

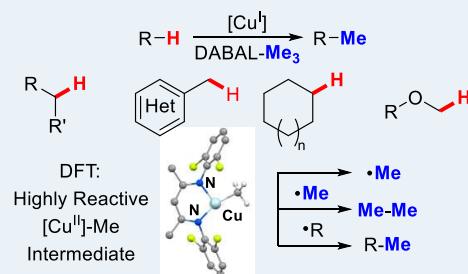
Copper-Catalyzed C(sp³)–H Methylation via Radical Relay

Bryan C. Figula, Ting-An Chen, Jeffery A. Bertke, and Timothy H. Warren*

Cite This: *ACS Catal.* 2022, 12, 11854–11859

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

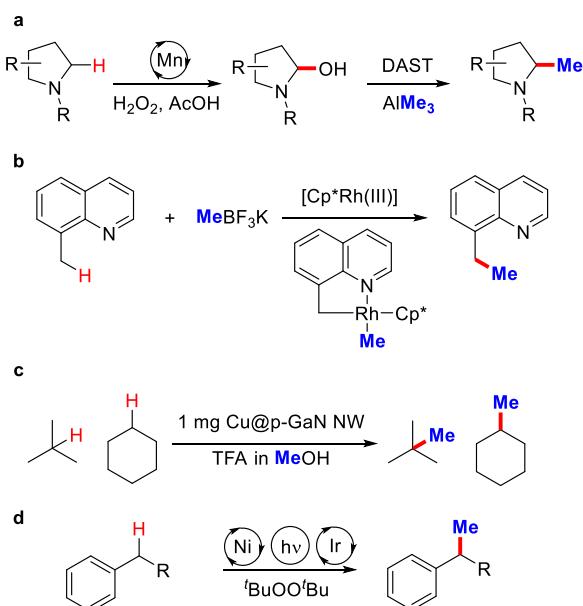
ABSTRACT: The methyl moiety is a key functional group that can result in major improvements in the potency and selectivity of pharmaceutical agents. We present a radical relay C–H methylation methodology that employs a β -diketiminate copper catalyst capable of methylating unactivated C(sp³)–H bonds. Taking advantage of the bench-stable DABAL-Me₃, an amine-stabilized trimethylaluminum reagent, methylation of a range of substrates possessing both activated and unactivated C(sp³)–H bonds proceeds with a minimal amount of overmethylation. Mechanistic studies supported by both experiment and computation suggest the intermediacy of a copper(II) methyl intermediate reactive toward both the loss of the methyl radical as well capture of radicals R[•] to form R–Me bonds.

KEYWORDS: C–H functionalization, methylation, copper, radical relay, DFT

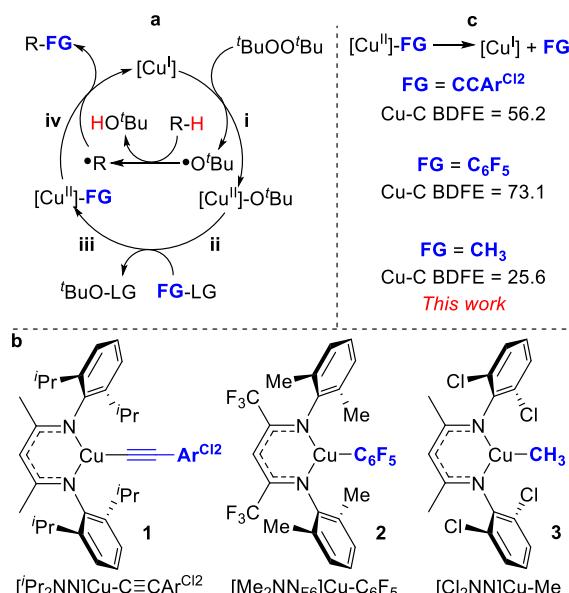
The methyl group is one of the smallest, yet most common, functional groups in chemistry. The addition of a methyl group has the ability to alter steric and conformational properties without significantly affecting the electronic characteristics of a molecule.¹ In some cases, large conformational changes occur upon addition of this functional group, leading to greater efficacy of pharmaceutical agents.² This effect, dubbed the “magic methyl” effect, creates an increased demand for protocols to install a methyl group, especially for both weaker as well as nonactivated C–H bonds.

C–H functionalization has enabled the installation of the methyl groups in a wide variety of settings via directed C(sp²)–H activation^{3,4} or radical-generating mechanisms.^{5,6} Oxidative C(sp³)–H methylation, however, has been far less explored and typically requires directing groups.^{7–9} Recently undirected C(sp³)–H methylation has been reported employing activated C–H bonds α to heteroatoms (Figure 1a).^{10,11} In these protocols, C(sp³)–H bonds are selectively oxidized to C–OH or C–OR moieties that serve as synthetic handles for subsequent methylation to provide products with C–Me bonds. Since these methods typically target activated, weaker C–H bonds, methylation of nonactivated C(sp³)–H bonds poses a considerable challenge.

Employing a substrate-bound directing group, Sharma utilized a [Cp^{*}Rh^{III}] catalyst to methylate 8-methylquinolines with organoboron reagents (Figure 1b).¹² The undirected methylation of simple substrates has been recently performed by Li, using p-type doped gallium nitride nanowires to methylate simple hydrocarbons via methylene intermediates such as cyclopentane and *n*-hexane (Figure 1c).¹³ Recently, Stahl has realized C(sp³)–H methylation using Ni and Ir catalysts under photoredox catalysis with ¹BuOO[•]Bu serving as a HAT reagent and a source of CH₃ radicals (Figure 1d).¹⁴ While recent reports have begun to address nonactivated


C(sp³)–H methylation,¹⁵ new approaches are still needed for this important synthetic opportunity.

Building upon the Kharasch–Sosnovsky reaction,^{15–17} we have developed various C–H functionalization protocols that convert sp³ C–H bonds to C–N and C–O bonds employing amides,¹⁸ anilides,^{19,20} and acyl-protected phenols²¹ that result in β -diketiminate-stabilized [Cu^{II}]-FG intermediates in radical relay catalysis²² (Figure 2a). Recently, we have shown that copper(II) complexes with Cu–C bonds also function in this radical relay protocol. For instance, terminal alkynes can be utilized in the alkynylation of sp³ C–H substrates RH to give RC≡CAr via the isolable three-coordinate copper(II) alkynyl intermediate [¹Pr₂NN]CuC≡CAr (1) (Figure 2b) capable of capture of radicals such as Ph₃C[•] to give Ph₃C–C≡CAr.²³ This enables C–H alkynylation of benzylic substrates R–H with ¹BuOO[•]Bu as oxidant to give products RC≡CAr in good yield that competes with bimolecular coupling to give the diynes ArC≡CC≡CAr.


Thus, copper(II) organometallic complexes can serve in radical relay catalysis for C–C bond formation. DFT studies in support of a recently developed C–H arylation protocol that converts benzylic sp³ C–H bonds in substrates R–H to R–C₆F₅ suggests the formation of [Cu^{II}]-C₆F₅ intermediates via an acid–base exchange between [Cu^{II}]-O[•]Bu and the mildly acidic C–H bond in HC₆F₅.²⁴ Earlier synthetic studies enabled the isolation of the β -diketimato copper(II) aryl complex [Me₂NN_{F6}]CuC₆F₅ (2) via transmetalation between [Cu^{II}]-

Received: May 20, 2022

Revised: September 1, 2022

Figure 1. (a) Activated C(sp³)-H methylation. (b) Directed C(sp³)-H methylation. (c) Unactivated C(sp³)-H methylation. (d) Photoredox C(sp³)-H methylation.

Figure 2. (a) Radical relay mechanism for C-N, C-O, and C-C bond forming reactions. (b) Proposed Cu-alkynyl, Cu-aryl, and Cu-methyl intermediates in C_{sp}-C_{sp3}, C_{sp2}-C_{sp3}, and C_{sp3}-C_{sp3} bond forming reactions. (c) Calculated Cu-C bond free energies (kcal/mol) for proposed Cu-alkynyl, Cu-aryl, and Cu-methyl intermediates.

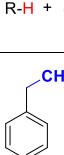
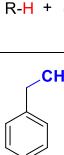
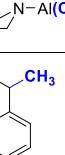
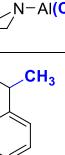
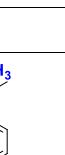
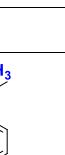
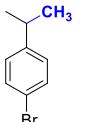
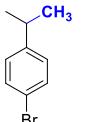
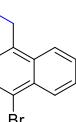
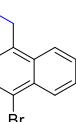
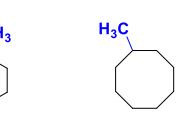
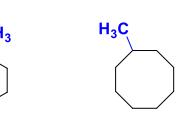
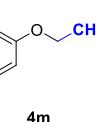
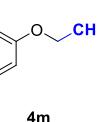
O'Bu and B(C₆F₅)₃.²⁵ These studies reveal that [Cu^{II}]-C₆F₅ intermediates such as **2** are more stable than nonfluorinated [Cu^{II}]-C₆H₅ with higher Cu-C BDFEs being calculated by DFT (56.2 vs 30 kcal/mol) (Figure 2b,c). Each decomposes to the corresponding biaryl Ar-Ar, likely via a redox disproportionation pathway that enables formation of [Cu]Ar₂ species with low barriers to Ar-Ar coupling.²⁵

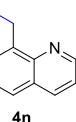
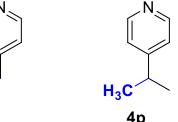
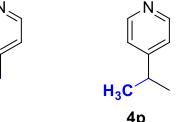
To enable a related copper-catalyzed sp³ C-H methylation methodology via a copper(II) methyl intermediate such as [Cl₂NN]Cu-Me (**3**), we began by exploring Lewis acidic methylating reagents capable of reaction with copper(II) *tert*-

butoxide intermediates [Cu^{II}]-O'Bu formed upon activation of copper(I) β -diketiminates with *tert*BuOO'Bu (Figure 2a, step i).²⁶ During the screening of various reagents that included AlMe₃ and ZnMe₂ (Table S1), we identified 1,4-diazabicyclo[2.2.2]-octane (DABAL-Me₃)^{27,28} as an attractive methylating reagent. Initial investigations showed an 80% yield for methylation of 4-bromotoluene based on 1 equiv of DABAL-Me₃ that includes 20 equiv of C-H substrate and 5 equiv of *tert*BuOO'Bu oxidant with 10 mol % of [Cl₂NN]Cu^I (henceforth denoted [Cu^I]), a commercially available β -diketiminate catalyst (Table S1). Heating the reactions to 100 °C also improved yields. With our methylation source in hand, we began screening a range of copper(I) β -diketiminate catalysts (Table 1). Utilizing the

Table 1. Copper-Catalyzed C-H Methylation of 4-Bromotoluene by DABAL-Me₃

Entry	Catalyst	(X, R ¹ , R ²)	Yield (%)	Reaction Scheme
1.	[Cl ₂ NN]Cu	1a (Me, Cl, H)	80	
2.	[Me ₃ NN]Cu	1b (Me, Me, Me)	60	
3.	[(OMe) ₂ NN]Cu	1c (Me, OMe, H)	25	
4.	[Cl ₂ NN _{F6}]Cu	1d (CF ₃ , Cl, H)	49	
5.	[iPr ₂ NN _{F6}]Cu	1e (CF ₃ , iPr, H)	29	
6.	[Me ₂ NN _{F6}]Cu	1f (CF ₃ , Me, H)	49	
7.	No catalyst		9	

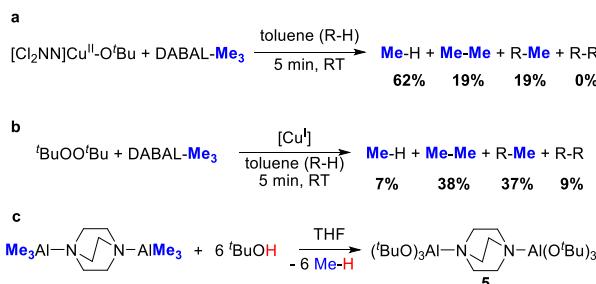


















Conditions: 20 equiv. R-H, neat, -35 °C then heated to 100 °C, 16 h. All yields were determined by ¹H NMR.

more electron rich catalysts **1b,c** did not improve yields, whereas the more electron poor catalysts **1d-f** also showed a diminished product formation. Focusing on [Cl₂NN]Cu as catalyst, we find that increasing the catalyst loading from 1 to 10 mol % increases the yield of C-H methylation with ethylbenzene (Table S2). While DABAL-Me₃ could potentially deliver multiple Me groups in the presence of excess oxidant, we report yields relative to the use of 1 equiv of DABAL-Me₃.

We then began to investigate the efficacy of this methodology with various C(sp³)-H substrates. For consistency, we report NMR and GC yields directly measured from the reaction mixtures (Table 2). Primary benzylic substrates are particularly good substrates for this methylation protocol (**4a,d,f,h**). Despite their lower C-H bond strengths, secondary and tertiary benzylic substrates often exhibited lower yields (**4b,e,g,I**). Accordingly, we see very little overmethylation of primary benzylic substrates (<2%). A modest range of substrates possessing sp³ C-H bonds α to heteroatoms gave moderate to good yields of C-H methylation products **4m-p**. Notably, nonactivated sp³ C-H substrates such as cyclohexane and cyclooctane provided methylated cycloalkanes **4k,l** in good to moderate yields. Use of DABAL-Me_{3-d18} derived from Al(CD₃)₃ in the C-H methylation of toluene results in PhCH₂CD₃, confirming that the added methyl group in the product is derived from the DABAL-Me₃ reagent (Figure S36).

Based on previous synthetic studies with copper(II) β -diketiminato *tert*-butoxide complexes [Cu^{II}]-O'Bu, we anticipated that the reaction of [Cu^{II}]-O'Bu and DABAL-Me₃ would result in a transmetalation leading to the [Cu^{II}]-CH₃ intermediate **3**. Addition of DABAL-Me₃ to [Cl₂NN]Cu-O'Bu results in rapid decay of the band at $\lambda = 470$ nm without the observation of any new optical band consistent with a long-lived copper(II) species. Thus, any [Cl₂NN]Cu-Me (**3**)


Table 2. Copper-Catalyzed C–H Methylation of Various C–H Substrates by DABAL-Me₃^a

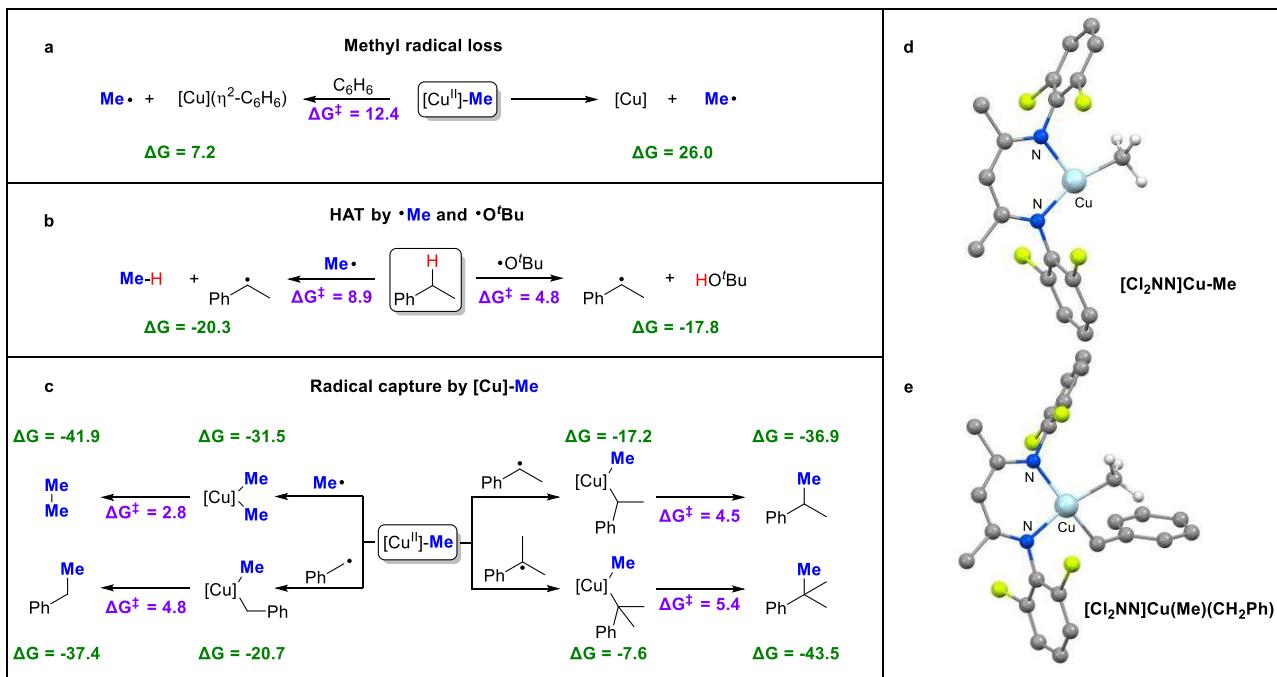
$R-H + (H_3C)_3Al-N(C_6H_4)_2-N-Al(CH_3)_3$	10 mol % $[Cl_2NN]Cu$	5 equiv. tBuOOBu	$R-CH_3$	4
				4a
71% (59%)				
				4b
45% (45%)				
				4c
7% (7%)				
				4d
80% (97%)				
				4e
46% (53%)				
				4f
66% (59%)				
				4g
55% (50%)				
				4h
80% (71%)				
				4i
31% (31%)				
				4j
68% (63%)				
				4k
84% (78%)				
				4l
48% (42%)				
				4m
50% (52%)				
				4n
47% (50%)				
				4o
36% (30%)				
				4p
20% (25%)				

^aConditions: 20 equiv of R-H, neat, $-35\text{ }^\circ\text{C}$ then heated to $100\text{ }^\circ\text{C}$, 16 h. All yields were determined by ^1H NMR. GC/MS yields are noted in parentheses.

intermediate would have a very short lifetime. Additionally, we note the copious generation of gas upon addition of DABAL-Me₃ to $[\text{Cu}^{\text{II}}]\text{-O}^t\text{Bu}$ when the reaction carried out on synthetic scales at room temperature.

We studied the formation of these gases through stoichiometric reaction of $[\text{Cu}^{\text{II}}]\text{-O}^t\text{Bu}$ with DABAL-Me₃ in toluene (Figure 3a). We observe significant generation of methane and ethane that could proceed via Me[•] radicals. Moreover, the formation of ethylbenzene suggests that Me[•] radicals could engage in H atom transfer with $\text{PhCH}_2\text{-H}$ to generate methane (Me-H) and a toluene radical ($\text{PhCH}_2\text{•}$); previous studies have demonstrated that $[\text{Cl}_2\text{NN}]\text{C-O}^t\text{Bu}$ is unreactive toward benzylic C–H bonds.²⁰ Inclusion of

Figure 3. Analyzing the reactivity of DABAL-Me₃ under catalytically relevant conditions: (a) reactions between $[\text{Cu}^{\text{II}}]\text{-O}^t\text{Bu}$ and DABAL-Me₃, (b) catalytic C–H methylation with toluene; (c) alcoholysis of DABAL-Me₃.


$^t\text{BuOO}^t\text{Bu}$ enhances the sp³ C–H methylation of toluene, though Me[•] and $\text{PhCH}_2\text{•}$ radical homocoupling also occurs (Figure 3b). We speculate that the generation of benzylic radicals through HAT from toluene to the $^t\text{BuO}^{\bullet}$ radical facilitates benzylic C–H methylation through more efficient production of benzyl radicals for capture via $[\text{Cu}^{\text{II}}]\text{-CH}_3$ intermediates. An additional route for Me-H formation involves the alcoholysis of DABAL-Me₃ with $^t\text{BuOH}$ generated in HAT reactions via $^t\text{BuO}^{\bullet}$. Addition of excess $^t\text{BuOH}$ to a solution of DABAL-Me₃ results in quantitative formation of DABAL-(^tBuO)₃ (5) (Figure 3c), isolated as colorless crystals and identified by X-ray crystallography (Figure S39).

To investigate organometallic intermediates suggested to be highly reactive via our experimental studies, we employed DFT methods at the BP86+6-311G(d,p)/SMD-benzene//BP86/6-311+G(d) level of theory. We began by examining the stability of $[\text{Cu}^{\text{II}}]\text{-Me}$ intermediate 3 toward homolytic cleavage of its Cu–Me bond to give the methyl radical (Figure 4a). Release of Me[•] from the T-shaped d⁹ complex²⁹ $[\text{Cu}^{\text{II}}]\text{-Me}$ (Figure 4d and Figure S73) is uphill by 26.0 kcal/mol, disfavored by the instability of the two-coordinate β -diketiminato copper(I) fragment $[\text{Cu}^{\text{I}}]$. Noting the affinity of copper(I) β -diketiminates for η^2 -arene coordination,^{30,31} we considered the concerted displacement of the methyl radical by an incoming molecule of benzene. This results in a much less endergonic release of the methyl radical Me[•] (+7.2 kcal/mol) with a free energy of activation of only 12.4 kcal/mol (Figure 4a).

Recognizing that the $[\text{Cu}^{\text{II}}]\text{-Me}$ intermediate can readily generate Me[•] radicals, we briefly computationally compared activation barriers for H atom abstraction (HAA) from sp³ C–H substrates R-H by Me[•] and $^t\text{BuO}^{\bullet}$ generated in the presence of $[\text{Cu}^{\text{I}}]$ and $^t\text{BuOO}^t\text{Bu}$ (Figure 4b and Table S8).²⁶ At this level of theory, thermodynamic and activation parameters for abstraction of a benzylic hydrogen atom from ethylbenzene by a methyl radical ($\Delta G = -20.3$ kcal/mol, $\Delta G^\ddagger = 8.9$ kcal/mol) are greater in magnitude than those for the *tert*-butoxy radical ($\Delta G = -17.8$ kcal/mol, $\Delta G^\ddagger = 4.8$ kcal/mol). These computational finding reflect the experimentally observed trend of more favorable benzylic C–H abstraction by the $^t\text{BuO}^{\bullet}$ vs the Me[•] radicals.^{32,33} HAT by Me[•] represents one pathway for experimentally observed methane formation (Figure 3a), while HAT by $^t\text{BuO}^{\bullet}$ forms $^t\text{BuOH}$.

Computational studies reveal that the copper(II) methyl intermediate $[\text{Cu}^{\text{II}}]\text{-Me}$ captures alkyl radicals R[•] extremely efficiently to provide distorted square planar $[\text{Cu}^{\text{III}}](\text{Me})(\text{R})$ intermediates with τ_4 values between 0.30 and 0.60 ($\tau_4 = 0$, square planar; $\tau_4 = 1$, tetrahedral)³⁴ susceptible to reductive elimination of R-Me products (Figure 4c, 4e). While the capture of a Me[•] radical by $[\text{Cu}^{\text{II}}]\text{-Me}$ to form $[\text{Cu}]\text{Me}_2$ is thermodynamically most favored ($\Delta G = -31.9$ kcal/mol), capture of 1°, 2°, and 3° benzylic radicals decreases in exergonicity ($\Delta G = -20.7$, -17.2 , -7.2 kcal/mol, respectively) with increasing size and stability of the alkyl radical R[•].

Relaxed potential energy scans reveal no significant barrier for radical capture by $[\text{Cu}^{\text{II}}]\text{-Me}$. The T-shaped geometry of $[\text{Cu}^{\text{II}}]\text{-Me}$ (Figure 4d), similar to that of $[\text{Cu}^{\text{II}}]\text{-C}_6\text{F}_5$, leaves the copper center poised for capture of alkyl radicals R[•] to form the square-planar $[\text{Cu}^{\text{III}}](\text{Me})(\text{R})$ (Figure 4e). In each case, reductive elimination from $[\text{Cu}^{\text{III}}](\text{Me})(\text{R})$ species to form $[\text{Cu}^{\text{I}}]$ and Me-R is facile with minute barriers of 2.8–5.4 kcal/mol.

Figure 4. DFT calculated thermodynamics and activation barriers for (a) methyl loss from $[\text{Cu}]\text{-Me}$, (b) H atom transfer from ethylbenzene by $\text{Me} \cdot$ and $\cdot\text{O}'\text{Bu}$, (c) radical capture by $[\text{Cu}]\text{-Me}$ along with DFT structures of (d) $[\text{Cu}]\text{-Me}$ and (e) $[\text{Cu}](\text{Me})(\text{CH}_2\text{Ph})$ calculated at the BP86+6-311G(d,p)/SMD-benzene//BP86/6-311+G(d) level of theory. Free energies are given in kcal/mol.

$\text{C}(\text{sp}^3)\text{-H}$ methylation can occur via copper-catalyzed radical relay employing $\text{O}'\text{BuOO}'\text{Bu}$ as oxidant similar to other C–H functionalization reactions that form C–N, C–O, and C–C bonds (Figure 2).^{18–22} In contrast to other protocols that involve relatively stable $[\text{Cu}^{\text{II}}]\text{-FG}$ intermediates, experimental and computational studies suggest that $[\text{Cu}^{\text{II}}]\text{-Me}$ generates the $\text{Me} \cdot$ radical capable of H atom abstraction of sp^3 C–H substrates R–H to form radicals R \cdot .³⁵ At the same time, $\text{Me} \cdot$ radicals generated may compete with R \cdot for capture by $[\text{Cu}^{\text{II}}]\text{-Me}$ (3) to form $[\text{Cu}](\text{Me})(\text{R})$ intermediates (R = Me, alkyl) that undergo facile reductive elimination which can lead to nonproductive methyl group usage (R = Me). Solely based on sterics, we would anticipate slower capture of bulky 3° radicals such as $\text{PhC}(\cdot)\text{Me}_2$ as compared to 1° radicals $\text{PhCH}_2\cdot$ that could result in lower experimental yields of PhCMe_3 vs PhCH_2Me , especially if these radicals are competing for capture at $[\text{Cu}^{\text{II}}]\text{-Me}$ with the small, reactive $\text{Me} \cdot$ radical. Thus, the decreasing exergonicity of radical capture for larger radicals such as the 3° benzylic $\text{PhC}(\cdot)\text{Me}_2$ (Figure 4c) may contribute to the lower experimental yields observed (Table 2, entry 4c).

Since H atom abstraction can occur via either $\text{O}'\text{BuO}'\text{Bu}$ or $\text{Me} \cdot$ radicals that form strong $\text{O}'\text{Bu–H}$ and Me–H bonds (BDE = 105 and 104 kcal/mol, respectively); this system methylates unactivated 2 °C–H bonds of cycloalkanes (BDE = 95–99 kcal/mol).³⁶ One pathway to consider in catalyst optimization is to decrease the ability of an incoming arene to associatively displace a $\text{Me} \cdot$ radical from $[\text{Cu}^{\text{II}}]\text{-Me}$ to give $[\text{Cu}^{\text{I}}](\eta^2\text{-arene})$ and $\text{Me} \cdot$. Nonetheless, the volatility of the methane and ethane byproducts coupled with the ease of handling of DABAL- Me_3 results in a system that allows for the use of excess methylating reagent that generates easily separable gaseous products.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acscatal.2c02474>.

Experimental, X-ray structure and DFT calculation details (PDF)

X-ray data for DABAL-($\text{O}'\text{Bu}$)₃ (5) (CIF)

XYZ coordinates of DFT calculated structures (TXT)

AUTHOR INFORMATION

Corresponding Author

Timothy H. Warren – Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States; Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States; Present Address: Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States; orcid.org/0000-0001-9217-8890; Email: warre155@msu.edu

Authors

Bryan C. Figula – Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States

Ting-An Chen – Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States; Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States; Present Address: Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States

Jeffery A. Bertke – Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States; orcid.org/0000-0002-3419-5163

Complete contact information is available at:

<https://pubs.acs.org/doi/10.1021/acscatal.2c02474>

Author Contributions

B.C.F. performed all experimental and most computational work; T.-A. C. carried out some computational work. B.C.F. and J.A.B. collected, solved, and refined crystallographic data. T.H.W. supervised the experimental and computational work. B.C.F. and T.H.W. wrote the manuscript. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

T.H.W. is grateful to the National Science Foundation (CHE-1955942) for support of this work.

REFERENCES

- (1) Schönherr, H.; Cernak, T. Profound Methyl Effects in Drug Discovery and a Call for New C–H Methylation Reactions. *Angew. Chem., Int. Ed.* **2013**, *52*, 12256–12267.
- (2) Aynedtinova, D.; Callens, M. C.; Hicks, H. B.; Poh, C. Y. X.; Shennan, B. D. A.; Boyd, A. M.; Lim, Z. H.; Leitch, J. A.; Dixon, D. J. Installing the “Magic Methyl” – C–H Methylation in Synthesis. *Chem. Soc. Rev.* **2021**, *50*, 5517–5563.
- (3) Liu, D.; Yu, L.; Yu, Y.; Xia, Z.; Song, Z.; Liao, L.; Tan, Z.; Chen, X. Nickel-Catalyzed Ortho C–H Methylation of Aromatic Amides with Di-Tert-Butyl Peroxide as Methylation Reagent: Nickel-Catalyzed Ortho C–H Methylation of Aromatic Amides with Di-Tert-Butyl Peroxide as Methylation Reagent. *Eur. J. Org. Chem.* **2019**, *2019*, 6930–6934.
- (4) Chen, X.-Y.; Sorensen, E. J. Pd-Catalyzed, Ortho C–H Methylation and Fluorination of Benzaldehydes Using Orthanilic Acids as Transient Directing Groups. *J. Am. Chem. Soc.* **2018**, *140*, 2789–2792.
- (5) DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Late-Stage Functionalization of Biologically Active Heterocycles Through Photoredox Catalysis. *Angew. Chem., Int. Ed.* **2014**, *53*, 4802–4806.
- (6) Jin, J.; MacMillan, D. W. C. Alcohols as Alkylating Agents in Heteroarene C–H Functionalization. *Nature* **2015**, *525*, 87–90.
- (7) Chen, X.; Goodhue, C. E.; Yu, J.-Q. Palladium-Catalyzed Alkylation of sp^2 and sp^3 C–H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C–H Activation Pathways. *J. Am. Chem. Soc.* **2006**, *128*, 12634–12635.
- (8) Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G. Palladium-Catalyzed Picolinamide-Directed Alkylation of Unactivated C(sp^3)-H Bonds with Alkyl Iodides. *J. Am. Chem. Soc.* **2013**, *135*, 2124–2127.
- (9) Sun, G.; Zou, X.; Wang, J.; Yang, W. Sulfur-Directed Palladium-Catalyzed C(sp^3)-H α -Arylation of 3-Pyrrolines: Easy Access to Diverse Polysubstituted Pyrrolidines. *Org. Chem. Front.* **2020**, *7*, 666–671.
- (10) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Late-Stage Oxidative C(sp^3)-H Methylation. *Nature* **2020**, *580*, 621–627.
- (11) Novaes, L. F. T.; Ho, J. S. K.; Mao, K.; Liu, K.; Tanwar, M.; Neurock, M.; Villemure, E.; Terrett, J. A.; Lin, S. Exploring Electrochemical C(sp^3)-H Oxidation for the Late-Stage Methylation of Complex Molecules. *J. Am. Chem. Soc.* **2022**, *144*, 1187–1197.
- (12) Kumar, R.; Sharma, R.; Kumar, R.; Sharma, U. Cp*Rh(III)-Catalyzed Regioselective C(sp^3)-H Methylation of 8-Methylquinoxelines with Organoborons. *Org. Lett.* **2020**, *22*, 305–309.
- (13) Liu, M.; Qiu, Z.; Tan, L.; Rashid, R. T.; Chu, S.; Cen, Y.; Luo, Z.; Khalilullin, R. Z.; Mi, Z.; Li, C.-J. Photocatalytic Methylation of Nonactivated sp^3 and sp^2 C–H Bonds Using Methanol on GaN. *ACS Catal.* **2020**, *10*, 6248–6253.
- (14) Vasilopoulos, A.; Krska, S. W.; Stahl, S. S. C(sp^3)-H Methylation Enabled by Peroxide Photosensitization and Ni-Mediated Radical Coupling. *Science* **2021**, *372*, 398–403.
- (15) Kharasch, M. S.; Sosnovsky, G. The Reactions of *t*-Butyl Perbenzoate and Olefins-a Stereospecific Reaction. *J. Am. Chem. Soc.* **1958**, *80*, 756–756.
- (16) Kharasch, M. S.; Sosnovsky, G.; Yang, N. C. Reactions of *t*-Butyl Peresters. I. The Reaction of Peresters with Olefins. *J. Am. Chem. Soc.* **1959**, *81*, 5819–5824.
- (17) Rawlinson, D. J.; Sosnovsky, G. One-Step Substitutive Acyloxylation at Carbon. Part I. Reactions Involving Peroxides. *Synthesis* **1972**, *1972*, 1–28.
- (18) Wiese, S.; Badie, Y. M.; Gephart, R. T.; Mossin, S.; Varonka, M. S.; Melzer, M. M.; Meyer, K.; Cundari, T. R.; Warren, T. H. Catalytic C–H Amination with Unactivated Amines through Copper(II) Amides. *Angew. Chem., Int. Ed.* **2010**, *49*, 8850–8855.
- (19) Gephart, R. T.; Huang, D. L.; Aguila, M. J. B.; Schmidt, G.; Shah, A.; Warren, T. H. Catalytic C–H Amination with Aromatic Amines. *Angew. Chem., Int. Ed.* **2012**, *51*, 6488–6492.
- (20) Jang, E. S.; McMullin, C. L.; Käß, M.; Meyer, K.; Cundari, T. R.; Warren, T. H. Copper(II) Anilides in sp^3 C–H Amination. *J. Am. Chem. Soc.* **2014**, *136*, 10930–10940.
- (21) Salvador, T. K.; Arnett, C. H.; Kundu, S.; Sapiezyński, N. G.; Bertke, J. A.; Raghibi Boroujeni, M.; Warren, T. H. Copper Catalyzed sp^3 C–H Etherification with Acyl Protected Phenols. *J. Am. Chem. Soc.* **2016**, *138*, 16580–16583.
- (22) Golden, D. L.; Suh, S.-H.; Stahl, S. S. Radical C(sp^3)-H functionalization and cross-coupling reactions. *Nat. Rev. Chem.* **2022**, *6*, 405.
- (23) Bakhoda, A.; Okoromoba, O. E.; Greene, C.; Boroujeni, M. R.; Bertke, J. A.; Warren, T. H. Three-Coordinate Copper(II) Alkynyl Complex in C–C Bond Formation: The Sesquicentennial of the Glaser Coupling. *J. Am. Chem. Soc.* **2020**, *142*, 18483–18490.
- (24) Xie, W.; Heo, J.; Kim, D.; Chang, S. Copper-Catalyzed Direct C–H Alkylation of Polyfluoroarenes by Using Hydrocarbons as an Alkylating Source. *J. Am. Chem. Soc.* **2020**, *142*, 7487–7496.
- (25) Kundu, S.; Greene, C.; Williams, K. D.; Salvador, T. K.; Bertke, J. A.; Cundari, T. R.; Warren, T. H. Three-Coordinate Copper(II) Aryls: Key Intermediates in C–O Bond Formation. *J. Am. Chem. Soc.* **2017**, *139*, 9112–9115.
- (26) Gephart, R. T.; McMullin, C. L.; Sapiezyński, N. G.; Jang, E. S.; Aguila, M. J. B.; Cundari, T. R.; Warren, T. H. Reaction of Cu(I) with Dialkyl Peroxides: Cu(II)-Alkoxides, Alkoxy Radicals, and Catalytic C–H Etherification. *J. Am. Chem. Soc.* **2012**, *134*, 17350–17353.
- (27) Biswas, K.; Prieto, O.; Goldsmith, P. J.; Woodward, S. Remarkably Stable $(Me_3Al)_2$ -DABCO and Stereoselective Nickel-Catalyzed AlR_3 (R = Me, Et) Additions to Aldehydes. *Angew. Chem., Int. Ed.* **2005**, *44*, 2232–2234.
- (28) Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed Ortho C–H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand. *J. Am. Chem. Soc.* **2016**, *138*, 10132–10135.
- (29) Eckert, N. A.; Dinescu, A.; Cundari, T. R.; Holland, P. L. A T-Shaped Three-Coordinate Nickel(I) Carbonyl Complex and the Geometric Preferences of Three-Coordinate d^9 Complexes. *Inorg. Chem.* **2005**, *44*, 7702–7704.
- (30) Bakhoda, A. G.; Jiang, Q.; Badie, Y. M.; Bertke, J. A.; Cundari, T. R.; Warren, T. H. Copper-Catalyzed C(sp^3)-H Amidation: Sterically Driven Primary and Secondary C–H Site-Selectivity. *Angew. Chem., Int. Ed.* **2019**, *58*, 3421–3425.
- (31) Sakhaii, Z.; Kundu, S.; Donnelly, J. M.; Bertke, J. A.; Kim, W. Y.; Warren, T. H. Nitric Oxide Release via Oxygen Atom Transfer from Nitrite at Copper. *Chem. Commun.* **2017**, *53*, 549–552.
- (32) Finn, M.; Friedline, R.; Suleiman, N. K.; Wohl, C. J.; Tanko, J. M. Chemistry of the T-Butoxyl Radical: Evidence That Most Hydrogen Abstractions from Carbon Are Entropy-Controlled. *J. Am. Chem. Soc.* **2004**, *126*, 7578–7584.
- (33) Burkley, I. B.; Rebbert, R. E. The Reactions of Methyl Radicals with Aromatic Compounds. I. Toluene, Ethylbenzene, and Cumene. *J. Phys. Chem.* **1963**, *67*, 168–169.
- (34) Yang, L.; Powell, D. R.; Houser, R. P. Structural Variation in Copper Complexes with Pyridylmethylamide Ligands: Structural

Analysis with a New Four-Coordinate Geometry Index, τ . *Dalton Trans* **2007**, *9*, 955–964.

(35) Leibler, I. N.-M.; Tekle-Smith, M. A.; Doyle, A. G. A General Strategy for C(sp³)–H Functionalization with Nucleophiles Using Methyl Radical as a Hydrogen Atom Abstrator. *Nat. Commun.* **2021**, *12*, 6950.

(36) Luo, Y.-R. *Handbook of Bond Dissociation Energies in Organic Compounds*; CRC Press: 2002.

□ Recommended by ACS

Copper-Catalyzed Remote C(sp³)–H Amination of Carboxamides

Qing-Qiang Min, Feng Liu, *et al.*

MARCH 24, 2020
ORGANIC LETTERS

READ

Copper-Catalyzed Aminoheteroarylation of Unactivated Alkenes through Distal Heteroaryl Migration

Yungeun Kwon, Qiu Wang, *et al.*

JULY 02, 2021
ACS CATALYSIS

READ

Catalytic Intermolecular C(sp³)–H Amination: Selective Functionalization of Tertiary C–H Bonds vs Activated Benzylic C–H Bonds

Erwan Brunard, Philippe Dauban, *et al.*

APRIL 26, 2021
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ

Copper(I)-Catalyzed Aerobic Oxidation of α -Diazoesters

Changming Xu, Lei Bai, *et al.*

SEPTEMBER 06, 2020
THE JOURNAL OF ORGANIC CHEMISTRY

READ

[Get More Suggestions >](#)