the following inequality holds for all x

E[[Vg()|* < 2L [g(x) - 9] - (10)

B Convergence of Fed-Norm-SGDA for Nonconvex-Strongly-Concave Functions
(Theorem 1)

We organize this section as follows. First, in Appendix B.1 we present some intermediate results, which we
use to prove the main theorem. Next, in Appendix B.2, we present the proof of Theorem 1, which is followed
by the proofs of the intermediate results in Appendix B.3. Appendix B.4 contains some auxiliary results.
Finally, in Appendix B.5 we discuss the convergence result for nonconvex-PL functions.

The problem we solve is

m)in max {ﬁ(x, y) 2 zn:wifi(x,y)} .
Y i=1

We define ®(x) £ max, F(x,y) and 3*(x) € arg max,, F(x,y). Since F(x,-) is p-strongly concave, y*(x) is
unique. In Fed-Norm-SGDA (Algorithm 1), the client updates are given by

k—1
K = 0 e 57 oD ()W, fi (), y (09 €0,

j*() (11)
(tk) (t)_H7 Za (tJ) ’g(w)
where 1 < k < 7;. These client updates are then aggregated to compute {g,(f )1, g;t )l}
ggl s ” Z a(k () J:fz< tk) (t Ic)’g(tk) hffz ”a ” Z a(k) (1) Vs Z( Et k) (t k))

g(ytl_”anza(k) ) yfz(ltk) (tk)7§(tk)7 h(; ||a||za () yfz(ﬁ““) (tk))

Remark 8. Note that we have made explicit, the dependence on k in agj )(k:) above. This was omitted in the
main paper to avoid tedious notation. However, for some local optimizers, such as local momentum at the
clients (Appendix A.1), the coefficients a(] )(k) change with k. We assume in our subsequent analysis that
agj)(k) <aforall j€{0,1,...,k—1} and for all k € {1,2,...,7;}. We also use the notation [|a;|| £ |la;(7:)]|-

At iteration ¢, the server samples |C(*)| clients without replacement (WOR) uniformly at random. While

aggregating at the server, client i update is weighed by @; = w;n/|C®|. The aggregates (g,(()7 g§,)) computed

at the server are of the form

g,(f) = Z wig,(i)i, such that Eq« [ggf)] =Eco [Z]I(z e C(75 wlg,(:)} z:wlg,(:)Z
ieC(t) i=1

Z wzgyz, such that Ece [ggf)] Ecw [Z]I iec® )wigy 1} = Z zg;i)
iec® i=1 i=1
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For simplicity of analysis, unless stated otherwise, we assume that |C (t)| = P for all ¢t. Finally, server updates
the x,y variables as

XD =< —rgyiel, ¥ =y + ey,
We define by F(t') the o-algebra generated by {{x(t k), ylt k)}z 1. Throughout, we denote the conditional

expectation E[-|F(t)] by the shorthand E,[-].

B.1 Intermediate Lemmas

We begin with the following result from Nouiched et al. (2019) about the smoothness of ®(-).

Lemma B.1. If a function f(-,-) satisfies Assumptions 1, 5 (Ly-smoothness and pi-strong concavity in'y),
then ¢(-) £ maxy f(-,y) is La-smooth with Ly = kL/2+ Ly, where k = Ly /p is the condition number.

Lemma B.2. Suppose the local client loss functions {f;} satisfy Assumptions 1, 4, and the stochastic oracles
for the local functions satisfy Assumption 3. Suppose the server selects P clients in each round. Then the
iterates generated by Fed-Norm-SGDA (Algorithm 1) satisfy

2

E, ‘ g Z wzgff)l
ieC®)
P 1 n 2 n 2
n — ) n w; (k) (t k) (t k (13)
<2 ( )E wh + 2 () [oL + 0]
AUE P Pénaz-n%k%
’Il('ﬂ, . QL? n Ti—1 (k;)
+ —- ) ALR (7)) 4+ max w;) - B2 ||V, F ®) y® +U
Z ( ) X,y G )
1 ||az||1 2
where, Ag(t (i £, x —x®|2 + y(-t’k) — y 12| is the iterate drift for client i, at local iteration k in
Y %

the t-th communication round.

Lemma B.3. Suppose the local client loss functions {f;} satisfy Assumptions 1, /, 5, and the stochas-
tic oracles for the local functions satisfy Assumption 3.  Also, the server learning rate v satis-

fies 647cgys Lo S7 fe % (max; wz||az|| /||az|| ) < 1, 87epvsLae(max; w;)p (” P) max{88%,1} < 1, and
87efvs Lo 57 % (max; i, wial(.k (1:)/llaill;) < 1. Then the iterates generated by Algorithm 1 satisfy

2

E, [§(X(t+1)) _ ZIS(X(t))} < _%

n

~ 2 S —
vh(x)|" - e (1 P Urem;ch) E,

2 Pn—-1) —
9TepvS L% r~ ~
+ T@ﬁ%L Z a(k)(n)A(t k) (i) + L {@(X(t)) _ F(x(t),y(t))] (14)
fal, T I
2 n 2 2
ﬁm] ch n ||aZ||2 - ( n—P ., wllal?
+ = o7, 2(max w;) ——— + 27 max ———= | | .
; eI} ‘ n-1 © laglly

Remark. The bound in Equation (14) looks very similar to the corresponding one-step decay bound for
simple smooth minimization problems. The major difference is the presence of [ (x(t)) F(x(t),y(t))},

which quantiﬁes the inaccuracy of y® in solving the maz problem maxy F' (x(t),y). The term
S |Ia7|\1 D a(k (TZ)AS(t;f)( ) is the client drift and is bounded in Lemma B.4 below.

Lemma B.4. Suppose the local loss functions {f;} satisfy Assumptions 1, 4, 5, and the stochastic oracles
for the local functions satisfy Assumption 3. Further, in Algorithm 1 we choose learning rates ng, ny such

1< 2L (s Hail\ll)\/2(1+/3§)' Then, the iterates {xZ Y, )} generated by Fed-Norm-SGDA

that max{ng,n;
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i

(Algorithm 1) satisfy
Z al (1) AL (i) < 2 ([ng]? + [n5)?) faLsz las,1|l2 +4L2 M, ([S)2 + [15)%) o2

n
— 'L”lko i=1

+ 8L?Ma,1ﬁé[n;]2 |9+ 823082 (2mDicl? + (o) [ — P, y®)]

where M,_, 2 max; (||ai,_1||f + 32 Ha,,_1||§).

Lemma B.5. Suppose the local loss functions {f;} satisfy Assumptions 1, 4, 5, and the stochastic oracles for
the local functions satisfy Assumption 3. The server learning rates v;,, satisfy the following conditions:

2 s

n willaill; n—P 1 o

ST 2 2 ? 2 i < s < Y
Temyﬁ fﬂGiP max {BL III?X ||al||? 9 7 — 1 III?;X W; = 64) ’YCE - 81%2 9

(k)
n n—Pp wia; ()
87-eﬁLf’ny max{_l mzaxwz,ﬁL Uzli W <1

. . . 1 . 1 .
The client learning rates ng,n,, satisfy nyL¢Ba < o/t and ng: nSLBa < TPy respectively. Then
the iterates generated by Fed-Norm-SGDA (Algorithm 1) satisfy

!

=
]

—1
E[(x") - F(x,y")]
t

4

— O

d(x0)) — F(x(0) (0 T-1 s 2
o(x'V) - F(x",y )] 1 lZE”VE)(X(t))Hz—F4Teﬁh$]2L‘bn(P71)E

> wh)

_|_
TeygiT 12uk? T — Yo Pn—1) || =
~ w}||a; || n—PpP wilasl3
87 kit ill2 | 9.2 .+ 32 il @i llo
#8raie |7 Y e 20 (G e A S
+8xLy ([ng]” + [5]%) [ULZw1||al—1|2+20GMa . (15)
i=1

Remark 9. The proof of Lemma B.5 differs from similar results in the existing literature Sharma et al. (2022);
Yang et al. (2022a). As in these works, if all the clients are running the same number of local steps (7; = 7, for

)

all i), we can define virtual sequences of average iterates x(#*) = % Y ice® xgt’k), y k) = % Y ice® ygt *)
for all k € [0,7 — 1],t. Define F'(¢, k) as the o-algebra generated by

F1) 2 0 {00 U e )

Since, conditioned on F'(t, k), x"*+1 1 {V, f;(x; (k) z(-t’k);fl-(t’k)) n_,, using {xF) yER)1 considerably
simplifies the analysis. However, with 7; # 7;, the Vlrtual sequences {x(#*) y(F)1 can no longer be defined
for all k. Hence, we need an alternate proof strategy.

B.2 Proof of Theorem 1

For the sake of completeness, we first state the full statement of Theorem 1 here.

Theorem. Suppose the local loss functions {f;}; satisfy Assumptions 1, 3, 4, 5. Suppose the server selects
clients using without-replacement sampling scheme (WOR). Also, the server leammg rates vy, 7, and the
client learning rates ng,ny satisfy the conditions specified in Lemma B.5. Then the iterates generated by
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Fed-Norm-SGDA (Algorithm 1) satisfy

1 T-1 _ 2 A~ '75L
min IEHV(D (t))H ZEHV(D(X(t))H <O (K,Q {é Y
te0:7—1] T P Teff Vgl P

Error with full synchronization

n—P ’}/;LwaTeﬁO'é
n—1 P ’

i (Aol + Bwﬁiaé)b

+ 0O (H2 ([77;}2 + [77;}2) Lfc [C’woi + Doé]) + O (/—12

Error due to local updates

Partial Participation Error
where k = Ly /p is the condition number, d(x) 2 maxy, F(x,y) is the envelope function, Az 2 p(x) —

~ 201 o (12 Mas 2 -
it $(x), Au 2 7o I, S, By £ nregmax; S, Cu 2 T willaily - (@7TVP), D 2

max; (37 Hai,qu + ||ai,71||§); where a; _; = [agt])7a§1)7 . _,al(-Tifz)]T for alli and E,, & nmax; w;.

ing vy, = £ ¢ <pt=0(—L= Fo L1y o
Using v, = © ( Te[ijTI:AgJFAwO'L (Bupi 122 Ewrefj)aé]> and ng < ny @(Lﬁﬁ), where T = 3 " | T

in the bounds above, we get

A=+ Ayo? + B,Biok n—P FE,o2 C’ 02 + Do?
EH q) () H <0 | x2 o L o | x2 Lwog ) L G
min BV ) m ProgT OV ST e | T 72T

Local updates error
Error with full synchronization Partial participation

Proof. Using Lemma B.3, and substituting in the bound on iterates’ drift from Lemma B.4, we can bound

2
=~ = TTett Yy || o= 2 Temvs n(P —1) (t
E [@ @+0) _ & <t>}<—7‘3 z ||y (x® H T (P T Le | E h{
¢ [B+) — B < T Ve | - P (1= e L Zw
9Teff’y Lf
Tleff Tz Ty (t) 0) <t)}
b [P = P,y )
T m %n 2 3~ @il | oo (o main) P2 E 422 max il
oL @ W) L e
i=1 ||a1||1 llailly
o 2
+ 5 Te s (ns)? + [n5)?) L? lai > willai all; +20EMa_,
=1
+ 1073 L3 My ﬁc[m |96 + Ly (2nlng? + ) [é<x<f>>—ﬁ<x<“,y“>>}] (16)

Summing (16) over t =0,...,T — 1, substituting the bound on E [&)(x(t)) — F(x®), y(t))] from Lemma B.5,
and rearranging the terms, we get

;Tzﬁuvm\r
t=0

n 2 2
a - P a;
O’L E il Z”2 o2 (n T maxwi-i-ﬁ% max will ZL|2>1>
n— i i

= aill Jasl;
n
2 tr—1 2 2
o1 > wi (Jlail; [l V1) + o0& max (Jlas-a | + 6 ||ai,_1|2)D (17)
=1

Consequently, using constants A,,, By, Cw, D, Ey, (17) can be simplified to
T—1
1 ~ 2 A~ VoL - P
- IEH B(x® H <o(w? |22y Tt (4 BuB? + 2" E, 2
th:; Ve <O|x Tem;T+ P o1+ BL+ n—l Teft | 9G
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+ 0 (k* (5] + [775}2) L?c [Cwoi + Dogl),

which completes the proof. O
Convergence in terms of F

Proof of Corollary 1.1. According to the definition of F(x) and F(x), we have

Vo(x) =D PiVafi(xy (%)) = wiVe fi (%, 5" (x))] (y*(x) € argmax, F(x,y))

n

[V iy (%)) = Vafilx, 37 ()] + Y (i — wi) Vo filx, ¥ (%))

=1

= [V F(x,y"(x)) = Vo F(x, 7" ( Zpl 2w,V fi(%, 5 (%))

H'M:

Taking norm, using L y-smoothness and applying Cauchy—Schwarz inequality, we get

Z(pw] [sz IV o5 x >>||2]

i=1 i=1

HW(X) . V%(X)H2 <202 |ly*(x) - ¥ ()| + 2

<203y ()~ F GO + 2y | 52 VB0 403
where the last inequality uses Assumption 4. Next, note that
~ 2 ~ 2
V(x| <2 HW(X) - v¢>(x)H 42 qu>(x)H .

Therefore, we obtain

() - o2
t t
o 5ot < 15 ote)

T—1
1 - 2
<2 [QXfanwﬁé + 1] - 3 HW(X@))H 14
t=0

(x) - 9*(x<”>HZ]
(x) - y*(x“))ﬂ .

where €, denotes the optimization error in the right hand side of (4) in Theorem 1. O

1 T—1
Xpiwoe T L5 ) ||y
t=

= 2 |:2X§)”wﬁé + 1i| eopt + 4

L 11
Xplw0& + L?T y
t=

Proof of Corollary 1.2. If clients are weighted equally (w; = p; = 1/n for all ¢), with each carrying out 7
steps of local SGDA, from (4) we get

min HV@ t))H2 §O< n— P k20¢q _|_K:2<U'L+BLO'G i 0%+70‘2G)> '

te[T] n—1+PT PrT 7T

e For full client participation, this reduces to

2
mmEHV(I) )H §O<
te[T]

1 1
+ .
vnrT T)
4

To reach an e-stationary point, assuming nt < 7', the per-client gradient complexity is T'7 = O (7':7)

. . . . . . . 2
Since 7 < T'/n, the minimum number of communication rounds required is 7' = O (':—2)
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- P . .
— ) O‘é,/é) is the dominant term, and we do not get any

convergence benefit of multiple local updates. Consequently, per-gradient client complexity and

e For partial participation, O((

number of communication rounds are both Tt = O (F’f—;), for 7 = O(1). However, if the data across

clients comes from identical distributions (o = 0), then we recover per-client gradient complexity of

4 . . 2
o (%), and number of communication rounds = O (’:—2)

O
B.3 Proofs of the Intermediate Lemmas
Proof of Lemma B.2.
2 2
S el =B 3 i (9 - 00+ 02)
iec® iec®
2 2
] PIEACHE ] R DO
ieC(t) ieC(t)
2
2
=E,; Z w? g,(f)l hf:)z +E, Z HjihE:71 (. Et[g,(:)l} = ,(:)Z for all clients i € C(*))
iec®) iec®
2
= %Zwl g}(:)l - Z ﬁ)zhit)l (. ; = win/P and P(i € CY) = P/n)
=1 ieC(t)
2
Ti—1
n
< Fz z () [ + ||V fix0, y )| } +E | > @b (18)
i=1 ‘alHl iec®
Here, (a) follows from the following reasoning.
By | Y i <h§f17g§f)j h,(f)g>
i,j€C(1)
—E | Y @?E (b0, el) —h) | F1),¢0| + > wa; B (Y, gl ~ 0l ) | F(1),c0]
iec® i#J 0

(Assumption 3; independence of stochastic gradients across clients)

| Y o [(h0 e~ h0) | (0.

ieC(®)

- Et[ Z N 112 le_:lﬂz_:l (k) Tl %) [<V fl ( (,t g z(‘t7k)§§1(t7k)> - foi (th’k)7ygt’k)> ,

iec® ”‘11”1 k=0 j=0
szz( (t,3) yEt’J))> |f(t),C(t)}]

-2
:Etl Z wi2

2 Nl

Ti—1
[Z[agk)(Ti)]QE[<E[mei(xgt’k) 3 €0) =, fi( y ) (B, ]

k=0

=0
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mei(xgt’k)ayg’“)ﬂﬂﬂﬂ“ﬂ

+2Za(k) a?( )EK [ HJi(x ) R (R g (B () ‘,J)’ygm},
i<k
=0
v fz( (tJ’ Etvﬂ))>’]:(t)7c(t):|‘|
=0. (".- Assumption 3)

The last inequality in (18) follows from Assumption 1 and 3. Further, we can bound the second term in (18)
as follows.

E; Z ~h(t Zwl xz—|—th

ieC(t)
2 2
=E, Z w;h x Z + E; ZI[ iec® wlh(t Z w;h x Z ((WOR) sampling)
=1 =1
n 2
—E, Z wih;@ + ZIEt {( i€ CO2a? +w? —20(i € c<t>)wiwi) ’ ) }

+ ZEt< i € COYa; —wi)h{), (1(j € D)y — wj)hgct,)j>
i#£]
]

n 2 n
Sunll + 3ot (5 1),

+Y E [( ieC®) . 1(j € CDYi; —1(j € COYbjw; — I(i € CD )ivyw; + wiwj) <h§:)l, h) >}

i#]
115 b () o)
i#]

—F,

—F,

2+ (%-1) Zn:Et [wf
=1

3 :h)
2

2
n(P-—1 - ) nn 9 (t
= — E h E; ||h, 1
P(n—1> t;wl | TP —1Zw k ’ (19)
Next, we bound the second term in (19).
S wlBe 1)~ Vo sy ) + T fix ),y )|
i=1
n w2 Ti—1
< 2L§Z ol o () AL (3) + 2(max w;) (ﬂGHV F(x®,y®) H +JG> (20)
i=1 "L k=g
using Assumption 4. A(t k)( ) £ E, {ngt’k) ®]12 + ||y(t k) _ (t)H2]. Substituting (20) in (19), and using
the resulting bound in (18) we get the bound in (13). O

Proof of Lemma B.3. Since the local functions {f;} satisfy Assumption 5, F(x,-) is u-SC for any x. In the
proof, we use the quadratic growth property of u-SC function F(x, ), i.e., for any given x

Clly =y ()lI° < Fx,y"(x) — F(x,y), forally, (21)
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where y*(x) = argmaxy, F'(x,y’). Using Lg-smoothness of B(.),

% 5 L
E, [fb(x(t“))} <Ed(x?) — <vq> )Ty wlg(t)> % le

ieC(t)

(using Assumption 3 and (3))

n 2 [~8]2
~ ~ L
B(xW) — 757 Ey <V<I’(x(t))7 g wlh§:)1> + 77—6&[7;] *E, ’ g
i=1

2 2

~ s ~ 2 s
<1>(x<t>)fTeL2% qu>(x<t>)H +E, +%E

Ve(x®) — Z w;h®

i=1

3w
=1

’2 . (22)

The last term is bounded in Lemma B.2. Next, we bound the third term above.

TSH[W’;PL@

T

Et’g)

2

E, ||Vo(x") Zwlh“}i

2

(Vo fi. 5 () = Ve fi(x O, y0) 4 Ve fi(x @, y) ~ b))

(since y*(x) = arg max,, F(x,y"))

Ti—1 2
L n
sz (v S,y ) = e 3l () Ve, (XEt’“,yE“’“)))

fadll, &

xM) — y(® H 1 2R,

(L ¢-smoothness; Young’s inequality)

2 T;,—1
AL

2
< =2 [B) - Fix.y ]+2Zwl o (7B | Vo £,y 0) = T il y ()

faill, 2=
(Quadratlc growth of u-SC functions (21); Jensen’s inequality)

2
“t e -y ]

(L p-smoothness)

4

2
f (tk)
< 7 [ (x (t)) (x(t) } + 212 Z ||az||1 Z:: a; " (1;)Ey {sz x®

h

4L2 - ~
= — L [B(x") - Fx,y")] +2L2 Z ““)( DALD (). (23)
Iz ||a1||1 k=0
2
where Agf”)’f) (i) = E; [ngt’k) —x®] + ‘ ygt’k) — y(t) . Further, the term containing HV fi(x (t k) ,y (¢ k) H

in (13) is bounded in Lemma B.7. Substituting the bounds from (23), (13) and Lemma B.7 into (22), we get

2
B, [S(xHD)] < B(x) - Tef”w qu> 1) H +E,

Z wlh(t

. 4L2 N B Ti—1
L e J[¢(X<t>)—F<x(t),y(t>}+2L § 0 ()AL ()
2 I || ’L“l k=0
2 512
e |1 (P21) Ol + 5 (A=) Ei
+ = — E, wihy )
9 P n—1 Z ! || Z”l k=0

252 Le nof & wf||a|| %2 Len (n—P ~ 2
TR L T T 5 (51 2ty (2 9Py )
i=1 11

-1

0l (m) ALY ()
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4 eff[ 2] L‘I’EBL

2
(1

n
z=1 1 k=0

2 2 . ) 2L - ~ ~ 2
o Tl Lo 1 ( wz||az|2|2> [f (36x) - Fx®,30)) + w560 ]

S 2
Z (k) )( ) + 202 (maX wZ”aZgQ)]

llailly

sy H

) 2
~ TToftYs ~ 2 Temvys n(P-1 n ‘
< P(x®) — TelfiVa ||gF(x®) H_u 1 s1o\E FNQ)
< ¢(x) 6 |VeE") 5 P\ ) ervale | B Z;w N
gTeff’VxL 5 Tl k
+Tf{ (x®) = F(x®, <t))} + 27 fz ol () ALE) (i)
z la zlll Pt
2
Tﬁ[ on wailly ( n—P o wlail
+ = G 2(max w;) ——— + 237 max ) ,
P Z: a1} ' n—1 v adlly

where, the coefficients are simplified, using assumptions on the learning rate -3

ok ailly

_p Na:I? P
Teft Vo Lo [(m?xwi) (Z_ ) + 7 max wz|a122] <

t fladlly

; _P i(k) . p
Tet Vs Lo [(rnaxwi) (”) + B2 max wml <
? n

This finishes the proof. O

Proof of Lemma B.j. We use the client update equations for individual iterates (11). To bound Agjgf) (1),

2
first we bound a single component term E; sz(.t’k) —x®|| . For1<k<m,

2
E, ‘ b x(®)

QEt Z (],(j) (V f’L ( §t7j)7 yl(tvj); £§t7j)) _ szz (thvj)’ yl(t J)) + vmfz (X§t7]), ygt’])

2
k—1

7=0 =0

(using unbiasedness in Assumption 3)

= 0512 | B | Yo al (k) (Vs (x5 05 0) = Vs (x5 () )|+ B AT R

)

k—1
= 5 | S0 RPE, [Vo s (D ) — g (0 30| 1 Zaﬂ Vi (%, y i
=0
i ) k-1 k-1
c t,j t,j t t,
<[l | z(oiwim Vil y ()| )+ > a0y ) 3 a0 |7t (9|
_j:O 7=0 7=0

(24)
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where the last inequality follows from Jensen’s inequality (Lemma A.3). Next, note that

1 Ti—1 k—1 1 Ti—1 Ti— Ti—2 }
¥ () S0 (k ¥ () 3 [0 (k AP < el — Ta®T=D ()12
- v v — v12 i i)l
||a7f||1 k=0 j:0 ||a1||1 k=0 k=0 k=0
1 Ti—1 k—1 1 Ti—1 Ti—2 T, —2
0 m) Yl (k) < o ™) 2 ) = 30 ol ) < llady ~ "™ ()
Jaull, 2= 2 fail, &= 2
1 Ti—1 k—1 1 Ti—1 Ti—2
< o (1) Yl ()P < a- Za i)
ol 22 () 2] o, 2= 2

(25)
where am(k) < a for all j, k. We define [la; —12 2 [la:]|5 — [agt’Ti_l)(Ti)]Q, lai 1], £ llaill, — [agt’”_l)(n)]
for the sake of brevity. Using (25), we bound the individual terms in (24).

k—1
1
) Yl 0128 | 7o si 6 3|
faill, & 2
T —2
<2830L} Y (0P (ALY + 263 flay 2 [V sy )| (26)
7=0
Similarly,
1 Ti—1 k—1 k—1
azk)(ﬁ) aSJ)(k) aEJ) EtHV fz( ’J) (EJ))H
ladl, & 2 2
9 Ti—1 Ti—2 ) Ti—2 ) ] 2
< ) | T a0 | T ol [ 15009 + vty
-2
<2||a1,1||1L22a” ALY 12 s 2] Vx50 (27)

Substituting (26), (27) in (24), we get

R 7—.71
1 5 k) 2 B 2 ¢ X k .
ol 2o e [ —xO| < Pod las - + 2051725 (a1l + ) D of ()AL G)
" k=0

k=0
2
+2001? (llas 1} + B2 lai,-1113) ||V fi 62,y @) | (28)
Similarly, we can bound the y error
1 k tk) 2 =y
5 o (r E [y =y 0" < 1203 sl + 205125 (las-al, + 520) D aP(m)al )
llall, =0 k=0
2
205 (Jla I+ 8 llai, 1 11) [ Vs, 3O (29)

Combining the two bounds in (28) and (29), we get

k 2 2 . .
e za% [ = —yO | < (0 + 1) o3 Nl
LALE N—
Ti—1
c c k .
+ 2 (8 + 1) L3ladll, (lai—1ll, + B3a) o a™ (1) AP (i)
L Sy
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2(||az,_1?wiuai,_lni)[m 7t (<O yO) [+ tagl? [0 (x.y ”)M (30)

Define A, = 215 ([ng)* + [n¢]?) max; [|ailly (Il@i,—1ll, + BEa). Rearranging the terms in (30), and taking the
weighted sum over agents, we get

n Ti—1
wj k .
L?‘Z ”a” al( )(Ti)Agct,slf)(l)
i=1 "I k=g
() + [)?) Lof &
< > willa ol
m i=1
QL? - 2 @ OY|I® 4 rep2 ® o[
+1 sz(|a1,71||1+ﬁL|\az,71u) el |Vt (x5 @) |+ gl [ Zuss (x50 |
([7753}2 [ ] - 2L% Mal c12 2 - () () i 2
O DL L Res vl U > wiVafi (xO,y )| + 02
Am i=1
2L2M, n 2
+ﬁ[77§]2 BE D wiVy f; (X(t)ay(t)) +og |- (31)
m i=1

where (31) follows from Assumption 4, and we define M, , = max; (||ai,_1|ﬁ + B2 ||lai -1 ||§) We bounded
|V F (x®,y®) H2 in Lemma B.6. Similarly, we can bound ||V, F (x®,y®) ||2 as follows.

HVUF (X(t),y(t)) H2 — HVyF (X(t),y(t)) _ va (X(t),y*(X(t)>) H2 ( y*(x) = arg max,, F(X,y/))
< 2Ly [5(x<t>) — F(x®,y® )] . (32)

using Ly-smoothness and concavity of F'(x,-) (Lemma A.6). Also, for the choice of 13,7y, we get A, <1/2.
Consequently, substituting the two bounds in (31), we complete the proof. O

Proof of Lemma B.5. First we see that
By [B(x(11)) = (D, y ()]
= B [B) - B )] + [F(x0) — B,y )] 1B, [Fx®,y®) - B0,y 0] (33)

E, [q»( (t+1)) — P(x <t>>} is already bounded in Lemma B.3. We bound ]Et[ (x(®),y®) — F(xt+D y<t+1>)]

as follows. Using the notation z® = (x®,y(®)) and using L ;-smoothness (Assumption 1) of F(-,-),
~ ~ L 2
Ft) < —F(z®) - <v F(z®),z0+) _ Z<t>> n 7}‘ Hz<t+1> () H
L 2
_F(z®W) - <v F(x®,y®), yt+) _ y<t>> + 7f Hy(t+1> _ y<t>H

L 2
<v F(x®,y®), xt+) _ x(t)> I 7f Hx<t+1> _x®

= —E, |F(x®D,y# )| < —F(x® y0) - 747°E, <Vyﬁ(x(t),y(t))7 3w, h(t)> [ fE HgmH

2 S2L

2
=1
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Rearranging the terms a bit, we get

E, [F(x®,y®) - ﬁ(x““%y““))}

. ) 2 s 2L .
< Mg, ||, B,y + h(“ - Zwlhm * %Et &
. , n n 2 2 [A5]2
+%Et Hvxﬁ(x(t)7y(t))H + szh)(f)z - || F(x®, y®y - szh;(:)z +% ¢
i=1 =t
(34)

Next, we bound the individual terms in (34). Using quadratic growth of u-SC functions (Lemma A.5),
~ 2 _ ~
Hva(X(t)ay(t))H >2u {@(x(t)) - F(x(t)jy(t))] .

To bound Hvyﬁ(x(t), yO) =37 w; , we use similar reasoning as in (23).

2

E, VyF (t) (t) Zwl (t)

Z (o)

Z ”%”1 AP (), (35)

Substituting the bounds in (35) and Lemma B.6 into (34) we get

E, [ﬁ(x(t)7y(t)) _ ﬁ(x(t+1),y(t+1))}

2
s 2/{275 ~ ~ Tl -
< —Tempiyy (1 - st) [@(X(t)) —F(X(t),y(t))} - e2 Y, (Y wihl)
Y =1
~ 2 Tc s 2L s 2 s 2
+ o |[VEO)|| + e, sz by, ef;f[hyFEt g | + halE: g ]
Tff’Y L
— Z a oM (r) AP (i), (36)

||1k0

2
E, Hg(t) || is already bounded in Lemma B.2. We further substitute the bound on E, ||V, f;(x; k) yz(‘t7k))H

from Lemma B.7 to get

gl

2n = willailly 202 (n(n—P)
B Zh(t UL” Wil Gillo G ;
t Z“’ P ; ail? tp n_1 v

i Z (k) A(t k)( ) + 462 ( a w1||a1|2|§> Hvzé(x(t))’r]

i lla zHl P lailly

]E
‘*P ¢

fZ

g L]ij w;““;i'2 o2 + 4831 [B6c?) - Fi,y)]]
K3 ai 1

pP)2L2 & Tzl

-=f
n_l ZHO’ZHI k=0

+ (n(:—lp) max wl) 2?? |:4Lf,‘i [q)(x(t)) — ﬁ(x(t),y(t))} +2 HVJ;<5(X(O)H1

5L”

o () ALY (i)
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2
TL(P — 1) " (t)
BT wihy gl +
| 2 it

_p () onLi M
(P22 e w, + B2 max i () fZ <’“>< DAL (i)
n—1 i ik || 1”1 k=0

il

2 n 2 2 2 2
oin wi ||a;| 2no n—P willa|

E L 4 2 G . 2 FeliPedl2
t 2P n—lm?xw’+BLm?X a2

P llailly

i=1

4n 32 - P il|as ~
| s (n s 4+ 2 mas wla|2> v,
n

P -1 v ailly
2 _ Ma:ll2\ r~ ~
n 8n/3’;Lffi (n I;maxwi + B2 max w||a||2|2 ) [q)(x(t)) — F(Xa),y(t))} : (37)
n — 7 1 a; 1

Similarly, we can bound ]Et”g(t) ||

Z ’wlh(t)

-Pp i ( o2nL>
+ Lmaxwz—i—ﬁLma wid fz )(Ti)A,(f’;f)(i)
7 i,k Haznl HalHl k=0 '

to get

(t)

gy Et

&

n 2 ;
< 01%7” wi2HaiH2 n 20%” n_Pmani-i'ﬂ%maX%
P nob i

2
P ||aiH1 P llailly

i=1

n—1

2 _ . . ~ ~
L 48Lym (n P o, + 52 max w||«12|2> [B(x) - Fx®, 50 . (38)
P n—1 i laglly

Substituting (37), (38) in (36), and again substituting the resulting bound in (33), we get

By [(x(11) = Fx(+D,y ()]

(a) K2yS 9 dnpiLe (n—P 9 wil|a;)? ~ ~
< |1 —7egpy; [ 1— = [2 + } TeftKYy) max w; + 37 max ——-2 {d)(x(t)) — F(x®,y®)
( Y s 4 vy op n—1 i L a:)?

Y

2n 32
s G
+Teﬂr'71 (16 +Teﬂ”Lf’yz P (

n—1 = t laglly
+ 7[% PLa n o1, E": |T(|1|a”z”2 <2(m§1x wi)% + 283 max w|z|(||laﬁz|;>]
=1 1@l ill1
_ ch;’yj <1 - 7;55;: BTeff’Yich -1- ;((i : 3%5%‘214) E, éwzhg 2
— Tef;ﬁ (1 — Z((i : BTem’;Lf) E, iwlh& 2
+ Tef (3%6 3'7y) fznz la || 3 Ek)(Tz)AgctSIf)(l)
@illy =0
e ) L
e ki (t;:f ot g 158 ) ) o |
ISP szh“,l- 2
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2

TeftVz n(P-1) [y
— 1-— L |E
2 ( P(n— 1)TeiEf v r)

3wl
=1

2 148127, " wllasl? -P a2
+ Teffh;] o % J% %72”2 + U2G <2(max wl)nil + 25% max M
= ail? b bl
5 9 n 2 2 2 2
Tegly (p a2 512\ | oL willaill;  2nod (n—P - 2 willa:lly
MRl o P P e e

+ TeftYy [2 ([05)% + 5)%) Lop D willai—ally +4L7Ma, ([n5)* + [05)%) Oé]
i=1

~ 2 ~ ~
+ Ty [8L?Malﬁ%[ni]zHV@(X(“)H + 8L Ma_, B3 (26105 + [ng]°) {@(x“))—F(x(t),y(”)H, (39)

where (a) follows since

<

)

el
B~

(k)
n—P 9 wia;’ (1;)
TeitL 7, (n—l max w; + S max “Z”T

and (b) follows by using the bound in Lemma B.4. Next, we simplify the coefficients of different terms in (39).
o Coefficient of E {&)(x(t)) — F(x®), y(t))} can be simplified to

2.8 2 2
Koy 17 dnBésLs [ n— P w; || a;
(1—%3#’75 (1— 73””*4 —Tefm’y; G/ <n 1 miaxwi—i—ﬁim?xiln 1”2>>>
y 1

2
lailly
+ 7oy 8L Ma_, B (2605 + [5]?)
TCHJYZM

<1-

. : Yy : 2 2 willaill; n—P 1 1
using v, < ks, TerYy kL0  max {5L max; ”ai”?’z’ =T max; w; ¢ < g7, kLypBang < TT—
1
and LyfBan; < S

2Ma_,
KMa_ ’

2
o Coefficient of E "27:1 w;h")

X,%

can be simplified to

Tlef [vz) >

n(P—1) n(P —1)
2

Pn—1) < sl P 1) (L < La)

(Lo + Ly)

- 2
o Coefficient of E qu)(X(t))H can be simplified to

9 mpE [n—P wil|a:
Tefi Yy (16 + Teg L7, IEG (n— 1 Max W +ﬂ% max ZZHQ)) +Te37;8L§Ma_1B?;[77§]2

3
lailly
9 4~5 1 TeffY;
<Teff'7;< il ) + Ty

16 75 64k)  64r2
Teff s
< eft Ty (%< 1)
48&2 Yy K
i Ty 1 —P illaill3
using v; < g2z, NelyBa < Ty T and Teff’)/;l{Lfﬁév% rnaux{zf1 max; w;, 37 max; wHLH%‘Z} <
1

64"
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o Coefficient of o7 can be simplified to

S w?llasly | | 7Ly
Z 22 + 2 (['Yy}

u 2||al||21
PZ |a1||1

Toxv3)* Lo n

2 P i=1 HG’ZHl i=1
s c c 2
+ 7oy |2 (57 + M51%) L3> willas,—al;
i=1
< 2 s 2L s 2L ﬁ . w12||a'l||2 9 L2
Toft ([’Yy] £+l ‘I’) P Z Ha'H2 + 27efry,, ([ sz ||az,—1||2~
i=1 ill1
o Coefficient of o2 can be simplified to
2 1,812 2
Teff[rya:] Lo n n—P 2 wZ”a’ZHQ
Zeffl Tzl H® 7 fo ) —— + 2 ZelfiPll2
5 B (mlaxw)nil + 237 max P
2
chfo s12 512 2n (n—P 2 wl”aZHQ
+T([7y] + [z )? (nl m?«xwi“"ﬁLmiaXW
+ Ty 4L Ma_, ([05]7 + [né]z)
2
< 7_ ([ L L 2n - P i 2 lea'L”Z 4 s c12 L2M
o fyy] er[vx] @) 7 | o + 67 max ||a'||2 + 4ATesty, ([7795} +[77y] ) a_;-
illy

Substituting these simplified coefficients in (39), and rearranging the terms, we get
E, {‘I)( (t+1)) ( (t+1) (t+1))}
2

Teff'y;.u ["' (t) Hro(t) (t):| Teﬁ"yy H t) H TL(P*l) - (t)
< - — _ ; .
< (17 ) (B~ Pty )]+ G [ [ e B [

w; ||azu2 o (n=P o willall
n i  al}

Ey

+ 7o (L) Ly + 3] La) -
! P i=1 ||az||1
+ 27y ([0S)° + )%) LT |07 sz i1l + QUéMa_ll . (40)
i=1
Summing both sides of (40) over t =0,...,T — 1 and rearranging the terms, we get
T—
Z [ B(x®) ~(X(t>,y<t>)]
t=0
4 [3x0) - Fx@ yo)  E(BED) - Fx®,y™)) RS = NI

T Teff Yyl T a T + 12ur2 T ; H (x )H

+ 8Ly (5] + 05)?) [(:r,:z:wz \|az7_1||2 + 205 M, 1]
1=1

A7eqt[VE]? Lo n(P — 1)IE

zw

Yp  Pln-1) " ||=
" w? al n— P wil|as|;
i= 1 il
O

where, we use [y5]2Ly > [v5]*Le. This concludes the proof.
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B.4 Auxiliary Lemmas

Lemma B.6. If the local client function f;(x,-) satisfy Assumptions 1, 5 (L¢-smoothness and p-strong
concavity in'y ), then the function F satisfies

4L2 ~ ~
HV Fx yH <2HV(I> H + — m [(I)(x)—F(X,y)}.

Proof. , , ,
Hvzﬁ(x,yH < 2HV<T>(X)H +2HV$F(x,y) fV:IV)(x)H
<2 HV(I)(X)HZ + 2L2 15" (x) — yl? (L -smoothness (Assumption 1))
<2 HV(D H 4Lf [@(x) - ﬁ(x,y)} . (Assumption 5)
O

Lemma B.7. If the local client function f;(x,-) satisfy Assumptions 1, 4 and 5, then the iterates

{x; ¢, k),ylt k)} (k) generated by Algorithm 1 satisfy
Ti—1 9
(k) tk) _ (tk
Z ia ” Z (TPE[| Ve i y )|
@il k=0
willaill;
Z Z P EIPLFALY () + 207 | max —T=32
|az||1 — © ladlly
Na: 2L%2 . - - 2
+ 42, (max wﬁ”ﬁk) —IE (‘D(X(t)) - F(X(t),y(t))) + Hvr@(xm)H ] :
? a;||y 2
Proof

Z

Z (k) Tz Z]Evafz (tk) (tk))iv f( (t (t))H

||az\|1 k=0
2
Z () ()2 L2E U’th,m _x0| 4+ Hygt,k) _y®

||a1||1

2 2
] N QZ w” ||a”z||2]E Hvxfi(x(t)7y(t))H
=1 1

(L p-smoothness)

NaI? ~ 2
oM () PLALD (i) + 2 <max w”'“g'?) {6%;HVIF(X<t>,y<t>)H +ag]

b flaally

; ||a1||1 k=
(Assumption 4)

Using Lemma B.6 gives the result. O

Lemma B.8. If the local client function f;(x,) satisfy Assumptions 1, 4 and 5, then the iterates

{x (f k),ylt k)}i,(t,k) generated by Algorithm 1 satisfy

Ti—

i (k) () EHV filx (t k)’y(t k))H
i—1 ||a2||1 k= “ '
n Ti—l . . 2 ~ ~

Z ol ()P LIALY () + 2 (max w"”alLb) |2 + 285 LsE (3(x) - F(x,y®))]

b fledlly

||az||1 P
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Proof. Following closely the proof of Lemma B.7,

Z

Ti—1

2
Z () °E HVyfi(XEt’k),yEt’k)) =V, (x|

HazHl
n — 2 w?||a; 2
Z (k)( i)]QL?E [Hxlguk) _x® tk) —y® } +2Z il ||2 Hvyfz ’y(t))H
— \atlll =0 = lai
(L p-smoothness)
n — 2
. wi|a; = 2
<23 ot S a0 0 2 (s B [ o, P50 ]
= la 7||1 pa v ailly
(Assumption 4)
Ti—1 2
ill @i T =
<23 S WO PAL ) + (m welod L'2) 02 + 2821 (B(x)  Fx®,y))].
‘0%”1 =0 v aally
where the final inequality follows from smoothness and concavity of F' in y. O

B.5 Convergence under Polyak tojasiewicz (PL) Condition

In case the global function satisfies Assumption 6, the results in this section follow with minor modifications.
The crucial difference is that Lemma A.6 no longer holds. Lemma B.2 and Lemma B.3 follow exactly. The
statement of Lemma B.4 needs some modification, since we use Lemma A.6 in the proof.

Lemma B.9. Suppose the local loss functions {f;} satisfy Assumptions 1, 4, 6, and the stochastic oracles
for the local functions satisfy Assumption 3. Under the conditions of Lemma B.9, the iterates {th),ygt)}

generated by Algorithm 1 satisfy
k C (& . C C
o (r)ALP (1) < 2 (105 + [5) ot i llas a2+ 413 M, (1) + [n5]) o

fZ
Ha’lHl k=0 i=1

+8L3M, B PE || VB0 + LM 52 (20E]? + ) B [B) — Fx,y®)]

Ti—1

where M,_, = max; (||ai,,1||? + 2 Hai,,1||§).

The bound in Lemma B.8 also changes to

n Ti—1
> wz o BT,y )
il k=0
_ (tk)()+2<ma pz“ 2”2> 0_2 —|—2ﬁ21<3L E ( (t)) ( (t) (t)) )
g ol Z - =) 8 2= (3 )

The same bound in Lemma B.5 holds, but with more stringent conditions on learning rates, namely

nyLfBc < W and Teff’Y;K}Lfﬁé% max{/-sBL max; H 1”%,1} < é. Consequently, the bounds in

Theorem 1 hold, under slightly more stringent conditions on the learning rates.

C Convergence of Fed-Norm-SGDA+ for Nonconvex Concave Functions (Theorem 2)

We organize this section as follows. First, in Appendix C.1 we present some intermediate results, which we
use in the proof of Theorem 2. Next, in Appendix C.2, we present the proof of Theorem 2, which is followed
by the proofs of the intermediate results in Appendix C.3. Finally, we discuss the extension of our results to
nonconvex-one-point-concave functions in Appendix C.4.
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The problem we solve is

m)in m)z}x {F(X, y) = ;wifi(X»Y)} .

We define ®(x) £ maxy F(x,y) and 3*(x) € arg max,, F(x,y). Since F(x,) is no longer strongly concave,
v*(x) need not be unique. In Algorithm 1-Fed-Norm-SGDA+ | the client updates are given by

k—1

Et k) _ —ne Z al J) (m)7 yz(t,J 7€l(t7j))7
- (42)
ygt,k) (t) 7 Z ©) V f <) ,yf ). g(t,j )
=0
where 1 < k < 7;. The server updates are given by
XD =20 g,y =y 4 gl (43)
where g( ) g§,t ) are defined in (3). The normalized (stochastic) gradient vectors are defined as
Ti—1
1 < 1
o) = )T fy (K 000 = L RN 0 g (e e,
e , |mm1k0
; (44)
®) 1 (k) NORECOROOANENG! 1 (k) 5) (1R
g T a/ (Tl)v fl X 7yz‘ 7€i 9 h T a (Tl)v fz ayi .
o= a2 0Vt )i nmmko (x5

C.1 Intermediate Lemmas
As discussed in Section 5.2, we analyze the convergence of the smoothed envelope function <I>1 /2L, We begin
with a bound on the one-step decay of this function.

Lemma C.1 (One-step decay of Smoothed-Envelope). Suppose the local loss functions {f;} satisfy Assump-
tions 1, 3, 7, and 8. Then, the iterates generated by Algorithm 1-Fed-Norm-SGDA+ satisfy

. w||al||g 2 2 ~2 2 P_1 P
2 e R ALG) G| n_1§:w

= el

n

E {‘51/2Lf(x(t+1))} <E [‘51/2Lf(x(t))} + T?ﬁ[’Y;]QLfF

+2%ﬁ@{ Eznanl o (m) AL 0) + L [ - ““*“”ﬂ}"ngﬁEHV5v%#Xmva
1 k=0

where Agct,’;f) (i) =E {HXEM) x®||2 4 ||y(t k) y(t)HQ} is the drift of client i € [n], at the k-th local step of
epoch t.

Between two successive synchronization time instants (for example, ¢,¢ + 1), the clients drift apart due to
local descent /ascent steps, resulting in the {AY} ()} 4 terms. Also, E [(f)(x(t)) — F(x®, y(t))} quantifies
the error of the inner maximization. In the subsequent lemmas, we bound both these error terms.

Lemma C.2 (Consensus Error). Suppose the local loss functions {f;} satisfy Assumptions 1, 4, 7, and 8. The
stochastic oracles for the local functions satisfy Assumption 3. Further in Algorithm 1-Fed-Norm-SGDA+,

Then, the iterates {xgt), yzt)}

we choose the client learning rate ny such that n; < Y Ty
Fmax; ||a;

generated by Algorithm 1-Fed-Norm-SGDA+ satisfy

f§:

\/2max{1 p21’

T;—1

k . c c = c c
HII a ()AL (i) < 2 ([ + [n)?) L3o3 > willa 13 +4L3Ma_, (S12G2 + [nS)20%)
1 k—o i=1
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+ 8P LM, BZE [(&) - FEY,y1)
where Ma_, £ max;(||a;,—1[7 + B2 |ai,—1]13).

Note that consensus error depends on the difference E[®(X(*)) — F(X(*), y()]. This is different from the term
E[®(x®) — F(x®,y®)] in Lemma C.1. Since in Algorithm 1-Fed-Norm-SGDA+ , the x-component stays

k)

fixed at X(*) for S communication rounds while updating yi75 , the difference

(k+1)S—1

> E[3EY) - FE,y")]

t=kS
can be interpreted as the optimization error, when maximizing the concave function F (SE(S), -) over S
communication rounds. Next, we bound this error. The following result essentially extends the analysis of
FedNova (Wang et al. (2020)) to concave maximization (analogously, convex minimization) problems. We
also generalize the corresponding analyses in Khaled et al. (2020); Koloskova et al. (2020) to heterogeneous
local updates.
Lemma C.3 (Local SG updates for Concave Maximization). Suppose the local functions satisfy Assumptions
1, 8, 4 and 7. Further, let ‘Ly(t)HQ < R for all t. We run Algorithm 1-Fed-Norm-SGDA+ with client step-size
n, such that 64[775]2Ma71Lf6§;% < 1. Further, the server step-size v, satisfies

2
n willa;|l; n—P 1
QTeﬁ’Y;LfF max{ (%, 1} max {5% max W’ T maxw; < 3’

(k)
P-1 a; i 1
QTem;Lf;maX{Hﬁ%Xw} <L

Then the iterates generated by Algorithm 1-Fed-Norm-SGDA+ satisfy
(s+1 )S—1

= ¥ E[@ &) - F(x <s>,y<t>)}

t=sS
n 2 2
_pP Na
o2 3o wiladl G<” — B%maxwz||azgz>1
= lladl n—1 ol

s
Temzs + Temy P

)

+4Lf([77;]2 [ny lULsz |a7, 71H2 + 2Ma 1(G2 +O'G)
i=1

where M,_, £ max; (||ai7_1||? + B2 Hai7_1\|§>.

Remark 10. It is worth noting that the proof of Lemma C.3 does not require global concavity of local
functions. Rather, given x, we only need concavity of local functions {f;} at some point y*(x). This is
precisely the one-point-concavity assumption (Assumption 9) discussed earlier in Deng & Mahdavi (2021);
Sharma et al. (2022). Therefore, Lemma C.3 for a much larger class of functions. Further, the bound in
Lemma C.3 improves the corresponding bounds derived in existing work. As we discuss in Appendix C.4,
this helps us achieve improve complexity results for nonconvex-one-point-concave (NC-1PC) functions.

Next, we bound the difference E [ (x®) — (x(t),y(t))]

Lemma C.4. Suppose the local functions satisfy Assumptions 1, 3, /, 8. Then the iterates generated by
Algorithm 1-Fed-Norm-SGDA+ satisfy

T/S 1(s+1)S—1

72}]5{ x®) — F(x®, (t)} Z 3 [A(s) F(§<s>7y<t))}

t=0 s=0 t=sS
n| o= w?|al P-1 n-P
+ 2713 G (S — 1)1/ = 2 (02 + B2G2) + G2 | —— + w? |.
712Gx(5 = 1)/ 5 ; e (oF + LG —] ”—1;
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C.2 Proof of Theorem 2

For the sake of completeness, we first state the full statement of Theorem 2 here.

Theorem 3. Suppose the local loss functions {f;} satisfy Assumptions 1, 3, 4, 7, 8. Further, let
Hy(t)H2 < R for all t. We run Algorithm I-Fed-Norm-SGDA+ with client step-size n; such that
64[n¢]° Ma_ 1Lf max{(g%,1} < 1. Further, the server step-size ~; satisfies

2
s 1 willaill; n—P 1
QTem;LmeaX{ﬁ?;,l}max {61% miaXW7 o maxw; < 3

P-1 .l (7 1
QTeﬁ'y;LmeaX{nl, %Hﬁqxw Sg'

Then the iterates generated by Algorithm 1-Fed-Norm-SGDA+ satisfy

L 11 B )
- ]EHV‘I’l 2L (X(t))H <O @
T ; / f Tems

x

A n(P —1)
. SL w 2 2 2 2 Fw
T+me f|:PTeﬁ(O-L+ﬂLGx)+Gx<P(n—1)+ >:|>

Aw P-1
+0 (Tem;Lfo(S - 1)\/PTﬁ (U% +ﬁ%G,2() + Gi <T;((n_1; + Fw>)

L oL —P
+O( fR +’Yy ! (Awa'%+0'é <Teff Ew+BwﬂL)>)
@

Tef VS

P
+O () + g)?) L [Cwol + D (G +02)])

where &)1/2” (x) £ miny O(x') + Ly|x' — x||? is the envelope function, Ag = &)1/2Lf(x0) — miny &)1/2Lf (x),

2 12 A 112 PR
A 2 7o Ty Zhs B & nragma Sl En & nmaxiwy Cu & Ty willal — of 771,
and D 2 max;(|la;, 1|} + 5% |las—1]3), Fu 2 2 o= ) § 2oizy wi. With the following parameter values:

. . 1 s P1/4 . P3/4 T
=55 =0 () 2 =0 () 5= () S‘@< ﬁP>

where T = %Z?:l Ti, we can further simplify to

. 1/4
i 58, (00| £ 0 (o2 A Py ) ) s o (SRR

te(T)

Partial participation error Local updates error

A~0? Ay 1/4 A$(1+Fw) TP 1/4
+O<( ZﬁPT V1+Fw) + T3/4 (A n—Pp ) ’

w  Tefff 1 Bw

Error with full synchronization

Proof. We sum the bound in Lemma C.1 over t = 0 to T'— 1 and rearrange the terms to get

= B 5
3
t=0

T—1
8 ~ ~
< Z E {(I)l/%f (X(t)) = Q101 (X(Hl))}

_Teff,Y;tho
"wfllazllg 2 2 ~2 o [P—1 n—P < 2
Dot (R4 BIGR) + Gt D

= ladlly P

n
+ 87y, Ly 2
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= 16 T/S—1 (s+1)S—1 n o1
k .
+16Ly7 Y E[$(xV) - Fx®,y0)| + 7 Z % Z el o (1) ALP (i)
t=0 t=sS "I p—o
8[51/2Lf(x(0))751/2Lf(x(T))} n [<&s w2l P-1 n—P
< + 8TerrVo L= 2 (0F + BIG2) + G2 | —— + w?
e T TP |2 PR 1T
+32 ([n5]” + [ng]%) LjoZ Y willag—all3 + 64LF Ma_, (051G + [n]70%) (From Lemma C.2)
i=1
1 T/S—1(s+1)S—1 =
8 LM B Y Y E[BEY) - F(ﬁ“%y“))] +16Ls > E[3x®) - Fx,y)]
s=0 t=sS t=0
845 [~ w?lasll3 -
< + 87y L 2 +B2G2) + G2 w3
Tet Yzl o fP ; |} (75 + FiG) n— n—l Z

(Where Ag = <I>1/2Lf (x0) — miny EIv’1/2Lf (x))

+32 ([n5]” + [ng]°) L} |0 D willay,—all; +2Ma_, (G5 + 02)
i=1

s w? il P-1 n-Pg
+ 327V, Ly Gx (S — 1) 2 d 2 (03 + B3GR + G2 1t > w?

o llally 1 n-1¢

3

(From Lemma C.4)

AR = w?a] n—P willail3
+ 18Ly [g TeffY; < E —=02 4 207, | —— maxw; + 7 max ———32
S VP ATS fall nolo P el
(From Lemma C.3; using A,, < min{3, ﬁ})

G

+ 72[772]2[,?@ |f7% sz ||ai7_1|\; + QUéMaI] . (45)

i=1

2 2 2
. . . . A L w; ||@q JAN Wi ||aq
We can simplify the notation using the constants A, = nreg i, I’ll!_HQHQ, By = Tegn (maxi \ItHI'\ILb)’
i1 il

A A 2 A A .
E, = nmax; w;, Cp = Z?zl w; llag,—1l3, D= Ma_,, Fu = 5 Z?zl w? and drop the numerical constants,
for simplicity, to get

= N 9
7 2 B[ VB2, )|
t=0

A~
S
Teff’)/;T

v (524 3262) + G2 (”(P_l) = Pp ]

-
e f[PTeH Pn—1) (=1

Ay, i —P
+ Teff'YaSchGx(S - 1)\/P7'eff (U% + ﬂ%G’Q‘) + Gi <7;’((n — B + <<77LL - 1>) Fw)

L;R L n—P . .
f i Ot <Aw0% + o (Teff TEw+ BwﬁL>) + (2)* + m5]%) L3 [Cuwol + D (G2 + 03]
Teft Yy S P
Az YL To
= + TegyS L I7 + + L |:Te SGx(S — 1T + ]
Tem;T #7a LI F | Terz Gx( )11 R
+ ([s]? + [y]?) L} [Cuwot + D(GE +02)] (46)

where in (46), to simplify notation, we have defined Z; = \/PAT - (02 + B2G2) + G2 (;((Z:B + ((:Ll If))F )

Iy £ Ao} + (Bufi + rea =L E,) 0.
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Next, we optimize the algorithm parameters S,7;,7,,ny,7; to achieve a tight bound on (46). If R =10, we

let S =1. Else, let S = , /=2 . Substituting this in (46), we get
TogVaVy GxL1

T-1 A
1 ~ 2 A~ VoL ¢To RysGxIh
= E EHV‘I) X (t) H < o VL 72 Y L X
T vy 1/2Ly (X ) ~ Tcﬁ'fY;T + Teff Ve f+1 + P + f ,YZ

+ (5)? + g)?) L [Cwo? + D(G +02)] (47)

Next, we focus on the terms in (47) containing v;: Ly [% + /R%TGXII} To optimize these, we choose
Y

2/3
v = (%) (R’y;GxIl)l/g. Substituting in (47), we get

= N o2 A~ , 7 1/3
1EH<I> tH< S oy LT+ Ly [ 2Ry GhT
T ; \% 1/2Lf(x ) ~ Teﬂ")/;T +Tﬁf)/:x f+1 + f PR’YIG 1
+ (050 + [0y]?) L7 [Cuwol + D(Gx + 03] (48)
A~
Finally, we focus on the terms in (48) containing ~3: e + Ly (%R’inXL)lm. We ignore the higher

<R 3/4
3A~ -
order linear term. With ~; = (THL‘I;T> (ITERGXL) 1/4, and absorbing numerical constants inside O(+)

we get,

1 T—1 N 2
S
t=0

_ 1/4
(A~LIQ) (A,VT P>1/4 T2
o eff 1 c c
<O W + ( ¢T3/4 (1.11.2)1/4> +O(([77w]2+[77y]2) L?x [Cwai"f‘D(Gi‘i‘O'é)])
1/4 _ 1/4
( G2(1+ Fw)Awa%) (Ag, /GZ(1 + Fw)feﬁ%jzzwag)
<
<0 (7o PT)1/3 +0 (7o PT)1/3
(AgTeffP)l/4 Gk (1 + :LL:};Fw) 2 2\ 12 2 2 2
+0 T/ 1 | +O (e + g)?) L [Cuwol + D(GX +08)]) . (49)

(Aw + Teff%Ew>

Lastly, we specify the algorithm parameters in terms of n, T, 7og, 7.

. pl/4 . p3/4 \/T
=0 () 5= (Gme) 5=9 < P )

Finally, choosing the client learning rates ng; = ny =

ﬁ, we get the result. O

Convergence in terms of F

Proof of Corollary 2.1. Following Lin et al. (2020a), we define

&)1/2”()() £ miny &)(x’)—&—Lf ||x’—x||2 ; X

(1>

arg min,, { ®(x') + Ly|x — x|?},

(50)

(1>

151, (x) £ mine { (') + Ly ' = x||* ;; X £ argmin, ( 2(x') + Ly |[x' —x]”
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Also, it follows from Lemma 2.2 in Davis & Drusvyatskiy (2019) that V&)l/gLf (x) = 2Lf(x — X) and
V&, /51, (x) = 2Ls(x — x). Therefore,

~ 2 ~ 2
qu)l/QLf (X)H2 §2 qu)l/QLf(X) - V(I)l/QLf (X)H + 2 qu)l/QLf(X)H
~ 2
= 813 % = x” + 2| V121, (%)

Consequently, we obtain

T-1
min HV‘I’l a1, (X ())HQ <1 HV‘I’l or, (% ))HQ
te[T] /2L =T par /2Ly
o T-1 _ ) )
< {qun/uf (x“))H +4L2 HiW —x® ] . (51)
T
t=0
where X, () follow the same definition as in (50), with x replaced with x(*). O

Proof of Corollary 2.2. If clients are weighted equally (w; = p; = 1/n for all i), with each carrying out 7
steps of local SGDA+, then (6) reduces to

2 L e o3 +7(G3 + %) wop 1A
i ENV @20, 6 < O( e + )+O(T/G> +o((=T#8) )

e For full client participation, this reduces to

2 1 (rn)t/4
in B[V 121, ()| < Ot + G ).

To reach an e-stationary point, assuming nT < T, the per-client gradient complexity is TT = O (%)
Since 7 < T'/n, the minimum number of communication rounds required is T = O (}4)

n— P 1

n—1 ' PT
convergence benefit of multiple local updates. Consequently, per-gradient client complexity and
number of communication rounds are both T = O (%), for 7 = O(1). However, if the data across
clients comes from identical distributions (¢ = 0), then we recover per-client gradient complexity of

O (), and number of communication rounds = O ().

1/4
e For partial participation, O(( ) ) is the dominant term, and we do not get any

Special Cases

o Centralized, deterministic case (o, = 0g = 0,86 = 1,7 = n = 1): in this case A, = By = 1,Cy =
D = 0. Also, Z; = Gx+\/B% + 1,Z5 = 0. The bound in (45) reduces to

T—1 A~ L:R
fZEchbl/zL x| <0<ﬁ;+v;LfGi [(ﬁ%+1>+<s—1>\/ﬁ%+1]+és>. (52)

For 1, =0, (52) yields the convergence result in Lin et al. (2020a).

e Single node, stochastic case (UG =0,6c =1,Teg = n = 1): in this case 4, = B, =1,C, = D =0.
Also, 7; = \/O’L + (8% + 1)G2,Z5 = 0% . The bound in (45) reduces to

L Tl B P A
7 2 B||78a, ) <0
T tz:; Vo0, (x7V)] <O +oT

st(O’% + (B2 +1)G2) + ’nyfUL>
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# (L aGu(s -yt + (DG g ] ) o

Again, for 8y, = 0, (53) yields the convergence result in Lin et al. (2020a).

o Multiple equally weighted (w; = 1/n,V i € [n]) clients, full client participation, stochastic case with
synchronous client updates (7. = 1): in this case A, = 1,B,, = 1,C,, = D = 0,0. The bound in

(45) reduces to
T-1 A
1 . 2 A~ o2 +62G2
— (®) @ 2 L 9L T PLYx
[T x| < 0 (4 (4 )

ST, 2 212 I
e (”yn (03 + 020 + 2L Gu(S — 1)y g + L ILGR | f) L6

VS

Note that unlike existing analyses of synchronous update algorithms Woodworth et al. (2020); Yun
et al. (2022); Sharma et al. (2022), the bound in (54) depends on the inter-client heterogeneity 2.
This is due to the more general noise assumption (Assumption 3). In the existing works, 4% is
assumed zero, in which case, the bound in (54) is also independent of o%. See Appendix A.2 for a
more detailed explanation.

o Multiple, equally weighted (w; = 1/n,V i € [n]) clients, full client participation, multiple, but equal
number of client updates (r; = 7o = 7,V @ € [n]). In this case A, = B, = 1,C, =7—1,D =
(1 —1)(1 — 1+ B%). The bound in (45) then reduces to

T-1 <

= % ’ A3 of + 817G\ | nLs(ol +iot)
t=0

+@<Lf

For 81, = Be = 0, this setting reduces to the one considered in Sharma et al. (2022). However, as
stated earlier, our bound on the local update error is tighter.

o2 + B2GE R
Jr
nr Y58

TY2Gx(S — 1)1/ G2 +

+(r = 1) ([n2)* + y]*) LF [o1 + (= 1+ B1)(Gx + 0%)}) :

C.3 Proofs of the Intermediate Lemmas

Proof of Lemma C.1. Using the definition in (50) X(*) = argmin, ®(x) + L [|x —x® H2 Also, note that
~ - 2
B1yor, (D) < BEO) 4 Ly [&O - x40, (56)

Using the x updates in (43),

E Hi“) - x““)H2 =E|x® —x® gy Y wigl)

ieC(t)
2

2

= IEHS(U) — x| 472 Z wzg,(f)l + 277 E <x(t _x® Zw h(t)>
iec®
2

2 ~

<E & - xO||" + 2miE (3 —x, VP, y0)) + i E | Y el

ieCc®)
2

s Y0

(k)( ) (foi(xgtyk),ygt’k)) - mei(x(t)>y(t))>
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2
2
<E Hi(t) - X(t)H + el V3°E Z ?ng,(:)z (57)
ieC®)
+ 7V E l ! Hx(t —x0| ¢ 2Ly Z i H a(k)(n)A( 5 (6) + 2 <5<(t) _ x(t),Vmﬁ(x(t),y(t))ﬂ ’
I k=g

(58)

where (58) follows from Lf-smoothness (Assumption 1) and Jensen’s inequality. From (18), (19), we can

bound EH D e ﬁ)ig,(f’;) ||2 as follows.

2
n
ey n k & ON(E
DR IR v ST R R A ’M
iec) i=1 HCLZH k=0
P-1 i ? P
n — (t) nmn-—
e E ;h z -
e 5 () B wnl| + 5T S
n o= w2 a;|? n(P—1) n(n — P) "
<SH2 e L+ BLGY) + 5 Gt o Ox 2wl (59)
Pg la:|; L+ L)+ p) T P 523

where the final inequality by using Assumption 8. Next, we bound the inner product term in (58). Using
L ¢-smoothness of F' (Assumption 1):

E (X —x, 7, F(x,y)) < B [ﬁ(x(t), y0) = F(x®,y®) + % ’)—(u) L HQ]

2

<E|3&") + L, H)—cm _ x(t)ﬂ _ERx®,y0y_ Lig H,—(u) _ x(t)’
< : 5

(by definition of Sg(t))

<E |®(x®)+ Ly Hx(t) —x®

1 _ERx®,y0) - Lig Hi<t> ol
: 2

<E|3x®) - Fx®,y®) _ % H,—(u) 5

2

] | (60)
Substituting the bounds from (58) and (60) into (56), we get

2}

2 L LYx x n— ’I’L—l

i=1 Haz||1

E [‘I’l/uf(x(tﬂ))] <E [5()—((&) + Ly H)—((t) _x®

2 s127 1
+ Li—
chf[,)/x] fP

n

W;

+2’7—eﬁ"7xL Z Taal
i=1 " p—p

n 2 2 n
~ 2\|a; P-1 n-P
<E [q) x® } 2 N2 w; [lail; o + B2G2) + G2 4 w?
= 1/2Lf( ) eff[ryw] fP ; ||a2||§ ( L /BL ) n — 1 n— 1 ; K3
n Ti—1
Wi Tef Vs ~ 2
+ 21 {Lz > 2 A AL ) + LR [2(x0) — F,y )| } ) AR
i=1 1 k=0
where we use V&, /o7, (x) = 2Ly (x — %) from (50). O
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Proof of Lemma C.2. We use the client update equations for individual iterates in (42). To bound Agfj;f)(iL

‘Xl(t,k) —x®

2
first we bound the x-error E ’ . Starting from (24), using Assumption 8, for 1 < k < 7y,

) ) o2 ol k=1 k=1
Ta a(k) (7i E‘ —xW| < [Z»}H Z o (1:) Z[az(])(k)]Q (oF + B1GZ) + Za?) a? (k) G2
11 g—o 1 g—o j=0 j=0
c 2 2
< 012 [0 Nlai, 113 + G2 (Il 1} + 82 1113 | (61)
2
where we use (25). Next, we bound E Hy(t ") —y®]|, using the bound from (29), to get
Tifl
k c 2 c k .
e Z o E [y =y O < sl20? llas -} + 2005223 (a1, + B2a) Y- ol () A8 M )
il =5 k=0
2
20)? (las—af + 82 w113 B[V iy @) (62)

Compared to (29), the difference is the presence of Ag,t ’k)( ) in (62), rather than AY )’f (7). Taking a weighted
sum over agents in (62), we get

Ti—1

fz ||CL ” (L (TZ)A(t k)( ) < 2[7774] L2 O'LZU}'L ||a2 71”2 + 2Ma 1 (ﬂGE Hv F y(t) H +O.G>
*1 k=0

(63)

where, we choose 75 such that A, £ 2L3[n5]* max; [|ai|; (Jlai—1ll; + fa) < 3, and define Ma_, =
max; <||ai7_1||? + 32 ||a¢,_1|\§). Next, it follows from L s-smoothness (Assumption 1) and Lemma A.7 that

EHvyﬁ(gs),y(t))‘fSQLf]E{ &) - F&O, <t>)}.

Subsequently, combining (61) and (63), we get

T;—1 n
C C 2 c c
Ly Z la Z”1 ol () ALY () < 2 ()2 + [g]?) Lod D wi |l alls +4LF M, (n51G2 + [nf)?02)
k=0 i=1
+ 8[g 2L M, B2E [S(E)) — FR®,y0))].
which finishes the proof. L)

Proof of Lemma C.3. We define y*(X(*)) € arg max,, F(X®),y). Then,
2
E[y) —y' GO L E[y® + rrgel? -yt &)

;E< ® _ X(s Zwl (t)>. (64)

2 2
E Hgg’f) H is bounded in (38). We only need to further bound E sz;l wlhg,t)Z

=By —y &) + e a9

n Ti—1 2
E wah(yf’ o 28] (Tl 51 = V¥ ) 4 9, AR,y ))
i=1 k=0
-1
- 2
Z Ta H Z a; )(Ti)]Agf’k) (1) +2 HVyF(ﬁ(S),y(t))H (Jensen’s inequality)
L k=0

48



Published in Transactions on Machine Learning Research (12/2023)

ZHa H i ) (1) AP (i) + AL [@( ())—ﬁ(ﬁ(s),y(t))}. (65)

k=

Next, we bound the third term in (64).

(v -y 6 Sl ) <n (v v 3
=1 =1

Z (k) Tz v f(’\(é‘ (tk))>

Tifl
wWj o . 7
=2 > @ (m)IE [<y(t) VR " k))> + <yz(‘t’k) —y &), V, 1%,y k))ﬂ
i=1 ||a"L||1 k=0
n w; Ti—1 (k) N ¢ . (k) Lf . () 2
< Z ||a|| [az (T )]E fz(X(S)ay( )) - fi(X(S)ayi ’ ) + 7 Hy( ) — Yy ’ H (Lf‘SmOOthHeSS)
i=1 "I p—g
+ fi(R), yﬁt’k)) — fix, y*(ﬁ(s)))] (Concavity in y)
L n W ;i —1
— 7f ||aZH Z[ ), DIALR (5) — K IO - FERY, (t))] . (66)
i=1 1l 2o

Substituting (38), (65), (66) in (64), we get

2
E Hy(t-l-l) _ y* (ﬁ(s)) H

n 2 2
ain Z w?||ail|2 N 204n (n—P maxw; + 52 max wiHai\Q\z
P ailly P n—1 = i ey

P—1 —-P lasll?
7+ﬂé (n maxwi—l—ﬁ%maxw la |22>
1™ " al

2
<E |y -y @)+ g

— 27esty,, (1 ZTeff'nyfP ) E [(T)(;((S)) — ﬁ(ﬁ(s)7y(t))}

P—-1 n-P wia(-k)(n) “wy i (k)
+ Ty, Lg |1+ 27eqy, L —+ max w; + 7 max — "~ [ai™ (m)] AL (3),
v Y fP -1 n=1 R ladl,y ;llai\ll kz:(:) Y
(67)
since Ag,t’k) < Ag’}lf). Using the bound on Agfj;f) from Lemma C.2,
n Ti—1
k , ¢
an P EALD () <2 (IR + ) oF 3wl +4M,., (G2 + [ Po?)
i=1 i p—o =1
+8[g 2L Mo, BRE [(RC)) — R,y 1) (68)

We substitute (68) in (67), and simplify the terms using the choice of v, 7y to get

2
E Hy(t—&-l) _ y* (SZ(S))H

<E|y" -y &) H + 7o)

2 n 2 2 2 2
orn ~willaily | 206m (n—P 2 willaill;
2 |Z|a» >t p | o mews  Apmax = T

i=1 1“1

— TeftVy B [(ID(Q(S)) — ﬁ(ﬁ(s)’ y(t))} + 47’Cff'y§Lf([77§] [ny |f7L Z w; ||a;, ,1||2 +2Ma_, (G2 + UG)
=1

using 7,7, that satisfy

P-1 n-P 2 wza( )( i)
, Wity i) )
2TefwnyP ( I A
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P-1_ ,(n-P o willail;
e max w,; + ma <
=1 G<”—1 e e e )]

n
QTCH'YZLf F

L B

n .
2L % (8l o, L2 <

Then the coefficient of E [&?(i(s)) - F (x(%), y(t))} can we bounded by —7ey,. Consequently, by rearranging

the terms and summing over ¢, we get the result.

1(s+1)571
5 Y E[RERY) - FEY.y)
t=sS
2
E|ly*s -y &) n S w?|ag 3 - P 2 wil|ag 5
< - + TtV — | 0T 2 19 g maxw; + 0f max 722
Tett VS ‘P ; a3 i v aally

o1 Z wi [la, 13 +2Ma_, (Gx + 02)
=1

+AL g ([ng)* + [ny]*)

O

Proof of Lemma C.4. Let t = sS,5S+1,...,(s+1)S — 1, where k is a positive integer. Let X(*) is the latest
snapshot iterate for the y-update in Algorithm 1-Fed-Norm-SGDA+ . Then

E {é(x@)) - ﬁ(x(t)’y(t))}
-F [ﬁ(x(t),y* xM)) — FR®), y* () + ﬁ(;c(S) *(;C(S))) — FERO, yO) + F(E® y®) - ﬁ(x(t),y(t))]
[ Y ERE)) — ﬁ(§(8)7y(t))} + GLE Hx(t) —x0

<E [ﬁ(x(t),y* (x®)) — FR®), y*(x®))
+1E[ X)) —
) and (69) follows from Gx-Lipschitz continuity of F'(-,y) (Assumption 8).

)]+
P, y<t>>} (69)

< 2G,E wa -0

where, y*(-) € argmax, F(y

Next, we see that
< \/AG—HQ (Jensen’s inequality)
2
(43) ")
=\ |E|[renrs Z > wig

t'=sS iec(t)

E Hg(s) _x®

2

< TetVy, | (S —1) Z E Z wlg(t/

t'=sS iect)

, n | o= w||al P-1 n-P
< T3 (S -1/ 5 ZH2||2(0%+5%G,2{)+G,2(<n_1+n_12w3>.
i=1

i=1 Hai||1

Using this bound in (69), and summing over ¢, we get
(s+1)S—1

(s+1)S 1 ( ) 1 ( (
t) (t (f) il () F(x(s ) t)
Stzss E|$(x") - F(x®,y")| < St:ZSS E[$&) - FE,y1)|
n | < w?al? P-1 n-P<&
+2Teﬁ-‘7;Gx(5—1)\/f ZW(U%‘F@G%)‘FG?« <n—1+ n_1 sz2>
i1 il im1

Finally, summing over s = 0 to T'/S — 1 we get the result.
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C.4 Extending the result for Nonconvex One-Point-Concave (NC-1PC) Functions

Carefully revisting the proof of Theorem 2, we notice that Lemma C.1 and Lemma C.2 do not rely on the
concavity assumption. Lemma C.3 does use concavity of local functions {f;}. However, it is only needed to
derive (66). Further, this only requires concavity of local functions at a global point y*(X(*)). Therefore,
as mentioned earlier in Remark 10, it holds even for NC-1PC functions. This is an independent result in
itself, since we have extended the existing convergence result of local stochastic gradient method for convex
minimization (concave maximization) problems, to a much more general one-point-convex minimization (or
one-point-convex maximization) problem. Therefore, we restate it here for the more general case.

Lemma C.5 (Local SG updates for One-Point-Concave Maximization). Suppose the local loss functions
{fi} satisfy Assumptions 1, 3, 4, 8. Suppose for all x, all the f;’s satisfy Assumption 9 at a common global

minimizer y*(x), and that Hy(t)H2 < R for all t. If we run Fed-Norm-SGDA+ with the same conditions
on the client and server step-sizes ny,7, respectively, as in Lemma C.3, then the iterates generated by
Fed-Norm-SGDA+ also satisfy the bound in Lemma C.3.

Next, Lemma C.4 also holds irrespective of concavity. Therefore, the resulting convergence result in Theorem 2
for nonconvex-concave minimax problems holds for a much larger class of functions. We restate the modified
theorem statement briefly.

Theorem. Suppose the local loss functions {f;} satisfy Assumptions 1, 3, 4, 8. Suppose for all x, all the
fi’s satisfy Assumption 9 at a common global minimizer y*(x), and that ||y(t)||2 < R for all t. If we run
Algorithm 1-Fed-Norm-SGDA+ with the same conditions on the client and server step-sizes ny,,7y, respectively,
as in Theorem 3, then the iterates generated by Algorithm 1-Fed-Norm-SGDA+ also satisfy the bound in
Theorem 3.

Remark 11. Again, choosing client weights {w;} the same as in the original global objective {p;}, we get
convergence in terms of the original objective F'.

D Additional Experiments

For communicating parameters and related information amongst the clients, ethernet connections were used.
Our algorithm was implemented using parallel training tools in PyTorch 1.0.0 and Python 3.6.3.

For both robust NN Training and fair classification experiments, we use batch-size of 32 in all the algorithms.
Momentum parameter 0.9 is used only in Momentum Local SGDA(+).

Robust NN Training. Here we further explore performance of Fed-Norm-SGDA+ on the robust NN
training problem. We use VGG-11 model to classify CIFAR10 dataset. In Figure 6, we show the training loss
curves corresponding to the results in Figure 3 on varying number of local steps. Similarly, in Figure 6, we
show the training loss curves corresponding to Figure 4 on the effect of partial participation. In Figure 7, we
demonstrate the effect of increasing data heterogeneity across clients, whle in Figure 9 we show the advantage
of using multiple clients for the federated minimax problem. With k-fold increase in n, we observe an almost
k-fold drop in the number of communication rounds needed to reach a target test accuracy (70% here.).

We use batch-size of 32. Momentum parameter 0.9 is used only in Local SGDA+(M).

Table 3: Parameter values for experiments in robust NN training experiments.

Communication rounds 1-100  101-200 >200
Client Learning Rate (1;) 0.02 2x1073 2x 1074
Client Learning Rate (1<) 0.016 1.6x107% 1.6x 1074
Server Learning Rate (75 =1;) 1 1 1

Fair Classification We also demonstrate the impact of partial client participation in the fair classification
problem. Figure 10 complements Figure 10 in the main paper, evaluating fairness of a VGG11 model on

o1
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Figure 6: Comparison of the effect of heterogeneous number of local updates {r;} on the performance of
Fed-Norm-SGDA+ (Algorithm 1), Local SGDA+, and Local SGDA+ with momentum, while solving (7) on

CIFARI10 dataset, with VGG11 model. The solid (dashed) curves are for £ =5 (E

Loss
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0 50

=7),and a = 0.1.

Figure 7: Comparison of the effects of partial client participation (PCP) on the performance of Fed-Norm-
SGDA+, for the robust NN training problem on the CIFAR10 dataset, with the VGG11 model. The figure

shows the robust test accuracy. The solid (dashed) curves are for a = 0.1 (a = 1.0).

CIFARI10 dataset. We have plotted the test accuracy of the model over the worst distribution. With an

increasing number of participating clients, the performance consistently improves.

M).

Batch-size of 32 is used. Momentum parameter 0.9 is used only in Local SGDA (

Table 4: Parameter values for experiments in fair classification experiments.

Client Learning Rate (7;) 0.02

Client Learning Rate (nS)

0.016

Server Learning Rate (75 =1;) 1
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Varying Heterogeneity
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Figure 8: Effect of inter-client data heterogeneity (quantified by «) on the performance of Fed-Norm-SGDA+
in a robust NN training task.
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Figure 9: Effect of increasing client-set on the performance of Fed-Norm-SGDA+ in a robust NN training
task.
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Figure 10: Effect of partial client participation on the performance of Fed-Norm-SGDA in a fair image
classification task.
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