
On Black-Box Verifiable Outsourcing

Amit Agarwal1[0000−0002−7642−1341], Navid Alamati2[0000−0001−8621−7486],
Dakshita Khurana1[0000−0001−5315−4503], Srinivasan

Raghuraman3[0000−0001−6737−6991], and Peter Rindal2[0000−0003−2402−7411]

1 University of Illinois Urbana-Champaign, USA
{amita2,dakshita}@illinois.edu

2 Visa Research, USA
{nalamati,perindal}@visa.com
3 Visa Research and MIT, USA

srini131293@gmail.com

Abstract. We study verifiable outsourcing of computation in a model
where the verifier has black-box access to the function being computed.
We introduce the problem of oracle-aided batch verification of computa-
tion (OBVC) for a function class F . This allows a verifier to efficiently
verify the correctness of any f ∈ F evaluated on a batch of n instances
x1, . . . , xn, while only making λ calls to an oracle for f (along with O(nλ)
calls to low-complexity helper oracles), for security parameter λ. We ob-
tain the following positive and negative results:

– We build OBVC protocols for the class of all functions that admit
random-self-reductions. Some of our protocols rely on homomorphic
encryption schemes.

– We show that there cannot exist OBVC schemes for the class of
all functions mapping λ-bit inputs to λ-bit outputs, for any n =
poly(λ).4

1 Introduction

We study the problem of verifiably outsourcing computation in a model where
the verifier has black-box access to the function being computed as well as to
certain low-complexity helper functions.

A large body of work in the study of delegation, starting with [24,26], con-
sider the setting where a computationally bounded prover generates efficiently
checkable proofs π attesting to the correctness of relatively inefficient compu-
tation. A major downside of existing works is that they require the prover and
verifier to agree on and use a specific circuit Cf for computing the function f .
In other words, the verification scheme is inherently tied to a fixed (arbitrary)
implementation of f which is publicly known to both the prover (server) and
the verifier (client).

4 The authors grant IACR a non-exclusive and irrevocable license to distribute the
article under the https://creativecommons.org/licenses/by-nc/3.0/.

2 Agarwal et al.

On the other hand, consider a scenario where a cloud-based service provider
offers a service computing f (for example, f can be matrix multiplication) on
arbitrary client data. The client would like to ensure correctness of returned
outcomes. There are a few reasons why the “circuit-dependent verification” ap-
proach above poses a barrier to verifiable computation in this scenario. First of
all, the service provider may be using a proprietary code/implementation Cf

to compute f (e.g. some proprietary matrix multiplication algorithm) which it
is unwilling to disclose to its clients. As such, running a verifiable outsourcing
protocol where the client/verifier depends on the code Cf is simply not feasible.
Second, even if the company is willing to disclose its code/implementation, the
client would have to audit it (for e.g. using formal verification) to make sure
that Cf is indeed a sound implementation of f , which can be quite complex.
Third, the company may make frequent updates to Cf (for e.g. to add perfor-
mance optimizations) which would require the client to keep checking this code
continually. Finally, making verification independent of the code of f may also
lead to efficiency improvements for the verifier in certain settings. Motivated by
these questions, we study the following problem:

What classes of functions admit oracle-aided verifiable computation schemes?

The notion of oracle-aided computation captures “circuit-independence” in
the context of verifiable computation, as we discuss next. We consider a batch
verification scenario: suppose a verifier is given access to an oracle Of for function
f ∈ F . Is it possible for the verifier, using only λ = log2 n queries to Of , to verify
the correctness of a large batch of computations y1 = f(x1), . . . , yn = f(xn)?
Oracle access to Of ensures that the verification scheme is oblivious to any spe-
cific implementation Cf that the server may use to perform the computation.
Indeed, the client can instantiate such an oracle using any arbitrary implementa-
tion C ′

f which need not depend on the server’s implementation Cf . The restric-
tion of λ oracle queries ensures that even if the oracle Of is instantiated with a
naive/inefficient implementation C ′

f on the client side, the total work performed
by the client over the entire batch will be relatively small (as long as the security
parameter λ is smaller than the batch size).

1.1 Our Results

Motivated by the above considerations, we formalize the notion of oracle aided
verifiable computation (OBVC) in the batched setting. At a high level, an OBVC

protocol for function class F , defined on ℓ bit inputs, consists of a weak client
who wishes to outsource the computation of some function f ∈ F on a batch
of n instances, let’s say x1, . . . , xn, to a powerful server. The client is assisted
by a function oracle Of along with some helper oracles Og1 , . . . ,Ogm which are
computationally “weaker” than Of . This is formalized by requiring that the
combined time complexity of helper oracles be smaller than the time complexity
of the function f i.e.

∑m
i=1 Tgi(ℓ) = o(Tf (ℓ)). The server can use an arbitrary

implementation Cf of the function f . The completeness guarantee of OBVC en-
sures that the client, when interacting with an honest server (i.e. a server holding

On Black-Box Verifiable Outsourcing 3

a correct circuit Cf for f and following the protocol steps), always outputs the
correct evaluation i.e. f(x1), . . . , f(xn). On the other hand, the soundness guar-
antee of OBVC ensures that a malicious server (i.e. a server who deviates from the
protocol or uses an incorrect circuit C ′

f) cannot make the client accept incorrect
evaluations on any input in the batch, except with some negligible probability.

We require the scheme to have the following efficiency properties: i) the
number of oracle queries made by V to the function oracle Of is O(λ), ii) the
number of queries made to each helper oracle Ogi is O(nλ), iii) there is a constant
c such that the running time of the verifier (as an oracle machine) is λc · o(n ·
Tf (ℓ)), where Tf (ℓ) is the time complexity of computing f on ℓ bit inputs. Note
that the efficiency condition ensures that the OBVC protocol is non-trivial in
that the verifier efficiency is better than computing the function on all n inputs
in time n ·O(Tf (ℓ)) or, by making O(n) oracle queries to Of .

Random Self Reducible Functions. In this work, we build an OBVC scheme for the
class of all Random Self-Reducible (RSR) functions. We now briefly describe this
property. If a function f admits K RSR, then computing f on any chosen input
x can be reduced to computing f on a set of uniformly random (not necessarily
independent) inputs r1, . . . , rK , where K is some fixed constant dependent on
f . More formally, there exists a randomized algorithm called RSR.Encode which
takes as input x and outputs a set of random instances r1, . . . , rK . We will some-
times call these random instances as “shares” of the original input x (borrowing
the terminology from secret-sharing literature). Given the evaluation of f on
these random instances, f(r1), . . . , f(rK), there exists a deterministic algorithm
called RSR.Decode which outputs f(x). Moreover, RSR.Encode and RSR.Decode
are much “simpler” to compute than f and this is formalized by requiring that
the combined time complexity of RSR.Encode and RSR.Decode is much less than
that of f . (Note that these only depend on the functionality f and not on its cir-
cuit/implementation.) Many useful functions such as integer multiplication, ma-
trix multiplication, polynomial multiplication, integer division, exponentiation,
and trigonometric functions such as sine and cos admit RSR. In our positive
result, we assume that the RSR.Encode and RSR.Decode functions are available
to the verifier as helper oracles.

Theorem 1. (Informal) Let Fℓ be the class of all Random Self-Reducible func-
tions on ℓ = ℓ(λ) bit inputs. Assuming homomorphic encryption scheme (HE)
for Fℓ, there exists an OBVC scheme for Fℓ.

In this work, we are also interested in studying the limitations of OBVC

schemes. In other words, we would like to understand whether all large classes
of functions can admit OBVC schemes. To that end, we have the following result:

Theorem 2. (Informal) Let Fλ be the class of all functions mapping λ bit inputs
to λ bit outputs. Then, Fλ does not admit an OBVC scheme.

We will elaborate upon these two results in the next section.

4 Agarwal et al.

1.2 Our techniques

Positive result. Let us start by describing a simplified version of our idea (which
doesn’t directly work). Consider the following protocol: The client sends all n
instances, x1, . . . , xn, to the server and the server is supposed to respond with
y1 = f(x1), . . . , yn = f(xn). On receiving y1, . . . , yn from the server, the client
performs a cut-and-chose style check on some small subset T , where |T | = λ (λ
being the security parameter), in the following way: It randomly selects T ⊂ [n]
and checks whether yi = Of (xi) for all i ∈ T , where Of is an oracle that
returns the evaluation of f . If the check fails, the client aborts. Otherwise, the
client outputs y1, . . . , yn. On an intuitive level, if the server is cheating on some
instance xi0 where i0 ∈ [n], then it runs the risk of being caught in the cut-and-
chose check. However, this strategy fails since even if |T | = n−1, the prover can
get away with a probability atleast 1

n , which is non-negligible. Hence this basic
scheme does not work.

The major downside of the above scheme is that a malicious server can cor-
rupt the computation on a single instance and go undetected with non-negligible
probability. One may attempt to resolve this issue is that of error correction. In
more detail, we could force a malicious server to corrupt the computation on
many parts of a codeword in order to successfully corrupt the computation on
a single instance. This would hopefully reduce the probability of a malicious
server going undetected. However, this alone does not suffice. The real issue that
the above example highlights is that a malicious server can, with probability 1,
selectively corrupt the computation on a single instance xi in the batch where
i ∈ [n], error-corrected or otherwise. Unless the verifier is invoking the oracle
Of on all n instances, it runs the risk of accepting a bad set of y1, . . . , yn. This
is true even if one employs error correction techniques on each instance as the
adversary may be able to identify the error-corrected instances corresponding
to each instance. Our idea to tackle this is to leverage the property of Random
Self-Reduction (RSR). In the following description, we will assume that we are
dealing with the class of functions admitting RSR, and that the RSR.Encode and
RSR.Decode functions are available to the verifier as helper oracles.

Suppose our function f of interest admits K RSR with K = 1. As a first step,
we will show that RSR helps us to reduce the probability of selective corruptions
from 1 to 1

n . Looking ahead, our next step will be to show that assuming this
lower probability of selective corruptions, error-correction tools, i.e., repetition
and majority decoding, can be used to achieve negligible soundness error. For our
first step, we modify our previous basic protocol in the following way: Instead of
sending x1, . . . , xn to the server, we will first map each instance xi to a uniformly
random instance ri using RSR.Encode, shuffle the set {r1, . . . , rn}, and send this
shuffled set to the server. After receiving the answers from the server, the client
will perform a cut-and-chose check as described earlier. If the cut-and-chose
check passes, it reverse shuffles the server’s responses and applies RSR.Decode
to each of them to get the actual outputs. We claim that this protocol reduces
the probability of selective corruptions to 1

n , i.e., the prover cannot selectively
corrupt the computation on a particular instance xi0 with probability better

On Black-Box Verifiable Outsourcing 5

than 1
n . This follows because a 1 RSR is a random mapping, and have shuffled

the random mappings of the instance as well.
Having achieved this lower probability of selective corruptions, we move on

to our next and final step for the case of K = 1. We claim that we can now
boost the soundness of this protocol by performing repetitions and majority
decoding in the following way: For each instance xi in the batch, we apply
RSR.Encode independently λ times, where λ is a security parameter, to get
{ri,j}i∈[n],j∈[λ]. We then proceed as described earlier i.e. the client randomly
shuffles {ri,j}i∈[n],j∈[λ], sends this shuffled set to the server and performs cut-
and-chose check on the server’s responses. If the cut-and-chose check passes, it
reverse shuffles the server’s responses and applies RSR.Decode to each of them.
Additionally, it performs a majority decoding on the results of RSR.Decode to
get the final outputs. If the cut-and-chose check passes, it ensures that any ran-
dom subset of size λ of the server’s responses will have less than λ

2 corruptions
(except with negligible probability) due to Hoeffding’s bound. Note that this
holds regardless of having achieved a low probability of selective corruptions.
But crucially, the low probability of selective corruptions allows to translate the
guarantee on random subsets of size λ to subsets that precisely correspond to the
repetitions of each instance. This, in turn, ensures that the majority decoding for
each instance will always result in the correct output. To further illustrate this,
note that if we skip the shuffling step (that was partially responsible for a low
probability of selective corruptions) and only perform random mapping (using
RSR.Encode) along with repetitions, it won’t get us negligible soundness error.
This is because a cheating server can again selectively corrupt only {ri0,j}j∈[λ]

i.e., all the random instances in every repetition corresponding to a particular
input xi0 and avoid detection with non-negligible probability.

We now turn towards the case of functions which admitK RSR whereK > 1.
Compared to K = 1 case, this case is much more tricky to handle for the fol-
lowing reason. Suppose we invoke RSR.Encode on each instance xi (without any
repetitions) to form a set of random instances {r1i , . . . , r

K
i }. As with the K = 1

case, a natural extension of the previous approach in order to thwart selective
corruptions would be to gather all the n · K random instances {rki }i∈[n],k∈[K],
shuffle them, and send them to the server. In the K = 1 setting, we argued that
the prover cannot selectively corrupt the computation on a particular instance
xi0 with probability better than 1

n due to the random mapping and shuffling step.
However, this is no longer true for the K > 1 case. The reason is that although
each individual share in the set {r1i0 , . . . , r

K
i0
}, corresponding to a particular in-

stance xi0 , is uniformly random, the joint distribution is not necessarily uniform.
For example, it may happen that any two shares in the set {r1i0 , . . . , r

K
i0
} com-

pletely reveal the instance xi0 . Therefore, an unbounded server can potentially
try a brute force approach to find out which shares correspond to a particular
instance xi0 and then selectively corrupt the computation on those shares.

To handle this, we make the following observation. Suppose we are dealing
with a restricted kind of “non-communicating” prover Pno-com. Such a prover is
defined as a tuple ofK non-communicating provers Pno-com = (P1

no-com, . . . ,P
K
no-com).

6 Agarwal et al.

While each prover in the tuple can be an arbitrary unbounded machine, the re-
striction is that they are not allowed to communicate with each other during
the protocol execution. The idea then is to modify the protocol in the following
manner: Instead of sending all K shares corresponding of each instance xi to a
single prover, we will only send the kth shares of each instance to the kth non-
communicating prover Pk

no-com. On receiving the responses from each Pk
no-com, the

verifier applies an independent cut-and-chose check on the responses sent by each
Pk
no-com. Since each individual prover is now receiving only a single share (for each

instance xi), we can re-apply the soundness logic discussed for the K = 1 RSR
case after doing λ independent repetitions. This means that for each individual
non-communicating prover Pk

no-com, if the cut-and-chose check passes, then any
random subset of size λ of the Pk

no-com responses will have less than λ
2K

5 corrup-
tions (except with negligible probability) due to Hoeffding’s bound. It turns out
that ensuring fewer than λ

2K corruptions with respect to each instance i ∈ [n]
and prover Pk

no-com suffices for the majority decoding argument (as mentioned in
the K = 1 RSR case) to go through.

Note that eventually we would like to construct a protocol which is sound
against a single prover P. To this end, we introduce an intermediate notion
of a “no-signaling prover” where we ease the non-communicating restriction in
Pno-com. Formally, a “no-signaling prover” is defined as a tuple of K provers
Pno-com = (P1

no-sig, . . . ,P
K
no-sig). While each prover in the tuple can be an arbitrary

unbounded machine, the restriction is that for all k ∈ [K], the distribution
of the responses of the kth prover Pk

no-sig should be independent of the shares

received by the other provers {Pi
no-sig}i∈[K],i ̸=k. We then show that our modified

protocol for handling arbitrary non-communicating provers is also sound against
arbitrary no-signaling provers. Intuitively, the reason why this works is because
the cut-and-chose check that we apply on each individual Pk

no-sig responses is

local. In more detail, suppose Predk is a binary predicate capturing the following
event: there exists i0 ∈ [n] such that the server Pk

no-sig responds incorrectly to

more than λ
2K fraction of RSR instances {ri0,j}j∈[λ] and the cut-and-chose check

on its responses passes. Since this predicate is local, i.e., the predicate output
depends only on the responses of Pk

no-sig, it can be shown that any Pk
no-sig which

makes Predk true with non-negligible probability (over the randomness of the
verifier) directly implies a non-communicating prover Pk

no-com which makes Predk

true with non-negligible probability (thus contradicting our soundness analysis
for arbitrary non-communicating provers).

Finally, we show that the restriction to a no-signaling set of provers can be re-
moved by a slight modification to the protocol where the verifier simply encrypts
each RSR instance {rki,j}i∈[n],j∈[λ],k∈[K] under an independent public-key pki,j,k
before sending it to a single server P. If the public-key encryption scheme is ho-
momorphic, then the server can compute the answers to verifier messages “under
the hood” of the HE scheme (using HE.Eval) and send the encrypted responses

5 We use λ
2K

as opposed to λ
2
as this is what we need in the setting of K provers to

make the rest of the analysis work out.

On Black-Box Verifiable Outsourcing 7

back to the verifier. The verifier then simply decrypts all the responses and runs
the no-signaling verifier (which is identical to the non-communicating verifier)
to derive the final output. With this transformation, it can be shown that the
soundness of the previous protocol (i.e., without applying encryption) against
arbitrary unbounded no-signaling provers Pno-sig directly implies soundness of
the transformed protocol (i.e., after applying encryption) against arbitrary com-
putationally bounded provers P. Formally, the analysis uses a reduction to the
semantic security of the encryption scheme.

Negative result. Towards a negative result, an ideal goal would be to tightly
characterize functions that do not admit an OBVC scheme. However, getting
such a strong negative result seems difficult as there might be arbitrary properties
of functions (other than RSR) that one could potentially leverage in order to
construct an OBVC scheme. Therefore, we settle for a weaker goal where we show
that it is impossible to construct an OBVC scheme for a “large enough” function
class F . Specifically, we consider the function class Fλ = {{0, 1}

λ
→ {0, 1}

λ
},

the class consisting of all functions mapping λ bit inputs to λ bit outputs.
We now adopt the following approach: Suppose there exists a OBVC scheme

Π for Fλ and let fλ be a function sampled randomly from Fλ. Then we show
that there exists a malicious prover P∗ that breaks the soundness of Π with non-
negligible probability. Allowing fλ to be sampled randomly from Fλ enables us
to model this game in the well-known Random Oracle Model (ROM) [6]. In this
terminology, the oracle Of will be identical to a Random Oracle (RO). Let n
be the number of instances in the batch and t be the number of queries that
V is allowed to make to Of . For the OBVC scheme to be meaningful, we know
that t should be strictly less than n. However, note that in our OBVC definition,
we also allow the verifier to have access to poly(λ) function-dependent helper
oracles, each of which can be invoked O(nλ) times. To model these helper oracles
faithfully in ROM, we will assume that these are encoded as an s-bit auxiliary
input aux and handed over to the verifier as a preprocessing advice. Note that
this aux can depend arbitrarily on the entire RO function table, for example, it
can contain global information about the entire RO function f .

Our idea to construct a malicious prover P∗ that breaks the soundness of
any potential OBVC scheme Π in this ROM setting is as follows. Let Q denote
the set of queries that the V makes to Of during the protocol. Since t < n,
it holds that a randomly sampled instance xϕ from the batch {x1, . . . , xn} will
be outside Q with probability atleast 1 − t/n. Therefore, we can switch into a
hybrid where the prover locally reprograms the value of f(xϕ) to a random value
∆ in the image of f . Intuitively, one could invoke a lazy-sampling argument for
ROM to argue that this change will go unnoticed to the verifier if it does not
query Of at xϕ. Indeed, if this were true, then it would have been sufficient
to break soundness with non-negligible probability. However, there is a subtle
flaw in directly applying such a lazy-sampling argument. Recall that we are
in a setting where the verifier is allowed to compute auxiliary information aux

about Of before the protocol begins. This hinders a direct application of lazy-
sampling argument as aux might potentially contain information (for e.g. a small

8 Agarwal et al.

digest) about the entire Of . Hence, it is no longer true that points outside Q
are independent from the verifier’s view.

To resolve this, we apply some of the techniques that were developed in earlier
works [16,17,28] which studied security of cryptographic protocols where adver-
sary can contain auxiliary information about the Random Oracle, also known
as the Auxiliary Input Random Oracle (AI-RO) model. We specifically use the
results in [16] where authors define a new relaxed model called Bit-Fixing Ran-
dom Oracle (BF-RO) model. At a high level, in the BF-RO model, the aux is
constrained so that it only contains information about p points (p is a tunable
parameter) in Of which can be chosen arbitrarily. Based on this modeling, the
authors show that security theorems proved in BF-RO model can be carried over
to the AI-RO model with a loss in advantage proportional to st/p (recall that s
is the length of advice string in AI-RO model and t is the number of queries to
Of). By setting s, t, p appropriately, one can get negligible loss in advantage.

Returning to our setting, recall that it was not possible to apply lazy sampling
in the AI-RO model we were dealing with. Therefore, as a first step, we will
restrict ourselves to the BF-RO model where aux is constrained so that it only
contains information about/fixes some p points of the random oracle. Let us
denote these set of p points by P. Fortunately, in this model, we can apply the
lazy-sampling technique for the points outside P. Therefore, as long as we can
ensure that xϕ is outside both P and Q (recall that Q is the set of queries that
the verifier makes during the protocol), then the malicious prover P∗ which we
described earlier will work. We show formally that this is indeed the case for all
α′ ∈ (0, 1], p ∈ 2(1−α′)λ, thus giving us an impossibility result for OBVC in the
BF-RO model. Finally, we are also able to apply a lemma from [16] to lift our
impossibility result from the BF-RO model to the AI-RO model with appropriate
setting of parameters.

1.3 Related Work

Our idea of verifiable computation of functions in a “circuit-independent” fashion
is inspired from the early works on Self-Testing/Self-Correcting programs [7,25].
In these works, it was shown that if a program P correctly computes a random
self-reducible (RSR) function f on “most” inputs, then it can be used to correctly
compute f on “all” inputs using only oracle access to P . However, a major
limitation of these works is that the adversarial program is limited to a stateless
machine. In other words, the response provided by P on a particular query is not
allowed to depend on the previous queries. In our work, we consider the setting
of arbitrary stateful prover which is strictly general than a stateless program.

Later works [8] extended this idea to deal with adaptive programs (i.e.
programs whose response in a particular query can depend on the previous
queries arbitrarily) but protocols in this setting required two or more inde-
pendent copies of the program which, analogously, can be thought of as non-
communicating provers. This work requires an additional property of “downward
self-reducibility” (which roughly means that computing f on input x of size ℓ
can be reduced to computing f on random “smaller” instances of size ℓ − 1).

On Black-Box Verifiable Outsourcing 9

Thus, our result, which only relies on random-self-reducibility to instances of the
same size, is more general.

Rubinfeld [27] extended the work on program checking to a batched setting
where the verifier is trying to verify the computation of P on batch of n inputs.
Again, this work was limited to stateless program as opposed to stateful prover
which we consider. Bellare et. al. [5] proposed a different approach to batch
verification for the specific case of modular exponentiation function by allowing
the verifier to compute the function on some small number of inputs on its own.

As discussed earlier in the introduction, succinct non-interactive arguments
(SNARGs) for P (where proof size and verification time are polylogarithmic in
the security parameter) and batch arguments (BARGs) for NP, where a batch of
statements can be verified in time that is sublinear in the number of statements
[10,22,12,13,21,29] are closely related primitives. A related line of work [19,14,2]
similarly considers the possibility of using FHE and a preprocessing stage to
perform verifiable computation. Unfortunately, all of these works require the
verifier to have non-black-box access to the circuit Cf for the function f , and
are therefore not applicable to the setting of black-box verification.

2 Preliminaries

Throughout the paper, we use bold-letters to indicate vectors (which can some-
times be equivalently represented as strings). For a vector v of length n, we use
the notation vi to indicate the ith co-ordinate of v where i ∈ [n]. For a subset
S ⊆ [n], we use vS := (vi)i∈S to denote the subvector of v restricted to the
positions i ∈ S. For a bit string b = (b1, . . . , bn) ∈ {0, 1}

n
of arbitrary length

n ≥ 0, we use RW(b) and HW(b) to indicate the relative and absolute ham-
ming weight of b respectively. Throughout the paper, we use λ to indicate the
security parameter. By poly(λ) and negl(λ), we mean the class λO(1) and 1

λω(1) .
We sometimes abuse notation and use poly(λ) and negl(λ) to refer to a mem-
ber from the class poly(λ) and negl(λ) respectively. Given a security parameter
λ, we use PPT to denote probabilitic poly(λ)-time Turing Machines and non-
uniform PPT to denote PPT machines with poly(λ)-sized advice. We say that
two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ} are computationally
indistinguishable, denoted by X ≈c Y , if for every non-uniform PPT algorithm
D, there exists a negligible function negl(λ) such that for all λ ∈ N, we have
|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ negl(λ).

2.1 Mathematical Preliminaries and Definitions

Theorem 3 (Hoeffding’s inequality [20]). Let b ∈ {0, 1}
nm

be a bitstring
with relative hamming weight µ = RW(b). Let the random variables X1, . . . , Xk

be obtained by sampling k entries from b with replacement, i.e. the Xi’s are in-
dependent and Pr[Xi = 1] = µ. Furthermore, let the random variables Y1, . . . , Yk

be obtained by sampling k entries from b without replacement. Then, for any
δ > 0, the random variables X̄ = 1

k

∑

i Xi and Ȳ = 1
k

∑

i Yi satisfy:

10 Agarwal et al.

Pr[|Ȳ − µ| ≥ δ] ≤ Pr[|X̄ − µ| ≥ δ] ≤ 2 · e−2δ2k

Definition 1. An (N,M) source is a random variable X with range [M]N . A
source is called p-bit-fixing if it is fixed on at most p coordinates and uniform on
the rest.

Theorem 4 ([16]). Let X be distributed uniformly over [M]N and Z := f(X),
where f : [M]N → {0, 1}

s
is an arbitrary function. For any γ > 0 and p ∈

N, there exists a family {Yz}z∈{0,1}s of convex combinations Yz of p-bit-fixing
(N,M)-sources such that for any distinguisher D taking an s-bit input and query-
ing at most t < p coordinates of its oracle,

|Pr[DX(f(X) = 1)]− Pr[DYf(X)(f(X)) = 1]| ≤
(s+ log 1/γ) · t

p
+ γ

2.2 Bit fixing Random Oracle Model

In this section, we will define the Auxiliary Input Random Oracle (AI-RO) and
Bit fixing Random Oracle (BF-RO) model as described in Coretti et. al. [16]. An
oracle O consists of two interfaces O.pre and O.main. We will define two types
of entities (modeled as turing machines) and their access to O.

– Two-stage entity : Such an entity E is split up into two parts E = (E1, E2).
The first part E1 can access O.pre and the second part E2 can access O.main.
Furthermore, E1 can pass on some auxiliary information to the second part.

– Single-stage entity: Such an entity E only accesses O.main.

Let FM,N be the set of all possible functions f : [M] → [N]. Now we will
define different types of oracles that we will use:

– Auxiliary Input Random Oracle AI-RO(M,N): Samples a random function
table F ← FM,N ; outputs F at O.pre; answers queries x ∈ [M] at O.main

by the corresponding value F (x) ∈ [N].
– Bit fixing Random Oracle BF-RO(p,M,N): Samples a random function ta-

ble F ← FM,N ; outputs F at O.pre; takes a list at O.pre of at most p
query/answer pairs (called “bit-fixing” pairs), {(xi, yi)}i∈[p], that override F
in the corresponding position i.e. ∀i ∈ [p], we set F (xi) = yi. Then it answers
queries x ∈ [M] at O.main by the corresponding value F (x) ∈ [N].

2.3 Homomorphic Encryption

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)
is a quadruple of PPT algorithms as follows.

– Key Generation: The algorithm (pk, sk) ← HE.Keygen(1λ) takes a unary
representation of the security parameter λ and outputs a public encryption
key pk, and a secret decryption key sk.

On Black-Box Verifiable Outsourcing 11

– Encryption: The algorithm c ← HE.Encpk(µ) takes the public key pk and a
single bit message µ ∈ {0, 1} and outputs a ciphertext c. For encrypting ℓ
bit messages, we can simply invoke HE.Enc bit-by-bit.

– Decryption: The algorithm µ∗ ← HE.Decsk(c) takes the secret key sk and a
ciphertext c and outputs a message µ∗ ∈ {0, 1}.

– Homomorphic Evaluation: The algorithm cf ← HE.Evalpk(f, c1, . . . , cℓ) takes

the public key pk, a function f : {0, 1}
ℓ
→ {0, 1} and a set of ciphertexts

c1, . . . , cℓ and outputs a ciphertext cf
6.

As mentioned in [11], the representation of function f can vary between
schemes, and it is best to leave this issue outside of the syntactic definition for
our purposes.

The above algorithms must satisfy the following properties:

– CPA-security: A scheme HE is IND-CPA secure if the following holds:

{c← HE.Encpk(0) : (pk, sk)← HE.Keygen(1λ)}λ

≈c

{c← HE.Encpk(1) : (pk, sk)← HE.Keygen(1λ)}λ

where λ ∈ N.
– F-homomorphism: Let Fℓ ⊆ {{0, 1}

ℓ
→ {0, 1}} be a set of functions where

ℓ = ℓ(λ). A scheme HE is F-homomorphic (or, homomorphic for the class F)
if for any sequence of functions fℓ ∈ Fℓ and respective inputs µ1, . . . , µℓ ∈
{0, 1}, it holds that:

Pr

[

HE.Decsk(HE.Evalpk(f, c1, . . . , cℓ)) ̸= f(µ1, . . . , µℓ) :
pk, sk ← HE.Keygen(1λ)

∀i ∈ [ℓ], ci ← HE.Encpk(µi)

]

= negl(λ)

– Compactness: A scheme HE is compact if there exists a polynomial s = s(λ)
such that the output length of HE.Eval is at most s bits long (regardless of
f or the number of inputs).

2.4 Random Self Reducibility

Intuitively, a function f has Random Self Reducibility (RSR) property if com-
puting f on a given input x can be “easily” reduced to computing f on uniformly
random inputs. We now provide a formal definition inspired by [4,7].

Definition 2 (Random Self Reduction (RSR)). A function f : D → R is
K random self reducible (henceforth denoted by K-RSR) if there exists a pair of
algorithms (RSR.Encode,RSR.Decode) where,

6 For syntactic simplicity, we only consider functions with a single bit output. The
generalization to functions with arbitrary output length can be done by splitting a
multi-bit output function into multiple functions with single bit output.

12 Agarwal et al.

– RSR.Encode(x) : This is a randomized algorithm which takes an ℓ bit input

x ∈ {0, 1}
ℓ
∩D and outputs K values r1, . . . rK , where each ri ∈ {0, 1}

ℓ
∩D.

It also outputs a state st.
– RSR.Decode({y1, . . . , yK}, st): This is a deterministic algorithm which takes

as input K values {yi}i∈[K] from R, along with a state st, and outputs a
value y ∈ R.

The above algorithms must satisfy the following properties.

– Correctness: For all ℓ ∈ N and x ∈ {0, 1}
ℓ
∩ D, we have:

Pr

[

RSR.Decode({y1, . . . , yK}, st) = f(x) :
{r1, . . . , rK}, st ← RSR.Encode(x)

∀i ∈ [K] : yi := f(ri)

]

= 1

– Uniformity: For all ℓ ∈ N, x ∈ {0, 1}
ℓ
∩ D, i ∈ [K],

{ri : r1, . . . , rK ← RSR.Encode(x)} ≡ Uℓ

where Uℓ is the uniform distribution on ℓ bit strings.
– Efficiency: Let TRSR.Encode(ℓ) and TRSR.Decode(ℓ) be the time complexity of

RSR.Encode and RSR.Decode respectively on inputs of size ℓ. Let Tf (ℓ) be
the (worst-case, over all inputs of size ℓ) time complexity of computing f7.
Then, the efficiency condition requires that for all constants c > 0:

TRSR.Encode(ℓ) + TRSR.Decode(ℓ) = o(Tf (ℓ))

Blum et. al. [7] showed that many interesting and useful functions, such as
modular multiplication, modular exponentiation, integer division, matrix mul-
tiplication, polynomial multiplication (over a ring) admit efficient random self
reductions. Later works also extended RSR to trigonometric functions such as
sine and cosine [15,3], and real-valued functions such as floating-point exponen-
tiation and floating point logarithm [18].

2.5 No-signaling prover

We define the notion of no-signaling prover in a manner similar to prior works
[9,23]. Intuitively, for a no-signaling set of provers Pno-sig = (P1, . . . ,PK), the
response of each prover Pi is allowed to depend on the queries to all provers as
a function but the distribution of each prover’s response (modeled as a random
variable) should be (computationally) independent of the queries sent to the
other provers.

7 In cases where Tf (ℓ) is not known, due to circuit lower bound barriers, we can fix
Tf (ℓ) to be the best known time complexity for computing f on (worst-case) inputs
of size ℓ. For example, if f is the matrix multiplication function of two ℓ × ℓ bit
matrices, then we can set Tf (ℓ) = ℓ2.3728596 for inputs of length 2ℓ2 (encoding two
ℓ×ℓ sized bit-matrix as a bit-string) based on the fastest known matrix multiplication
algorithm [1]

On Black-Box Verifiable Outsourcing 13

Definition 3 (No-signaling prover). Let Q denote the alphabet of the queries.
A prover system Pno-sig = (P1, . . . ,PK) is called a no-signaling multi-prover sys-
tem if the following holds:

{

Game0k(x, {y
i
0}i∈[K],i ̸=k,{y

i
1}i∈[K],i ̸=k)

}

k∈[K],x∈Q,yi
0∈Q,yi

1∈Q

≈c

{

Game1k(x, {y
i
0}i∈[K],i ̸=k,{y

i
1}i∈[K],i ̸=k)

}

k∈[K],x∈Q,yi
0∈Q,yi

1∈Q

where the games are formally defined below:

Game0k(x, {y
i
0}i∈[K],i ̸=k, {y

i
1}i∈[K],i ̸=k)

1 : Send x to Pk.

2 : ∀i ∈ [K], i ̸= k : send yi
0 to Pi.

3 : Receive z from Pk.

4 : Output z.

Game1k(x, {y
i
0}i∈[K],i ̸=k, {y

i
1}i∈[K],i ̸=k)

1 : Send x to Pk.

2 : ∀i ∈ [K], i ̸= k : send yi
1 to Pi.

3 : Receive z from Pk.

4 : Output z.

3 Defining Oracle-aided Batch Verifiable Computation

We provide two definitions for Oracle-aided Batch Verifiable Computation -
one in the single server setting (OBVC) and the other in multi-server setting
(MOBVC).

Definition 4 (Oracle-aided Batch Verifiable Computation). Let ℓ ∈ N

parameterize input length, m = poly(ℓ) for some polynomial poly(·), n denote a
number of instances, and λ denote a security parameter. Let fℓ be an arbitrary
function in a class Fℓ ⊆ {{0, 1}

ℓ
→ {0, 1}

∗
}, and let X = {0, 1}

ℓ
denote the

domain of fℓ.
An oracle-aided batch verifiable computation OBVC for the function class Fℓ

is an interactive protocol between a randomized client/verifier V and a determin-
istic server/prover P, with the following syntax.

– The client V obtains input a batch of n inputs, x = x1, . . . , xn, where each
xi ∈ X .

– The server P obtains a circuit Cf for computing f .
– The client V interacts with the server P, and can additionally make oracle

calls to a function oracle Of as well as to m helper oracles Og1 , . . . ,Ogm .
Finally, V outputs OUT where OUT is either y1, . . . , yn where yi ∈ Range(f)
or OUT = ⊥.

The protocol satisfies the following properties.

– Non-triviality: The combined time complexity of helper oracles is smaller
than the time complexity of the function f i.e.

∑m
i=1 Tgi(ℓ) = o(Tf (ℓ)).

14 Agarwal et al.

– Completeness: Let OUT(⟨P(Cf),V
Of ,{Ogi

}i∈[m]⟩) denote the output of V at
the end of protocol. For all l ∈ N, fl ∈ Fl, n ∈ N, x ∈ Xn, λ ∈ N,

PrV[OUT = fl(x1), . . . , fl(xn)] = 1

where the probability is taken over the internal coin tosses of V.
– Soundness: There exists a negligible function negl(·) s.t. for all adversarial

P∗, for all l ∈ N, fl ∈ Fl, n = poly(λ),x ∈ Xn, λ ∈ N,

PrV[OUT = f(x1), . . . , f(xn) ∨ OUT = ⊥] ≥ 1− negl(λ)

where the probability is taken over the internal coin tosses of V.
When referring to computational soundness, we quantify over all non-uniform
PPT provers P∗.

– Privacy: For all adversarial P∗, there exists a simulator SimP s.t. there exists
a negligible function negl(·) s.t. for all λ ∈ N, fλ ∈ Fλ, n ∈ N,x ∈ Xn,

VIEW(P∗) ≈c Sim(1λ, 1n,X)

– Efficiency: For every ℓ ∈ N, fℓ ∈ Fℓ, n ∈ N, x ∈ Xn and λ ∈ N, the number of
oracle queries made by V to the function oracle Of is O(λ) and the number
of queries made to each helper oracle Ogi is O(nλ). Furthermore, there is a
constant c such that the running time of the verifier (as an oracle machine)
is λc · o(n · Tf (ℓ)).

Note that the efficiency condition ensures that the OBVC protocol is non-
trivial in the sense that the V is doing something better than the trivial strategies
where it computes the function on all n inputs on its own using an internal
algorithm in time n · O(Tf (ℓ)) or, alternatively, does the same task by making
O(n) oracle queries to Of .

We now define K-Multi-server Oracle-aided Batch Verifiable Computation
(K-MOBVC) which is a straightforward generalization of the single server defi-
nition to a multi-server/multi-prover system P = (P1, . . . ,PK) with K provers.
Also, in this definition, we do not require the privacy condition.

Definition 5 (Multi-server Oracle-aided Batch Verifiable Computation).
Refer to the full version of this paper.

4 Protocol for functions admitting 1-RSR

In the following section, we provide a construction of OBVC scheme for functions
admitting 1-RSR. The idea behind our protocol is simple: First the verifier maps
each of its instance xi to a uniformly random instance si using the RSR.Encode
function. Then it sends all the randomized instances {si}i∈[n] to the prover in
a shuffled order, and the prover is supposed to respond back with {f(si)}i∈[n].
Intuitively, this shuffling, coupled with the fact that RSR.Encode outputs a uni-
formly random sample, prevents a malicious prover from selectively providing

On Black-Box Verifiable Outsourcing 15

incorrect responses on some instances (for e.g. the seventh instance x7). How-
ever, note that a malicious prover might still provide incorrect responses on some
indices not knowing which instances they correspond to. To tackle this, the ver-
ifier uses a cut-and-choose based checking mechanism. Specifically, it selects a
small random subset of the indices, gets the correct answer for those indices
from the oracle Of , and then checks whether the prover’s responses match. This
check ensures that if the prover is misbehaving on “too many” indices, then
he will be caught with “overwhelming” probability. Formally, once the check
passes, it is ensured that the prover is not lying on more than some (fixed) con-
stant fraction of indices except with some negligible probability. However, note
that, our soundness condition requires the output of the verifier be correct on
all instances (and not just most of the instances). To achieve this, we perform
a parallel repetition of each instance for some security parameter λ many times
and then select the majority of responses as the correct answer. Intuitively, we
can select our parameters in a way so that if the cut-and-chose check passes,
then it is ensured that the majority, among λ repetitions, encodes the correct
answer for that instance.

Theorem 5. There exists a OBVC scheme, specifically Protocol 4, for the class
F1-RSR

ℓ consisting of all ℓ bit functions that admit 1-RSR with soundness against
arbitrary unbounded provers.

Corollary 6. For all 0 < δ < 1, n ∈ O(2λ
δ

), Protocol 4 is an OBVC scheme for
F1-RSR

ℓ with soundness error negl(λ). Alternatively, one could set λ = ω(log n)
and get a soundness error of negl(n).

In the rest of this section, we will prove Theorem 5. We note that the com-
pleteness of our protocol follows directly from the correctness property of RSR.
We now proceed to discuss non-triviality, privacy, efficiency and prove soundness.

Non-triviality, Privacy and Efficiency Analysis. In our protocol, the verifier
uses two helper oracles namely ORSR.Encodef and ORSR.Decodef . By Definition 2,
we know that TRSR.Encode(ℓ) + TRSR.Decode(ℓ) = o(Tf (ℓ)). Hence, our protocol
satisifes the non-triviality condition.

The privacy of our scheme follows directly from the uniformity condition of
RSR. More formally, the simulator Sim(1λ, 1n,X) simply samples nλ uniformly
random instances from X and outputs it. Since each share si,j in Protocol 4 is a
uniformly random and independent (from everything else) element from X , the
simulation is perfect.

For efficiency, we note that each helper oracle is invoked exactly nλ times,
the function oracle Of is invoked exactly λ times and the running time of V is
exactly O(nλ) as shuffling, majority and cut-and-chose check can be computed
in linear time.

16 Agarwal et al.

Protocol 4
Common input: 1λ, 1n

V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles
ORSR.Encodef , ORSR.Decodef

P’s additional input: Circuit Cf for computing f .

1. ∀i ∈ [n], V generates λ independent RSR instances, si,1,
. . . , si,λ, where si,j , sti,j ← ORSR.Encodef (xi). It sets s :=
s1,1, . . . , s1,λ, . . . , sn,1, . . . , sn,λ.

2. V samples a random permutation π on [nλ] and sets s′ := π(s). It sends
s′ to P.

3. ∀i ∈ [n], j ∈ [λ], P computes z′i,j = Cf (s
′
i,j).

4. P sets z′ := z1,1, . . . , z1,λ, . . . , zn,1, . . . , zn,λ and sends z′ to V.
5. V samples a random subset T ⊂ [n]× [λ] of size λ and checks whether

the following holds:

∀(i, j) ∈ T : z′i,j = f(s′i,j)

6. If the check fails, then V outputs ⊥. Otherwise it proceeds.
7. V computes z = π−1(z′).
8. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef (zi,j , sti,j).

9. ∀i ∈ [n], V computes ufinal
i = Majority(ui,1, . . . , ui,λ).

10. V outputs ufinal
1 , . . . , ufinal

n .

Soundness Analysis. The high level intuition behind the soundness is the follow-
ing: If the checking phase in Protocol step 5, 6 passes, then with high probability
the verifier will output correct values i.e. with high probability, all ufinal

i will equal
f(xi). To prove this, we will have to show that, for each i ∈ [n], the majority
of {ui,j}j∈[λ] will be equal to f(xi) (with high probability) if the testing phase
passes. To do so, we first consider the following experiment which basically cap-
tures the execution of Protocol 4 with an arbitrary fixed prover P∗ and defines
random variables b and its inverse binv.

Experiment Exp1-RSR(P∗,x)

1 : ∀i ∈ [n], j ∈ [λ], si,j ← RSR.Encode(xi)

2 : s := s1,1, . . . , s1,λ, . . . , sn,1, . . . , sn,λ

3 : π ← random permutation on [nλ]

4 : s
′ := π(s)

5 : z
′ ← P∗(s′)

6 : T ← random λ sized subset of [n]× [λ]

7 : ∀i ∈ [n], j ∈ [λ], bi,j =

{

0 ; z′i,j = f(s′i,j)

1 ; otherwise

8 : b := b1,1, . . . , b1,λ, . . . , bn,1, . . . , bn,λ

9 : b
inv := π

−1(b)

On Black-Box Verifiable Outsourcing 17

Now, based on the above experiment, we define the advantage of an adver-
sarial prover P∗ for an arbitrary instance x:

Adv1-RSRδ,∆ (P∗,x) = Pr













∃i ∈ [n],RW(binvi,1 || . . . ||b
inv
i,λ) > δ +∆

∧

RW(bT) = 0

: Exp1-RSR(P∗,x)













In a protocol execution with malicious prover P∗, b will be an arbitrary
bitstring. We will now prove some properties about any arbitrary bitstring b
which will enable us to finally establish the soundness claim.

Lemma 1. Suppose b ∈ {0, 1}
nλ

is an arbitrary bitstring of length nλ. We sam-
ple a uniformly random subset T ⊂ [nλ] and use bT to denote the corresponding
|T | sized substring of b. Let Bδ

T = {b′ ∈ {0, 1}nλ : |RW(b′) − RW(bT)| < δ} be
the set of all nλ-length strings which are ”δ-close” to the substring bT in terms
of relative Hamming weight. Then, for all b ∈ {0, 1}nλ and real-valued δ ∈ (0, 1):

PrT [b /∈ Bδ
T] ≤ 2 · e−2δ2|T |

where the probability is over the sampling of subset T .

Proof. The proof for the above lemma follows directly from Hoeffding’s bound
(Theorem 3).

Lemma 2. Suppose b ∈ {0, 1}
nλ

is an arbitrary bitstring of length nλ. Let
P1, . . . , Pn be a random partitioning of the bits of b where each partition contains
exactly λ bits. Then, for all b ∈ {0, 1}

nλ
, ∀i ∈ [n], ∀∆ ∈ (0, 1):

Pr[|RW(b)− RW(bPi
)| ≥ ∆] ≤ 2 · e−2∆2λ

where the probability is over the sampling of random partition.

Proof. The proof follows directly from Hoeffding’s bound (Theorem 3).

Corollary 7. Let F denote a indicator random variable denoting the following
failure event:

F =

{

1 ∃i ∈ [n], s.t. |RW(b)− RW(bPi
)| ≥ ∆

0 otherwise

Then, we have that:

Pr[F = 1] ≤ n · 2 · e−2∆2λ

Proof. The proof follows directly by applying Lemma 2 and union bounding
across all n partitions.

18 Agarwal et al.

Lemma 3. Suppose b is an arbitrary bitstring from {0, 1}
nλ

. We probe a ran-
dom substring bT , of size |T |, from b. Also, let P1, . . . , Pn be a random parti-
tioning of the bits of b where each partition contains exactly λ bits. Then, for
all n ∈ N, λ ∈ N, b ∈ {0, 1}nλ, real valued δ,∆ ∈ (0, 1), it holds that:

Pr





∃i ∈ [n],RW(Pi) ≥ δ +∆
∧

RW(bT) = 0



 ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

Proof. Consider the following indicator random variables.

Eδ
1 =

{

1 b ∈ {b′ ∈ {0, 1}nλ : |RW(b′)− RW(bT)| ≥ δ}

0 otherwise

E∆
2 =

{

1 ∃i ∈ [n], s.t. |RW(b)− RW(bPi
)| ≥ ∆

0 otherwise

E3 =

{

1 RW(bT) ̸= 0

0 otherwise

From the probability bounds from Lemma 1 and Lemma 2, we get the fol-
lowing bound. For all b ∈ {0, 1}nλ, for all real-valued δ,∆ ∈ (0, 1):

Pr[Eδ
1 = 1 ∧ E∆

2 = 1] ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ (1)

This implies that:

Pr[(Eδ
1 = 1 ∧ E∆

2 = 1)
∧

E3 = 0] ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

=⇒ Pr





∃i ∈ [n],RW(Pi) ≥ δ +∆
∧

RW(bT) = 0



 ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

Claim 1. For all n ∈ N, x ∈ Xn and for all arbitrary unbounded provers P∗:

Adv1-RSRδ,∆ (P∗,x) ≤ 2 · e−2δ2|T | + n · 2 · e−2∆2λ

Proof. This follows directly from Lemma 3 and the definition of Adv1-RSRδ,∆ .

Claim 2. Fix |T | = λ. Then for all 0 < δ < 1, for n = 2λ
δ

, for all x ∈ Xn and
for all arbitrary unbounded provers P∗,

Adv1-RSRδ=0.25,∆=0.25(P
∗,x) = negl(λ)

Proof. By setting δ = 0.25, ∆ = 0.25 in Claim 1, we get:

Adv1-RSRδ=0.25,∆=0.25(P
∗,x) ≤

2

20.18|T |
+

2n

20.18λ

On Black-Box Verifiable Outsourcing 19

For n ≤ 20.17λ and |T | = λ, we get,

Adv1-RSRδ=0.25,∆=0.25(P
∗,x) ≤

2

20.18λ
+

2n

20.18λ

= negl(λ)

which proves the claim.

Remark 1. Claim 2 shows that one of the following two events will happen (ex-
cept with some negligible probability): 1) the relative hamming weight in each
random partition Pi of b is less than 0.5 or 2) the relative hamming weight of
the random substring bT is non-zero. In Case 1, this implies that for all i ∈ [n],
more than 50% of the zi,j are correct. This ensures that for all i ∈ [n], more
than 50% of {ui,j}j∈[λ] will equal to f(xi). If this happens, for all i ∈ [n], ufinal

i

will be equal to f(xi) due to the majority rule. In Case 2, the verifier will simply
detect and abort as prescribed in Step 5 and 6 of the protocol. This concludes
our soundness analysis.

5 Protocol for functions admitting K-RSR

In this section, we will extend the basic protocol from Section 4 to the more
general case of functions which admit K-RSR for any constant K > 1. As an
intermediate step, we will construct a protocol which is sound against a restricted
class of provers. Specifically, we will consider a setting where the prover is a tuple
ofK no-signaling provers as defined in Definition 3. Finally, we will show how this
“no-signaling” constraint can be computationally enforced using homomorphic
encryption. Our final protocol will be sound against an arbitrary non-uniform
PPT prover P.

5.1 OBVC with multiple provers

Protocol 5.1 describes our OBVC construction for functions that admit K-RSR.
At a high level, the protocol is a simple extension of Protocol 4 in the following
way: In K-RSR, each invocation of RSR.Encode(xi) will yield K shares, each
being uniformly random (although jointly they may be not). The verifier simply
executes K instances of the protocol for 1-RSR setting where the kth prover Pk

receives all the kth shares. In the end, the verifier simply aggregates the result
from all the K provers and computes the output.

Theorem 8. There exists a K-MOBVC scheme, specifically Protocol 5.1, for
the class FK-RSR

ℓ consisting of all ℓ bit functions that admit K-RSR for any
K ≥ 1 with soundness against arbitrary unbounded no-signaling provers Pno-sig =
(Pno-sig1

, . . . ,Pno-sigK
).

Corollary 9. For all 0 < δ < 1, n ∈ O(2λ
δ

), Protocol 5.1 is an MOBVC

scheme for FK-RSR
ℓ with soundness error negl(λ). Alternatively, one could set

λ = ω(log n) and get a soundness error of negl(n).

20 Agarwal et al.

In the rest of this section, we will prove Theorem 8. We note that the com-
pleteness of Protocol 5.1 follows directly from the correctness property of RSR.
We now proceed to discuss non-triviality, efficiency and prove soundness.

Protocol 5.1
Common input: 1λ, 1n, f
V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles
ORSR.Encodef , ORSR.Decodef .
P’s additional input: Circuit Cf for computing f .

1. For each xi, V generates λ independent RSR instances. Formally, ∀i ∈
[n], j ∈ [λ]: {si,j,k}k∈[K], sti,j ← ORSR.Encodef (xi).

2. ∀k ∈ [K], the following steps are performed:

(a) V sets sk := s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k.

(b) V samples a random permutation πk on [nλ] and sets s′
k
:= πk(sk).

It sends s′
k
to Pk.

(c) ∀i ∈ [n], j ∈ [λ],Pk computes z′i,j,k := Cf (s
′k
i,j)

(d) Pk sets z′k := z′1,1,k, . . . , z
′
1,λ,k, . . . , z

′
n,1,k, . . . , z

′
n,λ,k. It sends z

′k to
V.

(e) V samples a random subset T k ⊂ [n] × [λ] of size λ and checks
whether the following holds:

∀(i, j) ∈ T k : z′ki,j = Of (s
′k
i,j)

(f) If the check fails, then V outputs ⊥. Otherwise it proceeds.

(g) V computes zk := (πk)
−1

(z′
k
).

3. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef ({z
k
i,j}k∈[K], sti,j).

4. ∀i ∈ [n], V sets ufinal
i = Majority(ui,1, . . . , ui,λ)

5. V outputs ufinal
1 , . . . , ufinal

n

Non-triviality. In our protocol, the verifier uses two helper oracles namelyORSR.Encodef

andORSR.Decodef . By Definition 2, we know that TRSR.Encode(ℓ)+TRSR.Decode(ℓ) =
o(Tf (ℓ)). Hence, our protocol satisifes the non-triviality condition.

Efficiency. For efficiency, we note that each helper oracle is invoked exactly nλ
times, the function oracle Of is invoked exactly Kλ times and the running time
of V is exactly O(nKλ) as shuffling, majority and cut-and-chose check can be
computed in linear time. Here K is a constant which depends on the function f
(but independent of n, λ and ℓ).

Before proving soundness against no-signaling provers, we consider a relaxed
case of “non-communicating” provers as an intermediate step. Such a prover is
a tuple of K “non-communicating” local algorithms i.e. Pno-com = (P1, . . . ,PK)
where the next-message function of each Pi only depends on the messages it ex-
changes with V, and not on the interaction of V with other provers {Pj}j∈[K],j ̸=i.

On Black-Box Verifiable Outsourcing 21

Soundness analysis for non-communicating provers. We consider the follow-
ing experiment capturing the execution of Protocol 5.1 with an arbitrary non-
communicating prover P∗

no-com and defines random variables bk and its inverse

binvk.

Experiment ExpK-RSR(P∗
no-com,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : s
k := s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k

4 : π
k ← random permutation on [nλ]

5 : s
′k := π

k(sk)

6 : z
′k ← P∗

no-comk(s
′k)

7 : T
k ← random λ sized subset of [n]× [λ]

8 : ∀i ∈ [n], j ∈ [λ], bki,j =

{

0 ; z′ki,j = f(s′ki,j)

1 ; otherwise

9 : b
k := b

k
1,1, . . . , b

k
1,λ, . . . , b

k
n,1, . . . , b

k
n,λ

10 : b
invk := (πk)−1(bk)

11 : Parse b
invkas binv1,1

k
, . . . , b

inv
1,λ

k
, . . . , b

inv
n,1

k
, . . . , b

inv
n,λ

k

Based on the above experiment, we now define the advantage of the kth

prover P∗
no-comk, for any arbitrary k ∈ [K], on an arbitrary instance x in the

following way.

AdvK-RSR
δ,∆ (P∗

no-comk
,x) = Pr













∃i ∈ [n],RW(binv
k
i,1|| . . . ||b

invk
i,λ) > δ +∆

∧

RW({bki,j}(i,j)∈Tk) = 0

: ExpK-RSR(P∗
no-com,x)













(1)

Lemma 4. For all n ∈ N, λ ∈ N, x ∈ Xn and for all arbitrary unbounded
non-communicating provers P∗

no-com = (P∗
no-com1, . . . ,P

∗
no-comK), k ∈ [K] and real

valued δ,∆ ∈ (0, 1),

AdvK-RSR
δ,∆ (P∗

no-comk,x) ≤ 2 · e−2δ2|Tk| + n · 2 · e−2∆2λ

Proof. This follows from Claim 1 and the fact that each individual share in K-
RSR is uniformly random (and hence the view of P∗

no-comk in Protocol 5.1 is
identical to the view of P∗ in Protocol 4).

Soundness analysis for no-signaling provers. In this section, we will extend
the soundness analysis of Protocol 5.1 from non-communicating multi-provers

22 Agarwal et al.

to multi-provers who can communicate arbitrarily but follow a special “no-
signaling” requirement which we formalize in Definition 3. To do so, we consider
an experiment ExpK-RSR(P∗

no-sig,x) which captures the execution of Protocol 5.1
with an arbitrary fixed no-signaling prover P∗

no-sig = (Pno-sig1 , . . . ,Pno-sigK) and

defines random variables bk and its inverse binvk. This experiment is identical to
ExpK-RSR(P∗

no-com,x) defined earlier except that we have switched from P∗
no-com

to P∗
no-sig.

Based on the experiment ExpK-RSR(P∗
no-sig,x), we now define the advantage

of the kth prover Pno-sigk in Equation 2 and denote it by AdvK-RSR(P∗
no-sigk

,x).

AdvK-RSR
δ,∆ (P∗

no-sigk
,x) = Pr













∃i ∈ [n],RW(binv
k
i,1|| . . . ||b

invk
i,λ) > δ +∆

∧

RW(bk
Tk) = 0

: ExpK-RSR(P∗
no-sig,x)













(2)

Lemma 5. Assume there exists a function ϵ(·, ·, ·, ·, ·) such that for any arbitrary
non-communicating multi-prover P∗

no-com = (P∗
1, . . . ,P

∗
K), for all δ ∈ [0, 1], ∆ ∈

[0, 1], k ∈ K, n ∈ poly(λ), x ∈ Xn, λ ∈ N, it holds that AdvK-RSR
δ,∆ (P∗

no-comk,x) ≤
ϵ(λ, n, δ,∆,K). Then it follows that for any arbitrary no-signaling multi-prover
P∗
no-sig = (P∗

1, . . . ,P
∗
K), there exists a negligible function negl(·) such that for all

δ ∈ [0, 1], ∆ ∈ [0, 1], k ∈ K, n = poly(λ), x ∈ Xn, λ ∈ N, it holds that:

AdvK-RSR
δ,∆ (P∗

no-sigk
,x) ≤ ϵ(λ, n, δ,∆,K) + negl(λ)

Proof. Suppose the lemma is false i.e there exists a no-signaling multi-prover
P∗
no-sig = (P∗

no-sig1
, . . . ,P∗

no-sigK
) and a fixed polynomial p(·) such that for infinitely

many λ ∈ N, there exists δ∗ ∈ [0, 1], ∆∗ ∈ [0, 1], k∗ ∈ K,n∗ ∈ poly(λ), x∗ ∈ Xn

such that

AdvK-RSR
δ,∆ (P∗

no-sigk∗
,x∗) ≥ ϵ(λ, n∗, δ∗, ∆∗,K) +

1

poly(λ)

Given this, we can construct a new prover P∗
no-com = (P∗

no-com1, . . . ,P
∗
no-comK)

which will contradict the ϵ upper bound for the advantage of P∗
no-comk.

On Black-Box Verifiable Outsourcing 23

P∗
no-comk=k∗

1 : Receive s
′k=k∗

.

2 : For all k ∈ [K], k ̸= k∗, set s′
k
:= 0

nλ, where 0 is a default element.

3 :

4 : For all k ∈ [K], send s
′k to P∗

no-sigk
.

5 : For all k ∈ [K], receive z
′k from P∗

no-sigk
.

6 : Output z′
k∗

.

P∗
no-comk ̸=k∗

1 : Receive s
′k.

2 : Output ⊥.

From the above construction, it follows that:

AdvK-RSR
δ,∆ (P∗

no-comk∗ ,x
∗) = Pr













∃i ∈ [n],RW(binv
k∗

i,1|| . . . ||b
invk

∗

i,λ) > δ +∆

∧

RW(bk∗

T) = 0

: Exp′
K-RSR

(P∗
no-sig,x)













(3)

, where the experiment Exp′
K-RSR

(P∗
no-sig,x) is defined as follows (the differ-

ence from ExpK-RSR(P∗
no-sig,x) have been highlighted in blue):

Experiment Exp′
K-RSR

(P∗
no-sig,x)

1 : ∀i ∈ [n], j ∈ [λ], {si,j,k}k∈[K] ← RSR.Encodej(xi)

2 : ∀k ∈ [K] :

3 : s
k :=

{

s1,1,k, . . . , s1,λ,k, . . . , sn,1,k, . . . , sn,λ,k ; k = k∗

0
nλ ; otherwise

4 : π
k ← random permutation on [nλ]

5 : s
′k := π

k(sk)

6 : z
′k ← P∗

no-sigk
(s′

k
)

7 : T
k ← random λ sized subset of [n]× [λ]

8 : ∀i ∈ [n], j ∈ [λ], bki,j =

{

0 ; z′ki,j = f(s′ki,j)

1 ; otherwise

9 : b
k := b

k
1,1, . . . , b

k
1,λ, . . . , b

k
n,1, . . . , b

k
n,λ

10 : b
invk := (πk)−1(bk)

11 : Parse b
invkas binv1,1

k
, . . . , b

inv
1,λ

k
, . . . , b

inv
n,1

k
, . . . , b

inv
n,λ

k

24 Agarwal et al.

Let p indicate the R.H.S probability value in Equation 3. By the no-signaling
property established in Definition 3, there exists negl(·) such that:

p ≥ AdvK-RSR
δ,∆ (P∗

no-sigk=k∗
,x∗)− negl(λ)

Since we have assumed (towards contradiction) that AdvK-RSR
δ,∆ (P∗

no-sigk=k∗
,x∗) ≥

ϵ(λ, n∗, δ∗, ∆∗,K) + 1
poly(λ) , it follows that:

AdvK-RSR
δ,∆ (P∗

no-comk∗ ,x
∗) = p ≥ ϵ(λ, n∗, δ∗, ∆∗,K) +

1

poly(λ)
− negl(λ)

This directly contradicts the fact that for any arbitrary non-communicating
multi-prover P∗

no-com = (P∗
1, . . . ,P

∗
K), for all δ ∈ [0, 1], ∆ ∈ [0, 1], k ∈ K, n =

poly(λ), x ∈ Xn, λ ∈ N, it holds that AdvK-RSR
δ,∆ (P∗

no-comk,x) ≤ ϵ(λ, n, δ,∆,K).

We will now define the advantage of the overall prover system P∗
no-sig =

(P∗
no-sig1

, . . . ,P∗
no-sigK

) as follows:

AdvK-RSR
δ,∆ (P∗

no-sig,x) = Pr















∃i ∈ [n],RW(
∣

∣

∣

∣

∣

∣

j∈[λ],k∈[K]
binv

k
i,j) > (δ +∆)

∧

RW(b1
T 1 || . . . ||b1

TK) = 0

: ExpK-RSR(P∗
no-sig,x)















(4)

Claim 3. Fix |T 1| = . . . = |TK | = λ and let K be some fixed constant. Then,

for all 0 < δ < 1, for n ∈ O(2λ
δ

), for all x ∈ Xn and for all arbitrary unbounded
no-signaling provers P∗

no-sig,

AdvK-RSR
δ=0.25/K,∆=0.25/K(P∗

no-sig,x) = negl(λ)

Proof. From Lemma 4 and Lemma 5, we know that:

AdvK-RSR
δ,∆ (P∗

no-sigk
,x) ≤ ϵ(λ, n, δ,∆,K) + negl(λ)

where ϵ(λ, n, δ,∆,K) = 2 · e−2δ2|Tk| + n · 2 · e−2∆2λ.

By union bound, we note that AdvK-RSR
δ,∆ (P∗

no-sig,x) ≤ Σk∈KAdv
(1,K)-RSR
δ,∆ (P∗

no-sigk
,x).

Assuming |T 1| = . . . = |TK | = |T |, we get that:

AdvK-RSR
δ,∆ (P∗

no-sig,x) ≤ 2K · e−2δ2|T | + n · 2K · e−2∆2λ +K · negl(λ)

By setting δ = 0.25/K, ∆ = 0.25/K, we get:

AdvK-RSR
δ=0.25/K,∆=0.25/K(P∗

no-sig,x) ≤
2K

20.18|T |/K2 +
2nK

20.18λ/K2 +K · negl(λ)

On Black-Box Verifiable Outsourcing 25

For constant K, n ≤ 2
0.17λ
K2 and |T | = λ, we get,

AdvK-RSR
δ=0.25/K,∆=0.25/K(P∗

no-sig,x) ≤
2K

2
0.18
K2 λ

+
2nK

2
0.18
K2 λ

+K · negl(λ)

= negl(λ)

Remark 2. Claim 3 shows that one of the following two events will happen (ex-
cept with some negligible probability): 1) For all i ∈ [n], the relative hamming

weight of the string
∣

∣

∣

∣

∣

∣

j∈[λ],k∈[K]
binv

k
i,j is less than 0.5/K or 2) the relative ham-

ming weight of the substring b1
T 1 || . . . ||b1

TK is non-zero. In Case 1, this implies
that for all i ∈ [n], for more than 50% of the j values, all {zki,j}k∈[K] are correct.
This ensures that for all i ∈ [n], more than 50% of {ui,j}j∈[λ] will equal to f(xi).

If this happens, for all i ∈ [n], ufinal
i will be equal to f(xi) due to the majority

rule. In Case 2, the verifier will simply detect and abort as prescribed in the
protocol. This concludes our soundness proof.

5.2 OBVC with a Single Prover

We will now provide a OBVC protocol for all the class of all K-RSR functions
which is sound against a single non-uniform PPT prover. The protocol construc-
tion is almost identical to the Protocol 5.1 except for the following modification:
The verifier samples a fresh HE key pair for each RSR instance and encrypts it
before sending it to the prover. The prover is supposed to respond with HE en-
crypted values obtained by performing a homomorphic evaluation of the circuit
Cf on the ciphertexts sent by the verifier. We describe the protocol formally in
Figure 5.2.

Theorem 10. Let FK-RSR
ℓ denote the class of all ℓ bit functions that admit

K-RSR for any K ≥ 1. Assuming a homomorphic encryption scheme for FK-RSR
ℓ ,

there exists a OBVC scheme, specifically Protocol 5.2, for FK-RSR
ℓ with sound-

ness against arbitrary non-uniform PPT provers.

Corollary 11. For all λ = ω(log n), Protocol 5.2 is an OBVC scheme for
FK-RSR

ℓ with soundness error negl(n) against non-uniform PPT provers.

In the rest of this section, we will prove Theorem 10. We note that the
completeness of Protocol 5.2 follows directly from the correctness property of
RSR and F-homomorphism property of the HE scheme. We now proceed to
discuss non-triviality, privacy, efficiency and prove soundness.

Non-triviality, Privacy and Efficiency Analysis. In our protocol, the verifier
uses two helper oracles namely ORSR.Encodef and ORSR.Decodef . By Definition 2,
we know that TRSR.Encode(ℓ) + TRSR.Decode(ℓ) = o(Tf (ℓ)). Hence, our protocol
satisfies the non-triviality condition.

The privacy of our protocol follows directly from the CPA-security of the
underlying HE scheme. More formally, the simulator Sim(1λ, 1n,X) simply runs

26 Agarwal et al.

the verifier V on inputs x1 = . . . = xn = 0 where 0 is a default element in
the domain of f . By the CPA-security of HE scheme and a standard hybrid
argument, the view of the server in the real protocol will be computationally
indistinguishable from the simulated view.

For efficiency, note that each helper oracle is invoked exactly nλ times and
the Of is invoked exactly Kλ times. For security parameter λ, let THE.Keygen(λ),
THE.Enc(λ) and THE.Dec(λ) denote the time-complexity of HE.Keygen, HE.Enc and
HE.Dec respectively. Then the running time of V is exactlyO(nKλ(THE.Keygen(λ)+
ℓ · THE.Enc(λ) + ℓ · THE.Dec(λ))) as the bottleneck cost comes from generating HE
keys for each of the nKλ shares i.e. {si,j,k}i∈[n],j∈[λ],k∈[K] and then encrypting
and decrypting them. The other steps like shuffling, majority and cut-and-chose
check can be computed in linear time. Here K is a constant which depends on
the function f (but independent of n, λ and ℓ).

Protocol 5.2
Common input: 1λ, 1n, f
V’s additional input: Inputs x1, . . . , xn, oracle Of , helper oracles
ORSR.Encodef , ORSR.Decodef .
P’s additional input: Circuit Cf for computing f .

1. For each xi, V generates λ independent RSR instances Formally, ∀i ∈
[n], j ∈ [λ]: {si,j,k}k∈[K], sti,j ← ORSR.Encodef (xi).

2. ∀i ∈ [n], j ∈ [λ], k ∈ [K], V generates pki,j,k, ski,j,k ← HE.Keygen(1λ).

3. ∀i ∈ [n], j ∈ [λ], k ∈ [K], V computes cti,j,k ← HE.Encpki,j,k(1
λ, si,j,k).

4. For all k ∈ [K], it sets sk := (ct1,1,k, pk1,1,k), . . . , (ct1,λ,k,
pk1,λ,k), . . . , (ctn,1,k, pkn,1,k), . . . , (ctn,λ,k, pkn,λ,k).

5. ∀k ∈ [K], V samples a random permutation πk on [nλ] and sets s′
k
:=

πk(s
k).

6. V sends s′
1
, . . . , s′

K
to P.

7. ∀k ∈ [K], P parses s′ki,j as (ct∗, pk∗) and computes ct′i,j,k :=
HE.Evalpk∗(Cf , ct∗).

8. ∀k ∈ [K], P sets z′k := ct′1,1,k, . . . , ct
′
1,λ,k, . . . , ct

′
n,1,k, . . . , ct

′
n,λ,k.

9. P sends z′1, . . . , z′K to V.
10. ∀k ∈ [K], V samples a random subset T k ⊂ [n] × [λ] of size λ and

checks whether the following holds:

∀(i, j) ∈ T k : HE.Decski′,j′,k(z
′k
i,j) = f(ski′,j′)

where (i′, j′) := π−1
k (i, j).

11. If the check fails, then V outputs ⊥. Otherwise it proceeds.
12. ∀k ∈ [K], V computes zk := π−1

k (z′
k
).

13. ∀i ∈ [n], j ∈ [λ], V computes ui,j ← ORSR.Decodef ({wi,j,k}k∈[K], sti,j),

where wi,j,k = Decski,j,k
(zki,j)

14. ∀i ∈ [n], V sets ufinal
i = Majority(ui,1, . . . , ui,λ)

15. V outputs ufinal
1 , . . . , ufinal

n

On Black-Box Verifiable Outsourcing 27

Soundness Analysis. Now we will show how the security of Protocol 5.1 against
arbitrary no-signaling multi-prover Pno-sig can be carried over to the security of
Protocol 5.2 against arbitrary non-uniform PPT prover P. As mentioned earlier,
the main ingredient used in Protocol 5.2 is an HE scheme. The main idea behind
the security proof amounts to showing that any malicious PPT prover in Protocol
5.2 will conform to the notion of no-signaling prover as defined in Definition 3.
The formal proof follows via reduction to the CPA-security of the HE scheme.
We refer the readers to the full version.

6 Impossibility of oracle-aided batch verifiable

computation

Definition 6. A (s(λ), t(λ), q(λ), n(λ)) OBVC scheme Π = (P,V) in the O
model is defined as follows.

– The verifier V which is a two-staged entity i.e. V = (V1,V2). V1 is compu-
tationally unbounded; it interacts with O.pre and outputs an s-bit “advice”
string. V2 is computationally bounded and also query bounded. It takes an
s-bit auxiliary input and makes at most t queries to O.main.

– The prover P which is a single staged entity and makes at most q queries to
O.main. There is no computational bound on the prover.

We will use the notation ⟨PO,VO⟩Π to denote the following protocol interaction:

– V1 interacts with O.pre and outputs an s-bit “advice” string.
– V1 passes a s-bit auxiliary input aux to V2.
– Sample a batch of instances I ⊆ [M] where |I| = n. Send I to V2.
– P and V2 interact with each other while having access to O.main.
– V2 returns OUT in the end.

The scheme Π satisfies the following properties.

– Completeness: For all λ ∈ N,

Pr[OUT = O(xI
1), . . . ,O(x

I
n)] = 1

– Soundness: For all adversarial P∗, there exists a negligible function negl(·)
s.t. for all λ ∈ N:

Pr[OUT = O(xI
1), . . . ,O(x

I
n) ∨ OUT = ⊥] = 1− negl(λ)

– Efficiency: We say that an OBVC scheme is efficient if the s(λ) ∈ poly(λ)
and t(λ) ∈ o(n(λ)).

Theorem 12. For all n ∈ poly(λ), α′ ∈ (0, 1], t ∈ o(n), q = q(λ), s ∈ poly(λ),
for every (s, t, q, n) OBVC scheme Π = (P,V) in the O := BF-RO(M = 2λ, N =
2λ, p = 2(1−α′)λ) model, there exists a malicious prover Pmal and noticeable
function ϵ′(λ) s.t. for all λ ∈ N:

Pr
[

OUT ̸= O(xI
1), . . . ,O(x

I
n) ∧ OUT ̸= ⊥ : OUT← ⟨PO

mal,V
O⟩Π

]

≥ ϵ′(λ)

28 Agarwal et al.

Proof. Refer to the full version.

We will now lift the above theorem from the Bit-fixing ROmodel to Auxiliary-
input RO model.

Theorem 13. For all n ∈ poly(λ), α ∈ (0, 1], q = 2(1−α)λ, t ∈ o(n), s ∈ poly(λ),
for every (s, t, q, n) OBVC scheme Π = (P,V) in the O := AI-RO(M = 2λ, N =
2λ), there exists a malicious prover Pmal and noticeable function ϵ(λ) s.t. for all
λ ∈ N:

Pr
[

OUT ̸= O(xI
1), . . . ,O(x

I
n) ∧ OUT ̸= ⊥ : OUT← ⟨PO

mal,V
O⟩Π

]

≥ ϵ(λ)

Proof. The formal proof leverages Theorem 4. We refer the readers to the full
version.

Acknowledgments

A. Agarwal and D. Khurana were supported in part by NSF CAREER CNS-
2238718, DARPA SIEVE and an award from Visa Research. This material is
based upon work supported by the Defense Advanced Research Projects Agency
through Award HR00112020024.

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplica-
tion. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). pp. 522–539. SIAM (2021)

On Black-Box Verifiable Outsourcing 29

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient
verification via secure computation. In: International Colloquium on Automata,
Languages, and Programming. pp. 152–163. Springer (2010)

3. Ar, S., Blum, M., Codenotti, B., Gemmell, P.: Checking approximate computations
over the reals. In: Proceedings of the twenty-fifth annual ACM symposium on
Theory of Computing. pp. 786–795 (1993)

4. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Locally random reductions:
Improvements and applications. Journal of Cryptology 10(1), 17–36 (1997)

5. Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryp-
tography and checking. In: Latin American Symposium on Theoretical Informatics.
pp. 170–191. Springer (1998)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. pp. 62–73 (1993)

7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. In: Proceedings of the twenty-second annual ACM symposium
on Theory of computing. pp. 73–83 (1990)

8. Blum, M., Luby, M., Rubinfeld, R.: Program result checking against adaptive pro-
grams. In: Distributed Computing and Cryptography: Proceedings of a DIMACS
Workshop, October 4-6, 1989. vol. 2, p. 107. American Mathematical Soc. (1991)

9. Brakerski, Z., Holmgren, J., Kalai, Y.: Non-interactive ram and batch np delegation
from any pir. Cryptology ePrint Archive (2016)

10. Brakerski, Z., Holmgren, J., Kalai, Y.: Non-interactive delegation and batch np
verification from standard computational assumptions. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing. pp. 474–482 (2017)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on computing 43(2), 831–871 (2014)

12. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
– CRYPTO 2021, Part IV. Lecture Notes in Computer Science, vol. 12828, pp.
394–423. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021). https:
//doi.org/10.1007/978-3-030-84259-8 14

13. Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for \mathcal{P} from LWE. In: 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Den-
ver, CO, USA, February 7-10, 2022. pp. 68–79. IEEE (2021). https://doi.org/10.
1109/FOCS52979.2021.00016, https://doi.org/10.1109/FOCS52979.2021.00016

14. Chung, K.M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Annual Cryptology Conference. pp. 483–501.
Springer (2010)

15. Cleve, R., Luby, M.: A note on self-testing/correcting methods for trigonometric
functions. International Computer Science Inst. (1990)

16. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29-May 3, 2018 Proceedings, Part I. pp. 227–258. Springer (2018)

17. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In: Advances in Cryptology–EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part II. pp. 473–495.
Springer (2017)

30 Agarwal et al.

18. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-
testing/correcting for polynomials and for approximate functions. In: STOC.
vol. 91, pp. 32–42. Citeseer (1991)

19. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Annual Cryptology Conference.
pp. 465–482. Springer (2010)

20. Hoeffding, W.: Probability inequalities for sums of bounded random variables. The
collected works of Wassily Hoeffding pp. 409–426 (1994)

21. Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from sub-
exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in
Cryptology – EUROCRYPT 2022, Part II. Lecture Notes in Computer Science, vol.
13276, pp. 520–549. Springer, Heidelberg, Germany, Trondheim, Norway (May 30 –
Jun 3, 2022). https://doi.org/10.1007/978-3-031-07085-3 18

22. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: Snargs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In: Khuller, S.,
Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021. pp. 708–721.
ACM (2021). https://doi.org/10.1145/3406325.3451055, https://doi.org/10.1145/
3406325.3451055

23. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: Proceedings of the forty-sixth annual ACM symposium
on Theory of computing. pp. 485–494 (2014)

24. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing. pp. 723–732
(1992)

25. Lipton, R.: New directions in testing. Distributed computing and cryptography 2,
191–202 (1991)

26. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),
1253–1298 (2000)

27. Rubinfeld, R.: Batch checking with applications to linear functions. Information
Processing Letters 42(2), 77–80 (1992)

28. Unruh, D.: Random oracles and auxiliary input. In: Advances in Cryptology-
CRYPTO 2007: 27th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2007. Proceedings 27. pp. 205–223. Springer (2007)

29. Waters, B., Wu, D.J.: Batch arguments for np and more from standard bilinear
group assumptions. In: Annual International Cryptology Conference. pp. 433–463.
Springer (2022)

	On Black-Box Verifiable Outsourcing

