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Abstract

Research in statistical learning has polarized into two general approaches to perform
regression analysis: Transductive methods construct estimates directly based on
exemplar data using generic relational principles which might suffer from the curse
of dimensionality. Conversely, inductive methods can potentially fit highly complex
functions at the cost of compute-intensive solution searches. In this work, we
leverage the theory of vector-valued Reproducing Kernel Banach Spaces (RKBS)
to propose a hybrid approach: We show that transductive regression systems
can be meta-learned with gradient descent to form efficient in-context neural
approximators of function defined over both finite and infinite-dimensional spaces
(operator regression). Once trained, our Transducer can almost instantaneously
capture new functional relationships and produce original image estimates, given a
few pairs of input and output examples. We demonstrate the benefit of our meta-
learned transductive approach to model physical systems influenced by varying
external factors with little data at a fraction of the usual deep learning training costs
for partial differential equations and climate modeling applications.

1 Introduction

Transduction vs. induction ˛ In statistical learning, transductive inference (Vapnik, 2006) refers to
the process of reasoning directly from observed (training) cases to new (testing) cases and contrasts
with inductive inference, which amounts to extracting general rules from observed training cases to
produce estimates. The former principle powers some of the most successful regression algorithms
benefiting from straightforward construction properties, from k-Nearest Neighbors (Cover and
Hart, 1967) to Support Vector Machines (Boser et al., 1992) or Gaussian Processes (Williams and
Rasmussen, 1995). In contrast, deep learning research has mostly endeavored to find inductive
solutions, relying on stochastic gradient descent to faithfully encode functional relationships
described by large datasets into the weights of a neural network. Although ubiquitous, inductive
neural learning with gradient descent is compute-intensive, necessitates large amounts of data, and
poorly generalizes outside of the training distribution (Jin et al., 2020) such that a slight modification
of the problem might require retraining and cause "catastrophic" forgetting of the previous solution
(McCloskey and Cohen, 1989). This may be particularly problematic for real-world applications
where data has heterogeneous sources, or only a few examples of the target function are available.
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Figure 1: Batches of functional images T✓pDOiqpvjq « Oipvjq “ ujpx, tq P Cpr0, 1s2,Rq obtained with the
same Transducer model T✓ but conditioned, at each row, by a different dataset pDOiqi§3 during feedfoward
computation. Each underlying operator Oi corresponds to a different advection-diffusion-reaction equation
(defined in Sec. 5.1) with spatially varying advection, diffusion, and reaction parameters unseen during training,
and functions pvjqj§9 correspond to initial conditions. While usual neural regression approaches learn a

single target function (one row), our model learns to approximate instantaneously an infinity of them.

Meta-learning functional regression ˛ In this work, we meta-learn a regression program in the
form of a neural network able to approximate an infinity of functions defined on finite or infinite-
dimensional spaces through a transductive formulation of the solution based on the representer
theorem. Namely, our model is meta-trained to take as input any dataset DO of pairs pvi,Opviqqi§I

of some target function O together with a query element v1 and produces directly an estimate of the
image Opv1q. After meta-training, our network is able to perform regression of unseen operators
O

1 from varying dataset sizes in a single feedforward pass, such that our model can be interpreted
as performing in-context functional learning. In order to build such a model, we leverage the
theory of Reproducing Kernel Banach Spaces (RKBS) (Micchelli and Pontil, 2004; Zhang, 2013;
Lin et al., 2022) and interpret the Transformer’s (Vaswani et al., 2017) attention mechanism as a
parametric vector-valued reproducing kernel. While kernel regression might be plagued by the “curse
of dimensionality” (Bellman, 1966; Aggarwal et al., 2001), we show that our meta-learning approach
can escape this pitfall, allowing, for instance, to perform instantaneous regressions over spaces of
operators from a few example points, by building solutions to regression problem instances directly
from the general reproducing kernel associated with such spaces.

Contributions ˛ We introduce the Transducer, a novel meta-learning approach leveraging reproduc-
ing kernel theory and deep learning methods to perform instantaneous regression of an infinity of
functions in reproducing kernel spaces.

• Our model learns an implicit regression program able to identify, in a single feedforward pass,
elements of specific functional spaces from any corresponding collection of input-output
pairs describing the target function. Such ultra-fast regression program, which bypasses
the need for gradient-based training, is also general and can be applied to functions either
defined on finite dimensional spaces (scalar-valued function spaces) or infinite dimensional
spaces (function-valued operator spaces).

• In particular, we demonstrate the flexibility and efficiency of our framework for fitting
function-valued operators in two PDEs and one climate modeling problem. We show that
our transductive approach allows for better generalization properties of neural operator
regression, better precision when relevant data is available, and can be combined with
iterative regression schemes that are too expensive for previous inductive approaches, thus
holding potential to improve neural operators applicability.

• To the best of our knowledge, our proposal is the first to marry vector-valued RKBS theory
with deep meta-learning and might also shed new light on the in-context learning abilities
observed in deep attentional architectures.
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2 Problem formulation

Let V and U be two (finite or infinite-dimensional) Banach spaces, respectively referred to as the
input and output space, and let B a Banach space of functions from V to U . We also note LpU ,Bq
(resp. LpUq) the set of bounded linear operators from U to B (resp. to itself). We consider the
meta-learning problem of creating a function T able to approximate any functional element O in the
space B from any finite collection of example pairs DO “ tpvi,uiq | vi P V,ui “ Opviqui§n. A
prominent approach in statistical learning is empirical risk minimization which consists in predefining
a class B̃ Ä B of computable functions from V to U and subsequently selecting a model Õ as a
minimizer (provided its existence) of a risk function L : B ˆ D fiÑ R:

T pDOq P argmin
ÕPB̃

LpÕ,DOq (1)

For instance, the procedure consisting in performing gradient-based optimization of objective (1)
over a parametric class B̃ of neural networks defines implicitly such a function T . Fundamentally,
this technique works by induction: It captures the statistical regularities of a single map O into
the parameters of the neural network Õ such that DO is discarded for inference. Recent examples
of gradient-based optimization of neural networks for operator regression (i.e when V and U are
infinite-dimensional) are DeepOnet (Lu et al., 2019) or Fourier Neural Operator (FNO) (Li et al.,
2020a). As previously discussed, for every regression problem instance, evaluating T with these
approaches requires a heavy training procedure. Instead, we show in this work that for specific spaces
B, we can meta-learn a parametric map T✓ that transductively approximates (in a certain functional
sense) any target function O P B given a corresponding dataset DO such that:

@v P V, T pDOqpvq “ T✓pv1,Opv1q, . . . ,vn,Opvnq,vq « Opvq (2)

3 Vector-valued Reproducing Kernel Banach Space regression

In order to build T✓, we leverage the structure of Reproducing Kernel Banach Spaces (RKBS) of
functions B and combine it with the universal approximation abilities of deep networks. As we
will see in the experimental section, RKBS are very general spaces occurring in a wide range of
machine learning applications. We start by recalling some elements of the theory of vector-valued
RKBS developed in Zhang (2013). Namely, we will consider throughout uniform Banach spaces S
(such condition guarantees the unicity of a compatible semi-inner product x., .yS : S ˆ S fiÑ R, i.e.
@s P S, xs, syS “ ||s||2

S
and allows to build a bijective and isometric dual space S

˚).
Theorem 1 (Vector-valued RKBS (Zhang, 2013)). A U-valued reproducing kernel Banach space

B of functions from V to U is a Banach space such that for all v P V , the point evalutation

�v : B fiÑ U defined as �vpOq “ Opvq is continuous. In this case, there exists a unique function

K : V ˆ V fiÑ LpUq such that for all pv,uq P V ˆ U :

$
&

%

v1 fiÑ Kpv,v1qpuq P B

@ O P B, xOpvq,uyU “ xO,Kpv, .qpuqyB
@ v1 P V, }Kpv,v1q}LpUq § }�v}LpB,Uq}�v1 }LpB,Uq

(3)

Informally, theorem (1) states that RKBS are spaces sufficiently regular such that the image of any

element O at a given point v can be expressed in terms of a unique function K. The latter is hence
called the reproducing kernel of B and our goal is to leverage such unicity to build the map T✓ . Let D
be the set of all datasets DO previously defined. The following original theorem gives the existence
of a solution to our meta-learning problem and relates it to the reproducing kernel.
Theorem 2 (RKBS representer map). Let B be a U-valued RKBS from V to U , if for any dataset

DO P D, Lp.,DOq is lower semi-continuous, coercive and bounded below, then there exists a

function T : D fiÑ B such that T pDOq is a minimizer of equation (1). If L is of the form

Lp.,DOq “ L̃ ˝ t�viui§n with L̃ : Un fiÑ R, then the dual T pDOq˚
is in spantKpvi, .qpuq˚, i §

n,u P Uu. Furthermore, if for any DO, Lp.,DOq is strictly-convex, then T is unique.

While theorem (2) provides conditions for the existence of solutions to each regression problem
defined by (1), the usual method consisting in solving instance-specific minimization problems
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derived from representer theorems characterizations is generally intractable in RKBS for sev-
eral reasons (non-convexity and infinite-dimensionality of the problem w.r.t to variable u, non-
additivity of the underlying semi-inner product). Instead, we propose to define image solutions
T pDOq “ ∞

i§n K✓pvi, .qpũiq where K✓ and pũiq are respectively the learned approximation of
the U-valued reproducing kernel K and a set of functions in U resulting from a sequence of deep
transformations of image examples puiq that we define below.

Transformers attention as a reproducing kernel ˛ We first need to build K. Several pieces of work
have proposed constructions of K in the context of a non-symmetric and nonpositive semi-definite
real-valued kernel (Zhang et al., 2009; Georgiev et al., 2014; Lin et al., 2019; Xu and Ye, 2019).
In particular, the exponential key-query function in the popular Transformer model (Vaswani et al.,
2017) has been interpreted as a real-valued reproducing kernel ✓ : V ˆ V fiÑ R in Wright and
Gonzalez (2021). We extend below this interpretation to more general vector-valued RKBS:
Proposition 1 (Dot-product attention as U-valued reproducing kernel). Let ppjqj§J a finite

sequence of strictly positive integers, let pAj
✓qj§J be applications from V ˆ V to R, let V j

✓ be linear

applications from LpU ,Rpj q and W✓ a linear application from Lp ±
j§J

Rpj ,Uq, the (multi-head)

application ✓ : V ˆ V fiÑ LpUq defined by

✓pv,v1qpuq fi W✓

ˆ“
..., Aj

✓

`
v,v1˘ ¨ V j

✓ puq, ...
‰
j§J

˙
(4)

is the reproducing kernel of an U-valued RKBS. In particular, if U “ V “ Rp
, for p P N`

and Aj
✓ “ exp

`
1
⌧ pQj

✓vqT pKj
✓v

1q
˘
{�pv,v1q with pQj

✓,K
j
✓qj§J applications from LpV,Rdq, ✓

corresponds to the dot-product attention mechanism of Vaswani et al. (2017).

Note that in (4), the usual softmax normalization of the dot-product attention is included in the linear
operations Aj

✓ through �. We show in the next section how such kernel construction can be leveraged
to build the map T✓ and that several variations of the kernel construction are possible, depending
on the target space B and applications. Contrary to usual kernel methods, our model jointly builds
the full reproducing kernel approximation K✓ and the instance-specific parametrization pũiqi§I by
integrating the solutions iteratively over several residual kernel transformations. We refer to our
system as a Transducer, both as a tribute to the Transformer computation mechanism from which it is
inspired and by analogy with signal conversion devices.

4 The Transducer

Model definition ˛ We define T✓ as the sum of L residual kernel transformations t`
✓u`§L whose

expression can be written:

@ v P V, T✓pDOqpvq “
ÿ

i§I

K✓pvi,vqpũiq “
ÿ

i§I

ÿ

`§L

`
✓pv`

i ,v
`qpu`

iq (5)

where pv`
i ,u

`
iqi§n,l§L and pv`ql§L refer to sequences of representations starting respectively with

pv1
i ,u

1
i qi§n “ DO, v1 “ v and defined by the following recursive relation:

#
v``1
i “ F `

✓pv`
i q , v``1 “ F `

✓pv`q
u``1
i “ ũ`

i ` ∞
j 

`
✓pv``1

j ,v``1
i qpũ`

jq where ũ`
i “ G`

✓pu`
iq

(6)

where pF `
✓ , G

`
✓q`§L correspond to (optional) parametric non-linear residual transformations applied

in parallel to representations pv`
i ,v

`
i qi§n while p`

✓q`§L are intermediate kernel transformations of
the form  : V ˆV fiÑ LpUq such as the one defined in equation (4). Breaking down kernel estimation
through this sequential construction allows for iteratively refining the reproducing kernel estimate
and approximating on-the-fly the set of solutions pũiqi§I . We particularly investigate the importance
of depth L in the experimental section. Note that equations (5) and (6) allow to handle both varying
dataset sizes and efficient parallel inference by building the sequences pv`q`§L with pv`

i qi§n,`§L in
batches and simply masking the unwanted cross-relational features during the kernel operations. All
the operations are parallelizable and implemented on GPU-accelerated tensor manipulation libraries
such that each regression with T✓ is orders of magnitude faster than gradient-based regression
methods.
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Discretization ˛ In the case of infinite-dimensional functional input and output spaces V and U , we
can accommodate, for numerical computation purposes, different types of function representations
previously proposed for neural operator regression and allowing for evaluation at an arbitrary point
of their domain. For instance, output functions u can be defined as a linear combination of learned
or hardcoded finite set of functions, as in Lu et al. (2019) and Bhattacharya et al. (2020). We focus
instead on a different approach inspired by Fourier Neural Operators (Li et al., 2020a), by applying
our model on the M first modes of a fast Fourier transform of functions pvi,uiqi§n, and transform
back its output, allowing us to work with discrete finite function representations.

Meta-training ˛ In order to train T✓ to approximate a solution for all problems of the form (1), we
jointly learn the kernel operations p`

✓q`§L as well as transformations pF `
✓q`§L. Let us assume that

L is of the form LpO1,DOq “ ∞
j L̃pO1pvjq,Opvjqq, that datasets DO are sampled according to

a probability distribution D over the set of possible example sets with finite cardinality and that a
random variable T select the indices of each test set Dtest

O
“ tpvi,uiq | pvj ,ujq P DO, j P Tu such

that the train set is Dtrain

O
“ DOzDtest

O
. Our meta-learning objective is defined as:

J p✓q “ ED,T

” ÿ

jPT
L̃pT✓pDtrain

O
qpvjq,Opvjqq

ı
(7)

which can be tackled with gradient-based optimization w.r.t parameters ✓ provided L is differentiable
(see S.I for details). In order to estimate gradients of (7), we gather a meta-dataset of M operators
example sets pDOmqm§M and form, at each training step, a Monte-Carlo estimator over a batch of
k datasets from this meta-dataset with random train/test splits pTkq. For each dataset in the batch,
in order to form outputs T✓pDtrain

O
qpvjq defined by equation (5), we initialize the model sequence

in (6) by concatenating D
train

O
with D

query

O
“ tpvi, 0U q | vi P D

test

O
u and obtain each infered output

T✓pDtrain

O
qpvjq as

∞
viPDtrain

O

K✓pvi,vjqpũiq . Since each regression consists in a single feedforward
pass, estimating gradients of the meta-parameters ✓ with respect to L for each batch consists in a
single backward pass achieved through automatic differentiation.

5 Numerical experiments

In this section, we show empirically that our meta-optimized model is able to approximate any
element O of diverse function spaces B such as operators defined on scalar and vector-valued
function spaces derived from parametric physical systems or regression problems in Euclidean spaces.
In all experiments, we use the Adam optimizer (Kingma and Ba, 2014) to train for a fixed number of
steps with an initial learning rate gradually halved along training. All the computation is carried on a
single Nvidia Titan Xp GPU with 12GB memory. Further details can be found in S.I.

5.1 Regression of Advection-Diffusion Reaction PDEs

Figure 2: Left: RMSEs (and 95% C.I) on unseen operators as a function of the dataset size. The grey area
corresponds to dataset cardinalities seen during the Transducer meta-training. For comparison, we train baselines
from scratch with the corresponding number of examples. Middle: Training losses of Transducers with different
depths. Applying several times the kernel improves performance. Untied weights yield the best performance.
Right: (Up) 3 examples of the evolution of spx, tq for different ADR equations and (bottom) spatial MSEs
of intermediate representations pu`q colored by iteration `. The decreasing error, consistent with the MSE
reduction of deeper models, suggests that network depth allows for progressively refining function estimates.
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First, we examine the problem of regressing operators O associating functions v from V Ä
Cpr0, 1s,Rq to their solutions u “ Opvq Ä Cpr0, 1s,Rq with respect to advection-diffusion-
reaction equations defined on the domain ⌦ “ r0, 1s ˆ r0, ts with Dirichlet boundary conditions
sp0, tq “ sp1, tq “ 0. We consider the space B of operators Op�,⌫,k,tq specifically defined by
vpxq “ spx, 0q, upxq “ spx, tq and s follows an equation depending on unknown random continu-
ous spatially-varying diffusion �pxq, advection ⌫pxq, and a scalar reaction term k „ Ur0, 0.1s:

Btspx, tq “ r ¨ p�pxqrxspx, tqqlooooooooooomooooooooooon
diffusion

`⌫pxqrxspx, tqlooooooomooooooon
advection

`k ¨ pspx, tqq2loooooomoooooon
reaction

(8)

Eq. (8) is generic with components arising in many physical systems of interest, leading to various
forms of solutions spx, tq. (We show examples for three different operators in figure 2.) Several
methods exist for modeling such PDEs, but they require knowledge of the underlying parameters
p�,⌫,kq and often impose constraints on the evaluation point as well as expensive time-marching
schemes to recover solutions. Here instead, we assume no a priori knowledge of the solution and
directly regress each operator O behavior from the example set DO.

METHOD RMSE TIME (S) GFLOPS

FNO 2.96e´4 1.72e2 1.68e2

DEEPONET 2.02e´2 7.85e1 1.54e2

FNO-MAML 1.4e´1 2.10e0 1.6e´1

TRANSDUCER 2.39e´4 3.10e´3 1.06e´1

Table 1: RMSE and compute costs of regression over 50 unseen datasets with n “ 50 examples. Note that
DeepONet and FNO are optimized from scratch while the Transducer and FNO-MAML have been pre-trained.
GFLOPs represent the total number of floating point operations for regression.

Figure 3: Example of Transducer regression extrapola-
tion and RMSEs on OOD tasks with n “ 100 examples.
Color code corresponds to different correlation lengths
used to generate the random functions �pxq and ⌫pxq.
Much of the result remains below 1% error despite never
being trained on such operators.

Baselines and evaluation ˛ We meta-trained
our model to regress 500 different operators
Op�,⌫,k,1q with t “ 1 fixed and varying number
of examples n P r20, 100s with images evalu-
ated at 100 equally spaced points pxkqkPrr0,100ss
on the domain r0, 1s and meta-tested on a set of
500 operators with new parameters �,⌫,k and
initial states v. Although not directly equiva-
lent to existing approaches, we compared our
method with standard regression methods as
well as inductive neural operator approxima-
tors. We applied standard finite-dimensional
regression methods, K-Nearest-Neighbors (Fix
and Hodges, 1989), Decision Trees (Quinlan,
1986) and Ridge regression with radial basis
kernel (Hastie et al., 2009) to each discretized
problems

`
tOpvjqpxkq “ ujpxkquj,kq as well

as two neural-based operators to each dataset
instance: DeepONet (Lu et al., 2021) and FNO
(Li et al., 2020a). Finally, we also tried to meta-learn a parametrization of FNO that could adapt in
100 gradient steps following MAML (Finn et al., 2017) using the same meta-dataset. For all but
this approach, an explicit optimization problem is solved before inference in order to fit the target
operator. On the other hand, after meta-training of the Transducer, which takes only a few minutes to
converge, each regression is solved in a single feedforward pass of the network, which is orders of
magnitude faster and can be readily applied to new problems (Table 1).

Results ˛ We first verified that our model approximates well unseen operators from the test set (Table
1). We noted that our model learns a non-trivial kernel since the estimation produced with `2-Nearest
Neighbors remains poor even after 1e3 examples. Moreover, since our model can perform inference
for varying input dataset sizes, we examined the Transducer accuracy when varying the number of
examples and found that it learns a converging regression program (Figure 2) which consistently
outperforms other instance-specific regression approaches with the exception of FNO when enough
data is available (° 60). We also found that deeper Transducer models with more layers increase
kernel approximation accuracy, with untied weights yielding the best performance (figure 2.)
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Extrapolation to OOD tasks ˛ We further tested the Transducer ability to regress different operators
than those seen during meta-training. Specifically, we varied the correlation length (C.L) of the
Gaussian processes used to generate functions �pxq and ⌫pxq and specified a different target time
t1 ‰ 1. We showed that the kernel meta-optimized for a solution at t “ 1 transfers well to these
new regression problems and that regression performance degrades gracefully as the target operators
behave further away from the training set (figure 3), while inductive solutions do not generalize.

5.2 Outliers detection on 2D Burgers’ equation

We further show that our regression method can fit operators of vector-valued functions by examining
the problem of predicting 2D vector fields defined as a solution of a two-dimensional Burgers’
equation with periodic spatial boundary condition on the domain ⌦ “ r0, 1s2 ˆ r0, 10s:

Btsp~v, tq “ ⌫�v ¨ sp~v, tqloooooomoooooon
diffusion

´ sp~v, tqrxsp~v, tqloooooooomoooooooon
advection

(9)

Here, we condition our model with operators of the form, vp~xq “ sp~x, tq,up~xq “ sp~x, t1q such that
our model can regress the evolution of the vector field ~v starting at any time, with arbitrary temporal
increment t1 ´ t § 10 seconds and varying diffusion coefficient ⌫ P r0.1, 0.5s. We show in figure (4)
and table (2) that our model is able to fit new instances of this problem with unseen parameters ⌫.

Figure 4: Illustrative example of initial pt “ 0q, target pt “ 10q and Transducer estimation of the vector field
sp~x, tq discretized at resolution 64 ˆ 64 over the domain r0, 1s2 for the Burgers’ equation experiment. The last
panel represents absolute error to ground truth.

Fast and differentiable regression ˛ Since the fitting operation is orders of magnitude faster
than other operator regression approaches as well as fully differentiable, it allows for quickly
executing expensive schemes requiring multiple regressions. This can have several applications, from
bootstrapping or producing confidence intervals by varying the example set Dtrain

O
, or performing

inverse problems using Monte-Carlo Markov Chain in the dataset space. We showcase an example
of this potential with an outlier detection experiment: We use the Transducer to identify outliers
of a dataset of Burgers’ equation with coefficient ⌫1 artificially contaminated with elements from
another dataset ⌫2 ° ⌫1 at 5% level. We identify outliers by estimating RMSEs over 5000 different
regressions using random 50 % splits with outliers potentially present in both training and testing sets.
This technique takes only a few seconds to estimate while outliers are clearly identified as data points
with significantly higher RMSE than the dataset average (figure 5). As a comparison, performing
Spectral Clustering (Yu and Shi, 2003) on the FFT of elements puiq yields very poor precision (table
2)

t = 5s t = 10s
RMSE (test sets) 2.2e´3 5.9e´3

Outliers (Pre./Rec.) 100%{100% 100%{100%
S.C. (Pre./Rec.) 6%{85% 7%{85%

Table 2 & Figure 5: Left: Meta-test regression and outlier detection results at two target times. RMSEs on
Burgers’ equations averaged over 200 different parameter conditions ⌫ P r0.1, 0.5s each with 100 train examples.
Precision/Recall in outlier detection of the Transducer versus Spectral clustering. Right: RMSE distributions of
each element in the contaminated dataset over the 5000 regressions. Outliers are clearly identified.
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Figure 6: Up - Illustrative examples of 720 ˆ 720 temperature (left) and pressure (right) fields of the ERA5
dataset. Bottom - Estimated pressure field from conditioning the Transducer with 15 days data dating 1 week
before the target date. Insets show recovered details of the estimation (blue) compared with ground truth (red).

5.3 Climate modeling with seasonal adaptation

One advantage of our approach is the ability to select the data that is most relevant with respect to a
certain prediction task and subsequently adapt the model response. For instance, robust and precise
prediction of climate variables is difficult because models need to account for seasonal variability
and adapt to drifting parameters. Even with a globally large amount of available data, the underlying
operator of interest might change over time or be affected by unobserved phenomena. Hence, in order
to fully exploit the potential of data-driven methods, being able to capture such variations might greatly
help prediction performance on fluctuating and drifting data distributions. In order to illustrate the
applicability and scalability of deep transductive learning, we considered the problem of predicting the
Earth’s surface air pressure solely from the Earth’s surface air temperature at a high resolution. Data
is taken from the ERA5 reanalysis (Hersbach et al., 2020) publicly made available by the ECMWF,
which consists of hourly high-resolution estimates of multiple atmospheric variables from 1979 to
the current day. We model pressure estimate on a 720 ˆ 720 grid, resulting in a spatial resolution
of 0.25˝ ˆ 0.5˝, allowing us to capture small features such as local dynamics and geographic relief.

METHOD LWMSE (HPA) TIME (S)
NEAREST-NEIGHBORS 67.326 5.915
VIT 32.826 0.053
TRANSDUCER - (P.Y) 25.293 0.192
TRANSDUCER - (P.W) 22.718 0.192

Table 3: Latitude-weighted mean-square error (in hectopascals)
and inference time for the earth surface pressure prediction task.

Similar to (Pathak et al., 2022), we
modify a ViT backbone to incorporate
a kernel transduction layer before ev-
ery patch attention and compare our
model to an unmodified ViT baseline
with a matching number of parame-
ters. We additionally compare with a
fully transductive Nearest Neighbors
approach. In Figure 6 and Table 3, we
present results obtained on training a
Transducer with data from 2010 to 2014 and testing it on data from 2016 to 2019. We trained our
model by predicting 5 random days sampled from random 20-day windows and present two test
configurations: We either condition the Transducer with a window centered at the previous year’s
same date (P.Y) or with a 15 days window lagging by a week (P.W) (see SI for details). Both cases
outperform transductive and inductive baselines with fast inference time, confirming that our solution
can scale to large problems and be combined with other deep learning modules.

5.4 Finite-dimensional case: MNIST-like datasets classification

We finally confirm the generality of our approach in the case of finite-dimensional spaces U and
V by studying the meta-learning problem presented in Kirsch et al. (2022) which consists in re-
gressing classification functions from the 784-dimensional space of MNIST-like images (LeCun
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METHOD MNIST FASHIONMNIST KMNIST
MAML (FINN ET AL., 2017) 53.71% 48.44% 36.33%
VSML (KIRSCH ET AL., 2021) 79.04% 68.49% 54.69%
GPICL (KIRSCH ET AL., 2022) 73.70 % 62.24% 53.39%
TRANSDUCER 81.83% 69.85% 60.64%

Figure 7: Comparison of meta-test accuracies of MNIST-like datasets classification tasks. Meta-learning models
are trained on transformations of MNIST and are meta-tested on original MNIST, FashionMNIST and KMNIST
.

and Cortes, 2010) to a 10-dimensional space of one-hot class encoding (i.e functions considered are
O : r0, 1s784 fiÑ r0, 1s10). We meta-train a 2-layer Transducer to classify consistently pixel-permuted
and class-permuted versions of MNIST. We then meta-test the Transducer to classify the unpermuted
MNIST dataset and how the regression map transfer to Fashion-MNIST (Xiao et al., 2017) and
KMNIST (Clanuwat et al., 2018). We show in Table 7 that the Transducer outperforms previous
meta-learning approaches on both the original MNIST classification task as well as transfer better on
Fashion MNIST and K-MNIST classfication tasks.

6 Related work

Transductive Machine learning ˛ Principles of transductive statistical estimation have been formally
described in Gammerman et al. (1998); Vapnik (1999). Algorithms relying on relational structures
between data points such as K-nearest neighbors (Cover and Hart, 1967) and kernel methods
(Nadaraya, 1964; Watson, 1964) build estimates by weighing examples with respect to a certain
metric space. Further, the “kernel trick” allows to embed possibly infinite-dimensional features
(Ferraty and Vieu, 2006) into finite Gram matrix representations that are also well-suited for multi-
task regression (Evgeniou et al., 2005; Caponnetto et al., 2008). Distinctively, Gaussian processes
regression (Williams and Rasmussen, 1995) combines transduction with Bayesian modeling to
estimate a posterior distribution over possible functions. These techniques might suffer from the
so-called “curse of dimensionality”: with growing dimensionality, the density of exemplar point
diminishes, which increases estimators’ variance. More recent work combining deep learning with
transductive inference has shown promising results even in high-dimensional spaces for few-shot
learning (Snell et al., 2017; Sung et al., 2018) or sequence modeling (Jaitly et al., 2015), but the vast
majority of neural networks still remain purely inductive.

Neural operator learning ˛ The universal approximation abilities of neural networks have been
generalized to infinite-dimensional function spaces: Chen and Chen (1995) showed that finite neural
parametrization can approximate well infinite-dimensional operators. More recent work using neural
networks to perform operator regression has shown strong results (Lu et al., 2019), especially when
mixed with tools from functional analysis and physics (Raissi et al., 2017; Li et al., 2020a; Gupta
et al., 2021; Li et al., 2020b; Nelsen and Stuart, 2021; Wang et al., 2021; Roberts et al., 2021) and
constitutes a booming research direction in particular for physical applications (Goswami et al., 2022;
Pathak et al., 2022; Vinuesa and Brunton, 2022; Wen et al., 2022; Pickering et al., 2022). Recently,
the Transformer’s attentional computation has been interpreted as a Petrov-Galerkin projection (Cao,
2021) or through Reproducing Kernel Hilbert Space theory (Kissas et al., 2022) for building such
neural operators, but these perspectives apply attention to fit a single target operator.

Meta-learning and in-context learning ˛ Promising work towards more general and adaptable
machines has consisted in automatically "learning to learn" or meta-learning programs (Schmidhuber
et al., 1997; Vilalta and Drissi, 2002), by either explicitly treating gradient descent as an optimizable
object (Finn et al., 2017), modeling an optimizer as a black-box autoregressive model (Ravi and
Larochelle, 2017) or informing sequential strategies via memorization (Santoro et al., 2016; Ortega
et al., 2019) More recently, converging findings in various domains from reinforcement learning
(Mishra et al., 2018; Laskin et al., 2022), natural language processing (Brown et al., 2020; Xie et al.,
2021; Olsson et al., 2022) and functional regression (Garg et al., 2022) have established the ability of
set-based attentional computation in the Transformer (Vaswani et al., 2017) for in-context learning by
flexibly extracting functional relationships and performing dynamic association such as linguistic
analogy or few-shot behavioral imitation. We show that the theory of RKBS can help interpret such
property and extends it to function-valued operators regression.
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7 Discussion

We proposed a novel transductive model combining kernel methods and neural networks that is
capable of performing regression over entire function spaces. We based our model on the theory of
vector-valued Reproducing Kernel Banach Spaces and showcased several instances where it learns
a regression program able, in a single feedforward pass, to reach performance levels that match or
outperform previous instance-specific neural operators or meta-learning systems. Our approach holds
potential to create programs flexibly specified by data and able to model entire families of complex
physical systems, with particular applications in functional hypothesis testing, dataset curation or fast
ensemble learning. However, one limitation is that our model relies on meta-training, which requires
collecting a sufficiently diverse meta-dataset to explore the kernel space. In future work, we plan to
investigate methods such as synthetic augmentation to reduce the costs of meta-training.
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