®

Check for
updates

A Linear Weight Transfer Rule for Local
Search

Md Solimul Chowdhury®)@®, Cayden R. Codel®, and Marijn J.H. Heule

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
{mdsolimc,ccodel,mheule}@cs.cmu.edu

Abstract. The Divide and Distribute Fized Weights algorithm (DDFW)
is a dynamic local search SAT-solving algorithm that transfers weight
from satisfied to falsified clauses in local minima. DDFW is remarkably
effective on several hard combinatorial instances. Yet, despite its success,
it has received little study since its debut in 2005. In this paper, we pro-
pose three modifications to the base algorithm: a linear weight transfer
method that moves a dynamic amount of weight between clauses in local
minima, an adjustment to how satisfied clauses are chosen in local min-
ima to give weight, and a weighted-random method of selecting variables
to flip. We implemented our modifications to DDFW on top of the solver
yalsat. Our experiments show that our modifications boost the perfor-
mance compared to the original DDFW algorithm on multiple benchmarks,
including those from the past three years of SAT competitions. Moreover,
our improved solver exclusively solves hard combinatorial instances that
refute a conjecture on the lower bound of two Van der Waerden num-
bers set forth by Ahmed et al. (2014), and it performs well on a hard
graph-coloring instance that has been open for over three decades.

1 Introduction

Satisfiability (SAT) solvers are powerful tools, able to efficiently solve problems
from a broad range of applications such as verification [12], encryption [26], and
planning [10,18]. The most successful solving paradigm is conflict-driven clause
learning (CDCL) [20,25]. However, stochastic local search (SLS) outperforms
CDCL on many classes of satisfiable formulas [7,19,23,24,28], and it can be
used to guide CDCL search [8].

SLS algorithms solve SAT instances by incrementally changing a truth ass-
ignment until a solution is found or until timeout. At each step, the algorithm
flips the truth value of a single boolean variable according to some heuristic. A
common heuristic is flipping variables that reduce the number of falsified clauses
in the formula. The algorithm reaches a local minimum when no variable can be
flipped to improve its heuristic. At that point, the algorithm either adjusts its
truth assignment or internal state to escape the local minimum, or it starts over.
Refer to chapter 6 from the Handbook of Satisfiability [4] for a more detailed
discussion of SLS algorithms.

The authors were supported by NSF grant CCF-2006363. Md Solimul Chowdhury
was partially supported by a NSERC Postdoctoral Fellowship.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 447-463, 2023.
https://doi.org/10.1007/978-3-031-33170-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33170-1_27&domain=pdf
http://orcid.org/0000-0001-8429-2108
http://orcid.org/0000-0003-3588-4873
http://orcid.org/0000-0002-5587-8801
https://doi.org/10.1007/978-3-031-33170-1_27

448 Chowdhury et al.

Dynamic local search (DLS) algorithms are SLS algorithms that assign a
weight to each clause. They then flip variables to reduce the amount of weight
held by the falsified clauses. DLS algorithms escape local minima by adjusting
clause weights until they can once again flip variables to reduce the amount of
falsified weight.

Several DLS algorithms have been studied. For example, the Pure Addi-
tive Weighting Scheme algorithm (PAWS) [27] and the Scaling and Probabilistic
Smoothing algorithm (SAPS) [15] both increase the weight of falsified clauses in
local minima. A drawback of this method of escaping local minima is that the
clause weights must periodically be re-scaled to prevent overflow.

The Divide and Distribute Fixed Weights algorithm (DDFW) [16] introduces
an alternative way of escaping local minima: increase the weight of falsified
clauses by taking weight from satisfied clauses. In local minima, DDFW moves a
fixed, constant amount of weight to each falsified clause from a satisfied clause
it shares at least one literal with. The transfer method keeps the total amount
of clause weight constant, eliminating the need for a re-scaling phase. Another
consequence of this transfer method is that as more local minima are encoun-
tered, difficult-to-satisfy clauses gather more weight. Thus, DDFW dynamically
identifies and prioritizes satisfying hard clauses.

Recent work using DDFW as a black box showed the effectiveness of the al-
gorithm. For example, DDFW (as implemented in UBCSAT [29]!) is remarkably
effective on matrix multiplication and graph-coloring problems [13,14]. Yet de-
spite its success, DDFW has received little research attention. In this paper, we
revisit the DDFW algorithm to study why it works well and to improve its per-
formance.

Our contributions are as follows. We propose three modifications to the DDFW
algorithm. We first introduce a linear weight transfer rule to allow for a more
dynamic transfer of weight in local minima. We then adjust a performance-
critical parameter that randomizes which satisfied clause gives up weight in
local minima. Our adjustment is supported by an empirical analysis. Finally,
we propose a new randomized method for selecting which variable to flip. We
implement each of our modifications on top of the state-of-the-art SLS solver
yalsat to create a new implementation of DDFW that supports parallelization
and restarts. We then evaluate our solver against a set of challenging benchmarks
collected from combinatorial problem instances and the past three years of SAT
competitions. Our results show that our modifications boost the performance
of DDFW: Our best-performing version of DDFW solves 118 SAT Competition
instances, a vast improvement over a baseline of 83 solves from the original
algorithm. Our solver also exhibits a 16% improvement over the baseline on
a set of combinatorial instances. Moreover, in parallel mode, our solver solves
instances that refute a conjecture on the lower bound of two van der Waerden
numbers [2], and it matches performance with the winning SLS solver from the

1 To the best of our knowledge, there is no official implementation or binary of original
DDFW [16] available.

A Linear Weight Transfer Rule for Local Search 449

2021 SAT competition on a graph-coloring instance that has been open for the
past three decades.

2 Preliminaries

SAT solvers operate on propositional logic formulas in conjunctive normal form
(CNF). A CNF formula F' = \\; C; is a conjunction of clauses, and each clause C; =
\V j ¢; is a disjunction of boolean literals. We write v and v as the positive and
negative literals for the boolean variable v, respectively.

A truth assignment « maps boolean variables to either true or false. A literal v
(resp. U) is satisfied by « if «(v) is true (a(v) is false, respectively). A clause C
is satisfied by « if « satisfies at least one of its literals. A formula F is satisfied
by «a exactly when all of its clauses are satisfied by a. Two clauses C' and D are
neighbors if there is a literal ¢ with £ € C' and ¢ € D. Let Neighbors(C) be the
set of neighbors of C' in F', excluding itself.

Many SLS algorithms assign a weight to each clause. Let W : C — R>q be
the mapping that assigns weights to the clauses in C. One can think of W(C)
as the cost to leave C' falsified. We call the total amount of weight held by the
falsified clauses, the falsified weight. A variable that, when flipped, reduces the
falsified weight is called a weight-reducing variable (wrv). A variable that doesn’t
affect the falsified weight when flipped is a sideways variable (sv).

3 The DDFW Algorithm

Algorithm 1 shows the pseudocode for the DDFW algorithm. DDFW attempts to
find a satisfying assignment for a given CNF formula F' over MAXTRIES trials.
The weight of each clause is set to wg at the start of the algorithm. Each trial
starts with a random assignment. By following a greedy heuristic method, DDFW
selects and then flips weight-reducing variables until none are left. At this point,
it either flips a sideways variable, if one exists and if a weighted coin flip succeeds,
or it enters the weight transfer phase, where each falsified clause receives a
fixed amount of weight from a maximum-weight satisfied neighbor. Occasionally,
DDFW transfers weight from a random satisfied clause instead, allowing weight
to move more fluidly between neighborhoods. The amount of weight transferred
depends on whether the selected clause has more than wy weight.

There are five parameters in the original DDFW algorithm: the initial weight wq
given to each clause, the two weighted-coin thresholds spt and cspt for sideways
flips and transfers from random satisfied clauses, and the amount of weight to
transfer in local minima c- and c— . In the original DDFW paper, these five
values are fixed constants, with wy = 8, spt = 0.15, cspt = 0.01, ¢s = 2, and
c_=1.

DDFW is unique in how it transfers weight in local minima. Similar SLS
algorithms increase the weight of falsified clauses (or decrease the weight of
satisfied clauses) globally; weight is added and removed based solely on whether

450 Chowdhury et al.

Algorithm 1: The bDFW algorithm
Input: CNF Formula F'| wo, spt, cspt, ¢> , c=
Output: Satisfiability of F’

1 W(C) «—wp forall C € F

2 for t =1 to MAXTRIES do

3 « <« random truth assignment on the variables in F'
4 for f=1to MAXFLIPS do
5 if « satisfies F' then return “SAT”
6 else
7 if there is a wrv then
8 Flip a wrv that most reduces the falsified weight
9 else if there is a sv and rand < spt then
10 Flip a sideways variable
11 else
12 foreach falsified clause C' do
13 Cs «— maximum-weighted satisfied clause in Neighbors(C)
14 if W(Cs) < wo or rand < cspt then
15 Cs «+ random satisfied clause with W > wyg
16 if W(Cs) > wo then
17 Transfer ¢~ weight from Cs to C'
18 else
19 Transfer c= weight from Cs to C

20 return “No SAT”

the clause is satisfied. DDFW instead moves weight among clause neighborhoods,
with falsified clauses receiving weight from satisfied neighbors.

One reason why this weight transfer method may be effective is that satisfying
a falsified clause C by flipping literal £ to ¢ (€ C) increases the number of true
literals in satisfied clauses that neighbor C' on ¢. Thus, C borrows weight from
satisfied clauses that tend to remain satisfied when C' itself becomes satisfied.
As a result, DDFW satisfies falsified clauses while keeping satisfied neighbors
satisfied.

The existence of two weight transfer parameters cs. and c— deserves dis-
cussion. Let heavy clauses be those clauses C' with W(C') > wg. Lines 16-19
in Algorithm 1 allow for a different amount of weight to be taken from heavy
clauses than from clauses with the initial weight. Because lines 14-15 ensure that
the selected clause C will have at least wg weight, c— is used when W (C5) = wo
and cs is used when W (Cy) > wq (hence the notation). The original algorithm
sets ¢ = 2 and c— = 1, which has the effect of taking more weight from heavy
clauses.

4 Solvers, Benchmarks, and Hardware

The authors of the original DDFW algorithm never released their source code or
any binaries. The closest thing we have to a reference implementation is the one

A Linear Weight Transfer Rule for Local Search 451

in the SLS SAT-solving framework UBCSAT [28,29]. We call this implementation
ubc-ddfw, and we use it as a baseline in our experiments.

Unfortunately, ubc-ddfw cannot be extended to implement our proposed
modifications due to its particular architecture. Instead, we implemented DDFW
on top of yalsat [5], which is currently one of the strongest local search SAT
solvers. For example, it is the only local search solver in Mallob-mono [22], the
clear winner of the cloud track in the SAT Competitions of 2020, 2021, and
2022. yalsat uses PROBSAT [3] as its underlying algorithm, which flips variables
in falsified clauses drawn from an exponential probability distribution.

One benefit of implementing DDFW on top of yalsat is that is yalsat sup-
ports parallelization, which can be helpful when solving challenging formulas.
In our experiments, we compare our implementation of DDFW to ubc-ddfw to
verify that the two implementations behave similarly.

Our implementation of DDFW on top of yalsat was not straightforward.
First, we switched the underlying SLS algorithm from PROBSAT to DDFW. Then
we added additional data structures and optimizations to make our implemen-
tation efficient. For example, one potential performance bottleneck for DDFW is
calculating the set of weight-reducing variables for each flip. Every flip and adjust-
ment of clause weight can change the set, so the set must be re-computed often.
A naive implementation that loops through all literals in all falsified clauses is
too slow, since any literal may appear in several falsified clauses, leading to re-
dundant computation. Instead, we maintain a list of variables uvars that appear
in any falsified clause. After each flip, this list is updated. To compute the set
of weight-reducing variables, we iterate over the variables in uvars, hitting each
literal once. In this way, we reduce redundant computation.

Adding our proposed modifications to our implementation was simpler. We
represent clause weights with floating-point numbers, and the linear weight trans-
fer rule replaced the original one. We also made the variable selection and weight
transfer methods modular, so our modifications slot in easily.?

We evaluated our implementations of DDFW against two benchmarks. The
Combinatorial (COMB) set consists of 65 hard instances from the following
eight benchmarks families collected by Heule:® (i) 26x26 (4 grid positioning
instances), (ii) asias (2 almost square packing problems), (iii) MM (20 matrix
multiplication instances), (iv) mphf (12 cryptographic hash instances), (v) ptn (2
Pythagorean triple instances), (vi) Steiner (3 Steiner triples cover instances [21]),
(vii) wap (9 graph-coloring instances [17]), and (viii) vdw (13 van der Waerden
number instances). These benchmarks are challenging for modern SAT solvers,
including SLS solvers. The wap benchmark contains three instances that have
been open for three decades, and vdw contains two instances that, if solved, refute
conjectures on lower-bounds for two van der Waerden numbers [2].

The SAT Competition (SATComp) set consists of all 1,174 non-duplicate
main-track benchmark instances from the 2019 SAT Race and the 2020 and

2 Source code of our system are available at https://github.com/solimul/yal-lin
3 https://github.com/marijnheule/benchmarks

https://github.com/solimul/yal-lin
https://github.com/marijnheule/benchmarks

452 Chowdhury et al.

2021 SAT Competitions. The competition suites contain medium-hard to very
challenging benchmarks, most of which are contributed by the competitors.

Unless otherwise specified, we used a timeout of 18,000 and 5,000 seconds for
the COMB and SATComp instances, respectively, in our experiments.

We used the StarExec cluster [1], where each node has an Intel CPU E5 CPU
with a 2.40 GHz clock speed and a 10240 KB cache. For experiments in this clus-
ter, we used at most 64 GB of RAM. To perform experiments on the 3 open wap
and 2 vdw instances, we used a different cluster with the following specifications:
we use the Bridges2 [6] cluster from the Pittsburgh Supercomputing Center with
the following specifications: two AMD EPYC 7742 CPUs, each with 64 cores,
256MB of L3 cache, and 512GB total RAM memory.

5 Modifications to the DDFW Algorithm

We propose three modifications to DDFW. The first is a linear rule for transferring
a dynamic amount of weight in local minima. The second is an adjustment of
the cspt parameter. The third is the introduction of a weighted-random method
for selecting which variable to flip.

5.1 The Linear Weight Transfer Rule

The reference implementation of DDFW, ubc-ddfw, represents its clause weights
as integers and transfers fixed integer weights in local minima. While this de-
sign decision allows ubc-ddfw to have a fast implementation, it unnecessarily
restricts the amount of weight transferred in local minima to be integer-valued.
In addition, the choice to transfer a fixed, constant amount of weight prevents
DDFW from adapting to situations where more weight must be transferred to
escape a local minimum, thus requiring multiple weight transfer rounds. To ad-
dress these concerns, we propose a dynamic linear weight transfer rule to operate
on floating-point-valued clause weights.

Let Cs be the selected satisfied clause from which to take weight in a local
minimum, as in line 13 in Algorithm 1. Our new rule transfers

axW(Cs)+c

weight, where 0 < a <1 is a multiplicative parameter and ¢ > 0 is an additive
parameter.

It is not clear that the addition of a multiplicative parameter is helpful, nor
what a good pair of (a, ¢) values would be. So, we performed a parameter search
with our solver for a € [0,0.2] in steps of 0.05 and ¢ € [0,2] in steps of 0.25
for both of our instance sets with a 900 second timeout per run. (A parameter
search using all 1,174 instances in the SATComp set was not feasible. We instead
did the search on the 168 instances from SATComp set that were solved by some

A Linear Weight Transfer Rule for Local Search 453

setting in earlier experimentation. In Section 6, all instances are used.) The PAR-
2 scores? for the SATComp and COMB benchmark sets for each pair of (a, c)
values are shown in Figure 1.

PAR-2 score
PAR-2 score

Fig. 1. Parameter searches for a € [0,0.2] in steps of 0.05 and c € [0, 2] in steps of 0.25
on the SATComp (left plot) and COMB (right plot) instances. A lower PAR-2 score is
better. There is not a datum for (a, c) = (0, 0) since no weight would be transferred.

The plots in Figure 1 show that values of a and c close to 0 degrade perfor-
mance, likely due to the need for many weight-transfer rounds to escape local
minima. The beneficial effect of higher values of a and c is more pronounced in
the parameter search on the SATComp instances (the left plot). Since the best-
performing settings have nonzero a and ¢ values, we infer that both parameters
are needed for improved performance.

5.2 How Much Weight Should be Given Away Initially?

On lines 16-19 of Algorithm 1, DDFW takes cs weight away from the selected
clause Cs if Cy is heavy and c— weight otherwise. The linear rule introduced
above can similarly be extended to four parameters: as., a_, ¢, and c_.

In the original DDFW paper, c~ (= 2) is greater than c_ (= 1), meaning that
heavy clauses give away more weight than clauses with the initial weight in local
minima. The intuition behind this is simple: clauses with more weight should
give away more weight. For the extended linear rule, one could adopt a similar
strategy by setting a- greater than a_ and c- greater than c_.

However, one effect of our proposed linear rule is that once clauses give or
receive weight, they almost never again have exactly wg weight. As a result, the
parameters a— and c— control how much weight a clause gives away initially.
Since the maximum-weight neighbors of falsified clauses tend to be heavy as
the search proceeds, the effect of a— and c_ diminishes over time, but they
remain important at the start of the search and for determining how much

4 The PAR-2 score is defined as the average solving time, while taking 2 * timeout as
the time for unsolved instances. A lower score is better.

454 Chowdhury et al.

N
o

— .
¢

:

<

)
T
c
.
.
|

PAR-2 score
[t
13
|

| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cspt value

Fig. 2. The impact of cspt values on the performance of DDFW on the wap instances.

weight the algorithm has available to assign to harder-to-satisfy clauses. The
findings in a workshop paper [9] by two co-authors of this paper indicate that
DDFW achieves a better performance when clauses initially give more weight.
These findings suggest setting c_ greater than c- and a— greater than a~. In
Section 6, we evaluate DDFW on the extended linear rule and investigate whether
clauses should initially give away more or less weight.

5.3 The cspt Parameter

On lines 14-15 of Algorithm 1, DDFW sometimes discards the maximum-weight
satisfied neighboring clause Cs and instead selects a random satisfied clause.
The cspt parameter controls how often the weighted coin flip on line 14 suc-
ceeds. Though these two lines may appear to be minor, a small-scale experiment
revealed that the cspt parameter is performance-critical. We ran our implemen-
tation of the original DDFW algorithm on the COMB set with an 18,000 second
timeout. When we set cspt to 0, meaning that falsified clauses received weight
solely from satisfied neighbors, it solved a single instance; when we set cspt to
0.01 (the value in the original DDFW algorithm), it solved 21 instances.

Among the eight families in COMB, the wap family was the most sensitive to
the change of cspt value from 0 (solved 0) to 0.01 (solved 6 out of 9). We isolated
these nine instances and ran a parameter search on them for cspt € [0.01,1] in
steps of 0.01, for a total of 900 runs. We used an 18,000 second timeout per run.
The PAR-2 scores are reported in Figure 2.

In Figure 2, we observe that cspt values near 0 and above 0.2 cause an
increase in the PAR-2 score. These results indicate that DDFW is sensitive to
the cspt value and that the cspt value should be set higher than its original
value of 0.01, but not too high, which could potentially degrade the performance
of the solver. We use these observations to readjust the cspt parameter in our
empirical evaluation presented in Section 6.

A Linear Weight Transfer Rule for Local Search 455

5.4 A Weighted-random Variable Selection Method

On line 8 of Algorithm 1, DDFW flips a weight-reducing variable that most re-
duces the amount of falsified weight. Such a greedy approach may prevent DDFW
from exploring other, potentially better areas of the search space. Inspired by
PROBSAT, which makes greedy moves only some of the time, we introduce a
new randomized method that flips a weight-reducing variable according to the
following probability distribution:

AW (v)
Zvewrv AW(’U) 7

where AW (v) is the reduction in falsified weight if v is flipped.

P(Flipping wrv v) =

6 Empirical Evaluation

In this section, we present our empirical findings. Since we evaluated several
different solvers, we refer to the solvers by the following names: the UBCSAT
version of DDFW is ubc-ddfw, the version of yalsat that implements PROBSAT
is yal-prob, and our implementation of DDFW on top of yalsat is yal-lin. In
all of our experiments, we use the default random seed® present in each solver,
and we set the initial clause weight wg = 8, as in the original DDFW paper.

In our experiments with yal-1in, we varied the configuration of the solver
according to our proposed modifications. We use the identifying string W-cC-P
to refer to a configuration for yal-1lin, where W € {fw, 1w} is the weight transfer
method (fw stands for “fixed weight,” 1w for “linear weight”), C € {0.01,0.1} is
the cspt value, and P € {grdy,wrnd} is the variable selection method (grdy
stands for the original “greedy” method, and wrnd stands for our proposed
“weighted random” method). For example, the string fw-c.01-grdy describes
the original DDFW algorithm, with ¢ = 2 and c= = 1.

6.1 Evaluation Without Restarts

We evaluate how yal-1lin performs without restarts, meaning that DDFW runs
until timeout without starting from a fresh random assignment. To disable
restarts, we set MAXTRIES to 1 and MAXFLIPS to an unlimited number of
flips. For the COMB and SATComp benchmark sets, we set a timeout of 18,000
and 5,000 seconds, respectively.

We first checked that our solver yal-1lin (with configuration fw-c.01-grdy)
behaves similarly to the baseline implementation, ubc-ddfw. The solvers per-
formed almost identically on the two benchmark sets: ubc-ddfw solved 22 of the
COMB instances and 80 of the SATComp instances; yal-1lin solved 21 and 83,

5 Results for additional experiments with a different seed is available at:
https://github.com/solimul/additional-experiments-nfm23/blob /master/
additional_results_nfm2023.pdf

https://github.com/solimul/additional-experiments-nfm23/blob/master/additional_results_nfm2023.pdf
https://github.com/solimul/additional-experiments-nfm23/blob/master/additional_results_nfm2023.pdf

456 Chowdhury et al.

Table 1. Solve counts and PAR-2 scores for different configurations of yal-1lin. The
configurations vary the cspt value and the variable selection method, with the weight
transfer method being fw. The best configuration for each benchmark is bolded.

| COMB | SATComp
cspt ‘ grdy ‘ wrnd ‘ grdy ‘ wrnd
value ‘ #solved PAR-2 ‘ #solved PAR-2 ‘ #solved PAR-2 ‘ #solved PAR-2

001 | 21 25393 | 24 23871 | 83 9339 | 87 9312
0.1 | 24 23137 | 25 22538 | 98 9223 | 103 9188

respectively. We attribute the slight difference in solve counts to random noise.
These results indicate that we implemented yal-1in correctly.

We next evaluate how yal-lin performs under changes in the cspt value
and variable selection method. We run yal-1lin with the fixed weight transfer
method on both benchmarks with all four combinations of C € {0.01,0.1} and
P € {grdy,wrnd}. The solve counts and PAR-2 scores are shown in Table 1.

Isolating just the change in variable selection method (scanning across rows
in Table 1), we see that the weighted-random method outperforms the greedy
method for each benchmark and cspt value. There is improvement both in the
solve count (ranging from an additional 1 to 5 solves) and in the PAR-2 score.
While the improvements may be random noise, the results indicate that injecting
some randomness into how variables are flipped may lead to better performance.

Isolating the change in cspt value (scanning down columns in Table 1), we
see that the higher cspt value of 0.1 outperforms the cspt value of 0.01. Im-
provements range from 1 additional solve to 16 additional solves. We note that
the improvements when increasing the cspt value are more pronounced than
when changing the variable selection method, which gives further evidence that
the cspt value is performance-critical. In Section 7, we present a possible expla-
nation for why the cspt parameter is so important.

The linear weight transfer rule. As we noted in Section 5.2, the linear weight
transfer rule can be extended to include four parameters: two multiplicative
and two additive. We tested yal-1in on three particular settings of these four
parameters, which we call lw-itl (linear weight initial transfer low), lw-ith
(linear weight initial transfer high), and 1w-ite (linear weight initial transfer
equal).

— 1lw-itl takes a low initial transfer from clauses in local minima by setting
a- <asand c= < cs .

— lw-ith takes a high initial transfer from clauses in local minima by setting
a— > as and c= > ¢ .

— lw-ite does not distinguish clauses by weight, and sets the two pairs of
parameters equal.

In the left plot of Figure 1, a values for the top 10% of the settings (by PAR-2
scores) are in the range [0.05, 0.1]. Hence, we use 0.05 and 0.1 as the values for

A Linear Weight Transfer Rule for Local Search 457

as and a— in lw-itl and lw-ith. We keep the values for cs and c_ at 2 and 1,
following the original DDFW algorithm. For lw-ite, we take values in between
the pair of values, with a~ = a— = 0.075 and cs = c— = 1.75. Table 2 shows
the parameter values for the three configurations that we tested.

Table 2. Parameter values for three versions of linearwt

linearwt versions ‘ as ‘ a— ‘ c> ‘ [
1w-itl \ 0.1 \ 0.05 \ 2 \ 1
lw-ite 0075 | 0075 | 175 | 175
lw-ith 005 | 01 1 | 2

We compare our three new configurations against the original one across the
two variable selection methods. We set cspt = 0.1, as our prior experiment
showed it to be better than 0.01. Table 3 summarizes the results.

Table 3. Solve counts and PAR-2 scores for different configurations of yal-lin. The
configurations vary the linear weight transfer method while keeping the cspt value
fixed at 0.1. The best configuration for each benchmark is bolded.

Weight COMB SATComp
Transfer grdy wrnd grdy wrnd
Method | #solved PAR-2 | #solved PAR-2 | #solved PAR-2 | #solved PAR-2

fixedwt | 24 23871 | 25 22538 | 98 9223 | 103 9188
Tu-itl 2 22956 27 21769 98 9237 104 9189
lw-ite 28 21233 27 22298 111 9129 113 9114
lw-ith 2 22142 28 21338 115 9082 118 9055

Scanning down the columns of Table 3, we see that all three linear weight
configurations perform at least as well as the fixed weight version, regardless
of variable selection method. The improvements on the COMB benchmark are
modest, with at most 4 additional solved instances. The improvements on the
SATComp benchmark are more substantial, with a maximum of 17 additional
solved instances.

Overall, the best-performing linear weight configuration was lw-ith, which
transfers the more weight from clauses with the initial weight. These results
support prior findings that more weight should be freed up to the falsified clauses
in local minima. The best-performing variable selection method continues to be
the weighted random method wrnd.

Analysis of solve count over runtime. In addition to solve counts and PAR-
2 scores for the three linear weight configurations, we report solve counts as a
function of solving time. The data for ten experimental settings of yal-1in on
the two benchmarks are shown in Figure 3. Note that the original DDFW setting
is represented by the setting fw-c.01-grdy, and is our baseline.

458 Chowdhury et al.

120
$ 100 |-

@ 8
) g
a o]
< %
g Z 80
z o
o g
m
= P S 60f a

A
s I/ =

S & < ¥
o 10 §d 19 40 |
q>'> rl lw-ith-c.1-wrnd —+—1lw-ite-c.1-grdy] lw-ith-c.1-wrnd —@—1lw-ith-c.1-grdy
= g’ —4—1lu-itl-c.1-urnd lw-ite-c.1-wrnd g lw-ite-c.1-wrnd —+—lw-ite-c.1-grdy
8 "A —6%—1lw-itl-c.1-grdy —@—1lw-ith-c.1-grdy — ——1w-itl-c.1-wrnd —#@—fv-c.1-wrnd

A | —®—fw-c.1-wrnd fw-c.01-wrnd 8 20 | —¢—1lw-itl-c.1-grdy fw-c.1-grdy —

é fu-c.1-grdy —&—fu-c.01-grdy fu-c.0l-wrnd ~ —4A—fw-c.01-grdy

&

0 é | | | 0 | |
0 0.5 1 1.5 0 2,000 4,000
. . .10% . .
solving time (s) 10 solving time (s)

Fig. 3. Performance profiles of yal-lin (fw-c.01-grdy) and nine modifications for
COMB (left) and SATComp (right).

For the COMB benchmark (Figure 3, left plot), all nine other settings (our
modifications) outperform the baseline in terms of solving speed and number of
solved instances. The best settings are lw-ith-c.1-wrnd and lw-ite-c.1-grdy,
which perform on par with each other and solve 28 instances by timeout. For
the SATComp benchmark (Figure 3, right plot), the success of the setting
lw-ith-c.1-wrnd is more pronounced. For about the first 1,000 seconds, this
setting performs similar to lw-ith-c.1-grdy. After that, however, it begins to
perform the best of all the settings, and it ends up solving the most instances by
timeout, at 118. The baseline setting fw-c.01-grdy ends up solving 83 instances
at timeout, which is 35 less than lw-ith-c.1-wrnd.

These two plots clearly show that our modifications substantially improve
the original DDFW algorithm.

6.2 Evaluation With Restarts

Many SLS algorithms restart their search with a random assignment after a
fixed number of flips. By default, yalsat also performs restarts. However, at
each restart, yalsat dynamically sets a new restart interval as r = 100, 000z for
some integer x > 1, which is initialized to 1, and updated after each restart as
follows: if x is power of 2, then z is set to 1, otherwise to 2 * . The way yalsat
initializes its assignment at restart also differs from many SLS algorithms. On
some restarts, yalsat uses the best cached assignment. For all others, it restarts
with a fresh random assignment. In this way, it attempts to balance exploitation
and exploration.

A Linear Weight Transfer Rule for Local Search 459

T T T T T
ol 1 120f]

100

w
o
|

80

20 |

lw-ith-c.1-wrnd —@—1lw-ith-c.1-grdy
H lw-ite-c.1-wrnd —@—fw-c.1-vrnd
H | —+—1w-ite-c.1-grdy —e—1lv-itl-c.l-wrnd

—e—1lw-ith-c.1-grdy fu-c.1-grdy
lw-ith-c.1-wrnd —+—1lw-ite-c.1-grdy

¢ lw-ite-c.1-wrnd —¢—1lw-itl-c.1-grdy

8| —¢—1w-itl-c.1-wrnd —&—fw-c.01-grdy

solved COMP instances
I
solved SATComp instances
o
S

20 H | —o—1lw-itl-c.1-grdy fw-c.1-grdy

| = fu-c.1-wrnd fy-c.01-wrnd o o fu-c.01-grdy fu-c.01-wrnd
& | —e—yal-prob g —&—yal-prob
0 2 I I I 0 I I
0 0.5 1 1.5 0 2,000 4,000
4
solving time (s) 10 solving time (s)

Fig.4. Solve time comparisons between base yal-prob, and 10 yal-lin settings for
COMB and SATComp, where restarts are enabled

Our experiments with yal-1in included runs with yalsat-style restarts. On
a restart, the adjusted clause weights are kept. The hope is that the adjusted
weights help the solver descend the search landscape faster.

We compare yal-prob against ten experimental settings of yal-lin with
restarts enabled. The best solver in this evaluation is yal-1in with the setting
lu-ith-c.1-grdy on the COMB benchmark and the setting lw-ith-c.1-wrnd
onthe SATComp benchmark, which solve 11 and 49 more instances than yal-prob,
respectively. Figure 4 shows solve counts against solving time, and it confirms
that all the yal-1lin settings solve instances substantially faster than yal-prob.

6.3 Solving Hard Instances

Closing wap-07a-40. The wap family from the COMB benchmark contains
three open instances: wap-07a-40, wap-03a-40 and wap-4a-40. We attempted to
solve these three instances using the parallel version of yal-lin with the ten
yal-lin settings (without restarts) used in Section 6.1 in the cluster node with
128 cores and 18,000 seconds of timeout. All of our settings except fw-c.01-grdy
(the baseline) solve the wap-07a-40 instance. The best setting for this experi-
ment was lw-itl-c.1l-wrnd, which solves wap-07a-40 in just 1168.64 seconds.
However, we note that lstech_maple (LMpl) [31], the winner of the SAT track of
the SAT Competition 2021, also solves wap-07a-40, in 2,103.12 seconds, almost
twice the time required by our best configuration lw-itl-c.1-wrnd for solving
this instance. Thus, for solving this open instance, our best setting compares
well with the state-of-the-art solver for solving satisfiable instances.

With restarts, the setting lw-itl-c.1-wrnd, the best setting for this exper-
iment, were not able to solve any of these three instances.

460 Chowdhury et al.

New lower bounds for van der Waerden/Green numbers. The van der
Waerden theorem [30] is a theorem about the existence of monochromatic arith-
metic progressions among a set of numbers. It states the following: there exists
a smallest number n = W (k;tq,...,t;,...,tx) such that any coloring of the inte-
gers {1,2,...,n} with k colors contains a progression of length t; of color ¢ for
some . In recent work, Ben Green showed that these numbers grow much faster
than conjectured and that their growth can be observed in experiments [11]. We
therefore call the CNF formulas to determine these numbers Green instances.

Ahmed et al. studied 20 van der Waerden numbers W (2;3,¢) for two colors,
with the first color having arithmetic progression of length 3 and the second of
length 19 < t < 39, and conjectured that their values for ¢t < 30 were optimal,
including W(2;3,29) = 868 and W(2,3,30) = 903 [2]. By using yal-lin, we
were able to refute these two conjectures by solving the formulas Green-29-868-
SAT and Green-30-903-SAT in the COMB set. Solving these instances yields
two new bounds: W (2;3,29) > 869 and W (2;3,30) > 904.

To solve these two instances, we ran our various yal-lin configurations
(without restarts) using yalsat’s parallel mode, along with a number of other
local search algorithms from UBCSAT, in the same cluster we used to solve
wap-07a-40. Among these solvers, only our solver could solve the two instances.
lw-itl-c.1-wrnd solved both Green-29-868-SAT and Green-30-903-SAT, in
942.60 and 6534.56 seconds, respectively. The settings lw-ith-c.l-wrnd
and lw-ite-c.l-wrnd also solved Green-29-868-SAT in 1374.74 and 1260.16
seconds, respectively, but neither could solve Green-30-903-SAT within a time-
out of 18,000 seconds. The CDCL solver LMpl, which solves wap-07a-40, could
not solve any instances from the Green family within a timeout of 18,000 seconds.

With restarts lw-itl-c.1l-wrnd, the best setting for this experiment only
solves Green-29-868-SAT in 2782.81 seconds within a timeout of 18,000 seconds.

7 Discussion and Future Work

In this paper, we proposed three modifications to the DLS SAT-solving algorithm
DDFW. We then implemented DDFW on top of the SLS solver yalsat to create
the solver yal-1in, and we tested this solver on a pair of challenging benchmark
sets. Our experimental results showed that our modifications led to substantial
improvement over the baseline DDFW algorithm. The results show that future
users of yal-1in should, by default, use the configuration 1lw-ith-c.1-wrnd.

While each modification led to improved performance, the improvements due
to each modification were not equal. The performance boost due to switching to
the weighted-random variable selection method was the weakest, as it resulted in
the fewest additional solves. However, our results indicate that making occasional
non-optimal flips may help DDFW explore its search space better.

The performance boost due to adjusting the cspt value was more substantial,
supporting our initial findings in Section 5.3. One metric that could explain
the importance of a higher cspt value is a clause’s degree of satisfaction (DS),

A Linear Weight Transfer Rule for Local Search 461

w
o

. fw-c.01l-grdy
.lw-ith-c.1-wrnd

per 10,000 flips

Sideways moves count

Flips Count -10°

Fig. 5. Comparison of sideways move count per 10,000 flips with search progression
for our baseline (fw-c.01-grdy) and best setting (lw-ith-c.1-wrnd) from yal-lin for
an COMB instance sted2_0x0-n219-342.

which is the fraction of its literals that are satisfied by the current assignment.
We noticed in experiments on the COMB benchmark with cspt = 0.01 that
clauses neighboring a falsified clause had an average DS value of 0.33, while
clauses without a neighboring falsified clause had an average DS value of 0.54.
If this trend holds for general yal-1lin runs, then it may be advantageous to
take weight from the latter clauses more often, since flipping any literal in a
falsified clause will not falsify any of the latter clauses. A higher cspt value
accomplishes this. However, we did not investigate the relationship between DS
and cspt further, and we leave this to future work. Performance also improved
with the switch to a linear weight transfer method. The best method, 1w-ith,
supports the findings from the workshop paper that DDFW should transfer more
weight from clauses with the initial weight. Future work can examine whether the
heavy-clause distinction is valuable; a weight transfer rule that doesn’t explicitly
check if a clause is heavy would simplify the DDFW algorithm.

When restarts are enabled, all ten settings in yal-1lin perform better for
COMB than when restarts are disabled. This better performance with restarts
comes from solving several MM instances, for which these settings without restarts
solve none of them. However, for SATComp, yal-lin performs better when
restarts are disabled. Since SATComp comprises larger number of heterogeneous
benchmarks than COMB, these results suggest that the new system performs
better when restarts are disabled.

Future work on weight transfer methods can take several other directions.
Different transfer functions can be tested, such as those that are a function of
the falsified clause’s weight or those based on rational or exponential functions.
Alternate definitions for neighboring clauses are also possible. For example, in
formulas with large neighborhoods, it may be advantageous to consider clauses
neighbors if they share k > 1 literals, rather than just 1.

Throughout this paper, we kept the spt parameter set to 0.15. Yet, when
clause weights are floating point numbers, it is rare for our solver to make side-
ways moves. This evident in Figure 5, which compares count of sideways moves

462 Chowdhury et al.

per 10,000 flips between our baseline setting (fw-0.01-grdy), and best setting
(lw-ith-c.1-wrand) for a randomly chosen SATComp instance sted2_0x0_n219-
342 up to 5 millions flips. With fw-0.01-grdy, yal-1in makes some sideways
moves, albeit rarely. However, with floating weight transfer in lw-ith-c.1-wrand,
the solver makes almost no sideways moves as search progresses. We further inves-
tigated the effect of sideways moves on solver performance. We tested the setting
lw-ith-c.1-wrnd against a version that did not perform sideways moves on the
SATComp benchmark. The version with sideways moves solved 118 instances,
while the version without them solved 113. This suggests that sideways moves
may add a slight-but-beneficial amount of random noise to the algorithm. Fu-
ture work can more fully investigate the effect of sideways moves on DDFW. One
goal is to eliminate the parameter entirely in order to simplify the algorithm.
Alternatively, the algorithm could be modified to occasionally flip variables that
increase the falsified weight to help DDFW explore the search space.

Overall, we find that the DDFW algorithm continues to show promise and
deserves more research interest. Our solver closed several hard instances that
eluded other state-of-the-art solvers, and the space of potential algorithmic im-
provements remains rich.

References

1. Aaron Stump, Geoff Sutcliffe, C.T.: StarExec. https://www.starexec.org/starexec/
public/about.jsp (2013)

2. Ahmed, T., Kullmann, O., Snevily, H.S.: On the van der Waerden numbers w(2;
3, t). Discrete Applied Mathematics 174, 27-51 (2014). https://doi.org/10.1016/
j.dam.2014.05.007

3. Balint, A.: Engineering stochastic local search for the satisfiability problem. Ph.D.
thesis, University of Ulm (2014)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam,
The Netherlands (2009)

5. Biere, A.: YalSAT Yet Another Local Search Solver. http://fmv.jku.at/yalsat/
(2010)

6. Brown, S., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N.:
Bridges-2: A platform for rapidly-evolving and data intensive research. In: Associ-
ation for Computing Machinery, New York, NY, USA. pp. 1-4 (2021)

7. Cai, S., Luo, C., Su, K.: CCAnr: A configuration checking based local search solver
for non-random satisfiability. In: Heule, M., Weaver, S. (eds.) Theory and Appli-
cations of Satisfiability Testing - SAT 2015, pp. 1-8. Springer International Pub-
lishing, Cham (2015)

8. Cai, S., Zhang, X., Fleury, M., Biere, A.: Better Decision Heuristics in CDCL
through Local Search and Target Phases. Journal of Artificial Intelligence Research
74, 1515-1563 (2022)

9. Codel, C.R., Heule, M.J.: A Study of Divide and Distribute Fixed Weights and its
Variants. In: Pragmatics of SAT 2021 (2021)

10. Feng, N., Bacchus, F.: Clause size reduction with all-UIP learning. In: Pulina, L.,
Seidl, M. (eds.) Proceedings of SAT-2020. pp. 28-45 (2020)

https://www.starexec.org/starexec/public/about.jsp
https://www.starexec.org/starexec/public/about.jsp
https://doi.org/10.1016/j.dam.2014.05.007
https://doi.org/10.1016/j.dam.2014.05.007
http://fmv.jku.at/yalsat/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

A Linear Weight Transfer Rule for Local Search 463

Green, B.: New lower bounds for van der Waerden numbers (2021). https://doi.
org/10.48550/ARXIV.2102.01543

Gupta, A., Ganai, M.K., Wang, C.: SAT-based verification methods and applica-
tions in hardware verification. In: Proceedings of SFM 2006. pp. 108-143 (2006)
Heule, M.J.H., Karahalios, A., van Hoeve, W.: From cliques to colorings and back
again. In: Proceedings of CP-2022. pp. 26:1-26:10 (2022)

Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3x3-matrices. J. Symb.
Comput. 104, 899-916 (2019)

Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing;:
Efficient dynamic local search for SAT. In: Hentenryck, P.V. (ed.) Proceedings of
CP 2002. pp. 233-248 (2002)

Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight
redistribution in local search for SAT. In: Proceedings of CP-2005. pp. 772-776.
Lecture Notes in Computer Science (2005)

Johnson, D.J., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, Workshop, October 11-13, 1993. American Mathemat-
ical Society, USA (1996)

Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th Euro-
pean Conference on Artificial Intelligence. p. 359-363. ECAI 92, John Wiley &
Sons Inc, USA (1992)

Li, C.M., Li, Y.: Satisfying versus falsifying in local search for satisfiability. In:
Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing
— SAT 2012. pp. 477-478. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of DAC 2001. pp. 530-535 (2001)
Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Solving large steiner triple
covering problems. Operations Research Letters 39(2), 127-131 (2011)

Schreiber, D., Sanders, P.: Scalable SAT solving in the cloud. In: Li, C.M., Manya,
F. (eds.) Theory and Applications of Satisfiability Testing — SAT 2021. pp. 518—
534. Springer International Publishing, Cham (2021)

Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop 1993.
pp. 521-532 (1993)

Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satis-
fiability problems. In: Proceedings of AAAT 1992. pp. 440-446 (1992)

Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satis-
fiability. IEEE Trans. Computers 48(5), 506-521 (1999)

Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Proceedings of SAT 2009. pp. 244-257 (2009)

Thornton, J., Pham, D.N., Bain, S., Jr., V.F.: Additive versus multiplicative clause
weighting for SAT. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of
AAAT-2004. pp. 191-196 (2004)

Tompkins, D.: Dynamic Local Search for SAT: Design, Insights and Analysis. Ph.D.
thesis, The University of British Columbia (2010)

Tompkins, D.: UBCSAT. http://ubcsat.dtompkins.com/home (2010)

van der Waerden, B.L.: Beweis einer baudet’schen vermutung. J. Symb. Comput.
15, 212-216 (1927)

Xindi Zhang, Shaowei Cai, Z.C.: Improving CDCL via Local Search. In: SAT
Competition-2021. pp. 42-43 (2021)

https://doi.org/10.48550/ARXIV.2102.01543
https://doi.org/10.48550/ARXIV.2102.01543
http://ubcsat.dtompkins.com/home

	A Linear Weight Transfer Rule for Local Search*-4pt
	1 Introduction
	2 Preliminaries
	3 The DDFW Algorithm
	4 Solvers, Benchmarks, and Hardware
	5 Modifications to the DDFW Algorithm
	5.1 The Linear Weight Transfer Rule
	5.2 How Much Weight Should be Given Away Initially?
	5.3 The cspt Parameter
	5.4 A Weighted-random Variable Selection Method

	6 Empirical Evaluation
	6.1 Evaluation Without Restarts
	6.2 Evaluation With Restarts
	6.3 Solving Hard Instances

	7 Discussion and Future Work
	References

