®

Check for
updates

The Packing Chromatic Number
of the Infinite Square Grid is 15*

Bernardo SubercaseauxPK@® and Marijn J. H. Heule

Carnegie Mellon University, Pittsburgh, PA 15203, USA
{bsuberca,mheule}@cs.cmu.edu

Abstract. A packing k-coloring is a natural variation on the standard
notion of graph k-coloring, where vertices are assigned numbers from
{1,...,k}, and any two vertices assigned a common color ¢ € {1,...,k}
need to be at a distance greater than c¢ (as opposed to 1, in standard
graph colorings). Despite a sequence of incremental work, determining
the packing chromatic number of the infinite square grid has remained
an open problem since its introduction in 2002. We culminate the search
by proving this number to be 15. We achieve this result by improving
the best-known method for this problem by roughly two orders of mag-
nitude. The most important technique to boost performance is a novel,
surprisingly effective propositional encoding for packing colorings. Addi-
tionally, we developed an alternative symmetry breaking method. Since
both new techniques are more complex than existing techniques for this
problem, a verified approach is required to trust them. We include both
techniques in a proof of unsatisfiability, reducing the trusted core to the
correctness of the direct encoding.

Keywords: Packing coloring - SAT - Verification.

1 Introduction

Automated reasoning techniques have been successfully applied to a variety of
coloring problems ranging from the classical computer-assisted proof of the Four
Color Theorem [1], to progress on the Hadwiger-Nelson problem [21], or im-
proving the bounds on Ramsey-like numbers [19]. This article contributes a new
success story to the area: we show the packing chromatic number of the infi-
nite square grid to be 15, thus solving via automated reasoning techniques a
combinatorial problem that had remained elusive for over 20 years.

The notion of packing coloring was introduced in the seminal work of God-
dard et al. [10], and since then more than 70 articles have studied it [3], estab-
lishing it as an active area of research. Let us consider the following definition.

Definition 1. A packing k-coloring of a simple undirected graph G = (V, E) is a
function f from V to {1,...,k} such that for any two distinct vertices u,v € V,
and any color c € {1,...,k}, it holds that f(u) = f(v) = c implies d(u,v) > c.

* Both authors are supported by the U.S. National Science Foundation under grant
CCF-2015445.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13993, pp. 389-406, 2023.
https://doi.org/10.1007/978-3-031-30823-9_20

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30823-9_20&domain=pdf
http://orcid.org/0000-0003-2295-1299
http://orcid.org/0000-0002-5587-8801
https://doi.org/10.1007/978-3-031-30823-9_20
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30823-9_20&domain=pdf

390 B. Subercaseaux and M. J. H. Heule

Note that by changing the last condition to d(u,v) > 1 we recover the stan-
dard notion of coloring, thus making packing colorings a natural variation of
them. Intuitively, in a packing coloring, larger colors forbid being reused in a
larger region of the graph around them. Indeed, packing colorings were origi-
nally presented under the name of broadcast coloring, motivated by the problem
of assigning broadcast frequencies to radio stations in a non-conflicting way [10],
where two radio stations that are assigned the same frequency need to be at
distance greater than some function of the power of their broadcast signals.
Therefore, a large color represents a powerful broadcast signal at a given fre-
quency, that cannot be reused anywhere else within a large radius around it,
to avoid interference. Minimizing the number of colors assigned can thus be in-
terpreted as minimizing the pollution of the radio spectrum. The literature has
preferred the name packing coloring ever since [3].

Analogously to the case of standard colorings, we can naturally define the
notion of packing chromatic number, and study its computation.

Definition 2. Given a graph G = (V, E), define its packing chromatic number
X, (G) as the minimum value k such that G admits a packing k-coloring.

Example 1. Consider the infinite graph with vertex set Z and with edges between
consecutive integers, which we denote as Z!. A packing 3-coloring is illustrated
in Figure 1. On the other hand, by examination one can observe that it is im-
possible to obtain a packing 2-coloring for Z*.

1173 1 113 1
Fig. 1: Tllustration of a packing 3-coloring for Z*.

While Example 1 shows that x,(Z') = 3, the question of computing x,(Z?),
where Z? is the graph with vertex set Z x Z and edges between orthogonally
adjacent points (i.e., points whose ¢; distance equals 1), has been open since the
introduction of packing colorings by Goddard et al. [10]. On the other hand, it
is known that x,(Z*) = oo (again considering edges between points whose ¢,
distance equals 1) [9]. The problem of computing 3 < x,(Z?) < oo has received
significant attention, and it is described as “the most attractive [of the packing
coloring problems over infinite graphs/” by Bresar et al. [3]. We can now state
our main theorem, providing a final answer to this problem.

Theorem 1. y,(Z*) = 15.

An upper bound of 15 had already been proved by Martin et al. [18], who
found a packing 15-coloring of a 72 x 72 grid that can be used for periodically
tiling the entirety of Z2. Therefore, the main contribution of our work consists
of proving that 14 colors are not enough for Z2. Table 1 presents a summary of
the historical progress on computing x,(Z?). It is worth noting that amongst the
computer-generated proofs (i.e., all since Soukal and Holub [22] in 2010), ours is
the first one to be formally verified, see Section 4.

The Packing Chromatic Number of the Infinite Square Grid is 15 391

Table 1: Historical summary of the bounds known for x,(Z?).

Year Citation Approach Lower bound Upper bound
2002 Goddard et al. [10] Manual 9 23
2002 Schwenk [20] Unkown 9 22
2009 Fiala et al. [8] Manual + Computer 10 23
2010 Soukal and Holub [22] Simulated Annealing 10 17
2010 Ekstein et al. [7] Brute Force Program 12 17
2015 Martin et al. [17] SAT solver 13 16
2017 Martin et al. [18] SAT solver 13 15
2022 Subercaseaux and Heule [23] SAT solver 14 15
2022 This article SAT solver 15 15

For any k > 4, the problem of determining whether a graph G admits a
packing 4-coloring is known to be NP-hard [10], and thus we do not expect a
polynomial time algorithm for computing x,(-). This naturally motivates the use
of satisfiability (SAT) solvers for studying the packing chromatic number of finite
subgraphs of Z2. The rest of this article is thus devoted to proving Theorem 1
by using automated reasoning techniques, in a way that produces a proof that
can be checked independently and that has been checked by verified software.

2 Background

We start by recapitulating the components used to obtain a lower bound of
14 in our previous work [23]. Naturally, in order to prove a lower bound for
72 one needs to prove a lower bound for a finite subgraph of it. As in earlier
work, we consider disks (i.e., 2-dimensional balls in the £;-metric) as the finite
subgraphs to study [23]. Concretely, let D,.(v) be the subgraph induced by
{u € V(Z?) | d(u,v) < r}. To simplify notation, we use D, as a shorthand
for D,((0,0)), and we let D, be the instance consisting of deciding whether
D, admits a packing k-coloring. Moreover, let D, j . be the instance D, j but
enforcing that the central vertex (0, 0) receives color ¢ (Fig. 2).

For example, a simple lemma of Subercaseaux and Heule [23, Proposition 5]
proves that the unsatisfiability of D3 ¢ 3 is enough to deduce that x,(Z?) > 7. We
will prove a slight variation of it (Lemma 2) later on in order to prove Theorem 1,
but for now let us summarize how they proved that D;2 13,12 is unsatisfiable.

Encodings. The direct encoding for D, ;. consists simply of variables z,
stating that vertex v gets color ¢, as well as the following clauses:

1. (at-least-one-color clauses, ALOC) \/f:1 ZTyt, YUVEV,
2. (at-most-one-distance clauses, AMOD)

TutVTor, VEe{l,...;k},Yu,v eV st 0<d(u,v)<t,

392 B. Subercaseaux and M. J. H. Heule

Fig. 2: Illustration of satisfying assignments for D373 and D3¢ ¢. On the other
hand, D3¢ 3 is not satisfiable.

3. (center clause) T(0,0),c-

This amounts to O(r?k?) clauses [23]. The recursive encoding is significantly
more involved, but it leads to only O(r?klogk) clauses asymptotically. Unfor-
tunately, the constant involved in the asymptotic expression is large, and this
encoding did not give them practical speed-ups [23].

Cube And Conquer. Introduced by Heule et al. [13], the Cube And Con-
querapproach aims to split a SAT instance ¢ into multiple SAT instances @1, .. .,
©m in such a way that ¢ is satisfiable if, and only if, at least one of the instances
; is satisfiable; thus allowing to work on the different instances ¢; in parallel.
If ¢ = (1 Vea V- V) is a tautological DNF, then we have

SAT(p) < SAT(pAY) <= SAT (\7(@/\60) < SAT (\n} <pi>,

i=1 i=1

where the different ¢; := (¢ A ¢;) are the instances resulting from the split.

Intuitively, each cube ¢; represents a case, i.e., an assumption about a sat-
isfying assignment to ¢, and soundness comes from 1 being a tautology, which
means that the split into cases is exhaustive. If the split is well designed, then
each ; is a particular case that is substantially easier to solve than ¢, and thus
solving them all in parallel can give significant speed-ups, especially consider-
ing the sequential nature of CDCL, at the core of most solvers. Our previous
work [23] proposed a concrete algorithm to generate a split, which already results
in an almost linear speed-up, meaning that by using 128 cores, the performance
gain is roughly a x60 factor.

Symmetry Breaking. The idea of symmetry breaking [6] consists of exploiting
the symmetries that are present in SAT instances to speed-up computation. In
particular, D, j, . instances have 3 axes of symmetry (i.e., vertical, horizontal, and
diagonal) which allowed for close to an 8-fold improvement in performance for
proving D2 13,12 to be unsatisfiable. The particular use of symmetry breaking in
our previous approach [23] was happening at the Cube And Conquer level, where

The Packing Chromatic Number of the Infinite Square Grid is 15 393

out of the sub-instances ¢;, ..., @, produced by the split, only a 1/s-fraction of
them had to be solved, as the rest were equivalent under isomorphism.

Verification. Arguably the biggest drawback of our previous approach proving
a lower bound of 14 is that it lacked the capability of generating a computer-
checkable proof. To claim a full solution to the 20-year-old problem of computing
X,(Z?*) that is accepted by the mathematics community, we deem paramount a
fully verifiable proof that can be scrutinized independently.

The most commonly-used proofs for SAT problems are expressed in the
DRAT clausal proof system [11]. A DRAT proof of unsatisfiability is a list of
clause addition and clause deletion steps. Formally, a clausal proof is a list of
pairs (s1,C1),...,{(sm,Cp), where for each i € 1,...,m, s; € {a,d} and C; is
a clause. If s; = a, the pair is called an addition, and if s; = d, it is called
a deletion. For a given input formula g, a clausal proof gives rise to a set of
accumulated formulas @; (i € {1,...,m}) as follows:

_JeiU{Gi} ifs;=a
o wio1 \{Ci} ifs;=d

Each clause addition must preserve satisfiability, which is usually guaranteed
by requiring the added clauses to fulfill some efficiently decidable syntactic cri-
terion. The main purpose of deletions is to speed up proof checking by keeping
the accumulated formula small. A valid proof of unsatisfiability must end with
the addition of the empty clause.

3 Optimizations

Even with the best choice of parameters for our previous approach, solving the
instance D12,13,12 takes almost two days of computation with a 128-core ma-
chine [23]. In order to prove Theorem 1, we will require to solve an instance
roughly 100 times harder, and thus several optimizations will be needed. In fact,
we improve on all aspects discussed in Section 2; we present five different forms
of optimization that are key to the success of our approach, which we summarize
next.

1. We present a new encoding, which we call the plus encoding that has concep-
tual similarities with the recursive encoding of Subercaseaux and Heule [23],
while achieving a significant gain in practical efficiency.

2. We present a new split algorithm that works substantially better than the
previous split algorithm when coupled with the plus encoding.

3. We improve on symmetry breaking by using multiple layers of symmetry-
breaking clauses in a way that exploits the design of the split algorithm to
increase performance.

4. We study the choice of color to fix at the center, showing that one can gain
significantly in performance by making instance-based choices; for example,
D13 .13,6 can be solved more than three times as fast as D12 13 12 (the instance
used by Subercaseaux and Heule [23]).

394 B. Subercaseaux and M. J. H. Heule

5. We introduce a new and extremely simple kind of clauses called ALOD clauses,
which improve performance when added to the other clauses of any encoding
we have tested.

The following subsections present each of these components in detail.

3.1 “Plus”: a New Encoding

Despite the asymptotic improvement of the recursive encoding of Subercaseaux
and Heule [23], its contribution is mostly of “theoretical interest” as it does
not improve solution times. Nonetheless, that encoding suggests the possibil-
ity of finding one that is both more succinct than the direct encoding and that
speed-ups computation. Our path towards such an encoding starts with Bounded
Variable Addition (BVA) [16], a technique to automatically re-encode CNF for-
mulas by adding new variables, with the goal of minimizing their resulting size
(measured as the sum of the number of variables and the number of clauses).
BVA can significantly reduce the size of D, j, . instances, even further than the
recursive encoding. Moreover, BVA actually speeds-up computation when solv-
ing the resulting instances with a CDCL solver, see Table 2. Figure 3 compares
the number of AMOD clauses between the direct encoding and the BVA encod-
ing; for example in the direct encoding, for D14 color 10 would require roughly
30000 clauses, whereas it requires roughly 3500 in the BVA encoding. It can be
observed as well in Figure 3 that the direct encoding grows in a very structured
and predictable way, where color ¢ in D, requires roughly r2¢? clauses. On the
other hand, arguably because of its locally greedy nature, the results for BVA
are far more erratic, and roughly follow a 4r21gc curve.

The encoding resulting from BVA does not perform particularly well when
coupled with the split algorithm of Subercaseaux and Heule. Indeed, Table 2
shows that while BVA heavily improves runtime under sequential CDCL, it
does not provide a meaningful advantage when using Cube And Conquer. Fur-
thermore, encodings resulting from BVA are hardly interpretable, as BVA uses

direct encoding bva encoding plus encoding

Z il 1L 1L i
R 1 1 E
(&) [~ B [B [B
s 100} 1 b 1 b E
< F 1 F 1 F 1
:“: . N . N . N

102 ! ! ! !
5 10 15 15 5 10 15

radius radius radius

Fig. 3: Comparison of the size of the at-most-one-color clauses between the direct
encoding and the BVA-encoding, for Dy up to D14 and colors {4,...,10}.

The Packing Chromatic Number of the Infinite Square Grid is 15 395

Table 2: Comparison between the different encodings. Cube And Conquer ex-
periments were performed with the approach of Subercaseaux and Heule [23]
(parameters F' = 5,d = 2) on a 128-core machine. Hardware details in Section 5.

direct encoding bva encoding | plus encoding
Ds 10,5 Ds.11,6 |Ds,10,5 Ds,11,6 | Ds,10,5 Des,11,6
Number of variables 610 935 973 1559 673 1039
Number of clauses 10688 21086 | 2313 3928 4063 7548
CDCL runtime (s) 255.12 10774.79 | 39.88 2539.38 | 15.90 811.66
Cube-and-conquer wall-clock (s) 0.77 26.20 | 0.78 17.97 0.50 6.68

a locally greedy strategy for introducing new variables. As a result, the design
of a split algorithm that could work well with BVA is a very complicated task.
Therefore, our approach consisted of reverse engineering what BVA was doing
over some example instances, and using that insight to design a new encoding
that produces instances of size comparable to those generated by BVA while
being easily interpretable and thus compatible with natural split algorithms.
By manually inspecting BVA encodings one can deduce that a fundamental
part of their structure is what we call regional variables/clauses. A regional
variable rg . is associated with a set of vertices S and a color ¢, meaning that at
least one vertex in .S receives color c. Let us illustrate their use with an example.

FEzample 2. Consider the instance Dg 11, and let us focus on the at-most-one-
distance (AMOD) clauses for color 4. Figure 4a depicts two regional clauses: one
in orange (vertices labeled with «), and one in blue (vertices labeled with 3),
each consisting of 5 vertices organized in a plus (+) shape. We thus introduce
variables rorange,a and rplue,4, defined by the following clauses:

- Torange,4 v Vv has label a Fv,4)

- Tolue,d V Vo has label B8 T4,

. Torange,4 V Ty a, for each v with label o,
. Tblue,d V Ty, for each v with label S.

=W N

The benefit of introducing these two new variables and 2 + (5 -2) = 12
additional clauses will be shown now, when using them to forbid conflicts more
compactly. Indeed, each vertex labeled with « or 8 participates in |Dy4| —1 = 40
AMOD clauses in the direct encoding, which equals a total of 10 -40 — (120) =355
clauses for all of them (subtracting the clauses counted twice). However, note
that all 36 vertices shaded in light orange are at distance at most 4 from all
vertices labeled with a, and thus they are in conflict with 7orange,4. This means
that we can encode all conflicts between a-vertices and orange-shaded vertices
with 36 clauses. The same can be done for S-vertices and the 36 vertices shaded
in light blue. Moreover, all pairs of vertices (x,y) with x being an a-vertex
and y being a [-vertex are in conflict, which we can represent simply with the
clause (Torange,a V Thiue,4), instead of 5 -5 = 25 pairwise clauses. We still need,

396 B. Subercaseaux and M. J. H. Heule

e}
Blala|a
B|B|B a o
B
(a) Illustration of regions interacting in (b) Hlustration of the placement of
Ps,11,6, for color 4. regions of the 13 regions in Ps 11,6.

Fig. 4: llustrations for Ps 11 6.

however, to forbid that more than one a-vertex receives color 4, and the same
for B-vertices, which can be done by simply adding all 2- (g) = 20 AMOD clauses
between all pairs. In total, the total number of clauses involving « or [vertices
has gone down to 12+2-36+20+ 1 = 105 clauses, from the original 355 clauses,
by merely adding two new variables.

As shown in Example 2, the use of regional clauses can make encodings more
compact, and this same idea scales even better for larger instances when the
regions are larger. A key challenge for designing a regional encoding in this man-
ner is that it requires a choice of regions (which can even be different for every
color). After trying several different strategies for defining regions, we found one
that works particularly well in practice (despite not yielding an optimal num-
ber for the metric #variables + #clauses), which we denote the plus encoding.
The plus encoding is based on simply using “4” shaped regions (i.e., D;) for all
colors greater than 3, and to not introduce any changes for colors 1,2 and 3 as
they only amount to a very small fraction of the total size of the instances we
consider. We denote with Py . the plus encoding of the diamond of size d with
k colors, and the centered being colored with c. Figure 4b illustrates P 11,6. In-
terestingly, the BVA encoding opted for larger regions for the larger colors, using
for example Ds’s or D3’s as regions for color 14. We have experimentally found
this to be very ineffective when coupled with our split algorithms. In terms of the
locations of the “+” shaped regions, we have placed them manually through an
interactive program, arriving to the conclusion that the best choice of locations
consists of packing as many regions as possible and as densely around the center
as possible. A more formal presentation of all the clauses involved in the plus
encoding is presented in the extended arXiv version [24] of this paper, but all
its components have been illustrated in Example 2.

The Packing Chromatic Number of the Infinite Square Grid is 15 397

The exact number of clauses resulting from the plus encoding is hard to
analyze precisely, but it is clear that asymptotically it only improves from the
direct encoding by a constant multiplicative factor. Figure 3 and Table 2 illustrate
the compactness of the plus encoding over particular instances, and its increase in
efficiency both for CDCL solving as well as with the Cube And Conguer approach
of Subercaseaux and Heule [23].

3.2 Symmetry Breaking

Another improvement of our approach is a static symmetry-breaking technique,
while Subercaseaux and Heule [23] achieved symmetry breaking by discarding
all but 1/8 of the cubes. We cannot do this easily since the plus encoding does
not have an 8-fold symmetry. Instead it has a 4-fold symmetry (see Figure 4b).
We add symmetry breaking clauses directly on top of the direct encoding (i.e.,
instead of using it after a Cube And Conguer split), as D, i . has indeed an 8-fold
symmetry (see Figure 5b). Concretely, if we consider a color ¢, it can only appear
once in the D/, as if it appeared more than once said appearances would be
at distance < t. Given this, we can assume without loss of generality that if
there is one appearance of ¢ in D|;/5|, then it appears with coordinates (a,b)
such that a > 0 A b > a. We enforce this by adding negative units of the form
T(i,j).¢ for every pair (i,j) € D|;/2) such that i < 0V j < i. This is illustrated
in Figure 5b for D5 j9. Note however that this can only be applied to a single
color t, as when a vertex in the morth-north-east octant gets assigned color t,
the 8-fold symmetry is broken. However, if the symmetry breaking clauses have
been added for color ¢, and yet ¢ does not appear in D4/, then there is still an
8-fold symmetry in the encoding we can exploit by breaking symmetry on some
other color #'. This way, our encoding uses L = 5 layers of symmetry breaking,
for colors k,k —1,...,k — L + 1. At each layer i, where symmetry breaking is
done over color k — i, except for the first (i.e., ¢ > 0), we need to concatenate a
clause

k
SymmetryBroken, = \/ \/ T(a,b),t
t=k—1i (a,b)EDLt/QJ
0<a<b

to each symmetry breaking clause, so that symmetry breaking is applied only
when symmetry has not been broken already. Table 3 (page 14) illustrates the
impact of this symmetry breaking approach, yielding close to a x40 speed-up
for D6,11,6~

3.3 At-Least-One-Distance clauses

Yet another addition to our encoding is what we call At-Least-One-Distance
(ALOD) clauses, which consist on stating that, for every vertex v, if we consider
D4 (v), then at least one vertex in Dj(v) must get color 1. Concretely, the At-
Least-One-Distance clause corresponding to a vertex v = (4,) is

Co =251V Tit1,5)1 V Ti-1,5)1 V T j+1),1 V T(ij—1),1-

398 B. Subercaseaux and M. J. H. Heule

=]

il

=

=l
=l
=l

=l

(a) Ilustration of the effect of adding ALOD L

clauses. The right figure, with ALOD clauses, (b) Some symmetry-breaking
presents a chessboard pattern. unit clauses added to Ds 0.

S

Fig.5: The effect of adding ALOD clauses (left) and symmetry-breaking (right).

Note that adding these clauses preserves satisfiability since they are blocked
clauses [15]; this can be seen as follows. If no vertex in D;(v) gets assigned color
1, then we can simply assign z, 1, thus satisfying the new clause C,,.

The purpose of ALOD clauses can be described as incentives towards assigning
color 1 in a chessboard pattern (see Figure 5a), which seems to simplify the rest
of the computation. Empirically, their addition improves runtimes; see Table 3.

3.4 Cube And Conquer Using Auxiliary Variables

The split of Subercaseaux and Heule [23] is based on cases about the z, . vari-
ables of the direct encoding, and specifically using vertices v that are close to
the center and colors ¢ that are in the top-t colors for some parameter ¢.

Our algorithm is instead based on cases only around the new regional vari-
ables g ., which appears to be key for exploiting their use in the encoding.

More concretely, our algorithm, which we call PTR, is roughly based on split-
ting the instance into cases according to which out of the R regions that are
closest to the center get which of the T highest colors (noting that a region can
get multiple colors). A third parameter P indicates the maximum number of
positive literals in any cube of the split. More precisely, there are cubes with ¢
positive literals for ¢ € {0,1,..., P — 1, P}, and the set of cubes with i positive
literals is constructed by PTR as follows:

1. Let R be the set of R regions that are the closest to the center, and T the
set consisting of the T highest colors (i.e., {k,k —1,...,k =T + 1}).

2. For each of the R’ tuples S e R, we create (f) cubes as described in the
next step.

3. For each subset Q C T with size |Q| = ¢, let q1,...,¢; be its elements
in increasing order, and then create a cube with positive literals . for
j € {l,...,i}. Then, if i < P, add to the cube negative literals m for

jeA{l,...,i} and every ¢; € Q.

Lemma 1. The cubes generated by the PTR algorithm form a tautology.

The Packing Chromatic Number of the Infinite Square Grid is 15 399

The proof of Lemma 1 is quite simple, and we refer the reader to the proof
of Lemma 7 in Subercaseaux and Heule [23] for a very similar one. Moreover,
because our goal is to have a verifiable proof, instead of relying on Lemma 1, we
test explicitly that the cubes generated by our algorithm form a tautology in all
the instances mentioned in this paper. Pseudo-code for PTR is presented in the
extended arXiv version of this paper [24].

3.5 Optimizing the Center Color

Our previous work [23] argued that for an instance D, j, one should fix the color
of the central vertex to min(r, k). However, our experiments suggest otherwise.
As the proof of Lemma 2 (in extended arXiv version [24]) implies, we are allowed
to fix any color in the center, and as long as the resulting instance is unsatisfiable,
that will allow us to establish the same lower bound. It turns out that the
choice of the center color can dramatically affect performance, as shown for
instance D123 (the one used to prove x,(Z?) > 14) in Figure 6. Interestingly,
performance does not change monotonically with the value fixed in the center.
Intuitively, it appears that fixing smaller colors in the center is ineffective as they
impose restrictions on a small region around the center, while fixing very large
colors in the center does not constrain the center much; for example, on the one
hand, fixing a 1 or 2 in the center does not seem to impose any serious constraints
on solutions. On the other hand, when a 12 is fixed in the center (as in our
previous work [23]), color 6 can be used 5 times in Dg, whereas if color 6 is fixed
in the center, it can only be used once in Dg. The apparent advantage of fixing
12 in the center (that it cannot occur anywhere else in D13 13), is outweighed by
the extra constraints around the center that fixing color 6 imposes; Subercaseaux
and Heule already observed that most conflicts between colors occur around the
center [23]), thus explaining why it makes sense to optimize in that area.

The main result of Subercaseaux and Heule [23] is the unsatisfiability of
D12,13,12, which required 45 CPU hours using the same SAT solver and similar
hardware. Let Pj, .denote Py . with ALOD clauses and symmetry-breaking

) —
:
8 10tk —— average runtime ‘ ’ —+— wall-clock time 10" 9
2 E <
o B o
g i E
2 i °

A
£ 100 10° '8
& =
@ - =
5 [g
S 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 6: The impact of the color in the center (c) on the performance for Py ;5 .

400 B. Subercaseaux and M. J. H. Heule

symmetry proof implication proof
— * _ px
D1514,6 = Di5,14,6 = Pis,146 F Nis,146 F L
re-encoding proof tautology proof

Fig. 7: Illustration of the verification pipeline.

predicates. We show unsatisfiability of P ;3 15 in 1.18 CPU hours and of P[5 13 ¢
in 0.34 CPU hours. So the combination of the plus encoding and the improved
center reduces the computational costs by two orders of magnitude.

4 Verification

Our pipeline proves that, in order to trust XP(ZZ) = 15 as a result, the only com-
ponent that requires unverified trust is the direct encoding of D15 14,6. Indeed,
let Pf5 146 be the instance Pi514,6 with ALOD-clauses and 5 layers of symmetry
breaking clauses, and let ¥ = {c1,...,cn} be the set of cubes generated by the
PTR algorithm with parameters P = 6,7 = 7, R = 9. We then prove:

. that D5 14,6 is satisfiability equivalent to Py 14 6-

. the DNF ¢ =¢; Vo V--- Ve, is a tautology.

. each instance (Pf5 146 A ¢;), for ¢; € ¢ is unsatisfiable.

. hence the negation of each cube is implied by Py5 14 ¢-

. since % is a tautology, its negation Ni5 14,6 is unsatisfiable.

T W N =

As a result, Theorem 1 relies only on our implementation of D15 14,6. For-
tunately, this is quite simple, and the whole implementation is presented in the
extended arXiv version of this paper [24]. Figure 7 illustrates the verification
pipeline, and the following paragraphs detail its different components.

Symmetry Proof. The first part of the proof consists in the addition of
symmetry-breaking predicates to the formula. This part needs to go before the
re-encoding proof, because the plus encoding does not have the 8-fold symmetry
of the direct encoding. Each of the clauses in the symmetry-breaking predicates
have the substitution redundancy (SR) property [5]. This is a very strong redun-
dancy property and checking whether a clause C' has SR w.r.t. a formula ¢ is
NP-complete. However, since we know the symmetry, it is easy to compute a SR
certificate. There exists no SR proof checker. Instead, we implemented a proto-
type tool to convert SR proofs into DRAT for which formally verified checkers
exists. Our conversion is similar to the approach to converted propagation re-
dundancy into DRAT [12]. The conversion can significantly increase the size of
the proof, but the other proof parts are typically larger for harder formulas, thus
the size is acceptable.

The Packing Chromatic Number of the Infinite Square Grid is 15 401

Re-encoding Proof. After symmetry breaking, the formula encoding is opti-
mized by transforming the direct encoding into the plus encoding and adding the
ALOD clauses. This part of the proof is easy. All clauses in the plus encoding and
all ALOD clauses have the RAT redundancy property w.r.t. the direct encoding.
This means that we can add all these clauses with a single addition step per
clause. Afterward, the clauses that occur in the direct encoding but not in the
plus encoding are removed using deletion steps.

Implication Proof. The third part of the proof expresses that the formula
cannot be satisfied with any of the cubes from the split. For easy problems,
one can avoid splitting and just use the empty cube as tautological DNF. For
harder problems, splitting is crucial. We solve D5 14,6 using a split with just
over 5 million cubes. Using a SAT solver to show that the formula with a cube
is unsatisfiable shows that the negative of the cube is implied by the formula.
We can derive all these implied clauses in parallel. The proofs of unsatisfiability
can be merged into a single implication proof.

Tautology Proof. The final proof part needs to show that the negation of the
clauses derived in the prior steps form a tautology. In most cases, including ours,
the cubes are constructed using a tree-based method. This makes the tautology
check easy as there exists a resolution proof from the derived clauses to the
empty clause using m — 1 resolution steps with m denoting the number of cubes.
This part can be generated using a simple SAT call.

The final proof merges all the proof parts. In case the proof parts are all in
the DRAT format, such as our proof parts, then they can simply be merged by
concatenating the proofs using the order presented above.

5 Experiments

Experimental Setup. In terms of hardware, all our experiments were run in
the Bridges2 [4] supercomputer. Each node has the following specifications: Two
AMD EPYC 7742 CPUs, each with 64 cores, 256MB of L3 cache, and 512GB
total RAM memory. Our code and various formulas are publicly available at the
repository https://github.com/bsubercaseaux/PackingChromaticTacas. In
terms of software, all sequential experiments were run on state-of-the-art solver
CaDiCalL [2], while parallel experiments with Cube And Conquer were run us-
ing a new implementation of parallel iCaDiCaL because it supports incremental
solving [13] while being significantly faster than iLingeling.

Effectiveness of the Optimizations. We evaluated the optimizations to the
direct encoding as proposed in Section 3: the plus encoding, the addition of the
ALOD clauses, and the new symmetry breaking. The results are shown in Table 3.
We picked Dg 11,6 for this evaluation since it is the largest diamond that can still
be solved within a couple of hours on a single core.

The main conclusion is that the optimizations significantly improve the run-
time. A comparison between the direct encoding without symmetry breaking and

https://github.com/bsubercaseaux/PackingChromaticTacas

402 B. Subercaseaux and M. J. H. Heule

the plus encoding with symmetry breaking and the ALOD clauses shows that the
latter can be solved roughly 200x faster. Table 3 shows all 8 possible configu-
rations. Turning on any of the optimizations always improves performance. The
effectiveness of the plus encoding and ALOD clauses is somewhat surprising: the
speed-up factor obtained by re-encoding typically does not exceed the factor by
which the formula size is reduced. In this case, the reduction factor in formula
size is less than 3, while the speed-up is larger than 13 (see the difference be-
tween the first and second row of Table 3). Moreover, we are not aware of the
effectiveness of adding blocked clauses. Typically SAT solvers remove them.
We also constructed DRAT proofs of the optimizations (shown as derivation
in the table) and the solver runtime. We merged them into a single DRAT proof
by concatenating the files. The proofs were first checked with the drat-trim
tool, which produced LRAT proofs. These LRAT files were validated using the
formally-verified cake-1pr checker. The size of the DRAT proofs and the check-
ing time are shown in the table. Note that the checking time for the proofs with
symmetry breaking is always larger than the solving times. This is caused by
expressing the symmetry breaking in DRAT resulting in a 436 Mb proof part.

The Implication Proof. The largest part of the computation consist of show-
ing that Pf5 4 ¢ is unsatisfiable under each of the 5,217,031 cubes produced by
the cube generator. The results of the experiments are shown in Figure 8 (left).
The left plot shows that roughly half of the cubes can be solved in a second
or less. The average runtime of cubes was 3.35 seconds, while the hardest cube
required 1584.61 seconds. The total runtime was 4851.38 CPU hours.

For each cube, we produced a compressed DRAT proof (the default output of
CaDiCaL). Due to the lack of hints in DRAT proofs, they are somewhat complex
to validate using a formally-verified checker. Instead, we use the tool drat-trim
to trim the proofs and add hints. The result are uncompressed LRAT files, which
we validate using the formally-verified checker cake lpr. The verification time
was 4336.93 CPU hours, so slightly less than the total runtime.

The sizes of each of the implication proofs show a similar distribution, as
depicted in Figure 8 (right). Most proofs are less than 10 MB in size. The

Table 3: Evaluating the effectiveness of the optimizations on Dg 11 6.

sym ALOD plus ‘ #var #cls runtime ‘ derivation proof check
935 21086 10741.69 0b 11.99 Gb 31731.20
X 1039 7548 809.65 149 Kb 1.29 Gb 1720.82
X 935 21171 8422.38 1.6 Kb 8.11 Gb 21732.74
X X 1039 7633 389.71 151 Kb 1.29 Gb 1708.21
X 935 21286 273.19 436 Mb 0.63 Gb 1390.04
X X 1039 7748 66.74 436 Mb 0.14 Gb 1022.42
b X 935 21371 252.71 436 Mb 0.68 Gb 1359.05
X X X 1039 7833 55.56 436 Mb 0.10 Gb 997.90

The Packing Chromatic Number of the Infinite Square Grid is 15 403

10" |- Ml
—— uncompressed LRAT (Mb)

—— compressed DRAT (Mb)

10° verification time (s)
—— solving time (s)

10%
10!

10°

]‘071 1 1 1 1 1

108 -108

Fig.8: Cactus plot of solving and verification times in seconds (left) and cactus
plot of the size of the compressed DRAT proof and uncompressed LRAT proof
in Mb (right).

compressed DRAT proofs are generally smaller compared to the LRAT proofs,
but that is mostly due to compression, which reduces the size by around 70%.

The Chessboard Conjecture and its Counterexample. Given that color
1 can be used to fill in 1/2 of Z?2 in a packing coloring, and the packing color-
ings found in the past, with 15,16 or 17 colors used color 1 with density 1/2
in a chessboard pattern [18], it is tempting to assume that this must always be
the case. This way, we conjectured that any instance D, j . is satisfiable if and
only if it is with the chessboard pattern. The consequence of the conjecture is
significant, as if it were true we could fix half of the vertices to color 1, thus
massively reducing the size of the instance and its runtime. Unfortunately, this
conjecture happens to be false, with the smallest counterexample being D14.14,6
as illustrated in Figure 9, which deviates from the chessboard pattern in only 2
vertices. We have proved as well that no solution for Di4,14,6 deviating in only
1 vertex from the chessboard pattern exists.

Proving the Lower Bound. In order to prove Theorem 1, we require the
following 3 lemmas, from where the conclusion easily follows.

Lemma 2. If D15 146 is unsatisfiable, then x,(Z?) > 15.
Lemma 3. If Di5146 is satisfiable, then Py5 1, ¢ is also satisfiable.
Lemma 4. P, is unsatisfiable.

We have obtained computational proofs of Lemma 3 and Lemma 4 as de-
scribed above, and thus it only remains to prove Lemma 2, which we include in
the appendix. We can thus proceed to our main proof.

Proof (of Theorem 1). Since Martin et al. proved that x,(Z?) < 15 [18], it
remains to show Xp(ZQ) > 15, which by Lemma 2 reduces to proving Lemma 3
and Lemma 4. We have proved these lemmas computationally, obtaining a single
DRAT proof as described in Section 4. The total solving time was 4851.31 CPU
hours, while the total checking time of the proofs was 4336.93 CPU hours. The
total size of the compressed DRAT proof is 34 terabytes, while the uncompressed
LRAT proof weighs 122 terabytes.

404 B. Subercaseaux and M. J. H. Heule

Fig.9: A valid coloring of D14 14,6. No valid coloring exists for this grid with a
full chessboard pattern of 1’s.

6 Concluding Remarks and Future Work

We have proved Xp(ZQ) = 15 by using several SAT-solving techniques, in what
constitutes a new success story for automated reasoning tools applied to com-
binatorial problems. Moreover, we believe that several of our contributions in
this work might be applicable to other settings and problems. Indeed, we have
obtained a better encoding by reverse engineering BVA, and designed a split
algorithm that works well coupled with the new encoding; this experience sug-
gests the split-encoding compatibility as a new key variable to pay attention to
when solving combinatorial problems under the Cube And Conquer paradigm.
As for future work, it is natural to study whether our techniques can be used to
improve other known bounds in the packing-coloring area (see e.g., [3]), as well
as to other families of coloring problems, such as distance colorings [14].

The Packing Chromatic Number of the Infinite Square Grid is 15 405

Acknowledgements We thank the Pittsburgh Supercomputing Center for al-
lowing us to use Bridges2 [4] in our experiments. We thank as well the anonymous
reviewers for their comments and suggestions. We also thank Donald Knuth for
his thorough comments and suggestions. The first author thanks the Facebook
group “actually good math problems”, from where he first learned about this
problem, and in particular to Dylan Pizzo for his post about this problem.

References

10.

11.

12.

13.

14.

. Appel, K., Haken, W.: Every planar map is four colorable. Part I: Discharging.

Ilinois Journal of Mathematics 21(3), 429 — 490 (1977)

Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCal, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Jarvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 — Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51-53. University of Helsinki (2020)
Bresar, B., Ferme, J., Klavzar, S., Rall, D.F.: A survey on packing colorings. Dis-
cussiones Mathematicae Graph Theory 40(4), 923 (2020)

Brown, S.T., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N.A.:
Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research, pp. 1-4.
Association for Computing Machinery, New York, NY, USA (2021)

Buss, S., Thapen, N.: DRAT proofs, propagation redundancy, and extended res-
olution. In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability
Testing — SAT 2019. pp. 71-89. Springer International Publishing, Cham (2019)
Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: Proc. KR’96, 5th Int. Conf. on Knowledge Representation and
Reasoning, pp. 148-159. Morgan Kaufmann (1996)

Ekstein, J., Fiala, J., Holub, P., Lidicky, B.: The packing chromatic number of the
square lattice is at least 12. CoRR abs/1003.2291 (2010), http://arxiv.org/
abs/1003.2291

Fiala, J., Klavzar, S., Lidicky, B.: The packing chromatic number of infinite product
graphs. Eur. J. Comb. 30(5), 1101-1113 (jul 2009)

Finbow, A.S., Rall, D.F.: On the packing chromatic number of some lattices. Dis-
crete Applied Mathematics 158(12), 1224-1228 (2010), traces from LAGOS’07 IV
Latin American Algorithms, Graphs, and Optimization Symposium Puerto Varas
- 2007

Goddard, W., Hedetniemi, S., Hedetniemi, S., Harris, J., Rall, D.: Broadcast chro-
matic numbers of graphs. Ars Comb. 86 (01 2008)

Heule, M.J.H.: The DRAT format and drat-trim checker. CoRR abs/1610.06229
(2016), http://arxiv.org/abs/1610.06229

Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Beyer, D., Huis-
man, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 75-92. Springer International Publishing, Cham (2018)

Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guid-
ing CDCL SAT solvers by lookaheads. In: Eder, K., Lourengo, J., Shehory, O.
(eds.) Hardware and Software: Verification and Testing. pp. 50-65. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

Kramer, F., Kramer, H.: A survey on the distance-colouring of graphs. Discrete
Mathematics 308(2), 422-426 (2008)

http://arxiv.org/abs/1003.2291
http://arxiv.org/abs/1003.2291
http://arxiv.org/abs/1610.06229

406 B. Subercaseaux and M. J. H. Heule

15. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97, 149-176 (1999)

16. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas.
In: Proceedings of Haifa Verification Conference 2012 (2012)

17. Martin, B., Raimondi, F., Chen, T., Martin, J.: The packing chromatic number of
the infinite square lattice is less than or equal to 16 (2015), http://arxiv.org/
abs/1510.02374v1

18. Martin, B., Raimondi, F., Chen, T., Martin, J.: The packing chromatic number
of the infinite square lattice is between 13 and 15. Discrete Applied Mathematics
225, 136-142 (2017)

19. Neiman, D., Mackey, J., Heule, M.J.H.: Tighter bounds on directed Ramsey num-
ber R(7). Graphs and Combinatorics 38(5), 156 (2022)

20. Schwenk, A.: private communication with Wayne Goddard. (2002)

21. Soifer, A.: The Hadwiger—Nelson Problem, pp. 439-457. Springer International
Publishing, Cham (2016)

22. Soukal, R., Holub, P.: A note on packing chromatic number of the square lattice.
The Electronic Journal of Combinatorics 17(1), #N17 (Mar 2010)

23. Subercaseaux, B., Heule, M.J.H.: The Packing Chromatic Number of the Infinite
Square Grid Is at Least 14. In: Meel, K.S., Strichman, O. (eds.) 25th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 236, pp. 21:1-21:16.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2022)

24. Subercaseaux, B., Heule, M.J.H.: The packing chromatic number of the infinite
square grid is 15 (2023), https://arxiv.org/abs/2301.09757

Open Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1510.02374v1
http://arxiv.org/abs/1510.02374v1
https://arxiv.org/abs/2301.09757
http://creativecommons.org/licenses/by/4.0/

	The Packing Chromatic Number of the Infinite Square Grid is 15
	1 Introduction
	2 Background
	3 Optimizations
	3.1 “Plus”: a New Encoding
	3.2 Symmetry Breaking
	3.3 At-Least-One-Distance clauses
	3.4 Cube And Conquer Using Auxiliary Variables
	3.5 Optimizing the Center Color

	4 Verification
	5 Experiments
	6 Concluding Remarks and Future Work
	Acknowledgements
	References

