
Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)         
PROCEEDINGS OF THE 33rd European Symposium on Computer Aided Process Engineering  
(ESCAPE33), June 18-21, 2023, Athens, Greece                                                                             
© 2023 Elsevier B.V. All rights reserved.   http://dx.doi.org/10.1016/B978-0-443-15274-0.50209-2 

Hybrid Modeling and Multi-Fidelity Approaches 
for Data-Driven Branch-and-Bound Optimization  
Suryateja Ravutlaa, Jianyuan Zhaib, Fani Boukouvalaa 

aDepartment of Chemical and BiomolecularEngineering, Georgia Institute of 
Technology, Atlanta, GA 30332 USA 
bEngineering & Data Sciences, Cargill Inc, Shanghai, 200031, China 
Email: sravutla3@gatech.edu  

Abstract 
High-Fidelity (HF) simulations are essential in quantitative analysis and decision making 
in engineering. In cases where explicit equations and/or derivatives are unavailable, or in 
the form of intractable nonlinear formulations, simulation-based optimization methods 
are used. We recently proposed a data-driven equivalent of spatial branch-and-bound that 
constructs underestimators of high-fidelity simulation data.  Within this framework, low-
fidelity surrogate data can also be used to inform underestimators.  In this work, we utilize 
the recent advances in hybrid multifidelity surrogate modeling techniques to improve the 
validity of our underestimators, which leads to better bounds and incumbent optima with 
lower sampling requirements. Specifically, we show that by modeling the error between 
the high-fidelity and low-fidelity data, the surrogates learn more about the underlying 
function with less sampling requirements.   
 
Keywords: Data-driven Optimization, Branch-and-bound, Convex underestimators, 
Multifidelity surrogate models, neural networks, support vector regression, hybrid 
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1. Introduction  
In many engineering fields, it is desirable to simulate complex processes and use these 
quantifications of system performance for decision-making. Many such cases exist for 
chemical engineers, including molecular simulations, flowsheet simulations, 
computational fluid dynamic models, agent-based models, and more.  These models are 
referred to as High-Fidelity (HF) simulations. But often these HF function evaluations 
are computationally expensive, and this implies that the number of function evaluations 
is limited by cost or time. Adding to this difficulty, in most cases, the objective functions 
and the constraints are only available as black-box evaluation function outputs (Fisher, 
Watson et al. 2020, van de Berg, Savage et al. 2022, Zhai and Boukouvala 2022). As a 
result, optimization of such systems becomes increasingly prohibitive. The absence of 
information on the system calls in for derivative-free optimization (DFO) or simulation-
based optimization techniques. DFO techniques can be broadly classified into Sampling-
based and Model-based methods. Numerous algorithms have been proposed in the recent 
years (Rios and Sahinidis 2013) for both cases. Sampling-based methods rely on 
comparing the function values directly and utilize this information to further sample 
adaptively. On the other hand, Model-based methods rely on constructing Machine 
Learning (ML) surrogate models as approximations of HF simulations with the aim to 
expedite the optimization process (Kim and Boukouvala 2020, Li, Dong et al. 2021). A 
disadvantage of using sampling-based methods is that they require too many samples to 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎,𝑏𝑏,𝑐𝑐  ∑𝑖𝑖
𝑁𝑁 �𝑓𝑓(𝒙𝒙𝒊𝒊) − 𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙𝒊𝒊)� 

s.t. 𝑓𝑓(𝒙𝒙𝒊𝒊) − 𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙𝒊𝒊) ≥ 0   ∀ 𝑖𝑖 = 1 to 𝑁𝑁 
𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙𝒊𝒊) = 𝒂𝒂𝒙𝒙𝒊𝒊2 + 𝒃𝒃𝒙𝒙𝒊𝒊 + 𝑐𝑐   ∀ 𝑖𝑖 = 1 to 𝑁𝑁 

𝒂𝒂 ≥ 0,          𝒂𝒂,𝒃𝒃 ∈ ℝ𝐷𝐷,   𝑐𝑐 ∈ ℝ 

 (1) 

In contrast to the conventional sample-based and surrogate-based approaches, DDSBB 
employs some of the positive aspects of both. Like the sample-based approaches, it 
adaptively samples in the search space and uses this information to improve the bounding 
of the original function, by constructing the relaxations and pruning the subspaces that 
are not promising. It also utilizes surrogates to construct Low fidelity (LF) data but does 
not directly optimize the surrogates or rely on a single surrogate prediction. This LF data 
can be utilized along with the HF data to build the convex relaxations. In our recent work 
(Zhai and Boukouvala 2022), we have shown that by jointly using LF and HF data 
(multifidelity MF), we can optimize a higher fraction of benchmark problems  
While the MF approach employed in DDSBB showed promising performance, a fraction 
of benchmark studies was still not optimized given limits on sampling requirements. In 
this current work, we improve the performance of our framework by incorporating more 
advanced hybrid multifidelity modeling techniques. Specifically, using the same amount 
of HF data as before, we attempt to learn more about our underlying black-box problem 
by modeling the error between the HF and LF data. The hypothesis is that this will overall 
improve our underestimators, and consequently the overall efficiency of the DDSBB 

 

infer the optimum solution, while in surrogate model-based approaches, constructing an 
accurate surrogate can be challenging and computationally expensive. A  solution that we 
have recently proposed combines advantages of both the methods in the form of a data-
driven equivalent of the spatial branch-and-bound algorithm (DDSBB)  (Zhai and 
Boukouvala 2022). The key idea of DDSBB is based on constructing convex 
underestimators of simulated data. A schematic of spatial branch-and-bound and its data-
driven equivalent are shown is Figure 1.  
These underestimators serve 
as relaxations and are convex, 
so they can be efficiently 
optimized, circumventing the 
task of directly optimizing 
nonconvex fitted surrogates. 
Samples drawn from the HF 
simulation serve as upper 
bounds (UB) of the global 
optimum and the minimum of 
the convex underestimator 
serve as lower bounds (LB). 
The search space is then 
progressively partitioned by 
using branching, node 
selection and pruning rules 
and adaptively sampling in 
the non-pruned subspaces. To 
build underestimators, using 
N samples, the underlying 
formulation is shown in 
Equation 1. 

 

 
Figure 1: Deterministic Spatial Branch-and-Bound, 
and Data-Driven Spatial Branch-and-Bound, and the 
process of branching and bounding in both variants 
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approach, without increasing sampling requirements.  Recent studies show that there is 
an increasing amount of focus in constructing surrogate models that combine data with 
different fidelity (Meng and Karniadakis 2020, Bradley, Kim et al. 2022). These 
Multifidelity Surrogate Models (MFSMs) exploit the relation between LF data and HF 
data. In this study we integrate these MFSMs into the DDSBB architecture and quantify 
their performance by benchmarking the method on 2-10 dimensional black-box 
optimization problems. 

2. Overview and explored methods    
2.1.1. Multifidelity approach in DDSBB 

The overview of DDSBB is shown in Figure 2. Initially, an input design is generated in 
the variable search domain by employing Latin Hypercube Sampling (LHS) to generate 
HF samples. This HF samples are then used for constructing quadratic underestimators 
by employing the formulation shown in Equation (1). This is shown in the figure using a 
solid red line. Subsequently, a set of branching, node selection and pruning rules are used 
to adaptively add samples in the non-pruned subspaces until convergence. Alternatively, 
as shown in red dotted line, if the MF approach is selected, these HF samples are used to 
generate LF surrogate models and LF samples. These LF samples are then used along 
with the HF samples to construct the underestimators.  Currently, DDSBB has the 
capability to use Support Vector Regression (SVR), Neural Networks (NN) and Gaussian 
Process Regression (GPR) as the surrogate options. For the rest of the study, we utilize 
SVR as the surrogate option. 

 
Figure 2: Overview of DDSBB. High-fidelity approach is shown in solid red line and 
multi-fidelity approach is shown in dotted red line. 
 
2.1.2. Multifidelity Surrogate models to improve LF data 

There is an inherent trade-off between the number of HF samples that are used to 
construct LF surrogates, and the accuracy of the constructed surrogates. Also, adding the 
LF samples makes the convex underestimators more conservative with respect to 
bounding the function. We have found that in certain cases this leads to improving their 
validity, and as a result it leads to locating the global optimum of challenging benchmarks 
(Zhai and Boukouvala 2022). At the same time, LF surrogate predictions can make the 
underestimators overly conservative, thus leading to large sampling requirements for 
convergence. In this work, our hypothesis is that, MFSMs can be used to improve the 
accuracy of the LF data,  which leads to improvement in underestimator validity. A 
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widely used correlation to build MFSMs is: 𝑦𝑦𝐻𝐻 =  𝜌𝜌(𝑥𝑥)𝑦𝑦𝐿𝐿 +  𝛿𝛿(𝑥𝑥) where 𝑦𝑦𝐿𝐿,𝑦𝑦𝐻𝐻  
represent the low and high-fidelity data respectively, 𝜌𝜌(𝑥𝑥) is multiplicative correlation 
surrogate and 𝛿𝛿(𝑥𝑥) is the additive surrogate. In a more general way, we can re-write it as 
𝑦𝑦𝐻𝐻  =  𝐹𝐹(𝑥𝑥,𝑦𝑦𝐿𝐿). To establish a correlation between the HF and LF data, one would need 
a HF and a LF model to generate that data (Meng and Karniadakis 2020, Bradley, Kim et 
al. 2022). In case an LF model is available, it can be directly used. In cases where the LF 
model is not available, we propose a framework (Workflow 1) shown below to create a 
LF model using a fraction of available data. 

Workflow 1: Constructing MFSMs 
Let the data set [𝒙𝒙𝐻𝐻𝐻𝐻 ,𝑦𝑦𝐻𝐻𝐻𝐻]𝑡𝑡𝑡𝑡𝑡𝑡  represent the complete HF data.  
Generate a training set data [𝒙𝒙𝐻𝐻𝐻𝐻 ,𝑦𝑦𝐻𝐻𝐻𝐻] =  75%[𝒙𝒙𝐻𝐻𝐻𝐻 ,𝑦𝑦𝐻𝐻𝐻𝐻]𝑡𝑡𝑡𝑡𝑡𝑡 

TRAIN SVR 

Set 𝒙𝒙𝐻𝐻𝐻𝐻 ← input and 𝑦𝑦𝐻𝐻𝐻𝐻 ← output, 
While termination criteria not true: 
          Calculate  𝑀𝑀𝑀𝑀𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 = 1

𝑁𝑁𝐿𝐿𝐿𝐿
∑𝑖𝑖=1
𝑁𝑁𝐿𝐿𝐿𝐿  (|𝑦𝑦𝐿𝐿𝐿𝐿 − 𝑦𝑦𝐻𝐻𝐻𝐻|2) + 𝛽𝛽1 ∥ 𝜙𝜙𝑆𝑆𝑆𝑆𝑆𝑆 ∥2 

          Tune SVR parameters 

Generate LF dataset [𝒙𝒙𝐻𝐻𝐻𝐻 ,𝑦𝑦𝐿𝐿𝐿𝐿]𝑡𝑡𝑡𝑡𝑡𝑡 using HF input [𝒙𝒙𝐻𝐻𝐻𝐻]𝑡𝑡𝑡𝑡𝑡𝑡 
Utilize the correlation 𝑦𝑦𝐻𝐻  =  𝐹𝐹(𝑥𝑥,𝑦𝑦𝐿𝐿) to model error between LF and HF outputs 
[𝑦𝑦𝐿𝐿𝐿𝐿]𝑡𝑡𝑡𝑡𝑡𝑡 and [𝑦𝑦𝐻𝐻𝐻𝐻]𝑡𝑡𝑡𝑡𝑡𝑡 respectively using a NN 

TRAIN NN 

Set [𝒙𝒙𝐻𝐻𝐻𝐻 ,𝑦𝑦𝐿𝐿𝐿𝐿]𝑡𝑡𝑡𝑡𝑡𝑡 ← input and 𝑦𝑦𝐻𝐻𝐻𝐻 ← output, 
While termination criteria not true: 
          Calculate  𝑀𝑀𝑀𝑀𝐸𝐸𝑁𝑁𝑁𝑁 = 1

𝑁𝑁𝐻𝐻𝐻𝐻
∑𝑖𝑖=1
𝑁𝑁𝐻𝐻𝐻𝐻  (|𝑦𝑦𝐿𝐿𝐿𝐿∗ − 𝑦𝑦𝐻𝐻𝐻𝐻|2) + 𝛽𝛽2 ∥ 𝜙𝜙𝑁𝑁𝑁𝑁 ∥2  

          Tune NN parameters 

In the Workflow 1,  𝑦𝑦𝐿𝐿𝐿𝐿 ,𝑦𝑦𝐿𝐿𝐿𝐿∗   represent output from SVR and NN. 𝑁𝑁𝐿𝐿𝐿𝐿, 𝑁𝑁𝐻𝐻𝐻𝐻 is the number 
of training data points and total HF data points. 𝛽𝛽1,𝛽𝛽2  represent the regularization weights 
and 𝜙𝜙𝑆𝑆𝑆𝑆𝑆𝑆, 𝜙𝜙𝑁𝑁𝑁𝑁 represent the associated parameters with SVR and NN respectively. A 
schematic for the Workflow 1 is shown in Figure 3. 

 
Figure 3: A schematic of the workflow for fitting the MFSMs. Part of the total HF data 

set (shown in blue) is used to train LF SVR model and generate LF data 𝑦𝑦𝐿𝐿𝐿𝐿  

3. Results and discussion 
To understand and visualize the effect of MF and MFSM approach on underestimator 
construction, we first take a 1- dimensional case study. Let us consider that the function 
𝑓𝑓(𝑥𝑥) =  𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)  +  𝑠𝑠𝑠𝑠𝑠𝑠(10𝑥𝑥/3) is available as a black-box function, with 𝑥𝑥 ∈ [0, 9] and 
known global solution at 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =  5.14574.  Figure 4 shows underestimators constructed 
using HF, MF and MFSM approaches. We can see among all three approaches, the 
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optimum solution identified is more accurate in MFSM approach and LF data in case of 
MFSM approach is more accurate in comparison to MF approach, without increasing the 
number of HF data collected.  

 
Figure 4: Comparison of constructed underestimators and LF data using HF, MF and 
MFSM approaches. Black-box function is shown in red dotted line, HF samples in red 
circles and LF samples in green circles. Underestimator is shown in solid black line.  
 
Next, we test the performance of all three approaches on a large set of continuous box-
constrained benchmark problems with known global solutions (BARON 2022). The 
benchmark problems were divided into two groups based on their dimensionality: lower 
dimensional group containing 118 problems with 2-3 variables and higher dimensional 
group containing 63 problems with 4-10 variables. All three approaches were initialized 
with 10*dimension+1 initial samples and converge when the |𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿| ≤ 0.05 or 
|𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿|/|𝐿𝐿𝐿𝐿|  ≤ 0.001. For the performance analysis, we use the criterion 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤
𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓∗ + 0.01,  (1.01)𝑓𝑓∗) to allow a tolerance limit towards the optimal solution found. 
𝑓𝑓∗and 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represent the known global solution and the solution reported by DDSBB as 
optimum. We study the fractions of problems solved with sampling and CPU 
requirements based on pre and post convergence solutions. Pre-convergence and post-
convergence solutions represent the optimum solution found by the algorithm before and 
after closing the UB-LB gap respectively. The performance curves for all three 
approaches are shown in Figure 5. In Figure 5A, we can see that the MFSM approach 
solves higher fraction of benchmark problems, and the pre-convergence solution quality 
is better in both low and high dimensions groups.  In Figure 5B, we show the CPU 
requirements for the three approaches. The HF approach does not involve any surrogate 
fitting, so the CPU time largely corresponds to HF sampling. On the other hand, CPU 
time in MF and MFSM approaches also include surrogate modeling costs. As expected 
MFSM approach takes higher CPU time for fitting the complex MFSM structure. Thus, 
the advantage of this method is expected to be even greater when sampling cost increases. 
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Figure 5: Performance curves of HF, MF, MFSM approaches. A) Fraction of problems 
solved vs sampling requirement, compared with pre and post convergence solutions 
reported by the algorithm. B) Fraction of problems solved vs CPU requirement. 

4. Conclusions 
In this work, we utilized multifidelity surrogate models as composite structures to model 
the error between HF and LF data to improve the validity of constructed data-driven 
underestimators embedded within a branch-and-bound framework. Results show that 
using composite/hybrid multifidelity models for surrogate-based optimization is 
promising, because it leads to more accurate surrogates with the same sampling cost but 
requires additional CPU time for training.  
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