
Round-Optimal Black-Box MPC

in the Plain Model

Yuval Ishai1, Dakshita Khurana2, Amit Sahai3, and Akshayaram Srinivasan4

1 Technion
2 UIUC
3 UCLA

4 Tata Institute of Fundamental Research

Abstract. We give the őrst construction of a (fully) black-box round-
optimal secure multiparty computation protocol in the plain model. Our
protocol makes black-box use of a sub-exponentially secure two-message
statistical sender private oblivious transfer (SSP-OT), which in turn can
be based on (sub-exponential variants of) most of the standard crypto-
graphic assumptions known to imply public-key cryptography.

1 Introduction

The exact round complexity of secure computation has been a focus of research
in cryptography over the past two decades. This has been especially well-studied
in the synchronous setting in the plain model, with up to all-but-one static mali-
cious corruptions. It is known that general-purpose secure multiparty computa-
tion (MPC) protocols in this setting admitting a black-box simulator require at
least 4 rounds of simultaneous exchange [GK96b, KO04, GMPP16].5 In this work
we focus on MPC with black-box simulation. On the positive side, there has been
a long sequence of works [GMPP16, BHP17, ACJ17, KS17, BGI+17, BGJ+18,
CCG+20] improving the round complexity, culminating in a round-optimal con-
struction that relies on the minimal assumption that a 4-round malicious-secure
OT protocol exists [CCG+20].

Black-Box Use of Cryptography. Notably, all MPC protocols discussed above
make non-black-box use of cryptography, which is typically associated with sig-
niőcant overheads in efficiency. It is interesting, from both a theoretical and a
practical perspective, to realize fully black-box protocols [RTV04] where not only
does the simulator make black-box use of an adversary, but also the construction
itself can be fully speciőed given just oracle access to the input-output relation
of the underlying cryptographic primitives, and without being given any explicit
representation of these primitives. In the following, we refer to this standard

5 By simultaneous message exchange we mean that in each round, every party can
send a message over a broadcast channel. However, we allow the adversarial parties
to be rushing, meaning that they can wait until they receive all the honest party
messages in each round before sending their own messages.

notion of fully black-box protocols as simply black-box protocols. The focus of
this work is on the following natural question:

What is the round complexity of black-box MPC in the plain model?

It was only recently that the concrete round complexity of black-box MPC
in the plain model was studied. Ishai et al. [IKSS21] obtained a őve-round MPC
protocol making only black-box use of a public-key encryption scheme with pseu-
dorandom public keys, along with any 2-message OT protocol satisfying semi-
malicious security. They also gave 4-round protocols for a restricted class of
functionalities that consist of parallel copies of łsender-receiverž two-party func-
tionalities. While signiőcantly improving over prior works, which required more
than 15 rounds, it did not generally match the known 4-round lower bound.
Indeed, round-optimal black-box protocols are not known even for the restricted
case of two-sided 2PC, where both parties receive the output at the end of the
protocol execution. Furthermore, [IKSS21] highlighted signiőcant barriers in ex-
tending their techniques to obtain a round-optimal construction.

Our Results. In this work, we overcome these barriers to obtain a 4-round black-
box MPC, thereby obtaining the őrst round-optimal fully-black-box MPC in
the plain model for general functions. Our construction makes black-box use
of any sub-exponential secure two-message OT, that satisőes a well-studied
łstatistical sender privacyž (SSP-OT) property. This essentially requires that
the sender input remain statistically hidden from an unbounded malicious re-
ceiver. Such an OT protocol can be instantiated based on (sub-exponential vari-
ants) of standard cryptographic assumptions such as DDH/QR/N th Residuos-
ity/LWE [NP01, AIR01, Kal05, HK12, BD18, DGI+19]. This covers most of the
standard cryptographic assumptions known to imply public-key cryptography,
with LPN being the most notable exception 6

On the role of subexponentially secure OT. We stress that even though we rely
on sub-exponentially secure OT, our őnal simulator still runs in expected polyno-
mial time. This itself may seem counter-intuitive, and indeed we see it as a high-
light of our technique and work. Very roughly, the reason why subexponentially
secure OT is helpful to us for achieving polynomial-time simulation is that we
design a protocol that admits two separate means for extracting the adversary’s
input. One is an łoptimisticž extraction that runs in expected polynomial time,
and the other is a super-polynomial extraction that achieves stronger properties.
We use the super-polynomial extraction to essentially łbootstrapž and allow the
optimistic extraction to succeed for the purposes of simulation. (See Technical
Overview below for more details.) We believe this technique is of independent
interest and may inspire progress in other settings where standard polynomial
simulation is desired, but there is a need to reduce round complexity beyond a

6 Recently, SSP-OT was constructed from low-noise LPN and a standard derandom-
ization assumption [BF22] (building on [DGH+20]). However, this construction is
only secure against quasi-polynomial sized adversaries.

2

barrier that arises from the need for some component of the protocol to achieve
simulation security.

Finally, we note that the 4-round lower bound [GK96b, KO04, GMPP16]
holds even when considering protocols that rely on sub-exponential hardness
assumptions as long as the simulator runs in (expected) polynomial time.

1.1 Related Work

The black-box round-complexity of general purpose secure computation as well
as for speciőc tasks such as oblivious transfer, zero-knowledge, non-malleable
commitments etc., has a long and rich history.

General Purpose MPC. Haitner et al. [HIK+11] gave the őrst construction of a
malicious-secure black-box MPC protocol in the plain model based on any semi-
honest secure oblivious transfer. However, the round complexity of this construc-
tion grew linearly in the number of parties (denoted by n) even if one starts with
a constant round semi-honest OT protocol. A later work of Wee [Wee10] gave a
O(log∗ n) black-box protocol by relying on stronger cryptographic assumptions
such as dense cryptosystems, or homomorphic encryption, or lossy encryption.
This was later improved by Goyal [Goy11] to give a constant round protocol un-
der similar assumptions. Unfortunately, this constant was more than 15 which is
a far cry from the lower bound of 4. A recent work of Ishai et al. [IKSS21] gave
a black-box őve-round protocol based on any PKE with pseudorandom public
keys and any two-message OT protocol with semi-malicious security.

Special Secure Computation Tasks. For the case of oblivious transfer, Ostrovsky
et al. [ORS15] gave a round-optimal (i.e., a four-round) construction that made
black-box use of enhanced trapdoor permutations. Friolo et al. [FMV19] gave a
round-optimal black-box construction of OT based on any public key encryption
with pseudorandom public keys. Other black-box constructions of four-round OT
from lower level primitives were given in [CCG+21, MOSV22].

Ishai et al. [IKSS21] extended these results to the multiparty setting and
gave a round-optimal protocol for pairwise oblivious transfer functionality. In
the pairwise OT setting, each ordered pair of parties, namely, Pi and Pj execute
an OT instance with Pi acting as the sender and Pj acting as the receiver.
This can be extended to parallel instances of general two-party sender-receiver
functionalities.

Hazay and Venkitasubramanian [HV18] and Khurana et al. [KOS18] gave
round-optimal black-box constructions of zero-knowledge arguments based on
injective one-way functions. Hazay et al. [HPV20] showed that unless the poly-
nomial hierarchy collapses, all of NP cannot have a black-box zero-knowledge
argument based on one-way functions.

Goyal et al. [GLOV12] gave the őrst constant-round black-box construction
of non-malleable commitments based on one-way functions. A latter work of
Goyal et al. [GPR16] gave a three-round (which is round-optimal) black-box
construction that is secure against a weaker class of synchronizing adversaries
assuming the existence of injective one-way functions.

3

2 Technical Overview

In this section, we give an overview of the main techniques used in our construc-
tion of a round-optimal black-box secure multiparty computation protocol.

Starting Point. The starting point of our work is the recent result of Ishai
et al. [IKSS21] who gave a construction of a őve-round MPC protocol that
makes black-box use of any public-key encryption scheme with pseudorandom
public keys and any two-message semi-malicious OT protocol.7 Their protocol
is obtained via a round-efficient implementation of the IPS compiler [IPS08] in
the plain model.

We note a key component that was used in their instantiation: a four-round
black-box protocol that securely implements the watchlist functionality. Infor-
mally speaking, the watchlist functionality is an n-party functionality where each
ordered pair of parties (Pi, Pj) where i, j ∈ [n] are involved in a k-out-of-m OT
instance with Pi acting as the sender and Pj acting as the receiver. Using this
four-round watchlist protocol, Ishai et al. [IKSS21] showed that with an addi-
tional round of interaction, it is possible to securely compute any multiparty
functionality. Furthermore, the resulting protocol only made black-box use of
cryptographic primitives.

Going Below Five Rounds. In the same work, Ishai et al. [IKSS21] also observed
that to get a four-round protocol (which is round-optimal) in the plain model
by making use of the IPS compiler, one needs a three-round watchlist protocol.
However, such a protocol cannot satisfy the standard simulation based security
deőnition w.r.t. a simulator that only makes black-box use of the adversary. This
is because such a simulation-secure watchlist protocol almost directly implies
a three-round protocol for oblivious transfer that satisőes standard simulation
security. We know that such a protocol is impossible to construct (even with
non-black-box use of cryptography) if the simulator uses the adversary in a
black-box manner [KO04]. Furthermore, to make matters more complicated, the
proof of security of the overall compiler given in [IKSS21] crucially relied on the
watchlist protocol to satisfy the standard simulation-style deőnition. Therefore,
to go below őve rounds and obtain a round-optimal construction, we need to
come up with a new set of techniques.

Our Approach in a Nutshell. In this work, we show how to instantiate the IPS
compiler using a weaker notion of watchlists, that we call watchlists with promise
security. As one of our main contributions, we give a construction of a three-
round watchlist protocol that satisőes promise security. In Section 2.1, we mo-
tivate the deőnition of this weaker watchlist protocol and show how it can be
used to instantiate the IPS compiler and in Section 2.2, we give the main ideas
in constructing such a watchlist protocol.

7 Recall that semi-malicious adversaries are stronger than the standard semi-honest
adversaries and are allowed to őx the random tape of adversarial parties to arbitrary
values. However, like in the semi-honest setting, they are forced to follow the protocol
speciőcation.

4

2.1 Instantiating the IPS Compiler with Three-Round Watchlist

What Security can be achieved in Three Rounds? The work of Ishai et al. [IKSS21]
gave a round-preserving compiler that transforms any two-party computation
protocol that satisőes certain additional properties (which we will ignore for the
moment) to a watchlist protocol. To understand what security properties can be
achieved by a three-round watchlist protocol, let us őrst try to understand what
type of security can be achieved by a three-round 2PC protocol.

Recall that in the standard two-party protocol setting, there is a receiver
who holds an input x and there is a sender who holds an input y. At the end of
the protocol, the receiver obtains the output of f(x, y) for some pre-determined
functionality f . If we consider three-round protocols for the above task, then the
őrst and the third round messages in the protocol are sent by the sender and
the second round message is sent by the receiver.8 As the sender is tasked with
sending both the őrst and the third round message, a simulator could potentially
rewind the second and the third round messages in the protocol and extract the
effective private input from an adversarial sender. In other words, a three-round
2PC protocol could satisfy standard simulation-based security deőnition against
malicious senders. However, the receiver in this protocol is only sending a single
message, namely, the second round message. In fact, it is impossible to design a
black-box PPT simulator that could extract the effective private input from an
adversarial receiver.

The key observation is that if we allow the simulator against malicious re-
ceivers to run in super-polynomial time, then such a simulator can extract the
effective receiver input and provide security against malicious receivers. There-
fore, in the three-round setting, we can hope to construct a two-party proto-
col that satisőes standard simulation based security against malicious senders
and super-polynomial time simulation security against malicious receivers. In-
deed, as we explain later, we give a construction of such a three-round protocol
that makes black-box use of a sub-exponentially hard two-message OT protocol
with statistical sender security. Such an OT protocol is known from the (sub-
exponential variant) of standard cryptographic hardness assumptions such as
DDH/N th residuosity/LWE/QR [AIR01, NP01, Kal05, HK12, BD18, DGI+19].

Instantiating the IPS Compiler with the Three-Round Watchlist. Given the two-
party protocol above, we could hope to obtain a three-round watchlist satisfying
łsemi-SPSž security by following ideas in prior work [IKSS21]. If this were pos-
sible, could we directly get a four-round MPC protocol by instantiating the IPS
compiler with this łsemi-SPSž three-round watchlist protocol? Unfortunately,
this is not quite possible, as we now explain. To understand this better, we give
a brief overview of the IPS compiler which is simpliőed and tailored to con-
structing a four-round protocol. The IPS compiler makes use of the following
components:

8 We note that any protocol, even one in the bidirectional communication model, can
be reduced to this setting.

5

– A two-round client-server MPC protocol that is secure against a malicious
adversary that corrupts an arbitrary number of clients and a constant frac-
tion of the servers. This is called as the outer protocol. Such an outer protocol
was constructed by Ishai et al. [IKP10, Pas12] by making black-box use of
any PRG.

– A four-round inner protocol that satisőes the following robustness property.
Speciőcally, even if the adversary behaves maliciously and deviates arbitrar-
ily from the protocol speciőcation in the őrst three rounds, it cannot learn
any information about the inputs of the honest parties. Furthermore, if the
adversary is able to produce an input, random tape that correctly explains
that the messages sent by it in the őrst three rounds, then the last round
message from the honest parties only reveals the output of the functionality.9

– A three-round watchlist protocol that satisőes the standard extraction of
the adversarial sender inputs and super-polynomial time extraction of the
adversarial receiver inputs.

In the compiled protocol, each party plays the role of a client in the outer
protocol and computation done by the servers are emulated by the inner protocol.
To ensure that that the adversary only cheats in at most a small number of these
inner protocol executions, we make use of the watchlist protocol. Speciőcally, each
party acting as the receiver in the watchlist protocol chooses a random subset
of k executions as part of its secret watchlist. Every other party acting as the
sender uses the input, randomness used in each of the inner protocol executions
as the sender inputs. This watchlist protocol is run in parallel with the őrst three
rounds of the inner protocol. At the end of the third round, each party checks if
the input, randomness pair provided by every other party corresponding to its
watched executions are consistent. If it detects any inconsistency, then it aborts.
Using standard probabilistic arguments, it is possible to show that if the honest
parties have not aborted at the end of their watchlist check, then the adversary
only deviates in a tiny constant fraction of the inner protocol executions. These
deviations can be directly mapped to the corresponding server corruptions in
the outer protocol. Since the outer protocol is secure against a constant fraction
of the server corruptions, security of the overall protocol follows.

While the above intuition seems sound, we encounter a major issue while
formalizing it. In particular, recall that we are aiming for standard polynomial
security for our 4-round protocol, but we are relying on super-polynomial time
extraction as an ingredient. Thus, we are only able to show that this protocol
satisőes security via a super-polynomial time simulator. The łsuper-polynomialž
part in this simulator is needed to extract the receiver inputs used by the ad-
versarial parties in the watchlist protocol. Recall that in the watchlist protocol,
the adversarial receiver inputs correspond to the set of watched executions of

9 For technical reasons, we actually need the inner protocol to run in three rounds in-
stead of four rounds. However, to keep the exposition simple, we will ignore this in the
overview. In the main body, we give a black-box construction of such a three-round
inner protocol based on two-round semi-malicious OT protocol (which is implied by
two-round SSP OT). This construction builds on the protocols given in [GS18, PS21].

6

the corrupted parties. We need to extract this information in order to invoke the
security of the outer protocol.10 Further, the simulator also needs to additionally
extract the adversarial sender inputs. As mentioned earlier, we cannot hope to
simultaneously achieve efficient polynomial time extraction of both the sender
and the receiver inputs.

Our Solution: łPromise-Stylež Extraction. In order to get around this issue,
we use a łpromise-stylež extraction technique that is inspired by the notion of
Promise Zero-Knowledge [BGJ+18]. Speciőcally, we seek to devise an alternative
polynomial-time extraction system that guarantees extraction of the adversarial
receiver inputs only against those adversaries that send a valid third round
message in the watchlist protocol (with non-negligible probability). For all other
adversaries, we do not provide any guarantees. Let us now explain how this
weaker extraction guarantee is sufficient to instantiate the IPS compiler.

The simulator of the compiled protocol starts generating the őrst-round mes-
sages of the outer protocol using some default inputs for the honest parties. Note
that these őrst round messages correspond to the inputs to the inner protocol
executions. The simulator uses these łdummyž inputs to the inner protocol and
starts interacting with the adversary for the őrst three rounds. If the adversary
aborts during this interaction, or fails to send a valid third round message in
the watchlist protocol, then the simulator simply outputs the view of this ad-
versary. On the other hand, if the adversary sends a valid third round message
in the watchlist protocol, then the simulator uses the łpromise-stylež extractor
to extract the set of watched executions. This information is then used by the
simulator to simulate the messages in the main thread (using Goldreich-Kahan
simulation technique [GK96a]).

A subtle point to note here is that the third round message in the watchlist
protocol is sent by the adversary only after it receives the third round message
from the honest parties (as we are considering rushing adversaries). However,
the third round message of the watchlist protocol delivers the input, randomness
used by the honest parties corresponding to the adversarial watched executions.
Recall that the simulator described above uses łdummyž inputs in the inner pro-
tocol executions and tries to extract the adversarial watched executions. This
will succeed only if the distribution of the messages generated by the simulator
is computationally indistinguishable to the messages in the real protocol. Specif-
ically, to prove this indistinguishability, we need to make sure that the output
of the watchlist protocol when using the real inputs is indistinguishable to the
case when the simulator uses default inputs.

To argue this, we rely on the security of the outer protocol. Recall that the
inputs given to the inner protocol executions correspond to the messages sent
by the clients to the servers. By corrupting the servers corresponding to the
adversarial watched executions, we are guaranteed that the őrst round message

10 Speciőcally, the set of watched executions of the adversarial parties correspond to a
subset of the corrupted servers in the outer protocol. To invoke the security of the
outer protocol, we need to extract this information from the watchlist messages.

7

sent to these servers reveals no information about the inputs of the honest clients.
To give a bit more details, this is realized by őrst relying on the SPS security
of the watchlist protocol against adversarial receivers to extract the adversarial
watched executions, and then switch the input to a default value by relying
the security of the outer protocol, and then switch back to an honest watchlist
execution using the default inputs.

Another point to note here is that we cannot guarantee perfect extraction
of the adversarial receiver inputs even if it sends a valid third round message
with non-negligible probability. Due to technical reasons, we can only guarantee
łalmostž perfect extraction. By this, we mean that whenever the output received
by the adversarial receiver is not ⊥, the output of the promise extractor is
identical to the SPS extractor. In other cases, there are no guarantees about the
extracted value. We show that this weaker property is sufficient to instantiate
the IPS compiler. Roughly, this is because if the output of the watchlist protocol
is provided to the adversary is ⊥, the adversary learns no information about
the input, randomness for any inner protocol execution. Hence, if the promise
extractor łover-extractsž the adversarial watched executions, this does not create
any trouble with the simulation.

2.2 Constructing Three-Round Watchlists with Promise Extraction

A core ingredient of our black-box MPC protocol is a three-round łwatchlistž
protocol with promise-style extraction guarantees. For every i ∈ [n], j ∈ [n]\{i},
this functionality enables Pi to choose a (private) subset K ⊆ [m] of protocol
executions of size k, and obtain the input and randomness used by Pj in all
executions in the set K, while all other input and randomness values of Pj

remain hidden from Pi.
Our őrst goal is to develop a three round protocol that realizes the watch-

list functionality in the plain model in the presence of malicious corruptions,
with super-polynomial simulation and (polynomial) promise-style extraction.
Following [IKSS21], we observe that it would suffice to implement łsender non-
malleablež OTs with super-polynomial simulation-based łreal/idealž security and
with promise-style polynomial extraction; where in the (i, j)-th execution for
i ∈ [n], j ∈ [n] \ {i}, Pi is the receiver and Pj is the sender. Pj ’s input to the
OT will be the input and randomness it used in each of the m instances of the
inner protocol, and Pi’s input is a random subset K of [m] of size k. By sender
non-malleability, we mean that the adversarial parties cannot maul the sender
messages in an OT execution with an honest party to obtain a łrelatedž sender
inputs in an OT execution with an honest receiver.

The work of [IKSS21] showed how to implement such sender non-malleable
OT in four rounds from any four-round simulation-secure two-party computation
protocol with certain additional properties (which we ignore for the momemt).
Since we need three-round watchlists, we would need to begin with three-round
two-party computation, which is impossible to realize with black-box polynomial-
time simulation security. Nevertheless, we show that it is possible to realize
such two-party computation with super-polynomial simulation and promise-style

8

extraction, which is one of our key technical contributions. We describe this in the
next subsection; here we discuss how such a two-party protocol can be compiled
into 3-round non-malleable OT.

Our overall approach builds on [IKSS21], but also diverges in some key techni-
cal aspects. Like [IKSS21], our construction relies on a secure two-party protocol
between a sender and a receiver realizing a special functionality F (described in
Figure 1). Unlike [IKSS21], we must develop a three-round compiler instead of a
four round one.

In the [IKSS21] compiler, the sender S on input (m0,m1) őrst encodes these
messages using an appropriate 2-split-state non-malleable code (Enc,Dec).11 For
technical reasons pertaining to the use of watchlists in our őnal protocol, we
require our watchlists to satisfy 1-rewinding security, i.e., no adversary should be
able to distinguish the joint distribution of a main and a rewinding thread (with
common preőx) from the real distribution, from those sampled according to the
simulated distribution. This was not needed by [IKSS21], but this requirement
in our setting necessitates deviating from the [IKSS21] template, relying on (a
special type of) 3-split-state non-malleable code ś speciőcally one that is also a
3-out-of-3 secret sharing scheme ś instead of 2-split-state non-malleable codes.

Speciőcally, our sender encodes m0 into L0,M0,R0 and encodes m1 into
L1,M1,R1. The receiver obtains input a choice bit b ∈ {0, 1}, and additionally
samples a uniformly random c ∈ {0, 1, 2}. S and R invoke a two-party secure
protocol Π to compute functionality F , described in Figure 1.

Sender Inputs: m0, L0,M0,R0,m1, L1,M1,R1, Receiver Inputs: b, c

The functionality F is deőned as follows.

1. Check if L0,M0,R0 is a valid encoding of m0 and if not, output ⊥.
2. Check if L1,M1,R1 is a valid encoding of m1 and if not, output ⊥.
3. If c = 0, output (mb, L0, L1).
4. If c = 1, output (mb,M0,M1).
5. If c = 2, output (mb,R0,R1).

Fig. 1: The functionality F

We note that the ideal functionality F only reveals mb to the receiver, and sta-
tistically hides m1−b. This is because the receiver obtains only one of L1−b, M1−b

and R1−b, and secrecy follows from the security of the secret sharing scheme.
Thus, given one of the states the message m1−b is information-theoretically hid-
den. Further, even given two executions of the ideal functionality on the same

11 Recall that a split-state non-malleable code (Enc,Dec) encodes any message m into
multiple states, such that the distribution of the tampered message obtained by
tampering the each state individually is independent of m.

9

sender inputs, same receiver input b, and different receiver challenges c, the re-
ceiver only obtains mb and two out of L1−b, M1−b and R1−b. Given two out of
these three shares, m1−b is again statistically hidden. Indeed, when F is real-
ized via a secure protocol Π, m1−b continues to be computationally hidden even
given a main and rewinding thread (with same inputs m0,m1, b). This protocol Π
makes only black-box use of cryptography, and can be based on black-box access
to our three-round two-party computation protocol that additionally satisőes
certain amount of rewinding security, which we discuss in the next subsection.

Proving Sender Non-Malleability. We must prove that running this protocol Π
between every pair of parties in parallel securely realizes the watchlist function-
ality. We model the adversary as a man-in-the-middle, which acts as a receiver
in łleftž sessions and as sender in łrightž sessions. We require that there is a
simulator-extractor Sim-Ext that given the inputs of all honest receivers (in all
right sessions), is able to extract all the implicit inputs used by the man-in-the-
middle in all its right sessions. Crucially, Sim-Ext does not have access to the
inputs of honest senders. Since the underlying protocol Π may be susceptible to
arbitrary mauling attacks, achieving this property is non-trivial, as we discuss
next.

Similar to [IKSS21], we use the speciőc way that sender inputs are encoded
to introduce an alternate extraction mechanism. Speciőcally, one could imagine
rewinding the second and the third round message of Π twice, with őrst round
message őxed, and using inputs c = 0, c = 1 and c = 2 on behalf of the
honest receiver in the real and rewinding threads, respectively. Our two-party
computation protocol will be developed in such a way that őxing the őrst round
message will őx all other inputs m0,m1, b in all left and right sessions. Let us
make the simplifying assumption that our adversary does not abort. Therefore,
we expect to obtain outputs (L̃0, L̃1), (M̃0, M̃1) and (R̃0, R̃1) in the right session
in the real and rewinding threads respectively. At this point, we can use the
decoder of the non-malleable code to obtain (m̃0, m̃1), which, by correctness of
the two-party protocol, should correspond to the implicit inputs of the MIM in
the right session.

The Need for 2-Rewinding Security. Before we can rely on non-malleable codes
to formally argue security, we need to replace the two-party protocol Π with its
simulated version. At the same time, we need to argue that the joint distribution
of values extracted from the strategy above (via extracting (L̃0, L̃1), (M̃0, M̃1) and

(R̃0, R̃1)) from the simulated two-party protocol, matches the distribution in the
real protocol. This requires the two-party protocol Π to satisfy a stronger secu-
rity property, that we call 2-rewind sender security. This roughly means that any
adversarial receiver/MIM that rewinds the honest sender one time in the third
and fourth rounds, with its input c̃ set to a possibly different value, does not learn
more than the output of F on (őxed) inputs (m0,m1, L0, L1,M0,M1,R0,R1, b̃, c̃ =

0), (m0,m1, L0, L1,R0,R1, b̃, c̃ = 1) and (m0,m1, L0, L1,R0,R1, b̃, c̃ = 2). This can
be formalized by demonstrating the existence of a simulator that simulates the
receiver’s view in the real and rewinding threads, given only (m

b̃
, L0, L1) in the

10

main thread, and (m
b̃
,M0,M1), (mb̃

,R0,R1) respectively in each of the rewinding
threads (w.l.o.g.). Now, it may seem like the sum total of this information could
essentially allow the receiver to recover m1−b̃

. Yet, we show that if Π satisőes this

property, it becomes possible to replace m1−b̃
with an arbitrary value (say 0λ).

Here we make use of the fact that the different states of the non-malleable code
are available to the MIM in separate (i.e. real and rewinding) executions, which
allows us to rely on the security guarantees provided by non-malleable codes,
by arguing that each of these states are essentially tampered by independent
functions.

Finally, we note that just as in [IKSS21], we require these codes to satisfy
many-many non-malleability. At a high level, these are codes that are secure
against multiple tamperings of a codeword [CGL16]. We note that a construc-
tion of 3-out-of-3 non-malleable secret sharing from [GSZ21] satisőes all the
required properties (if instantiated with the CGL non-malleable code). Also
following [IKSS21], to deal with adversaries who might abort, we will modify
the protocol and functionality F so that instead of encoding (m0,m1) a single
time, the sender generates λ (where λ is the security parameter) fresh encodings
{(Lib,M

i
b,R

i
b)}i∈[λ],b∈{0,1} of m0 and m1. The receiver picks λ choice bits c1, . . . , cλ

instead of a single bit c. The functionality F checks if for every i ∈ [n], b ∈ {0, 1},
{(Lib,M

i
b,R

i
b)}i∈[λ],b∈{0,1} encode mb. If the check fails, F outputs ⊥. If it passes,

then for every i ∈ [n], it outputs (Li0, L
i
1) if ci = 0, (Mi

0,M
i
1) if ci = 1, and

otherwise, outputs (Ri
0,R

i
1). We also recall that our watchlists need to satisfy

super-polynomial simulation with łpromise-stylež extraction, but we note that
these properties in fact carry over from the underlying special two-party com-
putation protocol.

2.3 Constructing Three-Round 2PC with Special Extraction

In this subsection, we explain the key ideas behind our construction of a three-
round 2PC that satisőes the łpromise-stylež extraction guarantee and ł2-rewindingž
sender security.

3-Round OT Protocol. As a őrst step, we construct a three-round black-box
OT protocol that satisőes standard simulation-based security against malicious
senders and super-polynomial time simulation security against malicious re-
ceivers. For this purpose, we rely on a (sub-exponentially hard) two-round OT
protocol that has super-polynomial time simulation security against malicious
receivers. To enable polynomial time extraction of the malicious sender input,
we additionally require the sender to generate an extractable commitment to its
input. To ensure the consistency of inputs used in the extractable commitment
and the ones used in the OT protocol, we rely on the IPS compiler. Speciőcally,
we use the 1-out-of-2 SPS OT to construct a k-out-of-m SPS OT protocol (us-
ing Yao’s garbled circuits) and use this as the watchlist protocol. We show that
this watchlist protocol is sufficient to instantiate the IPS compiler when we only
require SPS security against malicious receivers.

11

3-Round 2PC. As a next step, we use the above OT protocol to construct a three-
round 2PC protocol that satisőes standard simulation security against malicious
senders and SPS security against malicious receivers. This step involves stan-
dard tools and closely follows the construction given in [IKSS21]. Additionally,
we also show how to add 2-rewinding sender security to this protocol. Speciő-
cally, we show that if the underlying 3-round OT is 2-rewinding sender secure
and we also have a 2-rewinding secure extractable commitment scheme (which
was constructed in [BGJ+18]), we get a 2-rewinding sender secure 2PC protocol.
Further, we note that 2-rewinding sender security of our 3-round OT protocol
just boils down to instantiating the underling extractable commitment on the
sender side (as explained earlier) with a 2-rewinding secure one, and we instan-
tiate this with the construction given in [BGJ+18].

3-Round 2PC with Special Extraction. We then use the above 3-round 2PC
protocol to construct a protocol that additionally satisőes the łpromise-stylež
extraction guarantee. To achieve this, we require the receiver to commit to its
input (as well as the randomness) used in the 2PC protocol via a three-round
extractable commitment. Again, as in the case of OT protocol, we need to make
sure that the inputs committed via the extractable commitment is consistent
with the inputs used in the 2PC protocol. As before, we rely on the IPS compiler
but we observe that we do not need the łfull-blownž watchlist protocol. Instead,
we require the sender in the second round to send a set of executions to be
opened in the clear and the receiver in the őnal round opens the extractable
commitment corresponding to these executions. The sender then checks whether
the input, randomness committed via the extractable commitment is consistent
with the messages sent in the 2PC protocol. If they are consistent for randomly
opened set of executions, then by standard statistical argument, we can show
that they are consistent for a majority of the executions with overwhelming
probability. This allows us to rewind and extract the receiver’s input via the
extractable commitment. We note that we are only able to guarantee łalmostž
perfect extraction due to the existence of a łsmallž set of inconsistent executions.
Speciőcally, the łsmallž set of inconsistent executions could force the output
of the watchlist protocol to be ⊥, but even in this case, our polynomial time
extract could extract some receiver input. But as explained earlier, this is not
problematic and is sufficient to instantiate the IPS compiler. We also note that
if the underlying 2PC protocol is 2-rewinding sender secure then this property
is inherited by the 2PC protocol with special extraction as well.

Organization. Due to lack of space, we only present the watchlist protocol and
defer the other constructions and their proof of security to the full version.

3 Preliminaries

We recall some standard cryptographic deőnitions in this section.

12

Split-State Non-Malleable Codes We will use non-malleable codes in the split-
state model that are one-many secure and satisfy a special augmented non-
malleability [AAG+16] property, as discussed below.

Definition 1 (One-many augmented split-state non-malleable codes).
Fix any polynomials ℓ(·), p(·). An ℓ(·)-augmented non-malleable code with error
ϵ(·) for messages m ∈ {0, 1}p(λ) consists of algorithms NM.Code,NM.Decode

where

– NM.Code(m)→ (L,M,R) where L ∈ L, M ∈M and R ∈ R (we will assume
that L =M = R) are a three-out-of-three secret sharing of the message,

– For every m ∈ {0, 1}p(λ),

NM.Decode(NM.Code(m)) = m, and

– For every set of functions f = (f1, f2, . . . fℓ(λ)), g = (g1, g2, . . . gℓ(λ)), h =
(h1, h2, . . . hℓ(λ)) and every set of permutations {σi}i∈[ℓ(λ)], σ

′ on (L,M,R)

there exists a random variable Df,g,h,σ,σ′ on R×{{0, 1}p(λ)∪same∗}ℓ(λ) which
is independent of the randomness in NM.Code such that for all messages
m ∈ {0, 1}p(λ) it holds that the statistical distance between the distributions

σ′(L), σ′(M), {NM.Decode
(
fi(σi(L)), gi(σi(M)), hi(σi(R))

)
}i∈[ℓ(λ)]

and (replace(Df,g,h,σ,σ′ ,m)) where (L,M,R← NM.Code(m))

is at most ϵ(λ), where the function replace : {0, 1}∗×{0, 1}∗ → {0, 1} replaces
all occurrences of same∗ in its őrst input with its second input, and outputs
the result.

We note that the construction of non-malleable secret sharing in [GSZ21] can
be proven to satisfy this deőnition. This is already implicit in [GSZ21] for the case
of single tampering but extension of their proof to the case of multiple tamperings
follows directly if we use a strong two-source non-malleable extractors that is
multi-tamperable [CGL16].Thus, we have the following:

Lemma 1. [GSZ21] For every polynomial ℓ(·), there exists a polynomial q(·)
such that for every λ ∈ N, there exists an explicit ℓ-augmented, split-state non-
malleable code satisfying Deőnition 1 with efficient encoding and decoding algo-

rithms with code length q(λ), rate q(λ)−Ω(1) and error 2−q(λ)Ω(1)

.

Low-Depth Proofs Any computation performed by a family of polynomial sized
ciruits can be transformed into a proof that is veriőable by a family of circuits in
NC1. We refer to the transformation as a low-depth proof, and we require such
a proof to satisfy the following deőnition.

Definition 2 (Low-Depth Non-Interactive Proofs). A low-depth non-interactive
proof with perfect completeness and soundness for a relation R consists of an (ef-
őcient) prover P and a veriőer V that satisfy:

13

– Perfect completeness. A proof system is perfectly complete if an honest
provers can always convince an honest veriőer. For all x ∈ L we have

Pr[V (π) = 1|π ← P (x)] = 1

– Perfect soundness. A proof system is perfectly sound if it is infeasible to
convince an honest veriőer when the statement is false. For all x ̸∈ L and
all (even unbounded) adversaries A we have

Pr[V (x, π) = 1|π ← A(x)] = 0.

– Low Depth. The veriőer V can be implemented in NC1.

It is shown in [IKSS21] building on [GGH+13] how such a non-interactive proof
can be constructed in a simple way. Looking ahead, our construction of watchlists
makes use of a (malleable) two-party computation protocol for NC1 that must
verify validity of a non-malleable code. We rely on low-depth proofs to ensure
that the two-party computation protocol only performs NC1 computations.

3.1 3-Round Two-Party Computation Protocol with Special
Extraction

The watchlist protocol requires a special two-party computation protocol. We
give a construction of this protocol in the full version and present the deőnition
here.

Syntax. A three-round protocol Π = (Π1, Π2, Π3, outΠ) between a sender and
a receiver proceeds as follows. In each round r ∈ [3], the sender runs Πr on its
identity, the transcript, its input and randomness to generate msgSr . Similarly,
in round r, the receiver runs Πr on its identity, the transcript, its input and
randomness to generate msgRr . The sender sends msgSr to the receiver and the
receiver sends msgRr to the sender and these messages are then added to the
transcript. At the end of the protocol, the receiver run outΠ on its identity,
transcript, its input and randomness to compute the output which is a string
z or ⊥. The sender runs outΠ on its identity and the őrst round message from
the receiver, the second round message from the sender and third round message
from the receiver and outputs either accept/reject. We note that while the output
computation of the receiver requires access to its private random tape, the output
of the sender is publicly computable.

Definition 3. A three-round two-party protocol Π = (Π1, Π2, Π3, outΠ) for
computing a function f is said to satisfy k-special extraction if:

– Public Coin Second Round Messages. The second round messages from
the sender and the receiver are both public coin.

14

– Security against Malicious Senders. There exists an expected PPT ma-
chine SimS such that for every non-uniform A the corrupts the sender and
for every receiver’s input x ∈ {0, 1}n, we have:

{(
ViewA(⟨R(1λ, x),A(1λ)⟩), outR(⟨R(1λ, x),A(1λ)⟩)

)}
≈c

{
(ViewA, f(x, y)) : (ViewA, y)← (SimS)

A(1λ)
}

In the above deőnition, we note that if y output by SimS is the special symbol
⊥, then the output of f is also ⊥. We additionally need the existence of a
straight-line SPS simulator SPSimS that has the same guarantees as SimS.

– Super-Polynomial Time Simulation Security against Malicious Re-

ceivers. There exists a super-polynomial time machine SPSimR = (SPSim1
R,

SPExtR, SPSim
2
R, SPSim

3
R) such that for every adversary A corrupting the re-

ceiver and for every sender’s input y ∈ {0, 1}n, we have:

{
ViewA(⟨A(1

λ), S(1λ, y)⟩)
}
≈c IdealR(1

λ, y,A, SPSimR)

where the experiment IdealR is described in Figure 2.
– 2-Rewinding Sender Security against Sub-Exponential Adversaries.

We require that this protocol to be secure against any malicious sub-exponential
time receiver that could rewind an honest sender twice by giving possibly dif-
ferent second round messages in each rewind.

– Special Extraction of the Malicious Receiver Input. There exists a
super-polynomial time extractor SPSpecExtR such that for any adversary A
corrupting the receiver and for any sender input y ∈ {0, 1}n, the probability
the following experiment outputs 1 is negligible:
1. Sample a transcript T from IdealR(1

λ, y,A, SPSimR).
2. If the output of the sender S in the transcript T is reject, then output of

the experiment is 0.
3. Run SPExtR(msg1R) (where msg1R ∈ T) to obtain x. If x = ⊥, output of

the experiment is 0.
4. Else, run SPSpecExt(T) to obtain x′.
5. The output of the experiment is 1 if and only if x ̸= x′.

– Existence of k accepting Transcript Extractor. There exists a polyno-
mial time machine ExtR that on input any k transcripts T1, . . . ,Tk such that
in each of the transcript the output of the sender is accept outputs x such
that x = SPSpecExt(T1) with overwhelming probability.

– Delayed Function Selection. The function to be computed can be chosen
by the sender in the third round.

4 The Watchlist Protocol

In this section, we formally construct and prove security of three-round watchlist
protocol. Recall that in the watchlist protocol, each ordered pair of parties Pi

15

– Run SPSim1
R(1

λ) to obtain (msgS1 , st) and send msgS1 to A. Receive msgR1 from
A.

– Run SPExtR(msgR1) to obtain x, st′.
– Sample (msgS2 , st

′′) from SPSim2
R(st, st

′) and send msgS2 to A.
– Receive msgR2 from A.
– Run SPSim3

R(st
′′, f(x, y),msgR1 ,msgR2 ,msgS2) to obtain msgS3 and send this to

A.
– Receive msgR3 from A.
– Output view of A.

Fig. 2: Description of IdealR.

and Pj invoke a ℓ-out-of-m OT functionality where Pi acts as the receiver and
Pj acts as the sender. Speciőcally, the private input of party Pj in this OT
instance consists of of xj which is the vector of sender inputs of dimension m

and the private input of party Pi is Ki which is a subset of [m] of size ℓ. The
output to party Pi consists of {xj,k}k∈Ki

. We note that in the watchlist protocol,
every honest party Pi uses the same Ki in each instance of the OT functionality
when acting as the receiver and same xi in each instance when acting as the
sender. However, the corrupted party Pi may choose different Ki and xi for each
instance when acting as the receiver and the sender respectively. For ease of
notation, whenever we use Ki as the receiver input of a corrupted party Pi, we
actually mean a set of subsets {Ki,j}j∈H . Similarly, whenever we use xj as the
sender input of a corrupted party Pj , we actually mean set of vectors, one for
each honest party.

4.1 Definitions

Before we proceed to the formal deőnition of the watchlist protocol, we give an
informal overview of the various properties that the protocol needs to satisfy.

1. The őrst requirement is the existence of a straight-line super-polynomial time
simulator SimWL that has oracle access to the watchlist functionality and
produces a view of the adversary that is computationally indistinguishable
to the real world. This requirement is same as standard SPS security. Here,
it is crucial that the simulator is straight-line i.e., it does not rewind the
adversary.

2. The second property is about the existence of an łalternatež extraction
mechanism of the malicious receiver inputs. Speciőcally, we require that if
the output of all the honest parties when acting as the sender is not ⊥ in
the protocol, then there exists an alternate super-polynomial time extractor
SPExtWL,R that extracts the adversarial receiver inputs using the accepting
transcript. Further, for each corrupted party, these inputs are the same as
the ones extracted by SimWL except in the case that it is ⊥.

16

3. The third property is about the existence of polynomial-time rewinding ex-
tractor (that rewinds the adversary until it obtains k accepting transcripts)
and outputs the malicious receiver inputs that is identical to the one output
by SPExtWL,R. For technical reasons, we need to separate out the existence of
a polynomial time rewinding extractor and super-polynomial time extractor
in the alternate extraction mechanism.

4. The fourth property is about the one-rewinding sender non-malleability.
Roughly speaking, it requires that adversarial sender inputs cannot depend
on the honest party sender inputs even if the adversary is allowed to rewind
the second and third round message of the protocol once.

Definition 4 (Extractable (n,m, ℓ)-Watchlists). Fix any polynomials n =
n(λ),m = m(λ), ℓ = ℓ(λ). An extractable (n,m, ℓ)-watchlist is a protocol that
achieves the simultaneous n-party m-choose-ℓ OT functionality with the follow-
ing security guarantees:

1. Real-Ideal Security with Straight-line SPS simulator. There exists
a (stateful) straight-line super-polynomial time simulator SimWL such that
for any (stateful) adversary A that is corrupting an arbitrary subset M of
the parties and for any choice of honest party inputs {xj ,Kj}j∈H (where H

denotes the set of honest parties, xj’s denote the sender inputs of party j,
and Kj’s denote the set of executions that player j watches), we have the
following two distributions are computationally indistinguishable:
(a) View of the adversary and the output of all the honest parties H in the

real execution of the protocol.
(b) IdealSPS(1

λ,M,A, SimWL) where IdealSPS is given in Figure 3.
Furthermore, the distribution of the messages generated by SimWL on behalf
of honest receivers is identically distributed to the real receiver messages with
dummy inputs.

2. Special Extraction of the Malicious Receiver Input. There exists a
super-polynomial time extractor SPExtWL,R such that for any adversary A
corrupting a subset M of the parties and for any choice of honest party
inputs {xj ,Kj}j∈H , the probability that the following experiment outputs 1
is negligible:
(a) Sample a transcript T from IdealSPS experiment and let {σj}j∈H be the

output of the honest parties.
(b) If σj = ⊥ for each j ∈ H in IdealSPS experiment, then output of the

experiment is 0.
(c) Else, run SimWL({msgi1}i∈M) (where {msgi1}i∈M ∈ T) to obtain ({Ki}i∈M , st).
(d) Run SPExtWL,R(T) to obtain {K ′

i}i∈M .
(e) The output of the experiment is 1 if and only if there exists an i ∈ H

such that K ′
i ̸= Ki whenever Ki ̸= ⊥.

3. Existence of k accepting Transcript Extractor. There exists a polyno-
mial time machine ExtWL,R such that on input any k transcripts T1, . . . ,Tk

with common őrst message such that in each of the transcript the out-
put of the honest parties is not ⊥ outputs {Kj}j∈H such that {Kj}j∈H =
SPExtWL,R(T1) with overwhelming probability.

17

4. One-Rewinding Sender Non-Malleability. We require the existence of
an (expected) PPT algorithm ExtWL,S such that for any 1-rewinding adver-
sary A corrupting any set M of the parties (by 1-rewinding, we refer to an
adversary that is allowed to rewind the second and third round message of
the protocol once) and for any choice of honest party inputs {xj ,Kj}j∈H

such that the following two distributions are computationally indistinguish-
able against adversaries that run in time which is polynomial in the running
time of SPSimWL,R:
(a) Consider the IdealSPS experiment in Figure 3 with the 1-rewinding ad-

versary A (i.e., step-4 in the experiment is repeated once more). Let us
denote the őrst execution with the adversary as the main thread and the
rewinding execution with A as the rewind thread. After step-4, run SimWL

on the messages generated in the main thread to compute {xi}i∈M . Out-
put the view of the adversary A and {xi}i∈M .

(b) Sample uniform random tape {rj}j∈H and execute the protocol honestly
with the 1-rewinding adversary A using the honest inputs {Kj ,xj}j∈H

with the above random tape. Run ExtWL,S(1
λ, {Kj ,xj , rj}j∈H) to obtain

{xi}i∈M . Output view of the adversary in the above honest execution
along with {xi}i∈M .

1. Run SimWL(1
λ,M) to obtain {msg

j
1}j∈H and send this to A. Receive

{msgi1}i∈M from A.
2. Run SimWL({msgi1}i∈M) to obtain ({Ki}i∈M , st).
3. Compute the output of the watchlist received by the parties in M when

the honest sender inputs are {xj}j∈H and the malicious receiver inputs are
{Ki}i∈M . Let {σi}i∈M be this output.

4. For each r ∈ {2, 3}:
(a) Run SimWL({σi}i∈M , st, {msgik}k∈[r−1],i∈M) to obtain {msgjr}j∈H and

send this to A. Receive {msgir}i∈M from A.
5. Run SimWL({msgik}i∈M,k∈[3]) to obtain {xi}i∈M .
6. Compute the output of the watchlist received by the parties in H when

the honest receiver inputs are {Kj}j∈H and the malicious sender inputs are
{xi}i∈M . Let {σj}j∈H be this output.

7. Output view of A and {σj}j∈H .

Fig. 3: Description of IdealSPS .

4.2 Construction

Our construction is described in Figure 4, and makes use of the following ingre-
dients:

18

– A 3 round two-party secure computation protocol Π satisfying Deőnition 3
with delayed-function selection for NC1 circuits and 2-rewinding sender se-
curity.

– An information-theoretic m(λ) · ℓ(λ) non-malleable coding scheme satisfy-
ing Deőnition 1.

– A low-depth proof for P according to Deőnition 2.
– An existentially unforgeable signature scheme with algorithms denoted by

Signature.Setup, Signature.Sign and Signature.Verify.

We describe our protocol formally in Figure 4. The correctness of this protocol
follows from correctness of the underlying oblivious transfer, non-malleable codes
and signature scheme. In what follows, we formally prove security according to
Deőnition 4.

Theorem 1. Let λ denote the security parameter, and m = m(λ), k = k(λ), ℓ =

ℓ(λ) be arbitrary polynomials. There exists a 3 round ℓ non-malleable

(
m

k

)
obliv-

ious transfer protocol satisfying Deőnition 4 that makes black-box use of any 3
round two-party secure computation protocol Π satisfying Deőnition 3 with 2-
rewinding sender security, and any existentially unforgeable signature scheme.

Proof of Theorem 1. We observe that properties 2 and 3 carry over from the
properties of the underlying two-party computation protocol, and 1 is implied
by 4 together with SPS security of the two-party protocol against malicious ad-
versaries (following [IKSS21]). Our key goal is to prove that the protocol satisőes
property 4. To keep exposition simple, we prove this property against polyno-
mial time distinguishers. We note that indistinguishability against distinguishers
running in time which is polynomial in the running time of SPExtWL,R follows
directly from the 2-rewinding sender security of the underlying 2PC protocol
against such distinguishers.

We now consider a man-in-the-middle adversary that participates as an OT
receiver in upto ℓ(λ) executions of this protocol on the right, and participates
as an OT sender in upto ℓ(λ) executions on the left. Towards proving that our
protocol satisőes property 1, we will prove that there exists a PPT algorithm
Sim-Ext, that with black-box access to the MIM, and to ℓ copies of the ideal OT
functionality OT = {OTj({mi,j}i∈[m], ·)}j∈[ℓ] and with input {Kj}j∈[ℓ], simu-
lates an execution of the protocol with the MIM and extracts all the inputs
{({m̃i,j}i∈[m])}j∈[ℓ] used by the MIM in the executions where the MIM is sender.
We will prove that the 1-rewinding view output by Sim-Ext, that we denote by
IdealMIM({mi,j}i∈[m],j∈[ℓ], {Kj}j∈[ℓ]) will be such that

RealMIM⟨{Sj({mi,j}i∈[m])}j∈[ℓ], {Rj(Kj)}j∈[ℓ]⟩ ≈c IdealMIM({mi,j}i∈[m],j∈[ℓ], {Kj}j∈[ℓ])

where the expression on the left denotes the joint distribution of the view and
messages committed by a 1-rewinding adversary in an interaction where honest
senders Sj have inputs {mi,j}i∈[m], and honest receivers Rj have inputs Kj .

To prove indistinguishability, we deőne a sequence of hybrid experiments,
where the őrst one outputs the distribution RealMIM⟨{Sj({mi,j}i∈[m])}j∈[ℓ], {Rj(Kj)}j∈[ℓ]

19

Inputs: Sender S has inputs {mj}j∈m and receiver R has input a set K ⊆ [m]
where |K| = k.

Protocol: S and R do the following.

1. S samples (vk, sk)← Signature.Setup(1λ), then does the following.
– For each i ∈ [λ], j ∈ [m], pick uniform randomness ri,j and compute

(Li,j ,Mi,j ,Ri,j) = NM.Code((vk|mj); ri,j).

– Set instance x = (vk, {(Li,j ,Mi,j ,Ri,j ,mj)}i∈[λ],j∈[m]) and language

L =
{

(vk, {(Li,j ,Mi,j ,Ri,j ,mj)}i∈[λ],j∈[m]) :

∀i ∈ [λ], j ∈ [m],NM.Decode(Li,j ,Mi,j ,Ri,j) = (vk|mj)
}

.

Compute ldp = LDP.Prove(x,L).
2. For each i ∈ [λ], R picks ci ← {0, 1, 2}.
3. Both parties engage in the protocol Π to compute functionality F where:

– R plays the receiver with input K committed in round 1 and delayed
function (c1, . . . , cλ) chosen in round 2.

– S plays the sender with input (x, ldp), where x is parsed as
(vk, {mj , (Li,j ,Mi,j ,Ri,j)}i∈[λ],j∈[m].

– The functionality F on input (vk, {mj , Li,j ,Mi,j ,Ri,j}i∈[λ],j∈[m],K, {ci}i∈[λ])
generates an output as follows:
• If LDP.Verify(x, ldp) ̸= 1, output ⊥. Otherwise set out = vk, {mj}j∈K .
• Additionally, for every i ∈ [λ], if ci = 0, append ({Li,j}j∈[m]) to out,

if ci = 1, append ({Mi,j}j∈[m]) to out, else append ({Ri,j}j∈[m]) to
out.

• Output out.
Additionally, S signs messages generated according to Π, de-
noted by (Π1, Π3). It sets σ1 = Signature.Sign(Π1, idS , sk), σ3 =
Signature.Sign(Π3, idS , sk) where idS is the identity of the sender. It sends
(σ1, σ3) to R.

4. R obtains output out and parses out = (vk, {mj}j∈K , ·). It outputs {mj}j∈K

iff Signature.Verify(σ1, Π1, idSvk)∧Signature.Verify(σ3, Π3, idS , vk) = 1, other-
wise outputs ⊥.

Fig. 4: ℓ(λ) Non-Malleable m(λ)-choose-k(λ) Oblivious Transfer

and the őnal one outputs the distribution IdealMIM({mi,j}i∈[m],j∈[ℓ], {Kj}j∈[ℓ]).
Formally, these hybrids are deőned as follows:

Hyb0 : This corresponds to an execution of the MIM with ℓ honest senders
{Sj}j∈[ℓ] on the left, each using inputs {mi,j}i∈[m] respectively and ℓ honest
receivers on the right with inputs ({Kj}j∈[ℓ]) respectively. The output of this

20

hybrid is RealMIM⟨{Sj({mi,j}i∈[m])}j∈[ℓ], {Rj(Kj)}j∈[ℓ].

Hyb1 : This experiment modiőes Hyb1 by introducing an additional abort condi-
tion. Speciőcally, the experiment őrst executes the complete protocol correspond-
ing to the real execution of the MIM exactly as in Hyb0 (including rewinding the
MIM once) to obtain the distribution RealMIM⟨{Sj({mi,j}i∈[m])}j∈[ℓ], {Rj(Kj)}j∈[ℓ]⟩.

Let p(λ) denote the probability that the MIM completes this execution with-
out aborting. Set γ(λ) = max

(
λ, p−2(λ)

)
. With the őrst two rounds of the tran-

script őxed, the rewind the right execution up to γ2(λ) times, picking inputs
(cj1, . . . , c

j
λ) for each of the ℓ receivers {Rj}j∈[ℓ] independently and uniformly

at random in every run. If there exist two rewinding threads where the MIM

completes the protocol execution, denote the inputs chosen by the challenger
on behalf of the honest receiver in these rewinding threads by (c′

j
1, . . . , c

′j
λ) and

(c′′
j
1, . . . , c

′′j
λ) respectively. For every j ∈ [ℓ], let index αj ∈ [λ] be such that

cjαj
= 0, c′

j
αj

= 1, c′′
j
αj

= 2.

Additionally for every j ∈ [ℓ], i ∈ [m], use (L̃jαj ,i
, M̃

j
αj ,i

, R̃
j
αj ,i

) obtained as

output from the main and rewinding executions respectively to compute m̃
j
i =

NM.Decode(L̃jαj ,i
, M̃

j
αj ,i

, R̃
j
αj ,i

).

If no such rewinding thread exists, or if there exists j ∈ [ℓ] for which there

does not exist α ∈ [λ] such that cjα = 0, c′
j
α = 1, c′′

j
α = 2, then set m̃

j
i = ⊥ for

all i ∈ [m]. Now, the output of this hybrid is the joint distribution

ViewMIM⟨{Sj({m
j
i}i∈[m])}j∈[ℓ], {R

j(Kj)}j∈[ℓ]⟩, {m̃
j
i}j∈[ℓ],i∈[m].

Lemma 2. For every unbounded distinguisher D and large enough λ ∈ N,
∣∣∣Pr[D(Hyb0) = 1]− Pr[D(Hyb1) = 1]

∣∣∣ = negl(λ)

Proof. Since the MIM’s inputs {m̃j
i}j∈[ℓ] are committed in round 1 of the pro-

tocol, then conditioned on the adversary providing a non-aborting transcript in
rewinding executions in Hyb1, by simulation security of the 2pc, {(m̃j

i}j∈[ℓ] are
correctly extracted.

Therefore, to prove this lemma it suffices to show that two rewinding exe-
cutions (with a non-aborting transcript) can be found within γ2(λ) attempts,
except with probability negl(λ). To see this, we observe that the probability of
a non-aborting transcript is p(λ), and therefore, the probability that γ2(λ) − 1
out of the γ2(λ) trials abort is negl(λ).

Hyb2: This experiment modiőes Hyb1 to execute the superpolynomial simulator
of Π in all sessions where the MIM is a receiver. Speciőcally, in these executions,
instead of the honest sender strategy with input {mj

i}i∈[m],j∈[ℓ], we execute the

superpolynomial simulator Sim-2PC
MIM,F(inpSj ,·)

Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,M

j
1,i, . . . ,M

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

21

Sim-2PCSen expects round 1 and round 2 messages from the MIM, and the MIM

in turn expects corresponding messages from the receiver in the right execution.
Receiver messages for the right execution are generated using honest receiver
strategy with inputs Kj őxed, and inputs cj1, . . . , c

j
λ chosen uniformly at random,

exactly as in Hyb1. Denote the view of the MIM by

View
Sim

{F(inp
Sj ,·)}j∈[ℓ] ⟨{R

j(Kj)}j∈[ℓ]⟩,

where for every j ∈ [ℓ], inpSj is as deőned above.
Next, with the őrst round of the transcript őxed, the challenger rewinds the

right execution up to γ2(λ) times, picking inputs (cj1, . . . , c
j
λ) for Rj indepen-

dently and uniformly at random in every run, and generating messages in the
left execution by running the simulator Sim-2PCSen each time.

If there exist two rewinding executions where the MIM completes the proto-
col, denote the inputs chosen by the challenger on behalf of the honest receiver
in this rewinding thread by (c′

j
1, . . . , c

′j
λ) and (c′′

j
1, . . . , c

′′j
λ) respectively. For

every j ∈ [ℓ], let index αj ∈ [λ] be such that cjαj
= 0, c′

j
αj

= 1, c′′
j
αj

= 2.

Additionally for every j ∈ [ℓ], i ∈ [m], use (L̃jαj ,i
, M̃

j
αj ,i

, R̃
j
αj ,i

) obtained as out-
put from the main and the two rewinding executions respectively to compute
m̃

j
i = NM.Decode(L̃jαj ,i

, M̃
j
αj ,i

, R̃
j
αj ,i

). If no such rewinding thread exists, or if

there exists j ∈ [ℓ] for which there does not exist α ∈ [λ] such that cjα = 0, c′
j
α =

1, c′′
j
α = 2, then abort. The output of this hybrid is the joint distribution:

View
Sim

{F(inp
Sj ,·)}j∈[ℓ] ⟨{R

j(Kj)}j∈[ℓ]⟩, {m̃
j
i}j∈[ℓ],i∈[m],

where for every j ∈ [ℓ], inpSj is as deőned above.

Lemma 3. Assuming 2-rewinding secure two party computation according to
Deőnition 3, for every PPT distinguisher D and large enough λ ∈ N,

∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]
∣∣∣ = negl(λ)

Proof. We consider a sequence of sub-hybrids Hyb1,0,Hyb1,1, . . .Hyb1,ℓ where for
every j ∈ [ℓ], Hyb1,j is identical to Hyb1,j−1, except that instead of executing

the honest sender strategy using honest sender inputs {mj
i}i∈[m], we execute the

simulator in the jth left execution, where Sim-2PC
MIM,F(inpSj ,·)

Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,M

j
1,i, . . . ,M

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m])

Suppose the lemma is not true. Then for every large enough λ ∈ N there
exists j∗(λ) ∈ [ℓ(λ)], a polynomial p(·) and a distinguisher D such that for
inőnitely many λ ∈ N,

∣∣∣Pr[D(Hyb1,j∗−1) = 1]− Pr[D(Hyb1,j∗) = 1]
∣∣∣ = 1

q(λ)

We derive a contradiction by building a reduction A that on input λ, obtains
j∗(λ) as advice and with black-box access to the MIM and to D contradicts 2-
rewinding security of the two party computation protocol. A proceeds as follows:

22

– A őrst creates receiver R′ that interacts with the external challenger as
follows.

• Obtain the őrst round sender message from the 2pc challenger, and for-
ward this to the MIM as Sj

∗

’s message in the j∗th left execution. In
addition, generate the őrst round messages according to receiver strat-
egy with inputs {Kj}j∈[ℓ] for the right execution. Obtain the őrst round
message from the MIM, which includes a (malicious) sender message for
the right execution and a (malicious) receiver message for the left exe-
cution. Output the MIM’s receiver message in the j∗th left execution to
the challenger of the 2pc.

• Generate the second round message for the right execution according to
honest receiver strategy, and obtain the second round message for the
left execution from the challenger. Forward the MIM’s message in left
session j∗ to the challenger.

• Obtain the third round message for the left execution externally from
the challenger, and forward this to the MIM as S’s message in the j∗th

left execution. Generate messages for the right executions using honest
receiver strategy. Obtain the third round message from the MIM for the
right execution.

– Next, A rewinds R′ twice with őxed őrst round, and obtains MIM outputs
as follows.

• Run the second round with honest receiver strategy on the right, and
obtain challenger messages on the left. Obtain the second round mes-
sage from the MIM, and output the MIM’s message in session j∗ to the
challenger.

• Obtain the third round message for the left execution externally from
the challenger, and forward this to the MIM as S’s message in the j∗th

left execution. Obtain the third round messages from the MIM.

– If none of the executions abort, for every j ∈ [ℓ], őnd αj ∈ [λ] such that cjαj
=

0, c′
j
αj

= 1, c′′
j
αj

= 2. If these do not exist, abort. Otherwise use the outputs of

the two-party computation protocol to compute m̃j
i = NM.Decode(L̃jαj ,i

, M̃
j
αj ,i

, R̃
j
αj ,i

)

for i ∈ [m], j ∈ [ℓ]. Else, set m̃
j
i = ⊥ for i ∈ [m], j ∈ [ℓ]

– A outputs the entire view ofR′ together with {m̃j
i}i∈[m],j∈[ℓ]. If the challenger

used honest sender messages, we denote the distribution output by A in this
experiment by Dist1 and if the challenger used simulated messages, we denote
the distribution output by A in this experiment by Dist2.

If the challenger’s messages correspond to the real sender S, then the distribu-
tion output by A conditioned on not aborting corresponds to Hyb1, and if the
challenger’s messages correspond to Sim-2PCSen, then the distribution output by
A conditioned on not aborting corresponds to Hyb2.

By assumption, for inőnitely many λ ∈ N,

∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]
∣∣∣ = 1

q(λ)

23

Since the MIM completes any run of the protocol without aborting with prob-
ability at least p(λ), and because aborts are independent of the distinguishing
advantage, for inőnitely many λ ∈ N:

∣∣∣Pr[D = 1 ∧ ¬abort|Hyb1]− Pr[D = 1 ∧ ¬abort|Hyb2]
∣∣∣ ≥ 1

p2(λ) · q(λ)

where ¬abort denotes the event that an execution that is completed in the main
thread, is also completed without aborting in one rewinding execution.

This implies that for inőnitely many λ ∈ N:

∣∣∣Pr[D(Dist1) = 1]− Pr[D(Dist2) = 1]
∣∣∣ ≥ 1

p2(λ) · q(λ)
,

where Dist1 and Dist2 denote the real and ideal distributions of the underlying
2-party computation protocol under 2-rewinding security. This implies that D
contradicts 2-rewinding security of the two party computation protocol.

Hyb3: This hybrid is the same as Hyb2 except whenever the challenger obtains
as output a veriőcation key in one of the right sessions that is identical to a
veriőcation key used in one of the left sessions, the hybrid outputs ⊥. By exis-
tential unforgeability of the signature scheme, given any PPT adversary MIM,
Hyb2 and Hyb3 are computationally indistinguishable.

Hyb4: This hybrid is the same as Hyb3 except that inpSj is set differently.
Speciőcally, for every j ∈ [ℓ], i ∈ [m] and α ∈ [λ], we set (Ljα,i,M

j
α,i,R

j
α,i) ←

NM.Sim(1p(λ)), and set

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,M

j
1,i, . . . ,M

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

We note that at this point, the functionality {F(inpSj , ·)}j∈[ℓ] can be perfectly

simulated with access to the ideal functionality {OTj(mj
i ,m

j
i , ·)}j∈[ℓ]. Moreover,

this hybrid runs the super-polynomial simulator of the two-party computation
protocol, which can be split into a straight-line simulator that extracts ad-
versarial receiver input from the őrst round, and then a rewinding-based ex-
pected polynomial-time simulator that extracts adversarial sender input. The
latter can also be replaced by a straight-line superpolynomial simulator that ex-
tracts the adversarial sender-input by running the straight-line superpolynomial
simulator of the two-party computation protocol. Finally, as long as the un-
derlying two-party computation protocol has its ideal distribution be identical
to an honest execution with dummy inputs, the same is true for our proto-
col. Therefore, the output of this hybrid is identical to the ideal distribution
IdealMIM({m

j
i}i∈[m],j∈[ℓ], {K

j}j∈[ℓ]).

Lemma 4. Assuming m(λ) ·ℓ(λ) symmetric non-malleable codes satisfying Def-
inition 1, for every unbounded distinguisher D and large enough λ ∈ N,

∣∣∣Pr[D(Hyb4) = 1]− Pr[D(Hyb3) = 1]
∣∣∣ = negl(λ)

24

Proof. We prove indistinguishability between Hyb3 and Hyb4 by considering a
sequence of sub-hybrids, {Hyb3,i,j,k}i∈[1,m],j∈[1,ℓ],k∈[0,λ] where:

– Hyb3 = Hyb3,0,ℓ,λ, Hyb4 = Hyb3,m,ℓ,λ,

– for i ∈ [m], Hyb3,i−1,ℓ,λ = Hyb3,i,1,0
– for j ∈ [ℓ], Hyb3,i,j−1,λ = Hyb3,i,j,0,

– for every i ∈ [m], j ∈ [ℓ], k ∈ [λ], Hyb3,i,j,k is identical to Hyb3,i,j,k−1 except

that Hyb3,i,j,k samples (Ljk,i,M
j
k,i,R

j
k,i)← NM.Code(0).

Suppose the lemma is not true. Then there exists i∗ ∈ [m], j∗ ∈ [ℓ], k∗ ∈ [λ],
an unbounded distinguisher D and a polynomial p(·) such that for large enough
λ ∈ N,

∣∣∣Pr[D(Hyb3,i∗,j∗,k∗) = 1]− Pr[D(Hyb3,i∗,j∗,k∗−1) = 1]
∣∣∣ = 1

p(λ)
(1)

We now deőne a set of tampering functions (fMIM, gMIM, hMIM), and a set of
additional functions (wMIM, yMIM, zMIM). Before deőning them, we deőne a shared
state for these functions, that is generated as follows:

– Execute Sim-2PCMIM
Sen , using honest R strategy in the right executions with

input {Kj}j∈[ℓ] and uniformly chosen {cj1, . . . c
j
λ}j∈[ℓ], until Sim-2PCSen gen-

erates a query to the ideal functionality F at the end of round 2.

– At this point, Sim-2PCMIM
Sen outputs a view and transcript of the MIM until

the third round, as well as {K̃j}j∈[ℓ] that correspond to the receiver’s inputs
in the left execution.

– Rewind the second round twice with uniformly and independently chosen
{c′

j
1, . . . , c

′j
λ}j∈[ℓ] and {c′′

j
1, . . . , c

′′j
λ}j∈[ℓ] respectively in each rewind. If for

every j ∈ [ℓ(λ)], there exists αj ∈ [λ] such that cjαj
= 0, c′

j
αj

= 1, c′′
j
αj

= 2,
continue, otherwise abort.

– Obtain the rewinding message of the adversary in the second round (with
the same őrst round preőx), as well as (c1, . . . , cn) and (ĉ1, . . . , ĉn) that
correspond to the receiver’s chosen functions in the j∗th left session in this
rewinding execution.

– If c̃k∗ , ck∗ and ĉk∗ are all different, continue. Otherwise, abort.

– Generate (Ljk,i,M
j
k,i,R

j
k,i) for every (i, j, k) ∈ [m] × [ℓ] × [λ] \ {i∗, j∗, k∗}

according to Hyb3,i∗,j∗,k∗−1 (this is identical to setting them according to
Hyb3,i∗,j∗,k∗).

– Output the view of the MIM until round 2 in the main the rewinding threads,
and also output (i∗, j∗, k∗), and the values (Ljk,i,M

j
k,i,R

j
k,i)(i,j,k)∈[m]×[ℓ]×[λ]\{i∗,j∗,k∗}.

– Additionally, output the receiver’s inputs {K̃j , c̃
j
1, . . . , c̃

j
λ}j∈[ℓ] and also out-

put the sender’s inputs {skj , vkj , {mj
i}i∈[m]}j∈[ℓ], along with randomness r.

The functions fMIM,i,j , gMIM,i,j and hMIM,i,j correspond to tampering functions,
and are deőned as follows.

25

– The deterministic function fMIM,i,j on input L, sets L
j∗

k∗,i∗ = L,M
j∗

k∗,i∗ =

0,Rj∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[ℓ], {K̃

j , c̃
j
1, . . . , c̃

j
λ}j∈[ℓ] as

well as the values (Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[ℓ]×[λ]\{i∗,j∗,k∗}, it computes

out = {Fj(vkj , {mi, L
j
k,i,M

j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[ℓ].

It then invokes Sim-2PCSen using randomness r on out to generate the third
round message of the protocol transcript in the thread corresponding to
the receiver challenge being 0. It outputs the value L

j
αj ,i

or M
j
αj ,i

or R
j
αj ,i

obtained from the MIM.
– The function gMIM,i,j on input M, sets M

j∗

k∗,i∗ = M,R
j∗

k∗,i∗ = L
j∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[ℓ], {K̃

j , c̃
j
1, . . . , c̃

j
λ}j∈[ℓ] as

well as the values (Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[ℓ]×[λ]\{i∗,j∗,k∗}, it computes

out = {Fj(vkj , {mi, L
j
k,i,M

j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[ℓ].

It then invokes Sim-2PCSen using randomness r on out to generate the third
round message of the protocol transcript in the thread corresponding to
the receiver challenge being 1. It outputs the value L

j
αj ,i

or M
j
αj ,i

or R
j
αj ,i

obtained from the MIM.
– The function hMIM,i,j on input R, sets R

j∗

k∗,i∗ = R,M
j∗

k∗,i∗ = L
j∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[ℓ], {K̃

j , c̃
j
1, . . . , c̃

j
λ}j∈[ℓ] as

well as the values (Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[ℓ]×[λ]\{i∗,j∗,k∗}, it computes

out = {Fj(vkj , {mi, L
j
k,i,M

j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[ℓ].

It then invokes Sim-2PCSen using randomness r on out to generate the third
round message of the protocol transcript in the thread corresponding to
the receiver challenge being 2. It outputs the value L

j
αj ,i

or M
j
αj ,i

or R
j
αj ,i

obtained from the MIM.

The functions wMIM, yMIM, zMIM generate the threads themselves and are deőned
as follows.

– Next, the function wMIM on input L, sets L
j∗

k∗,i∗ = L,M
j∗

k∗,i∗ = 0,Rj∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[ℓ], {K̃

j , c̃
j
1, . . . , c̃

j
λ}j∈[ℓ] as

well as the values (Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[ℓ]×[λ]\{i∗,j∗,k∗}, it computes

out = {Fj(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[ℓ].

It then invokes Sim-2PCSen on out to generate the third round message of
the protocol transcript in the thread corresponding to receiver left challenge
being 0. It outputs the resulting transcript as one thread in the view of the
MIM.

26

– Next, the function yMIM on input M, sets L
j∗

k∗,i∗ = 0,Mj∗

k∗,i∗ = M,R
j∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[ℓ], {K̃

j , c̃
j
1, . . . , c̃

j
λ}j∈[ℓ] as

well as the values (Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[ℓ]×[λ]\{i∗,j∗,k∗}, it computes

out = {Fj(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[ℓ].

It then invokes Sim-2PCSen on out to generate the third round message of
the protocol transcript in the thread corresponding to receiver left challenge
being 1. It outputs the resulting transcript as another thread in the view of
the MIM.

– Next, the function zMIM on input R, sets L
j∗

k∗,i∗ = 0,Mj∗

k∗,i∗ = 0,Rj∗

k∗,i∗ = R.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[ℓ], {K̃

j , c̃
j
1, . . . , c̃

j
λ}j∈[ℓ] as

well as the values (Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[ℓ]×[λ]\{i∗,j∗,k∗}, it computes

out = {Fj(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[ℓ].

It then invokes Sim-2PCSen on out to generate the third round message of
the protocol transcript in the thread corresponding to receiver left challenge
being 2. It outputs the resulting transcript as another thread in the view of
the MIM.

Note that there is a őxed set of permutations σi,j such that fMIM,i,j , gMIM,i,j , hMIM,i,j

can be relabeled as functions Fi,j , Gi,j , Hi,j such that Fi,j outputs L̃ values, Gi,j

outputs M̃ values, and Hi,j outputs R̃ values.
By Deőnition 1 of ℓ augmented non-malleable codes, we have that for every

permutation σ and σ′ on L,M,R, and every Fi,j , Gi,j and Hi,j ,
(
σ′(L), σ′(M), {NM.Decode

(
Fi,j(σi,j(L)), Gi,j(σi,j(M)), Hi,j(σi,j(R))

)
}i,j

∣∣∣L,M,R← NM.Code(mj∗

i∗)
)
≈ϵ

(
σ′(L), σ′(M), {NM.Decode

(
Fi,j(σi,j(L)), Gi,j(σi,j(M)), Hi,j(σi,j(R))

)
}i,j

∣∣∣L,M,R← NM.Code(0)
)

But these distributions upon post-processing (via the functions wMIM, yMIM, zMIM)
exactly correspond to the outputs of Hyb3,i∗,j∗,k∗−1 and Hyb3,i∗,j∗,k∗ respectively,

whenever c̃
j∗

k∗ , c
j∗

k∗ and ĉ
j∗

k∗ are all different. On the other hand, when any two of

the three values c̃
j∗

k∗ , c
j∗

k∗ and ĉ
j∗

k∗ are identical, the distributions Hyb3,i∗,j∗,k∗−1

and Hyb3,i∗,j∗,k∗ are statistically indistinguishable because of the two-out-of-
three secret sharing property of the code, i.e. they jointly do not depend on all
three of the shares, L,R and M. Since ϵ(λ) = negl(λ), this contradicts Equa-
tion (1), as desired.

Finally, this proof also extends to show that security of the watchlist protocol
holds against sub-exponential adversaries that run in time less than or equal to
T , where T denotes the running time of adversaries against which the underlying
two-party computation protocol is 2-rewinding sender secure.

27

5 4-Round Black-Box MPC Protocol

In this section, we give our construction of a four-round black-box MPC proto-
col from any two-message OT protocol that has super-polynomial time security
against malicious receivers and sub-exponential indistinguishability-based secu-
rity against malicious senders. Speciőcally, we prove the following theorem.

Theorem 2. For some ϵ > 0, assume black-box access to a two-round oblivious
transfer protocol with super-polynomial time simulation security against mali-
cious receivers and (2λ

ϵ

, 2−λϵ

)-indistinguishability-based security against mali-
cious senders. Then, there exists a four-round protocol for computing general
functions.

5.1 Building Blocks

The construction makes use of the following building blocks:

1. A three-round watchlist protocol WL = (WL1,WL2,WL3, outWL) satisfying
Deőnition 4. Let T1(λ) (abbreviated as T1) be the running time of SimWL

(which is the SPS simulator for the watchlist protocol). Let T2(λ) (abbre-
viated as T2) to be the running time of SimWL,R (which is the special SPS
extractor that over extracts the receiver inputs).

2. A two-round n-client, m-server MPC protocol Φ = (Φ1, Φ2, outΦ) that sat-
isőes ((T1 + T2) · poly(·), negl)-privacy with knowledge of outputs property
against any adversary corrupting upto t servers and an arbitrary number
of clients. By (T, ϵ)-security, we require ϵ distinguishing advantage against
any adversary that runs in time T . By privacy with knowledge of out-
puts [IKP10], we consider a weaker notion of security (when compared to
standard malicious security in the real/ideal paradigm), wherein the adver-
sary has the additional power to determine the outputs of the honest parties.
This is modelled by the ideal functionality getting an output to be delivered
to the honest parties from the adversary. We call this protocol as the outer
protocol. We set t = 2λn2 and m = 3t + 1. We need this protocol to addi-
tionally satisfy the property that the őrst round message generated by the
simulator on behalf of the honest clients to the corrupted servers is identi-
cally distributed to the őrst round messages generated by honest clients on
some default input. We note that [IKP10, Pas12] constructed such a protocol
making black-box use of a ((T1 + T2) · poly(·), negl)-secure PRG. As noted
in [IKSS21], we can delegate the PRG computations done by the servers
to the clients and ensure that the computations done by the servers are
information-theoretic.

3. For each h ∈ [m], a three-round inner protocol Πh = (Πh,1, Πh,2, Πh,3, outΠh
)

for computing the functionality of the h-th server in the outer protocol. We
require this protocol to satisfy Deőnition 5 (discussed below) against adver-
saries running in time (T1 + T2) · poly(λ) and the distinguishing advantage
being negl(λ).

28

Syntax. The three-round inner protocol computing a function f is given by
a tuple of algorithms (Π1, Π2, Π3, outΠ) with the following syntax. For each
round r ∈ [3], the i-th party in the protocol runs Πr on 1λ, the index i, the
private input xi and the transcript of the protocol in the őrst (r− 1) rounds
to obtain πi

r. It sends πi
r to every other party via a broadcast channel. We

use π(r) to denote the transcript of Π in the őrst r rounds. At the end of
the interaction, parties run the public decoder outΠ(π(3)) to compute the
output.

Definition 5 ([IKSS21]). The protocol Π is said to be an inner protocol
for computing a funtion f if it satisőes the following properties.
– Correctness. The protocol Π correctly computes a function f if for

every choice of inputs xi for party Pi,

Pr[outΠ(π(3)) = f(x1, . . . , xn)] = 1

where π(3) denotes the transcript of the protocol Π when the input of Pi

is xi.
– Security. Let A be an adversary corrupting a subset of the parties in-

dexed by the set M and let H be the set of indices denoting the honest
parties. We require the existence of a simulator SimΠ such that for any
choice of honest parties inputs {xi}i∈H , we have:

Real(A, {xi, ri}i∈H) ≈c Ideal(A, SimΠ , {xi}i∈H)

where the real and ideal experiments are described as in [IKSS21] (details
deferred to the full version due to lack of space).

Given these building blocks, our construction is described in Figure 5.
Due to space constraints, the full proof of security of this construction is

deferred to the full version.

Acknowledgments. Y. Ishai was supported in part by ERC Project NTSC (742754),
BSF grant 2018393, ISF grant 2774/20, and a Google Faculty Research Award.
D. Khurana was supported in part by NSF CAREER CNS-2238718 and DARPA
SIEVE. A. Sahai was supported in part from a Simons Investigator Award,
DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award,
and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through Award
HR00112020024. A. Srinivasan was supported in part by a SERB startup grant
and Google India Research Award.

References

AAG+16. Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji,
Omkant Pandey, and Manoj Prabhakaran. Optimal computational split-
state non-malleable codes. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part II, volume 9563 of LNCS, pages 393ś417, Tel Aviv, Is-
rael, January 10ś13, 2016. Springer, Heidelberg, Germany.

29

– Round-1: In the őrst round, the party Pi with input χi does the following:
1. It chooses a random MAC key ki ← {0, 1}

∗ and sets zi := (χi, ki).
2. It computes (ϕi→1

1 , . . . , ϕi→m
1)← Φ1(1

λ, i, zi).
3. It chooses a random subset Ki ⊂ [m] of size λ and sets xi,j = Ki for every

j ∈ [n] \ {i}.
4. It chooses a random string ri,h ← {0, 1}∗ for every h ∈ [m] and sets

yi,j = {ri,h, ϕ
i→h
1 }h∈[m] for every j ∈ [n] \ {i}.

5. It computes wli1 ←WL1(1
λ, i, {xi,j , yi,j}j∈[n]\{i}).

6. It broadcasts wli1.
– Round-2: In the second round, Pi does the following:

1. For each h ∈ [m], it computes πi
h,1 := Πh,1(1

λ, i, ϕi→h
1 ; ri,h).

2. It computes wli2 ← WL2(1
λ, i, {xi,j , yi,j}j∈[n]\{i},wl(1)). (Here, wl(r) de-

notes the transcript in the őrst r rounds of WL.)
3. It broadcasts {πi

h,1}h∈[m],wl
i
2.

– Round-3: In the third round, Pi does the following:
1. For every h ∈ [m], it computes πi

h,2 := Πh,2(1
λ, i, ϕi→h

1 , πh(1); ri,h). (Here,
πh(r) denotes the transcript in the őrst r rounds of Πh.)

2. It computes wli3 ←WL3(1
λ, i, {xi,j , yi,j}j∈[n]\{i},wl(2)).

3. It broadcasts {πi
h,2}h∈[m],wl

i
3.

– Round-4: In the fourth round, Pi does the following:
1. It runs outWL on i, {xi,j , yi,j}j∈[n]\{i}, the random tape used to generate

the messages in WL and wl(3) to obtain {rj,h, ϕ
j→h
1 }j∈[n]\{i},h∈Ki

.
2. For each j ∈ [n] \ {i} and h ∈ Ki, it checks:

(a) If the PRG computations in ϕ
j→h
1 are correct.

(b) For each ℓ ∈ [2], whether π
j

h,ℓ := Πh,ℓ(1
λ, j, ϕ

j→h
1 , πh(ℓ − 1); rj,h)

where πh(0) is set to be the null string.
3. If any of the above checks fail, then it aborts.
4. Else, for each h ∈ [m], it computes πi

h,3 := Πh,3(1
λ, i, ϕi→h

1 , πh(2); ri,h).
5. It broadcasts {πi

h,3}h∈[m] to every party.
– Output Computation. To compute the output, Pi does the following:

1. If a party has aborted before sending the fourth round message, output
⊥.

2. For every h ∈ [m], it computes ϕh
2 := outΠh

(i, πh(3)).
3. It runs outΦ on ({ϕh

2}h∈[m]) to recover (y, σ1, . . . , σn).
4. It checks if σi is a valid tag on y using the key ki. If yes, it outputs y and

otherwise, it aborts.

Fig. 5: Description of the Four-Round MPC Protocol

ACJ17. Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new
approach to round-optimal secure multiparty computation. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 468ś499, Santa Barbara, CA, USA, August 20ś24, 2017.
Springer, Heidelberg, Germany.

30

AIR01. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit Pőtzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 119ś135, Innsbruck, Austria, May 6ś10, 2001.
Springer, Heidelberg, Germany.

BD18. Zvika Brakerski and Nico Döttling. Two-message statistically sender-private
OT from LWE. In TCC 2018, Part II, LNCS, pages 370ś390. Springer,
Heidelberg, Germany, March 2018.

BF22. Nir Bitansky and Sapir Freizeit. Statistically sender-private ot from lpn and
derandomization. In Crypto 2022, 2022.

BGI+17. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and
Akshay Wadia. Two-message witness indistinguishability and secure com-
putation in the plain model from new assumptions. In ASIACRYPT, 2017.

BGJ+18. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman
Kalai, Dakshita Khurana, and Amit Sahai. Promise zero knowledge and
its applications to round optimal MPC. LNCS, pages 459ś487, Santa Bar-
bara, CA, USA, 2018. Springer, Heidelberg, Germany.

BHP17. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round
secure computation without setup. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 645ś677, Baltimore, MD,
USA, November 12ś15, 2017. Springer, Heidelberg, Germany.

CCG+20. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. On round optimal secure multiparty computation from
minimal assumptions. To appear in TCC, 2019:216, 2020.

CCG+21. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. Oblivious transfer from trapdoor permutations in minimal
rounds. In TCC 2021, Part II, pages 518ś549, 2021.

CGL16. Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors
and codes, with their many tampered extensions. In Daniel Wichs and
Yishay Mansour, editors, 48th ACM STOC, pages 285ś298, Cambridge,
MA, USA, June 18ś21, 2016. ACM Press.

DGH+20. Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and
Daniel Wichs. Two-round oblivious transfer from CDH or LPN. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, pages 768ś
797, 2020.

DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications.
LNCS, pages 3ś32, Santa Barbara, CA, USA, 2019. Springer, Heidelberg,
Germany.

FMV19. Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction
of fully-simulatable, round-optimal oblivious transfer from strongly uniform
key agreement. In Dennis Hofheinz and Alon Rosen, editors, Theory of

Cryptography - 17th International Conference, TCC 2019, Nuremberg, Ger-

many, December 1-5, 2019, Proceedings, Part I, volume 11891 of Lecture

Notes in Computer Science, pages 111ś130. Springer, 2019.
GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and

Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In 54th FOCS, pages 40ś49, Berkeley, CA, USA,
October 26ś29, 2013. IEEE Computer Society Press.

GK96a. Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. J. Cryptology, 9(3):167ś190, 1996.

31

GK96b. Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM J. Comput., 25(1):169ś192, 1996.

GLOV12. Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Con-
structing non-malleable commitments: A black-box approach. In 53rd

FOCS, pages 51ś60, New Brunswick, NJ, USA, October 20ś23, 2012. IEEE
Computer Society Press.

GMPP16. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychro-
niadou. The exact round complexity of secure computation. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 448ś476, Vienna, Austria, May 8ś12, 2016. Springer,
Heidelberg, Germany.

Goy11. Vipul Goyal. Constant round non-malleable protocols using one way func-
tions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 695ś704, San Jose, CA, USA, June 6ś8, 2011. ACM Press.

GPR16. Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable
commitments. In Daniel Wichs and Yishay Mansour, editors, 48th ACM

STOC, pages 1128ś1141, Cambridge, MA, USA, June 18ś21, 2016. ACM
Press.

GS18. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. LNCS, pages 468ś499. Springer,
Heidelberg, Germany, 2018.

GSZ21. Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source non-
malleable extractors and applications. In EUROCRYPT 2021, Part II,
pages 468ś497, 2021.

HIK+11. Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Pe-
trank. Black-box constructions of protocols for secure computation. SIAM

J. Comput., 40(2):225ś266, 2011.

HK12. Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-
message oblivious transfer. Journal of Cryptology, 25(1):158ś193, January
2012.

HPV20. Carmit Hazay, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam.
Which languages have 4-round fully black-box zero-knowledge arguments
from one-way functions? In Anne Canteaut and Yuval Ishai, editors, EURO-

CRYPT 2020, volume 12107 of Lecture Notes in Computer Science, pages
599ś619. Springer, 2020.

HV18. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Round-
optimal fully black-box zero-knowledge arguments from one-way permu-
tations. In TCC 2018, Part I, LNCS, pages 263ś285. Springer, Heidelberg,
Germany, March 2018.

IKP10. Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty com-
putation with minimal interaction. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 577ś594, Santa Barbara, CA, USA, August 15ś
19, 2010. Springer, Heidelberg, Germany.

IKSS21. Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan.
On the round complexity of black-box secure MPC. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st An-

nual International Cryptology Conference, CRYPTO 2021, Virtual Event,

August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes in

Computer Science, pages 214ś243. Springer, 2021.

32

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 572ś591, Santa Barbara, CA, USA, August 17ś
21, 2008. Springer, Heidelberg, Germany.

Kal05. Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 78ś95, Aarhus, Denmark, May 22ś26, 2005. Springer, Heidel-
berg, Germany.

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party
computation. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 335ś354, Santa Barbara, CA, USA, August 15ś19, 2004.
Springer, Heidelberg, Germany.

KOS18. Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round
optimal black-box łcommit-and-provež. In TCC 2018, Part I, LNCS, pages
286ś313. Springer, Heidelberg, Germany, March 2018.

KS17. Dakshita Khurana and Amit Sahai. Two-message non-malleable commit-
ments from standard sub-exponential assumptions. IACR Cryptology ePrint

Archive, 2017:291, 2017.
MOSV22. Varun Madathil, Chris Orsini, Alessandra Scafuro, and Daniele Ven-

turi. From privacy-only to simulatable OT: black-box, round-optimal,
information-theoretic. In ITC 2022, volume 230, pages 5:1ś5:20, 2022.

NP01. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on

Discrete Algorithms, January 7-9, 2001, Washington, DC, USA., pages 448ś
457. ACM/SIAM, 2001.

ORS15. Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal
black-box two-party computation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
339ś358, Santa Barbara, CA, USA, August 16ś20, 2015. Springer, Heidel-
berg, Germany.

Pas12. Anat Paskin-Cherniavsky. Secure Computation with Minimal Interaction.
PhD thesis, Technion, 2012. Available at http://www.cs.technion.ac.il/users/
wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf.

PS21. Arpita Patra and Akshayaram Srinivasan. Three-round secure multiparty
computation from black-box two-round oblivious transfer. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st An-

nual International Cryptology Conference, CRYPTO 2021, Virtual Event,

August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes in

Computer Science, pages 185ś213. Springer, 2021.
RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility

between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 1ś20, Cambridge, MA, USA, February 19ś21, 2004.
Springer, Heidelberg, Germany.

Wee10. Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability ampliőcation. In 51st FOCS, pages 531ś540, Las Vegas, NV,
USA, October 23ś26, 2010. IEEE Computer Society Press.

33

	Round-Optimal Black-Box MPC in the Plain Model
	Introduction
	Related Work

	Technical Overview
	Instantiating the IPS Compiler with Three-Round Watchlist
	Constructing Three-Round Watchlists with Promise Extraction
	Constructing Three-Round 2PC with Special Extraction

	Preliminaries
	3-Round Two-Party Computation Protocol with Special Extraction

	The Watchlist Protocol
	Definitions
	Construction

	4-Round Black-Box MPC Protocol
	Building Blocks

	References

