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Abstract

High-Fidelity (HF) simulations are essential in quantitative analysis and decision making
in engineering. In cases where explicit equations and/or derivatives are unavailable, or in
the form of intractable nonlinear formulations, simulation-based optimization methods
are used. We recently proposed a data-driven equivalent of spatial branch-and-bound that
constructs underestimators of high-fidelity simulation data. Within this framework, low-
fidelity surrogate data can also be used to inform underestimators. In this work, we utilize
the recent advances in hybrid multifidelity surrogate modeling techniques to improve the
validity of our underestimators, which leads to better bounds and incumbent optima with
lower sampling requirements. Specifically, we show that by modeling the error between
the high-fidelity and low-fidelity data, the surrogates learn more about the underlying
function with less sampling requirements.

Keywords: Data-driven Optimization, Branch-and-bound, Convex underestimators,
Multifidelity surrogate models, neural networks, support vector regression, hybrid
modeling.

1. Introduction

In many engineering fields, it is desirable to simulate complex processes and use these
quantifications of system performance for decision-making. Many such cases exist for
chemical engineers, including molecular simulations, flowsheet simulations,
computational fluid dynamic models, agent-based models, and more. These models are
referred to as High-Fidelity (HF) simulations. But often these HF function evaluations
are computationally expensive, and this implies that the number of function evaluations
is limited by cost or time. Adding to this difficulty, in most cases, the objective functions
and the constraints are only available as black-box evaluation function outputs (Fisher,
Watson et al. 2020, van de Berg, Savage et al. 2022, Zhai and Boukouvala 2022). As a
result, optimization of such systems becomes increasingly prohibitive. The absence of
information on the system calls in for derivative-free optimization (DFO) or simulation-
based optimization techniques. DFO techniques can be broadly classified into Sampling-
based and Model-based methods. Numerous algorithms have been proposed in the recent
years (Rios and Sahinidis 2013) for both cases. Sampling-based methods rely on
comparing the function values directly and utilize this information to further sample
adaptively. On the other hand, Model-based methods rely on constructing Machine
Learning (ML) surrogate models as approximations of HF simulations with the aim to
expedite the optimization process (Kim and Boukouvala 2020, Li, Dong et al. 2021). A
disadvantage of using sampling-based methods is that they require too many samples to
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infer the optimum solution, while in surrogate model-based approaches, constructing an
accurate surrogate can be challenging and computationally expensive. A solution that we
have recently proposed combines advantages of both the methods in the form of a data-
driven equivalent of the spatial branch-and-bound algorithm (DDSBB) (Zhai and
Boukouvala 2022). The key idea of DDSBB is based on constructing convex
underestimators of simulated data. A schematic of spatial branch-and-bound and its data-
driven equivalent are shown is Figure 1.
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In contrast to the conventional sample-based and surrogate-based approaches, DDSBB
employs some of the positive aspects of both. Like the sample-based approaches, it
adaptively samples in the search space and uses this information to improve the bounding
of the original function, by constructing the relaxations and pruning the subspaces that
are not promising. It also utilizes surrogates to construct Low fidelity (LF) data but does
not directly optimize the surrogates or rely on a single surrogate prediction. This LF data
can be utilized along with the HF data to build the convex relaxations. In our recent work
(Zhai and Boukouvala 2022), we have shown that by jointly using LF and HF data
(multifidelity MF), we can optimize a higher fraction of benchmark problems
While the MF approach employed in DDSBB showed promising performance, a fraction
of benchmark studies was still not optimized given limits on sampling requirements. In
this current work, we improve the performance of our framework by incorporating more
advanced hybrid multifidelity modeling techniques. Specifically, using the same amount
of HF data as before, we attempt to learn more about our underlying black-box problem
by modeling the error between the HF and LF data. The hypothesis is that this will overall
improve our underestimators, and consequently the overall efficiency of the DDSBB
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approach, without increasing sampling requirements. Recent studies show that there is
an increasing amount of focus in constructing surrogate models that combine data with
different fidelity (Meng and Karniadakis 2020, Bradley, Kim et al. 2022). These
Multifidelity Surrogate Models (MFSMs) exploit the relation between LF data and HF
data. In this study we integrate these MFSMs into the DDSBB architecture and quantify
their performance by benchmarking the method on 2-10 dimensional black-box
optimization problems.

2. Overview and explored methods
2.1.1. Multifidelity approach in DDSBB

The overview of DDSBB is shown in Figure 2. Initially, an input design is generated in
the variable search domain by employing Latin Hypercube Sampling (LHS) to generate
HF samples. This HF samples are then used for constructing quadratic underestimators
by employing the formulation shown in Equation (1). This is shown in the figure using a
solid red line. Subsequently, a set of branching, node selection and pruning rules are used
to adaptively add samples in the non-pruned subspaces until convergence. Alternatively,
as shown in red dotted line, if the MF approach is selected, these HF samples are used to
generate LF surrogate models and LF samples. These LF samples are then used along
with the HF samples to construct the underestimators. Currently, DDSBB has the
capability to use Support Vector Regression (SVR), Neural Networks (NN) and Gaussian
Process Regression (GPR) as the surrogate options. For the rest of the study, we utilize
SVR as the surrogate option.
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Figure 2: Overview of DDSBB. High-fidelity approach is shown in solid red line and
multi-fidelity approach is shown in dotted red line.

2.1.2. Multifidelity Surrogate models to improve LF data

There is an inherent trade-off between the number of HF samples that are used to
construct LF surrogates, and the accuracy of the constructed surrogates. Also, adding the
LF samples makes the convex underestimators more conservative with respect to
bounding the function. We have found that in certain cases this leads to improving their
validity, and as a result it leads to locating the global optimum of challenging benchmarks
(Zhai and Boukouvala 2022). At the same time, LF surrogate predictions can make the
underestimators overly conservative, thus leading to large sampling requirements for
convergence. In this work, our hypothesis is that, MFSMs can be used to improve the
accuracy of the LF data, which leads to improvement in underestimator validity. A
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widely used correlation to build MFSMs is: yy; = p(x)y, + 6(x) where y., vy
represent the low and high-fidelity data respectively, p(x) is multiplicative correlation
surrogate and §(x) is the additive surrogate. In a more general way, we can re-write it as
vy = F(x,y.). To establish a correlation between the HF and LF data, one would need
a HF and a LF model to generate that data (Meng and Karniadakis 2020, Bradley, Kim et
al. 2022). In case an LF model is available, it can be directly used. In cases where the LF
model is not available, we propose a framework (Workflow 1) shown below to create a
LF model using a fraction of available data.

Workflow 1: Constructing MFSMs
Let the data set [Xyp, Vyrlior represent the complete HF data.
Generate a training set data [Xyr, Yur]l = 75%[Xur, Yurltor
Set xyp < input and yyp < output,
While termination criteria not true:

1
Calculate MSEg g = N_LFZ?Z{(I.VLF = yurl?) + Bl dsyr Il
Tune SVR parameters

TRAIN SVR

Generate LF dataset [Xyg, Vir]tor using HF input [Xgr] o
Utilize the correlation y,; = F(x,y;) to model error between LF and HF outputs
irlior and [Yyr]or respectively using a NN

Set [XHF, yLF]tOt «— lnput and yHF «— Othput,
While termination criteria not true:

1 .
TRAINNN Calculate MSEyy = N_WZ?LHlFGYLF = Yurl®) + B2 Il dun 2
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In the Workflow 1, y;r, y;r represent output from SVR and NN. N, ¢, Ny is the number
of training data points and total HF data points. ;, 8, represent the regularization weights
and ¢gyr, Pyn represent the associated parameters with SVR and NN respectively. A
schematic for the Workflow 1 is shown in Figure 3.
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Figure 3: A schematic of the workflow for fitting the MFSMs. Part of the total HF data
set (shown in blue) is used to train LF SVR model and generate LF data y, ¢

3. Results and discussion

To understand and visualize the effect of MF and MFSM approach on underestimator
construction, we first take a 1- dimensional case study. Let us consider that the function
f(x) = sin(x) + sin(10x/3) is available as a black-box function, with x € [0, 9] and
known global solution at xopt = 5.14574. Figure 4 shows underestimators constructed
using HF, MF and MFSM approaches. We can see among all three approaches, the
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optimum solution identified is more accurate in MFSM approach and LF data in case of
MFSM approach is more accurate in comparison to MF approach, without increasing the
number of HF data collected.
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Figure 4: Comparison of constructed underestimators and LF data using HF, MF and
MFSM approaches. Black-box function is shown in red dotted line, HF samples in red
circles and LF samples in green circles. Underestimator is shown in solid black line.

Next, we test the performance of all three approaches on a large set of continuous box-
constrained benchmark problems with known global solutions (BARON 2022). The
benchmark problems were divided into two groups based on their dimensionality: lower
dimensional group containing 118 problems with 2-3 variables and higher dimensional
group containing 63 problems with 4-10 variables. All three approaches were initialized
with 10*dimension+1 initial samples and converge when the |UB — LB| < 0.05 or
|[UB — LB|/|LB| < 0.001. For the performance analysis, we use the criterion fpes <
max(f* + 0.01, (1.01)f*) to allow a tolerance limit towards the optimal solution found.
f*and fpes: represent the known global solution and the solution reported by DDSBB as
optimum. We study the fractions of problems solved with sampling and CPU
requirements based on pre and post convergence solutions. Pre-convergence and post-
convergence solutions represent the optimum solution found by the algorithm before and
after closing the UB-LB gap respectively. The performance curves for all three
approaches are shown in Figure 5. In Figure 5A, we can see that the MFSM approach
solves higher fraction of benchmark problems, and the pre-convergence solution quality
is better in both low and high dimensions groups. In Figure 5B, we show the CPU
requirements for the three approaches. The HF approach does not involve any surrogate
fitting, so the CPU time largely corresponds to HF sampling. On the other hand, CPU
time in MF and MFSM approaches also include surrogate modeling costs. As expected
MFSM approach takes higher CPU time for fitting the complex MFSM structure. Thus,
the advantage of this method is expected to be even greater when sampling cost increases.

1o Low Dimension Group 1o High Dimension Group A
89% HF post-convergence
—&— MF post-convergence
L S B~ o —®— MFSM post-convergence 4%
. HF pre-convergence
0.8 r P 0.8
g - 3 & MEF pre-convergence
= = ‘B MFSM preconvergence o —
2 ) [
0 @
£ 0.6 £ 0.6¢
2 2
| z
g £
=1 o = l
. ; -
204 S04
= 2 =]
2 i 2
I ) HF post-convergence c
E —4— MF post-convergence &
0.2 —8— MFSM post-convergence 0.21
HF pre-convergence
4 MF pre-convergence
W+ MFSM pre-convergence ;
00 o7 o To" 0" 0.0 o 0 o7 g Tor o7

number of samples collected number of samples collected



1318 S. Ravutla et al.

Low Dimension Group 10 High Dimension Group 3 B

HF 89% | HF
—k— MF | —— MF
—8— MFSM

74%

s ° o
. =) @©

Fraction of problems solved

Fraction of problems solved
2
i

10! 10" 10! 10+ 10+ 16¢ 0.0 10% 10 107 104 10 107

CPU (s) CPU (s)
Figure 5: Performance curves of HF, MF, MFSM approaches. A) Fraction of problems
solved vs sampling requirement, compared with pre and post convergence solutions

reported by the algorithm. B) Fraction of problems solved vs CPU requirement.
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4. Conclusions

In this work, we utilized multifidelity surrogate models as composite structures to model
the error between HF and LF data to improve the validity of constructed data-driven
underestimators embedded within a branch-and-bound framework. Results show that
using composite/hybrid multifidelity models for surrogate-based optimization is
promising, because it leads to more accurate surrogates with the same sampling cost but
requires additional CPU time for training.
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